WO2004062022A1 - 電気化学素子およびその製造方法 - Google Patents

電気化学素子およびその製造方法 Download PDF

Info

Publication number
WO2004062022A1
WO2004062022A1 PCT/JP2003/015755 JP0315755W WO2004062022A1 WO 2004062022 A1 WO2004062022 A1 WO 2004062022A1 JP 0315755 W JP0315755 W JP 0315755W WO 2004062022 A1 WO2004062022 A1 WO 2004062022A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
current collector
collector sheet
terminal
insulating
Prior art date
Application number
PCT/JP2003/015755
Other languages
English (en)
French (fr)
Inventor
Ken Nishimura
Naoto Arai
Toru Oshima
Fumio Daio
Munehisa Ikoma
Norio Saito
Hideo Kaiya
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to CN2003801077566A priority Critical patent/CN1732587B/zh
Priority to US10/540,867 priority patent/US7833656B2/en
Priority to EP03777422A priority patent/EP1596459A4/en
Publication of WO2004062022A1 publication Critical patent/WO2004062022A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/107Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrochemical device, and more particularly to an improvement in an electrode group of a secondary battery having a high energy density such as a lithium ion secondary battery.
  • the complicated structure has hindered the improvement of the reliability of electrochemical devices.
  • current collecting tabs or leads connected to the electrodes may prevent a uniform electrode reaction at the electrode surface. If a metal spar larger than usual occurs on the cut surface of the lead, an internal short circuit may occur.
  • An electrochemical element generally has an electrode group consisting of a positive electrode, a negative electrode, and a separator. .
  • the electrode group includes a laminated type and a wound type.
  • the stacked electrode group is obtained by alternately stacking a positive electrode and a negative electrode via a separator.
  • the wound electrode plate group is obtained by winding a long positive electrode and a negative electrode through a separator. To extract electricity from such a plate group without causing a short circuit, tabs and leads for current collection are required.
  • the positive electrode protrudes from one of the side surfaces of the electrode plate group, and the negative electrode protrudes from the side surface opposite to the side surface.
  • the present invention has been made in view of the above situation. According to the present invention, it is possible to provide an electrochemical device having a simple structure, high reliability, and high electric capacity. Further, according to the present invention, a plurality of electrochemical elements can be efficiently manufactured at the same time.
  • the present invention provides an electrochemical device having an electrode group, wherein the electrode group comprises: (a) at least one first electrode; (b) at least one second electrode; and (c) a first electrode.
  • the first electrode comprises a first current collector sheet and at least one first electrode mixture layer carried on the first current collector sheet
  • the second electrode comprises a second electrode.
  • TECHNICAL FIELD The present invention relates to an electrochemical device having an insulating part.
  • the electrochemical element is further electrically connected to the first current collector sheet.
  • the electrode plate group includes a first side on which the first terminal is arranged and a second side on which the second terminal is arranged.
  • the conductive portion of the first current collector sheet is connected to the first terminal on the first side surface,
  • the insulating portion of the current collector sheet is oriented on the second side surface, and when the second current collector sheet has a conductive portion and an insulating portion, the conductive portion of the second current collector sheet is Preferably, the second side surface is connected to the second terminal, and the insulating portion of the second current collector sheet is oriented to the first side surface.
  • the first side surface and the second side surface are located on opposite sides of the electrode group.
  • a first insulating material portion for insulating the first terminal and the second electrode is provided on the first side surface, and a second insulating material portion for insulating the second terminal and the first electrode is provided on the second side surface.
  • two insulating material parts are provided.
  • the insulating portion of the first current collector sheet and the insulating portion of Z or the second current collector sheet may also be arranged on the side surfaces of the electrode group other than the first side surface and the second side surface.
  • the current collector sheet having a conductive portion and an insulating portion preferably includes a sheet-shaped insulating base material and at least one conductive layer formed on at least one surface thereof. It is preferable that the insulating portion of the current collector sheet having the conductive portion and the insulating portion is formed of one end of an insulating base material, and the conductive portion is formed of a conductive layer.
  • the first terminal and the second terminal can be provided, for example, by disposing a conductive film such as a metal on the first side surface and the second side surface, respectively. If the first current collector sheet has an insulating portion, the insulating portion can be fixed to the second terminal. If the second current collector sheet has an insulating portion, the insulating portion can be fixed. The part can be fixed to the first terminal.
  • the present invention also provides an electrochemical device having an electrode group in which a first electrode and a second electrode are wound via a separator, wherein the first electrode includes a first current collector sheet and a first current collector sheet.
  • the second electrode comprises a second current collector sheet and at least one second electrode mixture layer carried thereon, and the first electrode comprises a first current collector layer.
  • At least one of the body sheet and the second current collector sheet has a conductive portion and an insulating portion, and when the first current collector sheet has a conductive portion and an insulating portion, The conductive portion of the current collector sheet is connected to the first terminal on the first bottom surface of the electrode group, the insulating portion of the first current collector sheet is arranged on the second bottom surface of the electrode group, When the current collector sheet has a conductive part and an insulating part, the conductive part of the second current collector sheet is connected to the second terminal on the second bottom surface of the electrode group.
  • the insulating portion of the second current collector sheet relates to an electrochemical element arranged on the first bottom surface of the electrode group.
  • the present invention also provides an electrochemical device having an electrode group in which a plurality of first electrodes and a plurality of second electrodes are alternately stacked via a separator, wherein the plurality of first electrodes are each a first electrode.
  • a current collector sheet and at least one first electrode mixture layer carried on the current collector sheet, and a plurality of second electrodes are respectively provided on the second current collector sheet and at least It is composed of one second electrode mixture layer, and at least one of the first current collector sheet and the second current collector sheet has a conductive portion and an insulating portion, and the first current collector sheet has a conductive portion.
  • the conductive portion of the first current collector sheet is connected to the first terminal on the first side surface of the electrode plate group, and the insulating portion of the first current collector sheet is
  • the second current collector sheet is provided on the second side surface of the plate group and has a conductive portion and an insulating portion, the conductive material of the second current collector sheet The portion is connected to the second terminal on the second side surface of the electrode group, and the insulating portion of the second current collector sheet relates to the electrochemical element disposed on the first side surface of the electrode group.
  • a current collector having a conductive portion and an insulating portion Has a first end that is part of the conductive portion and does not carry the electrode mixture layer. At the first end, the conductive portion is connected to the first terminal or the second terminal. It is preferable that at least a part of the end is buried in the first terminal or the second terminal. According to such a configuration, high current collecting performance can be obtained.
  • the contact area between the electrode and the end is reduced, so that the current collecting performance is lower than the above configuration. Tend. Furthermore, when the electrode mixture layer having low conductivity is brought into contact with the current collector plate, the current collecting performance tends to be insufficient compared with the above configuration.
  • the current collector sheet having the conductive portion and the insulating portion has a second end portion which is a part of the insulating portion and does not support the electrode mixture layer, and the second end portion has a first side surface or It is preferably oriented on the second side surface, and at least a part of the second end is buried in the first terminal or the second terminal.
  • the electrode group further has a third side surface and a fourth side surface, the first side surface, the second side surface, the third side surface and the fourth side surface respectively include an end of the first current collector sheet; It is preferable that the end portion of the second current collector sheet and the end portion of the separator are arranged substantially flush. Then, the area S (1) per side of the first current collector sheet, the area S (2) per side of the second current collector sheet, and the area S (s) per side of the separator sheet are as follows: The relationship: S (1) ⁇ S (s) ⁇ S (1) XI.05, and
  • each of the first electrode mixture layer and the second electrode mixture layer has an end covered with an insulating material. Then, the end of the first electrode mixture layer covered with the insulating material is disposed on the second side surface. The end of the second electrode mixture layer covered with an insulating material is preferably disposed on the first side surface.
  • the insulating portion of the first current collector sheet is adjacent to an end of the first electrode mixture layer covered with the insulating material.
  • the insulating portion of the second current collector sheet is a second electrode mixture layer covered with an insulating material. Preferably, it is adjacent to the end. According to such a configuration, it is easy to prevent a short circuit when a terminal is provided on the side surface of the electrode plate group.
  • the present invention also relates to an electrochemical device having a case for accommodating the electrode group.
  • the inner surface of the case is preferably in contact with the first side surface and the second side surface of the electrode plate group.
  • the case can be composed of a frame and two flat sheets.
  • the frame surrounds the electrode group and is in contact with the first side surface and the second side surface.
  • the two flat sheets cover the two opening surfaces of the frame body and the upper surface of the electrode group and Preferably, it is in contact with the lower surface.
  • the case can also be composed of a bottomed container and a flat sheet.
  • the container accommodates the electrode group, has a side wall in contact with the first side surface and the second side surface, and a bottom part in contact with one of the upper surface and the lower surface of the electrode group. It is preferable to cover the opening surface of the container and abut on the other of the upper surface and the lower surface of the electrode plate group.
  • the lead piece When a lead piece is connected to at least one of the first terminal and the second terminal, and the lead piece is led out of the case, the lead piece is provided on the side wall of the frame or the container. It is preferable that it is led out of the case from the case.
  • the following can be used as at least one of the first terminal and the second terminal.
  • the conductive paste is made of a resin and a conductive material dispersed in the resin, and the conductive material is preferably in the form of fine particles and / or fibers.
  • At least a part of a first end portion of a current collector sheet that is part of a conductive portion and does not support an electrode mixture shoulder is a first terminal to which a metal lead is welded.
  • the first end of the current collector sheet and the metal lead be in contact with each other.
  • the conductive portion on the other surface includes the first terminal or the conductive member. It is electrically conductive with the second terminal, and can function as an extension of each terminal.
  • the electrode group when the electrode group has the third side surface and the fourth side surface, it is preferable that at least one of the third side surface and the fourth side surface is covered with an electronically insulating porous material.
  • the porous material is preferably made of at least one selected from the group consisting of polyolefins, polyalkylene oxides, fluoropolymers, and ceramics. Further, it is preferable that the porous material is formed of a film-like member or a paste coating film.
  • the end of the separator and the porous material are joined. When the end of the separator and the porous material are joined, it is preferable that the porous material and the separator are made of the same material.
  • the insulating material is It is preferable that it be made of at least one selected from the group consisting of a resin coating film and a resin tape.
  • the resin coating film can be formed by applying a solution or a dispersion containing an insulating resin to the end of the electrode mixture layer and drying.
  • the insulating resin is selected from the group consisting of polyethylene oxide, polypropylene oxide, polyacrylonitrile, polyvinylidene fluoride, polymethyl methacrylate, and a copolymer containing at least one of these, a polymer alloy, or a polymer blend. It is preferable to use at least one of these.
  • the resin coating film can be formed by applying a solution or dispersion containing a polymerizable compound to an end of the electrode mixture layer and polymerizing the polymerizable compound.
  • a polymerizable compound it is preferable to use a compound having at least one type of functional group selected from the group consisting of an acrylate group and a methacrylate group.
  • the resin tape is preferably made of an insulating base material and an insulating adhesive carried on the insulating base material.
  • the insulating base material is made of polyethylene, polypropylene, polyethylene terephthalate, polyethylene naphthalate, polyphenylene sulfide, polyimide, aramide resin, and a copolymer, polymer alloy or polymer blend containing at least one of these. It preferably comprises at least one member selected from the group.
  • the present invention also provides (a) a step of providing a conductive layer on both surfaces of a sheet-shaped insulating base material to obtain a first current collector sheet and a second current collector sheet; (b) the first current collector sheet; A plurality of first electrode mixture layers and a plurality of second electrode mixture layers are respectively provided on the conductive sheet and the conductive layer of the second current collector sheet in the form of strips arranged in parallel. To form an aggregate of the first electrode and an aggregate of the second electrode. (C) supplying the aggregate of the first electrodes and the aggregate of the second electrodes via a separator in the longitudinal direction of the first electrode mixture layer and the second electrode mixture layer. And (d) cutting the wound body in the gap to obtain a plurality of wound-type electrode groups.
  • the present invention relates to a method for manufacturing an electrochemical device (manufacturing method A).
  • the manufacturing method A may include a step of forming an insulating material portion on the conductive layer in the gap after the step (b) and before the step (c).
  • the manufacturing method A may include a step of forming a first terminal and a second terminal by covering the first bottom surface and the second bottom surface of the wound electrode plate group with a metal.
  • the present invention also provides a step of continuously supplying an aggregate of long first electrodes and an aggregate of second electrodes as a laminate while laminating them through a separator.
  • the present invention relates to a method of manufacturing an electrochemical element (manufacturing method B), which includes a step of winding with a flat bobbin, and a step of cutting a laminate wound on the pobin to obtain a plurality of stacked electrode groups. .
  • Manufacturing method B may include a step of forming an insulating material portion on the conductive layer in the gap at a position sandwiching the first electrode mixture layer and the second electrode mixture layer. Further, the manufacturing method B may include a step of covering the opposing first side surface and second side surface of the stacked electrode group with a metal to form a first terminal and a second terminal.
  • the present invention also provides: (a) a predetermined pattern on both surfaces of a sheet-shaped insulating substrate; Providing a first current collector sheet and a second current collector sheet by providing a conductive layer based on the conductive layer, and (b) forming a plurality of first electrode mixture layers and a second current collector layer on the conductive layer. Forming a two-electrode mixture layer corresponding to the pattern and providing a gap to obtain an aggregate of the first electrode and an aggregate of the second electrode; (c) an aggregate of the first electrode and the second electrode; A step of stacking the two-electrode assembly via a separator to obtain a stacked body, and (d) a step of cutting the stacked body at the gap to obtain a plurality of stacked electrode plates.
  • the present invention relates to a method for producing an electrochemical device including the same (Production method C).
  • the predetermined pattern is a matrix or a strip arranged in parallel.
  • the insulating material is placed on the conductive layer in the gap at a position sandwiching the first electrode mixture layer and the second electrode mixture layer.
  • the method may include a step of forming a material part.
  • the manufacturing method C may include a step of covering the opposing first side surface and second side surface of the stacked electrode group with metal to form a first terminal and a second terminal.
  • An electrochemical device having a wound electrode plate group in which a first electrode and a second electrode are wound via a separator, wherein the first electrode has a first current collector having a conductive portion and an insulating portion.
  • a second current collector sheet having a conductive portion and an insulating portion; and at least one first electrode material supported on the second current collector sheet having a conductive portion and an insulating portion.
  • a conductive portion of the first current collector sheet is connected to the first terminal on the first bottom surface of the electrode plate group, and a conductive portion of the second current collector sheet is formed of the second electrode mixture layer.
  • An electrochemical device connected to the second terminal on the second bottom surface, the insulating portion of the first current collector sheet is disposed on the second bottom surface, and the insulating portion of the second current collector sheet is disposed on the first bottom surface.
  • the first electrode comprises a first current collector sheet having a conductive part and an insulating part, and at least one first electrode mixture layer carried on the first current collector sheet
  • the second electrode comprises: A second current collector sheet having a conductive portion and an insulating portion, and at least one second electrode mixture layer supported on the second current collector sheet, wherein the conductive portion of the first current collector sheet is an electrode plate group.
  • the conductive portion of the second current collector sheet is connected to the second terminal on the second bottom surface of the electrode plate group, and the insulating portion of the first current collector sheet is connected to the second bottom surface.
  • An insulating portion of the second current collector sheet is provided on the first bottom surface, and a first insulating material portion for insulating the first terminal and the second electrode is provided on the first bottom surface.
  • An electrochemical device having a second bottom surface provided with a second insulating material portion for insulating the second terminal and the first electrode.
  • An electrochemical element having an electrode plate group in which a plurality of first electrodes and a plurality of second electrodes are alternately stacked via a separator, wherein the plurality of first electrodes are respectively a conductive part and an insulating part.
  • a first current collector sheet having at least one first electrode mixture layer supported on the first current collector sheet, and a plurality of second electrodes each having a conductive portion and an insulating portion.
  • a conductive portion of the first current collector sheet connected to the first terminal on the first side surface of the electrode plate group, and a second current collector
  • the conductive portion of the sheet is connected to the second terminal on the second side surface of the electrode group, the insulating portion of the first current collector sheet is disposed on the second side surface, and the second current collector sheet
  • An electrochemical element having an electrode plate group in which a plurality of first electrodes and a plurality of second electrodes are alternately stacked via a separator, wherein the plurality of first electrodes are respectively a conductive part and an insulating part.
  • a second current collector sheet comprising: a first current collector sheet having at least one first electrode mixture layer supported thereon; and a plurality of second electrodes each having a conductive portion and an insulating portion.
  • the conductive portion of the first current collector sheet is connected to the first terminal on the first side surface of the electrode plate group, and the conductive portion of the second current collector sheet is The second group is connected to the second terminal on the second side surface, the insulating portion of the first current collector sheet is arranged on the second side surface, and the insulating portion of the second current collector sheet is formed on the first side surface.
  • the first side is provided with a first insulating material portion for insulating the first terminal and the second electrode, and the second side is insulated from the second terminal and the first electrode.
  • An electrochemical device provided with a second insulating material portion for performing the operation.
  • An electrochemical element having an electrode plate group in which a plurality of first electrodes and a plurality of second electrodes are alternately stacked via a separator, wherein the plurality of first electrodes are respectively a conductive part and an insulating part.
  • a second current collector sheet comprising: a first current collector sheet having at least one first electrode mixture layer supported thereon; and a plurality of second electrodes each having a conductive portion and an insulating portion. And at least one second electrode mixture layer carried on the first current collector sheet, the conductive portion of the first current collector sheet is connected to the first terminal on the first side surface of the electrode plate group, and the second current collector is provided.
  • the conductive portion of the sheet is connected to the second terminal on the second side surface of the electrode plate group, and the insulating portions of the first current collector sheet are arranged on all side surfaces except the first side surface of the electrode plate group.
  • An electrochemical device in which the insulating portion of the current collector sheet is disposed on all sides except the second side of the electrode plate group.
  • An electrochemical element having an electrode group in which a plurality of first electrodes and a plurality of second electrodes are alternately stacked with a separator interposed therebetween, wherein each of the plurality of first electrodes includes a conductive portion and an insulating portion.
  • a first current collector sheet having at least one first electrode mixture layer carried thereon, and a plurality of second electrodes each having a conductive portion and an insulating portion.
  • a conductive part of the first current collector sheet connected to the first terminal on the first side surface of the electrode plate group, and a second current collector
  • the conductive part of the body sheet is connected to the second terminal on the second side face of the electrode group,
  • the insulation of the body sheet is arranged on all sides except the first side of the electrode group, and the insulation of the second current collector sheet is arranged on all sides other than the second side of the electrode group.
  • An electrochemical element provided with a part.
  • An electrochemical device having an electrode group in which a first electrode and a second electrode are wound via a separator, wherein the first electrode has a first current collector sheet having a conductive portion and an insulating portion on a surface. And at least one first electrode mixture layer supported on the first electrode mixture layer, and the second electrode includes a second current collector sheet and at least one second electrode mixture layer supported on the second current collector sheet.
  • the current collector sheet is formed of an insulating sheet, the conductive portion is formed of a conductive layer formed on the surface of the insulating sheet, and the insulating portion is formed of the exposed portion left on the surface of the insulating sheet; Is made of a conductive sheet, the conductive portion of the first current collector sheet is connected to the first terminal on the first bottom surface of the electrode group, and the second current collector sheet is formed on the second bottom surface of the electrode group. 2 terminals, the insulation of the 1st current collector sheet is arranged on the 2nd bottom, and the 2nd current collector Electrochemical device end is arranged in the first bottom surface of the sheet one Bok is coated with an insulating material.
  • An electrochemical device having an electrode group in which a plurality of first electrodes and a plurality of second electrodes are alternately stacked via a separator, wherein the plurality of first electrodes are each insulated from a conductive portion on the surface.
  • Current collector sheet having at least one portion and at least one first electrode mixture layer carried on the first current collector sheet, and the plurality of second electrodes are respectively provided on the second current collector sheet and on this And a conductive portion of the first current collector sheet is connected to the first terminal on the first side surface of the electrode plate group, and the second current collector sheet is provided with the second current collector sheet.
  • Electrochemical element being overturned.
  • An electrochemical device having an electrode group in which a first electrode and a second electrode are wound via a separator, wherein the first electrode has a first current collector sheet having a conductive portion and an insulating portion. And a second current collector sheet having a conductive portion and an insulating portion, and at least one second electrode supported on the second current collector sheet having a conductive portion and an insulating portion.
  • the first end and the second end of each current collector sheet are uncoated portions of the electrode mixture layer, and the first end and the second end are conductive portions at the first end and the second end, respectively.
  • the exposed conductive part of the first current collector sheet is connected to the first terminal on the first bottom surface of the electrode plate group, and the exposed second current collector system is exposed.
  • An electrochemical element having an electrode group in which a first electrode and a second electrode are wound via a separator, wherein the first electrode has a first current collector sheet having a conductive portion and an insulating portion, and a first current collector sheet having the same.
  • the second electrode comprises a second current collector sheet having a conductive portion and an insulating portion, and at least one second electrode mixture supported on the second current collector sheet.
  • the first and second ends of each current collector sheet are uncoated portions of the electrode mixture layer, and the first and second ends have a conductive portion and an insulating portion, respectively.
  • the exposed portion of the exposed second collector sheet is connected to the first conductive member of the first current collector sheet, which is connected to the first terminal on the first bottom surface of the electrode plate group.
  • the conductive part is connected to the second terminal on the second bottom face of the electrode group and is exposed
  • An insulating portion of the first current collector sheet is disposed on the second bottom surface, and an exposed insulating portion of the second current collector sheet is disposed on the first bottom surface.
  • a first insulating material portion for insulating the second electrode is provided, and a second insulating material portion for insulating the second terminal and the first electrode is provided on the second bottom surface.
  • At least a part of the exposed conductive part of the first current collector sheet is buried in the first terminal, and at least a part of the exposed conductive part of the second current collector sheet is the second terminal. Electrochemical element buried in terminal.
  • An electrochemical element having an electrode plate group in which a plurality of first electrodes and a plurality of second electrodes are alternately stacked via a separator, wherein the plurality of first electrodes are respectively a conductive part and an insulating part.
  • a first current collector sheet having at least one first electrode mixture layer supported on the first current collector sheet, and a plurality of second electrodes each having a conductive portion and an insulating portion.
  • the exposed insulating portion of the first current collector sheet is disposed on the second side surface, and the exposed insulating portion of the second current collector sheet is disposed on the first side surface and is exposed At least a portion of the conductive portion of the first current collector sheet is buried in the first terminal, and at least a portion of the exposed conductive portion of the second current collector sheet is connected to the second terminal.
  • Electrochemical element buried in An electrochemical element having an electrode plate group in which a plurality of first electrodes and a plurality of second electrodes are alternately stacked via a separator, wherein the plurality of first electrodes are respectively a conductive part and an insulating part.
  • a first current collector sheet having at least one first electrode material mixture layer and at least one first electrode mixture layer supported on the first current collector sheet.
  • a second current collector sheet having a conductive portion and an insulating portion, and at least one second electrode mixture layer carried on the second current collector sheet, and a first end portion and a second end portion of each current collector sheet Indicates an uncoated portion of the electrode mixture layer, and a conductive portion and an insulating portion are exposed at the first end and the second end, respectively, and the conductive portion of the exposed first current collector sheet is Is connected to the first terminal on the first side surface of the electrode group, and the exposed conductive portion of the second current collector sheet is connected to the second terminal on the second side surface of the electrode group, and is exposed.
  • the insulating portion of the first current collector sheet is disposed on the second side surface, and the exposed insulating portion of the second current collector sheet is disposed on the first side surface.
  • a second insulating material portion is provided, and at least a part of the exposed conductive portion of the first current collector sheet is buried in the first terminal and is exposed to the second current collector.
  • An electrochemical element in which at least a part of the conductive portion of the sheet is embedded in the second terminal.
  • An electrochemical element having an electrode plate group in which a plurality of first electrodes and a plurality of second electrodes are alternately stacked via a separator, wherein the plurality of first electrodes are respectively a conductive part and an insulating part.
  • a second current collector sheet comprising: a first current collector sheet having at least one first electrode mixture layer supported thereon; and a plurality of second electrodes each having a conductive portion and an insulating portion. And at least one second electrode mixture layer carried thereon, and a peripheral portion including the first end and the second end of each current collector sheet is an uncoated portion of the electrode mixture layer.
  • the conductive portion is exposed, and at the end other than the first end, the insulating portion is exposed, and the exposed conductive portion of the first current collector sheet is The conductive portion of the second current collector sheet, which is connected to the first terminal on the first side surface of the electrode group and is exposed, The In 2 side is connected to the second terminal, the insulating portions of the first current collector sheet has issued dew, all terminals other than the first side of the electrode plate group
  • the insulating portion of the second current collector sheet which is disposed on the surface and is exposed, is provided on at least all the side surfaces other than the second side surface of the electrode group, and An electrochemical device in which a part is buried in the first terminal and at least a part of the exposed conductive part of the second current collector sheet is buried in the second terminal.
  • An electrochemical element having an electrode plate group in which a plurality of first electrodes and a plurality of second electrodes are alternately stacked via a separator, wherein the plurality of first electrodes are respectively a conductive part and an insulating part.
  • a second current collector sheet comprising: a first current collector sheet having at least one first electrode mixture layer supported thereon; and a plurality of second electrodes each having a conductive portion and an insulating portion. And at least one second electrode mixture layer carried thereon, and a peripheral portion including the first end and the second end of each current collector sheet is an uncoated portion of the electrode mixture layer.
  • the conductive portion is exposed, and at the end other than the first end, the insulating portion is exposed, and the exposed conductive portion of the first current collector sheet is The conductive portion of the second current collector sheet, which is connected to the first terminal on the first side surface of the electrode group and is exposed, The insulating portion of the first current collector sheet, which is connected to the second terminal on the second side surface and is exposed, is disposed on all the side surfaces other than the first side surface of the electrode plate group and is exposed.
  • the insulating part of the current collector sheet is arranged on all sides except the second side of the electrode plate group, and the first side has a first insulating material part for insulating the first terminal and the second electrode.
  • the second side surface is provided with a second insulating material portion for insulating the second terminal and the first electrode, and at least the exposed conductive portion of the first current collector sheet is provided.
  • An electrochemical device in which a part is buried in the first terminal and at least a part of the exposed conductive part of the second current collector sheet is buried in the second terminal.
  • An electrochemical element having an electrode group in which a plurality of first electrodes and a plurality of second electrodes are alternately stacked via a separator, wherein the plurality of first electrodes are a first electrode.
  • the first current collector sheet and the second current collector sheet each have a conductive part and an insulating part, and the conductive part of the first current collector sheet is formed on the first side surface of the electrode group.
  • the first current collector sheet is connected to the second terminal on the second side surface of the electrode plate group, and the first electrode mixture layer and the second electrode
  • Each of the electrode layers has an end covered with an insulating material, and the end of the first electrode mixture layer covered with an insulating material is adjacent to the insulating part of the first current collector sheet;
  • the end of the second electrode mixture layer covered with the insulating material is adjacent to the insulating portion of the second current collector sheet, and the first terminal and the second terminal are connected to each other.
  • Electrochemical element located on the opposite side of the electrode plate group together.
  • the electrode (a) is composed of a first current collector sheet having a conductive part and an insulating part and at least one first electrode mixture layer carried on the first current collector sheet, and the second electrode (b) is insulated from the conductive part and the insulating part.
  • Current collector sheet having at least one current collector sheet and at least one second electrode mixture layer carried on the second current collector sheet, and the first end and the second end of each current collector sheet are provided with an electrode.
  • the uncoated portion of the mixture layer, the conductive portion and the insulating portion are exposed at the first end and the second end, respectively, and the exposed conductive portion of the first current collector sheet is
  • the conductive portion of the second current collector sheet which is connected to the first terminal on the first side surface of the electrode group and is exposed, is connected to the second side surface of the electrode group.
  • At least a portion of the conductive portion of the first current collector sheet that is connected to the second terminal and is exposed is buried in the first terminal and is exposed to the conductive portion of the second current collector sheet that is exposed. At least part of the electrochemical device is buried in the second terminal.
  • FIG. 1 is a longitudinal sectional view of the stacked electrode group according to the first embodiment.
  • FIG. 2 is a sectional view taken along line aa of the electrode plate group of FIG.
  • FIG. 3 is another sectional view taken along line aa of the electrode group of FIG.
  • FIG. 4 is a vertical sectional conceptual view of a wound electrode group according to the second embodiment.
  • FIG. 5 is a top view of an example of the current collector sheet.
  • FIG. 6 is a perspective view of an aggregate of the first electrodes and an aggregate of the second electrodes.
  • FIG. 7 is a perspective view of another aggregate of first electrodes and another aggregate of second electrodes.
  • FIG. 8 is a view showing a process of forming a conductive layer and a first electrode mixture layer in a predetermined pattern on a sheet-like insulating base material to obtain an aggregate of first electrodes.
  • FIG. 9 is a view showing a step of forming a conductive layer and a second electrode mixture layer in a predetermined pattern on a sheet-like insulating base material to obtain an aggregate of second electrodes.
  • FIG. 10 is a diagram showing the aggregate of the first electrode and the aggregate of the second electrode shown in FIG. 1 (b) and FIG. 2 (b) in more detail.
  • FIG. 11 is a diagram showing a state in which an aggregate of long first electrodes and an aggregate of second electrodes are laminated via a separator, and are continuously supplied as a laminate.
  • FIG. 12 is an enlarged view of a portion surrounded by a broken line X in FIG.
  • FIG. 13 is a diagram showing a state of a separator that is wound around a bobbin, an aggregate of first electrodes, and a laminate of an assembly of separators and an aggregate of second electrodes.
  • FIG. 14 is a diagram for explaining a state in which both ends of the laminate wound on the pobin are cut.
  • FIG. 15 is a diagram showing a state of the laminate after cutting both end portions.
  • FIG. 16 is a longitudinal sectional view of the stacked electrode group according to the fourth embodiment.
  • FIG. 17 is a manufacturing process diagram of the wound electrode plate group according to the fifth embodiment.
  • FIG. 18 is a diagram showing the aggregate of the first electrodes and the aggregate of the second electrodes shown in FIG. 17 (2) in more detail.
  • FIG. 19 is a longitudinal sectional view of the laminated electrode group according to the sixth embodiment.
  • FIG. 20 is an example of a sectional view taken along line aa of the electrode group of FIG.
  • FIG. 21 is a longitudinal sectional view of another stacked electrode group according to the sixth embodiment.
  • FIG. 22 is a sectional view taken along line aa of the electrode group of FIG. 1 according to the seventh embodiment.
  • FIG. 23 is another a-a line cross-sectional view of the electrode plate group of FIG. 1 according to the seventh embodiment.
  • FIG. 24 is a top view of an example of an electrode group before being housed in a case.
  • FIG. 25 is a side view of an example of the electrode group before being housed in the case.
  • FIG. 26 is a perspective view of an example of a case composed of three parts for accommodating the electrode plate group.
  • ⁇ 27 is a perspective view of another example of a case composed of two parts for accommodating the electrode group.
  • FIG. 28 is an example of a cross-sectional view of the case frame or the container as viewed from a direction perpendicular to the opening.
  • FIG. 29 is an example of a cross-sectional view of a case including three components as viewed from one direction parallel to the opening.
  • FIG. 30 is an example of a cross-sectional view of a case including two components as viewed from one direction parallel to the opening.
  • FIG. 31 is a top view of an example of the battery according to the present invention.
  • FIG. 32 is a perspective view of an example of a battery including a case including three components.
  • FIG. 33 is a perspective view of an example of a battery including a case composed of two parts.
  • FIG. 34 is a longitudinal sectional view of the stacked electrode group according to the ninth embodiment.
  • FIG. 35 is a drawing showing the manufacturing process of the electrode group shown in FIG.
  • FIG. 36 is a manufacturing process diagram of the wound electrode plate group according to the ninth embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows a longitudinal sectional view of an example of a laminated electrode group according to the present invention.
  • Fig. 2 shows a sectional view of the electrode group taken along the line aa.
  • the electrode group 10 is composed of a plurality of first electrodes 15a and second electrodes 15b alternately stacked, and between the first electrode 15a and the second electrode 15b, One night of Separee 16 is interposed.
  • the first electrode 15a is composed of a first current collector sheet 13a and two first electrode mixture layers 14a, and the first current collector sheet 13a is a resin sheet 11a. And a conductive layer 12a having a predetermined pattern provided on both surfaces thereof. The surface of the conductive layer 12a becomes a conductive part of the first current collector sheet, and the exposed part of the resin sheet 11a becomes an insulating part.
  • a conductive layer 12a is provided on the entire surface except for the end portions llx, llx ', and llx "of the first current collector sheet. Since the surface of the conductive layer 12a is a conductive portion, The first electrode mixture layer 14a is provided thereon. The ends 11X, llx 'and llx "of the first current collector sheet having no conductive layer 12a are insulating portions. It becomes. The exposed portion of the conductive layer 12a used for current collection is left at the end 12X located on the opposite side of the end 11X.
  • the electrode plate group 10 includes two types of second electrodes 15b and 15b '.
  • the inner second electrode 15b sandwiched between the two first electrodes 15a has the same structure as the first electrode 15a except that the arrangement in the electrode plate group is reversed. That is, the inner second electrode 15 b includes a second current collector sheet 13 b and two second electrode mixture layers 14 b, and the second current collector sheet 13 b
  • the resin sheet 11b has a predetermined pattern formed on both sides thereof.
  • the outermost two second electrodes 15 b ′ are not provided on both sides of the resin sheet 11 b but on one side thereof, except that the conductive layer 12 b and the second electrode mixture layer 14 b are provided. It has the same structure as the internal second electrode.
  • a conductive layer 12b is provided on the entire surface except for the ends 11y, 11y 'and 11y "of the second current collector sheet.
  • the surface of the conductive layer 12b is a conductive part. Therefore, the second electrode mixture layer 14b is provided thereon.
  • the end 11y, 11 of the second current collector sheet having no conductive layer 12b y 'and 1 1 y "become insulation.
  • the exposed portion of the conductive layer 12b used for current collection is left at the end 12y located on the opposite side of the end 11y.
  • each current collector sheet and the end of the separator plate are arranged flush with each other.
  • the end of each current collector sheet and the end of the separator are arranged flush with each other.
  • the end of each current collector sheet and the end of the separator need not be completely flush with each other on each side, but it is preferable that they are substantially flush with each other.
  • each current collector sheet and the end of the separator shall be substantially equal on each side. It can be considered that they are arranged on the same level.
  • the end of the separator electrode plate does not protrude from the side surface, so that volume efficiency is high and high capacity can be obtained.
  • Such an electrode group has an even and simple structure, so that it is easy to ensure reliability.
  • manufacturing costs can be reduced.
  • the exposed portion (end portion 12 x) of the conductive layer 12 a of the first current collector sheet 13 a is arranged on the first side surface (the left side in FIG. 1) of the electrode group 10.
  • the opposite insulating portion (end llx) is arranged on the second side surface (right side in FIG. 1) of the electrode group 10.
  • the exposed part (end part 12 y) of the conductive layer 12 b of the second current collector sheet 13 b is arranged on the second side face of the electrode plate group 10,
  • the insulating portion (end lly) is arranged on the first side surface of the electrode group 10.
  • the first side surface and the second side surface are located on opposite sides of the electrode plate group from each other, but their arrangement is not particularly limited.
  • the exposed portion of the conductive layer 12a of the first current collector sheet 13a (end portion 12x) Is adjacent to the insulating part (end part 11 y) of the second current collector sheet 13 b via the end of the separator 16.
  • the exposed portion (end 12 y) of the conductive layer 12 b of the second current collector sheet 13 b is connected to the first current collector sheet 13 a via the end of the separator 16. Adjacent to the insulation part (end 1 1 X).
  • the insulating portion (end) of the second current collector sheet adjacent to the exposed portion (end portion 12x) of the conductive layer 12a of the first current collector sheet 13a Part 1 1 y) and the insulating part of the first current collector sheet 13 a adjacent to the exposed part (end 1 2 y) of the conductive layer 12 b of the second current collector sheet 13 b (end 1 1 x) is preferably at least 0.01 mm in width and more preferably at least 0.1 mm.
  • the exposed portions of the conductive layers 12a and b of the plurality of first current collector sheets 13a or the second current collector sheets 13b are connected in parallel to achieve high capacity.
  • the exposed portions may be connected to each other by any method.
  • a method of covering the first side surface and the second side surface with a coating of a conductive material can be used.
  • the thickness of the conductive material film is, for example, about 0.01 to 1 mm, which is sufficient.
  • the coating of the conductive material thus obtained can be used for current collection as the first terminal 17a and the second terminal 17b, respectively.
  • each current collector sheet Since the exposed portion of each current collector sheet is buried in each terminal, for example, unlike the conventional electrochemical device in which the electrode plate itself is buried in the terminal, the conductivity of the electrode mixture layer and the current collection High current collection performance can be ensured regardless of the thickness of the body sheet. In addition, there is a problem that a sufficient contact area between the core material and the current collector plate cannot be secured, as in the case where the protruding core material of the electrode plate of the same polarity is connected to the plate-shaped current collector plate. Absent.
  • At least one of the first terminal and the second terminal made of a conductive material film is preferably made of a porous metal film formed by continuously joining particulate metals.
  • a porous metal film can be obtained by blowing molten metal or metal particles in a semi-molten state from a nozzle with compressed air and spraying the particles on a predetermined side surface of the electrode plate group.
  • a so-called metalikon can be employed.
  • the porous metal film is preferably made of aluminum, an aluminum alloy, or the like.
  • the porous metal film is preferably made of copper, a copper alloy, or the like.
  • At least one of the first terminal and the second terminal formed of the coating of the conductive material is formed of a conductive paste. At least one selected from the group consisting of dispersed conductive fine particles and conductive fibers can be used. Since the conductive paste can be easily applied to a predetermined side surface of the electrode group, the manufacturing process of the electrode group can be simplified by using the conductive paste.
  • the conductive paste applied to the predetermined side of the electrode group is preferably cured by heating or light irradiation. By curing the conductive paste, the strength of the first terminal or the second terminal is reduced. Can be improved.
  • thermoplastic resin a thermoplastic resin or a thermosetting resin may be used.
  • polyamideimide or the like can be preferably used as the conductive base resin. Further, it is preferable to use conductive fine particles or conductive fibers made of carbon, aluminum, or the like for the positive electrode terminal. Even when the first terminal or the second terminal is a negative electrode terminal, polyamideimide or the like can be preferably used as the resin of the conductive paste. It is preferable to use conductive fine particles or conductive fibers made of copper, silver, silver-plated copper, nickel, carbon, or the like for the negative electrode terminal.
  • the average particle size of the conductive particles is preferably from 1 to 100 / m. Further, the diameter of the conductive fiber is preferably 1 to 100 im, Is not particularly limited.
  • the content of the conductive fine particles and the conductive fibers in the conductive paste is preferably 50 to 90% by weight. In order to increase the conductivity, it is preferable that the amount of the conductive fine particles and / or the conductive fiber is large. However, when the content of the resin is too low, preparation and coating of the conductive paste become difficult.
