WO2004031472A1 - コーティングエアバッグ基布およびエアバッグ - Google Patents

コーティングエアバッグ基布およびエアバッグ Download PDF

Info

Publication number
WO2004031472A1
WO2004031472A1 PCT/JP2003/012707 JP0312707W WO2004031472A1 WO 2004031472 A1 WO2004031472 A1 WO 2004031472A1 JP 0312707 W JP0312707 W JP 0312707W WO 2004031472 A1 WO2004031472 A1 WO 2004031472A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
base fabric
fabric
coating
coated
Prior art date
Application number
PCT/JP2003/012707
Other languages
English (en)
French (fr)
Inventor
Atsushi Morimoto
Yoshiya Honbo
Tomomichi Fujiyama
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002292239A external-priority patent/JP4419378B2/ja
Priority claimed from JP2002352283A external-priority patent/JP2004183152A/ja
Priority claimed from JP2002376972A external-priority patent/JP4423853B2/ja
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to US10/529,848 priority Critical patent/US8211813B2/en
Priority to CA 2501032 priority patent/CA2501032C/en
Priority to EP20030751321 priority patent/EP1548180B1/en
Publication of WO2004031472A1 publication Critical patent/WO2004031472A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/23Inflatable members
    • B60R21/235Inflatable members characterised by their material
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • D03D1/02Inflatable articles
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • D03D1/04Sack- or bag-like articles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/39Aldehyde resins; Ketone resins; Polyacetals
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/39Aldehyde resins; Ketone resins; Polyacetals
    • D06M15/41Phenol-aldehyde or phenol-ketone resins
    • D06M15/412Phenol-aldehyde or phenol-ketone resins sulfonated
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/128Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with silicon polymers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/23Inflatable members
    • B60R21/235Inflatable members characterised by their material
    • B60R2021/23504Inflatable members characterised by their material characterised by material
    • B60R2021/23509Fabric
    • B60R2021/23514Fabric coated fabric
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/34Polyamides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/12Permeability or impermeability properties
    • D06N2209/121Permeability to gases, adsorption
    • D06N2209/125Non-permeable
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/12Decorative or sun protection articles
    • D06N2211/26Vehicles, transportation
    • D06N2211/268Airbags
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/12Vehicles
    • D10B2505/124Air bags
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1362Textile, fabric, cloth, or pile containing [e.g., web, net, woven, knitted, mesh, nonwoven, matted, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1386Natural or synthetic rubber or rubber-like compound containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2008Fabric composed of a fiber or strand which is of specific structural definition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2139Coating or impregnation specified as porous or permeable to a specific substance [e.g., water vapor, air, etc.]

Definitions

  • the present invention relates to a coated airbag base fabric having air blocking properties, heat resistance, and compactness at the same time, and having excellent adhesion of a resin film, and an airbag made of the same.
  • plain fabrics made of 3334-1 or 112 decitex nylon 6.6 or nylon 6 filament yarn have been used for airbags to improve heat resistance, flame retardancy, and air barrier properties. It was made by applying an elastomer resin such as black rubber, chlorosulfonated olefin, or synthetic rubber such as silicone, cutting the laminated base fabric, and sewing it to a bag.
  • an elastomer resin such as black rubber, chlorosulfonated olefin, or synthetic rubber such as silicone
  • the present invention provides a coated airbag base fabric and an airbag made of the same, which simultaneously have air blocking properties, heat resistance, and compactness in storage, and have excellent adhesion of a resin film.
  • the purpose of the present invention is to provide a method of manufacturing the coating bag base fabric.
  • the present invention employs the following means in order to solve such a problem.
  • the coated airbag base fabric of the present invention at least one surface of the fiber fabric is coated with a resin, and at least a part of the single yarn constituting the fabric is surrounded by the resin. At least a part of the single yarn constituting the fabric is not surrounded by the resin.
  • the airbag of the present invention is characterized by using such a coated airbag base fabric.
  • the fiber fabric has a viscosity in the range of 5 to 20 Pa's (5, 000 to 20, 0 000 cP). It is characterized in that the resin liquid is coated with a knife knife using a coating knife having an acute angle within a contact pressure between the coating knife and the cloth within a range of 1 to 15 cm. . ' BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a schematic sectional view of a coating airbag base fabric of the present invention.
  • FIG. 2 is a schematic sectional view of a conventional coating airbag base fabric.
  • FIG. 3 is a schematic sectional view of an airbag base fabric obtained by a conventional impregnation method.
  • FIG. 4 is an explanatory diagram showing a method of measuring the permeability.
  • FIG. 5 is an explanatory view showing a method of folding the airbag in the storage test.
  • FIG. 6 is an explanatory view showing a cross section of the cloth taken by a scanning electron microscope.
  • FIG. 7 is an explanatory view showing a method of applying a resin.
  • Reference numeral 1 denotes a single yarn (fiber) constituting a fabric
  • reference numeral 2 denotes a resin
  • reference numeral 3 denotes a distance at which the resin permeates from the surface of the filament yarn constituting the fabric to the inside
  • reference numeral 4 denotes a fabric.
  • Reference numerals 5 and 6 indicate the folding direction of the airbag
  • reference numeral 7 indicates the horizontal direction of the base cloth before inserting the coating knife
  • reference numeral 8 indicates the relative position of the coating knife with respect to the cloth
  • reference numeral 9 indicates the cloth.
  • 10 is a coating knife ⁇ BEST MODE FOR CARRYING OUT THE INVENTION
  • Examples of the fiber fabric in the present invention include nylon 6.6, nylon 6, nylon 12, nylon 4.6, copolymerization of nylon 6 and nylon 6.6, and copolymerization of nylon 6 with polyalkylene glycol, diamine dicarboxylate and the like.
  • Homopolyester fiber such as polymerized polyamide fiber, polyethylene terephthalate, polybutylene terephthalate, etc .; aliphatic component such as isophthalic acid, 5-nadium sulfoisophthalic acid or adipic acid as the acid component constituting the repeating unit of polyester Mainly polyester fiber copolymerized with dicarboxylic acid, etc., aramide fiber typified by copolymerization with paraffinylene terephthalamide and aromatic ether, rayon fiber, polysulfone fiber, ultra-high molecular weight polyethylene fiber and the above synthetic fibers Takashima with a sea-island structure Synthetic fiber woven fabric composed of daughter array fibers is used.
  • polyamide fibers and polyethylene terephthalate fibers are preferable, and nylon 6.6 and nylon 6 are more preferable in terms of impact resistance.
  • Such fibers are commonly used to improve productivity or properties in the yarn manufacturing and processing processes. May be included.
  • heat stabilizers, antioxidants, light stabilizers, leveling agents, antistatic agents, plasticizers, thickeners, pigments, flame retardants, and the like can be included.
  • the coating airbag base fabric of the present invention it is necessary that at least one surface of the fiber fabric is coated with a resin.
  • a resin By coating at least one side with a resin, it is possible to provide an air-blocking property and to protect the fabric from high-temperature nitrogen gas generated from inflation throughout the day.
  • a resin having heat resistance, cold resistance and flame retardancy is particularly preferably used.
  • examples of such a resin include a silicone resin, a polyamide resin, a polyurethane resin, and a fluorine resin. Of these, silicone resins are particularly preferred because of their excellent heat resistance, cold resistance, and air barrier properties.
  • a silicone resin a dimethyl silicone resin, a methylvinyl silicone resin, a methylphenyl silicone resin, and a fluoro silicone resin are used.
  • the resin preferably contains a flame retardant compound.
  • flame-retardant compounds include halogen compounds containing bromine and chlorine, particularly, cycloalkane halides, platinum compounds, antimony oxide, copper oxide, titanium oxide, phosphorus compounds, thiourea compounds, carbon, cerium, and oxides. Silicon, etc. can be used. Of these, octogen compounds, platinum compounds, copper oxide, titanium oxide, and carbon are flame-retardant without impairing the heat resistance and other properties of silicone resins.
  • any of a solvent-based, water-based, and water-dispersed resin can be used as appropriate.
  • a solvent-free silicone resin that does not use a solvent has an environmental impact and explosion-proof when used. It is also preferable from the viewpoint of simple equipment that does not use equipment.
  • the coating airbag base fabric of the present invention at least a part of the single yarn constituting the fiber fabric is surrounded by the resin, and at least a part of the single yarn constituting the fabric is not surrounded by the resin. Is important (see Figure 1).
  • the term “single yarn” as used herein means, for example, when the fiber cloth is composed of multi-filament yarn, one single yarn constituting the multi-filament. Since at least a part of the single yarns constituting the fabric is surrounded by the resin, the adhesiveness between the fabric and the resin coating is improved, and the single yarns constituting the fabric are also improved. At least some of the single yarns are surrounded by resin By doing so, a coating airbag base fabric that retains the flexibility of the fabric can be obtained.
  • the resin 2 surrounds the single yarn 1 constituting the fabric, since the fabric surface has a coating of the resin 2 as shown in FIG. I never did. As a result, the air barrier property is good, but the adhesiveness between the cloth and the resin film is poor.
  • the resin 2 is distributed in the fabric, that is, almost all single yarns are surrounded by the resin 2, but the fabric entangled portion ( It is difficult to form a resin film at the intersection of the warp and the weft.
  • the arrangement of the resin in the fabric is basically as shown in FIG. 1 so as to compensate for the drawbacks of the base fabric obtained by the conventional coating method and impregnation method.
  • the air barrier property is provided, and at least a part of the single yarn 1 constituting the fabric is surrounded by the resin 2, thereby improving the adhesiveness between the resin film and the fabric. Because the single yarn is not surrounded by resin, it does not impair the flexibility of the airbag base fabric.
  • the ratio of the single yarn surrounded by the above-mentioned resin is in the range of 3 to 20% with respect to all the single yarns, so that the adhesiveness between the fabric and the resin and the flexibility of the base fabric are compatible. And more preferably 5 to 15%. When this ratio is less than 3%, the flexibility of the base fabric is good, but the adhesiveness between the fabric and the resin is poor. If this ratio is larger than 20%, the adhesiveness between the fabric and the resin is good, but the flexibility of the airbag base fabric is impaired.
  • the resin penetrates within a range of 10 to 70% of the thickness of the fabric in terms of achieving both the adhesiveness between the fabric and the resin and the flexibility of the airbag base fabric, More preferably, the content is in the range of 15 to 50%.
