WO2004070182A1 - 燃料噴射制御方法及び制御装置 - Google Patents

燃料噴射制御方法及び制御装置 Download PDF

Info

Publication number
WO2004070182A1
WO2004070182A1 PCT/JP2004/000889 JP2004000889W WO2004070182A1 WO 2004070182 A1 WO2004070182 A1 WO 2004070182A1 JP 2004000889 W JP2004000889 W JP 2004000889W WO 2004070182 A1 WO2004070182 A1 WO 2004070182A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel injection
solenoid
coil current
value
correction value
Prior art date
Application number
PCT/JP2004/000889
Other languages
English (en)
French (fr)
Inventor
Shigeru Yamazaki
Original Assignee
Mikuni Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corporation filed Critical Mikuni Corporation
Priority to EP04706791A priority Critical patent/EP1596055A4/en
Priority to JP2005504800A priority patent/JPWO2004070182A1/ja
Publication of WO2004070182A1 publication Critical patent/WO2004070182A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/02Fuel-injection apparatus characterised by being operated electrically specially for low-pressure fuel-injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/04Pumps peculiar thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • F02D2041/2006Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening by using a boost capacitor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2051Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using voltage control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2055Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit with means for determining actual opening or closing time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2065Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit the control being related to the coil temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • F02D41/126Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off transitional corrections at the end of the cut-off period
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • F02D41/2422Selective use of one or more tables