  • At least one of the first terminal and the second terminal made of a coating of a conductive material is made of a low-melting metal having a melting point of 250 ° C or less, preferably 180 ° C or less.
  • a low-melting metal having a melting point of 250 ° C or less, preferably 180 ° C or less.
  • a resin is added as a flux to a low melting point metal
  • a solder can be obtained. Solder is easy to handle, and if solder is used, it is possible to form terminals with better conductivity than porous metal films and conductive bases.
  • the melting point of the low-melting point alloy exceeds 250 ° C, the electrochemical element may be deteriorated when a terminal made of the low-melting-point metal is provided on a predetermined side surface of the electrode group.
  • Pb—Sn-based alloy, Pb_Sn—alloy, Pb—Sn—Sb-based alloy, Sn—Ag—Cu-based alloy, Sn—Zn— Bi-based alloys and the like are known, but metals of other compositions can also be used.
  • the electrode plate group 10 having terminals on the side surfaces tabs and leads for current collection are not required, so that it is easy to take an evenly simplified structure.
  • the ends of the first electrode mixture layer 14a and the second electrode mixture layer 14b are arranged at positions depressed from the third side surface and the fourth side surface.
  • the end of the mixture layer may be arranged flush with the end of the conductive or insulating part of each current collector sheet and the end of the separator. Even with such a structure, it is possible to sufficiently prevent a short circuit by covering the third side surface and the fourth side surface with an insulating material.
  • the thickness of the resin sheets 11a and 11b is, for example, 0.5 to 500 m.
  • An ordinary resin sheet having a flat surface may be used, and a perforated body, a lath body, a porous body, a net, a foam, a woven fabric, a nonwoven fabric, or the like may be used. Alternatively, a resin sheet having unevenness on the surface can be used.
  • the resin sheets 11a and 11b include, for example, an olefin polymer such as polyethylene, polypropylene, and polymethylpentene; an ester polymer such as polyethylene terephthalate, polybutylene terephthalate, polycyclohexylene dimethylene terephthalate, and polyarylate; Use thioether polymers such as phenylene sulfide, aromatic biel polymers such as polystyrene, nitrogen-containing polymers such as polyimide and aramide resins, and fluorine polymers such as polytetrafluoroethylene and polyvinylidene fluoride. be able to. These may be used alone, or a copolymer, a polymer alloy, a polymer blend, or the like combining two or more kinds may be used.
  • an olefin polymer such as polyethylene, polypropylene, and polymethylpentene
  • an ester polymer such as polyethylene terephthalate, polybutylene tere
  • the thickness of the conductive layers 12 a and b is, for example, 0.01 to: LOO m.
  • an electron conductor that does not cause a chemical change in the configured battery can be used without particular limitation.
  • the first electrode or the second electrode is a positive electrode, for example, stainless steel, aluminum, an aluminum alloy, titanium, carbon, or the like can be used, and particularly, aluminum and an aluminum alloy are preferable.
  • the first electrode or the second electrode is a negative electrode, for example, stainless steel, nickel, copper, copper alloy, titanium, or the like can be used, and copper and a copper alloy are particularly preferable.
  • the method for forming the conductive layers 12a and 12b is not particularly limited.
  • a conductive layer can be obtained by depositing a conductive material on the surfaces of the resin sheets 11a and 11b.
  • a resin sheet is covered with a mask having an opening having a predetermined shape, and then vapor deposition is performed.
  • a first insulating material portion 18a for insulating the first terminal 17a from the second electrode 15b, b ' can be provided on the first side surface of the electrode plate group 10.
  • a second insulating material portion 18b for insulating the second terminal 17b from the first electrode 15a can be provided.
  • the first side is provided with an insulating portion (end 1 ly) of the second current collector sheet 13 b
  • the second side is provided with an insulating portion (end) of the first current collector sheet 13 a.
  • Part llx it is possible to prevent a short circuit without providing an insulating material part.However, by providing insulating material parts 18a and b, the possibility of a short circuit is greatly increased. Reduce.
  • the thickness of the insulating material portions 18a, b is not particularly limited, but is preferably 0.01 mm or more, more preferably 0.01 mm or more.
  • the method for providing the insulating material portions 18a and b is not particularly limited.However, in the manufacturing process of the electrode plate, a paste-like or liquid insulating material is previously formed by a screen printing method or the like, and the electrode mixture layer 14a, It is possible to adopt a method of applying it on the current collector sheets 13 a and b around b.
  • the insulating material portion can also be provided by attaching a film-shaped or tape-shaped insulating material onto the current collector sheets 13a, b around the electrode mixture layers 14a, 14b.
  • the third and fourth side surfaces of the electrode plate group 10 are not provided with an insulating material portion.
  • the third side surface (left side in FIG. 3) and the fourth side surface It is also possible to cover the ends of the electrode mixture layer arranged on the right side of FIG. 3) with the third insulating material portion 18c and the fourth insulating material portion 18d, respectively. According to such a configuration, it is possible to reliably prevent a short circuit.
  • Examples of the insulating material used for the insulating material portions 18a and 18b include a resin, a glass composition, and ceramics. Further, a composite material in which a woven fabric or a nonwoven fabric is impregnated with a resin may be used. As the resin, a thermoplastic resin may be used, or a thermosetting resin may be used. When using thermosetting resin Requires a step of heating and curing the resin coating.
  • Resins that can be used for the insulating material part 18a, b include polyethylene, polypropylene, polymethylpentene, and other olefinic polymers, polyethylene terephthalate, polybutylene terephthalate, polycyclohexylene dimethylene terephthalate, and polyaryle.
  • Polyethers-ester polymers such as ponates, polyethylene oxides, propylene oxide, polyacetones, polyphenylene ethers, ether polymers such as polyester ether ketones, polyetherimides, acrylonitrile, AS resins, Acrylonitrile-based polymers such as ABS resin, thioether-based polymers such as polyphenylene sulfide, aromatic biel-based polymers such as polystyrene, nitrogen such as polyimide and aramide resins Included polymers, fluoropolymers such as polytetrafluoroethylene and polyvinylidene fluoride, and acryl-based polymers such as polymethyl methacrylate.
  • a resin coating film or a resin tape can be used for the insulating material portion.
  • the resin coating film can be formed by applying a solution or a dispersion containing an insulating resin to the end of the electrode mixture layer and drying.
  • the coating method is not particularly limited, but the solution or dispersion can be coated on the current collector sheet around the electrode mixture layer by, for example, a screen printing method or a die coating method.
  • the solution or dispersion may be liquid or paste, and the viscosity thereof may be arbitrarily controlled.
  • Insulating resin to be contained in the solution or dispersion liquid includes ether resins such as polyethylene oxide, polypropylene oxide, polyacetal, polyphenylene ether, polyether ether ketone, and polyetherimide; polyacrylonitrile, AS resin, ABS resin, etc.
  • Acrylonitrile resins Fluororesins such as polyvinylidene fluoride; Acrylic resins such as polymethyl methacrylate; Copolymers, polymer alloys or polymer blends containing these polymers can be used. These may be used alone or in combination of two or more. Among these, it is particularly preferable to use polyethylene oxide, polypropylene oxide, polyacrylonitrile, polyvinylidene fluoride, polymethyl methacrylate, copolymers containing these polymers, polymer alloys or polymer blends.
  • the resin coating film can also be formed by applying a solution or dispersion containing a polymerizable compound to an end of the electrode mixture layer and polymerizing the polymerizable compound.
  • the coating method is not particularly limited. For example, it can be performed by a screen printing method.
  • the solution or dispersion may be liquid or paste-like, and the viscosity thereof may be arbitrarily controlled.
  • the polymerizable compound is preferably polymerized by at least one means selected from the group consisting of heat, ultraviolet rays and electron beams.
  • the polymerizable compound has, for example, 1 to 3 polymerizable functional groups in the molecule.
  • the polymerizable functional group is preferably at least one selected from the group consisting of an acrylate group and a methacrylate group.
  • the portion other than the polymerizable functional group is not particularly limited, but may be, for example, a polyalkylene oxide chain.
  • a polymerization initiator such as azobisisobutyronitrile, benzoyl peroxide, and acetyl peroxide is used. polymerization When the reactive compound is polymerized by ultraviolet rays, a polymerization initiator such as benzyl dimethyl ketal and benzoin isopropyl ether is used. When polymerizing a polymerizable compound with an electron beam, a polymerization initiator is not particularly required.
  • the resin tape By attaching a resin tape on the current collector sheet around the electrode mixture layer, the insulating material portion can be provided.
  • the resin tape a tape made of an insulating base material and an insulating pressure-sensitive adhesive carried thereon can be used.
  • Polyolefin, polypropylene, polymethylpentene, and other olefinic resins poly-X-ethylene terephthalate, polyethylene naphthalate, polycyclohexylene dimethylene terephthalate, polyarylate, polycarbonate, and other ester-based resins; Ether resins such as oxides, polypropylene oxides, polyacetals, polyphenylene ethers, polyether ether ketones, and polyether imides; sulfone resins such as polysulfones and polyether sulfones; polyacrylonitriles, AS resins, and ABS resins Acrylonitrile resins; Thioether resins such as polyphenylene sulfide; Aromatic vinyl resins such as polystyrene; Nitrogen-containing resins such as polyimide and aramide resins; Fluororesins such as trafluoroethylene and polyvinylidene fluoride; acryl-based resins such as polymethyl methacrylate;
  • the insulating pressure-sensitive adhesive is not particularly limited, and for example, an acrylic resin, a butyl rubber-based resin, or the like can be used.
  • the thickness of the insulating base material is, for example, 1100 m, and the thickness of the insulating pressure-sensitive adhesive layer is, for example, 0.1100 m.
  • the insulating pressure-sensitive adhesive may be provided on only one surface of the base material, or may be provided on both surfaces.
  • the second electrode mixture layer 14b has a larger area than the first electrode mixture layer 14a.
  • Such a structure is suitable for an electrode group of a lithium ion secondary battery having the first electrode mixture layer 14a as a positive electrode and the second electrode mixture layer 14b as a negative electrode.
  • the first electrode mixture layer 14a is used as a negative electrode and the second electrode mixture layer 14b is used as a positive electrode, the first electrode mixture layer 14b is compared with the second electrode mixture layer 14b. Increase the area of a.
  • the thickness of the electrode mixture layer 14 ab is, for example, 1100 m, but the thickness is not particularly limited.
  • the electrode mixture includes an electrode active material, and may optionally include a conductive material, a binder, and the like.
  • a lithium-containing transition metal oxide can be preferably used as the active material.
  • the lithium-containing transition metal oxide For example, L i x C o O z L i x N i ⁇ z L i x Mn_ ⁇ z
  • the active material may be, for example, lithium, a lithium alloy, an intermetallic compound, a carbon material, an organic compound capable of occluding and releasing lithium ions, and the like.
  • Inorganic compounds, metal complexes, organic polymer compounds, and the like can be preferably used. These may be used alone or in combination of two or more.
  • Carbon materials include coke, pyrolytic carbon, natural graphite, artificial graphite, mesocarbon microbeads, graphitized mesophase spherules, vapor-grown carbon, glassy carbon, and carbon fibers (polyacrylonitrile, pitch, cellulose) , Vapor-phase growth system), amorphous carbon, and organic compound fired bodies.
  • natural graphite and artificial graphite are particularly preferred.
  • the conductive material for example, carbon black such as acetylene black, graphite, or the like is used.
  • binder for example, fluororesins such as polyvinylidene fluoride and polytetrafluoroethylene, acrylic resins, styrene butadiene rubber, ethylene propylene terpolymer, and the like can be used.
  • a woven or non-woven fabric made of an olefin polymer such as polyethylene or polypropylene, glass fiber, or the like can be used.
  • a solid electrolyte or a gel electrolyte can be used as the separator.
  • the solid electrolyte for example, polyethylene oxide, polypropylene oxide, or the like can be used as a matrix material.
  • the gel electrolyte for example, a gel electrolyte in which a non-aqueous electrolyte described later is held in a matrix made of a polymer material can be used.
  • polyethylene oxide, polypropylene oxide, polyvinylidene fluoride, a copolymer of vinylidene fluoride and hexafluoropropylene, or the like can be used. These may be used alone or in combination of two or more. Of these, in particular, It is preferable to use a copolymer of vinylidene fluoride and hexafluoropropylene, or a mixture of polyvinylidene fluoride and polyethylene oxide.
  • the electrode group is generally used in a predetermined case together with an electrolytic solution.
  • the composition of the electrolyte varies depending on the type of the electrochemical device.
  • the shape and material of the case are not particularly limited.
  • the electrochemical element is, for example, a lithium ion secondary battery
  • an electrolytic solution obtained by dissolving a lithium salt in a non-aqueous solvent is used.
  • the lithium salt concentration in the electrolytic solution is preferably, for example, 0.5 to 1.5 m01ZL.
  • Non-aqueous solvents include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate, dimethyl carbonate, getyl carbonate, ethyl methyl carbonate, ethyl propyl carbonate, methyl propyl carbonate, and methyl isopropyl carbonate.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate, dimethyl carbonate, getyl carbonate, ethyl methyl carbonate, ethyl propyl carbonate, methyl propyl carbonate, and methyl isopropyl carbonate.
  • Non-cyclic carbonates such as carbonate and dipropyl carbonate; aliphatic carboxylic acid esters such as methyl formate, methyl acetate, methyl propionate and ethyl propionate; r-lactones such as carboxylactone and T-valerolactone
  • Acyclic ethers such as 1,2-dimethoxyethane, 1,2-diethoxyethane, and ethoxymethoxyethane; cyclic ethers such as tetrahydrofuran and 2-methyl-tetrahydrofuran; Sulfoxide, 1, 3 - Jiokizoran, phosphorus Santo Rimechiru, Toriedjiru phosphoric acid, alkyl phosphoric acid esters and their fluorides, such as trioctyl phosphate can be used.
  • a mixture containing a cyclic carbonate and an acyclic carbonate a mixture containing a cyclic carbonate, an acyclic carbonate, and an aliphatic carboxylic acid ester are preferable.
  • L i 2 B ioC 1 to, L i N (C 2 F 5 S 0 2) 2, L i PF 3 (CF 3) 3, L i PF 3 (C2F 5) 3 or the like can be used. These may be used alone or in combination of two or more. However, the electrolyte solution preferably contains at least L i PF 6.
  • FIG. 4 is a vertical conceptual sectional view of a part of the wound electrode group 30 drawn around the first electrode. The outermost mixture layer and the current collector sheet are omitted.
  • the wound electrode plate group 30 is composed of a stacked and wound first electrode 3a and a second electrode 3b, and a separation electrode between the first electrode 3a and the second electrode 3b. 3 9 are interposed.
  • the first electrode 3a comprises a first current collector sheet 31a and two first electrode mixture layers 32a provided on both surfaces thereof, and the first current collector sheet 31a Comprises a resin sheet and conductive layers provided on both surfaces thereof.
  • the surface of the conductive layer serves as a conductive part of the first current collector sheet, and the exposed part of the resin sheet serves as an insulating part.
  • a conductive layer is provided on the entire surface except the end 35a of the first current collector sheet. Since the surface of the conductive layer becomes the conductive part, the first electrode mixture layer
  • 35 a is an insulating part.
  • the exposed portion of the conductive layer used for current collection is left at the end 34a opposite to the end 35a.
  • the second electrode 3b is the first electrode except that the arrangement in the electrode group is reversed. It has the same structure as 3a. That is, the inner second electrode 3 b is composed of the second current collector sheet 31 b and two second electrode mixture layers 32 b provided on both sides thereof, and the second current collector sheet 3 b 1b is composed of a resin sheet and conductive layers provided on both sides thereof.
  • a conductive layer is provided on the entire surface except the end 35b of the second current collector sheet. Since the surface of the conductive layer becomes a conductive portion, the second electrode mixture layer 32b is provided thereon. The end 35b of the second current collector sheet having no conductive layer is an insulating portion. An exposed portion of the conductive layer used for current collection is left at the end 34b opposite to the end 35b.
  • the exposed portion (end portion 34a) of the conductive layer of the first current collector sheet 31a is disposed on the first bottom surface (the upper side in FIG. 4) of the electrode plate group, and the insulating portion on the opposite side is provided.
  • (End 35a) is located on the second bottom surface (lower side in Fig. 1) of the electrode group.
  • the exposed portion (end portion 34b) of the conductive layer of the second current collector sheet 31b is arranged on the second bottom surface of the electrode plate group, and the insulating portion (end portion) on the opposite side is provided.
  • 35 b) is arranged on the first bottom surface of the electrode group.
  • each current collector sheet disposed on each bottom face is preferably 0.01 mm or more in width, more preferably 0.1 mm or more, as in the electrode plate group of the first embodiment. Preferred.
  • the exposed portions of the conductive layers of the first current collector sheet 31a or the second current collector sheet 31b are preferably connected integrally.
  • the connection may be made by any method, but as shown in FIG. 4, the first bottom surface and the second bottom surface are coated with a coating of a conductive material having a thickness of, for example, about 0.01 to 1 mm. It is preferable.
  • the coating of the conductive material thus obtained can be used for current collection as the first terminal 37 and the second terminal 38, respectively.
  • the coating can be formed in the same manner as in the electrode group of the first embodiment.
  • the exposed portion of the conductive layer is buried to a depth of 0.001 to 1 mm inside the film of the conductive material (terminals 37, 38). Is preferred.
  • a first insulating material portion 36b for insulating the first terminal 37 and the second electrode 3b can be provided on the first bottom surface of the electrode plate group.
  • a second insulating material portion 36a for insulating the terminal 38 from the first electrode 3a can be provided.
  • the first bottom surface is provided with an insulating portion (end portion 35b) of the second current collector sheet, and the second bottom surface is provided with an insulating portion (end portion 35a) of the first current collector sheet. Therefore, it is possible to prevent a short circuit without providing an insulating material part. However, the provision of the insulating material parts 36a and b greatly reduces the possibility of a short circuit.
  • the insulating material portion can be provided in the same manner as in the electrode group of the first embodiment.
  • the thickness of the insulating material portion is not particularly limited, it is preferably 0.01 mm or more, more preferably 0.01 mm or more, as in the electrode group of the first embodiment.
  • Such an electrode group does not require tabs or leads for current collection, so it has a simple and well-balanced structure, and it is easy to secure reliability. In addition, the volume efficiency is high, and high capacity can be obtained. Moreover, since such an electrode group can be manufactured in large numbers at the same time, the manufacturing cost can be reduced.
  • steps (a) to (d) will be described in the order of the steps.
  • steps will be described as appropriate.
  • Other steps can be appropriately selected and performed by those skilled in the art according to the structure and use of the electrochemical element and the like.
  • the manufacturing method of the laminated electrode group is not limited to the following.
  • a conductive layer is provided in a predetermined pattern on both surfaces of a sheet-shaped insulating base material to obtain a first current collector sheet and a second current collector sheet.
  • a matrix-shaped pattern including a plurality of rows and a plurality of columns as shown in FIG. 5 will be described as the predetermined pattern.
  • a resin sheet 51 which is a sheet-shaped insulating base material having a size capable of providing a desired number of current collector sheets 50, is prepared.
  • a plurality of conductive layers having a predetermined pattern.
  • a plurality of conductive layers 52 each having a size of two electrodes are formed on the resin sheet 51.
  • n conductive layers are formed on one side of the resin sheet. That is, the current collector sheets 52 'for two electrodes and the central portion 53 between them are integrally formed. The central portion 53 becomes an exposed portion of the conductive layer that does not carry the electrode mixture layer in a later step. Thus, the first current collector sheet 50 is obtained.
  • the second current collector sheet is prepared in the same manner.
  • Such a conductive layer can be obtained by a method in which a resin sheet is covered with a matrix-shaped mask, and a metal is deposited on the resin sheet exposed from the mask. The exposed portion 54 of the resin sheet remains in the portion covered with the mask.
  • a sheet having a matrix-shaped opening, an oil applied in a matrix on a resin sheet for the purpose of inhibiting adhesion of a vapor-deposited metal, or the like can be used.
  • a method of printing ink on a resin sheet in a matrix form, depositing metal, and then washing and removing the ink and the deposited metal on the ink can also be adopted.
  • a method of depositing a metal on a resin sheet and then obtaining a conductive layer having a predetermined shape pattern by using a metal removing means such as a laser it is not particularly limited to these methods.
  • first electrode mixture layers or a plurality of second electrode mixture layers are formed in such a manner as to correspond to the pattern and to provide a gap, and the first electrode assembly 60 a and an aggregate 60 b of the second electrodes are obtained.
  • two first electrode mixture layers 61a are formed on each conductive layer of the first current collector sheet. Between the two first electrode mixture layers 6 1 a The exposed portion 53a of the conductive layer that does not carry the mixture is left as a gap. Also, an exposed portion 54a of the resin sheet having no conductive layer is left.
  • the first electrode mixture layer is formed by applying a paste made of the first electrode mixture to the entire surface of the conductive layer except for the central portion 53.
  • the coating method is not particularly limited, but it is preferable to adopt screen printing, pattern coating, or the like.
  • the exposed portion 53a of the conductive layer on which the paste is not applied becomes a connection portion 53X with the first terminal after the electrode plate group is formed.
  • the exposed portion 54a of the resin sheet to which the paste is not applied becomes an insulating portion 54X arranged on the second terminal for preventing short circuit after the electrode group is formed.
  • FIG. 6 shows an electrode mixture layer of 3 rows and 3 columns, usually, more conductive layers and electrode mixture layers are formed on a larger resin sheet.
  • the paste made of the first electrode mixture is prepared by mixing an active material, a conductive material, a binder and the like of the first electrode with a dispersion medium. Thereafter, the paste coating is dried, and the dried coating is rolled with a roller to increase the mixture density.
  • step (b) and before the step (c) described later it is preferable to perform a step of forming an insulating material portion at a position covering an end of the first electrode mixture layer or the second electrode mixture layer.
  • an insulating material is applied along the periphery of the first electrode mixture layer that is adjacent to the exposed portion of the conductive layer of the second current collector sheet when the electrode group is formed.
  • peripheral portion of the first electrode mixture layer may be coated with an insulating material.
  • the exposed portion of the conductive layer of the first current collector sheet is not entirely covered.
  • an insulating material is applied to at least the end of the first electrode mixture layer adjacent to the exposed portion 54a of the resin sheet.
  • the coating of the insulating material is not always necessary, and may be arbitrarily performed.
  • the applied insulating resin forms a first insulating material portion in the electrode plate group.
  • the aggregate of the second electrodes may be manufactured in the same manner as the aggregate of the first electrodes.
  • two second electrode mixture layers 61b are formed on each conductive layer of the second current collector sheet.
  • An exposed portion 53b of the conductive layer that does not carry the mixture is left as a gap between the two second electrode mixture layers 61b.
  • an exposed portion 54b of the resin sheet having no conductive layer is left.
  • the exposed portion 53b of the conductive layer on which the paste of the second electrode mixture has not been applied becomes a connection portion 53y with the second terminal after the electrode plate group is formed.
  • the exposed portion 54b of the resin sheet to which the paste is not applied becomes an insulating portion 54y disposed on the first terminal for preventing short circuit after the electrode group is formed.
  • an aggregate of first electrodes having a first electrode mixture layer on only one side or an aggregate of second electrodes having a second electrode mixture layer on only one side is used. It may be produced. The assembly of these electrodes is used to prevent the electrode mixture layer from being exposed to the outermost layer.
  • the conductive layer may be exposed on the outermost layer of the laminate, but the resin sheet may be exposed without providing the conductive layer.
  • the first electrode assembly 60a and the second electrode assembly 60b are stacked via a separator to obtain a stacked body.
  • the assembly of the first electrodes and the assembly of the second electrodes produced in the step (b) are stacked via a separator. At this time, the first electrode mixture layer 61a included in the first electrode assembly and the second electrode mixture layer 6lb included in the second electrode assembly are faced to each other. Laminate.
  • the exposed portion 53a of the conductive layer in the first electrode assembly faces the exposed portion 54b of the resin sheet in the second electrode assembly.
  • the bipolar plates are arranged such that the exposed portion 54a of the resin sheet to be exposed faces the exposed portion 53b of the conductive layer in the assembly of the second electrodes. Then, on both outermost surfaces, an assembly of a pair of electrodes having an electrode mixture layer on only one side is arranged, and the assembly of the inner electrodes is sandwiched by these, and the whole is pressed. As a result, a laminated body including a plurality of laminated electrode groups is obtained.
  • the assembly of the first electrode and the assembly of the second electrode are cut in the gap along the directions of arrows X and Y.
  • the cut part of the current collector sheet corresponding to the gap that is the exposed part of the conductive layer is the connection part 53 x, y with the terminal, and the cut part corresponding to the exposed part of the resin sheet on the opposite side is the insulating part. 5 4 X, y.
  • the first terminal and the second terminal by coating the opposing first side surface and second side surface of the stacked electrode plate group with a conductive material.
  • the first side surface where the exposed portion (connection portion 53 x) of the conductive layer of the first current collector sheet and the insulating portion 54 y of the second current collector sheet are alternately arranged is coated with a conductive material film. If it coats with, the 1st terminal is obtained.
  • the metal film thus formed is electrically connected only to the exposed portion of the conductive layer of the first current collector sheet.
  • connection portion 53y the exposed portion of the conductive layer of the second current collector sheet and the insulating portion 54X of the first current collector sheet are alternately arranged. If the second terminal is coated with a conductive material, the second terminal can be obtained.
  • the side surfaces of the electrode group on which the terminals are not formed may be left as they are, but it is preferable to cover with a porous insulating material if possible.
  • a first electrode assembly 70a and a second electrode assembly 70b are prepared.
  • a plurality of rows of strip-shaped conductive layers are formed at the same position on both sides of a resin sheet having a size capable of providing a desired number of current collector sheets.
  • a conductive layer can be obtained, for example, by covering a resin sheet with a band-shaped mask and vapor-depositing metal on the resin sheet portion exposed from the mask.
  • one band-shaped conductive layer is formed so as to straddle the current collector sheets for two band-shaped electrode mixture layers. That is, when a resin sheet having a size capable of providing 2 n strip-shaped current collector sheets is used, n strip-shaped conductive layers are formed on one side of the resin sheet.
  • two strip-shaped first electrode mixture layers 71a are formed on each strip-shaped conductive layer.
  • An exposed portion 53a 'of the conductive layer that does not support the mixture is left as a gap between the two band-shaped first electrode mixture layers 71a.
  • the strip-shaped first electrode mixture layer 7la is formed by applying a paste made of the same first electrode mixture as described above to the entire surface of the conductive layer except for the central portion. Coating method described above Is the same as The exposed portion 53a 'of the conductive layer on which the paste is not applied becomes a connection portion 53X' to the first terminal.
  • a plurality of rows of strip-shaped conductive layers are provided at the same position on both sides of a resin sheet having a size capable of providing a desired number of current collector sheets.
  • Two strip-shaped second electrode mixture layers 7 1 b are formed on the substrate.
  • An exposed portion 53b 'of the conductive layer not carrying the mixture is left between the two band-shaped second electrode mixture layers.
  • the exposed portion 5 3 b ′ of the conductive layer on which the paste is not applied is a connection portion with the second terminal after the electrode group is formed.
  • the laminate which is an assembly of such electrode groups
  • the laminate is divided into individual laminated electrode groups along the directions of arrows X and Y shown in FIG. 7, cutting corresponding to the exposed portion of the resin sheet is performed.
  • the part forms an insulating part 54 x ′, y ′.
  • the cross section of the electrode mixture layer is exposed. It is preferable that the side surface of the electrode plate group where the cross section of the electrode mixture layer is exposed is sealed with a porous insulating material.
  • (C) a step of laminating the long first electrode assembly and the second electrode assembly via a separator and continuously supplying them as a laminate;
  • the sheet-shaped insulating base material (A) obtaining a first current collector sheet and a second current collector sheet by providing a conductive layer to form a first current collector sheet and a second current collector sheet; It is preferable to obtain the first electrode and the second electrode by the step (B) of forming the first electrode mixture layer and the second electrode mixture layer.
  • the steps (A) to (E) will be described in the order of the steps. In addition, other steps will be described as appropriate. Other steps can be appropriately selected and performed by those skilled in the art according to the structure and use of the electrochemical element and the like.
  • conductive layers 81a are formed in a predetermined pattern on both sides of a resin sheet 80a, which is a sheet-like insulating base material, and the first current collector is formed.
  • a conductive layer 81b is formed in a predetermined pattern on both sides of a resin sheet 80b, which is a sheet-like insulating base material, and the second current collector sheet 8b Get.
  • the predetermined pattern is, as shown in FIG. 16 described later, only the conductive layer 8 1 a of the first current collector sheet 8 a in the finally obtained laminated electrode group 160. Are exposed on the first side surface, and only the conductive layer 81b of the second current collector sheet 8b is exposed on the second side surface.
  • the resin sheets 80a and 80b in FIGS. 8 and 9 are shown as sheets having a certain length for convenience, they are actually long. If it is long, for example, it can be continuously supplied from a raw material wound in a hoop shape. Therefore, metal can be continuously vapor-deposited on a sheet, and productivity can be improved.
  • At least one strip-shaped conductive layer is formed so as to straddle two strip-shaped sheet-shaped current collectors.
  • the formation of the conductive layer may be performed in the same manner as in Embodiment 3.
  • the predetermined pattern is finally produced as described above. What is necessary is just to adjust suitably according to the number of lamination type electrode group.
  • a plurality of conductive layers are respectively placed on the conductive layers of the first current collector sheet 8a and the second current collector sheet 8b.
  • the first electrode mixture layer 8 2 a and the second electrode mixture layer 8 2 b are formed in parallel strips with gaps 8 3 a and 8 3 b provided, and the first electrode assembly 14 and An assembly 15 of the second electrode is obtained.
  • the exposed portions 8 3 a and 8 3 b of the conductive layer that does not carry the electrode mixture layer are connected to the first terminal 8 3 X and connected to the second terminal 8 3 x after the formation of the electrode group. '.
  • the exposed portions 84a and 84b of the resin sheet, after the electrode plate group is formed, are provided with an insulating portion 84y disposed on the first terminal to prevent short circuit and an insulating portion disposed on the second terminal, respectively.
  • the collector sheet may be supplied in the form of a flop.
  • FIG. 10 is a diagram showing the aggregate 85a of the first electrode and the aggregate 85b of the second electrode shown in FIGS. 8 (b) and 9 (b) in more detail.
  • a strip-shaped first electrode mixture layer 82a and a second electrode mixture layer 82b are formed on the strip-shaped conductive layers 81a and 81b formed in the step (A). However, three are formed each.
  • an insulating material is applied along the edges of the first electrode mixture layer 82a and the second electrode mixture layer 82b to form the insulating material sections 168a and 168a. And 168b can be formed (see FIG. 16).
  • the insulating material portion is omitted.
  • the coating of the insulating material is not always necessary, and may be arbitrarily performed.
  • FIG. 11 is an explanatory diagram of the process.
  • the first electrode aggregate 85a, Separation 22 and the second electrode aggregate 85b are supplied from, for example, a raw material wound in a hoop shape. Then, these are continuously supplied while being laminated via rollers 24a, 24b and 24c. At this time, the first electrode mixture layer 8 2 a of the first electrode assembly 85 a and the second electrode mixture layer 8 2 b of the second electrode assembly 85 b are facing each other. These are laminated.
  • the exposed portion 83a of the conductive layer in the first electrode assembly 85a faces the exposed portion 84b of the resin sheet in the second electrode assembly 85b, and the first electrode assembly.
  • the assembly of both electrodes is arranged such that the exposed portion 84a of the resin sheet at 85a faces the exposed portion 83b of the conductive layer at the assembly 85b of the second electrode.
  • the raw material is supplied in such a form that it can be easily wound up with a plate-like pobin 25.
  • FIG. 12 shows an enlarged view of a portion surrounded by a broken line X in FIG.
  • the laminate supplied to the flat plate bobbin 25 is separated from the first electrode 20 It is composed of an aggregate 85a, a separator 22 and an aggregate 85b of second electrodes, and the first electrode mixture layer and the second electrode mixture layer have a relative positional relationship.
  • Process (D) is composed of an aggregate 85a, a separator 22 and an aggregate 85b of second electrodes, and the first electrode mixture layer and the second electrode mixture layer have a relative positional relationship.
  • the laminate supplied in the step (C) is wound around the flat bobbin 25 as described above.
  • the bobbin 25 winds the laminate along the length direction of the first electrode mixture layer and the second electrode mixture layer (the arrow in FIG. 12).
  • the leading end of the laminate to be wound first that is, the portion surrounded by the broken line Y shown in FIG. 13, may be projected slightly outside (the left side in FIG. 13) from the end of the bobbin 25. preferable. This is because, as described in the step (E), the bent portions at both ends of the laminate wound on the pobin 25 are cut and discarded. With this configuration, it is possible to prevent the first electrode and the second electrode from being short-circuited at the portion of Y.
  • the laminate wound around the bobbin is cut to obtain a plurality of laminated electrode groups.
  • the laminated portions 26a and 26b have a regular laminated structure and can be used effectively.
  • bent section 2 6 c at both ends to be disconnected by arrows and Y 2 are, because each component is interest bent or curved, it is preferable to discard cut.
  • FIG. 14 details of the laminated structure are omitted.
  • FIG. 15 shows the state of the laminated portions 26a and 26b.
  • the laminated parts 26 a and 26 b are arranged on the bobbin 25.
  • the gaps 28 are arranged at the same position in the laminating direction. Therefore, by cutting the laminate in the length direction (P direction) of the electrode mixture layer in the gap 28, the laminated electrode group shown in FIG. 160 precursors can be obtained.
  • the laminate may be cut at a predetermined position in the Q direction shown in FIG. 15 according to a desired size and capacity of the laminated electrode group. This cutting step can be performed after separating the laminated portions 26 a and 26 b from the bobbin 25, but can also be performed on the pobin 25.
  • the stacked portions 26a and 26b are an aggregate including a plurality of stacked electrode groups.
  • the opposing first and second side faces of the stacked electrode group are covered with a conductive material, and the first terminal 167a and the second It is preferable to perform a step of forming the terminal 167b.
  • the side surfaces of the electrode group where no terminals are formed may be left as they are, but are preferably coated with a porous insulating material.
  • Embodiment 5 the case where the predetermined pattern is band-shaped has been described. However, the above-described method can be applied to a matrix-shaped pattern as described in the third embodiment. Embodiment 5
  • steps (a) to (d) will be described in the order of the steps.
  • steps will be described as appropriate.
  • Other steps can be appropriately selected and performed by those skilled in the art according to the structure and use of the electrochemical element and the like.
  • the method of manufacturing the wound electrode group is not limited to the following.
  • FIG. 17 is a process chart of the manufacturing method according to the present embodiment.
  • FIG. 18 is a schematic perspective view of an assembly of a first electrode, a separator, and an assembly of a second electrode used in this manufacturing method.
  • FIG. 4 corresponds to a cross-sectional view of an electrochemical device obtained by the manufacturing method of the present embodiment.
  • Conductive layers 17 1 a and 17 1 b are formed on both sides of the 17 0 b in predetermined patterns, respectively, and the first current collector sheet 17 1 A and the second current collector sheet are formed. Get 1 7 1 B.
  • the method for producing the first current collector sheet 17A and the second current collector sheet 1717B is as described in the third and fourth embodiments.
  • the predetermined pattern is the conductive pattern of the first current collector sheet in FIG. 17 (6). It may be determined that only the layer is exposed on the first bottom surface and only the conductive layer of the second current collector sheet is exposed on the second bottom surface. Here, the conductive layer is formed except for the exposed portions 174a and 174b of the resin sheet.
  • the current collector sheets 1771A and 1771B in FIG. 17 are shown with a fixed length for convenience, but are actually long. This is because if it is long, it can be supplied continuously from a hoop-shaped raw material.
  • an insulating material portion by applying an insulating material along the ends of the first electrode mixture layers 172a and 1772b.
  • the insulating material part is not shown in FIGS. 17 and 18. This can prevent a short circuit between the first electrode and the second electrode when the bottom surface of the obtained wound electrode plate group is covered with the conductive material.
  • the formation of the insulating material portion may be performed in the same manner as in Embodiment Modes 3 and 4.
  • an assembly 1175a of the first electrode and an assembly 175b of the second electrode are stacked via a separator 176.
  • the laminate 1777 is wound in the direction of arrow X.
  • a wound body 178 as shown in FIG. 17 (5) is obtained.
  • the wound body 1 7 8 is composed of the first electrode mixture layer 1 7 2 a and the second electrode mixture layer.
  • the number of electrode groups corresponding to the number of 1 7 2 b is included. They are arranged in opposite directions.
  • first electrode assembly, separator and second electrode assembly are continuously supplied by continuously supplying, laminating, winding, and cutting at an appropriate position. Thus, it is possible to obtain a plurality of wound bodies 178.
  • the wound body 178 is cut at a position where the gaps 173a and 174b are arranged, and at a position where the gaps 173b and 174a are arranged. You. As a result, a plurality of wound electrode groups 179 as shown in FIG. 17 (6) are obtained.
  • the exposed portion of the conductive layer of the first current collector sheet is disposed on the first bottom surface (upper side) of the wound electrode group 1179, and the second bottom surface (lower side) is provided.
  • an exposed portion of the conductive layer of the second current collector sheet is provided. By covering these bottom surfaces with a conductive material, a first terminal and a second terminal can be provided.
  • FIG. 19 shows a vertical sectional view of the laminated electrode group 10a according to the present embodiment.
  • FIG. 20 is a sectional view taken along line aa of the electrode plate group 10a.
  • the outermost two second electrodes 15b ' have conductive layers 12b on both sides of the resin sheet 11b, but only the conductive layer 12b facing the inner electrode has electrodes.
  • a mixture layer is carried.
  • the electrode mixture layer is not carried on the outer conductive layer 12b, and the conductive layer 12b is exposed. If this part is connected to the end 12 y of the other conductive layer, the second terminal will be enlarged, and current can be collected not only from the side surface of the electrode group but also from the upper and lower surfaces.
  • Electrode group 10a has the same structure as electrode group 10 described in the first embodiment, except for the two outermost electrodes. As in the electrode group 10a 'shown in FIG. 21, electrodes having different polarities can be used as the outermost two electrodes. Electrode group
  • 10 a ′ has almost the same structure as the above-described electrode group 10 a, but has a conductive layer 12 a on both sides as one of the outermost electrodes, but has the same structure as the inner electrode. It has a first electrode 15a 'in which the first electrode mixture layer 14a is carried only on the opposing conductive layer 12a.
  • the first terminal will be enlarged, and the conductive layer that does not carry the second electrode mixture layer
  • FIG. 22 shows another embodiment of a cross-sectional view taken along line aa of the laminated electrode group 10 according to the first embodiment.
  • the third current collector sheet is located on the third side of the electrode group 10b (left side in Fig. 22).
  • the insulation of 13a (end 11x ") and the insulation of the second current collector sheet 13b (end 1ly ') are flush with each other, and the fourth side (Fig. On the right side, the insulating part (end 11x ') of the first current collector sheet 13a and the insulating part (end 11y ") of the second current collector sheet 13b are facing. It is arranged in one.
  • a short circuit between the first electrode and the second electrode can be effectively prevented.
  • it is effective to cover the third and fourth sides with an electronic insulating material, respectively.
  • the electronic insulating material needs to be porous. Therefore, in the electrode plate group 10b, the third side surface and the fourth side surface are coated with the electronically insulating porous material 19, respectively.
  • the porous material 19 is joined to the end of the separator by welding. According to such a configuration, the reliability of the electrochemical element can be drastically improved.
  • the porous material and the separator can be welded.
  • the same material as the separator it is preferable to use the same material as the separator as the porous material. If the same material is used, the end portion of the separator can be easily welded to the porous material, and a high welding strength can be obtained.
  • polyolefin, polyalkylene oxide, fluoropolymer, ceramics and the like can be used as the porous material.
  • polyethylene, polypropylene, or the like can be used for polyolefin
  • polyethylene oxide, polypropylene oxide, or the like can be used for polyalkylene oxide
  • polyfluorinated can be used for fluoropolymer.
  • Vinylidene, a copolymer of vinylidene fluoride and hexafluoropropylene, and the like can be used, and inorganic ceramics, glass fibers, and the like can be used for ceramics. These materials may be used alone or in combination of two or more.
  • a film-like member made of these materials may be used, and a coating film of a raw material paste containing these materials may be used.
  • the raw material paste can be used by imparting appropriate fluidity using a dispersion medium.
  • a polymer electrolyte conventionally used in a polymer battery or the like can also be used.
  • the polymer electrolyte can be prepared, for example, by mixing an electrolytic solution and a matrix member.
  • the above-mentioned polyalkylene oxyfluoride polymer or the like can be used for the matrix member.
  • FIG. 23 shows still another mode of the cross-sectional view along the line aa of the stacked electrode group 10 according to the first embodiment.
  • the third side surface and the fourth side surface of the electrode group 10c are covered with a coating film 19 ′ of a raw material paste of a porous material. Since the raw material paste of the porous material has fluidity, it can be easily applied to the side surfaces of the electrode plate group using a general coating device. In addition, simply attaching the side surface of the electrode plate group to the liquid surface of the raw material paste can cover the side surface with the raw material paste. When an unnecessary dispersion medium is volatilized from the raw material paste covering the side surfaces of the electrode group, a coating film adhered to the side surfaces of the electrode group can be obtained.
  • the ends of the first electrode mixture layer 14a and the second electrode mixture layer 14b are arranged at positions recessed from the third side surface and the fourth side surface.
  • the end of each electrode mixture layer may be arranged flush with the insulating portion of each current collector sheet and the end of the separator. Even with such a structure, since the third side surface and the fourth side surface are covered with the electronically insulating porous material, it is possible to sufficiently prevent a short circuit. In particular, when a porous material is welded to the end of the separator arranged on the side of the electrode group, or when a coating of porous material is formed on the side of the electrode group, a short circuit may occur. Is greatly reduced.
  • FIG. 24 is a top view of the electrode group 101 before being housed in the case
  • FIG. 25 is a side view of the electrode group viewed from the left side of FIG.
  • the first terminal of the electrode group 101 The first lead piece 103a and the second lead piece 103b are connected to the 102a and the second terminal 102b, respectively.
  • the first terminal or the second terminal is a positive terminal
  • the first terminal or the second terminal is the negative terminal, it is preferable to connect a lead piece made of copper, Ni, or the like to the terminal.
  • Each lead piece can be joined to each terminal by various welding processes.
  • the electrode plate group is accommodated in a case 180 composed of three parts as shown in FIG.
  • the case 180 includes a frame body 106, a flat first sheet 110a, and a flat second sheet 110b.
  • the frame body 106 surrounds the electrode plate group 101, and has the first side face and the second terminal provided with the first terminal 102a.
  • the two flat sheets cover the two opening surfaces of the frame 106 and are in contact with the upper and lower surfaces of the electrode plate group.
  • the peripheral edges of the two sheets 110a and b are joined to one and the other open ends of the frame 106, respectively.
  • the joining between the frame body 106 and the peripheral portions of the two sheets 110a and b may be performed by any method.
  • the frame 106 is provided with a first slit 107a and a second slit 107b, and the first lead piece 103a and the second lead piece 103b Through the slit, and is led out of the case. After each lead piece is led out, the gap between each slit is filled with a sealing material.
  • the electrode group is accommodated in a case 190 composed of two parts as shown in FIG.
  • the case 190 consists of a bottomed container 106 'and a flat sheet 110a'.
  • the container 106 ′ houses the electrode group 101.
  • the container 10 6 ′ is a side wall contacting the first side surface provided with the first terminal 102 a and the second side surface provided with the second terminal 102 b, and the upper and lower surfaces of the electrode group 101. Has a bottom portion that abuts one of the two.
  • 110 a ′ covers the opening of container 106 ′ and is in contact with the other of the upper and lower surfaces of electrode plate group 101.
  • the periphery of the sheet 110a ' is joined to the open end of the container 106'.