  • the ratio of the resin permeating the thickness of the cloth refers to the ratio of the resin permeating the inside of the multifilament constituting the cloth. That is, in the cross section of the multifilament constituting the fabric, the distance 3 permeating from the surface to the inside is defined as the distance of the multifilament. The value divided by the height 4 (see Fig. 4).
  • the surface is surrounded by resin. The distance that the resin has penetrated from the surface to the inside is the distance from the surface to the part that has penetrated the inside.
  • the permeability is less than 10%, the flexibility of the airbag base fabric is good, but the adhesiveness between the fabric and the resin is inferior. If it is more than 70%, the adhesiveness between the fabric and the resin is good, but the flexibility as the airbag base fabric is impaired.
  • the resin adhesion amount is in the range of 5 to 30 g Zm 2 in terms of the thickness of the base fabric, weight, air blocking property and compactness of storage, and more preferably 5 to 20 g. g Zm 2 is good for storage compactness. If the amount of the resin adhered is less than 5 g Zm 2 , it is difficult to completely cover the fabric surface with the resin film, and air leakage easily occurs. Further, 3 0 g Zm is preferable in many cases the surface of the air barrier properties than 2, since the or summer thick resin film of the fabric surface, increasing the amount of resin in the fabric flexibility of E 7 bag base fabric is impaired, It is not preferable in terms of storage compactness.
  • the fineness of the yarn used in the synthetic fiber fabric constituting the airbag base fabric in the present invention is preferably in the range of 90 to 600 decitex, and more preferably in the range of 150 to 470 decitex.
  • the single fiber fineness of the fibers constituting the woven yarn is preferably in the range of 1 to 6.5 dtex, more preferably in the range of 2 to 4.5 dtex, and the storability, resin Good in terms of adhesiveness with.
  • the productivity of the yarn tends to deteriorate. If it exceeds 6.5 dtex, the fabric becomes thicker and the base fabric rebounds strongly when folding the base fabric for airbags. Inferior in aspect. Further, when the single-fiber fineness is within the above range, when the resin is coated, the resin easily penetrates between the single yarns, and the resin easily surrounds the single yarn. Further, the yarn used is not limited to a round cross-sectional shape of a single yarn, and may be flat.
  • a yarn having a flat section having a ratio of the major axis to the minor axis of the cross section, that is, the aspect ratio in the range of 1.5 to 6, is used, the thickness of the base fabric can be reduced, and the storability is improved.
  • Flat cross-section yarns are usually elliptical, but oval if they satisfy an aspect ratio in the range of 1.5-6.
  • Other shapes may be used.
  • the shape may be asymmetric, such as a rectangle, a rhombus, or a cocoon, or may be asymmetric, or may be a combination of them. There may be.
  • making the cross section of the single yarn elliptical can make the surface of the fabric smooth and reduce the voids generated between the yarns constituting the fabric.
  • the coating amount can be reduced, which is preferable in terms of storability and cost.
  • the yarn used is a non-twisted yarn in terms of the adhesiveness between the fabric and the resin. If the yarn is twisted, the multifilaments are bundled, so that when the resin is coated, the resin does not easily penetrate between the single yarns, and as a result, it becomes difficult for the resin to surround the single yarn.
  • twisting increases the unevenness of the woven fabric surface, and requires more resin to fill the unevenness of the woven fabric surface with the resin. The cost is high due to the large amount of resin.
  • plain weave, twill weave, satin weave, varieties thereof, multi-axial weave and other woven fabrics, non-woven fabrics and spun-pounds are used.
  • Plain fabric is preferred in terms of cost and isotropic deployment of the airbag.
  • Such a fabric does not necessarily have to have a symmetrical structure, and may have an asymmetrical structure.
  • Examples of the asymmetrical design here include a flat-textile woven fabric with a different number of warp and weft yarns, a yarn with a different yarn type, and one of the warp and weft ripstops. ⁇
  • An organization with a different structure, such as an airfoil organization, can be used.
  • the loom for weaving the fabric constituting the base fabric of the present invention may be appropriately selected from various looms used for weaving industrial fabrics.
  • a shuttle loom a War Yuichi jet loom (WJL), an air Jet loom (AJL), Levia loom, etc.
  • WJL Waryuichi Jet Loom
  • WJL is preferably used in terms of reducing the amount of residual oil in the base fabric, which may affect the flame retardancy of airbags, and in terms of productivity.
  • the coated airbag base fabric of the present invention preferably has a residual oil content of 0.1% by weight or less from the viewpoint of flame retardancy.
  • the amount of residual oil is based on the resin-coated base fabric. And measured by the following method.
  • a sample of about 10 g of a woven fabric or a base cloth is collected, and after being left in a hot air dryer at 105 for 1 hour and 30 minutes, the mass (S) is measured using an electronic balance, and then put into an Erlenmeyer flask. Inject 120 ml of n-hexane measured using a measuring cylinder into an Erlenmeyer flask, stir for 10 minutes with a shaker, and extract the oil component. The base cloth sample is removed from the solution after the extraction, and 100 ml of the extract is weighed out using a measuring cylinder and placed in a round flask of known weight (W0).
  • the n-hexane is recovered and removed from the contents of the flask using a Soxhlet extract, and the round flask is dried in a 5 mmHg, 25 vacuum dryer for 1 hour. Then, transfer to desiccator overnight, allow to cool for 15 minutes, measure the weight of the round flask (W1), and calculate the oil content in the base fabric from the following formula.
  • the residual oil content of the synthetic fiber woven fabric before coating with the resin must be 0.1% by weight or less. Is preferred. By setting the residual oil content of the woven fabric to 0.1% by weight or less, the residual oil content of the base fabric can be reduced, which is also preferable from the viewpoint of flame retardancy.
  • the relationship between the thickness T1 of the central portion of the coating airbag base fabric and the thickness T2 of the coated end portion in the present invention is preferably 0.9 ⁇ T1ZT2, and more preferably 0.95 ⁇ 1. / ⁇ 2 is good. If the length of the chocks 1 and 2 is smaller than 0.9, the thickness of the bag after cutting and sewing will vary greatly, and as a result, the bag will not expand isotropically when the bag is deployed, and the occupants will be received more quickly. Poor performance. Also, the hot gas during deployment hits the bag unevenly, so the bag may be significantly damaged by heat, which is not good.
  • the relationship between the base fabric width W of the base fabric and the coating width C on which the resin is applied is preferably 0.95 CZW 0.99. If it is smaller than 0.995, the loss when cutting the bag is large, and the cost performance is inferior. When it is larger than 0.99, both ends of the base fabric are gripped by heat setting after resin coating The part where the coating is applied becomes the resin-coated part, which causes wrinkles and is inferior in quality.
  • Ventilation of the coating air bag base fabric of the present invention is measured by the method prescribed in JISL 1 0 9 6 A method (fluid (air) pressure 1 2 5 P a), 0. 0 1 cc / cm 2 / It is preferably less than or equal to sec. Further, it is preferable that the measured air flow rate when the fluid (air) is adjusted to a pressure of 19.6 kPa and flowed is 1 cc / cm 2 / sec or less.
  • the design range of airbags in various parts is widened, and the airbag is preferably used for applications requiring extremely low air permeability, such as inflatable curtains, knee airbags, and smart bags. Can be.
  • the basis weight of the coating air bag base fabric of the present invention preferably in terms of 3 0 0 g / m 2 or less der Rukoto is lighter, more preferably 2 5 0 gZm 2 below.
  • the thickness is preferably 0.35 mm or less, more preferably 0.33 mm or less, from the viewpoint of compactness of storage, and the bending resistance is determined in both the yarn direction and the weft direction. It is preferably 100 mm or less in terms of storage compactness.
  • the airbag base fabric must have a tensile strength of at least 300 NZcm, a breaking elongation of at least 15%, and a tear strength of at least 100 N when used as an airbag. It is preferable from the viewpoint of the storage property and prevention of rupture.
  • the coating airbag base fabric of the present invention has a flame retardancy measured based on FMV SS302, assuming thermal damage to the base fabric caused by the high-temperature gas generated when the airbag is deployed.
  • the property is less than 10 OmmZmin. More preferably, it is less than 80 mm / min.
  • the coating airbag base fabric of the present invention includes an airbag for a driver's seat, an airbag for a passenger seat, an airbag for a rear seat, an airbag for a side, an airbag for an inflation overnight curtain, and an airbag for a motorcycle. It can also be applied to functionally applicable parts such as head bag for rear-end collision protection, mini bag for infant protection, bag for leg protection, bag for seat belt, etc. What is necessary is just to satisfy the required requirements.
  • the coating airbag base fabric of the present invention is characterized in that a resin solution having a viscosity in the range of 5 to 20 Pas. Blade It can be manufactured by coating with a knife coating using a coating knife with a contact pressure between the coating knife and the fabric in the range of 1 to 15 N / cm.
  • the viscosity of the resin liquid is a viscosity measured by a B-type viscometer based on JIS Z8803. If the viscosity is less than 5 Pa's (5,000 cP), the viscosity is too low and is not suitable for knife coating, and the resin penetrates into the inside of the base fabric, resulting in poor air permeability. Or, in order to achieve low air permeability, the amount of coating increases, which is not good in terms of storage. On the other hand, if it is larger than 20 Pas (20, OOO cP), the viscosity is too high, and it is difficult to reduce the amount of resin applied (thin and evenly applied). Not only is it not good in terms of surface, cost is high, but also the resin liquid does not easily penetrate between the single yarns constituting the fabric, and the resin cannot sufficiently surround the single yarns.
  • a knife coating method is used in consideration of low coating amount of the resin and resin permeability to the fabric.
  • the knife coating method includes a knife over bite method, a knife over belt method, and a floating knife method, and the floating knife method is preferably used from the viewpoint of reducing the amount of resin coating and resin permeability to fabric.
  • a sharp-edged coating knife is used to reduce the amount of coating.
  • an arc knife or a crevice knife is used, but a crevice knife is preferable in consideration of the low coating amount of the resin and the permeability of the resin into the fabric.
  • the contact pressure of the coating knife on the fabric is an important point, and the contact pressure is from 0.1 to 1. It needs to be adjusted within the range of 15 N / cm. If the contact pressure is less than 1 N / cm, the contact pressure is too low, so that the resin hardly penetrates into the fabric, and the resin cannot sufficiently surround the single yarn constituting the fabric. In addition, a large amount of resin is applied and the weight of the base fabric is large, which tends to result in poor storage compactness.