Definitions

  • the present invention relates to an electronically controlled fuel injection control method for supplying fuel to an engine or the like, and a control device therefor.
  • the present invention relates to a method of controlling a power supply voltage or a coil resistance of a fuel injection solenoid caused by a temperature change.
  • the present invention relates to a fuel injection control method and a control device for accurately injecting a required fuel injection amount while eliminating the influence.
  • FIG. 18 illustrates a specific example of a control circuit of a conventional fuel injection device which detects such a power supply voltage.
  • the fuel injection time is adjusted by the value of the power supply voltage. I have to. That is, the power supply voltage VB applied to the power supply terminal 11 is input to the microphone computer 13 of the ECU (Electronic Control Unit) via the power supply voltage input circuit 12.
  • the microcomputer 13 outputs to the FET drive circuit 15 a drive pulse obtained by extending the ON time of the FET 14 to the drive time of the solenoid 16 (fuel injection time).
  • FIG. 19 shows a control circuit of a conventional fuel injection device that performs constant current control.
  • the power supply voltage VB applied to the power supply terminal 11 is detected by the power supply voltage detection circuit 21 and the coil current is detected by the resistor 22 and the current detection circuit 23 added for current detection.
  • the microcomputer 13 and the constant current drive circuit 24 control the coil current so as not to change due to the fluctuation of the power supply voltage VB.
  • a fuel temperature corresponding to the temperature of the electromagnetic coil is detected, and a correction pulse width for correcting the operation delay time of the fuel injection valve is set based on the fuel temperature and the battery voltage.
  • a value obtained by adding the correction pulse width to the effective injection pulse width corresponding to the above is used as the final injection pulse width (Japanese Patent Application Laid-Open No. 8-47575).
  • a control signal is sent to the opening area adjusting device of the bypass passage that bypasses the tor-valve (throttle valve) to detect the actual driving current of the opening area adjusting device, and the opening area is determined based on the detection result of the actual driving current.
  • a correction amount of the control signal calculated after the start of the start of the adjusting device is corrected to a previously calculated control signal before the start (refer to Japanese Patent Application Laid-Open No. -126600 publication).
  • the temperature of the electromagnetic coil whose fuel injection characteristics change with temperature, is not necessarily limited to the fuel. Since the temperature does not match the temperature and the drive control device for the engine fuel injection valve must be provided in a limited capacity fuel tank to detect the fuel temperature, the fuel storage in the fuel tank There was a problem of reducing the capacity.
  • the idling speed is controlled. This is to prevent hunting of the rotation speed, falling of the rotation speed or engine stall.
  • the adjustment of the constantly changing fuel supply amount from the internal combustion engine is separate from the opening area adjustment device that adjusts the air amount. Since a regulator device for adjusting the amount of fuel supply is required, there is a problem that the overall device becomes complicated and costs increase.
  • the present inventors unlike a conventional fuel injection device or a fuel injection system of a conventional type that injects fuel pressurized and sent by a fuel pump / regulator, pressurizes and injects fuel by itself.
  • a fuel injection system using an electromagnetic fuel injection pump hereinafter referred to as “electromagnetic fuel injection system”.
  • This electromagnetic fuel injection system has a great advantage in that it can be made smaller and lower in cost compared to the conventional type of fuel injection system, but the injection amount drives the fuel injection solenoid. Because it has the characteristic of being affected by coil current, it is not possible to perform appropriate fuel injection amount correction corresponding to the required amount by simply increasing or decreasing the drive pulse width based on the power supply voltage of the battery described above. There was a problem.
  • An object of the present invention is to solve various problems of the above-described conventional fuel injection control device and control method, and to cope with an ever-changing required fuel injection amount from the engine side. It is an object of the present invention to provide a fuel injection control method capable of adjusting a fuel injection amount according to a state of an injection solenoid, and a control device therefor.
  • the present invention has been made based on the problems of the conventional fuel injection device and method according to the prior art described above.
  • the present invention provides a fuel injection control method, comprising: measuring a coil current that has been applied, and correcting and adjusting a drive stop timing of the solenoid based on a measured value of the coil current.
  • the drive stop timing of the solenoid is corrected and adjusted based on the measured value of the coil current which has a large effect on the temperature rise of the fuel injection solenoid.
  • the measurement of the coil current at the lapse of a predetermined time of a plurality of points from the start of driving of the fuel injection solenoid can be understood not only because of the absolute value of the coil current at a certain point but also the transition of the coil current. This is because the fuel injection control corresponding to the required fuel injection amount can be performed more accurately than when the drive stop timing of the solenoid is corrected based on the coil current measurement value of a single point.
  • the fuel injection control method includes a step of starting driving of a solenoid for fuel injection, and measuring a coil current flowing through the solenoid at a point in time at which one or more points have elapsed from the start of driving of the solenoid. And a step of obtaining a correction value for correcting the drive stop timing of the solenoid based on the measured coil current value.
  • the correction uses a correction value determined based on the coil current measurement value and the required fuel injection amount for the solenoid.
  • the correction value is predetermined for various combinations of the measured coil current value and the required fuel injection amount for the solenoid, and a correction value selected according to the combination is used. .
  • the drive stop timing of the solenoid is corrected by determining the increment of the required fuel injection amount and the drive output pulse of the solenoid, which are determined according to one or both of the coil current measurement value and the required fuel injection amount for the solenoid.
  • the power supply voltage applied to the solenoid is measured, and based on the power supply voltage value, The drive stop timing of the solenoid is corrected. Then, in the next or subsequent drive cycle of the solenoid, a correction value for correcting the drive stop timing of the solenoid is obtained and adjusted based on the coil current value measured this time.
  • the present invention further provides: means for driving a fuel injection solenoid; current measurement means for measuring a coil current flowing through the solenoid at a point in time when one or more points have elapsed from the start of driving of the solenoid; and a coil current.
  • Control means for determining a correction value for correcting the drive stop timing of the solenoid based on the measured value, and adjusting the drive stop timing of the solenoid using the correction value.
  • a feedback circuit for reusing energy released from the solenoid when the driving of the solenoid is stopped as driving energy of the solenoid may be provided.
  • the feedback circuit includes a capacitor that charges energy released from the solenoid when driving of the solenoid is stopped. This reduces battery power consumption and allows for a smaller battery capacity.
  • the fuel injection control method and apparatus according to the present invention corrects and adjusts the drive stop timing of the solenoid based on the measured value of the coil current that has a large effect on the temperature rise of the fuel injection solenoid. This made it possible to perform fuel injection control.
  • the change in coil current can be known by measuring the coil current at the lapse of a predetermined time at a plurality of points from the start of driving of the fuel injection solenoid, so that the fuel corresponding to the required fuel injection amount can be determined more accurately. Injection control was realized.
  • FIG. 1 shows a fuel injection control method and a fuel injection control device according to the present invention
  • 4 shows a configuration example when applied to an injection system.
  • FIG. 2 shows an example of a control mechanism of the fuel injection control device according to the first embodiment of the present invention.
  • FIG. 3 is a waveform diagram of a required drive pulse, a coil current, and a drive output pulse corresponding to a required fuel injection amount in an electromagnetic fuel injection system to which the fuel injection control method of the first embodiment is applied. Show.
  • FIG. 4 is a conceptual diagram showing how to determine the pulse width of the drive output pulse in the first embodiment of the present invention.
  • FIG. 5 is a diagram conceptually showing a method of obtaining a correction value Pr of a drive output pulse of a solenoid.
  • FIG. 6 shows the relationship between the fuel flow rate Q and the drive output pulse width Tout of the solenoid in the fuel injection control system according to the second embodiment of the present invention.
  • FIG. 7 is a graph showing an injection amount characteristic in the fuel injection device.
  • FIG. 8 is a characteristic diagram showing an example of a characteristic of a corrected invalid time in the fuel injection control method and the fuel injection control device according to the second embodiment.
  • FIG. 9 is a characteristic diagram showing an example of characteristics of a tilt correction value in the fuel injection control method and the fuel injection control device according to the second embodiment.
  • FIG. 10 is a conceptual diagram showing how to obtain a corrected drive output pulse width T out according to the second embodiment of the present invention.
  • FIG. 11 shows an example of a control mechanism of the present fuel injection control device including a power supply voltage detection circuit according to a third embodiment of the present invention.
  • FIG. 12 shows an example of a correction processing control flow according to the third embodiment of the present invention.
  • FIG. 13 is a characteristic diagram schematically showing a fuel injection characteristic in the fuel injection control method and the fuel injection control device according to the third embodiment of the present invention.
  • FIG. 14 shows a flowchart of a processing procedure of the fuel injection control method according to the fourth embodiment of the present invention.
  • FIG. 15 shows a timing chart of a soft-to-air process for detecting a coil current in the fourth embodiment.
  • FIG. 16 shows a software for detecting a coil current in the fourth embodiment.
  • 6 shows a timing chart when a detection timing shift occurs in the air processing.
  • FIG. 17 is a waveform diagram of each waveform of a drive output pulse and a coil current when detection timing is shifted in software processing for detecting a coil current in the fourth embodiment.
  • FIG. 18 shows a first example of a control mechanism of a conventional fuel injection control device.
  • FIG. 19 shows a second example of the control mechanism of the conventional fuel injection control device.
  • FIG. 1 shows an example of the overall schematic configuration of a fuel injection system including a fuel injection control device according to the present invention.
  • the electromagnetic fuel injection system comprises a plunger pump 32 which is an electromagnetic drive pump for pumping fuel in a fuel tank 31, and a plunger pump 32 which is pressurized to a predetermined pressure and fed.
  • Orifice nozzle 3 3 having an orifice section through which the injected fuel passes, and an injection nozzle that injects fuel into the intake passage (of the engine) when the fuel passing through the inlet orifice nozzle 33 is at a predetermined pressure or higher.
  • 3 4 and a control signal is output to the plunger pump 32 and the like based on the operating information of the engine and the coil current flowing through the solenoid of the plunger pump 32 (the fuel injection solenoid in the present application).
  • It has a control unit (ECU) 36 as its basic configuration.
  • the control means in the fuel injection control device according to the present invention corresponds to the control unit 36.
  • FIG. 2 illustrates the configuration of the fuel injection control device according to the first embodiment of the present invention.
  • a fuel injection solenoid (hereinafter referred to as “solenoid” or “coil” as appropriate) 46 constitutes a plunger pump 32.
  • the plunger pump 32 is driven by a driving means including, for example, an N-channel FET 44, a FET 48, and a FET drive circuit 45, which are switching elements for driving the fuel injection solenoid 46.
  • the capacitor for charging the energy released from the solenoid 46 when the drive of the solenoid 46 is stopped is provided. 50 and a diode 42.
  • the power consumption of the battery 41 can be reduced, and the capacity of the battery 41 can be reduced.
  • the capacitor 50 is charged with a voltage higher than the power supply voltage (for example, 12 V), the rise of the coil current at the start of driving the solenoid 46 becomes sharp, and the plunger pump 3 2 The effect of shortening the operation start time (invalid time) can also be obtained.
  • this control device also measures the coil current Ir flowing through the solenoid 46 at the time when one or more points have passed for a predetermined time from the start of driving of the solenoid 46 for fuel injection.
  • the current detection circuit 6 which determines the correction value for correcting the drive stop timing of the solenoid 46 based on the measured value of one or more coil currents measured, determines the correction value for the drive stop timing of the solenoid 46 based on this correction value,
  • a control means including a microcomputer 43 and a drive driver for adjusting the stop timing in the microcomputer.
  • the power supply voltage (VB) of the battery 41 is applied to one end of the solenoid 46 via a diode 57.
  • the other end of the solenoid 46 is connected to the drain of FET 44.
  • the capacitor 50 for charging the energy released from the solenoid 46 may be connected via the diode 42.
  • a drive output pulse based on an operation signal output from the microcomputer 43 is supplied to a gate of the FET 44 via a FET drive circuit (driver circuit) 45.
  • the on / off operation of the FET 48 may be the same as that of the FET 44, but it may be turned on prior to driving the solenoid 46 (on of the FET 44). . Further, the timing of turning off the FET 48 is set before the turning off of the FET 44.
  • the source terminal of FET 44 is grounded via a current detection resistor 52.
  • the driving pulse is turned on by the driving pulse, the power supply voltage is supplied from the battery 41 to the solenoid 46, and the driving of the solenoid 46 is started. Then, the current flowing through the solenoid 46 is measured by the current detection circuit 6.
  • the voltage drop (“R52” x “coil current value”) generated between both terminals of the current detection resistor 5 2 (low resistance) is converted into a series resistor 7, a feedback resistor 8, and an op amp 9. Amplified by a wide circuit composed of Output to the input terminal.
  • the microcomputer 43 converts the input analog current value into a digital value and stores it in an internal memory.
  • the fuel injection corresponding to the required fuel injection amount is performed by correcting the drive stop timing of the solenoid 46 based on the measured value of the coil current stored in the memory in the control means. It is.
  • the energy released from the solenoid 46 when the drive of the solenoid 46 is stopped is charged to the capacitor 50 to be reused. You may make it consume by the snubber circuit as shown in the figure.
  • the other end of the solenoid 46 may be connected to the battery 41 via the diode 42 to charge the battery 41.
  • FIG. 3 shows the required drive pulse Pw of the solenoid 46 corresponding to the required fuel injection amount Qc according to the first embodiment of the present invention, the pulse width Tw of the required drive pulse Pw, and the solenoid.
  • the coil current is measured when a predetermined time of one or more predetermined points has elapsed from the start of driving of the solenoid 46, and in FIG. 3, Tr1, Tr2,
  • the measured values of the coil current flowing in the solenoid 46 after the elapse of Tr 3 ⁇ ⁇ T T r ⁇ are indicated as I rl, Ir 2, Ir 3-- ⁇ I rn, respectively.
  • the actual drive time of the solenoid 46 with respect to the required drive pulse Pw is, in principle, the coil current Ir (1 or 1) determined in the previous (or earlier) solenoid drive.
  • the correction value P.1- of the required drive pulse Pw is obtained based on the plurality of measured values), and adjustment such as increase or decrease of the drive time of the solenoid 46 is performed based on the correction value Pr.
  • the drive output pulse P out rises in synchronization with the rising edge of the required drive pulse P w, whereby the solenoid 46 is driven and the coil current I is reduced. Start flowing. Then, at the time when a predetermined time of one or more predetermined points elapses from the start of driving of the solenoid 46, for example, at the time when 2 ms, or 2 ms, 4 ms, and 6 ms elapse, the coil current measured value I r (I r 1, Ir 2, Ir 3) are measured.