  • the joining between the container 106 'and the periphery of the sheet 110a' may be performed by any method.
  • the container 106 ′ is provided with a first slit 107 a ′ and a second slit 107 b ′, and the first lead piece 103 a and the second lead piece 110. 3b is led out of the case through these slits. After each lead piece is led out, the gap between the slits is filled with a sealing material.
  • the shape and material of the case are not particularly limited, but at least the frame 106 and the container 106 that contact the first side having the first terminal and the second side having the second terminal of the electrode plate group. It is preferable that the inner surface of the 'has an insulating property.
  • a frame 106 or a container 106 'made of an insulating material such as a resin material or ceramics.
  • the insulating material has a possibility of permeating the electrolytic solution and moisture
  • a frame having a first layer made of the insulating material and a second layer made of a metal foil that does not transmit the electrolytic solution and moisture is provided. It is more preferable to use 106 or container 106 '. In that case, the first layer is placed inside the case. Further, a third layer made of an insulating material can be further provided outside the metal foil.
  • a conductive material such as a metal foil can be used as it is.
  • the same material as that for the frame 106 and the container 106 ′ can be used.
  • a first layer made of an insulating material a polypropylene layer or the like can be used.
  • Aluminum foil or the like can be used for the second layer made of a metal foil that does not allow the electrolyte to pass therethrough.
  • the thickness of the first layer in the frame 106 or the container 106 ' is preferably from 1 to 100 m, and the thickness of the second layer is from 0.01 to 10; 0 m is preferred.
  • sheet 1 110 a is preferably from 1 to 100 m, and the thickness of the second layer is from 0.01 to 10; 0 m is preferred.
  • the thickness of the first layer is preferably from 1 to: LOOOOHI, and the thickness of the second layer is preferably from 0.01 to 100 m.
  • FIG. 28 shows an example of a cross-sectional view of the frame 106 or the container 106 ′ viewed from a direction perpendicular to the opening.
  • the frame 106 or the container 106 ′ is composed of an inner first layer 104, 104 ′ made of an insulating material and an outer metal foil second layer 105, 105. ' have.
  • FIGS. 29 and 30 show examples of cross-sectional views of the case 180 and the case 190 viewed from one direction parallel to the opening.
  • the first sheet 110a, 110a ' consists of a first layer 108a, 108a' of inner insulating material and a second layer of outer metal foil.
  • the second sheet 110b has a first layer 108b made of an inner insulating material and a second layer 110b made of an outer metal foil. Layer 109 b.
  • FIG. 31 shows a top view of the completed battery package containing the electrode group in the case 180 or 190. Further, FIGS. 32 and 33 show perspective views of the completed battery package in which the electrode groups are accommodated in cases 180 and 190, respectively.
  • the first lead piece 103a and the second lead piece 103b are led out, respectively, and the gap between the slits is the sealing material 112a, 1b. Filled with 1 2 a 'and 1 1 2 b, 1 1 2 b'.
  • the sealing material is made of a resin material that is resistant to electrolyte. Used.
  • Embodiment 9 The package as described above can be obtained efficiently with a small number of manufacturing steps because of the small number of parts.In addition, since the electrode group itself has a simple structure, the volume efficiency is high and excellent. It is possible to obtain a reliable battery. Embodiment 9
  • FIG. 34 shows a vertical sectional view of the electrode plate group 100 according to the present embodiment.
  • the electrode plate group 100 is composed of a plurality of first electrodes 110 and a plurality of second electrodes 120 that are alternately stacked, between the first electrode 110 and the second electrode 120.
  • the Separation evening 130 is interposed.
  • the first electrode 110 is composed of a first current collector sheet 112 and two first electrode mixture layers 114, and the first current collector sheet 112 is a resin sheet 116. And a conductive layer 118 provided on both surfaces thereof.
  • the first current collector sheet 112 has a conductive part and an insulating part according to the shape pattern of the conductive layer.
  • the electrode group of FIG. 1 includes two types of second electrodes 120a and 120b.
  • the inner second electrode 120 a sandwiched between the two first electrodes 110 is a second current collector sheet made of a conductive sheet 122 and two second electrode mixture layers. Consists of 1 2 4
  • the outermost two second electrodes 120b have the same structure as the inner second electrode 120a except that the second electrode mixture layer 124 is provided only on one inner surface. .
  • the second electrode constitutes the two outermost electrodes, but the first electrode provided with the first electrode mixture layer only on one inner side of the first current collector sheet is the most. It can be two external electrodes. Further, one of the two outermost electrodes may be used as the first electrode, and the other may be used as the second electrode.
  • the first electrode 110 the entire surface excluding one end 1 16X of the resin sheet
  • the conductive layer 118 is provided on the entire surface excluding the end portion 116X and the end portion located on the front and back of the sheet of FIG.
  • the first electrode mixture layer 114 is provided on the conductive layer 118.
  • the end 1 16 X or the end 1 16 X of the resin sheet having no conductive layer 118 and the front and back of FIG. 34 are shown.
  • the end located at serves as an insulating part.
  • the exposed portion of the conductive layer 118 is left at the end 118X of the conductive layer located on the opposite side of the end 116X.
  • the one end 122 or the end 122 of the conductive sheet 122 is located on the front and back of the sheet of FIG. 34. End is covered with an insulating material 126.
  • the conductive sheet 122 is exposed at the end 122 y of the conductive sheet located on the opposite side of the end 122 X.
  • the thickness of the conductive sheet 122 is preferably, for example, 0.5 to 500 im.
  • An ordinary conductive sheet having a flat surface may be used, and a perforated body, a lath body, a porous body, a net, a foam, a woven fabric, a nonwoven fabric, or the like may be used.
  • a conductive sheet having unevenness on the surface can be used.
  • the second electrode is a positive electrode, for example, stainless steel, aluminum, an aluminum alloy, titanium, carbon, or the like can be used as the material of the conductive sheet. Particularly, aluminum, an aluminum alloy, or the like can be used. I like it.
  • the second electrode is a negative electrode, for example, stainless steel, nickel, copper, copper alloy, titanium, or the like can be used, and copper, copper alloy, or the like is particularly preferable.
  • the thickness of the insulating material 126 is preferably, for example, 0.5 to 500 im.
  • a resin coating film can be used as the insulating material 126.
  • the resin coating is performed by applying a solution or dispersion containing an insulating resin to the end of the conductive sheet 122. It can be formed by coating and drying.
  • the coating method is not particularly limited. For example, a screen printing method, a die coating method, or the like can be used.
  • the solution or dispersion may be liquid or paste, and the viscosity thereof may be arbitrarily controlled.
  • the resin coating film can also be formed by applying a solution or dispersion containing a polymerizable compound to an end of the electrode mixture layer and polymerizing the polymerizable compound.
  • the insulating material 126 By covering the end of the conductive sheet 122 with a resin tape, the insulating material 126 can be provided.
  • the same insulating material as that formed along the edge of the electrode mixture layer can be used.
  • the end 1 18 X of the conductive layer of the first current collector sheet is arranged on the first side face of the electrode group, that is, on the left side in FIG. 34, and the end of the resin sheet located on the opposite side.
  • 1 16 X is arranged on the second side surface of the electrode group, that is, on the right side of FIG. 34. Further, the end portion 122 y of the conductive sheet 122 is disposed on the first side surface of the electrode group, and the end portion covered with the insulating material 126 on the opposite side is the electrode group. On the second side.
  • the width of the end portion 116X of the resin sheet is preferably 0.01 mm or more, and more preferably 0.1 mm or more. The same applies to the width of the end 122 X of the conductive sheet covered with the insulating material 126.
  • One of the causes that impairs the safety of the electrochemical element is a short circuit between the positive electrode current collector sheet and the negative electrode mixture layer, so that the first current collector sheet made of an insulating sheet It is preferable to use a current collector sheet and to use a second current collector sheet made of a conductive sheet for the negative electrode current collector sheet.
  • a resin sheet having a size capable of providing a desired number of current collector sheets is prepared, and a plurality of conductive layers having a predetermined shape are formed at the same position on both surfaces of the resin sheet. At this time, the exposed portion 210a of the resin sheet is left.
  • two first electrode mixture layers 310 are formed on each conductive layer.
  • An exposed portion 220a of the conductive layer that does not support the electrode mixture layer is left between the two first electrode mixture layers 310.
  • the exposed portion 220a of the conductive layer that does not carry the electrode mixture layer will later become the connection portion 220b to the first terminal.
  • the exposed portion 210a of the resin sheet becomes an insulating portion 210b that is later disposed on the second side surface of the electrode plate group.
  • the end of the first electrode mixture layer disposed on the second side surface in the electrode plate group is covered with an insulating material. Is also good.
  • the second electrode is manufactured in substantially the same manner as the first electrode except that a conductive sheet is used. That is, as in the case of the first electrode, a plurality of second electrode mixture layers having a predetermined shape are formed at the same position on both surfaces of the conductive sheet having a size capable of providing a desired number of electrodes. Thereafter, the conductive sheet is divided for each electrode.
  • an end of the conductive sheet to be arranged on the first side surface of the electrode plate group is covered with an insulating material. Further, an end of the first electrode mixture layer to be arranged on the first side face of the electrode group may be covered with an insulating material.
  • the second electrode having the second electrode mixture layer only on one side can be manufactured in the same manner as described above except that the second electrode mixture layer is not provided on the other side.
  • the first electrode mixture layer 310 of each first electrode and the second electrode mixture layer 320 of each second electrode are separated from each other.
  • the layers are stacked facing each other.
  • the number of layers is arbitrary.
  • the bipolar plates are arranged such that the connection portion 220b of the first electrode to the first terminal faces the insulating material 322 covering the end of the conductive sheet 321 of the second electrode. .
  • a pair of second electrodes having a second electrode mixture layer only on one side are arranged, and the inner electrodes are sandwiched by these, and the whole is pressed.
  • a first electrode 410 and a second electrode 420 each having a band shape as shown in FIG. 36 (a) are used.
  • the first electrode 410 and the second electrode 420 have different shapes, they have the same structure as the first electrode and the second electrode used for the stacked electrode plate group. Therefore, the manufacturing method of the first electrode and the second electrode is almost the same as that of the stacked type.
  • connection portion 412 with the first terminal formed of an exposed portion of the conductive layer is provided at one end of the first electrode 410 along the longitudinal direction.
  • an insulating portion 413 made of a resin sheet is provided.
  • the end of the conductive sheet 422 is exposed, and the other end of the conductive sheet 422 is made of an insulating material 4. Coated with 23.
  • the first electrode 410 and the second electrode 420 are laminated via a separator 430 and wound.
  • a wound electrode plate group 400 as shown in FIG. 36 (c) is obtained.
  • On one bottom surface (first bottom surface) of such an electrode plate group a connection portion 4 1 2 with the first terminal of the first current collector sheet and an insulating material 4 2 3 of the second current collector sheet are provided.
  • the other bottom surface (second bottom surface) is alternately and concentrically arranged.
  • the exposed portion of the conductive sheet 42 and the insulating portion 41 of the first current collector sheet are alternately arranged. They are arranged concentrically. Therefore, the first bottom surface and the second bottom surface can be covered with the first terminal and the second terminal, respectively, as described above.
  • a stacked lithium ion secondary battery was manufactured in the following manner.
  • PET polyethylene terephthalate
  • a thickness of ⁇ m was prepared.
  • the thickness of the copper deposition film was 0.1 lm.
  • a paste composed of the electrode mixture was prepared. This paste was applied to the entire surface of each deposited film except the center. As a result, two first electrode mixture layers of 3 2 111 111 4 6 111 111 were formed on each deposited film. Between the two first electrode mixture layers, an exposed portion of a copper vapor-deposited film having no electrode mixture layer was left in a groove shape having a width of 1 mm. Thereafter, the coating film of the paste was dried, and the dried coating film was rolled with a roller to a thickness of 70 / m.
  • NMP N-methyl-2-pyrrolidone
  • a 70-m polyvinylidene fluoride coating film was formed and used as an insulating material. In this way, an aggregate of the first electrodes having the first electrode mixture layers of 6 rows and 6 columns on both surfaces was obtained.
  • a second electrode having a second electrode mixture layer on both surfaces was produced.
  • An ET sheet was prepared. Next, a plurality of rectangular (64 mm ⁇ 45 mm) aluminum vapor-deposited films arranged in three rows and six columns were formed at the same position on both sides of the PET sheet using a mask having a matrix opening. The thickness of the A1 vapor-deposited film was 0.1 m.
  • Lithium cobaltate (L i C O_ ⁇ 2) 1 0 0 parts by weight of the active material, the conductive material and 3 parts by weight of acetylene black, and polyvinylidene fluoride 7 by weight of the binder, an appropriate amount of a dispersion medium
  • a paste composed of the second electrode mixture was prepared by mixing with a carboxymethylcellulose aqueous solution. This paste was applied to the entire surface of each deposited film except the central portion. As a result, two 31 mm ⁇ 45 mm second electrode mixture layers were formed on each of the deposited films. Between the two second electrode mixture layers, an exposed portion of the A1 vapor-deposited film having no mixture was left in a groove shape having a width of 2 mm. Thereafter, the coating film of the paste was dried, and the dried coating film was rolled with a roller until the thickness became 70 im.
  • the above-mentioned NMP solution is applied by a screen printing method to a portion opposite to a portion adjacent to the exposed portion of the deposited film,
  • a second electrode having a second electrode mixture layer on only one side and a conductive layer, a second electrode mixture layer, and an insulating material provided on the other side were prepared in the same manner as described above. .
  • the assembly made up of a plurality of electrode stacks was divided for each electrode stack. .
  • first side On one side (first side), exposed portions of the deposited film of the first current collector sheet and exposed portions of the PET of the second current collector sheet were alternately arranged. On the opposite second side, exposed portions of the deposited film of the second current collector sheet and exposed portions of the PET of the first current collector sheet were alternately arranged. On the other two sides, exposed portions of the PET of each current collector sheet were arranged. Semi-molten copper fine particles are blown onto the first side surface where the exposed portions of the deposited copper film of the first current collector sheet and the exposed portions of the PET of the second current collector sheet are alternately arranged. I attached. As a result, a copper film having a thickness of 0.5 mm was formed on the first side surface.
  • the exposed portion of the copper deposition film was buried to a depth of 0.2 mm inside the copper film. Since the end surface of the second electrode mixture layer disposed on the first side surface is covered with a polyvinylidene fluoride coating film, the copper film formed by spraying may not come into contact with the second electrode. Did not. This copper film was used as it was as a negative electrode terminal.
  • a lead wire was connected to each of the copper film and the aluminum film of the obtained electrode plate group, and a charge / discharge test was performed using an external charge / discharge device.
  • the electrolyte used here was ethylene carbonate (EC) and ethyl methyl carbonate.
  • EMC EMC in a volume ratio of 3 0: 7 in a mixed solvent were mixed at 0, was prepared by dissolving L i PF 6 at a concentration of 1 mol / L.
  • the charging and discharging were performed in a 20 ° C. atmosphere. Charging and discharging were performed in a current mode of 2.5 mAZ cm 2 with respect to the electrode area, respectively.
  • the end-of-charge voltage was 4.2 V.
  • the discharge end voltage was 3.0 V.
  • the electric capacity obtained under the above conditions was 90 OmAh. [Short circuit occurrence rate]
  • a first electrode having a first electrode mixture layer having the same composition and thickness as in Example 1 was prepared using a conventionally used core material made of copper foil, and using a core material made of aluminum foil.
  • a second electrode composed of a second electrode mixture layer having the same composition and thickness as in Example 1 was produced, and these were laminated to produce a battery having the same capacity of 900 as in Example 1.
  • the end of the first electrode protruded from the first side face of the electrode plate group, and the end of the second electrode protruded from the second side face opposite to the first side face.
  • the insulating material portion covering the end of the electrode mixture layer was not provided on the first electrode or the second electrode. Electrodes of the same polarity were connected with leads to complete the battery.
  • the capacity of the obtained battery was the same as that of Example 1, but the capacity of the battery was about 1.2 times that of the battery of Example 1.
  • the capacity of the battery was about 1.2 times that of the battery of Example 1.
  • a wound lithium ion secondary battery was manufactured in the following manner.
  • first electrode A sheet of polyethylene terephthalate (hereinafter referred to as PET) with a width of 198 mm, a length of 506 mm, and a thickness of 7 m was prepared.
  • PET polyethylene terephthalate
  • the thickness of the deposited copper film was 0.1 l ⁇ m.
  • a paste composed of the electrode mixture was prepared. This paste was applied to the entire surface of each vapor-deposited film except the central part, and two rows of 32 mm x 506 mm band-shaped first electrode mixture layers were formed on each vapor-deposited film. An exposed portion of a copper vapor deposition film having no first electrode mixture was left in a groove shape having a width of 1 mm between the two rows of strip-shaped first electrode mixture layers. Thereafter, the coating film of the paste was dried, and the dried coating film was rolled to a thickness of 70 with a roller.
  • a second electrode having a band-shaped second electrode mixture layer on both surfaces was produced.
  • a PET sheet with a width of 198 mm, a length of 506 mm and a thickness of 7 was prepared.
  • a plurality of strip-shaped (64 mm ⁇ 506 mm) aluminum vapor deposition films arranged in three rows were formed at the same position on both sides of the PET sheet using a mask having a matrix opening.
  • the thickness of the A1 vapor-deposited film was 0.1 m.
  • Lithium cobaltate (L i C O_ ⁇ 2) 1 0 0 parts by weight of the active material, the conductive material and 3 parts by weight of acetylene black, and polyvinylidene fluoride 7 by weight of the binder, an appropriate amount of a dispersion medium
  • a paste composed of the second electrode mixture was prepared by mixing with a carboxymethylcellulose aqueous solution. This paste was applied to the entire surface of each deposited film except for the central portion, and a 31 mm ⁇ 506 mm strip-shaped second electrode mixture layer was formed on each deposited film in two rows. The exposed portion of the deposited A 1 film having no second electrode mixture was left in a groove shape having a width of 2 mm between the two rows of the second electrode mixture layers. Thereafter, the coating film of the paste was dried, and the dried coating film was rolled with a roller until the thickness became 70.
  • the assembly of the first electrode and the assembly of the second electrode were wound after being stacked via a separator.
  • the first electrode mixture layer and the second electrode mixture layer face each other, and the exposed portion of the deposited film and the insulating material portion made of polyvinylidene fluoride coating film on the first electrode are respectively separated.
  • the second electrode was made to face the insulating material portion made of the polyvinylidene fluoride coating film and the exposed portion of the deposited film. As a result, a long cylindrical aggregate composed of a plurality of wound electrode plates alternately arranged in the opposite direction was obtained.
  • the assembly thus obtained was cut at the center of the exposed portion of the deposited film on the first electrode and at the center of the exposed portion of the deposited film on the second electrode, and divided for each electrode group.
  • Semi-molten copper particles were sprayed on the side (first bottom) where the exposed part of the copper vapor deposition film of the first current collector sheet and the PET resin part of the second current collector sheet were alternately arranged. .
  • a mask was put on the corresponding portion.
  • a copper film having a thickness of 0.5 mm was formed on the first bottom surface.
  • the exposed portion of the copper deposition film was buried to a depth of 0.2 mm inside the copper film. Since the end surface of the second electrode mixture layer disposed on the first bottom surface was covered with a polyvinylidene fluoride coating film, the copper film formed by spraying did not come into contact with the second electrode . This copper film was used as it was as a negative electrode terminal.
  • the aluminum film formed by spraying does not come into contact with the first electrode.
  • This aluminum film was used as it was as a positive electrode terminal.
  • the electrode group thus obtained was housed in a stainless steel cylindrical battery case, and the copper film on the bottom surface of the electrode group was connected to the inner bottom surface of the case.
  • the aluminum film on the top of the electrode group was connected via aluminum leads to the back side of the sealing plate around which an insulating gasket was arranged.
  • the electrolyte was poured into the case, and the electrolyte was impregnated inside the electrode assembly. After that, the opening of the case was sealed with a sealing plate to complete the cylindrical battery.
  • the electrolyte used here is a volume ratio of ethylene carbonate (EC) and ethyl methyl carbonate (EMC). 3 0: 7 in a mixed solvent were mixed at 0, was prepared by dissolving L i PF 6 at a concentration of 1 mol ZL. Comparative Example 2
  • a wound-type lithium-ion secondary battery was manufactured in the same manner as in the related art. That is, a first electrode composed of a 32 ⁇ 506 mm strip-shaped copper foil and a first electrode mixture layer having the same composition and thickness as those of Example 2 supported on both surfaces thereof was prepared. A second electrode composed of a 0.6 mm strip-shaped aluminum foil and a second electrode mixture layer having the same composition and thickness as in Example 2 carried on both surfaces thereof was produced. Each electrode plate was provided with an uncoated part of the electrode mixture layer for connecting the current collector, and the current collection tab was connected to it. The first electrode and the second electrode were wound via a separator to produce an electrode group.
  • the electrode group thus obtained was accommodated in a stainless steel cylindrical battery case having a diameter 1.2 times larger than that used in Example 2, and the second electrode lead was welded to the inner bottom surface of the case.
  • the first electrode lead was connected to the back side of a sealing plate around which an insulating gasket was arranged.
  • the electrolytic solution was poured into the case, and the same electrolytic solution as in Example 2 was impregnated inside the electrode assembly. After that, the opening of the case was sealed with a sealing plate to complete the cylindrical battery.
  • the reason why a battery case larger than that of Example 2 was required in Comparative Example 2 was that the diameter of the electrode group was increased because the current collecting tab was interposed in the electrode group.
  • the batteries of Example 2 and Comparative Example 2 had the same capacity, but the battery of Comparative Example 2 was 1.2 times larger than the battery of Example 2.
  • Example 2 and Comparative Example 2 were respectively charged and discharged in an atmosphere at 20 ° C. Charging and discharging were performed in a current mode of 2.5 mA / cm 2 with respect to the electrode area, respectively.
  • the end-of-charge voltage was 4.2 V. End of discharge The voltage was 3.0 V.
  • the electric capacity of each of the batteries of Example 2 and Comparative Example 2 obtained under the above conditions was 900 mAh. '
  • the batteries of Example 2 and Comparative Example 1 were charged in a 20 ° C atmosphere in a current mode of 2.5 mA / cm 2 with respect to the electrode area up to a charge cutoff voltage of 4.2 V. Discharge was performed at a current value of 0.2 C (0.5 mA / cm 2 ). After that, the batteries of Example 2 and Comparative Example 1 were again charged in the same current mode as described above to a charge end voltage of 4.2 V, and discharged at a current value of 2 C (5 mA / cm 2 ). . As a result, the capacity of the battery of Example 2 when discharged at 2 C was 90% of the capacity when discharged at 0.2 C, but the capacity of the battery of Comparative Example 1 was 2%. The capacity when discharged was 80% of the capacity when discharged at 0.2 C.
  • Example 3 100 batteries of each of Example 2 and Comparative Example 2 were manufactured, and the vicinity of the current collecting terminals of these batteries was crushed. Thereafter, the battery voltage was measured, and the batteries with the possibility of internal short circuit were generated. The number was checked. The number of batteries that could cause an internal short circuit was 0 in Example 2 but was 2 in Comparative Example 2.
  • Example 3 100 batteries of each of Example 2 and Comparative Example 2 were manufactured, and the vicinity of the current collecting terminals of these batteries was crushed. Thereafter, the battery voltage was measured, and the batteries with the possibility of internal short circuit were generated. The number was checked. The number of batteries that could cause an internal short circuit was 0 in Example 2 but was 2 in Comparative Example 2.
  • Example 3 100 batteries of each of Example 2 and Comparative Example 2 were manufactured, and the vicinity of the current collecting terminals of these batteries was crushed. Thereafter, the battery voltage was measured, and the batteries with the possibility of internal short circuit were generated. The number was checked. The number of batteries that could cause an internal short circuit was 0 in Example 2 but was 2 in Comparative
  • a laminated electrode group similar to that of Example 1 was prepared, and a negative electrode terminal made of a copper film was connected to a nickel negative electrode lead (thickness 100 mm, dimensions 2 mm ⁇ 30 mm). The ends were joined by welding. One end of an aluminum positive electrode lead (thickness: 100 m, dimensions: 2 mm ⁇ 30 mm) was joined to the positive electrode terminal made of aluminum film by welding. The other end of each lead protruded about 5 mm from one side of the electrode plate group.
  • the frame body 106 has a two-layer laminated material including: a 500-m-thick polypropylene layer disposed inside the case; and a 20-thick aluminum foil disposed outside the case.
  • the outer dimensions of the frame were 34 mm ⁇ 50 mm ⁇ 5 mm.
  • the two flat sheets 110 a and b have an 80 m thick polypropylene layer disposed inside the case, and a 20 m thick aluminum foil disposed outside the case.
  • a two-layer laminated material was used.
  • the outer dimensions of the flat sheet were 34 x 50, the same as the frame.
  • Two slits 107a and b with a width of 100 m were formed on one side wall of the frame.
  • the projecting portions of the positive electrode lead and the negative electrode lead joined to the electrode plate group were passed through slits 107a and 107b of the frame, respectively, and the electrode plate group was surrounded by the frame. Then, the frame and the electrode plate group were sandwiched together by the two sheets 110 a and b each having the polypropylene layer disposed inside. The periphery of the sheets 110a and 110b was heated to melt the polypropylene layer, and each sheet was welded to the open end of the frame. After the electrolyte was injected into the case and the electrode group was sufficiently impregnated with the electrolyte, the slit gap was sealed at a pitch.
  • electrolyte used was E Ji Ren carbonate (EC) and E chill methyl carbonate (EMC) volume ratio of 3 0: 7 mixed solvent were mixed at 0, the L i PF 6 1 mol / concentration of L Prepared by dissolving in Thus, the battery was completed.
  • a case consisting of two parts as shown in Fig. 27 was fabricated.
  • the container 106 ′ a two-layer laminated material having a polypropylene layer disposed inside the case and an aluminum foil having a thickness of 20 disposed outside the case was used.
  • the thickness of the polypropylene layer on the side wall of the container was 500 m, and the thickness of the polypropylene layer on the bottom of the container was 80 in.
  • the outer dimensions of the container were 34 mm X 50 mm X 5 mm.
  • the flat sheet 110a ' has two layers: an 80m thick polypropylene layer placed inside the case, and a 20th aluminum foil placed outside the case. Was used.
  • the outer dimensions of the flat sheet were 34 ⁇ 50, the same as the outer dimensions of the container opening.
  • Two slits 107 a ′ and b ′ having a width of 100 m were formed on one of the side walls of the container.
  • a battery was produced in the same manner as in Example 3, except that the above case was used. That is, the protruding portions of the positive electrode lead and the negative electrode lead joined to the electrode group are passed through slits 107a 'and b' of the container, respectively, and the electrode group is placed in the container. Housed. Then, the electrode group was covered from the opening side of the container with a sheet 110a 'having a polypropylene layer disposed inside. Heat the periphery of sheet 110a 'to melt the polypropylene layer, and open the sheet and container And were welded. An electrolytic solution having the same composition as that described above was injected into the case, and the electrode group was sufficiently impregnated with the electrolytic solution. The capacity of the obtained battery and the capacity of the battery were the same as those in Example 3. Further, even when the battery of Example 4 was dropped and subjected to a mechanical shock, no voltage drop due to an internal short circuit was observed. Comparative Example 3
  • a first electrode having a first electrode mixture layer having the same composition and thickness as in Example 3 was prepared using a core material made of a conventionally used copper foil, and a core material made of an aluminum foil was used.
  • a second electrode composed of a second electrode mixture layer having the same composition and thickness as in Example 1 was produced, and these were laminated to produce a battery having the same capacity of 90 OmAh as in Example 3.
  • the end of the first electrode protruded from the first side face of the electrode plate group, and the end of the second electrode protruded from the second side face opposite to the first side face.
  • a current collector was welded to the end of the electrode protruding from each side, and a lead was connected to the current collector to complete the electrode group. After covering these electrode plates with a separator, they were housed in a conventional aluminum square case to complete the battery.
  • Example 5 The capacity of the obtained battery was the same as that of Example 3, but the capacity of the battery was about 1.2 times that of the battery of Example 3. Further, when the battery of Comparative Example 3 was dropped and subjected to a mechanical shock, a slight voltage drop due to an internal short circuit was observed.
  • Example 5 The capacity of the obtained battery was the same as that of Example 3, but the capacity of the battery was about 1.2 times that of the battery of Example 3. Further, when the battery of Comparative Example 3 was dropped and subjected to a mechanical shock, a slight voltage drop due to an internal short circuit was observed.
  • Example 6 An electrode group similar to that of Example 1 was produced, and a negative electrode lead made of nickel and a positive electrode lead made of aluminum were welded to the first terminal and the second terminal of the electrode group by ultrasonic welding. The joint area between each terminal and each lead is 0.5 cm 2 .
  • the electrode group to which the leads were joined was immersed in a predetermined electrolytic solution to sufficiently impregnate the electrolytic solution inside the electrode group. Electrolyte used here, the volume of ethylene carbonate (EC) and the E chill methyl carbonate (EMC) ratio of 3 0: 7 in a mixed solvent containing at 0, was dissolved L i PF 6 at a concentration of 1 mol / L Prepared. Thus, the lithium ion secondary battery X was completed.
  • EC ethylene carbonate
  • EMC E chill methyl carbonate
  • Example 2 The same electrode plate stack as in Example 1 was produced. Further, a conductive paste A comprising 30 parts by weight of a resin imidamide and 70 parts by weight of copper powder of conductive fine particles (average particle diameter: 20 m) was prepared. Then, the conductive paste A is applied to the first side face where the exposed portion of the deposited copper film of the first current collector sheet and the exposed portion of the PET of the second current collector sheet are arranged alternately. After coating, the electrode stack was heated at 70 ° C. to cure the resin. As a result, a first terminal having a thickness of 0.5 mm was formed on the first side surface. The exposed portion of the deposited copper film was buried to a depth of 0.5 mm inside the first terminal. Also, the exposed portion of the copper vapor deposition film was exposed to the outer surface through the first terminal. The first terminal was used as a negative terminal.
  • a conductive paste B comprising 30 parts by weight of a resin polyimide and 70 parts by weight of aluminum fine particles (average particle diameter: 20 m) of conductive fine particles was prepared. Then, a conductive base B is applied to the second side surface of the second current collector sheet where the exposed portions of the deposited film A1 and the exposed portions of the PET of the first current collector sheet are alternately arranged. The electrode stack was heated at 70 ° C. to cure the resin. As a result, a second terminal having a thickness of 0.5 mm was formed on the second side surface. The exposed part of the deposited film of A 1 was buried to a depth of 0.5 mm inside the second terminal. Further, the exposed portion of the evaporated film of A1 was exposed to the outer surface through the second terminal.
  • the second terminal was used as a positive terminal.
  • a negative electrode lead made of nickel and a negative electrode made of aluminum were connected to the first terminal of the electrode group obtained in this manner, in which the exposed portion of the copper deposition film was exposed, and the second terminal, in which the exposed portion of the A1 deposition film was exposed.
  • the positive electrode lead was welded by laser welding.
  • the joint area between each terminal and each lead was 0.5 cm 2 .
  • the electrode group to which the lead wires were bonded was immersed in a predetermined electrolyte solution, and the inside of the electrode group was sufficiently impregnated with the electrolyte solution.
  • the same electrolytic solution as in Example 5 was used.
  • a lithium ion secondary battery Y was completed.
  • An electrode plate stack similar to that of Example 1 was produced.
  • a solder made of a Pb—Sn—Bi alloy (melting point: 100 ° C.) was prepared and melted in a bath. Then, the first side surface where the exposed portion of the copper vapor deposition film of the first current collector sheet and the exposed portion of the PET of the second current collector sheet are alternately arranged is brought into contact with the liquid level of the molten solder. , Raised immediately. As a result, a first terminal having a thickness of 0.5 mm was formed on the first side surface. The exposed portion of the copper deposition film was buried to a depth of 0.2 mm inside the first terminal. The first terminal was used as a negative terminal.
  • the exposed side of the deposited film of A1 on the second current collector sheet and the exposed side of the PET on the first current collector sheet are alternately arranged on the second side surface, which is brought into contact with the liquid surface of the molten solder, and immediately pulled up Was.
  • a second terminal having a thickness of 0.5 mm was formed on the second side surface.
  • the exposed portion of the evaporated film of A 1 was buried inside the second terminal to a depth of 0.2 mm.
  • the second terminal was used as a positive terminal.
  • a negative electrode lead made of nickel and a positive electrode lead made of aluminum were respectively welded to the first terminal and the second terminal of the obtained electrode plate group by resistance welding.
  • the joint area between each terminal and each lead was 0.5 cm 2 .
  • the electrode group to which the lead wires were bonded was immersed in a predetermined electrolyte solution, and the inside of the electrode group was sufficiently impregnated with the electrolyte solution.
  • the same electrolytic solution as in Example 5 was used. This Thus, the lithium ion secondary battery Z was completed.
  • the charge / discharge test of the lithium ion secondary batteries X, Y and Z was performed using an external charge / discharge device.
  • the charging and discharging were performed in a 20 ° C. atmosphere. Charging and discharging were performed in a current mode of 2.5 mA / cm 2 with respect to the electrode area, respectively.
  • the end-of-charge voltage was 4.2 V.
  • the discharge end voltage was 3.0 V.
  • the electric capacities of the batteries X, Y and Z obtained under the above conditions were 900 mAh, respectively.
  • the batteries X, Y, and Z were charged in a current mode of 2.5 mAZ cm 2 with respect to the electrode area up to a charge cutoff voltage of 4.2 V in a 20 ° C atmosphere, and a charge of 0.2 C (0.5 mA / cm 2 ). Thereafter, X, Y, and Z were charged again in the same current mode as described above up to a charge end voltage of 4.2 V, and discharged at a current value of 2 C (5 mA / cm 2 ). As a result, for battery X, the capacity when discharged at 2 C is 90% of the capacity when discharged at 0.2 C, and for battery Y, the capacity when discharged at 2 C is 0. The capacity when discharged at 2 C was 90% of the capacity when discharged at 2 C, and for the battery Z, the capacity when discharged at 2 C was 89% of the capacity when discharged at 0.2 C.
  • a laminated electrode group similar to that of Example 1 was prepared except that an electrode having only a conductive layer on the other surface was used as a second electrode having a second electrode mixture layer on only one surface (FIG. 1). 9). On the other surface, a second electrode mixture layer and No insulating material was provided.
  • Electrolyte solution used herein include ethylene carbonate (EC) and Echirumechiru force one Boneto (EMC) in a volume ratio of 3 0: 7 in a mixed solvent were mixed at 0, dissolving the L i PF 6 at a concentration of 1 mol / L Prepared.
  • the charge and discharge were performed in an atmosphere at 20 ° C. Charging and discharging were performed in a current mode of 2.5 mAZ cm 2 with respect to the electrode area, respectively.
  • the end-of-charge voltage was 4.2 V.
  • the discharge termination voltage was 3.0 V.
  • the electric capacity obtained under the above conditions was 90 O mAh.
  • a laminated electrode group similar to that of Example 1 was produced.
  • the third side and the fourth side of each current collector sheet where the exposed portions of the PET and the ends of the separator were arranged were completely covered with the same porous material as the separator.
  • Separee A microporous film made of polyethylene with a thickness of 50 m was used for the porous material and the porous material, respectively.
  • the flat surface of the jig heated to 100 ° C was pressed from the outside against the porous material covering the third and fourth side surfaces, and the end of the separator and the porous material were welded. . Thereafter, the electrolytic solution was sufficiently permeated into the electrode assembly through the porous material.
  • Electrolyte solution used herein include ethylene carbonate (EC) and E chill methyl carbonate Ne Ichito (EMC) in a volume ratio of 3 0: 7 in a mixed solvent obtained by mixing at 0, the L i PF 6 1 mol / L of It was prepared by dissolving at a concentration.
  • EC ethylene carbonate
  • EMC E chill methyl carbonate Ne Ichito
  • a lead wire was connected to each of the copper film and the aluminum film of the obtained electrode plate group, a battery was constructed, and a charge / discharge test was performed using an external charge / discharge device.
  • the charging and discharging were performed in a 20 ° C. atmosphere. Charging and discharging were performed in a current mode of 2.5 mA / cm 2 with respect to the electrode area, respectively.
  • the end-of-charge voltage was 4.2 V.
  • the discharge end voltage was 3.0 V.
  • the electric capacity obtained under the above conditions was 90 OmAh.
  • Example 9 Except that the exposed side of the PET and the end of the separator were arranged on each of the current collector sheets, the third side and the fourth side were covered with a coating film of a raw material paste of a porous material.
  • An electrode group similar to that described above was produced. That is, the third side and the fourth side of the electrode plate group were completely covered with the raw material base and dried, whereby each side was covered with a porous material having a thickness of 50 / im.
  • Raw material paste For this, a mixture prepared by mixing 10 parts by weight of alumina, 10 parts by weight of polyvinylidene fluoride, and 80 parts by weight of methylethylketone was used.
  • Example 11 The capacity of the obtained battery and the capacity of the battery were the same as those in Example 9. When 100 similar batteries were produced and the short-circuit occurrence rate was examined, there was no battery with the possibility of internal short-circuit.
  • Example 11 The capacity of the obtained battery and the capacity of the battery were the same as those in Example 9. When 100 similar batteries were produced and the short-circuit occurrence rate was examined, there was no battery with the possibility of internal short-circuit.
  • benzyldimethyl ketal was dissolved in 100 parts by weight of polyethylene oxide diacrylate to prepare an acrylate solution to start polymerization by irradiation with ultraviolet rays.
  • the above acrylate solution was applied with a width of 0.3 mm to predetermined peripheral portions of the first electrode mixture layer and the second electrode mixture layer by a screen printing method. Thereafter, the coating film was irradiated with ultraviolet rays for 1 minute using a high-pressure mercury lamp having a maximum output wavelength of 365 nm to cure the coating film. The thickness of the cured coating film was 70.
  • An electrode group was produced in the same manner as in Example 1, except that the insulating material portion was provided.
  • Example 1 2
  • a resin tape with a width of 0.3 mm and a thickness of 70 ⁇ m was attached to the predetermined peripheral portion of the first electrode mixture layer and the second electrode mixture layer, respectively. Except for this, an electrode group was produced in the same manner as in Example 1.
  • a resin tape composed of a 60-m-thick polypropylene base material and a 5-m-thick adhesive layer carried on both surfaces thereof was used.
  • An acryl resin was used as the adhesive.
  • Example 11 The batteries of Examples 11 and 12 were made 100 mm each, and the area near the current collecting terminals of these batteries was crushed. Thereafter, the battery voltage was measured to determine the number of batteries that could cause internal short circuit. Was examined. The number of batteries that could cause internal short circuit was 0 in each of the examples.
  • Example 13 The batteries of Examples 11 and 12 were made 100 mm each, and the area near the current collecting terminals of these batteries was crushed. Thereafter, the battery voltage was measured to determine the number of batteries that could cause internal short circuit. Was examined. The number of batteries that could cause internal short circuit was 0 in each of the examples.
  • Example 13 The batteries of Examples 11 and 12 were made 100 mm each, and the area near the current collecting terminals of these batteries was crushed. Thereafter, the battery voltage was measured to determine the number of batteries that could cause internal short circuit. Was examined. The number of batteries that could cause internal short circuit was 0 in each of the examples.
  • Example 13 The batteries of Examples 11 and 12 were made 100 mm each, and the area near the current collecting terminals of
  • a stacked lithium ion secondary battery was manufactured in the following manner.
  • Example 1 a positive electrode assembly having a 6-row, 6-column positive electrode mixture layer on both surfaces was obtained. This positive electrode assembly was divided for each row. At one end along the longitudinal direction of the divided positive electrode assembly, there is an end of a PET sheet having a 1 mm wide A1 vapor-deposited film, and at the other end, a 1 mm wide A1 There was an edge of the PET sheet without the deposited film.
  • a copper foil having a width of 198 mm, a length of 282 mm, and a thickness of 7 m was prepared.
  • Negative electrode mixture 100 parts by weight of the active material spherical graphite (graphitized mesophase small spheres), 3 parts by weight of styrene butadiene rubber as a binder, and an appropriate amount of an aqueous solution of carboxymethylcellulose as a dispersion medium were mixed.
  • Negative electrode mixture was prepared. This paste was applied to both surfaces of a copper foil in the same pattern as that for the positive electrode, and dried to form a plurality of 32 mm ⁇ 46 mm negative electrode mixture layers. Thereafter, the negative electrode mixture layer was rolled with a roller until the thickness reached 70.
  • the end of the negative electrode mixture layer to be adjacent to the positive electrode terminal was covered with a 0.3 mm-wide PVDF coating.
  • a negative electrode assembly having negative electrode mixture layers in 6 rows and 6 columns on both surfaces was obtained.
  • This negative electrode assembly was divided into rows. At both ends along the longitudinal direction of the divided negative electrode assembly, a copper foil exposed portion having a width of 0.5 mm was present.
  • a negative electrode having a negative electrode mixture layer on only one side was produced in the same manner as described above, except that the negative electrode mixture layer and the like were not provided on the other side.
  • Two negative electrode assemblies each having a negative electrode mixture layer on both sides sandwiched one positive electrode assembly via a separator.
  • the positive electrode mixture layer and the negative electrode mixture layer faced each other.
  • the end of the PET sheet having the A1 vapor-deposited film of the positive electrode and the end of the copper foil of the negative electrode covered with the PVDF coating were arranged on the same side.
  • a pair of negative electrodes having a negative electrode mixture layer on only one side were arranged, and the inner electrodes were sandwiched by these, and the whole was pressed.
  • an aggregate consisting of multiple electrode plates was obtained.
  • This assembly was divided for each electrode stack.
  • a series of coating and laminating processes resulted in six electrode stacks at a time.
  • the semi-molten A 1 fine particles are sprayed on the side where the edge of the PET sheet having the A 1 vapor-deposited film of the positive electrode and the end coated with the PVDF coating of the copper foil of the negative electrode are alternately arranged.
  • a 0.5 mm Al film was formed.
  • the A 1 deposited film was buried inside the A 1 film to a depth of 0.2 mm. This A1 film was used as a positive electrode terminal.
  • the semi-molten copper is placed on the side where the edges of the PET sheet without the A1 vapor-deposited film and the edges of the negative electrode copper foil that are not covered with the PVDF coating are alternately arranged. Fine particles were sprayed to form a Cu film having a thickness of 0.5 mm. At this time, the end of the copper foil was buried inside the Cu film to a depth of 0.2 mm. This Cu film was used as a negative electrode terminal. Comparative Example 4
  • a positive electrode was produced using a conventionally used core material made of A1 foil having a thickness of 7, and a lithium ion secondary battery was produced in the same manner as in Example 13 except that this positive electrode was used. However, in order to prevent a short circuit between the core material made of the A1 foil and the negative electrode terminal, the end of the A1 foil was coated with a PVDF coating film except for the connection portion with the positive electrode terminal.
  • Electrode wires were respectively connected to the A1 film and the Cu film of each battery, and a charge / discharge test was performed in an atmosphere of 20 ° C using an external charge / discharge device.
  • the electrolyte used here was ethylene carbonate (EC) and ethyl methyl carbonate.
  • EMC EMC in a volume ratio of 3 0: 7 in a mixed solvent were mixed at 0, was prepared by dissolving L i PF 6 at a concentration of 1 mol ZL.
  • Charging and discharging 2. was performed in current mode 5mAZc m 2 for each electrode area.
  • the end-of-charge voltage was 4.2 V.
  • the discharge end voltage was 3.0 V.
  • the electric capacity obtained under the above conditions was 90 O mAh.
  • Example 13 The batteries of Example 13 and Comparative Example 4 were further evaluated by the following procedure. (i) 100 batteries were prepared and charged at 900 mA until the battery voltage reached 4.2 V.
  • the maximum attainable temperatures of the batteries of Example 13 were all 42 ° C. or less. Some of the batteries in Comparative Example 4 reached a maximum temperature of 110 ° C. Industrial applicability
  • the structure of the positive electrode terminal and the negative electrode terminal is simple, and it is not necessary to use a current collecting tab and a current collecting lead.
  • a high electrochemical element can be provided.
  • a plurality of electrochemical devices can be efficiently manufactured at the same time.