  • the contact pressure is greater than 15 N / cm
  • the multifilaments constituting the fabric are cut with a knife to cause single yarn breakage.
  • the quality inferior but it becomes difficult to cover the fabric surface with a resin film, The quantity is not obtained, and it is not good in terms of air barrier properties.
  • the coating knife is adjusted by the penetration depth of the coating knife with respect to the fabric, and the relative position of the coating knife with respect to the fabric at that time is adjusted.
  • the relative position 8 refers to a position where the coating knife 10 is inserted vertically downward to the base cloth 9 with respect to the base cloth horizontal direction 7 before the coating knife is inserted. (See Fig. 7)
  • the base fabric tension in the coating within the range of 500 to 3, OOON Zm, since it can temporarily improve the nap of the fabric during coating and can control the coating width. . If the base fabric tension is less than 500 NZm, the edge of the woven fabric is not improved, and the coating width cannot be sufficiently secured. On the other hand, if it is larger than 3, OO ON Zm, not only the uniform tension may not be applied in the width direction of the woven fabric, but also the dimensional stability is inferior due to shrinkage during bag production.
  • the scouring set processing before coating is performed to reduce the ears of the base cloth and perform the coating more smoothly.
  • the base cloth tension is preferably set to 500 to Since the resin is applied with a high tension of 1,500, it is possible to apply while reducing the ears. Therefore, it is preferable to use a greige machine or a woven fabric which is a greige machine set without performing the scouring set processing from the viewpoint of cost reduction.
  • Percentage of fibers surrounded by resin with respect to all fibers constituting base fabric (surrounding ratio): A cross-sectional photograph of the woven fabric is taken by a scanning electron microscope (SEM) under the following conditions, and a single yarn constituting one multifilament Among them, single yarns surrounded by resin are counted and represented by the following formula.
  • Basis weight It was determined according to JIS L1096 (Method 8.4.2).
  • Thickness Determined according to JIS L I 096 (8.5 method). The measured value of the central part of the base cloth was obtained by dividing the base cloth into three parts in the width direction, measuring five points of the thickness of the middle part of the base cloth, and calculating the average value. The measured value of the coated end was obtained from the average value of 6 points at both ends at three points at 1 cm intervals from the coated end to the inside of the base cloth.
  • Residual oil content Approximately 10 g of a woven or base fabric sample was collected, left in a hot-air dryer at 105 for 1 hour and 30 minutes, and the mass (S) was measured with an electronic balance and placed in an Erlenmeyer flask. . Next, 120 ml of n-hexane measured and taken using a measuring cylinder was poured into an Erlenmeyer flask, and the mixture was stirred for 10 minutes with a shaker to extract an oil component. The base cloth sample was removed from the solution after the extraction, and 100 ml of the extract was weighed using a measuring cylinder and placed in a round flask of known weight (W0).
  • n-hexane was recovered and removed from the contents of the flask using a Soxhlet extract, and the round flask was dried in a 5 mmHg, 25 vacuum dryer for 1 hour. Then, the mixture was transferred to a desiccator overnight and allowed to cool for 15 minutes. Then, the weight (W1) of the round flask was measured, and the oil content in the base cloth was calculated from the following equation.
  • Elongation at break Based on JISL 1096 (8.1.2.1 A method), the woven fabric is 3 cm wide, the distance between the tension grips is 15 cm, and the rupture when pulled at a speed of 200 mm / min. The elongation was measured.
  • Tear strength Based on JISL 1096 (8.1.5.2A-2 method), tensile speed 2
  • Air permeability JISL 1 096 (8.2.7.1 A method: fluid (air) pressure 1 25 Pa) and fluid (air) adjusted to a pressure of 19.6 kPa, and then passed The air flow rate was determined.
  • Resin adhesion The presence or absence of peeling of the resin film when the number of rubbing times was set to 500 was examined in accordance with JIS K63288 (5.3.8 method).
  • Viscosity Measured with a B-type viscometer at a constant temperature of 25 based on JIS Z8803 (8).
  • a circular reinforcing cloth of the same cloth with a diameter of 75 mm is applied, oppositely, to a diameter of 50 mm
  • the sewing machine was sewn with 1,400 dte X sewing thread of nylon 6.6 fiber on both the upper and lower threads on a 6 Omm line, and two vent holes with holes with a diameter of 40 mm were installed at two places.
  • the reinforcing cloth side of this circular cloth is turned out, and the other circular cloth is overlapped with the warp axis by 45 degrees, and the upper and lower yarns are wrapped around the circumference of diameters of 700 mm and 7110 mm.
  • the sewing machine was sewn with double chain stitching using 1,400 dte X sewing thread of nylon 66 fiber, and then the bag body was turned over to create a 60 L airbag.
  • the obtained air bag having a capacity of 60 L is folded parallel to the two axes AB and CD shown in Fig. 5 (1).
  • fold it in the B direction along the line 270 mm from the other end of the base cloth in the A direction then fold it in the A direction at 200 mm, and then fold it in the 130 mm line. Fold in direction B.
  • the cross section of the cloth cut at the position shown in Fig. 6 was examined with a Hitachi S-3500 • N-type scanning electron microscope at a magnification of 200 times, a resolution of 640 X 480, and a scanning speed of 80/100 s. Taken in.
  • a Nylon 66 chip with 98% sulfuric acid relative viscosity of 3.7 at 25 was melt spun at 295 using an Extorda spinning machine.
  • the spinnerets used are different in flatness, shape, and number of holes, and yarns are spun from the spinning packs having the spinnerets, and the airbag raw yarn is 470 dtex, 350 by direct spinning and drawing process. dtex and 235 dtex yarns were produced.
  • Table 1 shows the characteristics of the airbag fabric thus obtained.
  • This airbag base fabric was excellent in air barrier properties, compactness in bag storage, flame retardancy, and also excellent in resin adhesiveness.
  • the contact pressure of the fabric and sheathing board knife kept 0. 8 NZcm, except that the amount of the resin adhered was Koti ring so that the l S gZm 2, the same procedure as in Example 1, to obtain a coating air bag base fabric was. '
  • Table 1 shows the characteristics of the airbag fabric thus obtained.
  • This airbag base fabric had no problems with air barrier properties, bag storage compactness, and flame retardancy, but had poor resin adhesion.
  • Example 1 The nylon 6.6 yarn used in Example 1 was twisted at 100 TZm and coated with a comma coater (contact pressure between fabric and comma is ON cm) so that the resin adhesion amount becomes 15 gZm 2 .
  • a coating airbag base fabric was obtained in the same manner as in Example 1 except that the coating was performed.
  • Table 1 shows the characteristics of the airbag fabric thus obtained.
  • This airbag base fabric had no problems with air barrier properties, bag storage compactness, and flame retardancy, but had poor resin adhesion.
  • the yarn tension is set to 100 cN / strand, and the weft density of both the warp and weft yarns is adjusted to 59 2.54 cm.
  • a woven fabric was obtained.
  • a toluene-diluted methylvinylsilicone resin solution (resin solid content: 80%) having a viscosity of 8 Pa ⁇ s (8, OO cP) was applied to the woven fabric by a floating knife using a damper knife.
  • the contact pressure of the fabric and the end plate knife kept 2 NZc m, after the amount of the resin adhered was co one coating so that 20 g / m 2, 1 3 Ot: dried 1 minute, 2 0 0
  • the coating was vulcanized for 2 minutes to obtain a coating airbag base fabric.
  • Table 1 shows the characteristics of the airbag fabric thus obtained.
  • This airbag base fabric was excellent in air barrier properties, compactness in bag storage, flame retardancy, and also excellent in resin adhesiveness.
  • Example 2 To the plain-woven fabric obtained in Example 2, a toluene-diluted methylvinylsilicone resin liquid (resin solid content: 90%) having a viscosity of 25 Pas (25, OOO cP) (1) Coating the resin with 35 gZm 2 at a contact pressure of 0 N / cm on the fabric and the comma, dry at 130 for 1 minute, and apply at 200 for 2 minutes. Sulfurization treatment was performed to obtain a coated airbag base fabric.
  • resin solid content 90%
  • Table 1 shows the characteristics of the airbag fabric thus obtained.
  • This airbag base fabric had no problems with air barrier properties and flame retardancy, but was inferior in bag storage compactness and resin adhesiveness.
  • the contact pressure of the fabric and sheathing board knife kept 1 7 NZc m, except that the amount of the resin adhered was Koti ring on so that such a 4 g / m 2, the same procedure as in Example 2, Koti Ngue Abaggu group Got the cloth.
  • Table 1 shows the characteristics of the airbag fabric thus obtained.
  • This airbag base fabric did not have a problem with the compactness of the bag storage, but was inferior in air barrier properties due to the lack of a continuous resin coating on the woven fabric surface, and also inferior in flame retardancy and resin adhesiveness. I was
  • Example 3 Total fineness 2 35 dtex, 72 filaments, strength 8.4 c NZd tex, elongation 24%, aspect ratio 1.0, non-twisted nylon 6 fiber round cross section filament yarn in air jet room Then, the warp yarn tension was set to 90 c and the weaving density of the warp and the weft was adjusted to be 76 yarns / 2.54 cm to obtain a woven fabric having a flat structure. The fabric was then immersed for 3 minutes in an 8 Ot hot water bath containing 0.5 gZl of sodium alkylbenzenesulfonate and 0.5 gZ1 of soda ash, and dried at 130 for 2 minutes. Subsequently, heat heat setting was performed at 180 at 1 minute.
  • a water-based resin solution (resin solid content: 50%) having a viscosity of lOP a's (10, OOO cP) was added to the fabric after the heat setting by a floating knife using a weir board knife.
  • the Ifukota maintaining the contact pressure of said textile and said weir plate knife 6 N / cm, after the amount of the resin adhered was co one tee ring such that 20 gZm 2, dry 1 minute in 1 3 0 ⁇ Then, a coated airbag base fabric was obtained.
  • Table 1 shows the characteristics of the airbag fabric thus obtained.
  • This airbag base fabric was excellent in air barrier properties, compactness in bag storage, flame retardancy, and also excellent in resin adhesiveness.
