WO2004090015A1 - 架橋性イオン伝導性樹脂、並びにそれを用いてなるイオン伝導性高分子膜、結着剤及び燃料電池 - Google Patents

架橋性イオン伝導性樹脂、並びにそれを用いてなるイオン伝導性高分子膜、結着剤及び燃料電池 Download PDF

Info

Publication number
WO2004090015A1
WO2004090015A1 PCT/JP2004/004392 JP2004004392W WO2004090015A1 WO 2004090015 A1 WO2004090015 A1 WO 2004090015A1 JP 2004004392 W JP2004004392 W JP 2004004392W WO 2004090015 A1 WO2004090015 A1 WO 2004090015A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
acid group
ion
crosslinkable
electrode
Prior art date
Application number
PCT/JP2004/004392
Other languages
English (en)
French (fr)
Inventor
Satoko Fujiyama
Takehiko Omi
Junichi Ishikawa
Takashi Kuroki
Shoji Tamai
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Priority to EP04724116A priority Critical patent/EP1612232B1/en
Priority to CA002521712A priority patent/CA2521712A1/en
Priority to DE602004009047T priority patent/DE602004009047T2/de
Priority to JP2005505200A priority patent/JPWO2004090015A1/ja
Publication of WO2004090015A1 publication Critical patent/WO2004090015A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • B01D71/522Aromatic polyethers
    • B01D71/5222Polyetherketone, polyetheretherketone, or polyaryletherketone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/82Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/02Condensation polymers of aldehydes or ketones with phenols only of ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2371/12Polyphenylene oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention is applicable to a fuel cell using hydrogen, alcohol, or the like as a fuel, and has high ion conductivity, excellent heat resistance, water resistance, and solvent resistance.
  • the present invention relates to an ion conductive polymer membrane, an ion conductive binder, an electrode forming composition and an electrode, and a fuel cell using the same. Background art
  • a fuel cell is a device that electrochemically oxidizes a fuel such as hydrogen or methanol using oxygen or air, thereby converting the chemical energy of the fuel into electric energy and extracting it.
  • Such fuel cells are classified into a phosphoric acid type, a molten carbonate type, a solid oxide type, and a polymer electrolyte type depending on the type of electrolyte used.
  • Phosphoric acid fuel cells have already been put into practical use for electric power.
  • a phosphoric acid fuel cell must be operated at a high temperature (around 200 ° C), which results in a long start-up time, difficult system miniaturization, and low proton conductivity of phosphoric acid.
  • the drawback was that it was not possible to extract large currents.
  • polymer electrolyte fuel cells have an operating temperature of about 80 to about L 0 ° C at the maximum.
  • the internal resistance in the fuel cell can be reduced, so that the operation can be performed at a high current and the size can be reduced. Because of these advantages, research on polymer electrolyte fuel cells has become active. T / JP2004 / 004392
  • the polymer electrolyte membrane used in this polymer electrolyte fuel cell is required to have high ionic conductivity for protons involved in the electrode reaction of the fuel cell.
  • an ion conductive polymer electrolyte membrane material a fluoropolymer having a super strong acid group such as Nafion (registered trademark, manufactured by DuPont) or Daw membrane (manufactured by Dow) is known.
  • Nafion registered trademark, manufactured by DuPont
  • Daw membrane manufactured by Dow
  • these polymer electrolyte membrane materials have a problem that they are very expensive because they are fluorine-based polymers.
  • the polymer in order to impart ion conductivity, the polymer must have a residue that can be dissociated into ions, selected from carboxylic acid groups, sulfonic acid groups, and phosphoric acid groups. Although described in 3 gazettes, no disclosure was made of the polymer skeleton or ionic conductivity.
  • ether ketones containing a sulfonic acid group are described in Macromol. Chem. Pys., 199, 1421-1426 (1998), Polymer, 40, 795-799 (1999), Polymer, 42, 3293-3296 (2001). And so on. These documents describe a sulfonic acid group-containing polyether ketone obtained by copolymerizing a sulfonic acid-containing monomer and a sulfonic acid-free monomer.
  • a highly sulfonated polymer is required to obtain an ion-conductive polymer electrolyte membrane having high proton conductivity, but it has been pointed out that such a polymer has poor water resistance.
  • the present invention has been made to solve such problems of the prior art, and comprises a crosslinkable polyetherketone having a protonic acid group and having high ion conductivity and excellent heat resistance and water resistance. It is an object of the present invention to provide a conductive ion-conductive resin, an ion-conductive polymer membrane using the same, an ion-conductive binder, a composition and an electrode for forming an electrode, and a fuel cell using the same. . Disclosure of the invention
  • the crosslinkable ion conductive resin according to the present invention comprises a crosslinkable polyether ketone having a repeating unit represented by the following general formula (1).
  • a and A r 2 is at least two of them have two or more aromatic rings respectively but a divalent group which is connected by an alkylene bond, hydrogen of aromatic ring-halogenated And may be substituted with an alkyl group having 1 to 10 carbon atoms, a halogenated hydrocarbon group having 1 to 10 carbon atoms or a protonic acid group, wherein the alkylene is bonded to at least one aromatic ring.
  • a group in which the carbon atom is bonded to at least one hydrogen atom and has 1 to 10 carbon atoms, and Ar 1 and Ar 2 may be the same or different.
  • X represents a sulfonic acid group, a carboxylic acid group, a phosphoric acid group, a sulfonimide group, a protonic acid group selected from alkylsulfonic acid groups having 1 to 10 carbon atoms, or a group of a metal salt thereof.
  • y is an integer from 0 to 4, and at least x + y is 1 or more There.
  • a and b is an integer of 1 or more.
  • a crosslinked product obtained by crosslinking the crosslinkable ion conductive resin with at least one of light, heat and electron beam.
  • the ion conductive polymer membrane according to the present invention comprises the crosslinkable ion conductive resin or a crosslinked product thereof. Furthermore, the ion conductive binder according to the present invention comprises the crosslinkable ion conductive tree.
  • the electrode forming composition according to the present invention includes the ion-conductive binder and an electrode material, and the electrode according to the present invention includes the electrode forming composition.
  • a fuel cell using the ion-conductive polymer membrane and / or the ion-conductive binder.
  • FIG. 1 is a schematic diagram showing a cross-sectional structure of a fuel cell used in an example of the present invention.
  • FIG. 2 is a block flow diagram showing a fuel cell evaluation device used for evaluating a fuel cell in the embodiment.
  • the symbols in FIGS. 1 and 2 indicate the following. 1 Electrolyte membrane, 2, 2, Catalyzed electrode, 3 Gasket, 4 Separator, 5 Force pressure plate, .6 Gas flow path, 7 Fastening port, 8 Fuel cell, 9 Humidifying publishing tank, 10 Electronics Load, 1 1 Mass flow controller, 1 2 Liquid feed pump Best mode for carrying out the invention
  • the crosslinkable ion-conductive resin of the present invention is composed of a protonic acid group-containing polyester ketone having a crosslinkable group, and has a crosslinkable group which is not derived from pro-1, acid groups and can be bridged without generating a desorbing component. It is a crosslinkable ion conductive resin containing a proton acid group.
  • Examples of the bridging group of the present invention which is not derived from a protonic acid group and can be crosslinked without generation of a elimination component include, specifically, a combination of a carbonyl group and an alkylene group connecting an aromatic ring. .
  • the alkylene group a small number of directly bonded to the aromatic ring
  • At least one of the carbon atoms is preferably a group having 1 to 10 carbon atoms bonded to at least one hydrogen atom, and more preferably a group having 1 to 3 carbon atoms in the main chain.
  • Crosslinkable aromatic resins that can have a carboxyl group as a crosslinking group and an alkylene group linking an aromatic ring together with a protonic acid group in the molecule include ether groups and carbazole as a linking group for an aromatic ring.
  • Aromatic polyetherketone having a group, aromatic polyamide, aromatic polyimide, aromatic polyamideimide, and aromatic polyazole can be exemplified.
  • aromatic polyethers are preferred because of their excellent solvent solubility when not cross-linked and ease of processing such as film formation, and because they are not hydrolyzed by hot water, acids, alkaline water, alcohols, etc. Ketones are most preferred.
  • This crosslinkable polyetherketone preferably has a repeating unit represented by the following general formula (1). And, a high molecular film using the resin and / or a crosslinked product thereof is suitable as an ion conductive polymer film for a fuel cell.
  • is a divalent group having two or more aromatic rings, at least two of which are connected by an alkylene bond. May be substituted with a halogen, an alkyl group having 1 to 10 carbon atoms, a halogenated hydrocarbon group having 1 to 10 carbon atoms, or a protonic acid group.
  • X is a group having 1 to 10 carbon atoms in which the bonded carbon is bonded to at least one hydrogen, and A ri and Ar 2 may be the same or different.
  • X and y are integers from 0 to 4, and at least X + y is 1 or more
  • a and b are integers of 1 or more.
  • An alkylene group connecting the aromatic rings constituting A r ⁇ or A r 2 of the general formula (1) Is preferably one in which at least one carbon atom directly bonded to an aromatic ring is bonded to hydrogen, and more preferably an alkylene group having 1 to 10 carbon atoms in which the main chain has 1 to 3 carbon atoms.
  • a methylene group is most preferable from the viewpoint of the reactivity at the time of crosslinking ⁇ the heat resistance of the polyether ketone.
  • aromatic ring constituting A ri and Ar 2 include a 1,4-phenylene group, a 1,3-phenylene group, and a 1,2-phenylene group.
  • a bond connecting these aromatic rings in addition to the aforementioned alkylene group in which at least one carbon atom directly bonded to the aromatic ring is bonded to hydrogen, a direct bond, one CO—, one S 0 2— , One S—, —CF 2 —, — C (CH 3 ) 2 —, —C (CF 3 ) 2 —, —0—, 9, 9 monofluorene group and the like can be used.
  • Ar and Ar 2 in the above formula (1) are preferably the following formulas (I) and / or ( ⁇ ).
  • the repeating unit of the following formula (III) having a protonic acid group in the above formula (1) is 10 to 90 mol based on all repeating units. /. It is preferred to contain.
  • the protonic acid groups represented by X and Y in the above formula (1) include a sulfonic acid group, a carboxylic acid group, a phosphoric acid group, a sulfonimide group, and an alkyl having 1 to 10 carbon atoms. It is selected from sulfonic acid groups, and specific examples include sulfonic acid groups, carboxylic acid groups, phosphonic acid groups, and sulfonimide groups represented by the following formulas (a) to (d).
  • the content of protonic acid groups in the crosslinkable ion conductive resin of the present invention is not particularly limited, but is preferably from 200 to 5000 g / mo1, more preferably from 200 to 1000 gZmo1, in terms of ion exchange group equivalent.
  • the ion exchange group equivalent is defined as the weight of the resin per mole of the protonic acid group, and means the reciprocal of the number of moles of the protonic acid group per unit weight of the resin. That is, the smaller the ion exchange group equivalent, the larger the amount of protonic acid groups per unit weight of the resin.
  • the solubility of the resin in water when not cross-linked is remarkably high, and it becomes difficult to produce and purify the resin (removal of inorganic acids and inorganic salts from the resin). If the ion exchange group equivalent is too large, even a non-crosslinked resin has high water resistance and high methanol resistance (low methanol permeation rate), and requires less crosslinking. However, if the ion exchange group equivalent is too large, a high output fuel cell with low ion conductivity cannot be obtained.
  • aromatic dihydroxy compound represented by the following formula includes the following compounds.
  • Z6Cl700 / l700Zdf / X3d 0060 contract OAV
  • Examples of the benzophenone compound used in synthesizing the protonic acid group-containing crosslinkable polyetherketone include a benzophenone compound having a protonic acid group represented by the following general formula (4).
  • the compounds shown below are exemplified.
  • X, Y, X and y have the same meaning as in the formula (1).
  • Z is a halogen atom or a nitro group.
  • benzophenone compound not containing a protonic acid group represented by the above formula (5) include the following compounds.
  • the proton-acid group-containing crosslinkable polyetherketone of the present invention comprises one aromatic dihalide in addition to the benzophenone compounds represented by the general formulas (4) and (5) for the purpose of improving or modifying the performance. Copolycondensation can also be carried out using the above.
  • aromatic dihalides that can be used include 4,4, dichlorodiphenylsulfone, 2,6-dichloro-open pyridine, 2,6-dichloro-open benzonitrinole, and 2,6-diph / leo-benzo benzonitrinole. And the like.