Abstract

 極板群を有する電気化学素子であって、前記極板群は、(a)少なくとも1つの第1電極、(b)少なくとも1つの第2電極、および(c)第1電極と第2電極との間に介在するセパレータからなり、前記第1電極は、第1集電体シートおよびこれに担持された少なくとも1つの第1電極合剤層からなり、前記第2電極は、第2集電体シートおよびこれに担持された少なくとも1つの第2電極合剤層からなり、前記第1集電体シートおよび前記第2集電体シートの少なくとも一方は、導電部と絶縁部とを有する電気化学素子。

Description

明 細 書 電気化学素子およびその製造方法 技術分野
本発明は、 電気化学素子に関し、 特にリチウムイオン二次電池などの 高エネルギー密度を有する二次電池の極板群の改良に関する。 背景技術
電子 ·電気機器の小型化 ·軽量化に伴い、 二次電池などの電気化学素 子に対する小型化 ·軽量化への要望が強まってきている。 一方、 現行の 電気化学素子は、 内部構造が複雑であり、 一定容積あたりの製品が有す る電気容量を向上させるには限界がある。
複雑な構造が、 電気化学素子の信頼性の向上を妨げている面もある。 例えば、 電極に接続された集電のためのタブまたはリードが、 電極面に おける均一な電極反応を妨げる場合がある。 万一、 リードの切断面に通 常よりも大きな金属パリが生じた場合には、 内部短絡の発生が懸念され る。
電気化学素子は、 一般に、 正極、 負極およびセパレ一夕からなる極板 群を有する。.極板群には、 積層型と捲回型がある。 積層型の極板群は、 正極と負極とをセパレー夕を介して交互に積層して得られる。 また、 捲 回型の極板群は、 長尺の正極と負極とをセパレー夕を介して捲回して得 られる。 このような極板群から短絡を起こさずに電気を取り出すには、 集電のためのタブやリードが必要となる。
そこで、 電気化学素子の内部構造を簡略化する観点から、 極板群の側 面の 1つから正極を突出させ、 前記側面とは逆側の側面から負極を突出 させ、 タブやリードを介さずに、 各側面から直接電気を取り出すことが 提案されている。
例えば、 積層型の極板群を有する電池では、 突出させた同一極性の極 板を、 金属部材を用いて一体接合する技術が提案されている (特開 2 0 0 1 - 1 2 6 7 0 7号公報) 。 また、 捲回型の極板群を有する電池では、 突出させた同一極性の極板の芯材と板状の集電板とを接合する技術が提 案されている (特開 2 0 0 0— 2 9 4 2 2 2号公報) 。
しかし、 極板群の側面の 1つから正極を突出させ、 前記側面とは逆側 の側面から負極を突出させる場合、 極板群の製造工程が複雑になるため、 1つずつ極板群を作製しなければならず、 複数の極板群を同時に作製す ることができないという問題がある。 発明の開示
本発明は、 上記状況を鑑みてなされたものである。 本発明によれば、 構造が簡略であり、 信頼性が高く、 高い電気容量を有する電気化学素子 を提供することができる。 また、 本発明によれば、 同時に複数の電気化 学素子を効率的に製造することができる。
すなわち、 本発明は、 極板群を有する電気化学素子であって、 前記極 板群は、 ( a ) 少なくとも 1つの第 1電極、 (b ) 少なくとも 1つの第 2電極、 および ( c ) 第 1電極と第 2電極との間に介在するセパレー夕 からなり、 第 1電極は、 第 1集電体シートおよびこれに担持された少な くとも 1つの第 1電極合剤層からなり、 第 2電極は、 第 2集電体シート およびこれに担持された少なくとも 1つの第 2電極合剤層からなり、 第 1集電体シ一トおよび第 2集電体シ一トの少なくとも一方は、 導電部と 絶縁部とを有する電気化学素子に関する。
前記電気化学素子は、 さらに、 第 1集電体シートと電気的に導通する 第 1端子、 および第 2集電体シ一トと電気的に導通する第 2端子を有し、 極板群は、 第 1端子が配される第 1側面および第 2端子が配される第 2 側面を有し、 第 1集電体シートが、 導電部と絶縁部とを有する場合には、 第 1集電体シートの導電部は、 第 1側面において第 1端子と接続され、 第 1集電体シートの絶縁部は、 第 2側面に配向しており、 第 2集電体シ ートが、 導電部と絶縁部とを有する場合には、 第 2集電体シートの導電 部は、 第 2側面において第 2端子と接続され、 第 2集電体シートの絶縁 部は、 第 1側面に配向していることが好ましい。
第 1側面と第 2側面とは、 互いに極板群の反対側に位置することが好 ましい。
第 1側面には、 第 1端子と第 2電極とを絶縁するための第 1絶縁材料 部が設けられており、 第 2側面には、 第 2端子と第 1電極とを絶縁する ための第 2絶縁材料部が設けられていることが好ましい。
第 1側面および第 2側面以外の極板群の側面にも、 第 1集電体シート の絶縁部および Zまたは第 2集電体シ一トの絶縁部が配されていてもよ い。
導電部と絶縁部とを有する集電体シートは、 シート状の絶縁性基材と、 その少なくとも一方の面に形成された少なくとも一つの導電層とからな ることが好ましい。 導電部と絶縁部とを有する集電体シートの絶縁部は、 絶縁性基材の一端部からなり、 導電部は、 導電層からなることが好まし い。
第 1端子および第 2端子は、 例えば、 第 1側面および第 2側面にそれ ぞれ金属などの導電性被膜を配することにより設けることができる。 第 1集電体シートが絶縁部を有する場合には、 その絶縁部を第 2端子 に固定することが可能であり、 第 2集電体シ一トが絶縁部を有する場合 には、 その絶縁部を第 1端子に固定することが可能である。 本発明は、 また、 第 1電極と第 2電極とをセパレー夕を介して捲回し た極板群を有する電気化学素子であって、 第 1電極は、 第 1集電体シ一 トおよびこれに担持された少なくとも 1つの第 1電極合剤層からなり、 第 2電極は、 第 2集電体シートおよびこれに担持された少なくとも 1つ の第 2電極合剤層からなり、 第 1集電体シ一トおよび第 2集電体シ一ト の少なくとも一方は、 導電部と絶縁部とを有し、 第 1集電体シートが、 導電部と絶縁部とを有する場合には、 第 1集電体シートの導電部は、 極 板群の第 1底面において第 1端子と接続され、 第 1集電体シ一トの絶縁 部は、 極板群の第 2底面に配され、 第 2集電体シートが、 導電部と絶縁 部とを有する場合には、 第 2集電体シートの導電部は、 極板群の第 2底 面において第 2端子と接続され、 第 2集電体シートの絶縁部は、 極板群 の第 1底面に配されている電気化学素子に関する。
本発明は、 また、 複数の第 1電極と複数の第 2電極とをセパレ一夕を 介して交互に積層した極板群を有する電気化学素子であって、 複数の第 1電極は、 それぞれ第 1集電体シ一トおよびこれに担持された少なくと も 1つの第 1電極合剤層からなり、 複数の第 2電極は、 それぞれ第 2集 電体シ一トおよびこれに担持された少なくとも 1つの第 2電極合剤層か らなり、 第 1集電体シートおよび第 2集電体シートの少なくとも一方は、 導電部と絶縁部とを有し、 第 1集電体シートが、 導電部と絶縁部とを有 する場合には、 第 1集電体シートの導電部は、 極板群の第 1側面におい て第 1端子と接続され、 第 1集電体シートの絶縁部は、 極板群の第 2側 面に配され、 第 2集電体シートが、 導電部と絶縁部とを有する場合には、 第 2集電体シートの導電部は、 極板群の第 2側面において第 2端子と接 続され、 第 2集電体シートの絶縁部は、 極板群の第 1側面に配されてい る電気化学素子に関する。
前記電気化学素子においては、 導電部と絶縁部とを有する集電体シ一 トが、 導電部の一部からなるとともに電極合剤層を担持しない第 1端部 を有し、 第 1端部において、 導電部が第 1端子または第 2端子と接続し ており、 第 1端部の少なくとも一部は、 第 1端子または第 2端子に埋没 していることが好ましい。 このような構成によれば、 高い集電性能を得 ることができる。 一方、 集電板を用い、 電極の端部を集電板に接続する 構成の場合には、 電極と端部との接触面積が小さくなるため、 上記構成 に比べて、 集電性能が低くなる傾向がある。 さらに、 導電性の低い電極 合剤層と集電板とを接触させる場合、 上記構成に比べて集電性能が不十 分になる傾向がある。
また、 導電部と絶縁部とを有する集電体シートが、 絶縁部の一部から なるとともに前記電極合剤層を担持しない第 2端部を有し、 第 2端部が、 第 1側面または第 2側面に配向しており、 第 2端部の少なくとも一部は、 第 1端子または第 2端子に埋没していることが好ましい。
前記極板群が、 さらに、 第 3側面および第 4側面を有する場合、 第 1 側面、 第 2側面、 第 3側面および第 4側面のそれぞれにおいて、 第 1集 電体シ一トの端部、 第 2集電体シートの端部およびセパレ一夕の端部が、 実質的に面一に配されていることが好ましい。 そして、 第 1集電体シ一 トの片面あたりの面積 S ( 1 ) 、 第 2集電体シートの片面あたりの面積 S ( 2 ) およびセパレー夕の片面あたりの面積 S ( s ) が、 以下の関係 : S ( 1 ) ≤ S ( s ) ≤ S ( 1 ) X I . 0 5、 および
S ( 2 ) ≤ S ( s ) ≤ S ( 2 ) X I . 0 5を満たしていることが好まし い。 このように簡略で均整のとれた構造によれば、 電気化学素子の体積 効率が高くなるとともに、 信頼性も高くなる。
前記電気化学素子においては、 また、 第 1電極合剤層および第 2電極 合剤層が、 それぞれ絶縁材料で被覆された端部を有することが好ましい。 そして、 絶縁材料で被覆された第 1電極合剤層の端部は、 第 2側面に配 されており、 絶縁材料で被覆された第 2電極合剤層の端部は、 第 1側面 に配されていることが好ましい。 また、 第 1集電体シートが、 導電部と 絶縁部とを有する場合には、 第 1集電体シートの絶縁部は、 絶縁材料で 被覆された第 1電極合剤層の端部に隣接しており、 第 2集電体シ一トが、 導電部と絶縁部とを有する場合には、 第 2集電体シートの絶縁部は、 絶 縁材料で被覆された第 2電極合剤層の端部に隣接していることが好まし い。 このような構成によれば、 極板群の側面に端子を設ける際に、 短絡 を防止することが容易となる。
本発明は、 また、 前記極板群を収容するケースを有する電気化学素子 に関する。 前記ケースの内面は、 極板群の第 1側面および第 2側面と当 接していることが好ましい。
前記ケースは、 枠体および 2つの平坦なシートから構成することがで きる。 この場合、 枠体が、 極板群を囲むとともに、 第 1側面および第 2 側面と当接しており、 2つの平坦なシートは、 枠体の 2つの開口面を覆 つて極板群の上面および下面と当接していることが好ましい。
前記ケースは、 また、 有底容器および平坦なシートから構成すること ができる。 この場合、 容器が、 極板群を収容するとともに、 第 1側面お よび第 2側面と当接する側壁ならびに極板群の上面および下面の一方と 当接する底部を有しており、 平坦なシートは、 容器の開口面を覆って極 板群の上面および下面の他方と当接していることが好ましい。
第 1端子および第 2端子の少なくとも一方に、 リード片が接続されて おり、 リード片がケースの外部に導出されている場合、 リード片は、 前 記枠体もしくは容器の側壁に設けられたスリッ トからケースの外部に導 出されていることが好ましい。
前記電気化学素子においては、 第 1端子および第 2端子の少なくとも 一方として、 以下を用いることができる。 ( a ) 粒子状金属が連続的に接合してなる多孔質金属膜。
( b ) 導電性ペースト。
( c ) 2 5 0 °C以下の融点を有する低融点金属。
ここで、 前記導電性ペーストは、 樹脂ならびに樹脂に分散した導電性 材料からなり、 導電性材料は、 微粒子状および または繊維状であるこ とが好ましい。
前記電気化学素子において、 導電部の一部からなるとともに電極合剤 肩を担持しない集電体シ一トの第 1端部の少なくとも一部が、 金属リ一 ドが溶接されている第 1端子または第 2端子に埋没している場合、 集電 体シートの第 1端部と前記金属リ一ドとが接触していることが好ましレ 最も外側の 2つの電極の集電体シ一卜の少なくとも一方が、 両面に導 電部を有するとともに、 内側の電極と対向する一方の面のみに電極合剤 層を担持している場合、 他方の面の導電部は、 前記第 1端子または前記 第 2端子と電気的に導通して、 ぞの端子の延長部として機能することが できる。
本発明の電気化学素子において、 極板群が第 3側面および第 4側面を 有する場合、 第 3側面および第 4側面の少なくとも 1つが、 電子絶縁性 の多孔性材料で覆われていることが好ましい。 前記多孔性材料は、 ポリ ォレフィン、 ポリアルキレンオキサイ ド、 フッ素ポリマーおよびセラミ ックスよりなる群から選ばれた少なくとも 1種からなることが好ましい。 また、 前記多孔性材料は、 膜状部材またはペーストの塗膜からなること が好ましい。 前記多孔性材料で覆われている極板群の側面においては、 セパレー夕の端部と多孔性材料とが接合されていることが好ましい。 セ パレー夕の端部と多孔性材料とが接合される場合、 多孔性材料とセパレ —夕とは、 互いに同一の材料からなることが好ましい。
電極合剤層の端部が絶縁性材料で被覆されている場合、 絶縁性材料は、 樹脂塗膜および樹脂テープよりなる群から選択される少なくとも 1種か らなることが好ましい。
樹脂塗膜は、 絶縁樹脂を含む溶液または分散液を、 電極合剤層の端部 に塗工し、 乾燥することにより、 形成することができる。 ここで、 絶縁 樹脂には、 ポリエチレンォキシド、 ポリプロピレンォキシド、 ポリアク リロ二トリル、 ポリフッ化ビニリデン、 ポリメ夕クリル酸メチルおよび これらの少なくとも 1つを含むコポリマー、 ポリマーァロイもしくはポ リマーブレンドよりなる群から選択される少なくとも 1種を用いること が好ましい。
また、 樹脂塗膜は、 重合性化合物を含む溶液または分散液を、 電極合 剤層の端部に塗工し、 重合性化合物を重合させることにより、 形成する ことができる。 ここで、 重合性化合物には、 ァクリレート基およびメタ クリレート基よりなる群から選択される少なくとも 1種の官能基を有す る化合物を用いることが好ましい。
樹脂テープは、 絶縁基材および前記絶縁基材に担持された絶縁性粘着 剤からなることが好ましい。 ここで、 絶縁基材は、 ポリエチレン、 ポリ プロピレン、 ポリエチレンテレフ夕レート、 ポリエチレンナフタレート、 ポリフエ二レンサルファイ ド、 ポリイミ ド、 ァラミ ド樹脂およびこれら の少なくとも 1つを含むコポリマー、 ポリマーァロイもしくはポリマー ブレンドよりなる群から選択される少なくとも 1種からなることが好ま しい。
本発明は、 また、 ( a ) シ一ト状の絶縁性基材の両面に導電層を設け て第 1集電体シートおよび第 2集電体シートを得る工程、 (b ) 前記第 1集電体シ一トおよび前記第 2集電体シートの前記導電層の上に、 それ ぞれ複数個の第 1電極合剤層および第 2電極合剤層を、 平行に並ぶ帯状 に間隙を設けて形成し、 第 1電極の集合体および第 2電極の集合体を得 る工程、 ( C ) セパレー夕を介して前記第 1電極の集合体および前記第 2電極の集合体を、 前記第 1電極合剤層および前記第 2電極合剤層の長 さ方向に供給して同心円状に捲回し、 捲回体を得る工程、 (d ) 前記捲 回体を、 前記間隙において切断することにより、 複数個の捲回型極板群 を得る工程を含むことを特徴とする電気化学素子の製造方法 (製造方法 A ) に関する。
製造方法 Aは、 工程 (b ) の後、 工程 (c ) の前に、 前記間隙におい て、 導電層上に絶縁材料部を形成する工程を含むことができる。 また、 製造方法 Aは、 前記捲回型極板群の第 1底面および第 2底面を金属で被 覆し、 第 1端子および第 2端子を形成する工程を含むことができる。 本発明は、 また、 長尺状の第 1電極の集合体および第 2電極の集合体 を、 セパレ一夕を介して積層しながら連続的に積層体として供給するェ 程と、 前記積層体を平板状のボビンで巻き取る工程と、 前記ポビンに巻 き取られた積層体を切断し、 複数個の積層型極板群を得る工程とを含む 電気化学素子の製造方法 (製造方法 B ) に関する。
製造方法 Bにおいては、 シート状の絶縁性基材の両面に所定のパター ンに基づいて導電層を設けて第 1集電体シ一トおよび第 2集電体シ一ト を得る工程と、 前記導電層の上に、 それぞれ前記パターンに対応させる とともに間隙を設けて第 1電極合剤層および第 2電極合剤層を形成する 工程とにより、 第 1電極および第 2電極を得ることが好ましい。
製造方法 Bは、 前記間隙において導電層上に、 第 1電極合剤層および 第 2電極合剤層を挟む位置に、 絶縁材料部を形成する工程を含むことが できる。 また、 製造方法 Bは、 前記積層型極板群の対向する第 1側面お よび第 2側面を金属で被覆し、 第 1端子および第 2端子を形成する工程 を含むことができる。
本発明は、 また、 ( a ) シート状の絶縁性基材の両面に所定のパター ンに基づいて導電層を設けて第 1集電体シートおよび第 2集電体シ一ト を得る工程、 (b ) 前記導電層の上に、 それぞれ複数個の第 1電極合剤 層および第 2電極合剤層を、 前記パターンに対応させるとともに間隙を 設けて形成し、 第 1電極の集合体および第 2電極の集合体を得る工程、 ( c ) 前記第 1電極の集合体および前記第 2電極の集合体をセパレー夕 を介して積層し、 積層体を得る工程、 (d ) 前記積層体を、 前記間隙に おいて切断することにより、 複数個の積層型極板群を得る工程を含む電 気化学素子の製造方法 (製造方法 C ) に関する。
製造方法 Bおよび Cにおいて、 前記所定のパターンは、 マトリクス状 または平行に並ぶ帯状であることが好ましい。
製造方法 Cにおいては、 工程 (b ) の後、 工程 (c ) の前に、 前記間 隙において導電層上に、 第 1電極合剤層および第 2電極合剤層を挟む位 置に、 絶縁材料部を形成する工程を含むことができる。 また、 製造方法 Cは、 前記積層型極板群の対向する第 1側面および第 2側面を金属で被 覆し、 第 1端子および第 2端子を形成する工程を含むことができる。 本発明は、 例えば以下の態様を含む。
第 1電極と第 2電極とをセパレー夕を介して捲回した捲回型極板群を 有する電気化学素子であって、 第 1電極は、 導電部と絶縁部とを有する 第 1集電体シートおよびこれに担持された少なくとも 1つの第 1電極合 剤層からなり、 第 2電極は、 導電部と絶縁部とを有する第 2集電体シ一 トおよびこれに担持された少なくとも 1つの第 2電極合剤層からなり、 第 1集電体シートの導電部が極板群の第 1底面において第 1端子と接続 され、 第 2集電体シ一卜の導電部が極板群の第 2底面において第 2端子 と接続され、 第 1集電体シートの絶縁部が第 2底面に配され、 第 2集電 体シートの絶縁部が第 1底面に配されている電気化学素子。
第 1電極と第 2電極とをセパレー夕を介して捲回した捲回型極板群を 有する電気化学素子であって、 第 1電極は、 導電部と絶縁部とを有する 第 1集電体シートおよびこれに担持された少なくとも 1つの第 1電極合 剤層からなり、 第 2電極は、 導電部と絶縁部とを有する第 2集電体シ一 卜およびこれに担持された少なくとも 1つの第 2電極合剤層からなり、 第 1集電体シ一トの導電部が極板群の第 1底面において第 1端子と接続 され、 第 2集電体シートの導電部が極板群の第 2底面において第 2端子 と接続され、 第 1集電体シートの絶縁部が第 2底面に配され、 第 2集電 体シートの絶縁部が第 1底面に配され、 第 1底面には、 第 1端子と第 2 電極とを絶縁するための第 1絶縁材料部が設けられており、 第 2底面に は、 第 2端子と第 1電極とを絶縁するための第 2絶縁材料部が設けられ ている電気化学素子。
複数の第 1電極と複数の第 2電極とをセパレー夕を介して交互に積層 した極板群を有する電気化学素子であって、 複数の第 1電極は、 それぞ れ導電部と絶縁部とを有する第 1集電体シートおよびこれに担持された 少なくとも 1つの第 1電極合剤層からなり、 複数の第 2電極は、 それぞ れ導電部と絶縁部とを有する第 2集電体シ一トおよびこれに担持された 少なくとも 1つの第 2電極合剤層からなり、 第 1集電体シートの導電部 が極板群の第 1側面において第 1端子と接続され、 第 2集電体シ一トの 導電部が極板群の第 2側面において第 2端子と接続され、 第 1集電体シ 一卜の絶縁部が第 2側面に配され、 第 2集電体シ一トの絶縁部が前記第 1側面に配されている電気化学素子。
複数の第 1電極と複数の第 2電極とをセパレー夕を介して交互に積層 した極板群を有する電気化学素子であって、 複数の第 1電極は、 それぞ れ導電部と絶縁部とを有する第 1集電体シートおよびこれに担持された 少なくとも 1つの第 1電極合剤層からなり、 複数の第 2電極は、 それぞ れ導電部と絶縁部とを有する第 2集電体シートおよびこれに担持された 少なくとも 1つの第 2電極合剤層からなり、 第 1集電体シートの導電部 が極板群の第 1側面において第 1端子と接続され、 第 2集電体シ一トの 導電部が極板群の第 2側面において第 2端子と接続され、 第 1集電体シ 一卜の絶縁部が第 2側面に配され、 第 2集電体シ一トの絶縁部が前記第 1側面に配され、 第 1側面には、 第 1端子と第 2電極とを絶縁するため の第 1絶縁材料部が設けられており、 第 2側面には、 第 2端子と第 1電 極とを絶縁するための第 2絶縁材料部が設けられている電気化学素子。 複数の第 1電極と複数の第 2電極とをセパレー夕を介して交互に積層 した極板群を有する電気化学素子であって、 複数の第 1電極は、 それぞ れ導電部と絶縁部とを有する第 1集電体シートおよびこれに担持された 少なくとも 1つの第 1電極合剤層からなり、 複数の第 2電極は、 それぞ れ導電部と絶縁部とを有する第 2集電体シートおよびこれに担持された 少なくとも 1つの第 2電極合剤層からなり、 第 1集電体シ一卜の導電部 が極板群の第 1側面において第 1端子と接続され、 第 2集電体シ一トの 導電部が極板群の第 2側面において第 2端子と接続され、 第 1集電体シ 一卜の絶縁部が極板群の第 1側面以外の全側面に配され、 第 2集電体シ 一トの絶縁部が極板群の第 2側面以外の全側面に配されている電気化学 素子。
複数の第 1電極と複数の第 2電極とをセパレータを介して交互に積層 した極板群を有する電気化学素子であって、 複数の第 1電極は、 それぞ れ導電部と絶縁部とを有する第 1集電体シ一トおよびこれに担持された 少なく とも 1つの第 1電極合剤層からなり、 複数の第 2電極は、 それぞ れ導電部と絶縁部とを有する第 2集電体シートおよびこれに担持された 少なくとも 1つの第 2電極合剤層からなり、 第 1集電体シートの導電部 が前記極板群の第 1側面において第 1端子と接続され、 第 2集電体シ一 トの導電部が極板群の第 2側面において第 2端子と接続され、 第 1集電 体シートの絶縁部が極板群の第 1側面以外の全側面に配され、 第 2集電 体シートの絶縁部が極板群の第 2側面以外の全側面に配され、 第 1側面 には、 第 1端子と第 2電極とを絶縁するための第 1絶縁材料部が設けら れており、 第 2側面には、 第 2端子と第 1電極とを絶縁するための第 2 絶縁材料部が設けられている電気化学素子。
第 1電極と第 2電極とをセパレー夕を介して捲回した極板群を有する 電気化学素子であって、 第 1電極は、 表面に導電部と絶縁部とを有する 第 1集電体シートおよびこれに担持された少なくとも 1つの第 1電極合 剤層からなり、 第 2電極は、 第 2集電体シートおよびこれに担持された 少なくとも 1つの第 2電極合剤層からなり、 第 1集電体シートが、 絶縁 シートからなり、 導電部が絶縁シートの表面に形成された導電層からな り、 絶縁部が絶縁シートの表面に残されたその露出部からなり、 第 2集 電体シートが、 導電シートからなり、 第 1集電体シートの導電部が極板 群の第 1底面において第 1端子と接続され、 第 2集電体シ一卜が極板群 の第 2底面において第 2端子と接続され、 第 1集電体シートの絶縁部が 第 2底面に配され、 第 2集電体シ一卜の第 1底面に配されている端部が 絶縁材料で被覆されている電気化学素子。
複数の第 1電極と複数の第 2電極とをセパレー夕を介して交互に積層 した極板群を有する電気化学素子であって、 複数の第 1電極は、 それぞ れ表面に導電部と絶縁部とを有する第 1集電体シ一トおよびこれに担持 された少なくとも 1つの第 1電極合剤層からなり、 複数の第 2電極は、 それぞれ第 2集電体シ一トおよびこれに担持された少なくとも 1つの第 2電極合剤層からなり、 第 1集電体シ一トの導電部が極板群の第 1側面 において第 1端子と接続され、 第 2集電体シートが極板群の第 2側面に おいて第 2端子と接続され、 第 1集電体シートの絶縁部が第 2側面に配 され、 第 2集電体シ一トの第 1側面に配されている端部が絶縁材料で被 覆されている電気化学素子。
第 1電極と第 2電極とをセパレー夕を介して捲回した極板群を有する 電気化学素子であって、 第 1電極は、 導電部と絶縁部とを有する第 1集 電体シ一トおよびこれに担持された少なくとも 1つの第 1電極合剤層か らなり、 第 2電極は、 導電部と絶縁部とを有する第 2集電体シートおよ びこれに担持された少なくとも 1つの第 2電極合剤層からなり、 各集電 体シートの第 1端部および第 2端部は、 電極合剤層の未塗工部であり、 第 1端部および第 2端部においては、 それぞれ導電部および絶縁部が露 出しており、 露出している第 1集電体シートの導電部が、 極板群の第 1 底面において第 1端子と接続され、 露出している第 2集電体シ一トの導 電部が、 極板群の第 2底面において第 2端子と接続され、 露出している 第 1集電体シートの絶縁部が、 第 2底面に配され、 露出している第 2集 電体シートの絶縁部が、 第 1底面に配されており、 露出している第 1集 電体シートの導電部の少なくとも一部が、 第 1端子に埋没しており、 露 出している第 2集電体シ一トの導電部の少なくとも一部が、 第 2端子に 埋没している電気化学素子。
第 1電極と第 2電極とをセパレー夕を介して捲回した極板群を有する 電気化学素子であって、 第 1電極は、 導電部と絶縁部とを有する第 1集 電体シートおよびこれに担持された少なくとも 1つの第 1電極合剤層か らなり、 第 2電極は、 導電部と絶縁部とを有する第 2集電体シートおよ びこれに担持された少なくとも 1つの第 2電極合剤層からなり、 各集電 体シートの第 1端部および第 2端部は、 電極合剤層の未塗工部であり、 第 1端部および第 2端部においては、 それぞれ導電部および絶縁部が露 出しており、 露出している第 1集電体シートの導電部が、 極板群の第 1 底面において第 1端子と接続され、 露出している第 2集電体シ一トの導 電部が、 極板群の第 2底面において第 2端子と接続され、 露出している 第 1集電体シートの絶縁部が、 第 2底面に配され、 露出している第 2集 電体シートの絶縁部が、 第 1底面に配され、 第 1底面には、 第 1端子と 第 2電極とを絶縁するための第 1絶縁材料部が設けられており、 第 2底 面には、 第 2端子と第 1電極とを絶縁するための第 2絶縁材料部が設け られており、 露出している第 1集電体シートの導電部の少なくとも一部 が、 第 1端子に埋没しており、 露出している第 2集電体シートの導電部 の少なくとも一部が、 第 2端子に埋没している電気化学素子。
複数の第 1電極と複数の第 2電極とをセパレー夕を介して交互に積層 した極板群を有する電気化学素子であって、 複数の第 1電極は、 それぞ れ導電部と絶縁部とを有する第 1集電体シ一トおよびこれに担持された 少なくとも 1つの第 1電極合剤層からなり、 複数の第 2電極は、 それぞ れ導電部と絶縁部とを有する第 2集電体シートおよびこれに担持された 少なく とも 1つの第 2電極合剤層からなり、 各集電体シートの第 1端部 および第 2端部は、 電極合剤層の未塗工部であり、 第 1端部および第 2 端部においては、 それぞれ導電部および絶縁部が露出しており、 露出し ている第 1集電体シートの導電部が、 極板群の第 1側面において第 1端 子と接続され、 露出している第 2集電体シートの導電部が、 極板群の第 2側面において第 2端子と接続され、 露出している第 1集電体シートの 絶縁部が、 第 2側面に配され、 露出している第 2集電体シートの絶縁部 が、 第 1側面に配され、 露出している第 1集電体シートの導電部の少な くとも一部が、 第 1端子に埋没しており、 露出している第 2集電体シ一 トの導電部の少なくとも一部が、 第 2端子に埋没している電気化学素子。 複数の第 1電極と複数の第 2電極とをセパレー夕を介して交互に積層 した極板群を有する電気化学素子であって、 複数の第 1電極は、 それぞ れ導電部と絶縁部とを有する第 1集電体シートおよびこれに担持された 少なくとも 1つの第 1電極合剤層からなり、 複数の第 2電極は、 それぞ れ導電部と絶縁部とを有する第 2集電体シ一トおよびこれに担持された 少なくとも 1つの第 2電極合剤層からなり、 各集電体シートの第 1端部 および第 2端部は、 電極合剤層の未塗工部であり、 第 1端部および第 2 端部においては、 それぞれ導電部および絶縁部が露出しており、 露出し ている第 1集電体シートの導電部が、 極板群の第 1側面において第 1端 子と接続され、 露出している第 2集電体シートの導電部が、 極板群の第 2側面において第 2端子と接続され、 露出している第 1集電体シ一トの 絶縁部が、 第 2側面に配され、 露出している第 2集電体シートの絶縁部 が、 第 1側面に配され、 第 1側面には、 第 1端子と第 2電極とを絶縁す るための第 1絶縁材料部が設けられており、 第 2側面には、 第 2端子と 第 1電極とを絶縁するための第 2絶縁材料部が設けられており、 露出し ている第 1集電体シ一トの導電部の少なくとも一部が、 第 1端子に埋没 しており、 露出している第 2集電体シートの導電部の少なくとも一部が、 第 2端子に埋没している電気化学素子。
複数の第 1電極と複数の第 2電極とをセパレー夕を介して交互に積層 した極板群を有する電気化学素子であって、 複数の第 1電極は、 それぞ れ導電部と絶縁部とを有する第 1集電体シートおよびこれに担持された 少なくとも 1つの第 1電極合剤層からなり、 複数の第 2電極は、 それぞ れ導電部と絶縁部とを有する第 2集電体シートおよびこれに担持された 少なくとも 1つの第 2電極合剤層からなり、 各集電体シートの第 1端部 および第 2端部を含む周縁部は、 電極合剤層の未塗工部であり、 第 1端 部においては、 導電部が露出しており、 第 1端部以外の端部においては、 絶縁部が露出しており、 露出している第 1集電体シートの導電部が、 極 板群の第 1側面において第 1端子と接続され、 露出している第 2集電体 シートの導電部が、 極板群の第 2側面において第 2端子と接続され、 露 出している第 1集電体シートの絶縁部が、 極板群の第 1側面以外の全側 面に配され、 露出している第 2集電体シートの絶縁部が、 極板群の第 2 側面以外の全側面に配され、 露出している第 1集電体シートの導電部の 少なくとも一部が、 第 1端子に埋没しており、 露出している第 2集電体 シートの導電部の少なくとも一部が、 第 2端子に埋没している電気化学 素子。
複数の第 1電極と複数の第 2電極とをセパレー夕を介して交互に積層 した極板群を有する電気化学素子であって、 複数の第 1電極は、 それぞ れ導電部と絶縁部とを有する第 1集電体シートおよびこれに担持された 少なくとも 1つの第 1電極合剤層からなり、 複数の第 2電極は、 それぞ れ導電部と絶縁部とを有する第 2集電体シートおよびこれに担持された 少なくとも 1つの第 2電極合剤層からなり、 各集電体シートの第 1端部 および第 2端部を含む周縁部は、 電極合剤層の未塗工部であり、 第 1端 部においては、 導電部が露出しており、 第 1端部以外の端部においては、 絶縁部が露出しており、 露出している第 1集電体シートの導電部が、 極 板群の第 1側面において第 1端子と接続され、 露出している第 2集電体 シートの導電部が、 極板群の第 2側面において第 2端子と接続され、 露 出している第 1集電体シ一トの絶縁部が、 極板群の前記第 1側面以外の 全側面に配され、 露出している第 2集電体シートの絶緣部が、 極板群の 第 2側面以外の全側面に配され、 第 1側面には、 第 1端子と第 2電極と を絶縁するための第 1絶縁材料部が設けられており、 第 2側面には、 第 2端子と第 1電極とを絶縁するための第 2絶縁材料部が設けられており、 露出している第 1集電体シートの導電部の少なくとも一部が、 第 1端子 に埋没しており、 露出している第 2集電体シートの導電部の少なくとも 一部が、 第 2端子に埋没している電気化学素子。
複数の第 1電極と複数の第 2電極とをセパレー夕を介して交互に積層 した極板群を有する電気化学素子であって、 複数の第 1電極は、 第 1集 電体シートおよびこれに担持された少なくとも 1つの第 1電極合剤層か らなり、 複数の第 2電極は、 第 2集電体シートおよびこれに担持された 少なくとも 1つの第 2電極合剤層からなり、 第 1集電体シートおよび第 2集電体シートが、 それぞれ導電部と絶縁部とを有し、 第 1集電体シ一 卜の導電部が、 極板群の第 1側面において、 第 1端子と接続されており、 第 2集電体シートの導電部が、 極板群の第 2側面において、 第 2端子と 接続されており、 第 1電極合剤層および第 2電極合剤層が、 それぞれ絶 縁材料で覆われた端部を有し、 第 1電極合剤層の絶縁材料で覆われた端 部が、 第 1集電体シートの絶縁部に隣接しており、 第 2電極合剤層の絶 縁材料で覆われた端部が、 第 2集電体シ一卜の絶縁部に隣接しており、 第 1端子と第 2端子とが、 互いに極板群の反対側に位置する電気化学素 子。
( a ) 少なくとも 1つの第 1電極、 (b ) 少なくとも 1つの第 2電極、 および (c ) 第 1電極と第 2電極との間に介在するセパレー夕からなる 極板群を有し、 第 1電極 ( a ) は、 導電部と絶縁部とを有する第 1集電 体シートおよびこれに担持された少なくとも 1つの第 1電極合剤層から なり、 第 2電極 (b ) は、 導電部と絶縁部とを有する第 2集電体シ一卜 およびこれに担持された少なくとも 1つの第 2電極合剤層からなり、 各 集電体シ一トの第 1端部および第 2端部は、 電極合剤層の未塗工部であ り、 第 1端部および第 2端部においては、 それぞれ導電部および絶縁部 が露出しており、 露出している第 1集電体シートの導電部は、 極板群の 第 1側面において第 1端子と接続され、 露出している第 2集電体シ一ト の導電部は、 極板群の第 2側面において第 2端子と接続され、 露出して いる第 1集電体シートの導電部の少なくとも一部は、 第 1端子に埋没し ており、 露出している第 2集電体シートの導電部の少なくとも 部は、 第 2端子に埋没している電気化学素子。 図面の簡単な説明
図 1は、 実施の形態 1に係る積層型極板群の縦断面図である。
図 2は、 図 1の極板群の a— a線断面図である。
図 3は、 図 1の極板群の別の a— a線断面図である。
図 4は、 実施の形態 2に係る捲回型極板群の縦断面概念図である。 図 5は、 集電体シートの一例の上面図である。
図 6は、 第 1電極の集合体と第 2電極の集合体の斜視図である。 図 7は、 別の第 1電極の集合体と第 2電極の集合体の斜視図である。 図 8は、 シート状の絶縁性基材に導電層および第 1電極合剤層を所定 のパターンで形成し、 第 1電極の集合体を得る工程を示す図である。 図 9は、 シート状の絶縁性基材に導電層および第 2電極合剤層を所定 のパターンで形成し、 第 2電極の集合体を得る工程を示す図である。 図 1 0は、 図 1 ( b ) および図 2 ( b ) に示す第 1電極の集合体およ び第 2電極の集合体をより詳細に表した図である。
図 1 1は、 長尺状の第 1電極の集合体および第 2電極の集合体を、 セ パレータを介して積層し、 連続的に積層体として供給する様子を示す図 である。
図 1 2は、 図 4の破線 Xで囲まれた部分の拡大図である。
図 1 3は、 ボビンに巻き取られるセパレ一夕、 第 1電極の集合体、 セ パレー夕および第 2電極の集合体の積層体の様子を示す図である。 図 1 4は、 ポビンに巻き取られた積層体の両端部を切断する様子を説 明するための図である。
図 1 5は、 両端部を切断した後の積層体の様子を示す図である。 図 1 6は、 実施の形態 4に係る積層型極板群の縦断面図である。 図 1 7は、 実施の形態 5に係る捲回型極板群の製造工程図である。 図 1 8は、 図 1 7 ( 2 ) に示す第 1電極の集合体および第 2電極の集 合体をより詳細に表した図である。
囪 1 9は、 実施の形態 6に係る積層型極板群の縦断面図である。
図 2 0は、 図 1 9の極板群の a— a線断面図の一例である。
図 2 1は、 実施の形態 6に係る別の積層型極板群の縦断面図である。 図 2 2は、 実施の形態 7に係る図 1の極板群の a— a線断面図である。 図 2 3は、 実施の形態 7に係る図 1の極板群の別の a— a線断面図で ある。
図 2 4は、 ケースに収容する前の極板群の一例の上面図である。
図 2 5は、 ケースに収容する前の極板群の一例の側面図である。
図 2 6は、 極板群を収容する 3つの部品からなるケースの一例の斜視 図である。
囟 2 7は、 極板群を収容する 2つの部品からなるケースの別の一例の 斜視図である。
図 2 8は、 開口に対して垂直な方向から見たケースの枠体もしくは容 器の断面図の一例である。
図 2 9は、 開口に対して平行な一方向から見た 3つの部品からなるケ ースの断面図の一例である。
図 3 0は、 開口に対して平行な一方向から見た 2つの部品からなるケ ースの断面図の一例である。
図 3 1は、 本発明に係る電池の一例の上面図である。
図 3 2は、 3つの部品からなるケースを具備する電池の一例の斜視図 である。
図 3 3は、 2つの部品からなるケースを具備する電池の一例の斜視図 である。
図 3 4は、 実施の形態 9に係る積層型極板群の縦断面図である。 図 3 5は、 図 34の極板群の製造工程図である。
図 3 6は、 実施の形態 9に係る捲回型極板群の製造工程図である。 発明を実施するための最良の形態
実施の形態 1
図 1 に、 本発明に係る積層型極板群の一例の縦断面図を示す。 図 2に は、 その極板群の a— a線断面図を示す。 極板群 1 0は、 交互に積層さ れた複数の第 1電極 1 5 aと第 2電極 1 5 bからなり、 第 1電極 1 5 a と第 2電極 1 5 bとの間には、 セパレ一夕 1 6が介在している。
第 1電極 1 5 aは、 第 1集電体シ一ト 1 3 aおよび 2つの第 1電極合 剤層 1 4 aからなり、 第 1集電体シート 1 3 aは、 樹脂シート 1 1 aお よびその両面に設けられた所定の形状パターンを有する導電層 1 2 aか らなる。 導電層 1 2 aの表面は第 1集電体シートの導電部となり、 樹脂 シート 1 1 aの露出部は絶縁部となる。
第 1集電体シ一トの端部 l l x、 l l x ' および l l x " を除く全面 には導電層 1 2 aが設けられている。 導電層 1 2 aの表面は導電部とな ることから、 その上に第 1電極合剤層 1 4 aが設けられている。 導電層 1 2 aを有さない第 1集電体シ一トの端部 1 1 X、 l l x ' および l l x " は絶縁部となる。 端部 1 1 Xの反対側に位置する端部 1 2 Xに は、 集電のために用いる導電層 1 2 aの露出部が残されている。
極板群 1 0は、 2種類の第 2電極 1 5 b、 1 5 b ' を含んでいる。 2 つの第 1電極 1 5 aで挟持されている内部の第 2電極 1 5 bは、 極板群 における配置が逆であること以外、 第 1電極 1 5 aと同様の構造を有す る。 すなわち、 内部の第 2電極 1 5 bは、 第 2集電体シート 1 3 bおよ び 2つの第 2電極合剤層 1 4 bからなり、 第 2集電体シ一ト 1 3 bは、 樹脂シート 1 1 bおよびその両面に設けられた所定の形状パターンを有 する導電層 1 2 bからなる。 最も外側の 2つの第 2電極 1 5 b ' は、 樹 脂シート 1 1 bの両面ではなく、 片面に導電層 1 2 bと第 2電極合剤層 1 4 bが設けられていること以外、 内部の第 2電極と同様の構造を有す る。