  • the measured value of coil current Ir (1 point of Irl, or 3 points of Irl, Ir2 and Ir3) is read from the memory, and the measured value of coil current Ir
  • a correction value Pr for the required fuel injection amount Qc is determined based on r and the required fuel injection amount Qc.
  • the required drive pulse width Tw corresponding to the required fuel injection amount Qc is corrected based on the correction value Pr, and the drive output pulse Pout is supplied to the gate of the FET 44.
  • the fuel injection amount is appropriately adjusted in the fuel injection device, in which the fuel injection amount is affected by the coil current driving the fuel injection solenoid.
  • the correction value Pr is obtained based on a plurality of coil currents (Irl, Ir2, Ir3, Irn) at a point in time when a predetermined time of a plurality of points has elapsed from the start of driving of the solenoid 46, n
  • the correction value Pr is obtained from the dimension Ir axis, or the first correction value Pr is obtained based on the first coil current measurement value Ir1, and the correction value Pr is obtained based on the subsequent Ir measurement values.
  • Pr2, Pr3 ⁇ Prn obtained by sequentially correcting Prn, and set Prn as the final correction value.
  • FIG. 4 is a diagram showing a concept of obtaining a pulse width T out of a drive output pulse P out in the first embodiment of the present invention.
  • the correction pulse width calculation processing unit 71 calculates the required driving pulse Pw corresponding to the required fuel injection amount Qc based on the required fuel injection amount Qc and the measured value Ir of the coil current.
  • the correction value Pr is obtained.
  • the correction value Pr is added to or subtracted from the required drive pulse width Tw corresponding to the required fuel injection amount Qc in the computing unit 72 (for example, an adder / subtractor), whereby the next (or subsequent) drive output is obtained.
  • the pulse width T out is determined.
  • the correction pulse width calculation processing section 71 and the adder 72 are included in the microcomputer 43.
  • the correction value P r based on the plurality of coil current values (I rl, I r2, I r3,.
  • the first correction value Pr is obtained based on the measured current Ir of the coil current, and the correction values Pr are sequentially corrected based on the measured values of Ir thereafter. And set P rn as the final correction value.
  • the coil current may have a large change during measurement due to superposition of noise and the like generated by temperature, coil resistance, etc. If a drive output pulse Pout corrected by a correction value that changes every measurement is output, the fuel injection amount will not be stable, causing a problem in engine driving.
  • the microcomputer 43 calculates and stores an average correction value of a plurality of latest correction values and a plurality of latest correction values. If the correction value measured and calculated this time exceeds the predetermined allowable value of the average correction value, a correction process is performed to find the pulse width Tout of the next drive output pulse Pout, and the correction value is within the allowable value. When it is within the range, the correction process is not performed.
  • FIG. 5 is a diagram conceptually showing a method of obtaining a correction value Pr of a solenoid driving pulse in the correction processing based on the measured value Ir of the coil current during the solenoid driving according to the present invention described above.
  • a measured value Ir of the coil current is taken along the horizontal axis in a memory 8 in the micro-computer constituting the present invention.
  • the required fuel injection amount Qc is plotted on the vertical axis, and the measured values Ir of various coil currents and the required fuel injection amount Qc are calculated.
  • a correction value map is prepared by mapping the correction value Pr corresponding to the combination.
  • the correction value Pr corresponding to the combination of the measured value Ir of the coil current and the required fuel injection amount Qc is determined in advance by experiments or the like.
  • Such a correction value map may be a multidimensional display map exceeding n dimensions if there are a plurality of variable elements, as described later.
  • a drive output pulse P out force for actually turning on and off the FET 44 that drives the solenoid 46 A predetermined value at one or more points from the start of driving of the solenoid 46 Since the correction is performed based on the measured value Ir of the coil current after the lapse of time and the required driving pulse Pw corresponding to the required fuel injection amount, the required value of the electromagnetic fuel injection pump for injecting while pressurizing the fuel is required. The relationship between the fuel injection amount and the actual fuel injection amount is reduced, and the required fuel injection amount can be accurately corrected.
  • the slope correction value represented by the ratio of the increase in the required fuel injection amount Qc to the increase in the drive output pulse width Tout of the solenoid, and the slope correction value of the solenoid The drive output pulse width T out is obtained by adding the corrected invalid time to a value obtained by multiplying the required fuel injection amount Qc by the inclination correction value based on the corrected invalid time from the start of driving to the start of fuel injection. I have to.
  • FIG. 6 shows the relationship between the fuel injection amount Q and the drive output pulse width T out of the solenoid in the fuel injection control system according to the second embodiment.
  • the fuel injection amount Q remains zero until the pulse width reaches a certain value (T offset) from zero, and thereafter, the value of the fuel injection amount Q increases as the pulse width increases. Increases with some slope T d.
  • the predetermined period (T offset) after the start of the driving of the solenoid 46 is a time during which actual fuel injection does not start, and is called an invalid time because it does not affect the injection amount.
  • the invalid time T offset is also a fluctuation value affected by the measured value Ir of the coil current. Therefore, in order to perform more appropriate fuel injection with respect to the fuel injection amount Q, it is necessary to correct this T offset.
  • the inclination Td is the ratio of the increase in the required fuel injection amount Qc to the increase in the drive output pulse width of the solenoid, and is referred to as the inclination correction value Td in the present application.
  • the invalid time T offset varies depending on the magnitude of the coil current as described above, it can be expressed as a function of the measured value Ir of the coil current. That is, the value of the invalid time T offset corrected according to the measured value Ir of the coil current is obtained.
  • the value of the corrected invalid time T offset is, for example, the value of the coil after the lapse of Tr 1 which is the first point of the coil current. It is determined from the two-dimensional display map in which the value of T of ofset is mapped to the measured value of the coil current Ir1. This map is obtained in advance by an experiment or the like.
  • the slope correction value Td is the measured coil current value Ir (e.g., I r 1). Therefore, the value of the inclination correction value Td is obtained from, for example, a map of a two-dimensional table in which the value of Td is mapped to Ir.
  • the slope correction value Td is calculated by calculating the function of the coil current measured value Ir and the required fuel injection amount Qc. Become.
  • the inclination correction value Td is determined using a three-dimensional display map in which the values of the inclination correction value Td are mapped to the measured value Ir of the coil current and the required fuel injection amount Qc. To These maps are obtained in advance by experiments and the like.
  • FIG. 7 shows an example of an injection amount characteristic graph showing the relationship between the actual fuel injection amount Qout at various measured coil current values Ir and the drive output pulse width Tout for final fuel injection.
  • Fig. 7 shows that the larger the measured value Ir of the coil current, the shorter the dead time and the more fuel injection occurs for the same drive output pulse width. Is shown.
  • FIG. 8 shows an example of a relationship between the invalid time Tofffset and the measured value Ir of the coil current.
  • FIG. 9 shows an example of the relationship between the inclination correction value Td and the measured coil current value Ir (for example, Ir1). If the relationship between the required fuel injection amount Qc and the drive output pulse width Tout is linear, regardless of the value of the required fuel injection amount Qc, the slope correction value Td and the measured coil current value Ir Is the only relationship shown in Fig. 9. However, if the relationship between the required fuel injection amount Qc and the drive output pulse width Tout is not linear, there is a relationship as shown in Fig. 9 for each of the various required fuel injection amounts Qc. Become.
  • FIG. 10 is a second conceptual diagram showing how to obtain the corrected drive output pulse width T out in the second embodiment.
  • the multiplier 75 multiplies the required drive pulse Pw corresponding to the required fuel injection amount Qc by the inclination correction value Td.
  • the inclination correction value Td is obtained from the map 81 based on the measured value Ir of the coil current.
  • the slope correction value Td is also determined based on a plurality of coil current values (Irl, Ir2, Ir3, Irn) at a plurality of points after a predetermined time has elapsed from the start of the drive of the solenoid 46. You can ask.
  • the slope correction value Td is calculated from the n-dimensional Ir axis, or the first slope correction value Td1 is calculated based on the first coil current measurement value Ir1, and the subsequent Ir measurement values are calculated.
  • Td2, Td3,..., Tdn obtained by sequentially correcting the inclination correction value Td on the basis of are obtained, and Tdn is used as the final correction value.
  • the invalid time Tofffset is added to the value of QcXTd.
  • the captured invalid time T o f f set obtained from the map 82 based on the measured value Ir of the coil current is used.
  • the drive output pulse width Tout for the final fuel injection is obtained.
  • the multiplier 75 and the adder 76 are included in the microcomputer 43.
  • the maps 81 and 82 are stored in a data storage section in the microcomputer 43.
  • the inclination correction value Td is obtained, and the invalid time T offset corrected based on the measured coil current value Ir is obtained, and the corrected invalid time T offset and the inclination correction value T d are used.
  • the drive output pulse width Tout for the final fuel injection will be corrected.
  • the fuel injection amount Q is appropriately corrected. I can do it.
  • the slope correction value T d and the corrected invalid time T offset are obtained from the two-dimensional map, respectively.
  • FIG. 11 is a diagram for explaining a control mechanism of the fuel injection control device according to the third embodiment. As shown in FIG. 11, this control mechanism detects the power supply voltage VB in the electromagnetic fuel injection system shown in FIG.
  • the configuration is such that a power supply voltage detection circuit 49 to be supplied to the computer 43 is added.
  • the other configuration is the same as the configuration shown in FIG.
  • FIG. 12 shows an example of a correction processing control flow according to the third embodiment.
  • the power supply voltage detection circuit 49 is used only at the time of starting the engine or at the time of the first driving when the solenoid 46 is driven again after the fuel injection is interrupted due to fuel power or the like.
  • the power supply voltage VB is further detected, and the slope correction value Td and the corrected invalid time Toffset are obtained based on the detected value.
  • a map in which the invalid time T offset corrected for the power supply voltage VB is mapped or a map in which the inclination correction value T d is mapped for the power supply voltage VB are obtained in advance by experiments or the like. It is stored in the storage unit in the microcomputer.
  • the power supply voltage is The drive output pulse width T out for the final fuel injection is corrected based on the VB detection, and at other times, based on the measured coil current Ir detected during the previous fuel injection. Therefore, fuel is supplied in the same manner as in the third embodiment.
  • the fuel injection amount Q can be accurately corrected in an electromagnetic fuel injection system that injects while pressurizing.
  • the map used for the correction calculation becomes two-dimensional, so that the correction calculation is simplified, and There is an advantage that the memory usage is reduced.
  • the fuel injection control method according to the fourth embodiment of the present invention is the fuel injection control method according to the first to third embodiments, wherein the coil current is measured after a predetermined time has elapsed from the start of driving the solenoid 46. This is a method to prevent the measured value Ir of the coil current from deviating from the original value due to the deviation of the measurement timing.
  • the electromagnetic fuel injection system shown in Fig. 2 or Fig. 11 detects the coil current at the interrupt 92 for turning on the drive output pulse 91, as shown in Fig. 15.
  • the timer for measuring the time Tr starts and enters the interrupt wait state 93.
  • the AZD converter for current detection starts and enters the interrupt wait state 95, where A / D conversion is performed.
  • software processing of reading the A / D conversion value at end interrupt 96 is performed.
  • the timer and the A / D converter for current detection are built in the microcomputer 43.
  • the detection value 9 8 original value of Koiru current, and the measured value I r of the coil current after the lapse of T r the time from ie drive start scraping it I s I will. Since another interrupt is executed when the interrupt 92 to turn on the drive output pulse 91 occurs, the same applies when the timer starts after a while after the drive output pulse 91 turns on. It is. Therefore, in the fourth embodiment, the coil current is measured according to the procedure described below.
  • FIG. 14 is a flowchart illustrating an example of a processing procedure in a fuel injection control method according to the fourth embodiment of the present invention.
  • the solenoid drive ON interrupt processing When the process starts, the time T 1 (the value of the output output compare) at which the drive output pulse is turned on is recorded (step S 13 1), and the timer for current detection is started (step S 1 3 1).
  • step S133 other processing is performed (step S133), and when a timer count-up interrupt occurs, the current detection timer processing is started.
  • the current time that is, the time T2 when the AZD conversion is to be performed is measured (step S1334), and the elapsed time T2_T from the time Ti to the time T2 is measured. i is calculated and obtained (step S1 3 5).
  • the elapsed time ⁇ 2 ⁇ ⁇ 1 is compared with a preset time (step S 1 36). As a result, if the elapsed time ⁇ 2 — ⁇ 1 is within the set time, the AZD converter for current detection is started to start the AZD manipulation (step S 13 7), and the current detection timer processing is performed. To end.
  • the A / D conversion value is read in the A / D conversion process, and the measured value Ir of the coil current is updated according to the value (step S138), and the entire process is executed. finish.
  • the drive output pulse width of the solenoid is corrected based on the updated measured value Ir of the coil current as described in the first and third embodiments.
  • the entire process ends without activating the current detection A / D converter.
  • the measurement value Ir of the coil current that has not been updated that is, the measurement value Ir of the previously measured coil current (for example, stored in RAM or the like in the microcomputer 43)
  • the correction of the drive output pulse width of the solenoid is performed. The same applies to the case where control is performed based on 11 coil current measurement values Ir at a plurality of points from the start of fuel injection.
  • the measured value Ir of the coil current it is possible to prevent the measured value Ir of the coil current from being measured at a measurement timing that is significantly deviated by another interrupt processing or the like. A / F fluctuations caused by correction based on the current measurement value Ir can be suppressed.
  • the pulse width correction value Pr corresponds to the required fuel injection amount Qc.
  • the arithmetic unit applied to the required drive pulse Pw is not limited to the adder, but may be a subtractor, a multiplier, or a divider, or a combination thereof, or may perform other calculations.
  • the present invention is not limited to the electromagnetic fuel injection system described in the above various embodiments, but also relates to a fuel supply pressure having a relatively linear characteristic in which the relationship between the drive output pulse width of the solenoid and the fuel injection amount is relatively linear.
  • the present invention is also applicable to a fuel injection device having a regulator. This is because, even in such a fuel injection device, the operating characteristics such as the operation start time (ineffective time) of the driving solenoid fluctuate depending on the coil current value, temperature, and the like.
  • the present invention relates to an electronically controlled fuel injection control method for supplying fuel to an engine or the like and a control device therefor, and has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