  • a water-based urethane resin solution (resin solid content: 50%) having a viscosity of 23 Pa ⁇ s (23,000 OcP) was applied to the woven fabric after heat setting obtained in Example 3 using a damper knife.
  • the Floating Ngunaifuko Isseki one using, maintaining the contact pressure of said textile and said weir plate knife 1 6 N cm, after coating so that the amount of the resin attached is 20 gZm 2, 1 minute at 1 30 After drying, a coating airbag base fabric was obtained.
  • Table 1 shows the characteristics of the airbag fabric thus obtained.
  • This airbag base fabric had no problems with air barrier properties, bag storage compactness, and flame retardancy, but had poor resin adhesion.
  • the heat-set woven fabric obtained in Example 3 was immersed in an aqueous urethane resin solution (resin solid content 50%) having a viscosity of 3 Pa ⁇ s (3,000 cP), and the resin adhesion amount was changed to a solid content. After squeezing with a mangle so as to obtain 10 gZm 2 , it was dried with 130 at 2 minutes to obtain an airbag base fabric. Table 1 shows the characteristics of the airbag fabric thus obtained. This airbag base fabric had no problem with the adhesiveness of the resin, but was inferior in terms of air barrier properties and compactness in bag storage.
  • a yarn weaving a plain woven fabric with a warp and weft thread density of 55 x 2.54 cm each in the blue and blue jet room, and heat-set at 190 for 1 minute .
  • the heat-set woven fabric was coated with a solvent-free methylvinylsilicone resin solution having a viscosity of 15 Pas (15,000 cP) by a floating knife coater using a damper knife.
  • Table 1 shows the characteristics of the airbag fabric thus obtained.
  • This airbag base fabric was excellent in air barrier properties, compactness in bag storage, flame retardancy, and excellent resin adhesion.
  • Example 4 The same solvent-free methylvinylsilicone resin solution as used in Example 4 was applied to the woven fabric after heat setting obtained in Example 4 by a floating knife using a damping blade knife. maintaining the contact pressure plate knife 0. 6 NZcm, adjust the base fabric tension to 2 6 2 0 NZm, after the amount of the resin adhered is one row co one coating to be 30 g Zm 2, 1 9 0 For 2 minutes to obtain a coated airbag base fabric. Table 1 shows the characteristics of the airbag fabric thus obtained. This airbag base fabric had no problems with air barrier properties, bag storage compactness, and flame retardancy, but had poor resin adhesion.
  • Aspect ratio of single yarn section is 1.0 (round section), total fineness is 47 filaments at 470 dte X, strength is 8.4 cN / dtex, and elongation is 22%.
  • a filament yarn of nylon 6.6 fibers a flat-textile woven fabric was obtained in a water jet room so that the weaving density of the warp and weft yarns was both 54 and 2.54 cm. The fabric was then immersed in a warm water bath for 3 minutes at 80 containing 0.5 g Zl of sodium alkylbenzene sulfonate and 0.5 g / l of soda ash, dried at 130 for 2 minutes, Heat set at 90 for 1 minute.
  • the residual oil content of the woven fabric after heat setting was 0.04% by weight.
  • the woven fabric was coated with a resin having an amount of resin of 15 gZm by a floating knife coater using a weir board knife. after the coating was at 2, to obtain a coated air bag base fabric for 2 minutes vulcanized with 1 9 0.
  • the residual oil content of the base fabric was 0.04% by weight.
  • Table 1 shows the characteristics of the airbag fabric thus obtained.
  • This airbag base fabric was excellent in air barrier properties, bag storage compactness, flame retardancy, and also excellent in adhesiveness to resin.
  • Aspect ratio of single yarn section is 1.0 (round section), total fineness is 47 filaments at 470 dte X, strength is 8.4 cN / dtex, and elongation is 22%.
  • the warp and weft yarns were adjusted to have a weaving density of 54 2.54 cm in the War Yuji Jet Room to obtain a flat-woven fabric.
  • the fabric was then heat set at 160 for 1 minute.
  • the residual oil content of the woven fabric after heat setting was 0.08% by weight.
  • the woven fabric was applied with a floating knife coater using a weir board knife to obtain a resin adhesion amount of 23 g. / m 2 , and then vulcanized at 190 for 2 minutes to obtain a coated airbag base fabric.
  • the residual oil content of the base fabric was 0.08% by weight.
  • Table 1 shows the characteristics of the airbag fabric thus obtained.
  • This airbag base fabric was excellent in air barrier properties, compactness in bag storage and flame retardancy, and was also excellent in mechanical properties and adhesiveness to resin. Comparative Example 8
  • Aspect ratio of single yarn section is 1.0 (round section), total fineness is 470 dte X, 72 filaments, strength of 8.4 cN / dte, elongation 22%, non-twist Adjust the warp weave density to 58 / 2.54 cm and the weft weave density to 56 / 2.54 cm in the War Yuji Jetroom using nylon 6.6 filament yarn. Then, a flat fabric was obtained. Next, the woven fabric was immersed in a warm water bath for 3 minutes at 80 containing 0.5 g / 1 of sodium alkylbenzenesulfonate and 0.5 g / 1 of soda ash, and dried at 130 ⁇ for 2 minutes. Then, heat set at 190 at 1 minute.
  • the residual oil content of the woven fabric after heat setting was 0.04% by weight.
  • the woven fabric was treated with a solvent-free methylvinylsilicone resin solution having a viscosity of 12 Pa ⁇ s (12,000 cP) using a floating knife coater with a weir board knife to reduce the resin adhesion amount to 2.
  • vulcanization was performed at 190 t: for 2 minutes to obtain a coated airbag base fabric.
  • the residual oil content of the base fabric was 0.04% by weight.
  • Table 1 shows the characteristics of the airbag base fabric thus obtained.
  • This airbag fabric had no problems with air barrier properties, mechanical properties, and flame retardancy, but had poor adhesion to resin, and was thick and had a high degree of softness. The cut properties were poor.
  • Aspect ratio of single yarn cross section is 3.0 (flat cross section), total fineness is 96 filaments at 350 dtex, strength is 8.4 cN / dtex, elongation is 22%
  • the weaving density of both the warp and the weft was adjusted to 63.54 cm in the air jet room to obtain a flat-woven fabric.
  • the fabric was then immersed in a warm water bath for 3 minutes at 80 containing 0.5 g / l of sodium alkylbenzenesulfonate and 0.5 g of soda ash, and dried for 2 minutes at 130. Then heat set at 190 for 1 minute.
  • the residual oil content of the woven fabric after heat setting was 0.05% by weight.
  • the woven fabric was mixed with a toluene-diluted methylvinylsilicone resin solution (resin solid content: 80%) having a viscosity of 8 Pa-s (8, OOO cP), and a floating knife using a damper knife.
  • a toluene-diluted methylvinylsilicone resin solution resin solid content: 80%
  • a floating knife using a damper knife.
  • Ri after the amount of the resin adhered was Koti ring such that 1 0 GZm 2, and dried for 1 minute at 1 3 0 performs 2 0 0 2 min vulcanization treatment to obtain a coated air bag base fabric .
  • the residual oil content of the base fabric was 0.05% by weight.
  • Table 1 shows the characteristics of the airbag fabric thus obtained.
  • This airbag base fabric was excellent in air barrier properties, bag storage compactness, flame retardancy, and also excellent in adhesiveness to resin.
  • Non-twisted nylon 6 with an aspect ratio of 3.0 (flat cross section) in single yarn cross section, a total fineness of 350 dtex and 96 filaments, a strength of 8.4 cN / dtex and an elongation of 22%.
  • the weaving density of both the warp and the weft was adjusted to 57 2.54 cm in the air jet room to obtain a flat-woven fabric.
  • the residual oil content of the fabric was 0.17% by weight.
  • the woven fabric was washed with a methyl vinyl silicone resin solution (resin solid content: 80%) diluted with toluene having a viscosity of 8 Pa's (8,000 cP), and a floating knife using a damping knife.
  • the amount of resin adhered was coated so that 4 g / m 2, and dried for 1 minute at 1 30, for 2 minutes vulcanized at 20 0, coating E. Abba Ggumoto Got the cloth.
  • the residual oil content of the base fabric was 0.17% by weight.
  • Table 1 shows the characteristics of the airbag base fabric thus obtained.
  • This airbag base fabric had no problem with the compactness of the bag storage, but was inferior in air barrier properties, adhesiveness to resin, and flame retardancy.