  • the proton-acid group-containing crosslinkable polyether ketone of the present invention is used together with the aromatic diol compound represented by the general formulas (2) and (3) together with other aromatic diols for the purpose of improving or modifying the performance. Copolycondensation can also be carried out using one or more compounds. Specific examples of the aromatic diol compounds that can be used include:
  • Catalysts include alkaline metal compounds, alkaline earth metal metals, basic metal compounds such as zinc oxide, various metal carbonates, acetates, hydroxides, quaternary ammonium salts, phospho-pium salts, Organic base-containing metals and the like can be mentioned.
  • the amount of these catalysts used is preferably 0.1 to 0.0 mole ratio per mole of the aromatic dihydroxy compound used. More preferably, the molar ratio is from 5 to 2.0.
  • the total amount of the benzophenone compounds represented by the general formulas (4) and (5) is preferably 0.9 to 1.1 mole ratio per 1 mole of the aromatic dihydroxy compound used.
  • the molecular weight of the resulting polyetherketone can be controlled.
  • This molar ratio is more preferably 0.92 to 1.08 molar ratio, more preferably 0.94 to 1-06 monole ratio, and most preferably 0.95 to 1.05. .
  • Mouth A method in which an aromatic dihydroxy compound is reacted with a basic catalyst to form a salt, and then a benzophenone compound is added thereto to carry out the reaction.
  • the reaction for producing the protonic acid group-containing crosslinkable polyetherketone according to the present invention is usually performed in a solvent.
  • Solvents that can be used include
  • 1,2-Dimethoxetane bis (2-methoxethyl) ether, 1,2-bis (2-methoxetoxy) ethane, tetrahydrofuran, bis [2- (2-methoxy) ether solvents Ethoxy) ethyl] ether, 1,4-dioxane, c) amine solvents such as pyridine, quinoline, isoquinoline, ⁇ -picoline, ⁇ -picoline, ⁇ -picoline, isofolone, piperidine, 2,4-monoretidine, 2,6 lutedin, trimethinoleamine, triethylamine, tripropylamine, triptylamine,
  • solvents may be used alone or in combination of two or more. Further, one or more of the solvents shown in the following item e) can be used as a mixture. When used as a mixture, it is not always necessary to select a combination of solvents that dissolve each other at an arbitrary ratio, and even if the solvents are not mixed and are non-uniform, they can be used.
  • the concentration of the reaction carried out in these solvents (hereinafter referred to as polycondensation concentration) is not particularly limited, but the concentration of the polycondensation carried out in the solvent is determined based on the total weight of all the solvents used and When the ratio of the total weight of the aromatic dihydroxy compound and the benzophenone compound used to the total weight of the total weight of the aromatic dihydroxy compound and the benzophenone compound combined was defined as a value expressed as a percentage, Preferred polycondensation concentrations are from 5 to 40%, more preferably from 8 to 35%, and most preferably from 10 to 30%.
  • the aromatic dihydroxy compound of the general formula (2) or (3) is reacted with the benzophenone compound of the general formula (4) or (5) to form a protonic acid group according to the present invention.
  • the resulting crosslinkable polyetherketone is obtained.
  • Particularly preferred solvents in this reaction include the aprotic amide solvents described in the above item a) and the dimethyl sulfoxide described in the item d).
  • the atmosphere is air, nitrogen, helium, neon, or argon, and is not particularly limited, but is preferably nitrogen argon, which is an inert gas.
  • solvents may be used alone or in combination of two or more.
  • the above solvents a) to d) can be used in combination with one or more of the solvents described above.
  • the reaction temperature, reaction time and reaction pressure are not particularly limited, and known conditions can be applied. That is, the reaction temperature is preferably about 100 ° C to 300 ° C as an approximate range. However, it is more preferably in the range of 120 ° C. to 280 ° C., and most preferably in the range of 150 ° C. to 250 ° C.
  • the reaction time varies depending on the type of the monomer used, the type of the solvent and the reaction temperature, but is preferably 1 to 48 hours, more preferably 5 to 20 hours. Also, the reaction pressure is sufficient at normal pressure.
  • the temperature at the time of filtration is not particularly limited, and may be the reaction temperature or room temperature.
  • the pressure at the time of filtration is not particularly limited, and may be any of normal pressure, pressurized pressure, or reduced pressure.
  • a method for forming a proton-acid group-containing crosslinkable polyetherketone a method in which the solution obtained by filtration is applied as it is and dried to directly form a coating film, or Then, the solution is taken out, and then dried to obtain a polymer powder, which is again dissolved in the same or another solvent, and then coated and dried to form a coating film.
  • the drying temperature at the time of drying the solution to form a coating film depends on the solvent used and is not particularly limited, but is preferably from 100 ° C to 300 ° C, preferably from 120 ° C to 28 ° C. 0 ° C, particularly preferably in the range of 150 ° C to 250 ° C.
  • the drying time varies depending on the thickness of the coating film, but is preferably from 10 minutes to 20 hours, preferably from 20 minutes to 10 hours, and practically from 30 minutes to 5 hours.
  • the reduced viscosity of the resulting protonic acid group-containing crosslinkable polyetherketone is from 0.1 to 5.0 d 1 / g (measured in dimethyl sulfoxide at a concentration of 0.5 g / d 1 at 35 ° C). , Preferably from 0.2 to 4.0 d 1 / g, more preferably from 0.3 to 3.0 d 1 / g. If the reduced viscosity is in this range, the mechanical properties of the obtained film are sufficient, and the viscosity of the solution obtained by dissolving the polymer in a solvent is appropriate, and it is easy to obtain a thick film.
  • the proton-acid-group-containing crosslinkable polyetherketone according to the present invention can be used as a mixture of two or more types. Metals, glass, and carbon can be used in a range that does not impair the object of the present invention. Can be used as a mixture with a fiber-based ionic conductive resin or other general-purpose resin.
  • the proton-acid group-containing crosslinkable polyetherketone may be used after being crosslinked, or two or more of the crosslinked products may be mixed, or a crosslinked product and a fiber made of metal, glass, or carbon may be used.
  • 1 / ⁇ which is a fluorine-based ion conductive resin, can be used by mixing with other general-purpose resins.
  • the protonic acid group-containing crosslinkable polyetherketone is preferably contained in an amount of at least 20 wt%, more preferably at least 50 wt%.
  • the terminal group of the protonic acid group-containing crosslinkable polyether ketone used is not particularly limited.
  • the functional group adjacent to the aromatic ring can be cross-linked with an alkyl or alkylene group directly bonded to the aromatic ring, ie, a CH bond of a primary, secondary or tertiary carbon adjacent to the aromatic ring.
  • the carbonyl group can also crosslink with unsaturated bonds such as a carbon-carbon double bond or a carbon-carbon triple bond, a carbon-carbon double bond, a carbon-carbon bond adjacent to a nitrogen atom or an oxygen atom.
  • crosslinking with a primary, secondary or tertiary carbon directly bonded to an aromatic ring is preferred in view of the stability of the resulting crosslinking and the ease of synthesis of the crosslinking group.
  • the proton-acid group-containing crosslinkable polyetherketone of the present invention has, in the main chain, a carbonyl group and a preferable crosslinkable group of an alkylene bonding group directly bonded to an aromatic ring.
  • the proton acid group-containing crosslinkable polyetherketone according to the present invention can be crosslinked by at least one of light (ultraviolet light), heat, and electron beam.
  • the reaction mechanism relating to photocrosslinking is considered that at least one alkylene linking group of Ari and Ar2 present in the molecule is involved in the crosslinking reaction in the following manner.
  • the following reaction mechanism is for the case where Ari and Ar2 to be crosslinked are as follows. fx
  • the radical on benzophenone generated in the first stage of ultraviolet irradiation abstracts hydrogen from the methylene group. Subsequently, it is considered that photocrosslinking occurs as in the dimerization of the benzyl radical, the coupling reaction between the benzyl radical and the alcoholic carbon radical, and the dimerization of the alcoholic carbon radical.
  • the light source used for photocrosslinking the crosslinkable polyetherketone having a protonic acid group of the present invention is not particularly limited, but usually a light source capable of irradiating ultraviolet light or visible light can be used. Specific examples include low-pressure mercury lamps, high-pressure mercury lamps, xenon lamps, metal halide lamps, and the like.
  • the irradiation dose is usually 100 30000 m] / cm, preferably 500 20000 mJ / cm 2 , depending on the structure and thickness of the cross-linkable ion conductive resin to be irradiated.
  • the method of supplying heat is not particularly limited, and heating by ordinary oven or the like is sufficient.
  • the heating temperature and time vary depending on the structure of the cross-linkable polyether ketone used, but are usually 120 to 300 ° C for 0.1 to 180 minutes, preferably 150 to 250 ° C for 160 minutes.
  • the ion-conducting polymer membrane according to the present invention preferably uses a cross-linkable ion-conducting resin composed of the above-mentioned proton-acid group-containing polyether ketone, but is used in combination with other various ion-conducting polymers. You can also. Examples of these are high fluorine Polymers with proton acid groups added to molecules, polyether ketone polymers, polyether sulfone polymers, polyphenylene sulfide polymers, polyimide polymers, polyamide polymers, epoxy polymers, polyolefin polymers, etc.
  • the proton acid group examples include a sulfonic acid group, a carboxylic acid group, a phosphoric acid group, and a sulfonimide group. Further, an inorganic ion conductive material such as silica may be used. Further, two or more kinds of the above-mentioned proton-acid group-containing crosslinkable polyether ketones may be used as a mixture.
  • the method for producing the ion-conductive polymer membrane according to the present invention is not particularly limited, and a known press method or cast method can be used.
  • the thickness of the electrolyte membrane of the ion-conductive polymer membrane is not particularly limited, but is usually preferably 10 to 200 / zm, and more preferably 30 to: L00m. Within this range, sufficient film strength is obtained, and the film resistance is sufficiently low for practical use. That is, by shutting off the fuel between the positive electrode and the negative electrode of the battery and having sufficient ionic conductivity, it is possible to obtain excellent power generation performance as a fuel cell.
  • the thickness of the membrane is too thin, the fuel crossover may not be sufficiently suppressed. If the thickness is too thick, the membrane resistance may be high and affect the power generation performance.
  • the film thickness can be controlled by the conditions at the time of film formation, for example, the temperature and pressure during press molding, the gas concentration during casting, and the coating thickness.
  • the method of crosslinking the ion-conducting polymer membrane of the present invention can be performed in the same manner as in the above-mentioned crosslinking of the ion-conductive resin.
  • the film can be prepared after crosslinking the crosslinkable polyetherketone containing protonic acid groups, or two or more of the crosslinked products can be mixed, or the crosslinked product can be made of metal, glass, or carbon. It can be used by mixing with fiber-fluorinated ion conductive resin or other general-purpose resin.
  • the protonic acid group-containing crosslinkable polyether ketone is preferably contained at 2 O wt ° / 0 or more, more preferably at 50 wt% or more.
  • the ion conductive binder for a fuel cell according to the present invention will be specifically described.
  • the proton-acid-group-containing crosslinkable ion-conductive resin of the present invention can be used in a conventionally-developed stainless steel.
  • this resin Shows high ionic conductivity like the sulfonic acid group-containing polymer. Also, unlike the super-strong acid group-containing fluorine-based polymer which has been conventionally studied as a binder, this resin has a polar group such as an aromatic ring or an ether bond in its structure. Shows high adhesion to other substances such as aromatic polymer-based polymer electrolyte membranes. Furthermore, this resin is crosslinked by light, heat, electron beam, etc., and as a result, exhibits high heat resistance and water resistance.