第 2集電体シ一トの端部 1 1 y、 1 1 y ' および 1 1 y" を除く全面 には導電層 1 2 bが設けられている。 導電層 1 2 bの表面は導電部とな ることから、 その上に第 2電極合剤層 1 4 bが設けられている。 導電層 1 2 bを有さない第 2集電体シ一トの端部 1 1 y、 1 1 y ' および 1 1 y" は絶縁部となる。 端部 1 1 yの反対側に位置する端部 1 2 yに は、 集電のために用いる導電層 1 2 bの露出部が残されている。
図 1、 2において、 極板群 1 0の各側面では、 各集電体シートの端部 とセパレー夕の端部とが面一に配されており、 図 2においても、 極板群 1 0の各側面では、 各集電体シートの端部とセパレー夕の端部とが面一 に配されている。 , なお、 各側面において各集電体シートの端部とセパレー夕の端部とが 完全に面一に配されている必要はないが、 実質的に面一に配されている ことが好ましい。
各側面において各集電体シ一卜の端部とセパレー夕の端部とが完全に 面一に配されている場合には、 第 1集電体シ一トの片面あたりの面積 S ( 1 ) と、 第 2集電体シートの片面あたりの面積 S ( 2) と、 セパレー 夕の片面あたりの面積 S ( s ) とは同一となり、 S ( 1 ) = S ( s ) = S (2) が満たされる。
一方、 S ( 1 ) ≤ S ( s ) ≤ S ( 1) X I . 0 5および
S (2) ≤ S ( s ) ≤ S ( 2) X l . 0 5が満たされる場合には、 各側 面において各集電体シ一トの端部とセパレー夕の端部とが、 実質的に面 一に配されていると考えることができる。 このような極板群においては、 その側面からセパレ一タゃ極板の端部 が突出していないため、 体積効率が高く、 高容量を得ることが可能であ る。 このような極板群は、 均整のとれた簡略な構造を有するため、 信頼 性を確保しやすい。 しかも、 多くの極板群を同時に製造することができ るため、 製造コストを削減することが可能である。
第 1集電体シ一ト 1 3 aの導電層 1 2 aの露出部 (端部 1 2 x ) は、 極板群 1 0の第 1側面 (図 1左側) に配されており、 その反対側の絶縁 部 (端部 l l x ) は、 極板群 1 0の第 2側面 (図 1右側) に配されてい る。 一方、 第 2集電体シ一ト 1 3 bの導電層 1 2 bの露出部 (端部 1 2 y ) は、 極板群 1 0の第 2側面に配されており、 その反対側の絶縁 部 (端部 l l y ) は、 極板群 1 0の第 1側面に配されている。 なお、 図 1では、 第 1側面と第 2側面とが互いに極板群の反対側に位置している が、 これらの配置は特に限定されない。
上記のように、 第 1電極と第 2電極とが、 互いに逆向きに配置されて いる場合、 第 1集電体シート 1 3 aの導電層 1 2 aの露出部 (端部 1 2 x ) は、 セパレー夕 1 6の端部を介して、 第 2集電体シ一ト 1 3 b の絶縁部 (端部 1 1 y ) と隣接する。 第 2集電体シ一ト 1 3 bの導電層 1 2 bの露出部 (端部 1 2 y ) は、 セパレ一夕 1 6の端部を介して、 第 1集電体シート 1 3 aの絶縁部 (端部 1 1 X ) と隣接する。 このような 配置であれば、 第 1電極と第 2電極との短絡を防止することが容易であ るし、 複数の第 1集電体シートまたは第 2集電体シートの導電層の露出 部を並列に接続して、 高容量の極板群を得ることも容易である。
短絡を確実に防止する観点から、 第 1集電体シ一ト 1 3 aの導電層 1 2 aの露出部 (端部 1 2 x ) に隣接する第 2集電体シートの絶縁部 (端部 1 1 y ) および第 2集電体シート 1 3 bの導電層 1 2 bの露出部 (端部 1 2 y ) に隣接する第 1集電体シート 1 3 aの絶縁部 (端部 1 1 x) は、 それぞれ幅 0. 0 0 l mm以上、 さらには 0. 1 mm以上とす ることが好ましい。
図 1のように複数の第 1集電体シ一ト 1 3 aまたは第 2集電体シ一ト 1 3 bの導電層 1 2 a、 bの露出部を並列に接続して高容量の極板群を 得る場合、 どのような方法で露出部同士を接続してもよいが、 例えば、 導電性材料の被膜で第 1側面と第 2側面を被覆する方法を用いることが できる。 導電性材料の被膜の厚さは、 例えば 0. 0 1〜 l mm程度で十 分である。 こうして得られた導電性材料の被膜は、 それぞれ第 1端子 1 7 aおよび第 2端子 1 7 bとして集電に利用することができる。
良好な集電状態を得るためには、 導電層 1 2 a、 bの露出部と導電性 材料の被膜との接触面積が大きいほど好ましく、 導電層 1 2 a、 bの露 出部が導電性材料の被膜 (端子 1 7 a、 b) の内部に 0. 0 0 1〜1 mmの深さまで埋没していることが好ましく、 0. 0 1〜l mmの深さ まで埋没していることが、 さらに好ましい。
各集電体シ一トの露出部が各端子に埋没していることから、 例えば、 極板自体を端子に埋没させる従来の電気化学素子とは異なり、 電極合剤 層の導電性や集電体シートの厚さに関わらず、 高い集電性能を確保でき る。 そして、 突出させた同一極性の極板の芯材と、 板状の集電板とを接 合する場合のように、 芯材と集電板との接触面積を充分に確保できない という問題も生じない。
導電性材料の被膜からなる第 1端子および第 2端子の少なくとも一方 は、 ある実施形態においては、 粒子状金属が連続的に接合してなる多孔 質金属膜からなることが好ましい。 このような多孔質金属膜は、 溶融金 属もしくは半溶融状態の金属粒子を、 圧搾空気でノズルより吹き出させ、 極板群の所定の側面に吹き付けることにより、 得ることができる。 例え ば、 いわゆるメタリコン (metalikon) を採用することができる。 第 1端子もしくは第 2端子が、 正極端子となる場合には、 多孔質金属 膜は、 アルミニウム、 アルミニウム合金等からなることが好ましい。 第 1端子もしくは第 2端子が、 負極端子となる場合には、 多孔質金属膜は、 銅、 銅合金等からなることが好ましい。
導電性材料の被膜からなる第 1 子および第 2端子の少なくとも一方 は、 別の実施形態においては、 導電性べ一ストからなることが好ましレ 導電性ペーストには、 樹脂と、 前記樹脂に分散させた導電性微粒子およ び導電性繊維よりなる群から選ばれた少なくとも 1種とからなるものを 用いることができる。 導電性ペーストは、 極板群の所定の側面に塗工す ることが容易であるから、 導電性ペーストを用いることにより、 極板群 の製造工程を簡略化することができる。 極板群の所定の側面に塗工され た導電性ペーストは、 加熱や光照射により、 硬化させることが好ましレ^ 導電性ペーストを硬化させることにより、 第 1端子もしくは第 2端子の 強度を向上させることができる。
樹脂には、 熱可塑性樹脂を用いてもよく、 熱硬化性樹脂を用いてもよ い。
第 1端子もしくは第 2端子が、 正極端子となる塲合には、 導電性べ一 ストの樹脂として、 ポリアミ ドイミ ドなどを好ましく用いることができ る。 また、 正極端子には、 カーボン、 アルミニウムなどからなる導電性 微粒子や導電性繊維を用いることが好ましい。 第 1端子もしくは第 2端 子が、 負極端子となる場合にも、 導電性ペーストの樹脂として、 ポリア ミ ドイミドなどを好ましく用いることができる。 また、 負極端子には、 銅、 銀、 銀メツキされた銅、 ニッケル、 カーボンなどからなる導電性微 粒子や導電性繊維を用いることが好ましい。
導電性粒子の平均粒径は、 1〜 1 0 0 / mであることが好ましい。 ま た、 導電性繊維の直径は、 1〜 1 0 0 i mであることが好ましく、 繊維 の長さは特に限定されない。
導電性ペーストにおける導電性微粒子およびノまたは導電性繊維の含 有率は、 5 0〜 9 0重量%であることが好ましい。 導電性を高めるため には、 導電性微粒子および または導電性繊維の量が多い方が好ましい が、 樹脂の含有率があまりに少なくなると、 導電性ペーストの調製や塗 ェが困難になる。
導電性材料の被膜からなる第 1端子および第 2端子の少なくとも一方 は、 さらに別の実施形態においては、 融点 2 5 0 °C以下、 好ましくは 1 8 0 °C以下の低融点金属からなることが好ましい。 例えば、 低融点金 属に、 樹脂をフラックスとして添加すると、 半田が得られる。 半田は取 り扱いが容易な上、 半田を用いれば、 多孔質金属膜や導電性べ一ストに 比べて、 良好な導電性を有する端子を形成することが可能である。 ただ し、 低融点合金の融点が 2 5 0 °Cを超えると、 極板群の所定の側面に低 融点金属からなる端子を設ける際に、 電気化学素子を劣化させる虞があ る。
低融点金属としては、 P b— S n系合金、 P b _ S n — 合金、 P b— S n— S b系合金、 S n— A g— C u系合金、 S n— Z n— B i 系合金等が知られているが、 他の組成の金属を用いることもできる。 側面に端子を有する極板群 1 0においては、 集電のためのタブやリー ドを必要としないから、 均整のとれた簡略な構造をとりやすい。
図 1 、 2では、 第 1電極合剤層 1 4 aおよび第 2電極合剤層 1 4 bの 端部は、 第 3側面および第 4側面より窪んだ位置に配されているが、 各 電極合剤層の端部が、 各集電体シートの導電部もしくは絶縁部の端部お よびセパレー夕の端部と面一に配されていてもよい。 そのような構造で あっても、 第 3側面および第 4側面を絶縁性の材料で覆うことにより、 充分に短絡を防止することが可能である。 樹脂シート 1 1 a、 bの厚さは、 例えば 0 . 5〜 5 0 0 mである。 平坦な表面を有する通常の樹脂シートを用いてもよく、 穿孔体、 ラス体、 多孔質体、 ネッ ト、 発泡体、 織布、 不織布などを用いてもよい。 また、 表面に凹凸を有する樹脂シートを用いることもできる。
樹脂シート 1 1 a、 bには、 例えば、 ポリエチレン、 ポリプロピレン、 ポリメチルペンテンなどのォレフィン系ポリマー、 ポリエチレンテレフ タレート、 ポリブチレンテレフタレート、 ポリシクロへキシレンジメチ レンテレフ夕レート、 ポリアリレートなどのエステル系ポリマー、 ポリ フエ二レンサルフアイ ドなどのチォエーテル系ポリマー、 ポリスチレン などの芳香族ビエル系ポリマー、 ポリイミ ド、 ァラミ ド樹脂などの窒素 含有ポリマ一、 ポリ 4フッ化工チレン、 ポリフッ化ビニリデンなどのフ ッ素ポリマーなどを用いることができる。 これらは単独で用いてもよく、 2種以上を組み合わせたコポリマー、 ポリマーァロイ、 ポリマープレン ドなどを用いてもよい。
導電層 1 2 a、 bの厚さは、 例えば 0 . 0 1〜: L O O mである。 導電層 1 2 a、 bには、 構成された電池において化学変化を起こさな い電子伝導体を特に限定なく用いることができる。 第 1電極もしくは第 2電極が正極である場合には、 例えば、 ステンレス鋼、 アルミニウム、 アルミニウム合金、 チタン、 炭素などを用いることができ、 特に、 アル ミニゥム、 アルミニウム合金などが好ましい。 第 1電極もしくは第 2電 極が負極である場合には、 例えば、 ステンレス鋼、 ニッケル、 銅、 銅合 金、 チタンなどを用いることができ、 特に、 銅、 銅合金などが好ましい。 導電層 1 2 a、 bを形成する方法は特に限定されないが、 例えば、 導 電性材料を樹脂シート 1 1 a、 bの表面に蒸着すれば導電層を得ること ができる。 所定の形状パターンの蒸着膜を形成するには、 樹脂シートに 所定形状の開口部を有するマスクを被せてから蒸着を行う。 極板群 1 0の第 1側面には、 第 1端子 1 7 aと第 2電極 1 5 b、 b ' とを絶縁するための第 1絶縁材料部 1 8 aを設けることができ、 第 2側 面には.、 第 2端子 1 7 bと第 1電極 1 5 aとを絶縁するための第 2絶縁 材料部 1 8 bを設けることができる。 第 1側面には、 第 2集電体シート 1 3 bの絶縁部 (端部 1 l y) が配され、 第 2側面には、 第 1集電体シ ート 1 3 aの絶縁部 (端部 l l x) が配されているため、 絶縁材料部を 設けなくても短絡を防止することは可能であるが、 さらに絶緣材料部 1 8 a、 bを設けることで、 短絡の可能性は大幅に低減する。 絶縁材料 部 1 8 a、 bの厚さは特に限定されないが、 0. 0 0 l mm以上、 さら には 0. 0 1 mm以上であることが好ましい。
絶縁材料部 1 8 a、 bを設ける方法は特に限定されないが、 予め極板 の製造工程において、 スクリーン印刷法などにより、 ペースト状もしく は液状の絶縁材料を、 電極合剤層 1 4 a、 bの周囲の集電体シート 1 3 a、 b上に塗布しておく方法を採用することができる。 フィルム状 もしくはテープ状の絶縁材料を、 電極合剤層 1 4 a、 bの周囲の集電体 シ一ト 1 3 a、 b上に貼り付けることにより、 絶縁材料部を設けること もできる。
図 2では、 極板群 1 0の第 3側面および第 4側面には絶縁材料部が設 けられていないが、 図 3のように、 第 3側面 (図 3左側) および第 4側 面 (図 3右側) に配された電極合剤層の端部を、 それぞれ第 3絶縁材料 部 1 8 cおよび第 4絶縁材料部 1 8 dで覆うことも可能である。 このよ うな構成によれば、 確実に短絡を防止することが可能である。
絶縁材料部 1 8 a、 bに用いる絶縁材料としては、 樹脂、 ガラス組成 物、 セラミックスなどが挙げられる。 また、 織布ゃ不織布に樹脂を含浸 させた複合物などを用いることもできる。 樹脂には、 熱可塑性樹脂を用 いてもよく、 熱硬化性樹脂を用いてもよい。 熱硬化性樹脂を用いる場合 には、 樹脂の塗膜を加熱して硬化させる工程を要する。
絶縁材料部 1 8 a、 bに用いることのできる樹脂としては、 ポリェチ レン、 ポリプロピレン、 ポリメチルペンテンなどのォレフィン系ポリマ 一、 ポリエチレンテレフタレート、 ポリブチレンテレフタレート、 ポリ シクロへキシレンジメチレンテレフ夕レート、 ポリアリレ一ト、 ポリ力 —ポネー卜などのエステル系ポリマー、 ポリエチレンォキシド、 ポリプ ロピレンォキシド、 ポリアセ夕一ル、 ポリフエ二レンエーテル、 ポリエ 一テルエ一テルケトン、 ポリエーテルィミ ドなどのエーテル系ポリマー、 アクリロニトリル、 A S樹脂、 A B S樹脂などのアクリロニトリル系ポ リマー、 ポリフエ二レンサルフアイ ドなどのチォエーテル系ポリマー、 ポリスチレンなどの芳香族ビエル系ポリマー、 ポリイミ ド、 ァラミ ド樹 脂などの窒素含有ポリマー、 ポリ 4フッ化工チレン、 ポリフッ化ビニリ デンなどのフッ素ポリマー、 ポリメタクリル酸メチルなどのァクリル系 ポリマ一などを挙げることができる。 これらは単独で用いてもよく、 2 種以上を組み合わせたコポリマー、 ポリマーァロイ、 ポリマーブレンド などを用いてもよい。 また、 加熱や U V照射により重合 ·硬化して得ら れるポリマ一を用いてもよい。
より詳細には、 絶縁材料部には、 樹脂塗膜や樹脂テープを用いること ができる。
樹脂塗膜は、 絶縁樹脂を含む溶液または分散液を、 電極合剤層の端部 に塗工し、 乾燥することにより、 形成することができる。 塗工方法は特 に限定されないが、 例えばスクリーン印刷法、 ダイコート法等により、 溶液または分散液を、 電極合剤層周囲の集電体シート上に塗工すること ができる。 溶液や分散液は、 液状でもペースト状でもよく、 これらの粘 度は任意に制御すればよい。 溶液または分散液に含ませる絶縁樹脂には、 ポリエチレンォキシド、 ポリプロピレンォキシド、 ポリアセタール、 ポリフエ二レンエーテル、 ポリエーテルエーテルケトン、 ポリエーテルィミ ド等のエーテル系樹脂 ; ポリアクリロニトリル、 A S樹脂、 A B S樹脂等のアクリロニトリル 系樹脂; ポリフッ化ビニリデン等のフッ素樹脂; ポリメタクリル酸メチ ル等のアクリル系樹脂; これらのポリマーを含むコポリマー、 ポリマー ァロイもしくはポリマーブレンド等を用いることができる。 これらは単 独で用いてもよく、 2種以上を組み合わせて用いてもよい。 これらのう ちでは、 特に、 ポリエチレンォキシド、 ポリプロピレンォキシド、 ポリ アクリロニトリル、 ポリフッ化ビニリデン、 ポリメ夕クリル酸メチル、 これらのポリマーを含むコポリマ一、 ポリマーァロイもしくはポリマ一 プレンド等を用いることが好ましい。
樹脂塗膜は、 重合性化合物を含む溶液または分散液を、 電極合剤層の 端部に塗工し、 前記重合性化合物を重合させることにより、 形成するこ ともできる。 塗工方法は特に限定されないが、 例えばスクリーン印刷法 により行うことができる。 溶液や分散液は、 液状でもペースト状でもよ く、 これらの粘度は任意に制御すればよい。 重合性化合物は、 熱、 紫外 線および電子線よりなる群から選択される少なくとも 1種の手段で重合 することが好ましい。
重合性化合物は、 例えば分子中に 1〜 3個の重合性官能基を有する。 重合性官能基は、 ァクリレート基およびメタクリレート基よりなる群か ら選択される少なくとも 1種であることが好ましい。 また、 重合性官能 基以外の部分は、 特に限定されないが、 例えばポリアルキレンォキシド 鎖などであればよい。
重合性化合物を熱で重合させる場合には、 ァゾビスイソプチロニトリ ル、 過酸化べンゾィル、 過酸化ァセチル等の重合開始剤を用いる。 重合 性化合物を紫外線で重合させる場合には、 ベンジルジメチルケタール、 ベンゾィンィソプロピルエーテル等の重合開始剤を用いる。 重合性化合 物を電子線で重合させる場合には、 重合開始剤は特に必要としない。 樹脂テープを、 電極合剤層周囲の集電体シート上に貼り付けることに より、 絶縁材料部を設けることもできる。 樹脂テープには、 絶縁基材ぉ よびそれに担持された絶縁性粘着剤からなるものを用いることができる。 絶縁基材には、 ポリエチレン、 ポリプロピレン、 ポリメチルペンテン 等のォレフィン系樹脂 ; ポリ Xチレンテレフ夕レート、 ポリエチレンナ フタレート、 ポリシクロへキシレンジメチレンテレフ夕レート、 ポリア リレート、 ポリカーボネート等のエステル系樹脂 ; ポリエチレンォキシ ド、 ポリプロピレンォキシド、 ポリアセタール、 ポリフエ二レンエーテ ル、 ポリエーテルエーテルケトン、 ポリエーテルイミ ド等のエーテル系 樹脂 ; ポリスルホン、 ポリエーテルスルホン等のスルホン系樹脂 ; ポリ アクリロニトリル、 A S樹脂、 A B S樹脂等のアクリロニトリル系樹脂 ; ポリフエ二レンサルフアイ ド等のチォエーテル系樹脂; ポリスチレン 等の芳香族ビニル系樹脂; ポリイミ ド、 ァラミ ド樹脂等の窒素含有樹脂 ; ポリテトラフルォロエチレン、 ポリフッ化ビニリデン等のフッ素樹脂 ; ポリメタクリル酸メチル等のァクリル系樹脂; これらのポリマーを含 むコポリマー、 ポリマーァロイもしくはポリマ一ブレンド等を用いるこ とができる。 これらは単独で用いてもよく、 2種以上を組み合わせて用 いてもよい。 これらのうちでは、 特に、 ポリエチレン、 ポリプロピレン、 ポリエチレンテレフ夕レート、 ポリエチレンナフタレート、 ポリフエ二 レンサルフアイ ド、 ポリイミ ド、 ァラミ ド樹脂、 これらのポリマーを含 むコポリマ一、 ポリマーァロイもしくはポリマ一プレンド等が好ましい。 絶縁性粘着剤は、 特に限定されないが、 例えばアクリル系樹脂、 プチ ルゴム系樹脂などを用いることができる。 絶縁基材の厚さは、 例えば 1 1 0 0 0 mであり、 絶縁性粘着剤の 層の厚さは、 例えば 0. 1 1 0 0 mである。 絶縁性粘着剤は、 基材 の片面のみに設けてもよく、 両面に設けてもよい。
図 1では、 第 1電極合剤層 1 4 aに比べて、 第 2電極合剤層 1 4 bの 方が大きな面積を有している。 このような構造は、 第 1電極合剤層 1 4 aを正極とし、 第 2電極合剤層 1 4 bを負極とするリチウムイオン二次 電池の極板群に適する。 第 1電極合剤層 1 4 aを負極とし、 第 2電極合 剤層 1 4 bを正極とする場合には、 第 2電極合剤層 1 4 bに比べて第 1 電極合剤層 1 4 aの面積を大きくする。
電極合剤層 1 4 a bの厚さは、 例えば 1 1 0 0 0 mであるが、 これらの厚さは特に限定されない。
電極合剤は、 電極活物質を含み、 導電材、 結着剤などを任意に含んで もよい。 第 1電極または第 2電極がリチウムイオン二次電池の正極であ る場合、 活物質としては、 例えば、 リチウム含有遷移金属酸化物を好ま しく用いることができる。 リチウム含有遷移金属酸化物としては、 例え ば、 L i xC o Oz L i xN i 〇z L i xMn〇z
L i xC o yN i i-yO z> L i XC o fO z
L i xN i i-yMyO z (M=T i V Mn F e )
L i xC o aN i bMcO 2 (M=T i Mn A し Mg F e Z r ) L i xMn 24 L i xMn 2 (i-y) M2y04 (M=N a , Mg S c Y F e C o N i T i Z r C u Z n A l P b S b ) など を挙げることができる。 これらは単独で用いてもよく、 2種以上を組み 合わせて用いてもよい。 ただし、 X値は電池の充放電により、
0≤ X≤ 1. 2の範囲で変化する。 また、 0≤ y≤ l
0. 9≤ f ≤ 0. 9 8 1. 9≤ z≤ 2. 3 a + b + c = l
0≤ a≤ 1 , 0≤ b≤ 1 , 0≤ c < lを満たす。 第 1電極または第 2電極がリチウムイオン二次電池の負極である場合、 活物質としては、 例えば、 リチウム、 リチウム合金、 金属間化合物、 炭 素材料、 リチウムイオンを吸蔵 ·放出可能な有機化合物や無機化合物、 金属錯体、 有機高分子化合物などを好ましく用いることができる。 これ らは単独で用いてもよく、 2種以上を組み合わせて用いてもよい。 炭素 材料としては、 コークス、 熱分解炭素、 天然黒鉛、 人造黒鉛、 メソカー ボンマイクロビーズ、 黒鉛化メソフェーズ小球体、 気相成長炭素、 ガラ ス状炭素、 炭素繊維 (ポリアクリロニトリル系、 ピッチ系、 セルロース 系、 気相成長系) 、 不定形炭素、 有機化合物焼成体などが挙げられる。 これらのうちでは、 特に、 天然黒鉛や人造黒鉛が好ましい。
導電材には、 例えば、 アセチレンブラックなどのカーボンブラック、 黒鉛などが用いられる。
結着剤には、 例えば、 ポリフッ化ビニリデン、 ポリテトラフルォロェ チレンなどのフッ素樹脂、 アクリル系樹脂、 スチレンブタジエンゴム、 エチレンプロピレンターポリマ一などを用いることができる。
セパレー夕には、 ポリエチレン、 ポリプロピレンなどのォレフィン系 ポリマ一やガラス繊維などからなる織布ゃ不織布を用いることができる。 固体電解質やゲル電解質をセパレー夕として用いることもできる。 固体 電解質には、 例えば、 ポリエチレンオキサイ ド、 ポリプロピレンォキサ イ ドなどをマトリクス材料として用いることができる。 ゲル電解質とし ては、 例えば、 後述の非水電解液をポリマー材料からなるマトリクスに 保持させたものを用いることができる。 マトリクスを形成するポリマー 材料には、 ポリエチレンオキサイ ド、 ポリプロピレンオキサイ ド、 ポリ フッ化ビニリデン、 フッ化ビニリデンとへキサフルォロプロピレンとの コポリマーなどを用いることができる。 これらは単独で用いてもよく、 2種以上を組み合わせて用いてもよい。 これらのうちでは、 特に、 フッ 化ビニリデンとへキサフルォロプロピレンとのコポリマー、 ポリフッ化 ビニリデンとポリエチレンォキサイ ドとの混合物を用いることが好まし い。
極板群は、 一般に、 電解液とともに所定のケースに収容して用いられ る。 電解液の組成は、 電気化学素子の種類に応じて異なる。 ケースの形 状、 材質などは特に限定されない。
電気化学素子が、 例えばリチウムイオン二次電池の塲合、 電解液には、 非水溶媒にリチウム塩を溶解させたものが用いられる。 電解液における リチウム塩濃度は、 例えば 0 . 5〜1 . 5 m 0 1 Z Lとすることが好ま しい。
非水溶媒には、 エチレンカーボネート、 プロピレンカーボネート、 ブ チレンカーボネート、 ビニレンカーボネートなどの環状カーボネート、 ジメチルカーボネート、 ジェチルカーボネート、 ェチルメチルカーボネ ート、 ェチルプロピルカーボネート、 メチルプロピルカーボネート、 メ チルイソプロピルカーボネ一ト、 ジプロピルカーボネートなどの非環状 カーボネート、 蟻酸メチル、 酢酸メチル、 プロピオン酸メチル、 プロピ オン酸ェチルなどの脂肪族カルボン酸エステル、 ァ—プチロラク トン、 T—バレロラクトンなどの r —ラクトン、 1, 2—ジメトキシェタン、 1 , 2—ジエトキシェタン、 ェトキシメトキシェタンなどの非環状エー テル、 テトラヒドロフラン、 2—メチルーテトラヒドロフランなどの環 状エーテル、 ジメチルスルホキシド、 1, 3 —ジォキゾラン、 リン酸ト リメチル、 リン酸トリエヂル、 リン酸トリオクチルなどのアルキルリン 酸エステルやそれらのフッ化物などを用いることができる。 これらは複 数種を組み合わせて用いることが好ましい。 特に、 環状カーボネートと 非環状カーボネートを含む混合物、 環状カーボネートと非環状カーボネ 一トと脂肪族カルボン酸エステルを含む混合物などが好ましい。 リチウム塩には、 L i P F6、 L i B F4、 L i C l 〇4、 L i A 1 C 14 L i S b F L i S CN、 L i C l、 L i C F 3S〇3、 L i C F3C〇2、 L i A s F 6 , L i N (C F3S〇2) 2
L i 2B ioC 1 to, L i N (C2F 5S 02) 2、 L i P F 3 (C F 3) 3、 L i P F 3 (C2F 5) 3などを用いることができる。 これら.は単独で用い てもよく、 2種以上を組み合わせて用いてもよい。 ただし、 電解液は、 少なくとも L i P F 6を含むことが好ましい。 実施の形態 2
捲回型極板群の一例について説明する。 図 4は、 第 1電極を中心に描 かれた捲回型極板群 3 0の一部の縦概念断面図である。 より外周側の合 剤層や集電体シ一卜は省略されている。
捲回型極板群 3 0は、 積層され、 捲回された第 1電極 3 aと第 2電極 3 bからなり、 第 1電極 3 aと第 2電極 3 bとの間には、 セパレー夕 3 9が介在している。
第 1電極 3 aは、 第 1集電体シ一ト 3 1 aおよびその両面に設けられ た 2つの第 1電極合剤層 3 2 aからなり、 第 1集電体シ一ト 3 1 aは、 樹脂シートおよびその両面に設けられた導電層からなる。 導電層の表面 は第 1集電体シートの導電部となり、 樹脂シートの露出部は絶縁部とな る。
第 1集電体シートの端部 3 5 aを除く全面には導電層が設けられてい る。 導電層の表面は導電部となることから、 その上に第 1電極合剤層
3 2 aが設けられている。 導電層を有さない第 1集電体シ一トの端部
3 5 aは絶縁部となる。 端部 3 5 aの反対側に位置する端部 34 aには、 集電のために用いる導電層の露出部が残されている。
第 2電極 3 bは、 極板群における配置が逆であること以外、 第 1電極 3 aと同様の構造を有する。 すなわち、 内部の第 2電極 3 bは、 第 2集 電体シート 3 1 bおよびその両面に設けられた 2つの第 2電極合剤層 3 2 bからなり、 第 2集電体シ一ト 3 1 bは、 樹脂シ一トおよびその両 面に設けられた導電層からなる。
第 2集電体シートの端部 3 5 bを除く全面には導電層が設けられてい る。 導電層の表面は導電部となることから、 その上に第 2電極合剤層 3 2 bが設けられている。 導電層を有さない第 2集電体シ一トの端部 3 5 bは絶縁部となる。 端部 3 5 bの反対側に位置する端部 3 4 bには、 集電のために用いる導電層の露出部が残されている。
図 4において、 極板群の各底面では、 各集電体シートの端部とセパレ 一夕の端部とが、 ほぼ面一に配されている。
第 1集電体シ一ト 3 1 aの導電層の露出部 (端部 3 4 a ) は、 極板群 の第 1底面 (図 4上側) に配されており、 その反対側の絶縁部 (端部 3 5 a ) は、 極板群の第 2底面 (図 1下側) に配されている。 一方、 第 2集電体シ一ト 3 1 bの導電層の露出部 (端部 3 4 b ) は、 極板群の第 2底面に配されており、 その反対側の絶縁部 (端部 3 5 b ) は、 極板群 の第 1底面に配されている。
各底面に配されている各集電体シ一卜の絶縁部は、 実施の形態 1の極 板群と同様に、 幅 0 . 0 0 1 mm以上が好ましく、 0 . 1 m m以上がさ らに好ましい。
第 1集電体シ一ト 3 1 aまたは第 2集電体シ一ト 3 1 bの導電層の露 出部は、 それぞれ一体に接続することが好ましい。 どのような方法で接 続を行ってもよいが、 図 4に示すように、 例えば 0 . 0 1〜l m m程度 の厚さの導電性材料の被膜で、 第 1底面と第 2底面を被覆することが好 ましい。 こうして得られた導電性材料の被膜は、 それぞれ第 1端子 3 7 および第 2端子 3 8として集電に利用することができる。 導電性材料の 被膜は、 実施の形態 1の極板群と同様に形成することができる。
導電層の露出部と導電性材料の被膜との接触面積は大きいほど好まし い。 実施の形態 1の極板群と同様、 導電層の露出部は、 導電性材料の被 膜 (端子 3 7、 3 8 ) の内部に 0 . 0 0 1 〜 1 m mの深さまで埋没して いることが好ましい。
極板群の第 1底面には、 第 1端子 3 7と第 2電極 3 bとを絶縁するた めの第 1絶縁材料部 3 6 bを設けることができ、 第 2底面には、 第 2端 子 3 8 と第 1電極 3 aとを絶縁するための第 2絶縁材料部 3 6 aを設け ることができる。
第 1底面には、 第 2集電体シートの絶縁部 (端部 3 5 b ) が配され、 第 2底面には、 第 1集電体シートの絶縁部 (端部 3 5 a ) が配されてい るため、 絶縁材料部を設けなくても短絡を防止することは可能であるが、 さらに絶縁材料部 3 6 a、 bを設けることで、 短絡の可能性は大幅に低 減する。
絶縁材料部は、 実施の形態 1の極板群と同様の方法により設けること ができる。 絶縁材料部の厚さは特に限定されないが、 実施の形態 1の極 板群と同様に、 0 . 0 0 1 mm以上が好ましく、 0 . 0 1 mm以上であ ることがさらに好ましい。
このような極板群においては、 集電のためのタブやリードを必要とし ないから、 均整のとれた簡略な構造となり、 信頼性を確保しやすい。 ま た、 体積効率が高く、 高容量を得ることが可能である。 しかも、 このよ うな極板群は、 同時にたくさん製造することができるため、 製造コスト を削減することが可能である。 実施の形態 3
複数の積層型極板群を同時に製造する方法の一例について、 図 5を参 照しながら説明する。 以下の方法によれば、 例えば、 縦 l〜 3 0 0 mm、 幅 1〜 3 0 0 mm、 厚さ 0. 0 1〜2 0 mmの大きさの極板群を、 効率 よく製造することができる。
本実施の形態の製造方法は、
( a) シ一ト状の絶縁性基材の両面に所定のパターンに基づいて導電層 を設けて第 1集電体シートおよび第 2集電体シ一トを得る工程、
( b ) 第 1集電体シ一卜の導電層および第 2集電体シ一トの導電層の上 に、 それぞれ複数個の第 1電極合剤層および第 2電極合剤層を、 前記パ ターンに対応させるとともに間隙を設けて形成し、 第 1電極の集合体お よび第 2電極の集合体を得る工程、
(c ) 第 1電極の集合体および第 2電極の集合体をセパレー夕を介して 積層し、 積層体を得る工程、 ならびに
(d) 積層体を、 前記間隙において切断することにより、 複数個の積層 型極板群を得る工程を含む。
以下、 工程 ( a) 〜 (d) を、 工程順に説明する。 また、 その他のェ 程についても適宜説明する。 なお、 その他の工程は、 電気化学素子の構 造および用途などに応じ、 当業者であれば適宜選択し、 組み合わせて行 うことができる。 また、 積層型極板群の製造法は、 以下に限定されるも のではない。
工程 ( a)
工程 ( a) では、 シート状の絶縁性基材の両面に所定のパターンで導 電層を設けて第 1集電体シ一トおよび第 2集電体シートを得る。
ここでは、 所定のパターンとして、 図 5に示すような複数行、 複数列 からなるマトリクス状のパターンを説明する。
まず、 所望数の集電体シ一ト 5 0を与え得る大きさのシート状の絶縁 性基材である樹脂シート 5 1を準備し、 樹脂シート 5 1の両面の同じ位 置に、 複数の所定のパターンの導電層を設ける。
図 5の場合、 樹脂シート 5 1には、 電極 2つ分の大きさの導電層 5 2 が複数個形成されている。 2 n個の電極を得ようとするときには、 樹脂 シートに、 片面あたり n個の導電層を形成する。 すなわち、 電極 2つ分 の集電体シート 5 2 ' と、 それらの間の中央部 5 3とを、 一体に形成す る。 中央部 5 3は、 後の工程により、 電極合剤層を担持しない導電層の 露出部となる。 このようにして第 1集電体シ一ト 5 0を得る。 第 2集電 体シートも同様にして作製する。
このような導電層は、 樹脂シートにマトリクス状のマスクを被覆し、 マスクから露出する樹脂シートに金属を蒸着させる方法により得ること ができる。 マスクで被覆された部分には、 樹脂シートの露出部 5 4が残 る。
マスクには、 マトリクス状の開口部を有するシート、 蒸着金属の付着 を阻害する目的で樹脂シート上にマトリクス状に塗布されたオイルなど を用いることができる。 また、 樹脂シートにマトリクス状にインクを印 刷し、 金属を蒸着した後、 インクとインク上の蒸着金属を洗浄 · 除去す る方法も採用することができる。 さらに、 樹脂シートに金属を蒸着した 後、 レーザーなどの金属除去手段を用いて、 所定の形状パターンの導電 層を得る方法などもある。 ただし、 特にこれらの方法に限定されるもの ではない。
工程 (b )
次に、 各導電層の上に、 それぞれ複数個の第 1電極合剤層または第 2 電極合剤層を、 前記パターンに対応させるとともに間隙を設けて形成し、 第 1電極の集合体 6 0 aおよび第 2電極の集合体 6 0 bを得る。
図 6の場合、 第 1集電体シートの各導電層の上には、 第 1電極合剤層 6 1 aが 2つずつ形成されている。 2つの第 1電極合剤層 6 1 aの間に は、 間隙として合剤を担持しない導電層の露出部 5 3 aが残されている。 また、 導電層を有さない樹脂シ一トの露出部 5 4 aも残されている。 第 1電極合剤層は、 第 1電極合剤からなるペーストを、 中央部 5 3を 除く導電層の全面に塗工することにより形成される。 塗工方法は特に限 定されないが、 スクリーン印刷、 パターン塗工などを採用することが好 ましい。 このときペーストが塗工されなかった導電層の露出部 5 3 aは、 極板群の構成後に、 第 1端子との接続部 5 3 Xとなる。 また、 ペースト が塗工されなかった樹脂シートの露出部 5 4 aは、 極板群の構成後に、 短絡防止のために第 2端子に配される絶縁部 5 4 Xとなる。
図 6には、 3行 3列の電極合剤層が描かれているが、 通常はより大き な樹脂シー卜上に、 より多くの導電層と電極合剤層が形成される。
第 1電極合剤からなるペーストは、 第 1電極の活物質、 導電材、 結着 剤などを、 分散媒と混合することにより調製される。 その後、 ペースト の塗膜を乾燥し、 乾燥後の塗膜をローラで圧延して、 合剤密度が高めら れる。
工程 (b ) の後、 後述する工程 (c ) の前に、 第 1電極合剤層または 第 2電極合剤層の端部を覆う位置に、 絶縁材料部を形成する工程を行う ことが好ましい。
すなわち、 極板群を構成した場合に第 2集電体シ一トの導電層の露出 部と隣接することになる第 1電極合剤層の周縁部に沿って、 絶縁材料を 塗工する。 ここでもパターン塗工を行うことが好ましい。
第 1電極合剤層の周縁部のその他の部分にも、 絶縁材料を被覆しても よい。 ただし、 第 1集電体シートの導電層の露出部の全体が覆われない ようにする。
図 6のような極板群を得る場合には、 少なくとも樹脂シートの露出部 5 4 aに隣接する第 1電極合剤層の端部に、 絶緣材料を塗工する。 なお、 絶縁材料の塗工は必ずしも必要ではなく、 任意に行えばよい。 ここで塗 ェした絶縁樹脂は、 極板群において、 第 1絶縁材料部を形成する。
第 2電極の集合体も上記第 1電極の集合体と同様に作製すればよい。 図 6の場合、 第 2集電体シートの各導電層の上には、 第 2電極合剤層 6 1 bが 2つずつ形成されている。 2つの第 2電極合剤層 6 1 bの間に は、 間隙として合剤を担持しない導電層の露出部 5 3 bが残されている。 また、 導電層を有さない樹脂シー卜の露出部 5 4 bも残されている。 第 2電極合剤のペーストが塗工されなかった導電層の露出部 5 3 bは、 極板群の構成後に、 第 2端子との接続部 5 3 yとなる。 また、 ペースト が塗工されなかった樹脂シートの露出部 5 4 bは、 極板群の構成後に、 短絡防止のために第 1端子に配される絶縁部 5 4 yとなる。
積層体の両端部に配する極板として、 片面だけに第 1電極合剤層を有 する第 1電極の集合体または片面だけに第 2電極合剤層を有する第 2電 極の集合体を作製してもよい。 これらの電極の集合体は、 最外層に電極 合剤層を露出させないために用いられる。 この場合、 積層体の最外層に 導電層が露出してもよいが、 導電層を設けずに、 樹脂シートを露出させ てもよい。
工程 ( c )
次に、 第 1電極の集合体 6 0 aおよび第 2電極の集合体 6 0 bをセパ レー夕を介して積層し、 積層体を得る。
工程 (b ) によって作製された第 1電極の集合体と第 2電極の集合体 とを、 セパレ一夕を介して積層する。 このとき、 第 1電極の集合体に含 まれる第 1電極合剤層 6 1 aと第 2電極の集合体に含まれる第 2電極合 剤層 6 l bとが互いに対面するように、 これらを積層する。
第 1電極の集合体における導電層の露出部 5 3 aが、 第 2電極の集合 体における樹脂シートの露出部 5 4 bと対面し、 第 1電極の集合体にお ける樹脂シートの露出部 5 4 aが、 第 2電極の集合体における導電層の 露出部 5 3 bと対面するように、 両極板を配置する。 そして、 両最外面 に、 片面だけに電極合剤層を有する一対の電極の集合体を配し、 これら で内側の電極の集合体を挟持し、 全体をプレスする。 その結果、 複数の 積層型極板群を含む積層体が、得られる。
工程 (d )
前記積層体を、 電極合剤層の間隙において切断することにより、 複数 個の積層型極板群を得る。
図 6の楊合、 第 1電極の集合体および第 2電極の集合体は、 矢印 X、 Y方向に沿って、 前記間隙において切断される。 導電層の露出部である 間隙に対応する集電体シートの切断部は、 端子との接続部 5 3 x、 yと なり、 その反対側の樹脂シートの露出部に対応する切断部は絶縁部 5 4 X、 yとなる。
従来から一般的に用いられている金属箔からなる集電体の場合、 切断 時に生じる金属バリが問題となる。 金属パリは、 セパレー夕を突き破り、 内部短絡を引き起こす大きな原因となるからである。 従って、 金属バリ の発生を防ぐことが重要となるが、 金属バリを生じることなく金属箔を 切断することは著しく困難である。
一方、 樹脂シートからなる集電体シートを用いる場合、 切断面のほと んどが樹脂で占められているため、 金属バリを生じることがない。 従つ て、 電気化学素子の信頼性を大幅に向上させることができる。
続いて、 積層型極板群の対向する第 1側面および第 2側面を導電性材 料で被覆し、 第 1端子および第 2端子を形成する工程を行うことが好ま しい。