  • the present invention it is possible to provide a coated airbag base fabric, an airbag, and a method for producing the same, which simultaneously have air blocking properties, heat resistance, and storage compactness, and have excellent adhesion of a resin film. Therefore, the occupant protection system using airbags can be promoted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Air Bags (AREA)
  • Woven Fabrics (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

 本発明は、空気遮断性、耐熱性、収納コンパクト性を同時に兼ね備え、かつ樹脂被膜の接着性に優れたコーティングエアバッグ基布およびそれからなるエアバッグ、さらにはそのコーティングエアバッグ基布の製造方法に関するものである。繊維布帛からなるエアバッグ用基布において、該布帛の少なくとも片面が樹脂で被覆されており、かつ該布帛を構成する少なくとも一部の単糸が該樹脂で包囲されており、かつ該布帛を構成する少なくとも一部の単糸が該樹脂で包囲されていないことを特徴とするコーティングエアバッグ基布である。かかるコーティングエアバッグ基布を用いることを特徴とするエアバッグである。繊維布帛に対して、粘度が5~20Pa・s(5,000~20,000cP)の範囲内にある樹脂液を用い、鋭角刃のコーティングナイフを用いたナイフコーターにより、コーティングナイフと該布帛との接圧を1~15N/cmの範囲内でコーティングすることを特徴とするコーティングエアバッグ基布の製造方法である。

Description

明 細 書 コーティングエアバッグ基布およびエアバッグ 技術分野
本発明は、 空気遮断性、 耐熱性、 収納コンパクト性を同時に兼ね備え、 かつ樹 脂被膜の接着性に優れたコーティングエアバッグ基布およびそれからなるエアバ ッグに関する。 背景技術
近年、 各種交通機関、 特に自動車の事故が発生した際に、 乗員の安全を確保す るために、 種々のエアバッグが開発され、 その有効性が認識され、 急速に実用化 が進んでいる。 エアバッグが使用される環境は限定されるものではなく、 高温ま たは低温などの厳しい環境においても機械的性能が安定したエアバッグが求めら れている。
従来、 エアバッグには 3 3 4 - 1 , 1 1 2デシテックスのナイロン 6 · 6また はナイロン 6フィラメント糸を用いた平織物に、 耐熱性、 難燃性、 空気遮断性な どの向上のため、 クロ口プレン、 クロルスルホン化ォレフイン、 シリコーンなど の合成ゴムなどのエラストマ一樹脂を塗布、 積層した基布を裁断し、 袋体に縫製 して作られていた。
フィラメント布帛に、 たとえば、 クロ口プレンエラストマ一樹脂を塗布して基 布とする場合、 耐熱性および難燃性の点から布帛に 9 0 ~ 1 2 0 g Zm 2塗布する ことが必要であつたが、 厚みが厚くなり、 収納性の面においてもパッケージポリ ユームが大きくなる問題があった。 クロ口プレンエラストマ一樹脂に比べ、 より 耐熱性、 耐寒性の優れたシリコーンエラス卜マー樹脂の場合では、 塗布量が 4 0 ~ 6 0 g /m 2で軽量化しつつ、 収納性コンパク卜性の面でもかなり向上したがま だ不十分であり、 またバッグをパッケージに折り畳んで収納する際に折り畳みに くいという問題があった。
そこで、 近年、 このような問題点を解消するために樹脂塗布量を減少させた薄 引きシリコーンコート基布が検討されており、 例えば、 エラストマ一樹脂が織物 を構成する織糸部 1 . 0に対して、 織物目合い部に 3 . 0以上の膜厚比で偏在し ていることを特徴とするエアバッグが提案されている (例えば、 日本国特許第 2 8 5 3 9 3 6号公報参照) 。 しかし、 収納コンパク卜性については改善させてい るものの、 樹脂被膜と織物の接着性の面については十分とは言えないのが実状で ある。 また、 フィラメント織物にシリコーン樹脂の水系ェマルジヨン液を含浸し て、 該シリコーン樹脂を、 0 . l gZm 2から 1 O gZm 2の範囲に付着させること を特徴とするエアバッグ用織物の製造方法が提案されている (例えば、 日本国特 許第 3 2 0 6 7 5 8号公報参照) 。 しかし、 樹脂被膜と織物の接着性の面につい ては、 ある程度改善されているものの、 空気遮断性や収納コンパクト性の面では 十分といえないのが実状である。 発明の開示
本発明は、 かかる従来のエアバッグの欠点に鑑み、 空気遮断性、 耐熱性、 収納 コンパクト性を同時に兼ね備え、 かつ樹脂被膜の接着性に優れたコーティングェ アバッグ基布およびそれからなるエアバッグ、 さらにはそのコ一ティングェアバ ッグ基布の製造方法を提供せんとするものである。
本発明は、 かかる課題を解決するために、 次のような手段を採用する。
すなわち、 本発明のコーティングエアバッグ基布は、 繊維布帛の少なくとも片 面が樹脂で被覆されており、 かつ該布帛を構成する少なくとも一部の単糸が該樹 脂で包囲されており、 かつ該布帛を構成する少なくとも一部の単糸が該樹脂で包 囲されていないことを特徴とする。
また、 本発明のエアバッグは、 かかるコーティングエアバッグ基布を用いるこ とを特徴とする。
また、 本発明のコーティングエアバッグ基布の製造方法は、 繊維布帛に、 粘度 が 5〜2 0 P a ' s ( 5, 0 0 0〜2 0 , 0 0 0 c P ) の範囲内にある樹脂液を、 鋭角刃のコ一ティングナイフを用いたナイフコ一夕一により、 コーティングナイ フと該布帛との接圧を 1〜 1 5 c mの範囲内でコーティングすることを特徴と するものである。' 図面の簡単な説明
第 1図は本発明のコ一ティングエアバッグ基布の断面模式図である。
第 2図は従来のコーティングエアバッグ基布の断面模式図である。
第 3図は従来の含浸法によって得られるエアバッグ基布の断面模式図である。 第 4図は浸透率の測定方法を示す説明図である。
第 5図は収納性試験のエアバッグの折り畳み方法を示す説明図である。
第 6図は走査型電子顕微鏡で撮影する布帛断面箇所を示す説明図である。
第 7図は樹脂の塗布方法を示す説明図である。
符号 1は布帛を構成する単糸 (繊維) 、 符号 2は樹脂、 符号 3は樹脂が布帛を 構成するフィラメ.ン卜糸の表面から内部に浸透している距離、 符号 4は布帛を構 成するマルチフィラメントの高さ、 符号 5 , 6はエアバッグの折り畳み方向、 符 号 7はコーティングナイフ挿入前の基布水平方向、 符号 8は布帛に対するコーテ イングナイフの相対位置、 符号 9は布帛、 符号 1 0はコーティングナイフである < 発明を実施するための最良の形態
本発明における繊維布帛としては、 ナイロン 6 · 6、 ナイロン 6、 ナイロン 1 2、 ナイロン 4 · 6、 ナイロン 6とナイロン 6 · 6の共重合、 ナイロン 6にポリ アルキレングリコール、 ジカルボン酸ゃァミンなどを共重合したポリアミ ド繊維, ポリエチレンテレフ夕レート、 ポリブチレンテレフ夕レートなどのホモポリエス テル繊維、 ポリエステルの繰り返し単位を構成する酸成分にイソフタル酸、 5— ナトリゥムスルホイソフタル酸またはアジピン酸などの脂肪族ジカルボン酸など を共重合したポリエステル繊維、 パラフエ二レンテレフタルアミ ドおよび芳香族 エーテルとの共重合に代表されるァラミ ド繊維、 レーヨン繊維、 ポリサルフォン 系繊維、 超高分子量ポリエチレン繊維および上記合成繊維を主体とする海島構造 を有する高分子配列体繊維から構成される合成繊維織物が用いられる。 これらの 中でもポリアミド繊維、 ポリエチレンテレフタレート繊維が好ましく、 さらには ナイロン 6 · 6、 ナイロン 6が耐衝撃性の面から好ましい。 かかる繊維には、 原 糸の製造工程や加工工程での生産性あるいは特性改善のために通常使用されてい る各種添加剤を含んでもよい。 たとえば熱安定剤、 酸化防止剤、 光安定剤、 平滑 剤、 帯電防止剤、 可塑剤、 増粘剤、 顔料、 難燃剤などを含有せしめることができ る。
本発明におけるコーティ ングエアバッグ基布は、 繊維布帛の少なくとも片面が 樹脂で被覆されていることが必要である。 少なくとも片面を樹脂で被覆させるこ とで、 空気遮断性を持たせ、 さらにはインフレ一夕一から発生する高温の窒素ガ スから該布帛を守ることができる。 本発明に用いる樹脂は特定する必要はないが、 中でも耐熱性、 耐寒性、 難燃性を有する樹脂が好ましく使用される。 かかる樹脂 としては、 例えば、 シリコーン樹脂、 ポリアミ ド系樹脂、 ポリウレタン樹脂、 フ ッ素樹脂などがあげられる。 中でもシリコーン樹脂が耐熱性や耐寒性、 空気遮断 性に優れているので特に好ましい.。 かかるシリコーン樹脂については、 ジメチル 系シリコーン樹脂、 メチルビニル系シリコーン樹脂、 メチルフエ二ル系シリコ一 ン樹脂、 フロロ系シリコーン樹脂が用いられる。 また、 該樹脂は、 難燃化合物を 含有しているものが好ましい。 かかる難燃化合物としては、 臭素、 塩素などを含 むハロゲン化合物、 特に、 ハロゲン化シクロアルカン、 白金化合物、 酸化アンチ モン、 酸化銅、 酸化チタン、 燐化合物、 チォ尿素系化合物、 カーボン、 セリウム、 酸化ケィ素などを使用することができ、 これらの中でも八ロゲン化合物、 白金化- 合物、 酸化銅、 酸化チタン、 カーボンが、 シリコーン樹脂のもつ耐熱性などの特 性を阻害せずに難燃性を向上させることができるので、 より好ましい。 また、 か かるシリコーン樹脂は、 溶剤系、 水系、 水分散系樹脂のいずれをも適宜使用する ことができるが、 中でも溶剤を使用しない無溶剤系シリコーン樹脂が使用時の環 境への影響および防爆設備を使用しない簡便な設備面からも好ましい。