  • the binder according to the present invention is made of the above-mentioned crosslinkable polyether ketone having a protonic acid group, but can also be used in combination with other various ion-conductive polymers. Further, a crosslinked product of the above-mentioned proton acid group-containing crosslinkable polyetherketone may be used, and the crosslinked product may be used in combination with other various ion-conductive polymers. Examples of other various ion-conductive polymers include fluoropolymers, polyetherketone polymers, polyethersulfone polymers, polyphenylene sazo sulfide polymers, polyimide polymers, polyamide polymers, and epoxy.
  • a polymer in which a proton acid group has been added to a molecule polyolefin polymer, or the like.
  • the protonic acid group include a sulfonic acid group, a carboxylic acid group, a phosphoric acid group, and a sulfonimide group.
  • an inorganic ion conductive material such as silica may be used.
  • the binder preferably contains 5% by weight or more of a proton-acid group-containing crosslinkable polyether ketone, so that other substances such as an electrode material and a proton-acid group-containing aromatic polymer-based polymer electrolyte membrane can be used.
  • a proton-acid group-containing crosslinkable polyether ketone so that other substances such as an electrode material and a proton-acid group-containing aromatic polymer-based polymer electrolyte membrane can be used.
  • the binder is cross-linked by light, heat, electron beam, etc., and as a result, exhibits high heat resistance and water resistance.
  • the light source used is not particularly limited, but a light source capable of irradiating light in the range of ultraviolet light or visible light can be usually employed.
  • the irradiation dose varies depending on the structure of the crosslinkable polyetherketone used and its film thickness, but is usually 100 to 300 mj / cm 2 , preferably 500 to 2000 m it is a J / cm 2.
  • the method of supplying heat is not particularly limited, and ordinary heating with an open or the like is sufficient.
  • the heating temperature and time vary depending on the structure of the crosslinkable polyetherketone used and its film thickness, but are usually 120 to 300 ° C. 0.1 to 180 minutes, preferably 150 to 250 ° C., for 1 to 60 minutes.
  • the binder of the present invention can be used in the form of a paste, and the paste is composed of the above-mentioned binding complex lj and a solvent, and may be a solution or a suspension.
  • Solvents can be selected without particular limitation as long as they can be liquefied.For example, water, alcohols such as methanol, ethanol, 1-propanol, 2-propanol, butanol, methoxyethanol, ethoxyethanol, toluene, xylene, etc.
  • Hydrocarbons chlorinated hydrocarbons such as methyl chloride and methylene chloride, ethers such as dichloroethyl ether, 1,4-dioxane, tetrahydrofuran, monoglyme, diglyme, methyl acetate, ethyl acetate, etc.
  • the concentration of the binder can be appropriately selected depending on the method of use, but is preferably 1 wt ° / 0 or more and 80 wt%.
  • the electrode forming composition according to the present invention comprises a binder comprising the protonic acid group-containing crosslinkable polyetherketone of the present invention and an electrode material.
  • the ratio between the binder and the electrode material is not particularly limited. However, it is preferable that the ratio of the binder be 5 wt% or more and 9 ⁇ wt% or less, because the strength and efficiency of the electrode can be compatible.
  • examples of the electrode material include a conductive material having electrical conductivity, and a catalyst that promotes an oxidation reaction of hydrogen and a reduction reaction of oxygen.
  • the conductive material any conductive material may be used or may be displaced, and examples thereof include various metals and carbon materials.
  • carbon black such as acetylene black, activated carbon, graphite and the like can be mentioned, and these can be used alone or as a mixture in powder or sheet form.
  • the catalyst is not particularly limited as long as it promotes the oxidation reaction of hydrogen and the reduction reaction of oxygen.
  • the electrode according to the present invention includes: a binder comprising the above-described proton acid group-containing crosslinkable polyetherketone or a protonic acid group-containing crosslinkable polyetherketone and various other ion conductive polymers; And a material for forming an electrode.
  • the fuel cell according to the present invention uses at least one of the above-mentioned ion-conductive polymer membrane, ion-conductive binder, electrode composition, and electrode.
  • the varnish containing the binder and Z or the electrode-forming composition according to the present invention is sprayed onto a substrate such as carbon paper to form an electrode and then directly bonded to the electrolyte membrane.
  • a varnish containing a binder and Z or an electrode-forming composition is applied to a base material such as carbon paper, and then dried to form an electrode, and then a crosslinkable ion conductive resin according to the present invention is formed.
  • a method for bonding to a electrolyte membrane using a varnish containing: a varnish containing a binder and / or an electrode-forming composition according to the present invention is directly spray-coated on the electrolyte membrane, then dried and bonded
  • Examples of the method include a method of forming the electrode using another method, and joining the electrode to the electrolyte membrane using a varnish containing the crosslinkable ion conductive resin according to the present invention.
  • the method for joining the electrolyte membrane and the electrode is not particularly limited, and examples thereof include hot press, cold press, and ultrasonic welding. Among them, it is preferable to use a hot press.
  • crosslinking can be performed by light and / or heat or electron beam irradiation as necessary.
  • the fuel cell of the present invention comprises a polymer electrolyte membrane having ion conductivity, and a positive electrode and a negative electrode arranged in contact with both sides thereof.
  • Hydrogen or methanol aqueous solution of fuel Is electrochemically oxidized at the negative electrode to generate protons and electrons. This proton moves inside the polymer electrolyte membrane to the positive electrode to which oxygen is supplied.
  • the electrons generated at the negative electrode pass through the load connected to the battery and flow to the positive electrode, where protons and electrons react at the positive electrode to produce water.
  • Test methods for various tests in the examples are as follows.
  • Protonic acid metal salts and the like were converted back to free protonic acids by the following method.
  • the ion conductive membrane After cutting the ion conductive membrane to a width of 5 mm and a length of 4 Omm, it is placed on a PTFE (polytetrafluoroethylene) holder, and four electrodes are pressed against each other. From the arc determined by the AC impedance method of the four-terminal method The resistivity was measured. 2 Omm between voltage terminals Was. The impedance was measured using an LCR meter (3532 manufactured by Hioki Electric Co., Ltd.). The temperature was changed by placing the sample connected to the electrodes in a thermostat made of aluminum block, and the conductivity was measured in the range of 30 ° C to 110 ° C.
  • LCR meter 3532 manufactured by Hioki Electric Co., Ltd.
  • Humidification is carried out by introducing steam into a thermostatic chamber at normal pressure. The temperature is kept at + 5 ° C when the temperature measured by the steam generator is less than 10 ° C, and 120 ° C when the temperature is 100 ° C or more. The distilled water was heated and the generated steam was used.
  • the film thickness was measured in a dry state using a micrometer.
  • distilled water and lmo 1/1 methanol aqueous solution were contacted via an ion conductive polymer membrane with a diameter of 23 mm, and the change in methanol concentration on the distilled water side was measured using a refractometer (Shimadzu Corporation RID-6A). ). The methanol permeation rate at a film thickness of 50 im was calculated from the slope of the obtained ethanol concentration increasing line.
  • a reaction flask equipped with a stirrer, a thermometer and a condenser was charged with 4,4,1-difluorene benzophenone (0.525 mol) and 210 ml of 50% fuming sulfuric acid. Reacted. This was discharged into 10 g of ice water and neutralized with 210 g of NaOH. Next, 210 g of NaC1 was added, and the mixture was dissolved by heating, allowed to cool, and left overnight. After filtering the precipitated crystals, 400 ml of water and 400 ml of ethanol were added, dissolved by heating and allowed to cool, followed by recrystallization. The precipitated crystals were filtered and dried at 100 ° C for 6 hours to obtain white crystals of 5,5,1-potency Lupoerbis (sodium 2-fluorobenzenesulfonate).
  • the obtained powder polymer was dissolved in N-methyl-2-pyrrolidone, cast on a glass substrate, and dried at 200 ° C. for 4 hours to obtain a polyetherketone film containing sulfonic acid Na.
  • the resulting film was flexible and tough.
  • the polyetherketone membrane containing sulfonic acid Na is crosslinked by the method described in (c), and the membrane is further subjected to proton exchange by the method described in (port) to obtain a sulfonic acid-containing photocrosslinked polyetherketone. Ton film was obtained.
  • the ionic conductivity is determined by the method described in (e), Table 2 shows the results of measuring the methanol permeation rate by the method described in (1).
  • the resulting film was highly flexible and tough.
  • Table 1 shows the results of ionic conductivity measurements in Table 1.
  • Tg and ionic conductivity were measured in the same manner as in Example 1 using a Naphion 112 membrane (A1 drich reagent).
  • Table 1 shows the results of T g
  • Table 2 shows the measurement results of the conductivity and the methanol permeation rate.
  • Allegory example 7 Hyd 53 off. ⁇ ⁇ ⁇ A A * f liPA a Yield 3 ⁇ 4 3 ⁇ 4 ⁇ , , fe fe ((( ⁇ ⁇ ⁇
  • Table 2 shows that Examples 1 to 3 exhibited the same or no problem in ionic conductivity as compared with the Nafion membrane of Comparative Example 1, and were superior in methanolic acid permeability.
  • the T g is sufficiently higher than 130 ° C. of the naphthonic film, which indicates that the heat resistance is greatly improved.
  • the sulfonic acid-containing photocrosslinked polyetherketone membrane obtained in Example 1 was used as the electrolyte membrane 1.
  • the polyetherketone powder obtained in Example 1 was subjected to proton exchange by the method described above (mouth). Using 0.5 g of the obtained sulfonic acid-containing polyether ketone powder as a binder, 10 g of a varnish dissolved in a mixed solvent of 5.0 g of distilled water and 4.5 g of tetrahydrofuran was added to a 20 wt. % Pt-supported catalyst (name: IFPC20) was mixed with 0.5 g, and the mixture was stirred after applying ultrasonic waves to obtain a composition for forming an electrode for an air electrode catalyst.
  • IFPC20 20 wt. % Pt-supported catalyst
  • 0.5 g of the sulfonic acid-containing polyether ketone powder obtained in 4-2 was used as a binder, and dissolved in a mixed solvent of 5.0 g of distilled water and 4.5 g of tetrahydrofuran.
  • a mixed solvent of 5.0 g of distilled water and 4.5 g of tetrahydrofuran was mixed with 0.5 g of a 30 wt% PtRu supported catalyst (name: IFPC 30 A) made of Ishifuku Noble Metal, and stirred after application of ultrasonic waves to obtain a composition for forming an electrode for a fuel electrode catalyst. .
  • the electrolyte membrane electrode assembly prepared in 4-1 was assembled into a fuel cell test cell (product number: EFC-05-05 REF) manufactured by E1ectrochem, and the fuel cell shown in Fig. 1 was assembled.
  • the electrolyte membrane 1 is sandwiched between the electrodes 2 and 2 with catalyst and the gasket 3 prepared above, and a separator 4 is further placed on the outside thereof. It has a structure that is tightly tightened with the tightening bolt 7.
  • the inner part 6 is provided with a gas flow path.
  • FIG. 2 the fuel cell shown in FIG.
  • the aqueous methanol solution is sent from the left to the right through the fuel cell 8 by the sending pump 12.
  • air is humidified by the humidification coupling tank 9 and is ventilated from left to right through 8.
  • a methanol aqueous solution flows through the six flow paths on the fuel electrode side, and air flows through the six flow paths on the air electrode side.
  • Each flow rate is controlled by the mass flow controller 11.
  • the system evaluates fuel cells by measuring the voltage and current density generated by flowing methanol aqueous solution and air with an electronic load of 10. Table 3 shows the measurement conditions.
  • the cell was disassembled and the electrolyte membrane electrode assembly was observed, but no separation of the electrolyte membrane and the electrode was observed.
  • the crosslinkable ionic conductive resin and the ion conductive polymer membrane using the same according to the present invention have a high practical level of ion conductivity and excellent heat resistance.
  • the agent has high practical levels of ion conductivity, heat resistance, and water resistance, and has excellent adhesion to electrode materials and aromatic polymer-based polymer electrolyte membranes containing protonic acid groups.
  • Fuel cell has excellent durability, low resistance and high current operation It is possible to obtain a functional fuel cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Fuel Cell (AREA)
  • Polyethers (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Inert Electrodes (AREA)