エンジン側からの要求燃料噴射量に対応して適正量の燃料噴射が可能な燃料噴射制御方法及びその制御装置を提供する。燃料噴射用ソレノイドの駆動開始から1又は複数ポイントの所定時間経過時点におけるコイル電流を測定し、前記コイル電流の測定値に基づいて前記ソレノイドの駆動停止タイミングを補正し調整する。ここで、前記補正は、前記コイル電流値と前記ソレノイドに対する要求燃料噴射量とに基づいて、又は前記コイル電流値と前記ソレノイドに対する要求燃料噴射量との種々の組み合わせに対して予め定められており、前記組み合わせに応じて選択される補正値を用いる。

Description

明 細 書 燃料噴射制御方法及び制御装置 技術分野
本発明は、 エンジン等に燃料を供給するための電子制御式の燃料噴射制御方法 及びその制御装置に関し、 特に電源電圧の変動や、 温度変化によって生じる燃料 噴射用ソレノィドのコイル抵抗値などの変動による影響を排して、 要求された燃 料噴射量を正確に噴射するための燃料噴射制御方法及び制御装置に関する。 背景技術
2輪車を含む自動車用エンジン等の内燃機関に対し、 刻々変化する要求燃料噴 射量を適宜且つ適正に供給することは、 内燃機関の性能を左右する極めて重要な ファクターである。このため従来から、エンジン開始時における燃料噴射時間を、 エンジンの吸入空気温度及びバッテリ電圧に応じて補正することが行われている (特開昭 5 8 - 2 8 5 3 7号公報)。
第 1 8図は、 このような電源電圧を検知するようにした従来の燃料噴射装置の 制御回路の具体例を説明するものである。 ここでは、 電源電圧 (バッテリ電圧) の変動によつて燃料噴射装置から噴射される単位時間当たりの燃料噴射量が変動 してしまうことに鑑みて、 電源電圧の値によって燃料噴射時間を調整するように している。 つまり、 電源端子 1 1に印加された電源電圧 V Bを電源電圧入力回路 1 2を介して E C U (Electronic Control Unit) のマイク口コンピュータ 1 3に 入力する。 そして、 マイクロコンピュータ 1 3は、 電源電圧 V Bが低いときは、 F E T 1 4のォンの時間をより長く した駆動パルスを F E T駆動回路 1 5に出力 してソレノイド 1 6の駆動時間 (燃料噴射時間) を長く調整する。 逆に、 電源電 圧 V Bが高い時は、 F E T 1 4のオンの時間をより短く調整した駆動パルスを F E T駆動回路 1 5に出力してソレノィド 1 6の駆動時間をより短く調整する。 こ れにより燃料噴射量が電源電圧の変動による影響を受けずに、 要求された適正量 の燃料を供給するように制御している。
また、 従来から、 燃料噴射用ソレノイドの駆動電流を安定化させることも行わ れている。 第 1 9図は、 従来の定電流制御を行うタイプの燃料噴射装置の制御回 路を示す。 この回路では電源端子 1 1に印加された電源電圧 V Bを電源電圧検出 回路 2 1により検出するとともに、 電流検出用に付加した抵抗 2 2および電流検 出回路 2 3によりコイル電流を検出する。 そして、 マイクロコンピュータ 1 3お よび定電流駆動回路 2 4により、 コイル電流が電源電圧 V Bの変動によって変化 しないように制御している。
また、 電磁コイルの温度に対応する燃料温度を検出し、 該燃料温度とバッテリ 電圧に基づいて燃料噴射弁の作動遅れ時間を補正するための捕正パルス幅を設定 し、 エンジンに供給する燃料量に対応する有効噴射パルス幅に対して前記補正パ ルス幅を加算した値を最終的な噴射パルス幅とすることも行われていた (特開平 8 - 4 5 7 5号公報)。
さらに、 内燃機関への燃料噴射量を調整するものではないものの、 内燃機関の アイドル運転時の回転速度を安定化させるために、 内燃機関の運転状態を検出し 内燃機関に空気を送るためのスロッ トル-弁 (絞り弁) をバイパスするバイパス通 路の開口面積調整装置へ制御信号を送って前記開口面積調整装置の実駆動電流を 検出し、 当該実駆動電流の検出結果に基づいて前記開口面積調整装置の始動開始 以降に算出される前記制御信号の補正量を、 予め算出された前記始動前の制御信 号を補正するようにした内燃機関のアイドル制御装置も知られている (特開平 9 - 1 2 6 0 2 3号公報)。
し力 し、 例えば第 1 8図に示されたような電源電圧値に基づいて燃料噴射時間 の補正を行う制御方法では、 ソレノィド 1 6を構成するコイルの温度が上昇した 場合にそのコィル抵抗値が変化し、 電源電圧 V Bが同じであってもコィル電流が 変化してしまい要求された燃料噴射量を適正に供給することは困難である。 ソレ ノイ ド 1 6の単位時間当たりの燃料噴射量がコィル電流値によって変動してしま うからである。
このため、 第 1 9図に示すように、 ソレノイド 1 6を定電流駆動することも考 えられるが、 ソレノィド 1 6の動作開始時間等を含めて動作特性が温度によって 大きく変動し、 そのための制御回路ゃソフトウエア処理の複雑化に伴う高コスト 化を招来するという問題があった。 また、 ソレノイ ドの駆動電流は、 ソレノイド の自己ィンダクタンスにより駆動開始時点から徐々に立ち上がる特性を有するの で、 ソレノィド駆動電流の安定化とは、単に駆動電流の制限(最大電流値の設定) を意味するものであった。
—方、 特開平 8— 4 5 7 5号公報に開示されたエンジン用燃料噴射弁の駆動制 御装置においては、 温度によつて燃料噴射特性が変化する電磁コィルの温度は必 ずしも燃料温度と一致しないこと、 また、 燃料温度を検出するために限られた容 量の燃料タンク内にエンジン用燃料噴射弁の駆動制御装置を配設する必要があつ たため、 その分燃料タンクの燃料貯蔵容量を減少させてしまうという問題があつ た。
また、 特開平 9一 1 2 6 0 2 3号公報に開示された内燃機関のアイドル時の回 転速度を所定速度に安定化させるために内燃機関に供給する空気量を調整するこ とによりアイドル回転数のハンチング、 回転落ち若しくはエンジンストールを防 止するためのものであり、 内燃機関側からの刻々変化する燃料供給量の調整につ いては、 空気量を調整する開口面積調整装置とは別個に燃料供給量を調整するレ ギユレータ装置等が必要となることから、 装置全体の複雑化と高コスト化を招く 問題があった。
ところで、 近似、 本発明者らは、 燃料ポンプゃレギユレータにより加圧されて 送られてきた燃料を噴射する従来タイプの燃料嘖射装置又は燃料噴射システムと は異なり、 それ自体で燃料を加圧し噴射する電磁式燃料噴射ポンプを用いた燃料 噴射システム (以下、 「電磁式燃料噴射システム」 という) を開発している。 この電磁式燃料噴射システムは、 従来タイプの燃料噴射システムと比較して、 小型化及び低コス ト化を実現できる点において大きな利点を有しているものの、 噴射量が燃料噴射用ソレノィドを駆動するコイル電流の影響を受けてしまう特性 を有するため、 上述したバッテリの電源電圧に基づいて駆動パルス幅を増減補正 するだけでは、 要求量に対応した適正な燃噴射量補正を行うことができないとい う問題点があった。
本発明は、 上記した従来の燃料噴射制御装置及び制御方法が有していた種々の 課題を解決するためのものであって、 エンジン側からの刻々変化する要求燃料噴 射量に対応し、 燃料噴射用ソレノィ ドの状態に応じて燃料噴射量を調整すること が可能な燃料噴射制御方法及びその制御装置を提供することを目的とする。
発明の開示 本発明は、 上記従来技術の燃料嘖射装置及び方法の課題に基づいてなされたも のであって、 燃料噴射用ソレノィ ドの駆動開始から 1又は複数ポイントの所定時 間経過時点における前記ソレノィドに流れたコイル電流を測定し、 前記コイル電 流の測定値に基づいて前記ソレノィドの駆動停止タイミングを補正し調整するこ とを特徴とする燃料噴射制御方法を提供するものである。
このように、 本発明においては、 燃料噴射用ソレノイドの温度上昇に大きな影 響を与えるコイル電流の測定値に基づいてソレノィドの駆動停止タイミングを補 正し調整するので、 要求された適正量の燃料噴射制御を行うことを可能にしたの である。 ここで、 燃料噴射用ソレノィ ドの駆動開始から複数ボイントの所定時間 経過時点におけるコイル電流を測定するのは、 あるポイントにおけるコイル電流 の絶対値のみならずコィル電流の変遷を知ることができるので、 これにより単独 のボイントのコイル電流測定値に基づいてソレノィドの駆動停止タイミングを捕 正するよりも、 より正確に要求燃料噴射量に対応した燃料噴射制御を可能にする からである。
本発明に係る燃料噴射制御方法は、 燃料噴射用ソレノイ ドの駆動を開始する行 程と、 前記ソレノィドの駆動開始から 1又は複数ポイントの所定時間経過時点に おける前記ソレノィドに流れたコイル電流を測定する行程と、 前記コイル電流測 定値に基づいて前記ソレノィドの駆動停止タイミングを補正する補正値を求める 行程との各行程を有する。
ここで、 前記補正は、 前記コイル電流測定値と前記ソレノィドに対する要求燃 料噴射量に基づいて決められる補正値を用いる。 また、 前記補正値は、 前記コィ ル電流測定値と前記ソレノィドに対する要求燃料噴射量との種々の組み合わせに 対して予め定められており、 前記組み合わせに応じて選択される補正値を用いる ようにする。
さらには、 前記ソレノィ ドの駆動停止タイミングの補正は、 前記コイル電流測 定値及び前記ソレノィドに対する要求燃料噴射量の一方又は両方に応じて定まる、 要求燃料噴射量の増加分と前記ソレノィドの駆動出力パルス幅の増加分との比で 表わされる傾き補正値を求める行程と、 前記コイル電流測定値に応じて定まる前 記ソレノィ ドの駆動開始から燃料噴射が始まるまでの補正された無効時間を求め る行程と、 前記要求燃料噴射量に前記傾き補正値を乗じた値に前記補正された無 効時間を加えた補正値を求める行程と、 の各行程により構成され、 前記補正値を 用いて前記ソレノィドの停止タイミングを調整するようにする。 これによつて、 より精緻な燃料噴射制御を可能としている。
さらに、 本発明においては、 エンジンの始動時、 または一旦中断した燃料噴射 を再開する時の最初の駆動時においては、 前記ソレノイドに印加される電源電圧 を測定し、 当該電源電圧値に基づいて前記ソレノィドの駆動停止タイミングを補 正するようにしている。 そして、 次回又はそれ以降のソレノイドの駆動サイクル において、 今回測定したコイル電流値に基づいてソレノィ ドの駆動停止タイミン グを補正する補正値を求めて調整するのである。
本発明は、 さらに、 燃料噴射用ソレノィドを駆動する手段と、 前記ソレノィド の駆動開始から 1又は複数ボイントの所定時間経過時点における前記ソレノィド に流れたコィル電流を測定する電流測定手段と、 前記コィル電流測定値に基づい て前記ソレノィドの駆動停止タイミングを補正する補正値を求め、 当該補正値を 用いて前記ソレノィドの駆動停止タイミングを調整する制御手段と、 を有するこ とを特徴とする燃料噴射制御装置を提供するものである。