本発明におけるコーティ ングエアバッグ基布は、 繊維布帛を構成する少なく と も一部の単糸が樹脂で包囲され、 かつ該織物を構成する少なく とも一部の単糸が 樹脂で包囲されていないことが重要である (第 1図参照) 。. ここでいう単糸とは、 例えば繊維布帛がマルチフィ ラメント糸で構成されている場合、 そのマルチフィ ラメントを構成する単糸 1本を意味する。 該布帛を構成する単糸のうち少なく と も一部の単糸が樹脂で包囲されていることで、 該布帛と樹脂被膜との接着性が向 上し、 また該布帛を構成する単糸のうち少なくとも一部の単糸が樹脂で包囲され ていないことで、 該布帛の柔軟性を保持させたコ一ティングエアバッグ基布を得 ることができる。
従来のコーティング方法で得られるコ一ティングエアバッグ基布の場合、 第 2 図のように布帛表面に樹脂 2の被膜があるために、 該布帛を構成する単糸 1を樹 脂 2が包囲することはなかった。 その結果、 空気遮断性は良好なものの、 該布帛 と該樹脂被膜との接着性の面で劣ってしまう。 また、 従来の含浸法で得られるェ ァバッグ基布の場合、 第 3図のように樹脂 2が布帛中に分布、 つまり、 ほぼ全て の単糸が樹脂 2によって包囲されるが、 布帛交絡部 (経糸と緯糸との交点) には 樹脂膜が形成されにくい。 その結果、 布帛交絡部より空気が漏れるやすくなるこ とから空気遮断性の面で劣ってしまい、 またほぼ全ての単糸が樹脂で包囲されて いるために布帛の柔軟性を損なってしまう。 それに対して、 本発明は従来のコー ティング法および含浸法によって得られる基布の欠点を補うように、 樹脂の布帛 中での配置を第 1図のように、 基本的には布帛表面に樹脂 2の被膜を形成させる ことで空気遮断性をもたせ、 かつ布帛を構成する単糸 1のうち少なくとも一部の 単糸を樹脂 2で包囲させることで樹脂被膜と布帛の接着性を向上させ、 残りの単 糸は樹脂で包囲されていないことでエアバッグ基布の柔軟性を損なわせないので ある。
上述の樹脂で包囲されている単糸の割合は、 全単糸に対して 3〜 2 0 %の範囲 内にあることが、 布帛と樹脂との接着性および基布の柔軟性を両立させる点で好 ましく、 さらに好ましくは 5〜 1 5 %であることがよい。 この割合が 3 %未満で あると、 基布の柔軟性の面ではよいが、 布帛と樹脂との接着性が劣る。 また、 こ の割合が 2 0 %より大きいと、 布帛と樹脂との接着性の面ではよいが、 エアバッ グ基布の柔軟性が損なわれる。
また、 該樹脂は、 布帛の厚さの 1 0〜 7 0 %の範囲内で浸透していることが布 帛と樹脂との接着性とエアバッグ基布の柔軟性を両立させる面で好ましく、 さら に好ましくは 1 5〜 5 0 %の範囲内であることがよい。 ここで、 布帛の厚さに対 して浸透している割合は、 樹脂が布帛を構成するマルチフィラメン卜の内部に浸 透し'ている割合をさすものとする。 すなわち、 布帛を構成するマルチフィラメン 卜の断面において、 表面から内部に浸透している距離 3をマルチフィラメントの 高さ 4で割った値をいう (第 4図参照) 。 表面は、 樹脂で包囲されている。 樹脂 が表面から内部に浸透している距離は、 一番内部に浸透している部分までの距離 をいう。
上述の浸透率が 1 0 %未満であると、 エアバッグ基布としての柔軟性の面では よいが、 布帛と樹脂との接着性が劣る。 また、 7 0 %より大きいと、 布帛と樹脂 との接着性の面ではよいが、 エアバッグ基布としての柔軟性が損なわれる。
また、 樹脂の付着量は 5〜 3 0 g Zm 2の範囲内にあることが、 基布の厚さ、 重 量、 空気遮断性や収納コンパクト性の面で好ましく、 さらに好ましくは 5〜 2 0 g Zm2の範囲内にあることが収納コンパクト性の面でよい。 樹脂の付着量が 5 g Zm2未満であると、 布帛表面を樹脂膜で完全に覆うことが困難となり、 空気漏れ が起こりやすい。 また、 3 0 g Zm 2より多いと空気遮断性の面では好ましいが、 布帛表面の樹脂膜が厚くなつたり、 布帛中の樹脂量が増えてェ 7バッグ基布の柔 軟性が損なわれるため、 収納コンパクト性の面で好ましくない。
本発明におけるエアバッグ基布を構成する合成繊維織物に用いられる織糸の繊 度は、 好ましくは 9 0〜 6 0 0デシテックスの範囲内、 さらに好ましくは 1 5 0 〜4 7 0デシテックスの範囲内にあるものが、 機械的強度と厚み、 重量のバラン スから好ましい。 すなわち 9 0デシテックス未満では厚み、 重量の観点からは好 ましいが機械的強度が不足し、 6 0 0デシテックスを超えると厚み、 重量が大き くなり収納性の面で劣る。 また、 かかる織糸を構成する繊維の単繊維繊度は、 好 ましくは 1〜 6 . 5デシテックスの範囲内、 さらに好ましくは 2〜4 . 5デシテ ックスの範囲内にあることが収納性、 樹脂との接着性の点から良い。 1デシテツ クス未満では糸の生産性が悪化しやすくなるという問題があり、 6 . 5デシテツ クスを超えると織物が厚くなり、 エアバッグ用基布を折り畳むときに基布反発も 強く、 収納性の面で劣る。 また、 単糸繊度が上述の範囲内であると、 樹脂をコ一 ティングした際に単糸間に樹脂が浸透しやすく、 樹脂が単糸を包囲しやすくなる。 また、 用いる糸はその単糸断面形状が丸に限らず扁平であってもよい。 断面の 長軸と短軸との比、 即ちアスペクト比が 1 . 5〜 6の範囲内の扁平断面である糸 を用いると基布の厚みを薄くすることができ収納性が向上する。 扁平断面糸は通 常は楕円形であるが、 1 . 5〜 6の範囲のアスペクト比を満足するならば楕円形 以外の形状であってもよい。 たとえば、 長方形、 菱形、 繭型のような左右対称型 は勿論、 左右非対称型でもよく、 あるいは、 それらの組み合わせ型でもよく、 更 に上記を基本型として突起や凹み、 あるいは部分的に中空部があってもよい。 特 に単糸断面を楕円形にすることが、 布帛の表面が平滑化し、 かつ、 布帛を構成す る糸間に生じる空隙を小さくすることができ、 その空隙を埋めて塗工するには少 ない樹脂量で良いので、 低塗工量化ができ、 収納性やコストの面で好ましい。 また、 用いる糸は無撚り糸であると布帛と樹脂の接着性の面で好ましい。 糸に 撚りがかかっていると、 マルチフィラメントが集束するため、 樹脂をコ一ティン グした際に単糸間に樹脂が浸透しにくくなり、 その結果樹脂が単糸を包囲しにく くなるので、 布帛と樹脂の接着性の面で好ましくない。 また、 撚りがかかってい ると、 織物表面の凹凸が増し、 樹脂で織物表面の凹凸を埋めるためにはより多く の樹脂量を必要とし、 基布重量が大きくなり収納性が悪化するばかりか、 樹脂量 が多くなるためコストがかかる。
また、 布帛の構造としては、 平織、 綾織、 朱子織およびこれらの変化織、 多軸 織などの織物、 不織布、 スパンポンドが使用されるが、 これらの中でも、 特に、 機械的特性に優れ、 織物コスト及びエアバッグの等方展開性の面から平織物が好 ましい。 かかる織物としては、 対称組織である必然性はなく、 非対称組織であつ てもよい。 ここでいう非対称組織としては、 例えば、 平組織織物でタテ糸とョコ 糸の糸本数が異なるもの、 夕テ、 ョコの一方の糸種が異なるもの、 タテ、 ョコの 一方がリップストップゃ空羽組織になっているもの等の組織が異なるもの等を使 用することができる。
本発明の基布を構成する織物を製織する織機は、 工業用織物を製織するのに用 いられる各種織機から適宜選定すればよく、 例えば、 シャトル織機、 ウォー夕一 ジェット織機 (W J L ) 、 エアージェット織機 (A J L ) 、 レビア織機などから 選べばよい。 そのなかでもエアバッグの難燃性に影響する懸念のある基布の残留 油剤を小さくすることや生産性の点で、 ウォー夕一ジェット織機 (W J L ) が好 ましく用いられる。
本発明のコーティングエアバッグ基布は、 残留油分量が 0 . 1重量%以下であ ることが難燃性面で好ましい。 なお、 残留油分量は樹脂で被覆された基布につい て、 次の方法で測定したものである。
織物あるいは基布試料約 1 0 gを採取し、 1 0 5での熱風乾燥機内に 1時間 3 0分放置した後の質量 (S) を電子天秤を用いて測定し、 三角フラスコに入れる 次にメスシリンダーを用いて量り採った n—へキサン 1 2 0m lを三角フラスコ に注入、 振とう機にて 1 0分間攪拌し、 油剤成分を抽出する。 抽出後の溶液から 基布試料を除き、 メスシリンダーを用いて抽出液 1 00m 1 を量り採り、 重量既 知 (W0) の丸型フラスコに入れる。 次にソックスレ一抽出液を用いてフラスコ 内容物から n—へキサンを回収除去した後、 丸形フラスコを 5mmHg、 2 5 の真空乾燥機内で 1時間乾燥する。 その後、 デシケ一夕一に移し 1 5分間放冷し た後、 丸型フラスコ重量 (W1) を測定し、 下記式から基布中の油分量を算出す る。
(W 1 -W 0 )
油分量 (%) = 1 00
S X 1 00/ 1 20 また、 基布の残留油分量を 0. 1重量%以下にするためには、 樹脂を被覆する 前の合成繊維織物の残留油分量が 0. 1重量%以下であることが好ましい。 織物 の残留油分量を 0. 1重量%以下にすることで、 基布の残留油分量を少なくする ことができ、 難燃性の面からも好ましい。
本発明におけるコーティングエアバッグ基布の中央部の厚み T 1と塗工端部の 厚み T 2の関係は、 好ましくは 0. 9≤T 1ZT 2であり、 より好ましくは 0. 9 5≤Τ 1/Τ 2であるとよい。 丁 1 丁 2が0. 9より小さくなると裁断縫製 後のバッグにおいても厚みのばらつきが大きくなり、 そのことからバッグを展開 させたときに等方的に展開せず、 乗員をより速く受け止める高速展開性能が劣る, また、 展開時の高温ガスがバッグに不均一にあたるため、 バッグが熱による損傷 を大きく受ける場合があり良くない。
本発明のコーティングエアバッグ基布は、 その基布の基布幅 Wと樹脂が塗工さ れた塗工幅 Cの関係が 0. 9 5 CZW 0. 99であることが好ましい。 0. 9 5よりも小さいと、 バッグ裁断時のロスが大きく、 コス トパフォーマンスの面 で劣る。 0. 99よりも大きくなると樹脂塗工後の熱セットで基布の両端を把持 する部分が樹脂塗工部となり、 皺の原因になり品位面で劣る。