Description

明 細 書 架橋性イオン伝導性樹脂、 並びにそれを用いてなるイオン伝導性高分子膜、 結 着剤及び燃料電池 技術分野
本発明は、 水素、 アルコールなどを燃料に用いる燃料電池などに適用できる、 イオン伝導性が高く耐熱性及び耐水性、 耐溶剤性に優れる、 架橋性イオン伝導性樹 脂、 並びにそれを用いてなるイオン伝導性高分子膜、 イオン伝導性結着剤、 電極形 成用組成物及び電極、 そしてそれらを用いてなる燃料電池に関する。 背景技術
近年、 環境問題の観点から新エネルギー蓄電あるいは発電素子が社会で強く求 められてきている。 燃料電池もその 1つとして注目されており、 低公害、 高効率と いう特徴から最も期待される発電素子である。 燃料電池とは、 水素やメタノール等 の燃料を酸素または空気を用いて電気化学的に酸化することにより、 燃料の化学ェ ネルギーを電気エネルギーに変換して取り出すものである。
このような燃料電池は、用いる電解質の種類によってりん酸型、溶融炭酸塩型、 固体酸化物型及び高分子電解質型に分類される。 りん酸型燃料電池は、 すでに電力 用に実用化されている。 しかし、 りん酸型燃料電池は高温 (2 0 0 °C前後) で作用 させる必要があり、 そのため起動時間が長い、 システムの小型化が困難である、 ま たりん酸のプロトン伝導度が低いために大きな電流を取り出せないという欠点を有 していた。
これに対して、 高分子電解質型燃料電池は操作温度が最高で約 8 0〜: L 0 0 °C 程度である。 また、 用いる電解質膜を薄くすることによって燃料電池内の内部抵抗 を低減できるため高電流で操作でき、 そのため小型化が可能である。 このような利 点から高分子電解質型燃料電池の研究が盛んになってきている。 T/JP2004/004392
2 この高分子電解質型燃料電池に用レヽる高分子電解質膜には、 燃料電池の電極反 応に関与するプロトンについて高いイオン伝導性が要求される。 このようなイオン 伝導性高分子電解質膜材料としては、 商品名 N a f i o n (登録商標、 デュポン社 製) または D a w膜 (ダウ社製) などの超強酸基含有フッ素系高分子が知られてい る。 しかし、 これらの高分子電解質膜材料はフッ素系の高分子であるために、 非常 に高価であるという問題を抱えている。 また、 これらの高分子の持つガラス転移温 度が低いために、 操作温度である 1 0 o°c前後での水分保持が十分でなく、 従って 高いイオン伝導度を生かしきれず、 イオン伝導度が急激に低下し電池として作用で きなくなるという問題があつた。
一方、 イオン伝導性を持たせるために、 ポリマーにカルボン酸基、 スルホン酸 基、 リン酸基から選ばれる、 イオンに解離し得る残基を持たせることが特表平 8— 5 0 4 2 9 3公報に記載されているが、 ポリマー骨格やイオン伝導度についてはな んら開示されていなかつた。
また、 スルホン酸基を含有するエーテルケトンは、 Macromol. Chem. P ys., 199, 1421-1426(1998) 、 Polymer, 40, 795-799(1999) 、 Polymer, 42, 3293-3296(2001)等によって知られている。 これらには、 スルホン酸を含有するモ ノマーとスルホン酸を含有しないモノマーを共重合化して得られるスルホン酸基含 有ポリエーテルケトンが記載されている。 しかし、 これらの文献によると、 スルホ ン酸を含有するモノマーの割合が多くなる、 すなわちポリエーテルケトン中のスル ホン酸の量が増えると、 ポリマーの耐水性が低下し、 最終的には水に溶解してしま うため、 高度にスルホン化したポリエーテルケトンを得ることができなかった。
一般に、 プロ トン伝導性の高いイオン伝導性高分子電解質膜を得るには、 高度 にスルホン化されたポリマーが必要であるが、 そのようなポリマーは耐水性に劣る という問題が指摘されていた。
—方、 高分子型燃料電池において、 電極材料の固定や、 電極と膜の接着に用い られる結着剤についてはほとんど報告例が無く、 唯一、 超強酸基含有フッ素系高分 子が用いられているのみである。 しかしながら、 この超強酸基含有フッ素系高分子 は、 超強酸基含有フッ素系高分子からなる高分子電解質膜には接着するものの、 プ 口トン酸基含有芳香族ポリマー系の高分子電解質膜との接着力に乏しかった。
そのため、 イオン伝導性が高く、 耐熱性、 耐水性に優れ、 さらにプロ トン酸基 含有芳香族ポリマー系高分子電解質膜や電極材料との接着力に優れた、 燃料電池用 のイオン伝導性結着剤が求められていた。
従って、 本発明は、 このような従来技術が持つ問題を解決しょうとしたもので あり、 イオン伝導性が高く耐熱性及び耐水性に優れた、 プロトン酸基を有する架橋 性ポリエーテルケトンからなる架橋性ィオン伝導性樹脂、 並びにそれを用いてなる イオン伝導性高分子膜、 イオン伝導性結着剤、 電極形成用組成物及び電極、 そして それらを用いてなる燃料電池を提供することを目的としている。 発明の開示
本発明に係る架橋性イオン伝導性樹脂は、 下記一般式 (1 ) で表わされる繰り 返し単位を有する架橋性ポリエーテルケトンからなる。
Figure imgf000005_0001
(一般式 (1 ) 中、 A 及び A r 2は、 それぞれ 2個以上の芳香環を有しそれらの うち少なくとも 2つがアルキレン結合でつながれている 2価の基であり、 芳香環の 水素はハロゲン、 炭素原子数 1〜 1 0のアルキル基、 炭素原子数 1〜 1 0のハロゲ ン化炭化水素基あるいはプロトン酸基で置換されていても良い。前記アルキレンは、 少なくとも一方の芳香環に結合した炭素が少なくとも 1つの水素と結合している炭 素原子数 1〜 1 0の基である。 A r 1及ぴ A r 2は同一であっても異なっていても良 い。 X及び Yはそれぞれ、 スルホン酸基、 カルボン酸基、 リン酸基、 スルホンィミ ド基、 炭素原子数 1〜 1 0のアルキルスルホン酸基から選ばれるプロ トン酸基、 ま たはそれらの金属塩の基を表し、 X及ぴ yは 0〜4の整数であり、 少なくとも x + yは 1以上である。 a及び bは 1以上の整数である。) 2
4 本発明により、 前記の架橋性イオン伝導性樹脂を、 光、 熱及び電子線の少なく とも 1つにより架橋して得られる架橋物が提供される。
本発明に係るイオン伝導性高分子膜は、 前記架橋性イオン伝導性樹脂、 または その架橋物からなる。 さらに、 本発明に係るイオン伝導性結着剤は、 前記架橋性ィ オン伝導性樹を含んでなる。
また、 本発明に係る電極形成用組成物は、 前記イオン伝導性結着剤と電極材料 とからなり、 本発明に係る電極は、 前記電極形成用組成物からなる。
本発明により、 前記イオン伝導性高分子膜および/またはイオン伝導性結着剤 を用いてなる燃料電池が提供される。 図面の簡単な説明
第 1図は、 本発明の実施例で用いた燃料電池の断面構造を示す概略図である。 第 2図は実施例で燃料電池の評価に用いた燃料電池評価装置を すプロックフロー 図である。 図 1および 2中の符号は次のものを示す。 1 電解質膜、 2、 2, 触媒 付き電極、 3 ガスケット、 4 セパレーター、 5 力 Π圧板、 .6 ガス流路、 7 締 め付けポルト、 8 燃料電池セル、 9 加湿用パブリングタンク、 1 0 電子負荷、 1 1 マスフローコントローラー、 1 2 送液ポンプ 発明を実施するための最良の形態
以下、 本発明に係る架橋性イオン伝導性樹脂及びそれを用いてなるイオン伝導 性高分子膜について具体的に説明する。
本発明の架橋性イオン伝導性樹脂は、 架橋基を有したプロトン酸基含有ポリェ ーテルケトンからなり、 プロ 1、ン酸基から誘導されずかつ脱離成分の生成なしに架 橋し得る架橋基を有する、 プロトン酸基含有架橋性イオン伝導性樹脂である。
本発明のプロトン酸基から誘導されずかつ脱離成分の生成なしに架橋し得る架 橋基としては、 具体的にはカルボニル基と芳香環を連結するアルキレン基との組み 合わせをあげることができる。 アルキレン基としては、 芳香環に直接結合した少な くとも一方の炭素原子が少なくとも 1つの水素と結合している炭素原子数 1〜1 0 の基であることが好ましく、 その主鎖の炭素原子数が 1〜3であるものがより好ま しい。
分子内にプロトン酸基とともに、 架橋基としてカルボ-ル基と芳香環を連結す るアルキレン基とを有することができる架橋性の芳香族樹脂としては、 芳香環の連 結基としてエーテル基とカルボエル基を有する芳香族ポリエーテルケトン、 芳香族 ポリアミド、 芳香族ポリイミド、 芳香族ポリアミドィミド、 芳香族ポリァゾールを 挙げることができる。 これらの中では、 未架橋時の溶剤溶解性に優れる点および製 膜などの加工の容易さ、 さらには熱水、 酸、 アルカリ水、 アルコール類などによる 加水分解を受けない点から芳香族ポリエーテルケトンが最も好ましい。
この架橋性ポリエーテルケトンは、 下記一般式 (1 ) で表わされる繰り返し単 位を有することが好ましい。 そして該樹脂及び またはその架橋物を用いてなる高 分子膜は、 燃料電池用イオン伝導性高分子膜として好適である。 い )
Figure imgf000007_0001
(一般式 (1 ) 中、 八!^及ぴ :^は、 それぞれ 2個以上の芳香環を有しそれらの うち少なくとも 2つがアルキレン結合でつながれている 2価の基であり、 芳香環の 水素はハロゲン、 炭素原子数 1〜1 0のアルキル基、 炭素原子数 1〜1 0のハロゲ ン化炭化水素基あるいはプロトン酸基で置換されていても良い。前記アルキレンは、 少なくとも一方の芳香環に結合した炭素が少なくとも 1つの水素と結合している炭 素原子数 1〜1 0の基である。 A r i及ぴ A r 2は同一であっても異なっていても良 レ、。 X及び Yはそれぞれ、 スルホン酸基、 カルボン酸基、 リン酸基、 スルホンイミ ド基、 炭素原子数 1〜1 0のアルキルスルホン酸基から選ばれるプロトン酸基、 ま たはそれらの金属塩の基を表し、 X及ぴ yは 0〜 4の整数であり、 少なくとも X + yは 1以上である。 a及ぴ bは 1以上の整数である。)
前記一般式 ( 1 ) の A r丄または A r 2を構成する芳香環をつなぐアルキレン基 は、 芳香環に直接結合した少なくとも一方の炭素原子が水素と結合しているものが 好ましく、 主鎖の炭素原子数が 1〜 3である炭素原子数 1〜 10のアルキレン基が さらに好ましい。 具体的にはメチレン基、 ェチリデン基、 プロピリデン基、 ブチリ デン基、 エチレン基、 プロピレン基、 1, 2—ジメチルェチレン基、 ェチノレエチレ ン基、 1, 2 -ジェチルエチレン基、 トリメチレン基、 1一ェチル一 2—メチルト Vメチレン基、 1, 2—ジェチルー 3—メチルトリメチレン基などが挙げられる。 なかでも架橋時の反応性ゃポリエーテルケトンの耐熱性の点からメチレン基が最も 好ましい。
Ar i及び Ar 2を構成する芳香環として具体的には、 1, 4一フエ二レン基、 1, 3—フエ-レン基、 1, 2—フエ-レン基などを挙げることができる。 また、 これらの芳香環をつなぐ結合として、 芳香環に直接結合した少なくとも一方の炭素 原子が水素と結合している前記のアルキレン基の他に、 直接結合、 一CO—、 一 S 02—、 一 S―、 —CF2 -、 — C (CH3) 2 -、 -C (CF3) 2—、 —0 -、 9, 9一フルオレン基などを用いることができる。
本発明においては、 前記式 (1) 中の Ar 及び A r 2が、 下記式 (I) 及び/ または (Π) であることが好ましい。
Figure imgf000008_0001
Figure imgf000008_0002
また、 本発明の架橋性ポリエーテルケトンは、 前記式 (1) 中の、 プロトン酸 基を有する下記式 (III) 部分の繰り返し単位を、 全繰り返し単位に対して 10〜9 0モル。/。含有することが好ましい。
Figure imgf000009_0001
本発明において、 前記式 (1) 中の X及ぴ Yで表されるプロトン酸基は、 スル ホン酸基、 カルボン酸基、 リン酸基、 スルホンイミド基、 炭素原子数 1〜 10のァ ルキルスルホン酸基から選ばれるものであり、 具体的には、 下記式 (a) 〜 (d) で示されるスルホン酸基、 カルボン酸基、 ホスホン酸基、 スルホンイミド基などが 挙げられる。 なかでも下記式 (a) で示されるスルホン酸基またはアルキルスルホ ン酸基が好ましく、 下記式 (a) において n = 0で示されるスルホン酸基が特に好 ましい。
-CnH2n-S03Y (nは 0〜: L 0の整数、 Yは H, Naまたは K) (a) -CnH2n-COOY (nは 0〜10の整数、 Yは H, Naまたは K) (b) — CnH2n— P03Y2 (ηは 0〜; L 0の整数、 Yは H, Naまたは K) (c) -CnH2nS02-NY-S02CnH2n (nは 0〜: L 0の整数、 Yは H, Naまた は K) (d)
本発明の架橋性イオン伝導性樹脂のプロトン酸基含有量に特に制限はないが、 好ましくは、 イオン交換基当量にして 200〜5000 g/mo 1、 より好ましく は 200〜1000 gZmo 1である。 ここで、 イオン交換基当量とは、 プロ トン 酸基 1モル当たりの樹脂重量で定義され、 樹脂単位重量当たりのプロトン酸基モル 数の逆数を意味する。 すなわち、 イオン交換基当量が小さいほど、 樹脂単位重量当 たりのプロトン酸基量が多いことを示す。