ここで、 前記ソレノィドの駆動停止時に当該ソレノィドから放出されるェネル ギを当該ソレノィドの駆動エネルギとして再利用するための帰還回路を、 備える ようにしてもよい。 そして、 前記帰還回路は、 前記ソレノイ ドの駆動停止時に当 該ソレノィドから放出されるエネルギをチャージするコンデンサを含む。 これに より、 バッテリ電力消費量を減少させ、 バッテリの小容量化を可能としている。 本発明に係る燃料噴射制御方法及びその装置は、 燃料噴射用ソレノィドの温度 上昇に大きな影響を与えるコイル電流の測定値に基づいてソレノイドの駆動停止 タイミングを補正し調整するので、 要求された適正量の燃料噴射制御を行うこと を可能にしたのである。 また、 燃料噴射用ソレノイ ドの駆動開始から複数ポイン トの所定時間経過時点におけるコイル電流を測定することによりコイル電流の変 遷を知ることができるので、 より正確に要求燃料噴射量に対応した燃料噴射制御 を実現したのである。 図面の簡単な説明
第 1図は、 本発明に係る燃料噴射制御方法及び燃料噴射制御装置を電磁式燃料 噴射システムに適用した場合の構成例を示す。
第 2図は、 本発明の第 1の実施の形態に係る燃料噴射制御装置の制御機構例を 示す。
第 3図は、 第 1の実施の形態の燃料噴射制御方法を適用した電磁式燃料噴射シ ステムにおける要求燃料噴射量に対応する要求駆動パルス、 コイル電流及び駆動 出力パルスの各波形の波形図を示す。
第 4図は、 本発明の第 1の実施の形態において、 駆動出力パルスのパルス幅の 求め方を示す概念図である。
第 5図は、 ソレノィ ドの駆動出力パルスの補正値 P rの求め方を概念的に示す 図である。
第 6図は、 本発明の第 2の実施の形態における燃料噴射制御システムにおける 燃料流量 Qとソレノィドの駆動出力パルス幅 T o u tとの関係を示す。
第 7図は、 燃料噴射装置における噴射量特性を表すグラフを示す。
第 8図は、 第 2の実施の形態の燃料噴射制御方法及び燃料噴射制御装置におけ る補正された無効時間の特性の一例を示す特性図である。
第 9図は、 第 2の実施の形態の燃料噴射制御方法及び燃料噴射制御装置におけ る傾き補正値の特性の一例を示す特性図である。
第 1 0図は、 本発明の第 2の実施の形態における補正された駆動出力パルス幅 T o u tの求め方を示す概念図である。
第 1 1図は、 本発明の第 3の実施の形態に係る電源電圧検出回路を含む本燃料 噴射制御装置の制御機構の例を示す。
第 1 2図は、 本発明の第 3の実施の形態における補正処理制御フローの例を示 す。
第 1 3図は、 本発明の第 3の実施の形態に係る燃料噴射制御方法及び燃料噴射 制御装置における燃料噴射特性を模式的に示す特性図である。
第 1 4図は、 本発明の第 4の実施の形態に係る燃料噴射制御方法の処理手順の フローチヤ一トを示す。
第 1 5図は、 第 4の実施の形態におけるコイル電流を検出するためのソフ トゥ エア処理のタイミングチャートを示す。
第 1 6図は、 第 4の実施の形態におけるコイル電流を検出するためのソフ トゥ エア処理において検出タイミングずれが生じる場合のタイミングチャートを示す。 第 1 7図は、 第 4の実施の形態におけるコイル電流を検出するためのソフトウ エア処理において検出タイミングがずれた場合の駆動出力パルスおよびコイル電 流の各波形の波形図を示す。
第 1 8図は、 従来の燃料噴射制御装置の制御機構の第 1の例を示す。
第 1 9図は、 従来の燃料噴射制御装置の制御機構の第 2の例を示す。 発明を実施するための最良の形態
以下、 本発明の複数の実施の形態について図面を参照しつつ詳細に説明する。
( 1 ) 本発明の第 1の実施の形態
第 1図は、 本発明に係る燃料噴射制御装置を含む燃料噴射システムの全体概略 構成の例を示す。
第 1図に示すように、 電磁式燃料噴射システムは、 燃料タンク 3 1内の燃料を 圧送する電磁駆動ポンプであるプランジャポンプ 3 2と、 プランジャポンプ 3 2 により所定の圧力に加圧されて圧送された燃料を通過させるオリフィス部を有す る入口オリフィスノズル 3 3と、 入口オリフィスノズル 3 3を通過した燃料が所 定の圧力以上のとき (エンジンの) 吸気通路内に向けて噴射する噴射ノズル 3 4 と、 エンジンの運転情報およびプランジャポンプ 3 2のソレノイ ド (本願におけ る燃料噴射用ソレノィ ド) に流れるコイル電流に基づいてプランジャポンプ 3 2 等に制御信号を出力するように構成されたコントロールユニッ ト (E C U) 3 6 をその基本構成として備えている。 ここで、 本発明に係る燃料噴射制御装置にお ける制御手段は、 前記コントロールュニット 3 6に該当する。
第 2図は、 本発明の第 1の実施の形態に係る燃料噴射制御装置の構成を説明す るものである。 第 2図において、 燃料噴射用ソレノィ ド (以下、 適宜、 「ソレノィ ド」 又は 「コイル」 という) 4 6は、 プランジャポンプ 3 2を構成する。 プラン ジャポンプ 3 2は、 燃料噴射用ソレノィ ド 4 6を駆動するためのスィツチング素 子である例えば Nチャンネル F E T 4 4、 F E T 4 8及び F E T駆動回路 4 5か らなる駆動手段により駆動される。
ところで、 本発明に係る燃料噴射装置においては、 ソレノイ ド 4 6を駆動停止 した際にソレノィド 4 6から放出されるエネルギをチャージするためのコンデン サ 5 0及ぴダイオード 4 2を備える。 これにより、 バッテリ 4 1の電力消費量を 減少させると共に、 バッテリ 4 1の小容量化を実現できる。 ソレノイド 4 6に蓄 えられたエネルギが再びソレノィド 4 6の駆動エネルギとして再利用されるから である。 さらに、 これにより、 コンデンサ 5 0には電源電圧 (例えば 1 2 V) よ りも高い電圧がチャージされているので、 ソレノイド 4 6の駆動開始時における コイル電流の立ち上がりが急峻になりプランジャポンプ 3 2の動作開始時間 (無 効時間) が短縮されるという効果も得ることができる。
第 2図に示すように、 本制御装置は、 この他、 燃料噴射用ソレノイド 4 6の駆 動開始から 1又は複数ボイントの所定時間経過時点における前記ソレノイド 4 6 に流れたコイル電流 I rを測定する電流検出回路 6、 測定した 1又は複数のコィ ル電流の測定値に基づいてソレノィド 4 6の駆動停止タイミングを補正する補正 値を求めこの捕正値に基づいてソレノィド 4 6の次回以降の駆動における停止タ ィミングを調整する駆動ドライバ及びマイクロコンピュータ 4 3を含む制御手段 を備える。
ソレノイド 4 6の一端には、 ダイオード 5 7を介してバッテリ 4 1の電源電圧 (VB) が印加される。 ソレノイ ド 4 6の他端は、 F E T 4 4のドレインに接続 される。 上述したように、 ソレノィド 4 6から放出されるエネルギをチャージす るためのコンデンサ 5 0にダイオード 4 2を介して接続するようにしても良い。
F E T 4 4のゲートには、 F E T駆動回路 (ドライバ回路) 4 5を介してマイ クロコンピュータ 4 3から出力された作動信号に基づく駆動出力パルスが供給さ れる。 F ET 4 8のオン Zオフ動作は、 F ET 4 4と同じであってもよいが、 ソ レノイド 4 6の駆動前 (F E T 4 4のオン) に先行してオンするようにしてもよ い。 また、 F ET 4 8のオフのタイミングは、 F E T 4 4のオフの前にする。
F E T 4 4のソース端子は、 電流検出用の抵抗 5 2を介して接地される。 駆動 パルスによって F E T 4 4力 S 「オン」 状態になると、 バッテリ 4 1からソレノィ ド 4 6、 に電源電圧が供給されてソレノイド 4 6の駆動が開始される。 そして、 ソレノィド 4 6に流れた電流は、 電流検出回路 6により測定される。
電流検出回路 6においては、 電流検出用抵抗 5 2 (低抵抗) の両端子間に生じ る電圧降下 (「R52」 X 「コイル電流値」) を、 直列抵抗 7、 帰還抵抗 8、 ォペア ンプ 9により構成される增幅回路で増幅してマイクロコンピュータ 4 3のアナ口 グ入力端子に出力するようにする。 マイクロコンピュータ 4 3は、 入力されたァ ナ口グ電流値をデジタル変換して内部のメモリに記憶する。 本発明においては、 制御手段におけるメモリ内に記憶されたコィル電流の測定値に基づいてソレノィ ド 4 6の駆動停止のタイミングを補正することにより、 燃料噴射要求量に適切に 対応した燃料噴射を行うのである。
尚、 第 2図においては、 ソレノイド 4 6の駆動停止の際にソレノイド 4 6から 放出されるエネルギをコンデンサ 5 0にチャージし再利用するようにしている力 従来技術のように、 例えば第 1 8図に示されたようなスナバー回路により消費さ せるようにしても良い。 また、 ソレノイド 4 6の他端を、 ダイォード 4 2を介し てバッテリ 4 1に接続することによりバッテリ 4 1を充電するような構成にして もよい。
第 3図は、 本発明の第 1の実施の形態に係る要求燃料噴射量 Q cに対応するソ レノイ ド 4 6の要求駆動パルス P w、 要求駆動パルス P wのパルス幅 T w、 ソレ ノイド 4 6の駆動開始時からコィル電流の測定値 I .,rを検出するまでの駆動時間 T r、 及び実際に出力されるソレノイド 4 6を駆動する F E T 4 4への駆動出力 パルス P o u t間の相互関係を示している。 ここで、 コイル電流は、 ソレノイド 4 6の駆動開始から所定の 1又は複数ボイントの所定時間経過時点において測定 され、 第 3図において、 ソレノイド 4 6の駆動開始時点から T r 1, T r 2 , T r 3 ■ ■ ■ T r η時間経過後におけるソレノィド 4 6に流れたコイル電流の測定 値をそれぞれ I r l, I r 2 , I r 3 ■ - · I r nと表示している。
本発明においては、 要求駆動パルス P wに対して、 ソレノイド 4 6の実駆動時 間は、 原則的に前回 (又はそれ以前) のソレノイド駆動時において求められたコ ィル電流 I r ( 1又は複数の測定値) に基づいて要求駆動パルス P wの補正値 P .1-を求め、 この補正値 P rに基づいてソレノィド 4 6の駆動時間の増減等の調整 を行っている。