本発明のコーティングエアバッグ基布の通気度は J I S L 1 0 9 6 A法に規 定される方法 (流体 (空気) 圧 1 2 5 P a) で測定し、 0. 0 1 c c / cm2/ s e c以下であることが好ましい。 また、 流体 (空気) を 1 9. 6 k P aの圧力に 調整して流したときに通過する空気流量を測定した通気度が 1 c c / c m2/ s e c以下であることが好ましい。 かかる通気度に調整することにより、 各種部位の エアバッグ設計範囲が広くなり、 インフレ一タブルカ一テン、 ニーエアバッグ、 スマートバッグ等の極めて低い通気度を要求される用途にも好ましく使用するこ とができる。
また、 本発明のコーティングエアバッグ基布の目付は、 3 0 0 g/m2以下であ ることが軽量化の面で好ましく、 より好ましくは 2 5 0 gZm2以下である。 厚さ については 0. 3 5 mm以下、 さらには 0. 3 3 mm以下であることが収納コン パクト性の面から好ましく、 剛軟度については、 夕テ糸方向およびョコ糸方向と もに 1 0 0 mm以下であることが収納コンパクト性の面で好ましい。 また、 エア バッグ基布の引張強力が、 3 0 0 NZ cm以上、 破断伸度が 1 5 %以上、 引裂強 力が 1 0 0 N以上であることがエアバッグとして利用する際の、 エアバッグの収 納性および破裂防止の点から好ましい。
また、 本発明のコ一ティングエアバッグ基布はエアバッグが展開した時にかか る高温ガスが基布に与える熱的損傷などを想定して、 FMV S S 3 0 2に基づい て測定した難燃性が 1 0 OmmZm i n未満であることが好ましい。 8 0 mm/ m i n未満であればさらに好ましい。
また、 本発明のコーティングエアバッグ基布は、 運転席用エアバッグ、 助手席 用エアバッグ、 後部座席用エアバッグ、 サイ ド用エアバッグ、 インフレ一夕ブル カーテン用エアバッグ、 二一用エアバッグなどに使用することができ、 追突保護 用のヘッドバッグ、 幼児保護用ミニバッグ、 脚部保護用バッグ、 シートベルト用 バッグなど機能的に適用し得る部位にも適用することもでき、 形状、 容量などは 要望される要件を満足するようにすればよい。
また、 本発明のコーティングエアバッグ基布は、 繊維布帛に、 粘度が 5〜 2 0 P a . s ( 5 , 0 0 0〜 2 0, O O O c P) の範囲内にある樹脂液を、 鋭角刃の コ一ティングナイフを用いたナイフコー夕—により、 コ一ティングナイフと該布 帛との接圧を 1〜 1 5 N/cmの範囲内でコーティ ングすることで製造すること ができる。
樹脂液の粘度については J I S Z 88 0 3に基づき B型粘度計で測定したと きの粘度をいう。 この粘度が、 5 P a ' s ( 5, 0 0 0 c P) 未満であると粘度 が低すぎて、 ナイフコーティ ングには適さず、 基布内部に樹脂が浸透し低通気性 に劣るばかりか、 低通気性を達成するためには塗工量が多くなり、 収納性の面で 良くない。 また逆に 2 0 P a ' s (20, O O O c P) より大きいと、 粘度が高 すぎて、 樹脂の塗工量を少なくする (薄く均一に塗工する) ことが困難となり、 収納性の面で良くないし、 コストもかかるだけでなく、 布帛を構成する単糸間に 樹脂液が浸透しにく くなり樹脂が単糸を十分に包囲することができなくなる。
コーティ ング方法としては樹脂の低塗工量化および布帛への樹脂浸透性を考え、 ナイフコーティング法を用いる。 ナイフコーティ ング法にはナイフオーバ一口一 ル法、 ナイフオーバーベルト法、 フローティ ングナイフ法があるが、 樹脂の低塗 ェ量化および布帛への樹脂浸透性の面からフローティ ングナイフ法が好ましく用 いられる。
また、 コーティ ングに用いるコーティングナイフについては、 低塗工量化する ために鋭角刃のコーティングナイフを用いる。 コーティングナイフの形状につい ては円弧ナイフやせき板ナイフなどが用いられるが、 樹脂の低塗工量化および布 帛への樹脂浸透性を考えると、 せき板ナイフが好ましい。
また、 樹脂を布帛中にある程度浸透させ、 布帛を構成する単糸を樹脂が包囲す るようにするには、 コーティ ングナイフの布帛への接圧が重要なボイントとなり, その接圧は.1〜 1 5 N/c mの範囲内に調整する必要がある。 該接圧が 1 N/ c m未満であると接圧が低すぎて布帛への樹脂浸透がされにく くなり、 布帛を構成 する単糸を樹脂が十分に包囲できなくなる。 また、 樹脂量が多く塗工され基布重 量が大きく、 収納コンパク ト性に劣るものとなりやすい。 逆に、 該接圧が 1 5 N /cmより大きくなると、 布帛の工程通過性に問題が生じる、 すなわち、 布帛を 構成するマルチフィ ラメン卜がナイフで削られて単糸切れをおこす、 原因となり、 品位が劣るばかりか、 布帛表面を樹脂膜で覆いにく くなり、 目標とする樹脂塗工 量が得られず、 空気遮断性の面でよくない。 該接圧を上述の範囲内にする方法と して、 例えばフローティングナイフ法の場合、 布帛に対するコーティングナイフ の侵入深さで調整し、 そのときの布帛に対するコーティングナイフの相対位置は
1〜 5 c mに調整することが上述の接圧条件を満たすうえで好ましい。 ここでい う相対位置 8とは、 コーティングナイフ挿入前の基布水平方向 7に対して、 基布 9に垂直下方向にコーティングナイフ 1 0を挿入した位置をいう。 (第 7図参 照)
また、 コーティングにおける基布張力を 5 0 0〜 3, O O O N Zmの範囲内で 塗工することが、 塗工時に一時的に織物の耳たぶりを改善し、 塗工幅を制御でき る点で好ましい。 基布張力が 5 0 0 N Zmより小さいと織物の耳たぶりが改善さ れず、 塗工幅を十分に確保することができない。 また、 3 , O O O N Zmより大 きいと織物の幅方向に均一な張力がかからない場合があるばかりか、 バッグ作製 時の収縮により寸法安定性が劣り良くない。
また、 塗工前の精練セット加工は、 基布の耳たぶりを軽減させ、 塗工をより円 滑に行うために実施されるが、 本発明においては、 基布張力を好ましくは 5 0 0 〜 1 , 5 0 0という高張力で樹脂を塗工するので、 耳たぶりを軽減しながら塗工 ができる。 したがって、 精練セット加工を施さず生機あるいは生機セットである 織物を用いることが、 コストダウンの面から好ましい。 実施例
次に実施例により、 本発明をさらに詳しく説明する。 なお、 実施例中における 各種評価は、 下記の方法に従って行なった。
基布を構成する全繊維に対する樹脂で包囲されている繊維の割合 (包囲率) : 織物の断面写真を走査型電子顕微鏡 (S E M ) によって下記条件で撮影し, マルチフィラメント 1本を構成する単糸のうち、 樹脂で包囲されている単糸 を数え、 下記式によって表す。
(樹脂で包囲されている単糸数) / (マルチフィラメント 1本を構成する 単糸数) X 1 0 0 ( % )
浸透率:布帛の断面写真を走査型電子顕微鏡 (S E M ) によって下記条件で撮影 し、 表面から布帛内部に浸透している距離とマルチフィラメントの高さを測 定し、 下記式によって表す。 '
(樹脂が表面から布帛内部に浸透している距離) / (マルチフィ ラメント の高さ) X 1 0 0 %
目付 (樹脂付着量) : J I S L 1 0 96 ( 8. 4. 2法) により求めた。
厚み: J I S L I 0 96 ( 8. 5法) により求めた。 なお、 基布の中央部の測 定値は基布を幅方向に 3分割し、 その 3分割された真ん中の基布における厚 み 5点を測定し、 その平均値より求めた。 また、 塗工端部の測定値は塗工さ れた端から基布の内側へ 1 c m間隔で 3点ずつで両端 6点の平均値より求め た。
残留油分:織物あるいは基布試料約 1 0 gを採取し、 1 0 5での熱風乾燥機内に 1時間 3 0分放置した後の質量 (S) を電子天秤で測定し、 三角フラスコに 入れた。 次にメスシリンダーを用いて量り採った n—へキサン 1 20m 1 を 三角フラスコに注入、 振とう機にて 1 0分間攪拌し、 油剤成分を抽出した。 抽出後の溶液から基布試料を除き、 メスシリンダ一を用いて抽出液 1 00m 1を量り採り、 重量既知 (W0) の丸型フラスコに入れた。 次にソックスレ 一抽出液を用いてフラスコ内容物から n—へキサンを回収除去した後、 丸形 フラスコを 5mmHg、 2 5 の真空乾燥機内で 1時間乾燥した。 その後、 デシケ一夕一に移し 1 5分間放冷した後、 丸型フラスコ重量 (W1) を測定 し、 下記式から基布中の油分量を算出した。
(W 1 -W0 )
油分量 (%) = ― X 1 00
S X 1 0 0/ 1 2 0 引張強力 : J I S L 1 0 96 (8. 1 2. 1 A法) に基づき、 織物幅は 3 c m、 引張つかみ間隔 1 5 c m、 引張速度 2 0 0 mm/m 1 nで引っ張った時の破 断強力を測定した。
破断伸度: J I S L 1 0 9 6 (8. 1 2. 1 A法) に基づき、 織物幅は 3 c m、 引張つかみ間隔 1 5 c m、 引張速度 2 0 0 mm/m i nで引っ張った時の破 断伸度を測定した。 引裂強力 : J I S L 109 6 (8. 1 5. 2A— 2法) に基づき、 引張速度 2
0 Omm/m i nで引っ張ったときの引裂強力を求めた。
剛軟度: J I S L 1 096 (8. 1 9. 1 A法) により求めた。
通気度: J I S L 1 096 (8. 2 7. 1 A法:流体 (空気) 圧 1 2 5 P a ) および流体 (空気) を 1 9. 6 k P aの圧力に調整して流し、 その時通過す る空気流量により求めた。
樹脂の接着性: J I S K 6 32 8 ( 5. 3. 8法) に準じ、 もみ回数 50 0回 としたときの樹脂膜の剥離の有無を調べた。
難燃性: FMVS S— 302により測定した。
粘度: J I S Z 8 8 03 ( 8 ) に基づき B型粘度計で恒温槽温度 2 5での条件 で測定した。