イオン交換基当量が小さすぎる場合には、 未架橋時の樹脂の水への溶解性が著 しく高く、樹脂の製造や精製(樹脂中からの無機酸や無機塩の除去)が困難となる。 イオン交換基当量が大きすぎる場合には、 未架橋の樹脂であっても耐水性、 耐メタ ノール性が高く (メタノ一ノレ透過速度が低く )、架橋の必要†生が低くなる。 しかしな がら、 イオン交換基当量が大きすぎる場合には、 イオン伝導性が低く高出力の燃料 電池を得ることができない。 このような前記一般式 (1 ) で表される、 プロトン酸基含有架橋性ポリエーテ ルケトンを合成するには、 例えば、 芳香族ジヒドロキシ化合物とプロトン酸基を含 有するペンゾフェノン化合物とを重縮合することにより得ることができる。 その際 に用いられる芳香族ジヒドロキシ化合物としては、 下記一般式 ( 2 )、 ( 3 )
• HO— Afi— OH ( 2 )
HO— Ar2— OH ( 3 )
で表される芳香族ジヒドロキシ化合物が挙げられ、 具体的には以下に表される化合 物などが例示される。
HO-/ V-O- Λ-ΟΗ HO- V-O- OH
HO- Λ / 0 H
Figure imgf000011_0001
Figure imgf000011_0002
6
Z6Cl700/l700Zdf/X3d 0060請 OAV また、 プロ トン酸基含有架橋性ポリエーテルケトンを合成する際に用いられる ベンゾフエノン化合物としては、 下記一般式 (4) で表されるプロトン酸基を含有 するベンゾフエノン化合物が挙げられ、 具体的には以下に示される化合物が例示さ れる。 式 (4) 中、 X、 Y、 X及び yは式 (1) と同じ意味を表す。 Zはハロゲン 原子またはニトロ基である。
Figure imgf000012_0001
Figure imgf000013_0001
Figure imgf000013_0002
Figure imgf000013_0003
Figure imgf000014_0001
nsoo
Figure imgf000014_0002
Figure imgf000015_0001
Ν Νζ0
Ζ 0 く deO N
Figure imgf000015_0002
ετ
Z6£t00/t00Zd /lDd S10060/1-00Z Ο また、 プロ トン酸基含有架橋性ポリエーテルケトンを合成する際に、 プロ トン 酸基の含有量を制御する目的で下記式 (5) で表されるプロトン酸基を含有しない ベンゾフエノン化合物を用 、てもよい。
Figure imgf000016_0001
(5)
上記式 (5) で表されるプロ トン酸基を含有しないべンゾフエノン化合物とし て、 具体的には以下に表される化合物をあげることが出来る。
Figure imgf000016_0002
本発明のプロトン酸基含有架橋性ポリエーテルケトンは、 性能の改良や改質を 行う目的で、 前記一般式 (4)、 (5) で表されるベンゾフエノン化合物の他に芳香 族ジハライドを 1種以上用いて共重縮合することもできる。 用いることの出来る芳 香族ジハライドとして具体的には、 4, 4,ージクロロジフエニルスルホン、 2, 6 ージクロ口ピリジン、 2, 6—ジクロ口べンゾニトリノレ、 2, 6—ジフ /レオ口ベン ゾニトリノレ等が挙げられる。
本発明のプロトン酸基含有架橋性ポリエーテルケトンは、 性能の改良や改質を 行う目的で、 前記一般式 (2)、 (3) で表される芳香族ジオール化合物と共に、 他 の芳香族ジオール化合物を 1種以上用いて共重縮合することもできる。 用いること の出来る芳香族ジオールィヒ合物として具体的には、
ハイ ドロキノン、 レゾノレシン、 4, 4,一ジヒ ドロキシビフエ二ノレ、 2, 2'—ジヒ ド 口キシビフエェノレ、 3, 3,一ジクロロ一 4, 4'—ジヒ ドロキシビフエ二ノレ、 3, 3,, 5 , 5,ーテトラクロ口一 4, 4,ージヒ ドロキシビフエ二ノレ、 3, 3'_ジブロモ一 4, 4,ージヒ ドロキシビフエ二ノレ、 3, 3,, 5, 5'—テトラブロモー 4, 4,ージ ヒ ドロキシビフエニル、 3, 3'—ジフノレオロー 4, 4,一ジヒ ドロキシビフエニル、 3, 3,, 5, 5,一テトラフルオロー 4, 4 'ージヒ ドロキシビフエニル、 4, 4,一 ジヒ ド口キシジフエニルスルフィ ド、 2, 2,_ジヒ ドロキシジフエュノレスノレフィ ド、 3, 3,ージクロ口一 4, 4,ージヒドロキシジフエニノレスノレフイ ド、 3, 3,, 5, 5,ーテトラクロロー 4, 4'ージヒ ドロキシジフエニノレス/レフイ ド、 3, 3,一ジブ ロモ一 4, 4,ージヒ ドロキシジフエニルスルフイ ド、 3, 3,, 5, 5,ーテトラプ 口モー 4, 4,ージヒ ドロキシジフエニノレスル'フイ ド、 3, 3s—ジブ/レオ口 _4, 4' ージヒ ドロキシジフエエルスルフイ ド、 3, 3', 5, 5'—テトラフノレオロー 4, 4, —ジヒ ドロキシジフエニノレス/レフィ ド、 4, 4,ージヒ ドロキシジフエニノレエ一テノレ、 2, 2,ージヒ ドロキシジフエニノレエーテノレ、 3, 3'—ジクロロ一 4, 4,ージヒ ド 口キシジフエニノレエーテノレ、 3, 3,, 5, 5'—テトラクロロ一 4, 4'ージヒ ドロ キシジフエニノ エーテノレ、 3 , 3,一ジブ口モー 4, 4,一ジヒ ドロキシジフエニノレエ ーテノレ、 3, 3,, 5, 5'—テトラブロモ一 4, 4,ージヒ ドロキシジフエニノレエ一 テノレ、 3, 3,ージフメレオロー 4, 4'ージヒ ドロキシジフエニノレエーテノレ、 3, 3', 5, 5,一テトラフノレオロー 4, 4,ージヒ ドロキシジフエ二/レエ一テル、 4, 4,一 ジヒ ドロキシジフエニノレスノレホン、 2, 2,ージヒ ドロキシジフエニノレスノレホン、 3, 3,ージクロロー 4, 4,ージヒ ドロキシジフエニノレスノレホン、 3, 3,, 5, 5,一テ トラクロ口一 4, 4'ージヒ ドロキシジフエニノレスノレホン、 3, 3,一ジブ口モー 4, 4,ージヒ ドロキシジフエニノレスノレホン、 3, 3,, 5, 5,一テトラブロモ一 4, 4, ージヒ ドロキシジフエニルスルホン、 3, 3,ージフルオロー 4, 4'ージヒ ドロキシ ジフエニノレスノレホン、 3, 3', 5, 5,ーテトラフルオロー 4, 4,ージヒ ドロキシ ジフエニノレスノレホン、 2, 2—ビス (4—ヒ ドロキシフエ二ノレ) プロパン、 2, 2 —ビス (2—ヒ ドロキシフエ-ノレ) プロノくン、 2, 2—ビス (3—クロロー 4ーヒ ドロキシフエ二ノレ) プロノヽ。ン、 2, 2—ビス (3, 5—ジクロ口一 4—ヒ ドロキシ フエ二ノレ) プロパン、 2, 2—ビス (3 _プロモー 4ーヒ ドロキシフエ-ノレ) プロ ノ ン、 2, 2—ビス (3, 5—ジジブ口モー 4ーヒ ドロキシフエ二 7レ) プロパン、 2, 2 -ビス (3—フノレオ口一4—ヒ ドロキシフエ二ノレ) プロパン、 2, 2一ビス (3, 5—ジフノレオ口一 4—ヒ ドロキシフエ二ノレ) プロパン、 a, ひ,一ビス (4- ヒ ドロキシフエニル) 一 1, 4ージイソプロピノレベンゼン、 α, α,一ビス (2—ヒ ドロキシフエ二ノレ) — 1, 4ージイソプロピルベンゼン、 a, ひ,一ビス (4ーヒ ド ロキシフエニル) 一 1, 3—ジイソプロピノレベンゼン、 , α,一ビス (2—ヒ ドロ キシフエ二ノレ) 一1, 3—ジイソプロピノレベンゼン、 2, 2—ビス (4—ヒ ドロキ シフエ二ノレ) 一 1 , 1, 1, 3, 3, 3一へキサフルォロプロパン、 9 , 9一ビス (4ーヒ ドロキシフエエル') フ /レオレン、 1, 5—ジヒ ドロキシナフタレン等が挙 げられる。 これらのジオール化合物は、 硫酸や発煙硫酸等の公知のスルホン化剤で スルホン化して使用してもよい。
一般式 (2)、 (3) で表される芳香族ジヒドロキシ化合物及び一般式 (4) 及 び (5) で表される化合物を用いてプロトン酸基含有架橋性ポリェ一テルケトンを 重縮合する場合、 塩基性触媒存在下で重縮合させる方法が好適に用いられる。 触媒 の種類や反応条件等は特に限定されることはなく、 公知の塩基性触媒や反応条件等 を適用できる。 触媒としてはアル力リ金属、 アル力リ土類金属、 酸化亜鉛などの塩 基性金属化合物、 各種金属の炭酸塩、 酢酸塩、 水酸化物、 第四級アンモユウム塩、 ホスホ-ゥム塩、 有機塩基含有金属などが挙げられる。 これら触媒の使用量は、 用 いる芳香族ジヒドロキシ化合物 1モルに対して、 0. 1から . 0モル比であるこ とが好ましい。 より好ましくはひ. 5から 2. 0モル比である。
一般式 (2)、 (3) で表される芳香族ジヒドロキシ化合物と、 一般式 (4) 及 び (5) で表されるベンゾフエノン化合物を用いてプロ トン酸基含有架橋性ポリエ ーテルケトンを重縮合する場合、使用する芳香族ジヒドロキシ化合物 1モル当たり、 一般式(4)及び(5) で表されるベンゾフエノン化合物の全量は、 0. 9から 1. 1モル比であることが好ましい。 このモル比を調整することにより、 得られるポリ エーテルケトンの分子量を制御することができる。 このモル比の範囲内であると、 十分な特性を引き出すことのできる分子量のものが得られる。 このモル比は、 より 好ましくは 0. 92から1. 08モル比であり、 さらに好ましくは 0. 94から 1 - 06モノレ比であり、 最も好ましくは 0. 95から 1. 05の範固である。
一般式 (2)、 (3) で表される芳香族ジヒドロキシ化合物と、 一般式 (4) 及 び (5) で表されるベンゾフヱノン化合物を重縮合反応系内に添加し反応させる方 法は、 特に制限はないが、 主として、
ィ) 芳香族ジヒドロキシ化合物とベンゾフエノン化合物の全て、 更に塩基性触媒を 重合反応系内に装入し反応を行う方法、
口) 芳香族ジヒドロキシ化合物と塩基性触媒を反応させて塩を形成した後、 ベンゾ フエノン化合物を添カ卩して反応を行う方法、
の何れかが高分子量のポリエーテルケトンを得る方法として望ましい。
本発明に係るプロトン酸基含有架橋性ポリエーテルケトンを製造する反応は、 通常、 溶媒中で行う。 用い得る溶媒としては、
a ) 非プロトン性アミド系溶媒である、 N, N—ジメチルホルムアミド、 N, N - ジメチルァセトアミド、 N, N—ジェチルァセトアミド、 N—メチルー 2—ピロリ ドン、 1 , 3—ジメチルー 2 _イミダゾリジノン、 N—メチルカプロラクタム、 へ キサメチルホスホロトリアミ ド、
b ) エーテル系溶媒である、 1, 2—ジメ トキシェタン、 ビス ( 2—メ トキシェチ ル) エーテル、 1, 2 -ビス ( 2—メ トキシェトキシ) ェタン、 テトラヒドロフラ ン、 ビス [ 2 - ( 2—メ トキシエトキシ) ェチル]エーテル、 1, 4—ジォキサン、 c ) アミン系溶媒である、 ピリジン、 キノリン、 イソキノリン、 α—ピコリン、 β 一ピコリン、 γ—ピコリン、 ィソホロン、 ピぺリジン、 2, 4一ノレチジン、 2 , 6 ールチジン、 トリメチノレアミン、 トリェチルァミン、 トリプロピルァミン、 トリプ チルァミン、
d ) その他の溶媒である、 ジメチルスルホキシド、 ジメチルスルホン、 ジフエニル エーテル、 スノレホラン、 ジフエニノレスノレホン、 テトラメチノレ尿素、 ァニソ一ノレ が挙げられる。
これらの溶媒は、 単独または 2種以上混合して用いても差し支えない。 また、 さらに下記 e ) 項に示す溶媒の 1種または 2種以上とを混合して用いることもでき る。 混合して用いる場合は、 必ずしも任意の割合で相互に溶解する溶媒の組み合わ せを選択する必要はなく、 混合し合わなく不均一なものであっても用いることが出 来る。
これらの溶媒中で行う反応の濃度(以下、重縮合濃度と称する。) は、特に制限 されるものではないが、 溶媒中で行う重縮合濃度を、 用いた全溶媒の全重量と、 用 いた芳香族ジヒドロキシ化合物及びべンゾフエノン化合物を合わせた全重量とを加 えた総重量に対する、 用いた芳香族ジヒドロキシ化合物及びべンゾフエノン化合物 を合わせた全重量の割合を百分率で示した値として定義したとき、 好ましい重縮合 濃度は、 5から 4 0 %であり、 更に好ましくは 8から 3 5 %であり、 最も好ましく は 1 0から 3 0 %である。
上記の溶媒中で、 一般式 ( 2 )、 ( 3 ) の芳香族ジヒドロキシ化合物と、 一般式 ( 4 ) 及び一般式 ( 5 ) のべンゾフエノン化合物を反応させて、 本発明に係るプロ トン酸基含有架橋性ポリエーテルケトンが得られる。
この反応で特に好ましい溶媒は、上記 a )項の非プロトン性アミド系溶媒と d ) 項のジメチルスルホキシドが挙げられる。雰囲気は空気、窒素、ヘリウム、ネオン、 アルゴンが用いられ特に制限はないが、 好ましくは不活性気体である窒素ゃァルゴ ンである。
更に、 反応によつて生成する水を系外に除く為に、 別の溶媒を共存させること もできる。 そのための溶媒としては、
e ) ベンゼン、 トノレエン、 o—キシレン、 m—キシレン、 p—キシレン、 クロノレべ ンセン、 o—ジクロノレべンゼン、 m—ジクロノレべンゼン、 p—ジクロノレべンゼン、 ブロムベンゼン、 o一ジブロモベンゼン、 m—ジブロモベンゼン、 一ジブロモべ ンゼン、 o—クロノレトノレェン、 m—クロノレトノレェン、 ρ—クロノレトノレェン、 o—ブ 口モトノレェン、 m—プロモトノレェン、 及び p—ブロモト/レエン
が挙げられる。
これら溶媒は、 単独または 2種以上混合して用いても差し支えない。 また、 上 記 a ) から d ) 項に示す溶媒を用いて、 それらの 1種または 2種以上と更に混合し て用いることもできる。 混合して用いる場合は、 必ずしも任意の割合で相互に溶解 するような溶媒の組み合わせを選択する必要はなく、 混合し合わなく不均一なもの を用いることも出来る。 これらの溶媒の使用量には、 なんら制限はない。