第 3図に示すように、 本燃料噴射制御方法においては、 要求駆動パルス P wの 立ち上がりエッジに同期して駆動出力パルス P o u tが立ち上がり、 それによつ てソレノイド 4 6が駆動されコイル電流 Iが流れ始める。 そして、 ソレノイド 4 6の駆動開始から所定の 1又は複数ボイントの所定時間経過時点、例えば 2 m s、 又は 2 m s、 4 m s及び 6 m s経過した時点で、 コイル電流の測定値 I r ( I r 1, I r 2, I r 3) が測定される。 ソレノイ ド 46の駆動停止後にコイル電流 の測定値 I r (I r lの 1ポイント、 又は I r l, I r 2, I r 3の 3ポイント) がメモリから読み出され、 このコイル電流の測定値 I rと要求燃料噴射量 Q cと に基づいて、 要求燃料噴射量 Q cに対する補正値 P rが求められる。 その補正値 P rに基づいて要求燃料噴射量 Q cに対応する要求駆動パルス幅 Twが補正され、 駆動出力パルス P o u tが FET44のゲートに供給されるのである。 これによ つて、 燃料噴射量が燃料噴射用ソレノィドを駆動するコイル電流の影響を受ける 燃料噴射装置における燃料噴射量の適正な調整を行っているのである。
ソレノィド 46の駆動開始から複数ボイントの所定時間経過時点における複数 のコイル電流ィ直 (I r l, I r 2 , I r 3 · · · I r n) に基づいて補正値 P rを 求める場合は、 n次元の I r軸から補正値 P rを求めるか、 又は第 1コイル電流 測定値 I r 1に基づいて第 1補正値 P rを求め、 以降の I r測定値に基づいて補 正値 P rを順次補正した P r 2, P r 3 · ■ ■ P r nを求め、 P r nを最終の補 正値とする。 または、 複数ポイントにおける複数のコイル電流値 (I r l, I r 2, I r 3 ■ . . I r n) におけるそれぞれの捕正値 P r nの平均値を算出し、 これを最終の補正値とするようにしてもよい。
第 4図以降の説明においても、 ソレノィド 46の駆動開始から複数ポイントの 所定時間経過時点における複数のコイル電流値に基づいて補正値 P rを求める場 合は、 同様である。
第 4図は、 本発明の第 1の実施の形態において、 駆動出力パルス P o u tのパ ルス幅 T o u tの求める概念を示す図である。 ここに示すように、 補正パルス幅 計算処理部 7 1において、 要求燃料噴射量 Q cとコイル電流の測定値 I rとに基 づいて要求燃料噴射量 Q cに対応する要求駆動パルス P wの補正値 P rが求めら れる。 この補正値 P rは、 演算器 72 (例えば、 加算減算器) において要求燃料 噴射量 Q cに対応する要求駆動パルス幅 Twに加算又は減算され、 それによつて 次回 (又は次回以降) の駆動出力パルス幅 T o u tが求められる。 補正パルス幅 計算処理部 7 1および加算器 72はマイクロコンピュータ 43に含まれる。 上述 のように、 ソレノイド 46の駆動開始から複数ボイントの所定時間経過時点にお ける複数のコイル電流値 (I r l, I r 2, I r 3 · · · I r n) に基づいて補正 値 P rを求める場合は、 n次元の I r軸から補正値 P rを求めるか、 又は第 1コ ィル電流測定値 I r 1に基づいて第 1補正値 P rを求め、 以降の I r測定値に基 づいて補正値 P rを順次補正した P r 2, P r 3 · · ' P r nを求め、 P r nを 最終の補正値とする。
尚、 コイル電流は、 温度、 コイル抵抗等により発生するノイズ等の重畳があり 測定時の変化が大きいことがある。 測定ごとに変化する補正値により補正処理し た駆動出力パルス P o u tを出力すると燃料噴射量が安定せずエンジン駆動に不 都合が生じる。
このため、 マイクロコンピュータ 4 3に直近の所定複数回の補正値と、 直近複 数回の補正値の平均補正値を算出して記憶する。 今回測定し算出した補正値が平 均補正値の所定の許容値を越えた場合には、 次回の駆動出力パルス P o u tのパ ルス幅 T o u tを求める補正処理を行い、 補正値が許容値以内の範囲である時は 補正処理を行わないようにしている。
第 5図は、 先に説明した本発明に係るソレノィド駆動中におけるコイル電流の 測定値 I rに基づく補正処理において、 ソレノィド駆動パルスの補正値 P rの求 め方を概念的に示す図である。 図示のように、 本発明を構成するマイクロコンビ ユータ内のメモリ 8内に、 例えば、 横軸にコイル電流の測定値 I rを取り (複数 ポイントの所定時間経過時点における n個のコイル電流値に基づいて補正値 P r を求める場合は、 n次元の I r軸)、縦軸に要求燃料噴射量 Q cを取り、種々のコ ィル電流の測定値 I rと要求燃料噴射量 Q cの組み合わせに対応する補正値 P r をマッピングした捕正値マップを用意する。 このコイル電流の測定値 I rと要求 燃料嘖射量 Q cの組み合わせに対応する補正値 P rについては、 予め実験等によ り求めておく。 このような補正値マップは、 後述するように、 変動要素が複数あ れば n次元を超える多次元表示マップであっても良い。
上述した第 1の実施の形態によれば、 ソレノイド 4 6を駆動する F E T 4 4を 実際にオン、 オフさせるための駆動出力パルス P o u t力 ソレノイド 4 6の駆 動開始から 1又は複数ボイントにおける所定時間経過後のコイル電流の測定値 I rと、 要求燃料噴射量に対応する要求駆動パルス P wとに基づいて捕正されるた め、 燃料を加圧しながら噴射する電磁式燃料噴射ポンプにおいて要求燃料噴射量 と実際の燃料噴射量の関係がリユアになり、 燃料噴射要求量を正確に補正するこ とが出来る。 (2) 本発明の第 2の実施の形態
次に、 本発明の第 2の実施の形態に係る燃料噴射方法を、 第 1図に示す構成の 電磁式燃料噴射システムに適用した場合を例にして説明する。 電磁式燃料噴射シ ステムの構成についての説明は、 先の第 1の実施の形態例と重複するので省略す る。
ここで、 本第 2の実施の形態においては、 要求燃料噴射量 Q cの増加分とソレ ノィドの駆動出力パルス幅 T o u tの増加分との比で表される傾き補正値と、 ソ レノィドの駆動開始から燃料噴射が始まるまでの捕正された無効時間とにより、 要求燃料噴射量 Q cに傾き補正値を乗じた値に補正された無効時間を加えて駆動 出力パルス幅 T o u tを求めるようにしている。
第 6図は、 本第 2の実施の形態における燃料噴射制御システムにおける燃料嘖 射量 Qとソレノイドの駆動出力パルス幅 T o u tとの関係を示す。 第 6図に示す ように、 パルス幅がゼロからある値 (T o f f s e t) になるまでは燃料噴射量 Qはゼロのままであり、 それ以後、 パルス幅の増大に伴って燃料噴射量 Qの値は ある傾き T dで增大する。
ソレノィド 4 6の駆動開始後所定期間 (T o f f s e t) は、 実際の燃料の噴 射が始まらない時間であって、 噴射量には影響しないことから無効時間と呼ばれ る。 この無効時間 T o f f s e tは、 やはり、 コイル電流の測定値 I rに影響さ れる変動値である。 従って、 燃料噴射量 Qに対してより適正な燃料噴射を行おう とする場合、 この T o f f s e tをも補正する必要がある。 第 6図において、 傾 き T dは、 要求燃料噴射量 Qcの増加分とソレノィ ドの駆動出力パルス幅の増加 分との比であり、 本願において傾き補正値 T dと呼ぶものである。 当該 T d及び T o f f S e tを用いると、 要求燃料噴射量 Q cを正確に噴射するために必要な '駆動出力パルス幅 T o u tは、 [T o u t =Q c XT d + T o f f s e t ]の式で 表される。
ところで、 この無効時間 T o f f s e tは、 上記したようにコイル電流の大き さによって変動するものであることから、 コイル電流の測定値 I rの関数として 表わすことができる。 つまり、 コイル電流の測定値 I rに応じて補正された無効 時間 T o f f s e tの値が求められるのである。 この補正された無効時間 T o f f s e tの値は、 例えばコイル電流の第 1ポイントである T r 1時間経過後のコ ィル電流測定値 I r 1に対して T o f ί s e tの値がマッピングされた 2次元表 示のマップから求められる。 このマップは予め実験等により求めておく。
また、 傾き補正値 T dは、 要求燃料噴射量 Q cと駆動出力パルス幅 T o u tと の関係がリニアである場合には、 無効時間 T o f f s e tと同様にコイル電流の 測定値 I r (例えば、 I r 1 ) の関数となる。 従って、 この傾き補正値 T dの値 は、 例えば、 I rに対して T dの値がマッピングされた 2次元表のマップから求 められる。 しかし、 要求燃料噴射量 Q cと駆動出力パルス幅 T o u tとの関係が リニアでない場合には、 傾き補正値 T dは、 コィル電流の測定値 I rと要求燃料 噴射量 Q cとの関数となる。 したがって、 この場合にはコイル電流の測定値 I r 及び要求燃料噴射量 Q cに対して傾き補正値 T dの値をマッビングした 3次元表 示のマップを用いて傾き補正値 T dを求めるようにする。 これらのマップは予め 実験等により求められる。
第 7図は、 種々のコイル電流の測定値 I rにおける実際の燃料噴射量 Q o u t と最終の燃料噴射のための駆動出力パルス幅 T o u tとの関係を示す噴射量特性 グラフの例を示す。 第 7図に示した嘖射量特性グラフは、 コイル電流の測定値 I rが大きいほど、 無効時間が小さくなると共に、 同じ駆動出力パルス幅に対して より多くの量の燃料噴射が生じることを示している。
第 8図に、 無効時間 T o f f s e tとコイル電流の測定値 I r との関係の一例 を示す。 第 9図に、 傾き補正値 T dとコイル電流の測定値 I r (例えば I r 1 ) との関係の一例を示す。 要求燃料噴射量 Q cと駆動出力パルス幅 T o u t との関 係がリニアである場合には、 要求燃料噴射量 Q cの値に関わらず、 傾き補正値 T dとコイル電流の測定値 I rとの関係は第 9図に示すような関係のみとなる。 しかし、 要求燃料噴射量 Q cと駆動出力パルス幅 T o u tとの関係がリニアで ない場合には、 種々の要求燃料噴射量 Q cに対してそれぞれ第 9図に示すような 関係があることになる。
第 1 0図は、 本第 2の実施の形態における補正された駆動出力パルス幅 T o u tの求め方を示す第 2の概念図である。 ここでは、 図示のように、 最初に、 乗算 器 7 5において要求燃料噴射量 Q cに対応する要求駆動パルス P wと傾き補正値 T dとの乗算が行なわれる。 この傾き補正値 T dは、 コイル電流の測定値 I rに 基づいてマップ 8 1から得られる。 この傾き捕正値 T dに関しても、 ソレノィド 4 6の駆動開始から複数ポイント の所定時間経過時点における複数のコイル電流値 (I r l, I r 2 , I r 3 · · · I r n ) に基づいて求めることができる。 この場合、 n次元の I r軸から傾き補 正値 T dを求めるか、 又は第 1コイル電流測定値 I r 1に基づいて第 1傾き補正 値 T d 1を求め、 以降の I r測定値に基づいて傾き補正値 T dを順次補正した T d 2 , T d 3 · · · T d nを求め、 T d nを最終の補正値とする。