第 1集電体シートの導電層の露出部 (接続部 5 3 x ) と第 2集電体シ 一トの絶縁部 5 4 yとが交互に配列する第 1側面を、 導電性材料の被膜 で被覆すれば、 第 1端子が得られる。 こうして形成された金属被膜は、. 第 1集電体シートの導電層の露出部とだけ電気的に接続される。 第 1側 面おいて、 第 2電極合剤層の端面に絶縁材料が塗工されている場合には、 導電性材料の被膜と第 2電極との短絡は確実に防止される。
第 2集電体シートの導電層の露出部 (接続部 5 3 y ) と第 1集電体シ 一卜の絶縁部 5 4 Xとが交互に配列する第 2側面についても、 上記と同 様に導電性材料で被覆すれば、 第 2端子を得ることができる。
端子を形成しない極板群の側面は、 そのままの状態でもよいが、 でき れば多孔質な絶縁材料で被覆することが好ましい。
次に、 工程 ( a ) における所定のパターンが、 並行に並ぶ帯 (ストリ ップ) 状である場合について、 図 7を参照しながら説明する。
まず、 第 1電極の集合体 7 0 aと第 2電極の集合体 7 0 bとを作製す る。
第 1電極の集合体 7 0 aを得る場合、 所望数の集電体シートを与え得 る大きさの樹脂シートの両面の同じ位置に、 複数行の帯状の導電層を形 成する。 このような導電層は、 例えば、 樹脂シートに帯状のマスクを被 せ、 マスクから露出する樹脂シート部分に金属を蒸着させることにより、 得ることができる。 ここでも、 1つの帯状導電層を帯状電極合剤層 2つ 分の集電体シートに跨るように形成する。 すなわち、 2 n個の帯状集電 体シ一トを与え得る大きさの樹脂シートを用いる場合、 樹脂シ一卜の片 面あたり、 n個の帯状導電層を形成する。
次に、 各帯状導電層の上に、 帯状の第 1電極合剤層 7 1 aを 2つずつ 形成する。 2つの帯状第 1電極合剤層 7 1 aの間には、 合剤を担持しな い導電層の露出部 5 3 a ' を間隙として残しておく。 帯状の第 1電極合 剤層 7 l aは、 上記と同様の第 1電極合剤からなるペーストを、 導電層 の中央部を除く全面に塗工することにより形成される。 塗工方法は上述 の場合と同様である。 ペーストが塗工されなかった導電層の露出部 5 3 a ' は、 第 1端子との接続部 5 3 X ' となる。
また、 第 2電極の集合体 7 0 bを得る場合、 所望数の集電体シートを 与え得る大きさの樹脂シートの両面の同じ位置に、 複数行の帯状の導電 層を設け、 各導電層の上に、 帯状の第 2電極合剤層 7 1 bを 2つずつ形 成する。 2つの帯状の第 2電極合剤層の間には、 合剤を担持しない導電 層の露出部 5 3 b ' を残しておく。 ぺ一ストが塗工されなかった導電層 の露出部 5 3 b ' は、 極板群の構成後には、 第 2端子との接続部
5 3 y ' となる。
このような極板群の集合体である積層体を、 図 7に示す矢印 X、 Y方 向に沿って、 個々の積層型極板群ごとに分割すると、 樹脂シートの露出 部に対応する切断部は、 絶縁部 5 4 x ' 、 y ' を形成する。
他の切断部においては、 電極合剤層の断面が露出することになる。 電 極合剤層の断面が露出する極板群の側面は、 多孔質な絶縁材料で封止す ることが好ましい。 実施の形態 4
複数の積層型極板群を同時に製造する他の方法について、 図 8〜 1 6 を参照しながら説明する。
本実施の形態の製造法は、
( C ) 長尺状の第 1電極の集合体および第 2電極の集合体を、 セパレー 夕を介して積層するとともに連続的に積層体として供給する工程と、
( D ) 前記積層体を平板状のボビンで巻き取る工程と、
( E ) 前記ボビンに巻き取られた積層体を切断し、 複数個の積層型極板 群を得る工程とを含む。
ここでも、 シート状の絶縁性基材の両面に、 所定のパターンに基づい て導電層を設けて、 第 1集電体シートおよび第 2集電体シ一トを得るェ 程 (A ) と、 前記導電層の上に、 それぞれ前記パターンに対応させると ともに間隙を設けて第 1電極合剤層および第 2電極合剤層を形成するェ 程 (B ) とにより、 第 1電極および第 2電極を得ることが好ましい。 以下、 工程 (A ) 〜 (E ) を、 工程順に説明する。 また、 その他のェ 程についても適宜説明する。 なお、 その他の工程は、 電気化学素子の構 造および用途などに応じ、 当業者であれば適宜選択し、 組み合わせて行 うことができる。
工程 (A )
工程 (A ) では、 図 1 ( a ) に示すように、 シート状の絶縁性基材で ある樹脂シート 8 0 aの両面に導電層 8 1 aを所定のパターンで形成し、 第 1集電体シート 8 aを得る。 また、 図 2 ( a ) に示すように、 シート 状の絶縁性基材である樹脂シート 8 0 bの両面に導電層 8 1 bを所定の パターンで形成し、 第 2集電体シート 8 bを得る。
このとき、 所定のパターンは、 後述の図 1 6に示すように、 最終的に 得られる積層型極板群 1 6 0において、 第 1集電体シ一ト 8 aの導電層 8 1 aのみが第 1側面に露出し、 第 2集電体シ一ト 8 bの導電層 8 1 b のみが第 2側面に露出するように決定する。
なお、 図 8、. 9における樹脂シート 8 0 aおよび 8 0 bは、 便宜上、 一定の長さを有するシート状として表したが、 実際には長尺状である。 長尺状であれば、 例えばフープ状に巻いた原反などから連続して供給す ることができる。 従って、 連続してシート上に金属を蒸着させることが でき、 生産性を向上させることができる。
ここでも、 少なくとも 1つの帯状導電層は 2つの帯状のシート状の集 電体に跨るように形成する。 導電層の形成は、 実施の形態 3と同様に行 えばよい。 また、 所定のパターンは、 上述のように、 最終的に作製する 積層型極板群の数に応じて適宜調整すればよい。
工程 (B )
次に、 図 1 ( b ) および図 2 ( b ) に示すように、 第 1集電体シ一ト 8 aおよび第 2集電体シ一ト 8 bの導電層の上に、 それぞれ複数個の第 1電極合剤層 8 2 aおよび第 2電極合剤層 8 2 bを、 平行に並ぶ帯状に 間隙 8 3 aおよび 8 3 bを設けて形成し、 第 1電極の集合体 1 4および 第 2電極の集合体 1 5を得る。
電極合剤層を担持しない導電層の露出部 8 3 aおよび 8 3 bは、 極板 群の構成後に、 それぞれ第 1端子との接続部 8 3 Xおよび第 2端子との 接続部 8 3 x ' となる。 また、 樹脂シートの露出部 8 4 aおよび 8 4 b は、 極板群の構成後に、 それぞれ短絡防止のために第 1端子に配される 絶縁部 8 4 yおよび第 2端子に配される絶縁部 8 4 y ' となる (図 1 6 参照) 。
集電体シートが長尺状であることから、 端部から連続して電極合剤を 塗工することができ、 生産性を向上させることが可能である。 集電体シ ―トをフ一プ状にして供給してもよい。
ここでも、 片面だけに第 1電極合.剤層を有する第 1電極の集合体また は片面だけに第 2電極合剤層を有する第 2電極の集合体を用いることも 可能である。
図 1 0に、 図 8 ( b ) および図 9 ( b ) に示す第 1電極の集合体 8 5 aおよび第 2電極の集合体 8 5 bをより詳細に表した図を示す。 図 1 0の場合、 工程 (A ) で形成した帯状の各導電層 8 1 aおよび 8 1 b の上に、 帯状の第 1電極合剤層 8 2 aおよび第 2電極合剤層 8 2 bが、 それぞれ 3つずつ形成されている。
工程 (C ) に先だって、 第 1電極合剤層 8 2 aおよび第 2電極合剤層 8 2 bの端部に沿って、 絶縁材料を塗工して、 絶縁材料部 1 6 8 aおよ び 1 6 8 bを形成することができる (図 1 6参照) 。 これにより、 最終 的に得られる極板群の側面において、 第 1電極と第 2電極との短絡を効 果的に防ぐことができる。 なお、 図 8〜 1 0においては、 絶縁材料部は 省略されている。 絶縁材料の塗工は必ずしも必要ではなく、 任意に行え ばよい。
工程 (C )
次に、 得られた長尺状の第 1電極の集合体および第 2電極の集合体を、 セパレー夕を介して積層しながら、 連続的に積層体として供給する。 図 1 1は、 その工程の説明図である。
セパレー夕.2 0、 第 1電極の集合体 8 5 a、 セパレー夕 2 2および第 2電極の集合体 8 5 bは、 例えば、 それぞれフープ状に巻かれた原反か ら供給する。 そして、 これらをローラ 2 4 a、 2 4 bおよび 2 4 cを介 して積層しながら連続的に供給する。 このとき、 第 1電極の集合体 8 5 aの第 1電極合剤層 8 2 aと第 2電極の集合体 8 5 bの第 2電極合 剤層 8 2 bとが互いに対面するように、 これらを積層する。 また、 第 1 電極の集合体 8 5 aにおける導電層の露出部 8 3 aが、 第 2電極の集合 体 8 5 bにおける樹脂シートの露出部 8 4 bと対面し、 第 1電極の集合 体 8 5 aにおける樹脂シートの露出部 8 4 aが、 第 2電極の集合体 8 5 bにおける導電層の露出部 8 3 bと対面するように、 両電極の集合 体を配置する。
セパレー夕、 第 1電極の集合体および第 2電極の集合体の供給方法に ついては、 特に制限はないが、 得ようとする積層型極板群の構造を考慮 する。 工程 (D ) において、 平板状のポビン 2 5で巻き取り易い態様で 供給することが好ましい。
ここで、 図 1 1の破線 Xで囲まれた部分の拡大図を図 1 2に示す。 平 板状のボビン 2 5に供給される積層体は、 セパレ一夕 2 0、 第 1電極の 集合体 8 5 a、 セパレー夕 2 2および第 2電極の集合体 8 5 bからなり、 第 1電極合剤層と第 2電極合剤層とが相対する位置関係を有している。 工程 (D )
図 1 3に示すように、 工程 (C ) によって供給される積層体は、 上述 のように平板状のボビン 2 5で巻き取る。 このとき、 ボビン 2 5は、 第 1電極合剤層および第 2電極合剤層の長さ方向 (図 1 2の矢印) に沿つ て前記積層体を巻き取る。
最初に巻き取られる積層体の先端部、 すなわち図 1 3に示す破線 Yで 囲まれた部分は、 ボビン 2 5の端部よりも僅かに外側 (図 1 3左側) に 突出させておくことが好ましい。 これは、 工程 (E ) で説明するように、 ポビン 2 5に巻き取られた積層体のうち、 両端の折曲部を切断して廃棄 するからである。 このようにすれば、 Yの部分において、 第 1電極と第 2電極とが短絡するのを防止することができる。
工程 (E )
次いで、 前記ボビンに巻き取られた積層体を切断し、 複数個の積層型 極板群を得る。 図 1 4に示すように、 ボビン 2 5に巻き取られた積層体 のうち、 積層部分 2 6 aおよび 2 6 bは、 規則正しい積層構造を有して いるため、 有効に用いることができる。 しかし、 矢印 および Y 2で切 断される両端の折曲部 2 6 cは、 各構成部分が湾曲したり折れ曲がった りしているため、 切断して廃棄することが好ましい。 なお、 図 1 4にお いては、 積層構造の詳細は省略した。
積層部分 2 6 a、 2 6 bの状態を図 1 5に示す。 積層部分 2 6 aおよ び 2 6 bは、 ボビン 2 5上に配置されている。 図 1 5に示すように、 こ の積層体においては、 間隙 2 8が積層方向において同じ位置に並んでい る。 そこで、 この間隙 2 8において、 電極合剤層の長さ方向 (P方向) に前記積層体を切断することによって、 図 1 6に示す積層型極板群 1 6 0の前駆体を得ることができる。
また、 所望する積層型極板群の寸法や容量に応じて、 図 1 5に示す Q 方向においても、 所定の位置で前記積層体を切断してもよい。 この切断 工程は、 積層部分 2 6 aおよび 2 6 bをボビン 2 5から分離させてから 行うこともできるが、 ポビン 2 5上で行うことも可能である。
積層部分 2 6 aおよび 2 6 bは、 複数の積層型極板群を含む集合体で ある。 この集合体を個々の積層型極板群ごとに分割すると、 導電層の露 出部である間隙に対応する集電体シートの切断部は、 端子との接続部と なり、 その反対側の樹脂シートの露出部に対応する切断部は絶縁部とな る。
工程 (F )
切断工程に続いて、 図 1 6に示すように、 積層型極板群の対向する第 1側面および第 2側面を、 導電性材料で被覆し、 第 1端子 1 6 7 aおよ び第 2端子 1 6 7 bを形成する工程を行うことが好ましい。 端子を形成 しない極板群の側面は、 そのままの状態でもよいが、 多孔質な絶縁材料 で被覆することが好ましい。
なお、 上記においては、 所定のパターンが帯状の場合について説明し たが、 実施の形態 3で示したような、 マトリクス状のパターンにも上記 方法を応用することができる。 実施の形態 5
複数の捲回型極板群を同時に製造する方法の一例について、 図 1 7を 参照しながら説明する。
本実施の形態の製造法は、
( a ) シート状の絶縁性基材の両面に導電層を設けて第 1集電体シ一ト および第 2集電体シ一トを得る工程、 (b) 第 1集電体シ一トおよび第 2集電体シ一トの前記導電層の上に、 それぞれ複数個の第 1電極合剤層および第 2電極合剤層を、 平行に並ぶ 帯状に間隙を設けて形成し、 第 1電極の集合体および第 2電極の集合体 を得る工程、
( c ) セパレ一夕を介して第 1電極の集合体および第 2電極の集合体を、 第 1電極合剤層および第 2電極合剤層の長さ方向に供給して、 同心円状 に捲回し、 捲回体を得る工程、 および
(d) 前記捲回体を、 前記間隙において切断することにより、 複数個の 捲回型極板群を得る工程を含む。
以下、 工程 ( a) 〜 (d) を、 工程順に説明する。 また、 その他のェ 程についても適宜説明する。 なお、 その他の工程は、 電気化学素子の構 造および用途などに応じ、 当業者であれば適宜選択し、 組み合わせて行 うことができる。 また、 捲回型極板群の製造法は、 以下に限定されるも のではない。
図 1 7は、 本実施の形態の製造法の工程図である。 図 1 8は、 この製 造法において用いる第 1電極の集合体、 セパレー夕および第 2電極の集 合体の概略斜視図である。 図 4は、 本実施の形態の製造法において得ら れる電気化学素子の断面図に相当する。
工程 ( a)
図 1 7 ( 1 ) に示すように、 まず、 樹脂シート 1 7 0 aおよび
1 7 0 bの両面に、 それぞれ導電層 1 7 1 aおよび 1 7 1 bを所定のパ ターンで形成し、 第 1集電体シ一ト 1 7 1 Aおよび第 2集電体シ一ト 1 7 1 Bを得る。
第 1集電体シ一ト 1 7 1 Aおよび第 2集電体シ一ト 1 7 1 Bの製造法 は、 実施の形態 3、 4で説明した通りである。
所定のパターンは、 図 1 7 ( 6 ) において、 第 1集電体シートの導電 層のみが第 1底面に露出し、 第 2集電体シートの導電層のみが第 2底面 に露出するように決定すればよい。 ここでは、 樹脂シートの露出部 1 7 4 aおよび 1 7 4 bを残して導電層が形成されている。
なお、 図 1 7における集電体シ一ト 1 7 1 Aおよび 1 7 1 Bは、 便宜 上、 一定の長さで表したが、 実際には長尺状である。 長尺状であれば、 フープ状に巻いた原反などから連続して供給することができるからであ る。
工程 (b)
次に、 図 1 7 ( 2 ) に示すように、 第 1集電体シ一ト 1 7 1 Aおよび 第 2集電体シ一ト 1 7 1 Bの前記導電層の上に、 それぞれ複数個の第 1 電極合剤層 1 7 2 aおよび第 2電極合剤層 1 7 2 bを、 平行に並ぶ帯状 に間隙 1 7 3 aおよび 1 7 3 bを設けて形成し、 第 1電極の集合体 1 7 5 aおよび第 2電極の集合体 1 7 5 bを得る。
ここで、 第 1電極合剤層 1 7 2 aおよび 1 7 2 bの端部に沿つて、 絶 縁材料を塗工して、 絶縁材料部を形成することが好ましい。 なお、 図 1 7および 1 8においては、 絶縁材料部は示していない。 これにより、 得られる捲回型極板群の底面を導電性材料で被覆する際に、 第 1電極と 第 2電極との短絡を防ぐことができる。 絶縁材料部の形成も、 実施の形 態 3、 4と同様に行えばよい。
工程 ( c )
次いで、 図 1 7 ( 3 ) に示すように、 第 1電極の集合体 1 7 5 aおよ び第 2電極の集合体 1 7 5 bを、 セパレー夕 1 7 6を介して積層する。 そして、 図 1 7 (4) に示すように、 積層体 1 7 7を矢印 Xの方向に捲 回する。 これにより、 図 1 7 ( 5) に示すような捲回体 1 7 8を得る。 捲回体 1 7 8は、 第 1電極合剤層 1 7 2 aおよび第 2電極合剤層
1 7 2 bの数に対応する数の捲回型極板群を含んでおり、 各極板群は交 互に逆向きに配列している。
長尺状の第 1電極の集合体、 セパレー夕および第 2電極の集合体を用 いれば、 これらを連続的に供給し、 積層し、 捲回し、 適当な位置で切断 することによって、 連続して複数の捲回体 1 7 8を得ることが可能であ る。
工程 (d) ·
捲回体 1 7 8は、 矢印 Yで示されるように、 前記間隙 1 7 3 aおよび 1 7 4 bが配列する位置、 ならびに間隙 1 7 3 bおよび 1 7 4 aが配列 する位置において切断される。 その結果、 図 1 7 ( 6) で示されるよう な捲回型極板群 1 7 9が複数個得られる。 図 1 7 ( 6 ) では、 捲回型極 板群 1 7 9の第 1底面 (上側) に、 第 1集電体シートの導電層の露出部 が配されており、 第 2底面 (下側) に、 第 2集電体シートの導電層の露 出部が配されている。 これらの底面を導電性材料で被覆することにより、 第 1端子および第 2端子を設けることができる。 実施の形態 6
図 1 9に、 本実施の形態に係る積層型極板群 1 0 aの縦断面図を示す。 図 2 0には、 極板群 1 0 aの a— a線断面図を示す。
ここでは、 最も外側の 2つの第 2電極 1 5 b ' は、 樹脂シ一ト 1 1 b の両面に導電層 1 2 bを有するが、 内側の電極と対向する導電層 1 2 b のみに電極合剤層が担持されている。 外側の導電層 1 2 bには、 電極合 剤層が担持されておらず、 導電層 1 2 bが露出している。 この部分を他 の導電層の端部 1 2 yと接続すれば、 第 2端子が拡大されることになり、 極板群の側面だけでなく、 上下面からも集電が可能となる。
極板群 1 0 aは、 最も外側の 2つの電極以外については、 実施の形態 1で説明した極板群 1 0と同じ構造を有する。 図 2 1に示す極板群 1 0 a ' のように、 最も外側の 2つの電極として、 それぞれ異なる極性を有する電極を用いることもできる。 極板群
1 0 a ' は、 先述の極板群 1 0 aとほぽ同様の構造を有しているが、 最 も外側の電極の一方として、 両面に導電層 1 2 aを有するが内側の電極 と対向する導電層 1 2 aのみに第 1電極合剤層 1 4 aが担持されている 第 1電極 1 5 a ' を有する。
第 1電極合剤層を担持しない導電層 1 2 aを第 1端子と接続すれば、 第 1端子が拡大されることになり、 第 2電極合剤層を担持しない導電層
1 2 bを第 2端子と接続すれば、 第 2端子が拡大されることになる。 実施の形態 7
図 2 2に、 実施の形態 1に係る積層型極板群 1 0の a— a線断面図の 別の態様を示す。
極板群 1 0 bの第 3側面 (図 2 2左側) には、 第 1集電体シート
1 3 aの絶縁部 (端部 1 1 X " ) および第 2集電体シ一ト 1 3 bの絶縁 部 (端部 1 l y ' ) が面一に配され、 第 4側面 (図 2 2右側) には、 第 1集電体シート 1 3 aの絶縁部 (端部 1 1 x ' ) および第 2集電体シ一 ト 1 3 bの絶縁部 (端部 1 1 y " ) が面一に配されている。
上述のように、 このような構造によれば、 第 1電極と第 2電極との短 絡を有効に防止することができる。 ただし、 確実に短絡を防止するには、 第 3側面および第 4側面を、 それぞれ電子絶縁性材料で被覆することが 有効である。 また、 電気化学素子の信頼性を向上させるとともに、 製造 工程の複雑化を防ぐには、 極板群の第 3側面および第 4側面を、 電子絶 縁性材料で覆うことが極めて有効である。 さらに、 極板群に電解液を含 浸させる工程を簡易に行えるようにするには、 電子絶縁性材料が多孔性 であることを必要とする。 そこで、 極板群 1 0 bにおいては、 第 3側面および第 4側面が、 それ ぞれ電子絶縁性の多孔性材料 1 9で被覆されている。 また、 図 2 2では、 多孔性材料 1 9が、 セパレー夕の端部と溶着により接合されている。 こ のような構成によれば、 電気化学素子の信頼性を、 飛躍的に向上させる ことができる。
例えば、 多孔性材料で覆われた側面 、 加熱した治具を押しつけるこ とにより、 多孔性材料とセパレ一夕とを溶着させることができる。 セパ レー夕の端部と多孔性材料とを溶着させる場合、 多孔性材料には、 セパ レー夕と同一の材料を用いることが好ましい。 同一の材料を用いれば、 セパレ一夕の端部と多孔性材料とを容易に溶着させることができるとと もに、 高い溶着強度を得ることができる。
前記多孔性材料には、 ポリオレフイン、 ポリアルキレンオキサイ ド、 フッ素ポリマー、 セラミックスなどを用いることができる。 ここで、 ポ リオレフインには、 ポリエチレン、 ポリプロピレンなどを用いることが でき、 ポリアルキレンオキサイ ドには、 ポリエチレンオキサイ ド、 ポリ プロピレンォキサイ ドなどを用いることができ、 フッ素ポリマーには、 ポリフッ化ビニリデン、 フッ化ビニリデンとへキサフルォロプロピレン とのコポリマーなどを用いることができ、 セラミックスには、 無機フィ ラ一、 ガラス繊維などを用いることができる。 これらの材料は、 単独で 用いてもよく、 2種以上を組み合わせて用いてもよい。
また、 これらの材料からなる膜状部材を用いてもよく、 これらの材料 を含む原料ペーストの塗膜を用いることもできる。 原料ペーストは、 分 散媒を用いて適度な流動性を付与して用いることが可能である。 多孔性 材料として、 従来からポリマー電池などで用いられているポリマ一電解 質を用いることもできる。 ポリマー電解質は、 例えば、 電解液とマトリ クス部材とを、 混合することにより調製することができる。 前記マトリ 3 015755
55 クス部材には、 上述のポリアルキレンォキサイ ドゃフッ素ポリマーなど を用いることができる。
図' 2 3に、 実施の形態 1に係る積層型極板群 1 0の a— a線断面図の さらに別の態様を示す。
図 2 3では、 極板群 1 0 cの第 3側面および第 4側面が、 多孔性材料 の原料ペーストの塗膜 1 9 ' で覆われている。 多孔性材料の原料ペース トは、 流動性を有することから、 一般的な塗工装置を用いて容易に極板 群の側面に塗工することができる。 また、 原料ペーストの液面に極板群 の側面を付着させるだけでも、 その側面を原料ペーストで覆うことが可 能である。 極板群の側面を覆う原料ペーストから、 不要な分散媒を揮散 させると、 極板群の側面に密着した塗膜を得ることができる。
図 2 2、 2 3では、 第 1電極合剤層 1 4 aおよび第 2電極合剤層 1 4 bの端部は、 第 3側面および第 4側面より窪んだ位置に配されてい るが、 各電極合剤層の端部が、 各集電体シートの絶縁部およびセパレー 夕の端部と面一に配されていてもよい。 そのような構造であっても、 第 3側面および第 4側面を電子絶縁性の多孔性材料で覆うことから、 充分 に短絡を防止することが可能である。 特に、 多孔性材料を極板群の側面 に配されたセパレー夕の端部と溶着させたり、 極板群の側面に密着した 多孔性材料の塗膜を形成する場合には、 短絡の可能性は大きく低減する。 実施の形態 8
次に、 上記極板群を収容する簡易なパッケージについて、 図 2 4〜 3 3を参照しながら説明する。
図 2 4は、 ケースに収容する前の極板群 1 0 1の上面図であり、 図 2 5は、 その極板群を図 2 4左側から見た側面図である。 これらの図に 示されるように、 ケースに収容する前に、 極板群 1 0 1の第 1端子 1 0 2 aおよび第 2端子 1 0 2 bには、 それぞれ第 1 リ一ド片 1 0 3 a および第 2 リード片 1 0 3 bを接続する。 第 1端子もしくは第 2端子が 正極端子となる場合には、 アルミニウム等からなるリード片をその端子 に接続することが好ましい。 また、 第 1端子もしくは第 2端子が負極端 子となる場合には、 銅、 N i等からなるリード片をその端子に接続する ことが好ましい。 各リード片は、 各端子に種々の溶接工程により接合す ることができる。
本発明の電池の好ましい第 1の形態においては、 図 2 6に示すような 3つの部品からなるケース 1 8 0に極板群を収容する。
ケース 1 8 0は、 枠体 1 0 6、 平坦な第 1シート 1 1 0 aおよび平坦 な第 2シート 1 1 0 bからなる。 枠体 1 0 6は、 極板群 1 0 1を囲むと ともに、 第 1端子 1 0 2 aが設けられた第 1側面および第 2端子
1 0 2 bが設けられた第 2側面と当接している。 2つの平坦なシートは、 枠体 1 0 6の 2つの開口面を覆って極板群の上面および下面と当接して いる。 '
2つのシート 1 1 0 a、 bの周縁部は、 それぞれ枠体 1 0 6の一方お よび他方の開口端部と接合される。 枠体 1 0 6と 2つのシート 1 1 0 a、 bの周縁部との接合は、 どのような方法で行ってもよい。
枠体 1 0 6には、 第 1スリット 1 0 7 aおよび第 2スリッ ト 1 0 7 b が設けられており、 第 1 リード片 1 0 3 aおよび第 2リード片 1 0 3 b が、 これらのスリットを通過してケースの外部へ導出される。 各リード 片を導出した後、 各スリッ トの間隙は封止材により埋められる。
本発明の電池の好ましい第 2の形態においては、 図 2 7に示すような 2つの部品からなるケース 1 9 0に極板群を収容する。
ケース 1 9 0は、 有底容器 1 0 6 ' および平坦なシート 1 1 0 a ' か らなる。 容器 1 0 6 ' は、 極板群 1 0 1を収容する。 また、 容器 1 0 6 ' は、 第 1端子 1 0 2 aが設けられた第 1側面および第 2端子 1 0 2 bが設けられた第 2側面と当接する側壁ならびに極板群 1 0 1の 上面および下面の一方と当接する底部を有する。 平坦なシート
1 1 0 a ' は、 容器 1 0 6 ' の開口面を覆って極板群 1 0 1の上面およ び下面の他方と当接している。
シート 1 1 0 a ' の周縁部は、 容器 1 0 6 ' の開口端部と接合される。 容器 1 0 6 ' とシート 1 1 0 a ' の周縁部との接合は、 どのような方法 で行ってもよい。
容器 1 0 6 ' には、 第 1スリッ ト 1 0 7 a ' および第 2スリッ ト 1 0 7 b ' が設けられており、 第 1 リ一ド片 1 0 3 aおよび第 2 リード 片 1 0 3 bが、 これらのスリッ トを通過してケースの外部へ導出される。 各リード片を導出した後、 各スリツ 卜の間隙は封止材により埋められる。
ケースの形状、 材質などは特に限定されないが、 少なくとも、 極板群 の第 1端子を有する第 1側面および第 2端子を有する第 2側面と当接す る枠体 1 0 6や容器 1 0 6 ' の内面は、 絶縁性を有することが好ましい。 例えば、 樹脂材料、 セラミックスなどの絶縁性材料からなる枠体 1 0 6 や容器 1 0 6 ' を用いることが好ましい。 ただし、 絶縁性材料は、 電解 液や水分を透過させる可能性があるため、 絶縁性材料からなる第 1の層 と、 電解液や水分を透過させない金属箔からなる第 2の層を有する枠体 1 0 6や容器 1 0 6 ' を用いることが、 さらに好ましい。 その場合、 第 1の層は、 ケースの内側に配置する。 また、 金属箔の外側に、 さらに絶 縁性材料からなる第 3の層を設けることもできる。
極板群の第 1側面および第 2側面と当接しないシート 1 1 0 a、 1 1 0 b , 1 1 0 a ' には、 金属箔などの導電性材料をそのまま用いる こともできるが、 当然に枠体 1 0 6、 容器 1 0 6 ' と同様の材料を用い ることもできる。 絶縁性材料からなる第 1の層には、 ポリプロピレン層などを用いるこ とができる。 電解液を透過させない金属箔からなる第 2の層には、 アル ミニゥム箔などを用いることができる。 枠体 1 0 6や容器 1 0 6 ' にお ける第 1の層の厚さは、 1〜 1 0 0 0 mが好ましく、 第 2の層の厚さ は、 0. 0 1〜; 1 0 0 mが好ましい。 また、 シート 1 1 0 a、
1 1 0 b、 1 1 0 a ' における第 1の層の厚さは、 1〜: L O O O HIが 好ましく、 第 2の層の厚さは、 0. 0 1〜 1 0 0 mが好ましい。
開口に対して垂直な方向から見た枠体 1 0 6もしくは容器 1 0 6 ' の 断面図の一例を図 2 8に示す。 枠体 1 0 6もしくは容器 1 0 6 ' は、 内 側の絶縁性材料からなる第 1の層 1 0 4、 1 04 ' および外側の金属箔 からなる第 2の層 1 0 5、 1 0 5 ' を有している。 また、 開口に対して 平行な一方向から見たケース 1 8 0およびケース 1 9 0の断面図の一例 を、 それぞれ図 2 9および図 3 0に示す。
第 1シート 1 1 0 a、 1 1 0 a ' は、 内側の絶縁性材料からなる第 1 の層 1 0 8 a、 1 0 8 a ' および外側の金属箔からなる第 2の層
1 0 9 a、 1 0 9 a, を有しており、 第 2シート 1 1 0 bは、 内側の絶 縁性材料からなる第 1の層 1 0 8 bおよび外側の金属箔からなる第 2の 層 1 0 9 bを有している。
ケース 1 8 0もしくは 1 9 0に極板群を収容して完成した電池のパッ ケージの上面図を図 3 1に示す。 また、 ケース 1 8 0および 1 9 0に極 板群を収容して完成した電池のパッケージの斜視図を、 それぞれ図 3 2 および図 3 3に示す。
いずれのパッケージにおいても、 第 1 リード片 1 0 3 aおよび第 2 リ ード片 1 0 3 bが、 それぞれ外部へ導出されており、 各スリッ 卜の間隙 は封止材 1 1 2 a、 1 1 2 a ' および 1 1 2 b、 1 1 2 b ' により埋め られている。 封止材には、 電解液に対して耐性を有する樹脂材料などが 用いられる。
上記のようなパッケージは、 部品点数が少ないことから、 少ない製造 工程数で効率良く得ることが可能であり、 しかも極板群自体が簡易な構 造を有することから、 体積効率が高く、 優れた信頼性を有する電池を得 ることが可能である。 実施の形態 9
図 3 4に、 本実施形態に係る極板群 1 0 0の縦断面図を示す。
極板群 1 0 0は、 交互に積層された複数の第 1電極 1 1 0と複数の第 2電極 1 2 0からなり、 第 1電極 1 1 0と第 2電極 1 2 0との間には、 セパレー夕 1 3 0が介在している。
第 1電極 1 1 0は、 第 1集電体シ一ト 1 1 2および 2つの第 1電極合 剤層 1 1 4からなり、 第 1集電体シート 1 1 2は、 樹脂シート 1 1 6お よびその両面に設けられた導電層 1 1 8からなる。 第 1集電体シート 1 1 2は、 導電層の形状パターンに応じて導電部と絶縁部とを有する。 一方、 図 1の極板群には、 2種類の第 2電極 1 2 0 aおよび 1 2 0 b が含まれている。 2つの第 1電極 1 1 0で挟持されている内部の第 2電 極 1 2 0 aは、 導電シート 1 2 2からなる第 2集電体シ一トおよび 2つ の第 2電極合剤層 1 2 4からなる。 最外部の 2つの第 2電極 1 2 0 bは、 内側片面だけに第 2電極合剤層 1 2 4が設けられていること以外、 内部 の第 2電極 1 2 0 aと同様の構造を有する。
図 3 4においては、 第 2電極が最外部の 2つの電極を構成しているが、 第 1集電体シートの内側片面だけに第 1電極合剤層が設けられた第 1電 極を最外部の 2つの電極とすることもできる。 また、 最外部の 2つの電 極のうち、 片方を第 1電極とし、 他方を第 2電極とすることもできる。 第 1電極 1 1 0においては、 樹脂シートの一端部 1 1 6 Xを除く全面 もしくは端部 1 1 6 Xと図 3 4の紙面裏表に位置する端部を除く全面に 導電層 1 1 8が設けられている。 導電層 1 1 8の上には、 第 1電極合剤 層 1 1 4が設けられている。 図 3 4の第 1集電体シ一ト 1 1 2において は、 導電層 1 1 8を有さない樹脂シートの端部 1 1 6 Xもしくは端部 1 1 6 Xと図 3 4の紙面裏表に位置する端部が絶縁部として機能する。 端部 1 1 6 Xの反対側に位置する導電層の端部 1 1 8 Xには、 導電層 1 1 8の露出部が残されている。
第 2電極 1 2 0を構成する第 2集電体シ一トにおいては、 導電シート 1 2 2の一方の端部 1 2 2 Xもしくは端部 1 2 2 Xと図 3 4の紙面裏表 に位置する端部が、 絶縁材料 1 2 6で被覆されている。 また、 端部 1 2 2 Xの反対側に位置する導電シ一トの端部 1 2 2 yでは、 導電シー ト 1 2 2が露出している。
導電シート 1 2 2の厚さは、 例えば 0 . 5〜5 0 0 i mであることが 好ましい。 平坦な表面を有する通常の導電シートを用いてもよく、 穿孔 体、 ラス体、 多孔質体、 ネッ ト、 発泡体、 織布、 不織布などを用いても よい。 また、 表面に凹凸を有する導電シートを用いることもできる。 導電シ一卜の材質には、 第 2電極が正極である場合には、 例えば、 ス テンレス鋼、 アルミニウム、 アルミニウム合金、 チタン、 炭素などを用 いることができ、 特に、 アルミニウム、 アルミニウム合金などが好まし い。 また、 第 2電極が負極である場合には、 例えば、 ステンレス鋼、 二 ッケル、 銅、 銅合金、 チタンなどを用いることができ、 特に、 銅、 銅合 金などが好ましい。
絶縁材料 1 2 6の厚さは、 例えば 0 . 5〜 5 0 0 ii mであることが好 ましい。
絶縁材料 1 2 6には、 例えば樹脂塗膜を用いることができる。 樹脂塗 膜は、 絶縁樹脂を含む溶液または分散液を、 導電シート 1 2 2の端部に 塗工し、 乾燥することにより、 形成することができる。 塗工方法は特に 限定されないが、 例えばスクリーン印刷法、 ダイコート法等を採用する ことができる。 溶液や分散液は、 液状でもペースト状でもよく、 これら の粘度は任意に制御すればよい。
樹脂塗膜は、 重合性化合物を含む溶液または分散液を、 電極合剤層の 端部に塗工し、 前記重合性化合物を重合させることにより、 形成するこ ともできる。
樹脂テープで導電シート 1 2 2の端部を被覆することにより、 絶縁材 料 1 2 6を設けることもできる。
以上の絶縁材料には、 電極合剤層の端部に沿って形成する絶縁材料部 と同様のものを用いることができる。
第 1集電体シートの導電層の端部 1 1 8 Xは、 極板群の第 1側面、 す なわち図 3 4左側に配されており、 その反対側に位置する樹脂シートの 端部 1 1 6 Xは、 極板群の第 2側面、 すなわち図 3 4右側に配されてい る。 また、 導電シート 1 2 2の端部 1 2 2 yは、 極板群の第 1側面に配 されており、 その反対側の絶縁材料 1 2 6で被覆されている端部は、 極 板群の第 2側面に配されている。
短絡を確実に防止する観点から、 樹脂シートの端部 1 1 6 Xの幅は、 0 . 0 0 1 mm以上、 好ましくは 0 . 1 mm以上であることが好ましい。 絶縁材料 1 2 6で被覆されている導電シートの端部 1 2 2 Xの幅につい ても、 同様である。
電気化学素子の安全性を損なわせる原因の一つは、 正極集電体シ一ト と負極合剤層との短絡であることから、 正極集電体シ一トに絶縁シート からなる第 1集電体シートを用い、 負極集電体シートに導電シートから なる第 2集電体シ一トを用いることが好ましい。
次に、 図 3 4の極板群 1 0 0の効率的な製造法の一例について、 図 3 5および 3 6を参照しながら説明する。
まず、 所望数の集電体シートを与え得る大きさの樹脂シートを準備し、 樹脂シー卜の両面の同じ位置に、 複数の所定形状の導電層を形成する。 この際、 樹脂シートの露出部 2 1 0 aを残しておく。
次に、 図 3 5 ( a ) に示すように、 各導電層の上に、 第 1電極合剤層 3 1 0を 2つずつ形成する。 2つの第 1電極合剤層 3 1 0の間には、 電 極合剤層を担持しない導電層の露出部 2 2 0 aを残しておく。 電極合剤 層を担持していない導電層の露出部 2 2 0 aは、 後に第 1端子との接続 部 2 2 0 bとなる。 また、 樹脂シートの露出部 2 1 0 aは、 後に極板群 の第 2側面に配される絶縁部 2 1 0 bとなる。
図 3 5には示されていないが、 第 1電極合剤層の形成後、 極板群にお いて第 2側面に配される第 1電極合剤層の端部を絶縁材料で被覆しても よい。
ここまでの工程は、 実施の形態 3 、 4と同様に行うことができる。 その後、 図 3 ( b ) に示すように、 集電体シートの集合体を一列毎に 分割する。
一方、 第 2電極は、 導電シートを用いること以外は、 第 1電極とほぼ 同様に作製する。 すなわち、 所望数の電極を与え得る大きさの導電シー トの両面の同じ位置に、 第 1電極の場合と同様に複数の所定形状の第 2 電極合剤層を形成する。 その後、 導電シートを電極毎に分割する。
次に、 極板群の第 1側面に配される予定の導電シートの端部を絶縁材 料で被覆する。 また、 極板群の第 1側面に配される予定の第 1電極合剤 層の端部を絶縁材料で被覆してもよい。
片面だけに第 2電極合剤層を有する第 2電極についても、 他方の面に 第 2電極合剤層を設けないこと以外、 上記と同様の方法で作製すること ができる。 次に、 図 3 5 ( c ) に示すように、 各第 1電極の第 1電極合剤層 3 1 0 と各第 2電極の第 2電極合剤層 3 2 0とをセパレー夕 3 3 0を介 して対向させて積層する。 積層数は任意である。 また、 第 1電極の第 1 端子との接続部 2 2 0 bが、 第 2電極の導電シート 3 2 1の端部を被覆 する絶縁材料 3 2 2と対面するように、 両極板を配置する。 そして、 両 最外面に、 片面だけに第 2電極合剤層を有する一対の第 2電極を配し、 これらで内側の電極を挟持し、 全体をプレスする。
その結果、 複数の極板スタックからなる集合体が得られる。 最後に、 極板スタックからなる集合体を極板スタックごとに分割する。 このとき、 第 1集電体シ一トの切断面に大きな金属バリが発生することはない。 次に、 捲回型極板群について説明する。
捲回型極板群の場合、 図 3 6 ( a ) に示すような帯状の形状を有する 第 1電極 4 1 0および第 2電極 4 2 0を用いる。 第 1電極 4 1 0および 第 2電極 4 2 0は、 形状は異なるが、 積層型極板群に用いる第 1電極お よび第 2電極と同様の構造を有する。 従って、 第 1電極および第 2電極 の製造法は、 積層型の場合とほぼ同様である。
図 3 6 ( a ) において、 第 1電極 4 1 0の長手方向に沿う一方の端部 には、 導電層の露出部からなる第 1端子との接続部 4 1 2が設けられて いる。 また、 第 1電極 4 1 0の他方の端部には、 樹脂シートからなる絶 縁部 4 1 3が設けられている。
また、 第 2電極 4 2 0の長手方向に沿う一方の端部においては、 導電 シート 4 2 2の端部が露出しており、 導電シ一卜 4 2 2の他方の端部は 絶縁材料 4 2 3で被覆されている。
次いで、 図 3 6 ( b ) に示すように、 第 1電極 4 1 0と第 2電極 4 2 0とをセパレ一夕 4 3 0を介して積層し、 捲回する。 その結果、 図 3 6 ( c ) に示すような捲回型極板群 4 0 0が得られる。 このような極板群の一方の底面 (第 1底面) には、 第 1集電体シート の第 1端子との接続部 4 1 2と第 2集電体シートの絶縁材料 4 2 3とが 交互に同心円状に配列しており、 他方の底面 (第 2底面) には、 導電シ ート 4 2 2の露出部と第 1集電体シ一卜の絶縁部 4 1 3とが交互に同心 円状に配列している。 従って、 第 1底面および第 2底面を、 上記と同様 にそれぞれ第 1端子および第 2端子で被覆することができる。 実施例 1