反応温度、 反応時間及び反応圧力には、 特に制限はなく公知の条件が適用でき る。 すなわち、 反応温度は、 およその範囲として、 1 0 0 °Cから 3 0 0 °Cが好まし いが、 更に好ましくは 1 2 0 °Cから 2 8 0 °Cの範囲であり、 実施する上で最も好ま しくは 1 5 0 °Cから 2 5 0 °Cである。また、反応時間は、使用するモノマーの種類、 溶媒の種類、 及ぴ反応温度により異なるが、 1〜 4 8時間が好ましく、 より好まし くは 5から 2 0時間である。 また、 反応圧力は常圧で十分である。
反応終了後、 触媒、 ゴミ等の異物を除去する目的で濾過することが望ましく、 濾過時の温度は特に限定されず、 反応温度あるいは室温でもかまわない。 また、 濾 過時の圧力も特に限定されず、 常圧、 加圧または減圧、 何れの条件でもよい。
プロトン酸基含有架橋性ポリエーテルケトンを成膜するための方法としては、 濾過して得られたこの溶液を、 そのまま塗布、 乾燥して直接塗膜を形成する方法、 あるいは、 ー且、 貧溶媒に排出して取り出した後、 乾燥してポリマー粉とし、 あら ためて同一、 あるいは他の溶媒に溶解して、 塗布、 乾燥し塗膜を形成する方法の何 れでもよい。
溶液を乾燥して塗膜を形成する際の乾燥温度は、 使用する溶媒により異なり、 特に限定はされないが、 1 0 0 °Cから 3 0 0 °C、好ましくは 1 2 0 °Cから 2 8 0 °C、 特に好ましくは 1 5 0 °Cから 2 5 0 °Cの範囲である。 また、 乾燥時間は塗膜の厚さ 等により異なるが、 1 0分から 2 0時間、 好ましくは 2 0分から 1 0時間、 実用上 は 3 0分から 5時間が好ましい。
得られたプロトン酸基含有架橋性ポリエーテルケトンの還元粘度は、 0 . 1か ら 5 . 0 d 1 / g (ジメチルスルホキシド中、濃度 0 . 5 g / d 1、 3 5 °Cで測定)、 好ましくは 0 . 2から 4 . 0 d 1 / g , さらに好ましくは 0 . 3から 3 . 0 d 1 / gの範囲である。 この範囲の還元粘度であれば、 得られる膜の機械特性が十分であ るとともに、 ポリマーを溶媒に溶解して得られる溶液の粘度が適当で、 厚膜を得る ことが容易である。
また、 本発明に係るプロトン酸基含有架橋性ポリエーテルケトンは、 2種類以 上を混合して使用することもできるし、 本発明の目的を損ねなレ、範囲で、 金属、 ガ ラスゃカーボンからなる繊維ゃフッ素系ィオン伝導性樹脂あるいは他の汎用樹脂と 混合して使用することもできる。 また、 前記プロトン酸基含有架橋性ポリエーテルケトンを架橋してから使用す ることもできるし、 その架橋物を 2種以上混合したり、 あるいは架橋物と金属、 ガ ラス、 カーボンからなる繊維ゃフッ素系ィオン伝導性樹脂ある 1/ヽは他の汎用樹脂と 混合したりして使用することもできる。 その場合、 プロトン酸基含有架橋性ポリエ ーテルケトンは 2 0 w t %以上含まれているのが好ましく、 5 0 w t %以上含まれ
2
ていることがより好ましい。 また、 用いられるプロトン酸基含有架橋性ポリエーテ ルケトンの末端基は特に限定されない。
次に本発明に係るプロトン酸基含有架橋性ポリエーテルケトンの架橋について 説明する。
芳香環に隣接した力ルポ-ル基は芳香環に直接結合したアルキル基やアルキレ ン基、 即ち芳香環に隣接した 1、 2または 3級炭素の C H結合と架橋できる。 カル ポニル基はこの他にも炭素炭素二重結合や炭素炭素三重結合などの不飽和結合、 炭 素炭素二重結合、 窒素原子、 酸素原子に隣接した炭素の C H結合とも架橋が可能で ある。 しカゝし、 生成する架橋の安定性および架橋基の合成の容易さから芳香環に直 接結合した 1、 2または 3級炭素との架橋が好ましい。 本発明のプロトン酸基含有 架橋性ポリエーテルケトンは、 カルポニル基と、 芳香環に直接結合したアルキレン 結合基の好ましい架橋基を主鎖中に有している。
本発明に係るプロトン酸基含有架橋性ポリエーテルケトンは、光 (紫外線)、熱、 電子線などの少なくとも 1つによって架橋できる。 たとえば、 光架橋に関する反応 機構は、 分子中に存在する前記 A r i及び A r 2の少なくとも一つのアルキレン結合 基が次のような形で架橋反応に関与していると考えられる。なお、下記反応機構は、 架橋する A r i及び A r 2が以下の場合についてのものである。 f x
Figure imgf000023_0001
上記反応機構に示すように、 紫外線照射の初段階で生じたベンゾフエノン上の ラジカルが、 メチレン基から水素を引き抜く。 引き続き、 ベンジルラジカルの二量 化、 ベンジルラジカルとアルコール性炭素ラジカルとのカップリング反応、 アルコ ール性炭素ラジカルの二量化のようにして光架橋が起こっていると考えられる。
本発明のプロトン酸基含有架橋性ポリエーテルケトンを光架橋する際に用いる 光源としては、 特に限定されないが、 通常、 紫外線光、 可視光の範囲の光が照射で きる光源を用いることが出来る。 具体的には、 低圧水銀灯、 高圧水銀灯、 キセノン ランプ、 メタルハライド灯等が挙げられる。 また、 照射線量は照射される架橋性ィ オン伝導性樹脂の構造及びその膜厚により異なる力 通常、 100 30000m ] /cm 好ましくは 500 20000m J/cm2である。
また、 熱により架橋する場合、 その熱供給方法は特に限定されず、 通常のォー ブン等による加熱で十分である。 また、 加熱時の温度、 時間は、 用いる架橋性ポリ エーテルケトンの構造により異なるが、 通常、 1 20 300°C 0. 1 1 80 分間、 好ましくは 1 50 250°C 1 60分間である。
以上のようにして、 本発明に係る架橋物が得られる。
本発明に係るイオン伝導性高分子膜は、 前記のプロトン酸基含有ポリエーテル ケトンからなる架橋性イオン伝導性樹脂を用いることが好ましいが、 他の各種ィォ ン伝導性高分子と組み合わせて用いることもできる。 それらの例として、 フッ素高 分子、 ポリエーテルケトン高分子、 ポリエーテルサルホン高分子、 ポリフエ-レン サルフアイド高分子、 ポリイミド高分子、 ポリアミド高分子、 エポキシ高分子、 ポ リオレフイン高分子等にプロトン酸基を付与した高分子が挙げられる。 プロトン酸 基としては、 スルホン酸基、 カルボン酸基、 リン酸基、 スルホンイミド基が挙げら れる。 さらに、 シリカなどの無機性のイオン伝導物質を用いても構わない。 また、 前記のプロトン酸基含有架橋性ポリエーテルケトンを 2種類以上混合して使用する こともできる。
本発明に係るイオン伝導性高分子膜の製法に特に制限は無く、 公知のプレス法 やキャスト法を用いることができる。 また、 イオン伝導性高分子膜の電解質膜の厚 さに特に制限はないが、 通常、 1 0〜2 0 0 /z m、 さらには 3 0〜: L 0 0 mが好 ましい。 この範囲内であれば、 十分な膜強度が得られ、 力つ膜抵抗が実用上十分に 低くなる。 すなわち、 電池の正極と負極の燃料を遮断し、 かつ、 十分なイオン伝導 性を有することで、 燃料電池として優れた発電性能を得ることができる。
膜の厚さが薄すぎる場合には、 燃料のクロスオーバーを十分に抑制しきれない 場合があり、 厚すぎる場合には、 膜抵抗が高く、 発電性能に影響を与える場合があ る。 膜厚は、 製膜時の条件、 例えばプレス成形時の温度や圧力、 キャスト時のヮ- ス濃度や塗布厚などにより制御することができる。
本発明のィオン伝導性高分子膜を架橋する場合の方法は、 前記のイオン伝導性 樹脂の架橋と同様の方法で行うことができる。
また、 前記プロトン酸基含有架橋性ポリエーテルケトンを架橋してからフィル ムを作製することもできるし、 その架橋物の 2種以上を混合したり、 あるいは架橋 物と金属、 ガラスやカーボンからなる繊維ゃフッ素系ィオン伝導性樹脂あるいは他 の汎用樹脂と混合したりして使用することもできる。 その場合、 前記プロ トン酸基 含有架橋性ポリエーテルケトンは 2 O w t °/0以上含まれているのが好ましく、 5 0 w t %以上含まれていることがより好ましい。 ' 次に本発明に係る燃料電池用イオン伝導性結着剤について具体的に説明する。 本発明のプロトン酸基含有架橋性イオン伝導性樹脂は、 従来開発されてきたス ルホン酸基含有高分子と同様に高いイオン伝導性を示す。 また、 この樹脂は、 従来 結着剤として検討されてきた超強酸基含有フッ素系高分子と異なり、その構造中に、 芳香環、 エーテル結合等の極性基を有するため、 電極材料やプロトン酸基含有芳香 族ポリマー系高分子電解質膜等、 他の物質との高い接着性を示す。 さらに、 この樹 脂は、 光、 熱、 電子線等により架橋し、 その結果、 高い耐熱性と耐水性を示す。
本発明に係る結着剤は、 前記のプロトン酸基含有架橋性ポリエーテルケトンか らなるが、他の各種ィォン伝導性高分子と組み合わせて用いることもできる。また、 前記のプロトン酸基含有架橋性ポリエーテルケトンの架橋物を使用しても良く、 そ の架橋物を他の各種イオン伝導性高分子と組み合わせて用いることもできる。 他の 各種イオン伝導性高分子の例として、 フッ素高分子、 ポリエーテルケトン高分子、 ポリエーテルサルホン高分子、 ポリブェニレンサゾレファィド高分子、 ポリイミド高 分子、 ポリアミド高分子、 エポキシ髙分子、 ポリオレフイン高分子等にプロトン酸 基を付与した高分子が挙げられる。 プロトン酸基としては、 スルホン酸基、 カルボ ン酸基、 リン酸基、 スルホンイミド基が挙げられる。 さらに、 シリカなどの無機性 のイオン伝導物質を用いても構わない。
結着剤中には、 プロトン酸基含有架橋性ポリエーテルケトンを 5 w t %以上含 むことが好ましく、 それにより、 電極材料やプロトン酸基含有芳香族ポリマー系高 分子電解質膜等、他の物質との高い接着性を示す。 さらに、 この結着剤は、光、熱、 電子線等により架橋し、 その結果、 高い耐熱性と耐水性を示す。 本発明の結着剤を 光により架橋する場合、 用いる光源は特に限定されないが、 通常、 紫外光、 可視光 領域の範囲の光を照射できる光源を採用できる。 具体的には、 低圧水銀灯、 高圧水 銀灯、 キセノンランプ、 メタルノ、ライド灯等が挙げられる。 また、 照射線量は用い る架橋性ポリエーテルケトンの構造及びその膜厚により異なるが、 通常、 1 0 0〜 3 0 0 0 0 m j / c m2、 好ましくは 5 0 0〜 2 0 0 0 O m J / c m2である。 本発 明の結着剤を熱により架橋する場合、 その熱供給方法は特に限定されず、 通常のォ ープン等による加熱で十分である。 また、 加熱時の温度、 時間は、 用いる架橋性ポ リエーテルケトンの構造及びその膜厚により異なるが、 通常、 1 2 0〜3 0 0 °C、 0 . 1〜1 8 0分間、 好ましくは 1 5 0〜2 5 0 °C、 1〜6 0分間である。
本発明の結着剤はヮエスにして使用することができ、 そのヮエスは前記の結着 斉 ljと溶媒とからなり、 溶液でも懸濁液でも良い。 溶媒はこれらが液状化できれば、 特に制限なく選択でき、 例えば水、 メタノール、 エタノール、 1一プロパノール、 2—プロパノール、 プタノ一ノレ、 メ トキシエタノール、 エトキシエタノーノレなどの アルコール類、 トルエン、 キシレンなどの炭化水素類、 塩化メチル、 塩化メチレン などのハ口ゲン化炭化水素類、 ジクロロェチルエーテル、 1 , 4一ジォキサン、 テ トラヒドロフラン、 モノグライム、 ジグライムなどのエーテル類、 酢酸メチル、 酢 酸ェチルなどの脂肪酸エステル類、ァセトン、メチルェチルケトンなどのケトン類、 N, N—ジメチルァセトアミ ドなどのアミド類、 N—メチルー 2—ピロリ ドン、 ジ メチルスルホキシド、 炭酸ジメチルなどがあげられる。 これらは単独でも混合溶媒 でも使用できる。
なかでも、 低級アルコール類、 テトラヒドロフラン、 炭酸ジメチルなどは、 沸 点が低く溶媒の蒸発が早く、 容性のため好ましく、 更にはこれらと水との混合溶 媒を用いることが好ましい。 結着剤の濃度は、 使用方法により適宜選択できるが、 1 w t °/0以上 8 0 w t %が好ましい。
本発明に係る電極形成用組成物は、 本発明のプロトン酸基含有架橋性ポリエー テルケトンからなる結着剤及び電極材料によりなる。 結着剤と電極材料との比率は 特に制限はないが、 結着剤の割合が 5 w t %以上 9◦ w t %以下であると電極の強 度と効率が両立でき好ましい。
ここで、電極材料としては、電気導電性を有する導電材料や、水素の酸化反応、 酸素の還元反応を促進する触媒などが挙げられる。 導電材としては、 電気伝導性物 質であればレ、ずれのものでもよく、各種金属や炭素材料などがあげられる。例えば、 アセチレンブラック等のカーボンブラック、 活性炭及ぴ黒鉛等が挙げられ、 これら は単独あるいは混合して、 粉末状あるいはシート状で使用される。 触媒としては、 水素の酸化反応及び酸素の還元反応を促進する金属であれば特に限定されないが、 例えば鉛、 鉄、 マンガン、 コバルト、 クロム、 ガリウム、 バナジウム、 タンダステ ン、 ルテニウム、 イリジウム、 パラジウム、 白金、 ロジウムまたはそれらの合金が 挙げられる。
本発明に係る電極は、 前記のプロトン酸基含有架橋性ポリエーテルケトンまた は、 プロトン酸基含有架橋性ポリエーテルケトンと他の各種ィオン伝導性高分子と からなる結着剤と、 前記の電極材料とを含む電極形成用組成物からなる。
本発明に係る燃料電池は、前記のイオン伝導性高分子膜、イオン伝導性結着剤、 電極組成物、 及び電極のうち少なくとも 1つを用いてなる。
次に燃料電池用燃料電池用電極並びに燃料電池用電解質膜電極複合体を形成す る方法について説明する。
本発明に係る結着剤及び/または電極形成用組成物、 またはそれらのワニスを 用いて、 燃料電池用電極並びに燃料電池用電解質膜電極複合体を形成するには、 た とえば次の様な方法が例示できる。