次に、 加算器 7 6において、 Q c X T dの値に無効時間 T o f f s e tが加算 される。 この無効時間 T o ί f s e tは、 コイル電流の測定値 I rに基づいてマ ップ 8 2から得られた捕正された無効時間 T o f f s e tが用いられる。
このようにして、 最終の燃料噴射のための駆動出力パルス幅 T o u tが求めら れる。 ここで、乗算器 7 5及び加算器 7 6は、マイクロコンピュータ 4 3に含まれ る。 また、 マップ 8 1、 マップ 8 2は、 マイクロコンピュータ 4 3内のデータ記 憶部に格納されている。
上述した本発明の第 2の実施の形態によれば、 1又は複数のコイル電流測定値 I rに基づいて、 又はこのコイル電流の測定値 I rと要求燃料噴射量 Q cとに基 づいて傾き補正値 T dが求まり、 またコイル電流の測定値 I rに基づいて補正さ れた無効時間 T o f f s e tが求められ、 これら捕正された無効時間 T o f f s e t及び傾き捕正値 T dを用いて最終の燃料噴射のための駆動出力パルス幅 T ο u tが補正されることとなる。
これにより、 燃料を加圧しながら噴射する電磁式燃料噴射ポンプにおいて要求 燃料噴射量に対応する要求駆動パルス P wと燃料噴射量 Qの関係がリニァでない 場合でも、 燃料噴射量 Qを適正に補正することが出来る。 さらに、 駆動パルス幅 と燃料噴射量の関係がリニアである燃料噴射装置の場合には、 傾き補正値 T d及 び補正された無効時間 T o f f s e tがそれぞれ 2次元マップから求まるので、 3次元表示のマップを用いて補正する場合よりも補正値を求める計算が簡略化さ れマップによるメモリ使用量が少なくなるという利点がある。
( 3 ) 本発明の第 3の実施の形態
第 1 1図は、 本第 3の実施の形態に係る燃料噴射制御装置の制御機構を説明す るための図である。 この制御機構は、 第 1 1図に示すように、 第 2図に示す電磁 式燃料噴射システムにおいて、 電源電圧 V Bを検出しその検出値をマイクロコン ピュータ 4 3に供給する電源電圧検出回路 4 9を追加した構成となっている。 そ の他の構成は、 第 2図に示す構成と同じである。
第 1 2図は、 本第 3の実施の形態に係る補正処理制御フローの例を示す。 ェン ジンの始動時、 すなわち燃料噴射用ソレノイ ド 4 6の 1回目の駆動時には、 前回 の燃料噴射サイクルが無いため、 傾き補正値 T dおよび捕正された無効時間 T o f f s e tを求めるために参照する前回の燃料噴射サイクル時における燃料噴射 開始後の 1又は複数ボイントにおけるコイル電流の測定値 I rデータを有さない。 また、 このエンジンを搭載した車が坂を下る際の燃料カツトゃ信号待ち等でアイ ドリングストップのための燃料力ットなどにより燃料噴射が中断した後に、 ソレ ノイド 4 6の駆動を再開する場合も同様である。 さらにバッテリ容量が小さい場 合などエンジンを始動する際は、 電源電圧 VBが極端に低下し、 それによつてマ イク口コンピュータにリセットがかかり、 前回の燃料噴射時の I rデータを参照 することが不可能な場合がある。
そこで、 本第 3の実施の形態では、 ェンジンの始動時、 または燃料力ットなど による燃料噴射の中断後に再びソレノィド 4 6を駆動するときの 1回目の駆動時 のみ、 電源電圧検出回路 4 9より電源電圧 VBを検出し、 その検出値に基づいて 傾き補正値 T dと補正された無効時間 T o f f s e tを求める構成となっている。 また、 特に図示しないが、 電源電圧 VBに対して補正された無効時間 T o f f s e tがマッピングされたマップや、 電源電圧 VBに対して傾き補正値 T dがマ ッビングされたマップが予め実験などにより求められており、 マイクロコンピュ ータ内の記憶部に記憶されている。
電源電圧 V Bの検出値に基づいて求められた傾き補正値 T dおよぴ補正された 無効時間 T o f f s e tを用いて、 [T o u t=Q c XT d+T o f f s e t]で 表される式により駆動出力パルス幅 T o u tを求めるのは先に説明した第 2の実 施の形態と同様である。
上述した第 3の実施の形態によれば、 エンジンの始動時および燃料力ット時な どによる燃料噴射の中断後に再びソレノィ ド 4 6を駆動する時の 1回目の駆動時 には、 電源電圧 VBの検出に基づいて、 またそれ以外のときは前回の燃料噴射時 に検出したコイル電流の測定値 I rに基づいて、 それぞれ最終の燃料噴射のため の駆動出力パルス幅 T o u tが捕正されるため、 第 3の実施形態と同様に燃料を 加圧しながら噴射する電磁式燃料噴射システムにおいて燃料噴射量 Qを正確に補 正することが出来る。
さらに、 駆動出力パルス幅 T o u tと燃料噴射量 Qの関係がリニアである場合 には、 補正計算に用いるマップが 2次元のものになるので、 補正計算が簡略化さ れるという利点と、 マップによるメモリ使用量が少なくなるという利点がある。
( 4 ) 本発明の第 4の実施の形態
本発明における、 第 4の実施の形態に係る燃料噴射制御方法は、 上述した第 1 乃至第 3の実施の形態において、 ソレノイド 4 6の駆動開始から所定時間経過後 にコイル電流を測定する際に、 その測定タイミングのズレが原因でコイル電流の 測定値 I rが本来の値からずれるのを防ぐ方法である。
たとえば、 第 2図または第 1 1図に示す構成の電磁式燃料嘖射システムが、 第 1 5図に示すように、 駆動出力パルス 9 1をオンさせるための割込み 9 2でコィ ル電流の検出時間 T rを計測するタイマーがスタートして割込み待ち状態 9 3と なり、 このタイマーのカウントアップ割込み 9 4で電流検出用 AZD変換器が起 動して割込み待ち状態 9 5となり、 A/D変換終了割込み 9 6で A/D変換値を 読み込むというソフトウェア処理を行うとする。 ここで、 タイマー及び電流検出 用 A/D変換器はマイクロコンピュータ 4 3に内蔵されている。
このようなソフトウェア処理において、 第 1 6図に示すようにタイマーの力ゥ ントアップ割込み 9 4が発生した時に、 別の割込み処理 9 7を実行していると、 それが終了してから電流検出用 A/D変換器が起動されるため、 コイル電流のサ ンプリングのタイミングが T sだけずれてソレノィド 4 6の駆動開始から T r + T s時間経過した時点のコイル電流が検出される。
したがって、 第 1 7図に示すように、 コィル電流の検出値 9 8が本来の値、 す なわち駆動開始から T r時間経過した時点のコイル電流の測定値 I rから I sだ けずれてしまう。 駆動出力パルス 9 1をオンさせるための割込み 9 2の発生時に 別の割り込みを実行しているため、 駆動出力パルス 9 1がオン状態になった後、 しばらくしてからタイマーがスタートする場合も同様である。 そこで、 第 4の実 施の形態では、 以下に説明する手順でコイル電流の測定をおこなう。
第 1 4図は、 本発明の第 4の実施の形態に係る燃料噴射制御方法における処理 手順の一例を示すフローチャートである。 まず、 ソレノイドの駆動オン割込み処 理が開始されると、 駆動出力パルスがオンに切り替わった時刻 T 1 (出力アウト プットコンペアの値) を記録し (ステップ S 1 3 1 )、電流検出用のタイマーをス タートさせる (ステップ S 1 3 1 )。
そして、他の処理などを行い (ステップ S 1 3 3 )、 タイマーのカウントアップ 割り込みが発生すると、電流検出タイマー処理を開始する。この処理が始まると、 現時刻、 すなわち AZD変換を実行しょうとしたときの時刻 T 2を測定し (ステ ップ S 1 3 4 )、 時刻 T iから時刻 T 2までの経過時間 T 2 _ T i計算して求める (ステップ S 1 3 5 )。
ここで、 この経過時間 Τ 2 _ Τ 1と予め設定しておいた時間とを比較する (ス テツプ S 1 3 6 )。その結果、経過時間 Τ 2— Τ 1が設定時間以内である場合には、 電流検出用 AZD変換器を起動して AZD変操を開始し(ステップ S 1 3 7 )、電 流検出用タイマー処理を終了する。
そして、 A/D変換終了割込みが発生すると、 A/D変換処理において A/D 変換値を読み込み、 その値によってコイル電流の測定値 I rを更新し (ステップ S 1 3 8 )、全処理を終了する。 この場合には、 この更新されたコイル電流の測定 値 I rに基づいて、 第 1及び第 3の実施の形態で説明したように、 ソレノイドの 駆動出力パルス幅の補正がおこなわれる。
—方、 ステップ S 1 3 6での比較の結果、 経過時間 T 2— T 1が設定値を越え ている場合には、 電流検出用 A/ D変換器を起動しないで全処理を終了する。 こ の場合には、 更新されていないコイル電流の測定値 I r、 すなわち以前に測定さ れたコイル電流の測定値 I r (たとえば、 マイクロコンピュータ 4 3内の R AM などに記憶されている) に基づいて、 ソレノイ ドの駆動出力パルス幅の補正がお こなわれる。 燃料噴射開始から複数ボイントにおける 11個のコイル電流測定値 I rにも基づいて制御する場合も同様である。
上述した第 4の実施の形態によれば、 コイル電流の測定値 I rが他の割り込み 処理等で大幅にずれた測定タィミングで測定されることが防止されるため、 本来 の値からずれたコイル電流の測定値 I rに基づく補正が原因で発生する A/ Fの 変動を抑制することができる。
本発明は、 上述した各実施の形態に限らず、 種々変更可能である。 たとえば、 第 1の実施の形態においてパルス幅の補正値 P rを要求燃料噴射量 Q cに対応す る要求駆動パルス P wに適用する演算器は加算器に限らず、 減算器、 乗算器また は除算器、 あるいはこれらの組み合わせや、 その他の計算を行うものであっても よい。
また、 本発明は、 上記した種々の実施の形態において説明した電磁式燃料噴射 システムに限らず、 ソレノィ ドの駆動出力パルス幅と燃料噴射量の関係が比較的 リニアな特性を有する燃料供給用圧力レギユレータを具備する燃料噴射装置にも 適用可能である。 このような燃料噴射装置においても、 駆動用ソレノイ ドの動作 開始時間 (無効時間) 等の動作特性が、 コイルの電流値や温度等によって変動す るからである。
産業上の利用可能性
本発明は、 エンジン等に燃料を供給するための電子制御式の燃料噴射制御方法 及びその制御装置に関するものであり、 産業上の利用可能性を有する。