本実施例では、 以下の要領で積層型のリチウムイオン二次電池を作製 した。
( a) 第 1電極の作製
横 1 9 8 mm、 縦 2 8 2 mm、 厚さ Ί mのポリエチレンテレフタレ —ト (以下、 P ETという) のシートを準備した。 次いで、 マトリクス 状の開口部を有するマスクを用いて、 P E Tシ一トの両面の同じ位置に、 3行 6列に配列する複数の矩形 ( 6 5 mmX 4 6 mm) の銅の蒸着膜を 形成した。 銅の蒸着膜の厚さは、 0. l mとした。
活物質の球状黒鉛 (黒鉛化メソフェーズ小球体) 1 0 0重量部と、 結 着剤のスチレンブタジエンゴム 3重量部と、 分散媒である適量のカルボ キシメチルセルロース水溶液とを混合することにより、 第 1電極合剤か らなるペーストを調製した。 このペーストを各蒸着膜の中央部を除く全 面に塗工した。 その結果、 各蒸着膜の上に、 3 2 111111 4 6 111111の第 1 電極合剤層が 2つずつ形成された。 2つの第 1電極合剤層の間には、 幅 1 mmの溝状に、 電極合剤層を有さない銅の蒸着膜の露出部を残した。 その後、 ペーストの塗膜を乾燥し、 乾燥後の塗膜を厚さ 7 0 / mになる までローラで圧延した。
1 0重量部のポリフッ化ビニリデン (以下、 P VD F) を、 9 0重量 部の N—メチルー 2—ピロリ ドン (以下、 NMP) に溶かして、 PVD Fの NMP溶液を調製した。 第 1電極合剤層の周縁部のうち、 蒸着膜の 露出部に隣接する部分の反対側の部分に、 上記 NMP溶液をスクリーン 印刷法で塗工し、 8 0°Cで乾燥させて、 幅 0. 3mm、 乾燥後の厚さ
7 0 mのポリフッ化ビニリデンの塗膜を形成し、 絶縁材料部とした。 こうして両面に 6行 6列の第 1電極合剤層を有する第 1電極の集合体を 得た。
(b) 第 2電極の作製
両面に第 2電極合剤層を有する第 2電極を作製した。
横 1 9 8 mm、 縦 2 8 2 mm、 厚さ 7 ^ 111の? E Tシ一トを準備した。 次いで、 マトリクス状の開口部を有するマスクを用いて、 P ETシート の両面の同じ位置に、 3行 6列に配列する複数の矩形 ( 64mmX 4 5mm) のアルミニウムの蒸着膜を形成した。 A 1蒸着膜の厚さは、 0. 1 mとした。
活物質のコバルト酸リチウム (L i C o〇2) 1 0 0重量部と、 導電材 のアセチレンブラック 3重量部と、 結着剤のポリフッ化ビニリデン 7重 量部と、 分散媒である適量のカルボキシメチルセルロース水溶液とを混 合することにより、 第 2電極合剤からなるペーストを調製した。 このべ 一ストを各蒸着膜の中央部を除く全面に塗工した。 その結果、 各蒸着膜 の上に、 3 1 mmx 4 5 mmの第 2電極合剤層が 2つずつ形成された。 2つの第 2電極合剤層の間には、 幅 2 mmの溝状に、 合剤を有さない A 1 の蒸着膜の露出部を残した。 その後、 ペーストの塗膜を乾燥し、 乾 燥後の塗膜を厚さ 7 0 imになるまでローラで圧延した。
得られた第 2電極合剤層の周縁部のうち、 蒸着膜の露出部に隣接する 部分の反対側の部分に、 上記 N M P溶液をスクリーン印刷法で塗工し、
8 0 °Cで乾燥させて、 幅 0. 3mm、 乾燥後の厚さ 7 0 mのポリフッ 化ビニリデンの塗膜を形成し、 絶縁材料部とした。 こうして両面に 6行 6列の第 2電極合剤層を有する第 2電極の集合体を得た。
次に、 片面だけに第 2電極合剤層を有する第 2電極を、 他方の面に導 電層、 第 2電極合剤層および絶縁材料を設けないこと以外、 上記と同様 の方法で作製した。
( c ) 極板群の作製
両面に第 1電極合剤層を有する第 1電極からなる集合体 2つで、 両面 に第 2電極合剤層を有する第 2電極からなる集合体 1つを、 セパレ一夕 を介して挟持した。 このとき第 1電極合剤層と第 2電極合剤層とを互い に対面させた。 また、 第 1電極における蒸着膜の露出部およびポリフッ 化ビニリデンの塗膜からなる絶縁材料部を、 それぞれ第 2電極における ポリフッ化ビニリデンの塗膜からなる絶縁材料部および蒸着膜の露出部 と対面させた。 両最外面に、 片面だけに第 2電極合剤層を有する一対の 第 2電極を配し、 これらで内側の電極を挟持し、 全体をプレスした。 そ の結果、 複数の極板スタックからなる集合体が得られた。
切断位置を、 第 1電極における蒸着膜の露出部の中心、 第 2電極にお ける蒸着膜の露出部の中心に合わせて、 複数の極板スタックからなる集 合体を極板スタック毎に分割した。 その結果、 一連の塗工 ·積層工程に より、 一度に 3 6個もの極板スタックを得ることができた。 こうして得 られた極板スタツクの 4つの側面においては、 各集電体シ一トの端部と セパレー夕の端部とが面一に配されていた。
1つの側面 (第 1側面) には、 第 1集電体シートの蒸着膜の露出部と 第 2集電体シ一トの P E Tの露出部が交互に配列していた。 その反対側 の第 2側面には、 第 2集電体シ一トの蒸着膜の露出部と第 1集電体シ一 トの P E Tの露出部が交互に配列していた。 残りの 2つの側面には、 各 集電体シ一トの P E Tの露出部が配列していた。 第 1集電体シ一卜の銅の蒸着膜の露出部と第 2集電体シ一卜の P ET の露出部とが交互に配列する第 1側面に、 半溶融状態の銅微粒子を吹き 付けた。 その結果、 第 1側面に、 厚さ 0. 5 mmの銅膜が形成された。 銅の蒸着膜の露出部は、 銅膜の内部に深さ 0. 2mmまで埋没していた。 第 1側面に配されている第 2電極合剤層の端面は、 ポリフッ化ビニリデ ンの塗膜で覆われているため、 吹き付けにより形成された銅膜と第 2電 極とが接触することはなかった。 この銅膜はそのまま負極端子として用 いた。
第 2集電体シートの A 1 の蒸着膜の露出部と第 1集電体シートの P E Tの露出部とが交互に配列する第 2側面に、 半溶融状態のアルミニウム 微粒子を吹き付けた。 その結果、 第 2側面に、 厚さ 0. 5 mmのアルミ ニゥム膜が形成された。 A 1の蒸着膜の露出部は、 アルミニウム膜の内 部に深さ 0. 2mmまで埋没していた。 第 2側面に配されている第 1電 極合剤層の端面は、 ポリフッ化ビニリデンの塗膜で覆われているため、 吹き付けにより形成されたアルミニウム膜と第 1電極とが接触すること はなかった。 このアルミニウム膜はそのまま正極端子として用いた。
[充放電試験]
得られた極板群の銅膜とアルミニウム膜に、 それぞれリード線を接続 し、 外部の充放電装置を用いて、 充放電試験を行った。 ここで用いた電 解液は、 エチレンカーボネート (E C) とェチルメチルカーボネート
(EMC) とを体積比 3 0 : 7 0で混合した混合溶媒に、 L i P F 6を 1 モル/ Lの濃度で溶解して調製した。
充放電は、 2 0 °C雰囲気中で行った。 充電および放電は、 それぞれ電 極面積に対して 2. 5 mAZ c m2の電流モードで行った。 充電終止電圧 は 4. 2 Vとした。 放電終止電圧は 3. 0 Vとした。 上記条件によって 得られた電気容量は 9 0 OmAhであった。 [短絡発生率]
同様の電池を 1 0 0個作製し、 それらの電池の集電端子付近を金属丸 棒で圧壊させ、 その後、 電池電圧を測定して、 内部短絡発生の可能性の ある電池の個数を調べた。 内部短絡発生の可能性のある電池は 0個であ つた。
[耐衝撃性]
実施例 1の極板群を落下させて機械的衝撃を与えても、 内部短絡に由 来する電圧降下などの異常は認められなかった。 比較例 1
従来から用いられている銅箔からなる芯材を用いて、 実施例 1 と同じ 組成 ·厚さの第 1電極合剤層を有する第 1電極を作製し、 アルミニウム 箔からなる芯材を用いて、 実施例 1と同じ組成 ·厚さの第 2電極合剤層 からなる第 2電極を作製し、 これらを積層して実施例 1と同じ容量 9 0 0の電池を作製した。 極板群の第 1側面からは第 1電極の端部を突 出させ、 第 1側面の反対側に位置する第 2側面からは第 2電極の端部を 突出させた。 電極合剤層の端部を覆う絶縁材料部は、 第 1電極にも第 2 電極にも設けなかった。 同一極性の極板同士をリードで接続し、 電池を 完成した。 得られた電池の容量は実施例 1と同じであつたが、 電池の容 積は実施例 1の電池の約 1 . 2倍となった。 同様の電池を 1 0 0個作製 し、 短絡発生率を調べたところ、 2個の電池で短絡の発生が確認された。 実施例 2
本実施例では、 以下の要領で捲回型のリチウムイオン二次電池を作製 した。
( a ) 第 1電極の作製 横 1 98mm、 縦 506 mm、 厚さ 7 mのポリエチレンテレフタレ ート (以下、 PETという) のシートを準備した。 次いで、 マトリクス 状の開口部を有するマスクを用いて、 P E Tシートの両面の同じ位置に、 3列に配列する複数の帯状 (6 5mmX 5 06 mm) の銅の蒸着膜を形 成した。 銅の蒸着膜の厚さは、 0. l ^mとした。
活物質の球状黒鉛 (黒鉛化メソフェーズ小球体) 1 0 0重量部と、 結 着剤のスチレンブタジエンゴム 3重量部と、 分散媒である適量のカルボ キシメチルセルロース水溶液とを混合することにより、 第 1電極合剤か らなるペーストを調製した。 このペーストを各蒸着膜の中央部を除く全 面に塗工し、 各蒸着膜の上に、 32 mmx 506 mmの帯状の第 1電極 合剤層を 2列ずつ形成した。 2列の帯状の第 1電極合剤層の間には、 幅 1 mmの溝状に、 第 1電極合剤を有さない銅の蒸着膜の露出部を残した。 その後、 ペース トの塗膜を乾燥し、 乾燥後の塗膜を厚さ 70 になる までローラで圧延した。
第 1電極合剤層の周縁部のうち、 蒸着膜の露出部に隣接する部分の反 対側の部分に、 実施例 1と同様の方法で、 幅 0. 3mm、 乾燥後の厚さ 7 0 zmのポリフッ化ビニリデンの塗膜を形成して、 絶縁材料部とした。 こうして、 両面に 6列の帯状の第 1電極合剤層を有する第 1電極の集合 体を得た。
(b) 第 2電極の作製
両面に帯状の第 2電極合剤層を有する第 2電極を作製した。
横 1 98 mm, 縦 506 mm、 厚さ 7 の PETシ一トを準備した。 次いで、 マトリクス状の開口部を有するマスクを用いて、 PETシ一卜 の両面の同じ位置に、 3列に配列する複数の帯状 (64mmX 50 6 m m) のアルミニウムの蒸着膜を形成した。 A 1蒸着膜の厚さは、 0. 1 mとした。 活物質のコバルト酸リチウム (L i C o〇2) 1 0 0重量部と、 導電材 のアセチレンブラック 3重量部と、 結着剤のポリフッ化ビニリデン 7重 量部と、 分散媒である適量のカルボキシメチルセルロース水溶液とを混 合することにより、 第 2電極合剤からなるペース卜を調製した。 このべ 一ストを各蒸着膜の中央部を除く全面に塗工し、 各蒸着膜の上に、 3 1 mm x 5 0 6 mmの帯状の第 2電極合剤層を 2列ずつ形成した。 2列の 第 2電極合剤層の間には、 幅 2 mmの溝状に、 第 2電極合剤を有さない A 1 の蒸着膜の露出部を残した。 その後、 ペーストの塗膜を乾燥し、 乾 燥後の塗膜を厚さ 7 0 になるまでローラで圧延した。
第 2電極合剤層の周縁部のうち、 蒸着膜の露出部に隣接する部分の反 対側の部分に、 実施例 1と同様の方法で、 幅 0 . 3 mm、 乾燥後の厚さ 7 0 mのポリフッ化ビニリデンの塗膜を形成して、 絶縁材料部とした。 こうして、 両面に 6列の第 2電極合剤層を有する第 2電極の集合体を得 た。
( c ) 極板群の作製
第 1電極の集合体と、 第 2電極の集合体とを、 セパレータを介して重 ねてから捲回した。 このとき、 第 1電極合剤層と第 2電極合剤層とを互 いに対面させ、 第 1電極における蒸着膜の露出部およびポリフッ化ビ二 リデンの塗膜からなる絶縁材料部を、 それぞれ第 2電極におけるポリフ ッ化ビニリデンの塗膜からなる絶縁材料部および蒸着膜の露出部と対面 させた。 その結果、 交互に逆向きに配列した複数の捲回型極板群からな る長尺筒状の集合体が得られた。
こうして得られた集合体は、 第 1電極における蒸着膜の露出部の中心、 第 2電極における蒸着膜の露出部の中心で切断して、 極板群毎に分割し た。 その結果、 一連の塗工 ·捲回工程により、 一度に 6個もの極板群を 得ることができた。 第 1集電体シートの銅の蒸着膜の露出部と第 2集電体シートの P E T 樹脂部とが交互に配列する側面 (第 1底面) には、 半溶融状態の銅微粒 子を吹き付けた。 ただし、 極板群の内部に電解液を注入するための注入 孔を設けるために、 該当箇所にマスクを被せた。 その結果、 第 1底面に、 厚さ 0 . 5 mmの銅膜が形成された。 このとき、 銅の蒸着膜の露出部が、 銅膜の内部に深さ 0 . 2 mmまで埋没していた。 第 1底面に配されてい る第 2電極合剤層の端面は、 ポリフッ化ビニリデンの塗膜で覆われてい るため、 吹き付けにより形成された銅膜と第 2電極とが接触することは なかった。 この銅膜は、 そのまま負極端子として用いた。
第 2集電体シ一トの A 1 の蒸着膜の露出部と第 1集電体シートの P E T樹脂部とが交互に配列する側面 (第 2底面) には、 半溶融状態のアル ミニゥム微粒子を吹き付けた。 ただし、 極板群の内部に電解液を注入す るための注入孔を設けるために、 該当箇所にマスクを被せた。 その結果、 第 2底面に、 厚さ 0 . 5 mmのアルミニウム膜が形成された。 このとき、 A 1 の蒸着膜の露出部が、 アルミニウム膜の内部に深さ 0 . 2 m mまで 埋没していた。 第 2底面に配されている第 1電極合剤層の端面は、 ポリ フッ化ビニリデンの塗膜で覆われているため、 吹き付けにより形成され たアルミニウム膜と第 1電極とが接触することはなかった。 このアルミ 二ゥム膜は、 そのまま正極端子として用いた。
こうして得られた極板群をステンレス鋼製の円筒型電池ケースに収容 し、 極板群底面の銅膜をケースの内底面に接続した。 極板群上面のアル ミニゥム膜は、 アルミニウムリードを介して、 周囲に絶縁ガスケッ トを 配した封口板の裏側に接続した。 次いで、 電解液をケース内に注ぎ、 電 解液を極板群の内部に含浸させた。 その後、 封口板でケースの開口部を 封口し、 円筒型電池を完成した。 ここで用いた電解液は、 エチレンカー ボネート (E C ) とェチルメチルカーボネート (E M C ) とを体積比 3 0 : 7 0で混合した混合溶媒に、 L i P F 6を 1モル Z Lの濃度で溶解 して調製した。 比較例 2
従来と同様の方法で、 捲回型のリチウムイオン二次電池を作製した。 すなわち、 3 2 X 5 0 6 mmの帯状の銅箔およびその両面に担持され た実施例 2と同じ組成 ·厚さの第 1電極合剤層からなる第 1電極を作製 し、 3 1 X 5 0 6 m mの帯状のアルミニウム箔およびその両面に担持さ れた実施例 2と同じ組成 ·厚さの第 2極合剤層からなる第 2電極を作製 した。 それぞれの極板には、 集電夕ブを接続するための電極合剤層の未 塗工部を設け、 そこに集電タブを接続した。 これらの第 1電極と第 2電 極とを、 セパレー夕を介して捲回し、 極板群を作製した。
こうして得られた極板群を、 実施例 2で用いたものより直径が 1 . 2 倍大きなステンレス鋼製の円筒型電池ケースに収容し、 第 2電極リード をケースの内底面に溶接した。 また、 第 1電極リードは、 周囲に絶縁ガ スケッ トを配した封口板の裏側に接続した。 次いで、 電解液をケース内 に注ぎ、 実施例 2と同様の電解液を極板群の内部に含浸させた。 その後、 封口板でケースの開口部を封口し、 円筒型電池を完成した。 なお、 比較 例 2で実施例 2よりも大きな電池ケースを要したのは、 集電タブが極板 群の内部に介在していることから極板群の直径が増加したためである。 実施例 2および比較例 2の電池の容量は同じであるが、 比較例 2の電池 は、 実施例 2の電池よりも 1 . 2倍大きくなつた。
[充放電試験]
実施例 2および比較例 2の電池の充放電を、 それぞれ 2 0 °C雰囲気中 で行った。 充電および放電は、 それぞれ電極面積に対して 2 . 5 m A / c m2の電流モードで行った。 充電終止電圧は 4 . 2 Vとした。 放電終止 電圧は 3. 0 Vとした。 上記条件によって得られた実施例 2および比較 例 2の電池の電気容量は、 いずれも 9 0 0 mA hであった。 '
[レート特性]
次に、 2 0°C雰囲気中で、 実施例 2および比較例 1の電池の充電を、 電極面積に対して 2. 5 mA/ c m2の電流モードで充電終止電圧 4. 2 Vまで行い、 0. 2 C ( 0. 5 mA/ c m2) の電流値で放電した。 その 後、 再び実施例 2および比較例 1の電池の充電を、 上記と同じ電流モー ドで、 充電終止電圧 4. 2 Vまで行い、 2 C ( 5 mA/c m2) の電流値 で放電した。 その結果、 実施例 2の電池の場合、 2 Cで放電したときの 容量は 0. 2 Cで放電したときの容量の 9 0 %であったが、 比較例 1の 電池の場合、 2 Cで放電したときの容量は 0. 2 Cで放電したときの容 量の 8 0 %であった。
[耐衝撃性]
実施例 2の電池を落下させて機械的衝撃を与えても、 内部短絡に由来 する電圧降下などの異常は認められなかったが、 比較例 1の電池では若 干の電圧降下が認められた。
[短絡発生率]
実施例 2および比較例 2の電池をそれぞれ 1 0 0個作製し、 これらの 電池の集電端子付近を圧壊させ、 その後、 電池電圧を測定して、 内部短 絡発生の可能性のある電池の個数を調べた。 内部短絡発生の可能性のあ る電池は、 実施例 2では 0個であつたが、 比較例 2では 2個であった。 実施例 3
( a) 極板群の作製
実施例 1 と同様の積層型極板群を作製し、 銅膜からなる負極端子には、 ニッケル製負極リード (厚さ 1 0 0 ^m、 寸法 2 mmX 3 0mm) の一 端を溶接により接合した。 アルミニウム膜からなる正極端子には、 アル ミニゥム製正極リード (厚さ 1 0 0 m、 寸法 2mmX 3 0mm) の一 端を溶接により接合した。 各リードの他端は、 それぞれ極板群の一側面 から 5 mmほど突出させた。
(b) ケースの作製
図 2 6に示されるような 3つの部品からなるケースを作製した。 枠体 1 0 6には、 ケースの内側に配される厚さ 5 0 0 mのポリプロピレン 層と、 ケースの外側に配される厚さ 2 0 のアルミニウム箔と、 を有 する 2層の積層材料を用いた。 枠体の外寸は 3 4 mmX 5 0 mmX 5 mmとした。 2つの平坦なシート 1 1 0 a、 bには、 ケースの内側に配 される厚さ 8 0 mのポリプロピレン層と、 ケースの外側に配される厚 さ 2 0 mのアルミニウム箔と、 を有する 2層の積層材料を用いた。 平 坦なシートの外寸は、 枠体と同じく 3 4 X 5 0とした。 枠体の側壁の一 つには、 幅 1 0 0 mの 2つのスリッ ト 1 0 7 a、 bを形成した。
( c ) 電池の組み立て
極板群に接合された正極リードおよび負極リードの突出部を、 それぞ れ枠体のスリッ ト 1 0 7 a、 bに通すとともに、 極板群を枠体で囲んだ。 そして、 ポリプロピレン層を内側に配した 2つのシート 1 1 0 a、 bで、 枠体と極板群とを一緒に挟持した。 シート 1 1 0 a、 bの周縁部を加熱 してポリプロピレン層を溶融させ、 各シ一トと枠体の開口端部とを溶着 させた。 ケース内に電解液を注液し、 極板群に電解液を充分に含浸させ た後、 スリッ トの隙間をピッチで封止した。 ここで用いた電解液は、 ェ チレンカーボネート (E C) とェチルメチルカーボネート (EMC) と を体積比 3 0 : 7 0で混合した混合溶媒に、 L i P F 6を 1モル/Lの濃 度で溶解して調製した。 こうして電池を完成した。
[充放電試験] 得られた電池の充放電試験を 2 0°C雰囲気中で行った。 充電および放 電は、 それぞれ電極面積に対して 2. 5 mA/ c m2の電流モードで行つ た。 充電終止電圧は 4. 2 Vとした。 放電終止電圧は 3. 0 Vとした。 上記条件によって得られた電気容量は 9 0 OmAhであった。
[耐衝撃性]
実施例 1の電池を落下させて機械的衝搫を与えても、 内部短絡に由来 する電圧降下は認められなかった。 実施例 4
図 2 7に示されるような 2つの部品からなるケースを作製した。 容器 1 0 6 ' には、 ケースの内側に配されるポリプロピレン層と、 ケースの 外側に配される厚さ 2 0 のアルミニウム箔とを有する 2層の積層材 料を用いた。 容器の側壁におけるポリプロピレン層の厚さは 5 0 0 m、 容器の底部におけるポリプロピレン層の厚さは 8 0 inとした。 容器の 外寸は 3 4 mmX 5 0 mmX 5 mmとした。 平坦なシ一ト 1 1 0 a ' に は、 ケースの内側に配される厚さ 8 0 mのポリプロピレン層と、 ケー スの外側に配される厚さ 2 0 のアルミニウム箔とを有する 2層の積 層材料を用いた。 平坦なシートの外寸は、 容器開口の外寸と同じく 3 4 X 5 0とした。 容器の側壁の一つには、 幅 1 0 0 mの 2つのスリッ ト 1 0 7 a ' 、 b ' を形成した。
上記ケースを用いたこと以外、 実施例 3と同様に電池を作製した。 す なわち、 極板群に接合された正極リ一ドおよび負極リ一ドの突出部を、 それぞれ容器のスリッ ト 1 0 7 a ' 、 b ' に通すとともに、 極板群を容 器内に収容した。 そして、 ポリプロピレン層を内側に配したシート 1 1 0 a ' で容器の開口側から極板群を覆った。 シート 1 1 0 a ' の周 縁部を加熱してポリプロピレン層を溶融させ、 シートと容器の開口端部 とを溶着させた。 ケース内に上記と同じ組成の電解液を注液し、 極板群 に電解液を充分に含浸させた後、 スリットの隙間をピッチで封止した。 得られた電池の容量および電池の容積は実施例 3と同じであった。 ま た、 実施例 4の電池を落下させて機械的衝撃を与えても、 内部短絡に由 来する電圧降下は認められなかった。 比較例 3
従来から用いられている銅箔からなる芯材を用いて、 実施例 3と同じ 組成 ·厚さの第 1電極合剤層を有する第 1電極を作製し、 アルミニウム 箔からなる芯材を用いて、 実施例 1と同じ組成 ·厚さの第 2電極合剤層 からなる第 2電極を作製し、 これらを積層して実施例 3と同じ容量 9 0 O m A hの電池を作製した。 極板群の第 1側面からは第 1電極の端 部を突出させ、 第 1側面の反対側に位置する第 2側面からは第 2電極の 端部を突出させた。 各側面から突出する極板の端部に集電板を溶接し、 集電板にリ一ドを接続して極板群を完成した。 この極板群をセパレー夕 で覆った後、 従来から用いられているアルミニウム製の角形ケースに収 容し、 電池を完成した。
得られた電池の容量は、 実施例 3と同じであつたが、 電池の容積は実 施例 3の電池の約 1 . 2倍となった。 また、 比較例 3の電池を落下させ て機械的衝撃を与えたところ、 内部短絡に由来する若干の電圧降下が認 められた。 実施例 5
実施例 1 と同様の極板群を作製し、 極板群の第 1端子と第 2端子に、 それぞれ二ッケルからなる負極リードとアルミニウムからなる正極リー ドを超音波溶接により溶接した。 各端子と各リ一ドとの接合面積は、 0. 5 cm2とした。 リードが接合された極板群は、 所定の電解液に浸漬 し、 極板群内部に充分に電解液を含浸させた。 ここで用いた電解液は、 エチレンカーボネート (EC) とェチルメチルカーボネート (EMC) とを体積比 3 0 : 7 0で含む混合溶媒に、 L i P F 6を 1モル/ Lの濃度 で溶解して調製した。 こうしてリチウムイオン二次電池 Xを完成した。 実施例 6
実施例 1と同様の極板スタックを作製した。 また、 樹脂のポリアミ ド イミ ド 30重量部と、 導電性微粒子の銅粉末 (平均粒径 2 0 m) 7 0 重量部とからなる導電性ペースト Aを調製した。 そして、 第 1集電体シ ―トの銅の蒸着膜の露出部と第 2集電体シ一トの P ETの露出部とが交 互に配列する第 1側面に、 導電性ペースト Aを塗工し、 7 0°Cで極板ス タックを加熱して樹脂を硬化させた。 その結果、 第 1側面に、 厚さ 0. 5 mmの第 1端子が形成された。 銅の蒸着膜の露出部は、 第 1端子 の内部に深さ 0. 5mmまで埋没していた。 また、 銅の蒸着膜の露出部 は、 第 1端子を貫通して外面に露出していた。 第 1端子は負極端子とし て用いた。
樹脂のポリアミ ドイミ ド 30重量部と、 導電性微粒子のアルミニウム 粉末 (平均粒径 2 0 m) 70重量部とからなる導電性ペースト Bを調 製した。 そして、 第 2集電体シートの A 1の蒸着膜の露出部と第 1集電 体シ一トの P E Tの露出部とが交互に配列する第 2側面に、 導電性べ一 スト Bを塗工し、 70 °Cで極板スタツクを加熱して樹脂を硬化させた。 その結果、 第 2側面に、 厚さ 0. 5 mmの第 2端子が形成された。 A 1 の蒸着膜の露出部は、 第 2端子の内部に深さ 0. 5mmまで埋没してい た。 また、 A 1の蒸着膜の露出部は、 第 2端子を貫通して外面に露出し ていた。 第 2端子は正極端子として用いた。 こうして得られた極板群の、 銅の蒸着膜の露出部が露出する第 1端子 と、 A 1の蒸着膜の露出部が露出する第 2端子に、 それぞれニッケルか らなる負極リードとアルミニウムからなる正極リードをレーザ溶接によ り溶接した。 各端子と各リードとの接合面積は、 0. 5 c m2とした。 リ ード線が接合された極板群は、 所定の電解液に浸潰し、 極板群内部に充 分に電解液を含浸させた。 ここでは実施例 5と同じ電解液を用いた。 こ うしてリチウムイオン二次電池 Yを完成した。 実施例 7
実施例 1 と同様の極板スタックを作製した。 また、 P b— S n— B i 系の合金 (融点 1 0 0 °C) からなる半田を準備し、 浴槽内で溶融させた。 そして、 第 1集電体シートの銅の蒸着膜の露出部と第 2集電体シ一トの P E Tの露出部とが交互に配列する第 1側面を、 この溶融半田の液面と 接触させ、 直ちに引き上げた。 その結果、 第 1側面に、 厚さ 0. 5mm の第 1端子が形成された。 銅の蒸着膜の露出部は、 第 1端子の内部に深 さ 0. 2mmまで埋没していた。 第 1端子は負極端子として用いた。 第 2集電体シートの A 1 の蒸着膜の露出部と第 1集電体シートの P E Tの露出部とが交互に配列する第 2側面を、 上記溶融半田の液面と接触 させ、 直ちに引き上げた。 その結果、 第 2側面に、 厚さ 0. 5mmの第 2端子が形成された。 A 1 の蒸着膜の露出部は、 第 2端子の内部に深さ 0. 2mmまで埋没していた。 第 2端子は正極端子として用いた。
こうして得られた極板群の第 1端子と第 2端子に、 それぞれニッケル からなる負極リードとアルミニウムからなる正極リードを抵抗溶接によ り溶接した。 各端子と各リードとの接合面積は、 0. 5 c m2とした。 リ ード線が接合された極板群は、 所定の電解液に浸潰し、 極板群内部に充 分に電解液を含浸させた。 ここでは実施例 5と同じ電解液を用いた。 こ うしてリチウムイオン二次電池 Zを完成した。
[充放電試験]
リチウムイオン二次電池 X、 Yおよび Zの充放電試験を、 外部の充放 電装置を用いて行った。 充放電は、 2 0°C雰囲気中で行った。 充電およ び放電は、 それぞれ電極面積に対して 2. 5 mA/ c m2の電流モードで 行った。 充電終止電圧は 4. 2 Vとした。 放電終止電圧は 3. 0 Vとし た。 上記条件によって得られた電池 X、 Yおよび Zの電気容量は、 それ ぞれ 9 0 0 mAhであった。
[耐衝撃性]
電池 X、 Yおよび Zを落下させて機械的衝撃を与えても、 内部短絡に 由来する電圧降下などの異常は認められなかった。
[レート特性]
次に、 2 0°C雰囲気中で、 電池 X、 Yおよび Zの充電を、 電極面積に 対して 2. 5 mAZ c m2の電流モードで充電終止電圧 4. 2 Vまで行い、 0. 2 C ( 0. 5 mA/ c m2) の電流値で放電した。 その後、 再び X、 Yおよび Zの充電を、 上記と同じ電流モードで、 充電終止電圧 4. 2 V まで行い、 2 C ( 5 mA/ c m2) の電流値で放電した。 その結果、 電池 Xの場合、 2 Cで放電したときの容量は 0. 2 Cで放電したときの容量 の 9 0 %であり、 電池 Yの場合、 2 Cで放電したときの容量は 0. 2 C で放電したときの容量の 9 0 %であり、 電池 Zの場合、 2 Cで放電した ときの容量は 0. 2 Cで放電したときの容量の 8 9 %であった。 実施例 8
片面だけに第 2電極合剤層を有する第 2電極として、 他方の面に導電 層のみを設けた電極を用いたこと以外、 実施例 1 と同様の積層型極板群 を作製した (図 1 9参照) 。 前記他方の面には、 第 2電極合剤層および 絶縁材料は設けなかった。
[充放電試験]
得られた極板群の銅膜とアルミニウム膜に、 それぞれリード線を接続 し、 電池を構成して、 外部の充放電装置を用いて、 充放電試験を行った。 ここで用いた電解液は、 エチレンカーボネート (E C) とェチルメチル 力一ボネート (EMC) とを体積比 3 0 : 7 0で混合した混合溶媒に、 L i P F 6を 1モル/ Lの濃度で溶解して調製した。 充放電は、 2 0 °C雰 囲気中で行った。 充電および放電は、 それぞれ電極面積に対して 2. 5 mAZ c m2の電流モードで行った。 充電終止電圧は 4. 2 Vとした。 放 電終止電圧は 3. 0 Vとした。 上記条件によって得られた電気容量は 9 0 O mAhであった。
[レ一ト特性]
2 0 °C雰囲気中で、 電池の充電を、 電極面積に対して 2. 5 ΤΆΚ/ c m2の電流モードで充電終止電圧 4. 2 Vまで行い、 0. 2 C ( 0. 5 mAZ c m2) の電流値で放電した。 その後、 再び電池の充電を、 上記と 同じ電流モードで、 充電終止電圧 4. 2 Vまで行い、 2 C ( 5 mAノ c m2) の電流値で放電した。 その結果、 2 Cで放電したときの容量は 0. 2 Cで放電したときの容量の 9 0 %であった。
[耐衝撃性]
同様の電池を落下させて機械的衝撃を与えても、 内部短絡に由来する 電圧降下などの異常は認められなかった。 実施例 9
実施例 1 と同様の積層型極板群を作製した。 そして、 各集電体シート の P E Tの露出部およびセパレー夕の端部が配列する第 3側面および第 4側面は、 セパレー夕と同一の多孔性材料で完全に被覆した。 セパレー 夕および前記多孔性材料には、 それぞれ厚さ 5 0 mのポリエチレンか らなる微多孔膜を用いた。 次いで、 第 3側面および第 4側面を覆う多孔 性材料に、 外側から、 1 0 0 °Cに加熱した治具の平坦面を押しつけ、 セ パレー夕の端部と多孔性材料とを溶着させた。 その後、 多孔性材料を介 して電解液を極板群の内部に充分に浸透させた。 ここで用いた電解液は、 エチレンカーボネート (E C) とェチルメチルカーボネ一ト (EMC) とを体積比 3 0 : 7 0で混合した混合溶媒に、 L i P F 6を 1モル/ Lの 濃度で溶解して調製した。
[充放電試験]
得られた極板群の銅膜とアルミニウム膜に、 それぞれリード線を接続 し、 電池を構成して、 外部の充放電装置を用いて、 充放電試験を行った。 充放電は、 2 0 °C雰囲気中で行った。 充電および放電は、 それぞれ電極 面積に対して 2. 5 mA/ c m2の電流モードで行った。 充電終止電圧は 4. 2 Vとした。 放電終止電圧は 3. 0 Vとした。 上記条件によって得 られた電気容量は 9 0 OmAhであった。
[短絡発生率]
同様の電池を 1 0 0個作製し、 それらの電池の第 3、 第 4側面付近を 圧壊させ、 その後、 電池電圧を測定して、 内部短絡発生の可能性のある 電池の個数を調べた。 内部短絡発生の可能性のある電池は 0個であった。 実施例 1 0
各集電体シ一トの P ETの露出部およびセパレー夕の端部が配列する 第 3側面および第 4側面を、 多孔性材料の原料ペーストの塗膜で被覆し たこと以外、 実施例 9と同様の極板群を作製した。 すなわち、 原料べ一 ストで極板群の第 3側面および第 4側面を完全に覆い、 乾燥させること により、 各側面を厚さ 5 0 /imの多孔性材料で被覆した。 原料ペースト には、 アルミナ 1 0重量部と、 ポリフッ化ビニリデン 1 0重量部と、 メ チルェチルケトン 8 0重量部とを混合して調製したものを用いた。
[短絡発生率]
得られた電池の容量および電池の容積は実施例 9と同じであった。 同 様の電池を 1 0 0個作製し、 短絡発生率を調べたところ、 内部短絡発生 の可能性のある電池は 0個であった。 実施例 1 1
1 0 0重量部のポリエチレンォキシドジァクリレートに、 0 . 1重量 部のベンジルジメチルケタールを溶かして、 紫外線照射により重合を開 始するァクリレート溶液を調製した。
P V D Fの N M P溶液の代わりに、 第 1電極合剤層および第 2電極合 剤層の所定の周縁部に、 スクリーン印刷法により、 上記ァクリレート溶 液を、 それぞれ幅 0 . 3 mmで塗工した。 その後、 最大出力波長 3 6 5 n mの高圧水銀灯を用いて、 塗膜に 1分間の紫外線照射を行い、 塗膜を 硬化させた。 硬化後の塗膜の厚さは 7 0 とした。 こうして絶縁材料 部を設けたこと以外、 実施例 1と同様に、 極板群を作製した。 実施例 1 2
ポリフッ化ビニリデンの塗膜の代わりに、 第 1電極合剤層および第 2 電極合剤層の所定の周縁部に、 それぞれ幅 0 . 3 mm、 厚さ 7 0 ^ mの 樹脂テープを貼り付けたこと以外、 実施例 1 と同様に、 極板群を作製し た。 ここでは、 厚さ 6 0 mのポリプロピレン製の基材と、 その両面に それぞれ担持された厚さ 5 mの粘着剤層からなる樹脂テープを用いた。 粘着剤にはァクリル系樹脂を用いた。
[充放電試験] 実施例 1 1、 1 2の電池の充放電を、 実施例 1と同様に、 それぞれ 20 °C雰囲気中で行った。 すなわち、 充電および放電は、 それぞれ電極 面積に対して 2. 5 mAZ c m2の電流モードで行った。 充電終止電圧は 4. 2 Vとした。 放電終止電圧は 3. 0 Vとした。 上記条件によって得 られた実施例 1 1、 1 2の電池の電気容量は、 いずれも 90 0 mAhで あった。
[短絡発生率]
実施例 1 1、 1 2の電池をそれぞれ 1 00偭作製し、 これらの電池の 集電端子付近を圧壌させ、 その後、 電池電圧を測定して、 内部短絡発生 の可能性のある電池の個数を調べた。 内部短絡発生の可能性のある電池 は、 いずれの実施例においても 0個であった。 実施例 1 3
本実施例では、 以下の要領で積層型のリチウムイオン二次電池を作製 した。
(a) 正極の作製
実施例 1と同様の、 両面に 6行 6列の正極合剤層を有する正極集合体 を得た。 この正極集合体を 1列毎に分割した。 分割された正極集合体の 長手方向に沿う一方の端部には、 幅 1 mmの A 1蒸着膜を有する PET シートの端部が存在し、 他方の端部には、 幅 1 mmの A 1蒸着膜を有さ ない P E Tシートの端部が存在した。
(b) 負極の作製
横 1 98 mm、 縦 282 mm、 厚さ 7 mの銅箔を準備した。
次に、 活物質の球状黒鉛 (黒鉛化メソフェーズ小球体) 1 00重量部 と、 結着剤のスチレンブタジエンゴム 3重量部と、 分散媒である適量の カルポキシメチルセルロース水溶液とを混合することにより、 負極合剤 からなるペーストを調製した。 このペーストを銅箔の両面に正極の場合 と同様のパターンで塗工し、 乾燥して、 3 2 mmX 4 6 mmの負極合剤 層を複数個形成した。 その後、 負極合剤層を厚さ 7 0 になるまで口 ーラで圧延した。
次に、 正極端子と隣接する予定の負極合剤層の端部を、 幅 0. 3mm の P VD Fの塗膜で被覆した。 こうして、 両面に 6行 6列の負極合剤層 を有する負極集合体を得た。 この負極集合体を 1列毎に分割した。 分割 された負極集合体の長手方向に沿う両端部には、 幅 0. 5 mmの銅箔露 出部が存在した。
その後、 正極端子側に配される予定の銅箔端部の幅 0. 5 mmの領域 を厚さ 2 5 mの P VD Fで被覆した。
また、 片面だけに負極合剤層を有する負極についても、 他方の面に負 極合剤層等を設けないこと以外、 上記と同様の方法で作製した。
(c ) 極板群の作製
両面に負極合剤層を有する負極集合体 2つで、 正極集合体 1つをセパ レー夕を介して挾持した。 このとき正極合剤層と負極合剤層とを互いに 対面させた。 また、 正極の A 1蒸着膜を有する P ETシートの端部と、 負極の銅箔の P VD F塗膜で被覆された端部とを同じ側に配した。 そし て、 両最外面に、 片面だけに負極合剤層を有する一対の負極を配し、 こ れらで内側の電極を挟持し、 全体をプレスした。 その結果、 複数の極板 ス夕ックからなる集合体が得られた。 この集合体は極板スタック毎に分 割した。 その結果、 一連の塗工, 積層工程により、 一度に 6個の極板ス タックを得ることができた。
正極の A 1蒸着膜を有する P E Tシートの端部と、 負極の銅箔の P V D F塗膜で被覆された端部とが交互に配列する側面に、 半溶融状態の A 1微粒子を吹き付け、 厚さ 0. 5mmの A 1膜を形成した。 このとき、 A 1蒸着膜が A 1膜の内部に深さ 0. 2 mmまで埋没していた。 この A 1膜を正極端子とした。
次に、 A 1蒸着膜を有さない P ETシートの端部と、 負極の銅箔の P VD F塗膜で被覆されていない端部とが交互に配列する側面に、 半溶融 状態の銅微粒子を吹き付け、 厚さ 0. 5mmの C u膜を形成した。 この とき、 銅箔の端部が C u膜の内部に深さ 0. 2mmまで埋没していた。 この C u膜を負極端子とした。 比較例 4
従来から用いられている厚さ 7 の A 1箔からなる芯材を用いて正 極を作製し、 この正極を用いたこと以外は実施例 1 3と同様のリチウム イオン二次電池を作製した。 ただし、 A 1箔からなる芯材と負極端子と の短絡を防ぐために、 正極端子との接続部以外は A 1箔の端部を P VD Fの塗膜で被覆した。
[充放電試験]
各電池の A 1膜と C u膜にそれぞれリード線を接続し、 外部の充放電 装置を用いて、 2 0°C雰囲気中で充放電試験を行った。 ここで用いた電 解液は、 エチレンカーボネート (E C) とェチルメチルカーボネート
(EMC) とを体積比 3 0 : 7 0で混合した混合溶媒に、 L i P F 6を 1 モル ZLの濃度で溶解して調製した。
充電および放電は、 それぞれ電極面積に対して 2. 5mAZc m2の電 流モードで行った。 充電終止電圧は 4. 2 Vとした。 放電終止電圧は 3. 0 Vとした。 上記条件によって得られた電気容量は 9 0 O mAhで あった。
[安全性]
実施例 1 3および比較例 4の電池を、 さらに以下の手順で評価した。 ( i ) 各電池を、 それぞれ 1 0 0個用意し、 これらを 9 0 0 m Aで、 電 池電圧が 4 . 2 Vの充電状態になるまで充電した。
( ii ) 次いで、 充電状態の電池に、 極板面に対して垂直に釘を貫通させ た。
( iii ) 釘を貫通させた後の電池の発熱による最高到達温度を調べた。 結果を以下に示す。
実施例 1 3の電池の最高到達温度は、 いずれも 4 2 °C以下であった。 比較例 4の電池の中には、 最高到達温度が 1 1 0 °Cに達するものがあ つた 産業上の利用の可能性
上述のように、 本発明によれば、 正極端子や負極端子の構造が簡略で あり、 集電タブゃ集電リードを用いる必要はないため、 小型でも高い電 気容量を有し、 信頼性の高い電気化学素子を提供することができる。 そ して、 本発明によれば、 同時に複数の電気化学素子を効率的に製造する ことができる。 このような電気化学素子を含む非水電解液二次電池を用 いることにより、 信頼性の高い携帯電話、 携帯情報端末機器、 カムコー ダ、 パーソナルコンピュータ、 P D A、 携帯音響機器、 電気自動車、 口 一ドレベリング用電源などの機器を提供することが可能となる。