本発明に係わる結着剤及ぴ Zまたは電極形成用組成物を含むワニスを、 カーボ ンペーパーなどの基材に噴霧.塗布し電極とした上、直接電解質膜に接合する方法、 本発明に係わる結着剤及び Zまたは電極形成用組成物を含むワニスを、 カーボンぺ 一パーなどの基材に嘖霧'塗布の後、 乾燥し、 電極とした上、 本発明に係わる架橋 性イオン伝導性樹脂を含むワニスを用いて電解質膜に接合する方法、 本発明に係わ る結着剤及び/または電極形成用組成物を含むワニスを、 直接電解質膜に噴霧■塗 布の後、 乾燥し接合する方法、 更に、 他の方法を用いて作成し 電極を本発明に係 わる架橋性イオン伝導性樹脂を含むワニスを用いて電解質膜に接合する方法も例示 できる。
電解質膜と電極の接合方法としては、 特に制限はないが、 熱プレス、 コールド プレス、 超音波溶着等が例示できる。 なかでも熱プレスを用いることが好ましい。
また、 前記の各接合方法において、 必要に応じて光及び/または熱、 あるいは 電子線照射により架橋を施すこともできる。
本発明の燃料電池は、 イオン伝導性を有する高分子電解質膜とこの両側に接触 して配置される正極及ぴ負極から構成される。 燃料の水素またはメタノール水溶液 は負極において電気化学的に酸化されてプロトンと電子を生成する。 このプロトン は高分子電解質膜内を、 酸素が供給される正極に移動する。 一方、 負極で生成した 電子は電池に接続された負荷を通り、 正極に流れ、 正極においてプロトンと電子が 反応して水を生成する。
以下、 本発明を実施例によりさらに詳細に説明するが、 本発明はこれにより何 等制限されるものではない。 '
実施例中の各種試験の試験方法は次に示すとおりである。
(ィ) プロトン酸基含有ポリエーテルケトンの還元粘度
ポリエーテルケトン粉 0. 50 gをジメチルスルホキシドあるいは N—メチル 一 2—ピロリドン 100 m 1に溶解した後、 35 °Cにおいて測定。
(口) プロトン交換
プロトン酸の金属塩等は以下の方法でフリーのプロトン酸に戻した。
1 ) プロトン酸基含有架橋性ィオン伝導性ポリエーテルケトン膜を 2 N—硫酸に一 晚浸す。
2) 酸処理した膜を蒸留水に一晚浸す。
3) 酸処理及び蒸留水で洗浄した膜を 150°Cで 4時間乾燥して、 フリーのプロト ン酸を含有する膜を得る。 - (ハ) 光架橋
メタルハライドランプを用いて 1400 Om jZcm2の光照射を行い、 架橋 させた。 '
(二) ガラス転移温度
示差走査熱量測定 (DSC、 島津製作所製 DSC3100) により昇温速度 1 0°C/m i nで測定。
(ホ) イオン伝導度
イオン伝導膜を幅 5 mm、 長さ 4 Ommに切り出した後、 PTFE (ポリテト ラフルォロエチレン) ホルダー上に設置し、 4本の電極を圧接し、 4端子法の交流 インピーダンス法で求まる円弧から抵抗率を測定した。 電圧端子間は 2 Ommとし た。ィンピーダンスの測定は LCRメーター(日置電機社製 3532)を使用した。 温度変化は電極を接続したサンプルをアルミプロック製の恒温槽内に設置すること により行い、 30°Cから 110°Cの範囲の伝導度を測定した。 加湿は常圧の恒温槽 内への蒸気の導入により行い、 水蒸気発生器にて測定温度が 10 o°c未満では恒温 槽温 + 5°C、 100°C以上では 120 °Cの一定温度に蒸留水を加熱し、 生成する蒸 気を使用した。
また、 膜厚は乾燥状態でマイクロメータを用いて測定した。
(へ) メタノール透過速度
室温にて、 蒸留水と lmo 1/1メタノール水溶液を、 直径 23 mmのイオン 伝導性高分子膜を介して接し、 蒸留水側のメタノール濃度変化を屈折率計 (島津製 作所 R ID— 6A) にて測定した。 得られたエタノール濃度増加直線の傾きより、 膜厚 50 i mでのメタノール透過速度を計算した。
(合成例 1)
攪拌器、 温度計及び冷却管を装備した反応フラスコに、 4, 4,一ジフルォ口べ ンゾフエノン (0. 525mo l) と、 50 %発煙硫酸 210 m 1を装入した後、 100でで 12時間反応した。 これを、 10◦ 0 gの氷水に排出した後、 N a O H 210 gで中和した。 次に、 Na C 1を 210 g加え、 加熱溶解した後放冷し一夜' 放置した。 析出した結晶を濾過した後、 水 400 m 1、 エタノール 400 m 1を加 えて加熱溶解後放冷し、 再結晶を行った。 析出した結晶を濾過後、 100°Cで 6時 間乾燥して 5, 5,一力ルポエルビス(2—フルォロベンゼンスルホン酸ナトリゥム) の白色結晶を得た。
収量 155. 2 g (0. 386mo l、 収率 70 %)
Ή-NMR (D20, TMS) p pm
δ 7. 46 (2H, d d, a -Hx2)
7. 99 (2H, d d d, b -Hx2)
8. 23 (2H, d d, c-Hx2) , 元素分析 (%) 分析値
Figure imgf000030_0001
(実施例 1 )
窒素導入管、温度計、還流冷却器、及び撹拌装置を備えた 4つ口反応器に、 4, 4,一ジフノレオ口べンゾフエノン 2. 84 g (0. 01 3mo l)、 5, 5,一カノレポ ニルビス (2—フルォロベンゼンスルホン酸ナトリウム) 2. 96 g (0. 007 mo l)、 4, 4,一ジヒ ドロキシジフエ-ルメタン 4. 00 g (0. 02mo 1 ) 及び炭酸カリウム 3. 46 g (0. 025mo l) 秤取した。 これにジメチルスル ホキシド 5 Om 1とトルエン 4 Om 1を加え、 窒素雰囲気下で撹拌し、 130°Cで 4時間加熱し、 生成する水を系外に除去した後、 トルエンを留去した。 引き続き、 160°Cで 8時間反応を行い、 粘稠なギリマー溶液を得た。 反応途中でジメチルァ セトアミド 20mlを加えた。'さらに反応終了後。 ジメチルァセトアミド 30 m 1 を加えて希釈した後濾過した。 このポリマー溶液をトルエン 60 Om 1に排出し、 さらにアセトン 600m lでデカンテーションした。析出したポリマー粉を濾過後、 1 50°Cで 4時間乾燥してポリマー粉 4. 95 g (収率 92%) を得た。 得られた ポリエーテルケトン粉の還元粘度は 1. 27 d lZgであった。 また、 ガラス転移 温度は 400°Cまで観測されなかった。
得られた粉末ポリマーを N—メチルー 2—ピロリドンに溶解させガラス基板上 にキャストし、 200°Cで 4時間乾燥してスルホン酸 N aを含有するポリエーテル ケトン膜を得-た。 得られた膜は可とう性に富み、 強靭であった。 このスルホン酸 N aを含有するポリエーテルケトン膜を、 (ハ)に記載の方法で架橋し、更にこの膜を、 (口) に記載の方法でプロ トン交換を行い、 スルホン酸含有光架橋ポリエーテルケ トン膜を得た。 この膜について、 前記 (ホ) に記載の方法でイオン伝導度を、 (へ) の方法でメタノール透過速度を測定した結果を表 2に示す。 得られた膜は可とう性 に富み、 強靭であった。
上記記載の方法で得られたスルホン酸 N a含有ポリエーテルケトン膜の一部を N—メチルー 2—ピロリ ドンに浸したところ溶解した。 一方、 上記記載の方法で得 られたスルホン^有光架橋ポリエーテルケトン膜は、 N—メチルー 2—ピロリ ド ン及び水に完全に不溶化し、 光架橋して耐薬品性及ぴ耐水性が向上していることが 確認された。
(実施例 2及び実施例 3 )
実施例 1記載の芳香族ジヒドロキシ化合物及び、 プロトン酸基含有べンゾフエ ノン化合物とプロトン酸基を含有しないべンゾフエノン化合物の割合をかえて各種 ポリエーテルケトン膜を作成した。 得られたポリエーテルケトン膜の各種物性を表
1に、 イオン伝導度を測定した結果を表 2に併せて示す。
実施例において、 用いたプロ トン酸化合物、 ベンゾフエノン化合物及ぴ芳香族ジヒ ド口キシ化合物は、 以下の略号で示す。
D F B P - 2 S: 5 , 5,_カルポニルビス ( 2—フルォロベンゼンスルホン酸ナト リゥム) '
D F B P : 4 , 4,一ジフノレオ口べンゾフエノン
B i s F : 4 , 4 '—ジヒドロキシジフエエノレメタン
(比較例 1 )
ナフイオン 1 1 2膜 (A 1 d r i c h社試薬) を用いて、 実施例 1と同様にし て T g及びイオン伝導度を測定した。 T gの結果を表 1に、 伝導度及ぴメタノール 透過速度の測定結果を表 2に示す。 寓施例 7ヒド 53お フ。 Πト簡匕合物 A* f liPA a 収率 ji¾兀 力, 転 化合物 fe(mol)] 物 β] ¾度
Cs(mol)] Ε ΪΙΟΙ)] Cdi/ε] rci
1 Bis-F DFBP-2S DFBP 51 1.3 不檎出 4.00 (0.020) 2.96 (0.007) 2.84 (0.013)
2 Bis-F DFBP-2S DFBP 55 1.2 不検出 4.00 (0.020) 4.22 (0.010) 2.18 (0.010)
3 Bis-F DFBP-2S DFBP 53 1.3 不檎出 4.00 (0.020) 5.49 (0.013) 1.53 (0.007)
比麵 130 1
表 2
Figure imgf000032_0001
表 2より、 実施例 1〜 3は比較例 1のナフィオン膜に比べてイオン伝導度は同 等もしくは問題のない値を示し、 メタノーノ ^¾過性は優れていた。 また T gはナフ イオン膜の 130°Cよりも十分に高く、耐熱性が大きく向上していることが分かる。
(実施例 4)
4-1) 電解質膜
実施例 1で得られたスルホン酸含有光架橋ポリエーテルケトン膜を電解質膜 1 とした。
4-2) 空気極空気極 (正極) 電極の作製
実施例 1で得られたポリエーテルケトン粉を前記 (口) の方法でプロトン交換 した。 得られたスルホン酸含有ポリエーテルケトン粉末 0. 5 gを結着剤として、 蒸留水 5. 0 g、 テトラヒドロフラン 4. 5 gの混合溶媒に、溶解したワニス 10 g を石福金属興業 ¾ の 20wt%P t担持触媒 (名称: I FPC20) 0. 5 gと 混合し、 超音波印加ののち撹拌し、 空気極触媒用の電極形成用組成物とした。 東レ製カーボンペーパー (品番: TGP— H— 060) の上にアプリケータを 用いて、 電極形成用触媒組成物を塗工し、 70°Cで 1 2時間真空乾燥した後、 5 c m2に切り出し電極 2とした。 触媒塗工量は P t量で 2 m g Z c in2とした。
4- 3) 燃料極燃料極 (負極) 電極の作成
4-2で得られたスルホン酸含有ポリエーテルケトン粉末 0. 5 gを結着剤と して、 蒸留水 5. 0 g、 テトラヒドロフラン 4. 5 gの混合溶媒に溶解したヮ-ス 1 0 gを石福貴金属製の 30 w t % P t R u担持触媒(名称: I F P C 30 A) 0. 5 gと混合し、超音波印加ののち撹拌し、燃料極触媒用の電極形成用組成物とした。
東レ (株) 製カーボンペーパー (品番: TGP— H—060) の上に電極形成 用触媒組成物を塗工し、 70 °Cで 1 2時間真空乾燥した後、 5 c m2に切り出し電 極 2,とした。 触媒塗工量は P t R u量で 2 m g Z c m2とした。
4-4) 接合体の作成
4— 1のスルホン酸含有光架橋ポリエーテルケトン膜と 4一 2で作成した電極 2、 4一 3で作成した電極 2,それぞれ 1枚ずつを、 20 w t %テトラヒ ドロフラン 水溶液を噴霧しながら、'電極 2/スルホン 有光架橋ポリエーテルケトン膜/電 極 2'の順番に積層し、 あらかじめ 80°Cに加熱した熱プレスに導入し、 0. 4MP aで電極面にのみ加圧した。 その後、 加圧した状態のまま、 80でから1 30でま で 1 5分かけて昇温させた。 接合後の電解質膜電極接合体はほぼ乾燥状態であった 力 電極の剥離はなかった。
4-5) 発電試験
4一 4で作成した電解質膜電極接合体を、 E 1 e c t r o c h e m社製の燃料 電池試験セル (品番: EFC— 05— REF) に組み込み、 図 1の燃料電池を組み 立てた。 図 1では、電解質膜 1を上記で作製した触媒付き電極 2および 2,とガスケ ット 3を使用して挟み、 さらにその外側にセパレータ 4が置かれて、 全体を、 加圧 板 5を用いて締め付けボルト 7でしつかりと締め付けられた構造となっている。 内 部 6にはガス流路が設けられている。
セル組み立て後、 図 2のような燃料電池評価装置を使用して、 1Mメタノール 水溶液を燃料として電池特性を測定した。 最大約 5 . 6 mW/ c m2の出力を得た (電圧 1 8 V、 電流 3 2 mA/ c m 2) 0
図 2において、 燃料電池セル 8の中には図 1の燃料電池が組み込んである。 図 の上側のラィンでは、 メタノール水溶液を送液ポンプ 1 2により燃料電池セル 8を 通して左側から右側に送液している。 また、 下側のラインでは、 空気を加湿用パプ リングタンク 9により加湿した状態で 8を通して左側から右側に通気している。 燃 料極側の 6の流路をメタノール水溶液が、 空気極側の 6の流路を空気が流れる様に なっている。 それぞれの流量はマスフローコントローラー 1 1で制御する。 メタノ ール水溶液おょぴ空気を流すことにより生じる電圧および電流密度を電子負荷 1 0 で測定することにより燃料電池を評価する仕組みになっている。 測定条件を表 3に 示す。
発電試験後のセルを分解し、 電解質膜電極接合体を観察したが、 電解質膜と電 極の剥離はなかった。
表 3
Figure imgf000034_0001
産業上の利用可能性
本発明に係る架橋性イオン導電性樹脂及びこれを用いてなるイオン伝導性高分子膜 は、 実用レベルの高いィオン伝導性を有し、 かつ耐熱性に優れており、 また本発明 に係る結着剤は、 実用レベルの高いイオン伝導性と耐熱性、 耐水性を有し、 電極材 料やプロトン酸基含有芳香族ポリマー系高分子電解質膜との接着性に優れるので、 これらを用いて形成された燃料電池は、 耐久性に優れた、 低抵抗で高電流操作が可 能な燃料電池とすることができる。