Claims

請 求 の 範 囲
1 . 燃料噴射用ソレノィドの駆動開始から 1又は複数ボイントの所定時間経過 時点における前記ソレノィドに流れたコイル電流を測定し、 前記コイル電流の測 定値に基づいて前記ソレノィドの駆動停止タイミングを捕正し調整することを特 徴とする燃料噴射制御方法。
2 . 燃料噴射用ソレノィ ドの駆動を開始する行程と、
前記ソレノィドの駆動開始から 1又は複数ボイントの所定時間経過時点におけ る前記ソレノイドに流れたコィル電流を測定する行程と、
前記コイル電流測定値に基づいて前記ソレノィドの駆動停止タイミングを補正 する補正値を求める行程と、
の各行程を有し、
前記捕正 を用いて前記ソレノィドの駆動停止タイミングを調整することを特 徴とする燃料噴射制御方法。
3 . 前記補正は、 前記コイル電流測定値と前記ソレノイドに対する要求燃料噴 射量とに基づいて決められる補正値を用いることを特徴とする請求の範囲第 1項 又は第 2項に記載の燃料噴射制御方法。
4 . 前記補正は、 前記コイル電流測定値と前記ソレノイドに対する要求燃料噴 射量との種々の組み合わせに対して予め定められており、 前記組み合わせに応じ て選択される補正値を用いることを特徴とする請求の範囲第 1項又は第 2項に記 載の燃料噴射制御方法。
5 . 前記ソレノィドの駆動停止タイミングの補正は、
前記コイル電流測定値及び前記ソレノィ ドに対する要求燃料噴射量の一方又は 両方に応じて定まる、 要求燃料噴射量の増加分と前記ソレノィ ドの駆動出力パル ス幅の増加分との比で表わされる傾き捕正値を求める行程と、
前記コイル電流測定値に応じて定まる前記ソレノィドの駆動開始から燃料噴射 が始まるまでの補正された無効時間を求める行程と、
前記要求燃料嘖射量に前記傾き補正値を乗じた値に前記補正された無効時間を 加えた捕正値を求める行程と、 の各行程により構成され、
前記補正値を用いて前記ソレノィドの停止タイミングを調整する請求の範囲第 1項又は第 2項に記載の燃料噴射制御方法。
6 . エンジンの始動時、 またはー且中断した燃料噴射を再開する時の最初の駆 動時における前記ソレノィドの駆動時間の設定においては、 前記ソレノィドに印 加される電源電圧を測定し、 当該電源電圧測定値に基づいて前記ソレノィドの駆 動停止タイミングを補正する請求の範囲第 1項又は第 2項に記載の燃料噴射制御 方法。
7 . 燃料噴射用ソレノィドを駆動する手段と、
前記ソレノィドの駆動開始から 1又は複数ポイントの所定時間経過時点におけ る前記ソレノイドに流れたコィル電流を測定する電流測定手段と、
前記コイル電流測定値に基づいて前記ソレノィドの駆動停止タイミングを補正 する補正値を求め、 当該補正値を用いて前記ソレノィドの駆動停止タイミングを 調整する制御手段と、
を有することを特徴とする燃料噴射制御装置。 .
8 . 前記ソレノィ ドの駆動停止時に当該ソレノィドから放出されるエネルギを 当該ソレノイドの駆動エネルギとして再利用するための帰還回路を、 備えること を特徴とする請求の範囲第 7項に記載の燃料噴射制御装置。
9 . 前記帰還回路は、 前記ソレノイ ドの駆動停止時に当該ソレノイドから放出 されるエネルギをチャージするコンデンサを含むことを特徴とする請求の範囲第 8項に記載の燃料噴射制御装置。
1 0 . 前記補正値は、 前記コイル電流測定値と前記ソレノイ ドに対する要求燃 料噴射量とに基づいて決められることを特徴とする請求の範囲第 7項乃至第 9項 の何れか一項に記載の燃料噴射制御装置。
1 1 . 前記補正値は、 前記コイル電流測定値と前記ソレノィ ドに対する要求燃 料噴射量との種々の組み合わせに対して予め定め「つれており、 前記組み合わせに 応じて選択されることを特徴とする請求の範囲第 7項乃至第 9項の何れか一項に 記載の燃料噴射制御装置。
1 2 . 前記制御装置は、
前記コィル電流測定値を記憶する記憶手段と、
前記記憶手段に記憶されたコィル電流測定値及び前記ソレノイドに対する要求 燃料噴射量の一方又は両方に応じて定まる、 要求燃料噴射量の増加分と前記ソレ ドの駆動出力パルス幅の増加分との比で表わされる傾き補正値を求める手段 と、
前記記憶手段に記憶された前記コィル電流測定値に応じて定まる前記ソレノィ ドの駆動開始から燃料噴射が始まるまでの補正された無効時間を求める手段と、 前記要求燃料噴射量に前記傾き補正値を乗じた値に対して前記補正された無効 時間を加えた前記補正値を求める手段と、 の各手段を具備し、
前記補正値を用いて前記ソレノィドの停止タイミングを調整する請求の範囲第 7項乃至第 9項の何れか一項に記載の燃料嘖射制御装置。
PCT/JP2004/000889 2003-02-03 2004-01-30 燃料噴射制御方法及び制御装置 WO2004070182A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04706791A EP1596055A4 (en) 2003-02-03 2004-01-30 FUEL INJECTION METHOD AND DEVICE
JP2005504800A JPWO2004070182A1 (ja) 2003-02-03 2004-01-30 燃料噴射制御方法及び制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-026167 2003-02-03
JP2003026167 2003-02-03

Publications (1)

Publication Number Publication Date
WO2004070182A1 true WO2004070182A1 (ja) 2004-08-19

Family

ID=32844133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000889 WO2004070182A1 (ja) 2003-02-03 2004-01-30 燃料噴射制御方法及び制御装置

Country Status (6)

Country Link
EP (1) EP1596055A4 (ja)
JP (1) JPWO2004070182A1 (ja)
KR (1) KR20050097519A (ja)
CN (1) CN100420842C (ja)
TW (1) TW200422515A (ja)
WO (1) WO2004070182A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094562A (ja) * 2009-10-30 2011-05-12 Hitachi Automotive Systems Ltd 内燃機関の燃料噴射制御装置
CN103249934A (zh) * 2010-12-15 2013-08-14 罗伯特·博世有限公司 用于运行内燃机的方法
CN109952421A (zh) * 2016-11-14 2019-06-28 日立汽车系统株式会社 燃料喷射装置的控制装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8452520B2 (en) * 2010-06-01 2013-05-28 GM Global Technology Operations LLC Control system and method for low quantity fuel injection
KR20120063117A (ko) * 2010-12-07 2012-06-15 현대자동차주식회사 Gdi 엔진용 고압 연료 펌프 및 고압 유체 펌프용 솔레노이드 밸브의 제어방법
JP5851354B2 (ja) * 2012-06-21 2016-02-03 日立オートモティブシステムズ株式会社 内燃機関の制御装置
DE102013201702C5 (de) * 2013-02-01 2017-03-23 Mtu Friedrichshafen Gmbh Verfahren und Anordnung zur Steuerung einer Brennkraftmaschine
DE102014206353A1 (de) 2014-04-03 2015-10-08 Continental Automotive Gmbh Verfahren und Vorrichtung zur Überwachung der Temperatur des Spulendrahtes eines Magnetventils
KR101664626B1 (ko) * 2014-12-24 2016-10-12 현대자동차주식회사 인젝터 구동 제어방법 및 장치
JP6544293B2 (ja) * 2016-05-06 2019-07-17 株式会社デンソー 燃料噴射制御装置
FR3051956B1 (fr) * 2016-05-31 2018-05-25 Continental Automotive France Procede de detection de la defaillance d'une solution logicielle d'estimation de l'instant d'interruption d'une injection de carburant d'un moteur a combustion interne
DE102017116379A1 (de) 2017-07-20 2019-01-24 Liebherr-Components Deggendorf Gmbh Vorrichtung zur Zustandserfassung eines Injektors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4603669A (en) * 1984-01-10 1986-08-05 Nippondenso Co., Ltd. Fuel injection pump having voltage variation compensation
JP2000110593A (ja) * 1998-10-05 2000-04-18 Nissan Motor Co Ltd 電磁駆動吸排気弁の駆動回路
JP2000337224A (ja) * 1999-05-27 2000-12-05 Hitachi Ltd エンジン制御装置
JP2001193588A (ja) * 1999-12-28 2001-07-17 Mitsubishi Electric Corp 筒内噴射エンジンの燃圧制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4974622A (en) * 1990-01-23 1990-12-04 Borg-Warner Automotive, Inc. Self compensation for duty cycle control
DE4308811B9 (de) * 1992-07-21 2004-08-19 Robert Bosch Gmbh Verfahren und Einrichtung zur Steuerung einer magnetventilgesteuerten Kraftstoffzumeßeinrichtung
JP3222012B2 (ja) * 1994-06-28 2001-10-22 株式会社日本自動車部品総合研究所 電磁弁駆動回路
DE19513878A1 (de) * 1995-04-12 1996-10-17 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung eines elektromagnetischen Verbrauchers
JP3932474B2 (ja) * 1999-07-28 2007-06-20 株式会社日立製作所 電磁式燃料噴射装置及び内燃機関
JP4119116B2 (ja) * 2001-08-02 2008-07-16 株式会社ミクニ 燃料噴射方法
WO2019187291A1 (ja) * 2018-03-29 2019-10-03 日本電気株式会社 情報処理装置、道路分析方法、及びプログラムが格納された非一時的なコンピュータ可読媒体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4603669A (en) * 1984-01-10 1986-08-05 Nippondenso Co., Ltd. Fuel injection pump having voltage variation compensation
JP2000110593A (ja) * 1998-10-05 2000-04-18 Nissan Motor Co Ltd 電磁駆動吸排気弁の駆動回路
JP2000337224A (ja) * 1999-05-27 2000-12-05 Hitachi Ltd エンジン制御装置
JP2001193588A (ja) * 1999-12-28 2001-07-17 Mitsubishi Electric Corp 筒内噴射エンジンの燃圧制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1596055A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094562A (ja) * 2009-10-30 2011-05-12 Hitachi Automotive Systems Ltd 内燃機関の燃料噴射制御装置
CN103249934A (zh) * 2010-12-15 2013-08-14 罗伯特·博世有限公司 用于运行内燃机的方法
CN109952421A (zh) * 2016-11-14 2019-06-28 日立汽车系统株式会社 燃料喷射装置的控制装置
CN109952421B (zh) * 2016-11-14 2021-10-08 日立安斯泰莫株式会社 燃料喷射装置的控制装置

Also Published As

Publication number Publication date
CN100420842C (zh) 2008-09-24
EP1596055A4 (en) 2008-12-31
CN1774570A (zh) 2006-05-17
EP1596055A1 (en) 2005-11-16
JPWO2004070182A1 (ja) 2006-05-25
TW200422515A (en) 2004-11-01
KR20050097519A (ko) 2005-10-07

Similar Documents

Publication Publication Date Title
EP1582725B1 (en) Fuel-injection control method and apparatus
JP4119116B2 (ja) 燃料噴射方法
JP6477321B2 (ja) 内燃機関の燃料噴射制御装置
JP3804814B2 (ja) 内燃機関の燃料供給装置
WO2004070182A1 (ja) 燃料噴射制御方法及び制御装置
JP7298555B2 (ja) 噴射制御装置
JP4067384B2 (ja) 燃料噴射方法
JP2008128206A (ja) インジェクタ駆動方法及び駆動装置
JP2014231863A (ja) 電磁弁の駆動制御装置
JPH03495B2 (ja)
JP4111848B2 (ja) 燃料噴射制御方法及び制御装置
JP2007016648A (ja) 燃料噴射装置
JPWO2005088110A1 (ja) 燃料噴射制御方法及び燃料噴射制御装置
JP3957529B2 (ja) 燃料噴射方法
JP3705823B2 (ja) エンジンのベーパ発生検出装置
JP3836000B2 (ja) 燃料圧力制御方法
JPH05202790A (ja) 圧電素子充電電荷量制御回路
JPH08261037A (ja) エンジンの空燃比制御装置
JP2004270594A (ja) 燃料噴射制御方法及び制御装置
JP2003328832A (ja) 内燃機関の燃料供給制御装置
JPS58185945A (ja) 内燃機関の空燃比制御装置
JP2002256933A (ja) 内燃機関の制御装置
JPH102243A (ja) 内燃機関の燃料制御装置
JPH09195818A (ja) 内燃機関の燃料供給制御装置
JP2003269224A (ja) 燃料噴射方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020057013793

Country of ref document: KR

Ref document number: 2005504800

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20048034515

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1549/KOLNP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2004706791

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057013793

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004706791

Country of ref document: EP