Claims

請 求 の 範 囲
1 . 極板群を有する電気化学素子であって、
前記極板群は、
( a ) 少なくとも 1つの第 1電極、
( b ) 少なくとも 1つの第 2電極、 および
( c ) 第 1電極と第 2電極との間に介在するセパレー夕からなり、 前記第 1電極は、 第 1集電体シートおよびこれに担持された少なく と も 1つの第 1電極合剤層からなり、
前記第 2電極は、 第 2集電体シートおよびこれに担持された少なくと も 1つの第 2電極合剤層からなり、
前記第 1集電体シ一トおよび前記第 2集電体シートの少なくとも一方 は、 導電部と絶緣部とを有する電気化学素子。
2 . 前記電気化学素子は、 さらに、
前記第 1集電体シートと電気的に導通する第 1端子、 および
前記第 2集電体シ一トと電気的に導通する第 2端子を有し、 前記極板群は、 前記第 1端子が配される第 1側面および前記第 2端子 が配される第 2側面を有し、
前記第 1集電体シートが、 導電部と絶縁部とを有する場合には、 前記 第 1集電体シ一トの導電部は、 前記第 1側面において前記第 1端子と接 続され、 前記第 1集電体シートの絶縁部は、 前記第 2側面に配向してお
Ό、
前記第 2集電体シートが、 導電部と絶縁部とを有する場合には、 前記 第 2集電体シートの導電部は、 前記第 2側面において前記第 2端子と接 続され、 前記第 2集電体シートの絶縁部は、 前記第 1側面に配向してい る請求の範囲第 1項記載の電気化学素子。
3 . 前記第 1側面と前記第 2側面とが、 互いに前記極板群の反対側に位 置する請求の範囲第 2項記載の電気化学素子。
4 . 前記第 1側面には、 前記第 1端子と前記第 2電極とを絶縁するため の第 1絶縁材料部が設けられており、 前記第 2側面には、 前記第 2端子 と前記第 1電極とを絶縁するための第 2絶縁材料部が設けられている請 求の範囲第 2項記載の電気化学素子。
5 . 第 1電極と第 2電極とをセパレー夕を介して捲回した極板群を有す る電気化学素子であって、
前記第 1電極は、 第 1集電体シートおよびこれに担持された少なくと も 1つの第 1電極合剤層からなり、
前記第 2電極は、 第 2集電体シートおよびこれに担持された少なくと も 1つの第 2電極合剤層からなり、
前記第 1集電体シートおよび前記第 2集電体シートの少なくとも一方 は、 導電部と絶縁部とを有し、
前記第 1集電体シートが、 導電部と絶縁部とを有する場合には、 前記 第 1集電体シ一卜の導電部は、 前記極板群の第 1底面において第 1端子 と接続され、 前記第 1集電体シートの絶縁部は、 前記極板群の第 2底面 に配され、
前記第 2集電体シートが、 導電部と絶縁部とを有する場合には、 前記 第 2集電体シ一トの導電部は、 前記極板群の第 2底面において第 2端子 と接続され、 前記第 2集電体シートの絶縁部は、 前記極板群の第 1底面 に配されている電気化学素子。
6 . 複数の第 1電極と複数の第 2電極とをセパレー夕を介して交互に積 層した極板群を有する電気化学素子であって、
前記複数の第 1電極は、 それぞれ第 1集電体シートおよびこれに担持 された少なくとも 1つの第 1電極合剤層からなり、 前記複数の第 2電極は、 それぞれ第 2集電体シ一トおよびこれに担持 された少なくとも 1つの第 2電極合剤層からなり、
前記第 1集電体シ一トおよび前記第 2集電体シートの少なくとも一方 は、 導電部と絶縁部とを有し、
前記第 1集電体シートが、 導電部と絶縁部とを有する場合には、 前記 第 1集電体シ一トの導電部は、 前記極板群の第 1側面において第 1端子 と接続され、 前記第 1集電体シートの絶縁部は、 前記極板群の第 2側面 に配され、
前記第 2集電体シートが、 導電部と絶縁部とを有する場合には、 前記 第 2集電体シ一トの導電部は、 前記極板群の第 2側面において第 2端子 と接続され、 前記第 2集電体シートの絶縁部は、 前記極板群の第 1側面 に配されている電気化学素子。
7 . 前記導電部と絶縁部とを有する集電体シートが、 前記導電部の一部 からなるとともに前記電極合剤層を担持しない第 1端部を有し、 前記第 1端部において、 前記導電部が前記第 1端子または前記第 2端子と接続 しており、 前記第 1端部の少なくとも一部は、 前記第 1端子または前記 第 2端子に埋没している請求の範囲第 2項記載の電気化学素子。
8 . 前記導電部と絶縁部とを有する集電体シートが、 前記絶縁部の一部 からなるとともに前記電極合剤層を担持しない第 2端部を有し、 前記第 2端部が、 前記第 1側面または前記第 2側面に配向しており、 前記第 2 端部の少なくとも一部は、 前記第 1端子または前記第 2端子に埋没して いる請求の範囲第 2項記載の電気化学素子。
9 . 前記極板群は、 さらに、 第 3側面および第 4側面を有し、
前記第 1側面、 前記第 2側面、 前記第 3側面および第 4側面のそれぞ れにおいて、 前記第 1集電体シートの端部、 前記第 2集電体シートの端 部および前記セパレー夕の端部が、 実質的に面一に配されている請求の 範囲第 2項記載の電気化学素子。
1 0. 前記第 1集電体シートの片面あたりの面積 S ( 1 ) 、 前記第 2集 電体シートの片面あたりの面積 S (2) および前記セパレー夕の片面あ たりの面積 S ( s ) が、 '以下の関係 :
S ( 1 ) ≤ S ( s ) ≤ S ( 1 ) X I . 0 5、 および
S ( 2) ≤ S ( s ) ≤ S ( 2) X I . 0 5
を満たしている請求の範囲第 2項記載の電気化学素子。
1 1. 前記電気化学素子は、 さらに、
前記第 1集電体シートと電気的に導通する第 1端子、 および 前記第 2集電体シ一トと電気的に導通する第 2端子を有し、 前記極板群は、 前記第 1端子が配される第 1側面および前記第 2端子 が配される第 2側面を有し、
前記第 1集電体シートが、 導電部と絶縁部とを有する場合には、 前記 第 1集電体シ一トの導電部は、 前記第 1側面において前記第 1端子と接 続され、 前記第 1集電体シートの絶縁部は、 前記第 2側面に配向してお
Ό、
前記第 2集電体シートが、 導電部と絶縁部とを有する場合には、 前記 第 2集電体シ一トの導電部は、 前記第 2側面において前記第 2端子と接 続され、 前記第 2集電体シートの絶縁部は、 前記第 1側面に配向してお Ό、
前記第 1電極合剤層および前記第 2電極合剤層が、 それぞれ絶縁材料 で被覆された端部を有する請求の範囲第 1項記載の電気化学素子。
1 2. 前記絶縁材料で被覆された第 1電極合剤層の端部は、 前記第 2側 面に配されており、
前記絶縁材料で被覆された第 2電極合剤層の端部は、 前記第 1側面に 配されている請求の範囲第 1 1項記載の電気化学素子。
1 3 . 前記第 1集電体シートが、 導電部と絶縁部とを有する場合には、 前記第 1集電体シ一トの絶縁部は、 前記絶縁材料で被覆された第 1電極 合剤層の端部に隣接しており、
前記第 2集電体シートが、 導電部と絶縁部とを有する場合には、 前記 第 2集電体シ一トの絶縁部は、 前記絶縁材料で被覆された第 2電極合剤 層の端部に隣接している請求の範囲第 1 1項記載の電気化学素子。
1 4 . 前記電気化学素子は、 さらに、
前記第 1集電体シ一トと電気的に導通する第 1端子、
前記第 2集電体シートと電気的に導通する第 2端子、 および 前記極板群を収容するケースを有し、
前記極板群は、 前記第 1端子が配される第 1側面および前記第 2端子 が配される第 2側面を有し、
前記第 1集電体シートが、 導電部と絶縁部とを有する場合には、 前記 第 1集電体シ一卜の導電部は、 前記第 1側面において前記第 1端子と接 続され、 前記第 1集電体シートの絶縁部は、 前記第 2側面に配向してお Ό、
前記第 2集電体シートが、 導電部と絶縁部とを有する場合には、 前記 第 2集電体シートの導電部は、 前記第 2側面において前記第 2端子と接 続され、 前記第 2集電体シートの絶縁部は、 前記第 1側面に配向してお り、
前記ケースの内面が、 前記第 1側面および前記第 2側面と当接してい る請求の範囲第 1項記載の電気化学素子。
1 5 . 前記ケースが、 枠体および 2つの平坦なシートからなり、 前記枠体が、 前記極板群を囲むとともに、 前記第 1側面および前記第 2側面と当接しており、
前記 2つの平坦なシートは、 前記枠体の 2つの開口面を覆って前記極 板群の上面および下面と当接している請求項 1 4記載の電気化学素子。
1 6 . 前記ケースが、 有底容器および平坦なシートからなり、
前記容器が、 前記極板群を収容するとともに、 前記第 1側面および前 記第 2側面と当接する側壁ならびに前記極板群の上面および下面の一方 と当接する底部を有しており、
前記平坦なシートは、 前記容器の開口面を覆って前記極板群の上面お よび下面の他方と当接している請求の範囲第 1 4項記載の電気化学素子。
1 7 . 前記第 1端子および前記第 2端子の少なくとも一方に、 リード片 が接続されており、 前記リード片が、 前記ケースの外部に導出されてい る請求の範囲第 1 4項記載の電気化学素子。
1 8 . 前記第 1端子および前記第 2端子の少なくとも一方に、 リード片 が接続されており、 前記リード片が、 前記枠体に設けられたスリッ トか ら前記ケースの外部に導出されている請求の範囲第 1 5項記載の電気化 学素子。
1 9 . 前記第 1端子および前記第 2端子の少なくとも一方に、 リード片 が接続されており、 前記リード片が、 前記側壁に設けられたスリッ トか ら前記ケースの外部に導出されている請求の範囲第 1 6項記載の電気化 学素子。
2 0 . 前記第 1端子および前記第 2端子の少なくとも一方が、 粒子状金 属が連続的に接合してなる多孔質金属膜からなる請求の範囲第 2項記載 の電気化学素子。
2 1 . 前記第 1端子および前記第 2端子の少なくとも一方が、 導電性べ 一ストからなり、 前記導電性ペーストが、 樹脂ならびに前記樹脂に分散 した導電性材料からなり、 前記導電性材料が、 微粒子状および /または 繊維状である請求の範囲第 2項記載の電気化学素子。
2 2 . 前記第 1端子および前記第 2端子の少なくとも一方が、 2 5 0 °C 以下の融点を有する低融点金属からなる請求の範囲第 2項記載の電気化 学素子。
2 3 . 前記第 1端部の少なくとも一部が埋没している前記第 1端子また は前記第 2端子に、 金属リードが溶接されており、 前記第 1端部と前記 金属リ一ドとが接触している請求項 7記載の電気化学素子。
2 4 . 最も外側の 2つの電極の集電体シートの少なくとも一方は、 両面 に導電部を有するとともに、 内側の電極と対向する一方の面のみに電極 合剤層を担持しており、 他方の面の導電部は、 前記第 1端子または前記 第 2端子と電気的に導通して、 その端子の延長部として機能する請求の 範囲第 2項記載の電気化学素子。
2 5 . 前記第 3側面および第 4側面の少なくとも 1つが、 電子絶縁性の 多孔性材料で覆われている請求の範囲第 9項記載の電気化学素子。
2 6 . 前記多孔性材料が、 ポリオレフイン、 ポリアルキレンオキサイ ド、 フッ素ポリマーおよびセラミックスよりなる群から選ばれた少なくとも
1種からなる請求の範囲第 2 5項記載の電気化学素子。
2 7 . 前記多孔性材料が、 膜状部材またはペーストの塗膜からなる請求 の範囲第 2 5項記載の電気化学素子。
2 8 . 前記多孔性材料で覆われている極板群の側面において、 前記セパ レー夕の端部と前記多孔性材料とが接合されている請求の範囲第 2 5項 記載の電気化学素子。
2 9 . 前記多孔性材料と前記セパレー夕とが、 互いに同一の材料からな る請求の範囲第 2 8項記載の電気化学素子。
3 0 . 前記絶縁性材料が、 樹脂塗膜および樹脂テープよりなる群から選 択される少なくとも 1種からなる請求の範囲第 1 1項記載の電気化学素 子。
3 1 . 前記樹脂塗膜が、 絶縁樹脂を含む溶液または分散液を、 前記電極 合剤層の端部に塗工し、 乾燥することにより、 形成されている請求の範 囲第 3 0項記載の電気化学素子。
3 2 . 前記絶縁樹脂が、 ポリエチレンォキシド、 ポリプロピレンォキシ ド、 ポリアクリロニトリル、 ポリフッ化ビニリデン、 ポリメタクリル酸 メチルおよびこれらの少なくとも 1つを含むコポリマー、 ポリマーァロ ィもしくはポリマーブレンドよりなる群から選択される少なくとも 1種 からなる請求の範囲第 3 1項記載の電気化学素子。
3 3 . 前記樹脂塗膜が、 重合性化合物を含む溶液または分散液を、 前記 電極合剤層の端部に塗工し、 前記重合性化合物を重合させることにより、 形成されている請求の範囲第 3 0項記載の電気化学素子。
3 4 . 前記重合性化合物が、 ァクリレート基およびメタクリレ一ト基よ りなる群から選択される少なくとも 1種の官能基を有する請求の範囲第 3 3項記載の電気化学素子。
3 5 . 前記樹脂テープが、 絶縁基材および前記絶縁基材に担持された絶 縁性粘着剤からなる請求の範囲第 3 0項記載の電気化学素子。
3 6 . 前記絶縁基材が、 ポリエチレン、 ポリプロピレン、 ポリエチレン テレフ夕レート、 ポリエチレンナフタレー卜、 ポリフエニレンサルファ イ ド、 ポリイミ ド、 ァラミ ド樹脂およびこれらの少なくとも 1つを含む コポリマー、 ポリマーァロイもしくはポリマーブレンドよりなる群から 選択される少なくとも 1種からなる請求の範囲第 3 5項記載の電気化学 素子。
3 7 . ( a ) シート状の絶縁性基材の両面に導電層を設けて第 1集電体 シートおよび第 2集電体シートを得る工程、
( b ) 前記第 1集電体シートおよび前記第 2集電体シートの前記導電層 の上に、 それぞれ複数個の第 1電極合剤層および第 2電極合剤層を、 平 行に並ぶ帯状に間隙を設けて形成し、 第 1電極の集合体および第 2電極 の集合体を得る工程、
( c ) セパレー夕を介して前記第 1電極の集合体および前記第 2電極の 集合体を、 前記第 1電極合剤層および前記第 2電極合剤層の長さ方向に 供給して同心円状に捲回し、 捲回体を得る工程、
( d ) 前記捲回体を、 前記間隙において切断することにより、 複数個の 捲回型極板群を得る工程を含むことを特徴とする電気化学素子の製造方 法。
3 8 . 前記工程 (b ) の後、 前記工程 (c ) の前に、 前記間隙において、 前記導電層上に絶縁材料部を形成する工程を含むことを特徴とする請求 の範囲第 3 7項記載の電気化学素子の製造方法。
3 9 . 前記捲回型極板群の第 1底面および第 2底面を金属で被覆し、 第 1端子および第 2端子を形成する工程を含むことを特徵とする請求の範 囲第 3 7項記載の電気化学素子の製造方法。
4 0 . 長尺状の第 1電極の集合体および第 2電極の集合体を、 セパレー 夕を介して積層するとともに連続的に積層体として供給する工程と、 前 記積層体を平板状のポビンで巻き取る工程と、 前記ボビンに巻き取られ た積層体を切断し、 複数個の積層型極板群を得る工程とを含む電気化学 素子の製造方法。
4 1 . シート状の絶縁性基材の両面に所定のパターンに基づいて導電層 を設けて第 1集電体シートおよび第 2集電体シートを得る工程と、 前記 第 1集電体シートおよび第 2集電体シートの前記導電層の上に、 それぞ れ前記パターンに対応させるとともに間隙を設けて第 1電極合剤層およ び第 2電極合剤層を形成する工程とにより、 前記第 1電極および第 2電 極を得ることを特徴とする請求の範囲第 4 0項記載の電気化学素子の製 造方法。
4 2 . 前記所定のパターンが、 マトリクス状であることを特徴とする請 求の範囲第 4 1項記載の電気化学素子の製造方法。
4 3 . 前記所定のパターンが、 平行に並ぶ帯状であることを特徴とする 請求の範囲第 4 1項記載の電気化学素子の製造方法。
4 4 . 前記間隙において前記導電層上に、 前記第 1電極合剤層および前 記第 2電極合剤層を挟む位置に、 絶縁材料部を形成する工程を含むこと を特徴とする請求の範囲第 4 1項記載の電気化学素子の製造方法。
4 5 . 前記積層型極板群の対向する第 1側面および第 2側面を金属で被 覆し、 第 1端子および第 2端子を形成する工程を含むことを特徴とする 請求の範囲第 4 0項記載の電気化学素子の製造方法。
4 6 . ( a ) シート状の絶縁性基材の両面に所定のパターンに基づいて 導電層を設けて第 1集電体シートおよび第 2集電体シ一トを得る工程、
( b ) 前記導電層の上に、 それぞれ複数個の第 1電極合剤層および第 2 電極合剤層を、 前記パターンに対応させるとともに間隙を設けて形成し、 第 1電極の集合体および第 2電極の集合体を得る工程、
( c ) 前記第 1電極の集合体および前記第 2電極の集合体をセパレー夕 を介して積層し、 積層体を得る工程、
( d ) 前記積層体を、 前記間隙において切断することにより、 複数個の 積層型極板群を得る工程を含む電気化学素子の製造方法。
4 7 . 前記所定のパターンが、 マトリクス状であることを特徴とする請 求の範囲第 4 6項記載の電気化学素子の製造方法。
4 8 . 前記所定のパターンが、 平行に並ぶ帯状であることを特徴とする 請求の範囲第 4 6項記載の電気化学素子の製造方法。
4 9 . 前記工程 (b ) の後、 前記工程 (c ) の前に、 前記間隙において 前記導電層上に、 前記第 1電極合剤層および前記第 2電極合剤層を挟む 位置に、 絶縁材料部を形成する工程を含むことを特徴とする請求の範囲 第 4 6項記載の電気化学素子の製造方法。
5 0 . 前記積層型極板群の対向する第 1側面および第 2側面を金属で被 覆し、 第 1端子および第 2端子を形成する工程を含むことを特徵とする 請求の範囲第 4 6項記載の電気化学素子の製造方法。
PCT/JP2003/015755 2002-12-27 2003-12-09 電気化学素子およびその製造方法 WO2004062022A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2003801077566A CN1732587B (zh) 2002-12-27 2003-12-09 电化学元件及其制造方法
US10/540,867 US7833656B2 (en) 2002-12-27 2003-12-09 Electrochemical device and method for producing the same
EP03777422A EP1596459A4 (en) 2002-12-27 2003-12-09 ELECTROCHEMICAL DEVICE AND METHOD FOR MANUFACTURING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002380939 2002-12-27
JP2002-380939 2002-12-27

Publications (1)

Publication Number Publication Date
WO2004062022A1 true WO2004062022A1 (ja) 2004-07-22

Family

ID=32708462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015755 WO2004062022A1 (ja) 2002-12-27 2003-12-09 電気化学素子およびその製造方法

Country Status (5)

Country Link
US (1) US7833656B2 (ja)
EP (1) EP1596459A4 (ja)
KR (1) KR100677020B1 (ja)
CN (3) CN100583515C (ja)
WO (1) WO2004062022A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7951479B2 (en) * 2005-05-11 2011-05-31 Cardiac Pacemakers, Inc. Method and apparatus for porous insulative film for insulating energy source layers
JP2013544424A (ja) * 2010-11-29 2013-12-12 ツェントルム フュア ゾンネンエネルギー ウント ヴァッサーシュトッフ フォルシュング バーデンヴュルテンベルク ゲマインニュッツィゲ シュティフトゥング バッテリー電極、及びバッテリー電極の製造方法
US8691418B2 (en) 2003-02-07 2014-04-08 Cardiac Pacemakers, Inc. Insulative member on battery cathode

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090030246A (ko) * 2006-06-16 2009-03-24 파나소닉 주식회사 비수 전해질 이차전지
DE102006053273A1 (de) * 2006-11-06 2008-05-08 Varta Microbattery Gmbh Galvanisches Element mit Kurzschluss-Schutz
US7856265B2 (en) * 2007-02-22 2010-12-21 Cardiac Pacemakers, Inc. High voltage capacitor route with integrated failure point
FR2925768B1 (fr) * 2007-12-21 2012-06-08 Commissariat Energie Atomique Batterie multipolaire a etancheite interplaque amelioree
JP5321783B2 (ja) * 2008-03-04 2013-10-23 株式会社東芝 非水電解質二次電池および組電池
JP5482173B2 (ja) * 2008-12-22 2014-04-23 住友化学株式会社 電極合剤、電極および非水電解質二次電池
CN101771143B (zh) * 2008-12-29 2013-01-30 比亚迪股份有限公司 一种电池极片及含有该极片的电池
KR101107075B1 (ko) * 2009-10-28 2012-01-20 삼성에스디아이 주식회사 이차 전지
KR101105876B1 (ko) * 2009-11-16 2012-01-16 주식회사 코캄 리튬 이차전지용 분리막 및 이를 포함하는 리튬 이차전지
US8873220B2 (en) * 2009-12-18 2014-10-28 Cardiac Pacemakers, Inc. Systems and methods to connect sintered aluminum electrodes of an energy storage device
US9269498B2 (en) 2009-12-18 2016-02-23 Cardiac Pacemakers, Inc. Sintered capacitor electrode including multiple thicknesses
US8725252B2 (en) 2009-12-18 2014-05-13 Cardiac Pacemakers, Inc. Electric energy storage device electrode including an overcurrent protector
WO2011075508A2 (en) * 2009-12-18 2011-06-23 Cardiac Pacemakers, Inc. Sintered capacitor electrode including a folded connection
US9123470B2 (en) 2009-12-18 2015-09-01 Cardiac Pacemakers, Inc. Implantable energy storage device including a connection post to connect multiple electrodes
WO2011075506A2 (en) 2009-12-18 2011-06-23 Cardiac Pacemakers, Inc. Sintered electrodes to store energy in an implantable medical device
JP2011138632A (ja) * 2009-12-25 2011-07-14 Sanyo Electric Co Ltd 非水電解質二次電池
CN102947905B (zh) * 2010-03-23 2015-08-26 太阳诱电株式会社 电化学器件用蓄电元件及其制造方法、使用了该蓄电元件的电化学器件及其制造方法
FR2961637B1 (fr) 2010-06-16 2012-07-27 Commissariat Energie Atomique Collecteur de courant avec moyens d'etancheite integres, batterie bipolaire comprenant un tel collecteur
US8848341B2 (en) 2010-06-24 2014-09-30 Cardiac Pacemakers, Inc. Electronic component mounted on a capacitor electrode
DE102010062143B4 (de) 2010-11-29 2016-08-04 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Gemeinnützige Stiftung Batterieelektrode und Verfahren zum Herstellen derselben
DE102011018342A1 (de) * 2011-04-20 2012-10-25 Heraeus Materials Technology Gmbh & Co. Kg Verfahren zur Herstellung einer bereichsweise beschichteten Trägerstruktur
US8773072B2 (en) * 2011-08-29 2014-07-08 Aygis Ag Refuelable storage battery
FR2993099B1 (fr) * 2012-07-03 2014-08-01 Commissariat Energie Atomique Collecteur de courant avec moyens d'etancheite integres, batterie bipolaire comprenant un tel collecteur
DE102012213697A1 (de) * 2012-08-02 2014-02-06 Robert Bosch Gmbh Sensorvorrichtung und Verfahren zum Bestimmen eines Druckes eines innerhalb eines elektrochemischen Energiespeichers befindlichen Mediums, elektrochemischer Energiespeicher und Verfahren zum Herstellen desselben
EP3032611B1 (de) * 2012-09-11 2017-04-26 swissbatt AG Batterie mit präzis positioniertem aufbau
FR2996360B1 (fr) * 2012-10-01 2014-10-17 Commissariat Energie Atomique Collecteur de courant avec moyens d'etancheite integres, batterie bipolaire comprenant un tel collecteur, procede de realisation d'une telle batterie.
CN103280597B (zh) * 2013-05-31 2017-09-29 宁德新能源科技有限公司 锂离子电池
US10530006B2 (en) 2013-08-29 2020-01-07 Lg Chem, Ltd. Electrode assembly for polymer secondary battery cell
CN105940521B (zh) * 2014-01-29 2019-03-22 凸版印刷株式会社 蓄电装置用端子薄膜及蓄电装置
CN105336916A (zh) * 2014-06-20 2016-02-17 东莞新能源科技有限公司 锂离子电池极片及其制备方法
KR102454949B1 (ko) * 2014-10-10 2022-10-17 삼성전자주식회사 유연한 전극 조립체 및 이를 포함하는 전기화학 소자
US9768421B2 (en) * 2014-10-10 2017-09-19 Samsung Electronics Co., Ltd. Flexible electrode assembly and electrochemical device having the electrode assembly
JP6619747B2 (ja) * 2014-11-07 2019-12-11 株式会社半導体エネルギー研究所 二次電池
US9985255B2 (en) * 2015-03-05 2018-05-29 Medtronic, Inc. Battery encasement for implantable devices
US9666514B2 (en) * 2015-04-14 2017-05-30 Invensas Corporation High performance compliant substrate
WO2017130821A1 (ja) * 2016-01-27 2017-08-03 日立オートモティブシステムズ株式会社 二次電池及びその製造方法
CN107305939B (zh) * 2016-04-25 2021-12-03 松下知识产权经营株式会社 电池
US10714756B2 (en) 2016-11-11 2020-07-14 GM Global Technology Operations LLC Metal deposition methods for forming bimetallic structures, batteries incorporating bipolar current collectors made therefrom, and applications thereof
US20180175434A1 (en) * 2016-12-20 2018-06-21 Nanotek Instruments, Inc. Process for Producing Flexible and Shape-Conformal Cable-Type Alkali Metal Batteries
US20180183052A1 (en) * 2016-12-27 2018-06-28 Nanotek Instruments, Inc. Process for Flexible and Shape-Conformal Cable-Shape Alkali Metal-Sulfur Batteries
US10637067B2 (en) 2016-12-28 2020-04-28 Global Graphene Group, Inc. Process for flexible and shape-conformal rope-shape alkali metal-sulfur batteries
WO2018135545A1 (ja) * 2017-01-17 2018-07-26 大日本印刷株式会社 保護フィルム、電池、及び電池の製造方法
CN107240721B (zh) * 2017-05-27 2020-01-31 深圳市雄韬电源科技股份有限公司 双极性电极及锂离子电池和锂离子电池的制作方法
JP6859223B2 (ja) * 2017-07-24 2021-04-14 株式会社Soken 積層型電極体の製造方法
DE102017219227A1 (de) * 2017-10-26 2019-05-02 Lithium Energy and Power GmbH & Co. KG Verfahren und Vorrichtung zur Herstellung einer Elektrodeneinheit für eine Batteriezelle und Batteriezelle
KR20190047593A (ko) 2017-10-27 2019-05-08 주식회사 엘지화학 리튬 금속 음극 구조체의 제조방법 및 리튬 금속 음극 구조체
CN110247057A (zh) * 2018-03-30 2019-09-17 宁德时代新能源科技股份有限公司 一种集流体,其极片和电化学装置
GB2575791B (en) * 2018-07-20 2021-11-03 Dyson Technology Ltd Energy storage device
CN109461872A (zh) * 2018-09-29 2019-03-12 湖北江升新材料有限公司 一种陶瓷浆料及锂离子电池隔膜
KR102144571B1 (ko) * 2018-10-24 2020-08-14 울산과학기술원 전극 구조체, 이의 제조 방법 및 이를 포함하는 이차 전지
KR102152101B1 (ko) * 2018-11-02 2020-09-07 진영글로벌 주식회사 차량 전장용 디바이스
CN209401756U (zh) * 2018-12-29 2019-09-17 宁德时代新能源科技股份有限公司 二次电池和电池模组
CN111755663B (zh) * 2019-03-29 2022-12-13 宁德新能源科技有限公司 极片及应用该极片的电芯
JP7276689B2 (ja) * 2019-10-02 2023-05-18 トヨタ自動車株式会社 積層電池およびその製造方法
JP2023503746A (ja) * 2020-06-02 2023-02-01 寧徳時代新能源科技股▲分▼有限公司 電極アセンブリ、ならびにその関連する電池、デバイス、製造方法、および製造装置
WO2022022337A1 (zh) * 2020-07-28 2022-02-03 厦门海辰新能源科技有限公司 一种双极性集流体及二次电池
CN111987282B (zh) * 2020-09-08 2022-10-11 宁德新能源科技有限公司 电化学装置及电子装置
CN213340434U (zh) * 2020-09-22 2021-06-01 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池以及用电装置
CN116391273A (zh) * 2020-10-30 2023-07-04 株式会社Lg新能源 电极组件和包括该电极组件的电池单元
CN115642217A (zh) * 2021-02-24 2023-01-24 厦门海辰储能科技股份有限公司 一种极片的制作方法
KR102602260B1 (ko) * 2021-03-23 2023-11-14 주식회사 유앤에스에너지 전극용 집전체
GB2611335A (en) * 2021-09-30 2023-04-05 Dyson Technology Ltd Battery stack
KR20230158359A (ko) * 2022-05-11 2023-11-20 주식회사 유앤에스에너지 전극용 집전체

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05314994A (ja) * 1992-05-12 1993-11-26 Yuasa Corp 電池の製造方法
JP2001093583A (ja) * 1998-11-16 2001-04-06 Denso Corp 積層型電池及びその電極の製造方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59161266A (ja) * 1983-03-02 1984-09-12 Nisshin Kikai Seisakusho:Kk 機外砥石修正機
JPS6153857A (ja) 1984-08-23 1986-03-17 Nippon Telegr & Teleph Corp <Ntt> 図形情報表示制御方式
CA2051611C (fr) * 1991-09-17 1996-01-23 Michel Gauthier Procede de preparation d'ensembles collecteurs-electrodes pour generateurs de films minces, ensembles collecteurs- electrodes et generateurs obtenus
JP3233455B2 (ja) * 1992-07-06 2001-11-26 東芝電池株式会社 リチウムイオン二次電池
JP3373242B2 (ja) 1993-02-05 2003-02-04 ティーディーケイ株式会社 積層型電池とその製造方法
JPH06333553A (ja) 1993-05-24 1994-12-02 Japan Storage Battery Co Ltd 非水電解液二次電池
US5478668A (en) * 1993-11-30 1995-12-26 Bell Communications Research Inc. Rechargeable lithium battery construction
JPH07220755A (ja) * 1994-02-07 1995-08-18 Tdk Corp 積層型リチウム二次電池
US5599641A (en) * 1994-04-20 1997-02-04 Gylling Optima Batteries Ab Battery terminal and case structure
EP0690517B1 (en) * 1994-05-30 2003-10-01 Canon Kabushiki Kaisha Rechargeable lithium battery
JPH0896792A (ja) * 1994-09-26 1996-04-12 Mitsubishi Cable Ind Ltd Li電池
US5567544A (en) * 1995-05-26 1996-10-22 Boundless Corp. Battery
DE69637084T2 (de) * 1995-08-28 2008-02-07 Asahi Kasei Emd Corporation Lithium-zelle und verfahren zu deren herstellung
JP3426903B2 (ja) * 1996-03-14 2003-07-14 株式会社東芝 非水電解液二次電池
JP3210593B2 (ja) * 1997-02-17 2001-09-17 日本碍子株式会社 リチウム二次電池
JP3906519B2 (ja) 1997-04-30 2007-04-18 宇部興産株式会社 電池用電極とこれを用いた電池
JPH11274004A (ja) 1998-03-23 1999-10-08 Asahi Glass Co Ltd 電気化学素子
US6187062B1 (en) 1998-06-16 2001-02-13 Alcatel Current collection through thermally sprayed tabs at the ends of a spirally wound electrochemical cell
US6623883B1 (en) * 1998-06-25 2003-09-23 Mitsubishi Denki Kabushiki Kaisha Electrode having PTC function and battery comprising the electrode
JP2000067847A (ja) * 1998-08-25 2000-03-03 Hitachi Ltd 二次電池及び組電池
CN1300889C (zh) * 1999-03-26 2007-02-14 松下电器产业株式会社 叠合片封装型电池
JP4866496B2 (ja) 1999-04-08 2012-02-01 パナソニック株式会社 二次電池の製造方法
JP2000294288A (ja) 1999-04-12 2000-10-20 Mitsubishi Chemicals Corp リチウム二次電池およびその製造方法
JP4717192B2 (ja) 1999-09-09 2011-07-06 キヤノン株式会社 二次電池およびその製造方法
TW508862B (en) 1999-09-09 2002-11-01 Canon Kk Alkali rechargeable batteries and process for the production of said rechargeable batteries
JP4564118B2 (ja) 1999-10-26 2010-10-20 パナソニック株式会社 電池及びその製造方法
JP3606554B2 (ja) 2000-01-27 2005-01-05 Necトーキン栃木株式会社 密閉型電池の製造方法
KR100497147B1 (ko) * 2000-02-08 2005-06-29 주식회사 엘지화학 다중 중첩 전기화학 셀 및 그의 제조방법
KR100406690B1 (ko) * 2001-03-05 2003-11-21 주식회사 엘지화학 다성분계 복합 필름을 이용한 전기화학소자
US7097673B2 (en) * 2001-06-07 2006-08-29 3M Innovative Properties Company Coating edge control
JP4031635B2 (ja) 2001-11-08 2008-01-09 Tdk株式会社 電気化学デバイス
US6923837B2 (en) * 2002-02-26 2005-08-02 Lithium Power Technologies, Inc. Consecutively wound or stacked battery cells
KR200282855Y1 (ko) * 2002-04-23 2002-07-23 김환창 축전지용 접속단자

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05314994A (ja) * 1992-05-12 1993-11-26 Yuasa Corp 電池の製造方法
JP2001093583A (ja) * 1998-11-16 2001-04-06 Denso Corp 積層型電池及びその電極の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1596459A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9093683B2 (en) 2002-12-31 2015-07-28 Cardiac Pacemakers, Inc. Method and apparatus for porous insulative film for insulating energy source layers
US8691418B2 (en) 2003-02-07 2014-04-08 Cardiac Pacemakers, Inc. Insulative member on battery cathode
US7951479B2 (en) * 2005-05-11 2011-05-31 Cardiac Pacemakers, Inc. Method and apparatus for porous insulative film for insulating energy source layers
JP2013544424A (ja) * 2010-11-29 2013-12-12 ツェントルム フュア ゾンネンエネルギー ウント ヴァッサーシュトッフ フォルシュング バーデンヴュルテンベルク ゲマインニュッツィゲ シュティフトゥング バッテリー電極、及びバッテリー電極の製造方法

Also Published As

Publication number Publication date
US7833656B2 (en) 2010-11-16
CN1774825A (zh) 2006-05-17
EP1596459A1 (en) 2005-11-16
CN100583515C (zh) 2010-01-20
KR100677020B1 (ko) 2007-02-01
CN1732582A (zh) 2006-02-08
EP1596459A4 (en) 2008-09-03
CN1732587B (zh) 2010-10-06
KR20050094825A (ko) 2005-09-28
US20060035152A1 (en) 2006-02-16
CN100356615C (zh) 2007-12-19
CN1732587A (zh) 2006-02-08

Similar Documents

Publication Publication Date Title
WO2004062022A1 (ja) 電気化学素子およびその製造方法
KR100509437B1 (ko) 적층형 리튬이차전지 및 그 제조방법
US6280873B1 (en) Wound battery and method for making it
JP3993223B2 (ja) 電池
WO2004062004A1 (ja) 集電体シートおよび電気化学素子
KR101663351B1 (ko) 전기화학소자용 셀 및 이의 제조 방법
JP2002042855A (ja) 平板状積層型電池
CN111712946A (zh) 在电极接片与集流体之间具有改进的连接结构的电极组件及其制造方法
JP2003100282A (ja) 電極及びその製造方法
KR100509435B1 (ko) 리튬이차전지 및 그 제조방법
JP2004253353A (ja) 電気化学素子の製造方法
JP4297711B2 (ja) 電気化学素子
JP4252821B2 (ja) 電気化学素子
JP4422968B2 (ja) 電気化学素子
KR102406390B1 (ko) 리튬 금속 음극의 제조 방법, 이에 따라 제조된 리튬 금속 음극, 및 이를 포함하는 리튬 이차 전지
JP4594598B2 (ja) 電気化学素子
JP4601921B2 (ja) 電気化学素子
JP2004253350A (ja) 電気化学素子の製造方法
JP4594591B2 (ja) 電気化学素子
JP4594596B2 (ja) 電気化学素子
WO2019059117A1 (ja) 集電体とそれを用いた電池
CN111684623A (zh) 具有电极接片与集流体之间改进的连接结构的电极组件及该电极组件的制造方法
KR100514214B1 (ko) 분리된 2겹의 격리막을 이용한 적층형 리튬이차전지 및 그제조방법
JP4594592B2 (ja) 電気化学素子
KR200312088Y1 (ko) 리튬이차전지 및 그 제조방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057012005

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006035152

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 20038A77566

Country of ref document: CN

Ref document number: 10540867

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003777422

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057012005

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003777422

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10540867

Country of ref document: US