Claims

1 . 下記一般式 ( 1 ) で表わされる繰り返し単位を有する架橋性ポリエーテルケト ンからなることを特徵とする架橋性イオン伝導性樹脂。
請 ( 1 )
Figure imgf000036_0001
(一般式 ( 1 ) 中、 Α Γ 1及び A r 2のは、 それぞれ 2個以上の芳香環を有しそれ らのうち少なくとも 2つがアルキレン結合でつながれている 2価の基であり、 芳香環の水素はハロゲン、 炭素原子数 1〜 1囲 0のアルキル基、 炭素原子数 1〜 1 0のハロゲン化炭化水素基あるいはプロトン酸基で置換されていても良い。 前記アルキレンは、 少なくとも一方の芳香環に結合した炭素が少なくとも 1つ の水素と結合している炭素原子数 1〜1 0の基である。 A r i及び A r 2は同一 であっても異なっていても良い。 X及ぴ Yはそれぞれ、 スルホン酸基、 カルボ ン酸基、 リン酸基、 スルホンイミド基、 炭素原子数 1〜1 0のアルキルスルホ ン酸基から選ばれるプロトン酸基、 またはそれらの金属塩の基を表し、 X及び yは £)〜4の整数であり、 少なくとも x + yは 1以上である。 a及び bは 1以 上の整数である。)
2 . 請求の範囲第 1項に記載の架橋性イオン伝導性樹脂を、 光、 熱及び電子線の少 なくとも 1つにより架橋して得られる架橋物。
3 . 請求の範囲第 1項に記載の架橋性ィオン伝導性樹脂、 またはその架橋物からな るイオン伝導性高分子膜。
4 . 請求の範囲第 1項に記載の架橋性イオン伝導性樹脂を含んでなるィオン伝導 性結着剤。
5 . 請求の範囲第 4項に記载のィォン伝導性結着剤と電極材料とからなる電極形 成用組成物。
6 . 請求の範囲第 5項に記載の電極形成用糸且成物からなる電極。
7. 請求の範囲第 3項に記載のィオン伝導性高分子膜を用いてなる燃料電池。
8 . 請求の範囲第 4項に記載のイオン伝導性結着剤を用いてなる燃料電池。
PCT/JP2004/004392 2003-04-07 2004-03-29 架橋性イオン伝導性樹脂、並びにそれを用いてなるイオン伝導性高分子膜、結着剤及び燃料電池 WO2004090015A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP04724116A EP1612232B1 (en) 2003-04-07 2004-03-29 Crosslinked ionically conducting resin, and ionically conducting polymer membranes, binders and fuel cells, made by using the resin
CA002521712A CA2521712A1 (en) 2003-04-07 2004-03-29 Crosslinkable ion conductive resins, and ion conductive polymer membranes, binders and fuel cells using the same resins
DE602004009047T DE602004009047T2 (de) 2003-04-07 2004-03-29 Vernetztes ionenleitendes harz und damit hergestellte ionenleitende polymermembranen, bindemittel und brennstoffzellen
JP2005505200A JPWO2004090015A1 (ja) 2003-04-07 2004-03-29 架橋性イオン伝導性樹脂、並びにそれを用いてなるイオン伝導性高分子膜、結着剤及び燃料電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003102674 2003-04-07
JP2003-102674 2003-04-07

Publications (1)

Publication Number Publication Date
WO2004090015A1 true WO2004090015A1 (ja) 2004-10-21

Family

ID=33156804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/004392 WO2004090015A1 (ja) 2003-04-07 2004-03-29 架橋性イオン伝導性樹脂、並びにそれを用いてなるイオン伝導性高分子膜、結着剤及び燃料電池

Country Status (7)

Country Link
EP (1) EP1612232B1 (ja)
JP (1) JPWO2004090015A1 (ja)
KR (1) KR100702981B1 (ja)
CN (1) CN1768092A (ja)
CA (1) CA2521712A1 (ja)
DE (1) DE602004009047T2 (ja)
WO (1) WO2004090015A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005068536A1 (en) * 2004-01-13 2005-07-28 Johnson Matthey Public Limited Company Ion-conducting polymers and membranes comprising them
JP2006202598A (ja) * 2005-01-20 2006-08-03 Toray Ind Inc 燃料電池用電極および燃料電池
JP2006252813A (ja) * 2005-03-08 2006-09-21 Jsr Corp 直接メタノール型燃料電池用プロトン伝導膜
JP2007031573A (ja) * 2005-07-27 2007-02-08 Mitsui Chemicals Inc 架橋型プロトン伝導性ブロック共重合体、その架橋体ならびにそれを用いたプロトン伝導膜および燃料電池
KR100709554B1 (ko) 2005-04-19 2007-04-20 한국과학기술연구원 탄화수소계열 술폰화 고분자를 이용한 막전극집합체의 촉매바인더, 그 제조 방법 및 상기 촉매 바인더를 이용한막전극집합체
JP2007294240A (ja) * 2006-04-25 2007-11-08 Jsr Corp 高分子型燃料電池用電極電解質およびその用途
JP2011506629A (ja) * 2007-12-06 2011-03-03 ビーエーエスエフ ソシエタス・ヨーロピア 室温で架橋可能なイオン伝導性重合体系
WO2012005346A1 (ja) * 2010-07-09 2012-01-12 Jsr株式会社 重合体、その製造方法、フィルムおよびその製造方法
JP5176321B2 (ja) * 2004-12-07 2013-04-03 東レ株式会社 膜電極複合体およびその製造方法、ならびに燃料電池

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2576887C (en) * 2004-09-03 2013-04-23 Toray Industries, Inc. Polymer electrolyte material, polymer electrolyte part, membrane electrode assembly, and polymer electrolyte type fuel cell
KR100612873B1 (ko) 2004-11-20 2006-08-14 삼성에스디아이 주식회사 금속 촉매와 전극의 제조방법
KR100657740B1 (ko) * 2004-12-22 2006-12-14 주식회사 엘지화학 브랜치된 술폰화 멀티 블록 공중합체 및 이를 이용한전해질막
KR100975357B1 (ko) * 2007-11-27 2010-08-11 한양대학교 산학협력단 맞춤형 비불소계 촉매 바인더, 막-전극 어셈블리 및 이를포함하는 연료전지
KR101195910B1 (ko) * 2010-07-26 2012-10-30 서강대학교산학협력단 화학적으로 결합된 인산기를 가지는 고분자 전해질, 그의 제조 방법, 및 그를 이용한 막―전극 어셈블리와 이를 포함하는 연료전지
CN108123088B (zh) * 2016-11-26 2020-03-10 中国科学院大连化学物理研究所 磺化聚醚酮类离子交换膜在锌银电池中应用
CN110767469B (zh) * 2019-07-31 2021-09-24 东莞理工学院 用于有机电极材料的聚合物、其制备方法及应用
JP2021136099A (ja) * 2020-02-25 2021-09-13 株式会社リコー 電極及び電気化学素子

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09245818A (ja) * 1996-02-29 1997-09-19 Aisin Aw Co Ltd 燃料電池用電解質膜及びその製造方法
US20020091225A1 (en) * 2000-09-20 2002-07-11 Mcgrath James E. Ion-conducting sulfonated polymeric materials
JP2002220458A (ja) * 1992-06-13 2002-08-09 Hoechst Ag 高分子電解質膜
JP2002538240A (ja) * 1999-03-02 2002-11-12 セラニーズ・ヴェンチャーズ・ゲーエムベーハー スルホン化芳香族重合体、該重合体を含んでいる膜、並びに該膜の製造方法および使用
JP2003012795A (ja) * 2001-04-24 2003-01-15 Toyobo Co Ltd イオン伝導性芳香族ポリエーテル
JP2003147075A (ja) * 2001-11-16 2003-05-21 Toyobo Co Ltd スルホン化フッ素含有重合体、それを含有する樹脂組成物および高分子電解質膜
JP2004047244A (ja) * 2002-07-11 2004-02-12 Mitsui Chemicals Inc 燃料電池用イオン伝導性結着剤、電極形成用組成物およびワニス、並びに燃料電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60143444D1 (de) * 2000-09-20 2010-12-23 Virginia Tech Intell Prop Ionenleitende sulfonierte polymerische materialien
DE60333367D1 (de) * 2002-05-13 2010-08-26 Univ North Florida Board Of Tr Sulfoniertes copolymer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220458A (ja) * 1992-06-13 2002-08-09 Hoechst Ag 高分子電解質膜
JPH09245818A (ja) * 1996-02-29 1997-09-19 Aisin Aw Co Ltd 燃料電池用電解質膜及びその製造方法
JP2002538240A (ja) * 1999-03-02 2002-11-12 セラニーズ・ヴェンチャーズ・ゲーエムベーハー スルホン化芳香族重合体、該重合体を含んでいる膜、並びに該膜の製造方法および使用
US20020091225A1 (en) * 2000-09-20 2002-07-11 Mcgrath James E. Ion-conducting sulfonated polymeric materials
JP2003012795A (ja) * 2001-04-24 2003-01-15 Toyobo Co Ltd イオン伝導性芳香族ポリエーテル
JP2003147075A (ja) * 2001-11-16 2003-05-21 Toyobo Co Ltd スルホン化フッ素含有重合体、それを含有する樹脂組成物および高分子電解質膜
JP2004047244A (ja) * 2002-07-11 2004-02-12 Mitsui Chemicals Inc 燃料電池用イオン伝導性結着剤、電極形成用組成物およびワニス、並びに燃料電池

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005068536A1 (en) * 2004-01-13 2005-07-28 Johnson Matthey Public Limited Company Ion-conducting polymers and membranes comprising them
US7736539B2 (en) 2004-01-13 2010-06-15 Johnson Matthey Public Limited Company Ion-conducting polymers and membranes comprising them
JP5176321B2 (ja) * 2004-12-07 2013-04-03 東レ株式会社 膜電極複合体およびその製造方法、ならびに燃料電池
JP2006202598A (ja) * 2005-01-20 2006-08-03 Toray Ind Inc 燃料電池用電極および燃料電池
JP2006252813A (ja) * 2005-03-08 2006-09-21 Jsr Corp 直接メタノール型燃料電池用プロトン伝導膜
KR100709554B1 (ko) 2005-04-19 2007-04-20 한국과학기술연구원 탄화수소계열 술폰화 고분자를 이용한 막전극집합체의 촉매바인더, 그 제조 방법 및 상기 촉매 바인더를 이용한막전극집합체
JP2007031573A (ja) * 2005-07-27 2007-02-08 Mitsui Chemicals Inc 架橋型プロトン伝導性ブロック共重合体、その架橋体ならびにそれを用いたプロトン伝導膜および燃料電池
JP4633569B2 (ja) * 2005-07-27 2011-02-16 三井化学株式会社 架橋型プロトン伝導性ブロック共重合体、その架橋体ならびにそれを用いたプロトン伝導膜および燃料電池
JP2007294240A (ja) * 2006-04-25 2007-11-08 Jsr Corp 高分子型燃料電池用電極電解質およびその用途
JP2011506629A (ja) * 2007-12-06 2011-03-03 ビーエーエスエフ ソシエタス・ヨーロピア 室温で架橋可能なイオン伝導性重合体系
WO2012005346A1 (ja) * 2010-07-09 2012-01-12 Jsr株式会社 重合体、その製造方法、フィルムおよびその製造方法
JP5621847B2 (ja) * 2010-07-09 2014-11-12 Jsr株式会社 重合体、その製造方法、フィルムおよびその製造方法

Also Published As

Publication number Publication date
KR100702981B1 (ko) 2007-04-09
EP1612232A1 (en) 2006-01-04
EP1612232A4 (en) 2006-05-17
EP1612232B1 (en) 2007-09-19
CA2521712A1 (en) 2004-10-21
DE602004009047T2 (de) 2008-06-19
CN1768092A (zh) 2006-05-03
KR20060015488A (ko) 2006-02-17
DE602004009047D1 (de) 2007-10-31
JPWO2004090015A1 (ja) 2006-07-06

Similar Documents

Publication Publication Date Title
JP4076951B2 (ja) プロトン酸基含有架橋性芳香族樹脂、ならびにそれを用いたイオン伝導性高分子膜、結着剤および燃料電池
JP4150408B2 (ja) 燃料電池用結着剤、電極形成用組成物、電極およびそれを用いた燃料電池
WO2004090015A1 (ja) 架橋性イオン伝導性樹脂、並びにそれを用いてなるイオン伝導性高分子膜、結着剤及び燃料電池
JP2003187826A (ja) 燃料電池、それに用いる高分子電解質及びイオン交換性樹脂
JP3973503B2 (ja) 燃料電池用イオン伝導性結着剤、電極形成用組成物およびワニス、並びに燃料電池
JP4684678B2 (ja) 固体高分子型燃料電池用膜−電極構造体及び固体高分子型燃料電池
JP5352128B2 (ja) 固体高分子型燃料電池用膜−電極構造体
JP2007302717A (ja) スルホン化芳香族ポリイミド、電解質膜及び燃料電池用固体電解質、並びに燃料電池
JP4202806B2 (ja) 電解質膜/電極接合体、その製造法および燃料電池
JP4146753B2 (ja) プロトン伝導性樹脂組成物ならびに電解質膜、電解質膜/電極接合体および燃料電池
JP4955209B2 (ja) 固体高分子型燃料電池用膜−電極構造体及び固体高分子型燃料電池
WO2006048942A1 (ja) ニトリル型疎水性ブロックを有するスルホン化ポリマーおよび固体高分子電解質
JPWO2008038702A1 (ja) スルホン酸基含有ポリマー、その製造方法、スルホン酸基含有ポリマーを用いた高分子電解質膜、膜/電極接合体及び燃料電池
JP2006179256A (ja) 固体高分子型燃料電池用膜−電極構造体及び固体高分子型燃料電池
JP4459744B2 (ja) 固体高分子型燃料電池用膜・電極構造体及び固体高分子型燃料電池
JP4451237B2 (ja) 固体高分子型燃料電池用膜・電極構造体及び固体高分子型燃料電池
JP2007119654A (ja) プロトン伝導性ブロック共重合体、その架橋体ならびにそれを用いたプロトン伝導膜および燃料電池
JP4633569B2 (ja) 架橋型プロトン伝導性ブロック共重合体、その架橋体ならびにそれを用いたプロトン伝導膜および燃料電池
JP2004026935A (ja) スルホン酸基含有樹脂硬化物およびそれから得られる燃料電池用イオン伝導性高分子膜並びに燃料電池
JP2008146976A (ja) 高濃度ダイレクトメタノール型燃料電池用プロトン交換膜及びそれを用いた燃料電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005505200

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057018410

Country of ref document: KR

Ref document number: 20048087565

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004724116

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2521712

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 2004724116

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057018410

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2004724116

Country of ref document: EP