収納コンパクト性:エアバッグ基布から直径 72 5 mmの円状布 2枚を打ち抜き 法にて裁断し、 一方の円状布の中央に、 同一布からなる直径 20 Ommの円 状補強布を 3枚積層して、 直径 1 1 0 mm、 145mm, 1 7 5mm線上を 上下糸ともナイロン 6 · 6繊維の 1, 400 d t e xの縫糸で、 本縫いによ るミシン縫製し、 直径 9 Ommの孔を設け、 インフレ一夕取り付け口とした < さらに中心部よりバイアス方向に、 2 5 5 mmの位置に、 相反して、 同一布 からなる直径 7 5 mmの円状補強布を 1枚当て、 直径 50mm、 6 Ommの 線上を、 上下糸とも、 ナイロン 6 · 6繊維の 1, 400 d t e Xの縫糸で、 本縫いによるミシン縫製し、 直径 40 mmの孔を設けたベントホールを 2力 所設置した。
次いで、 この円状布の補強布側を外にし、 他方の円状布と経軸を 45度ず らして重ね合わせ、 直径 7 0 0 mm, 7 1 0 mmの円周上を上下糸とも、 ナ ィロン 6 · 6繊維の 1 , 40 0 d t e Xの縫糸で、 二重環縫いによるミシン 縫製した後、 袋体を裏返し、 6 0 L容量のエアバッグを作成した。
得られた 6 0 L容量のエアバッグを第 5図 ( 1 ) で示す AB軸および CD 軸の 2軸方向に平行に折り畳む。 まず、 第 5図 (2) のように B方向の基布 端から 27 Ommライン 5でまず A方向に向かって折り畳み、 次にその折り' 畳んだ基布端から 20 Ommライン 6で B方向に向かって折り畳み、 このよ うな方法によりさらに折り畳んだ基布端から 1 3 Ommラインで A方向に折 り畳む。 この折り畳んだ基布と対称になるように、 もう一方の A方向の基布 端から 2 70 mmラインで B方向に折り畳み、 次に 2 0 0mmで A方向に折 り畳み、 さらに 1 30 mmで B方向に折り畳む。 次に、 バッグが 1 50mm X 1 5 0 mmになるように C方向の基布端から 2 70 mmラインで D方向に 折り畳み、 次に 1 0 5 mmで C方向に折り畳み、 さらに 7 5 mmで C方向に 折り畳む。 同様に、 この折り畳んだ基布と対象になるように、 もう一方の D 方向の基布端から 2 7 0 mmラインで C方向に折り畳み、 次に 1 0 5 mmで D方向に折り畳み、 さらに 7 5 mmラインで D方向に折り畳む。 この折り畳 んだバッグに 1 0 Nの荷重をかけ、 そのときのバッグの厚さを測定した。 そ の後、 荷重を取り除いた後、 1分後のバッグの厚さを測定した。
走査型電子顕微鏡 (S EM) の撮影条件:
第 6図に示すような位置で切断した布帛の断面部を、 日立製 S— 3 500 •N形走査電子顕微鏡で、 倍率を 20 0倍、 解像度 640 X 480、 走査速度 8 0 / 1 00 sで撮影した。
カバーファクター :基布のタテ糸総繊度が (d t e x) 、 タテ糸織密度が N, (本 2. 54 c m) 、 ョコ糸総繊度が D (d t e x) 、 ョコ糸織密度が N2 (本 Z2. 54 cm) であるとき、 (DiX O. 9 ) 1/2 X Ni + (D2X 0. 9 ) 1/2 XN2の式により求めた。 なお、 実施例で使用した糸は、 下記製法により製糸されたものを用いた。
ェクストル一ダ型紡糸機を用い、 2 5ででの 9 8 %硫酸相対粘度 3. 7のナイ ロン 6 6チップを 29 5でで溶融紡糸した。 各紡糸機とも口金は扁平率、 形状お よび孔数のそれぞれ異なる口金を用い、 この口金を擁する紡糸パックから糸条を 紡出し、 直接紡糸延伸プロセスでエアバッグ原糸 47 0 d t e x、 3 5 0 d t e xおよび 2 3 5 d t e xの糸条を製糸した。 実施例 1
総繊度 47 0 d t e x、 7 2フィラメント、 強度 8. 4 c N/d t e x、 伸度 22 %、 アスペク ト比 1. 0、 無撚りのナイロン 6 · 6繊維の丸断面フィラメン ト糸を用い、 ウォー夕一ジェッ トルームにて、 夕テ糸張力を 70 c NZ本に設定 し、 経糸と緯糸の織密度がともに 46本 / 2. 54 c mになるように調整し、 平 組織の織物を得た。 次いでこの織物に、 粘度 1 2 P a · s ( 1 2, O O O c P) の無溶剤系メチルビ二ルシリコーン樹脂液を、 せき板ナイフを用いたフローティ ングナイフコーターにより、 該織物と該せき板ナイフの接圧を 9 NZc mに保ち、 樹脂付着量が 1 5 g m2になるようにコ一ティ ングを行った後、 1 9 0^で 2分 間加硫処理を行い、 コーティングエアバッグ基布を得た。
このようにして、 得られたエアバッグ基布の特性を第 1表に示した。 このエア バッグ基布は、 空気遮断性、 バッグ収納コンパク ト性、 難燃性に優れ、 かつ樹脂 の接着性についても優れていた。
比較例 1
織物とせき板ナイフの接圧を 0. 8 NZcmに保ち、 樹脂付着量が l S gZm 2になるようコーティ ングを行った以外は、 実施例 1と同様にして、 コーティング エアバッグ基布を得た。 '
このようにして、 得られたエアバッグ基布の特性を第 1表に示した。 このエア バッグ基布は、 空気遮断性、 バッグ収納コンパク ト性、 難燃性は問題なかったが、 樹脂の接着性面が劣つていた。
比較例 2
実施例 1で用いたナイロン 6. 6糸に 1 0 0 TZmの撚りを施し、 コンマコー ター (織物とコンマの接圧は ONノ cm) にて樹脂付着量が 1 5 gZm2になるよ うコーティングを行った以外は、 実施例 1と同様にして、 コーティングエアバッ グ基布を得た。
このようにして、 得られたエアバッグ基布の特性を第 1表に示した。 このエア バッグ基布は、 空気遮断性、 バッグ収納コンパク ト性、 難燃性は問題なかったが、 樹脂の接着性面が劣っていた。
実施例 2
総繊度 3 5 0 d t e x、 9 6フィ ラメント、 強度 8. 4 c N d t e x、 伸度 2 2 %、 アスペク ト比 3. 0、 無撚りのナイロン 6 · 6繊維の扁平断面フィ ラメ ント糸を用い、 ウォータージェッ トルームにて、 夕テ糸張力を 1 00 c N/本に 設定し、 経糸と緯糸の織密度がともに 59本 2. 54 c mになるように調整し、 平組織の織物を得た。 次いでこの織物に、 粘度 8 P a · s (8, O O.O c P) の トルエン希釈のメチルビニルシリコーン樹脂液 (樹脂固形分 80 %) を、 せき板 ナイフを用いたフローティ ングナイフコー夕一により、 該織物と該せき板ナイフ の接圧を 2 NZc mに保ち、 樹脂付着量が 20 g/m 2になるようにコ一ティング を行った後、 1 3 Ot:で 1分間乾燥し、 2 0 0でで 2分間加硫処理を行い、 コ一 ティ ングエアバッグ基布を得た。
このようにして、 得られたエアバッグ基布の特性を第 1表に示した。 このエア バッグ基布は、 空気遮断性、 バッグ収納コンパク ト性、 難燃性に優れ、 かつ樹脂 の接着性についても優れていた。
比較例 3
実施例 2で得られた平組織の織物に、 粘度 2 5 P a · s (2 5, O O O c P) のトルエン希釈のメチルビニルシリコーン樹脂液 (樹脂固形分 9 0 %) を、 コン マコー夕一 (織物とコンマの接圧は 0 N/cm) にて樹脂付着量が 3 5 gZm2に なるようコーティ ングを行った後、 1 30でで 1分間乾燥し、 2 00でで 2分間 加硫処理を行い、 コーティングエアバッグ基布を得た。
このようにして、 得られたエアバッグ基布の特性を第 1表に示した。 このエア バッグ基布は、 空気遮断性、 難燃性は問題なかったが、 バッグ収納コンパク ト性、 樹脂の接着性面が劣っていた。
比較例 4
織物とせき板ナイフの接圧を 1 7 NZc mに保ち、 樹脂付着量が 4 g/m2にな るようにコーティ ングを行った以外は、 実施例 2と同様にして、 コーティ ングェ ァバッグ基布を得た。
このようにして、 得られたエアバッグ基布の特性を第 1表に示した。 このエア バッグ基布は、 バッグ収納コンパク ト性は問題なかったが、 織物表面に連続樹脂 被膜が形成されなかったために空気遮断性の面で劣り、 また難燃性、 樹脂の接着 性面でも劣っていた。
実施例 3 総繊度 2 3 5 d t e x、 7 2フィ ラメント、 強度 8. 4 c NZd t e x、 伸度 24 %, アスペク ト比 1. 0、 無撚りのナイロン 6繊維の丸断面フィラメント糸 を用い、 エアージェッ トルームにて、 タテ糸張力を 90 c 本に設定し、 経糸 と緯糸の織密度がともに 7 6本 / 2. 54 c mになるように調整し、 平組織の織 物を得た。 次いでこの織物をアルキルベンゼンスルホン酸ソ一ダ 0. 5 gZ lお よびソーダ灰 0. 5 gZ 1 を含んだ 8 Ot温水浴中に 3分間浸潰した後、 1 3 0 でで 2分間乾燥させ、 次いで 1 8 0でで 1分間熱ヒートセッ トした。 次いでこの ヒートセッ トした後の織物に、 粘度 l O P a ' s ( 1 0, O O O c P) の水系ゥ レ夕ン樹脂液 (樹脂固形分 5 0 %) を、 せき板ナイフを用いたフローティングナ ィフコーターにより、 該織物と該せき板ナイフの接圧を 6 N/c mに保ち、 樹脂 付着量が 20 gZm2になるようにコ一ティ ングを行った後、 1 3 0でで 1分間乾 燥し、 コーティングエアバッグ基布を得た。
このようにして、 得られたエアバッグ基布の特性を第 1表に示した。 このエア バッグ基布は、 空気遮断性、 バッグ収納コンパク ト性、 難燃性に優れ、 かつ樹脂 の接着性についても優れていた。
比較例 5
実施例 3で得られたヒートセッ ト後の織物に、 粘度 2 3 P a · s (2 3, 0 0 O c P) の水系ウレタン樹脂液 (樹脂固形分 5 0 %) を、 せき板ナイフを用いた フローティ ングナイフコ一夕一により、 該織物と該せき板ナイフの接圧を 1 6 N cmに保ち、 樹脂付着量が 20 gZm2になるようにコーティングを行った後、 1 30でで 1分間乾燥し、 コ一ティングエアバッグ基布を得た。
このようにして、 得られたエアバッグ基布の特性を第 1表に示した。 このエア バッグ基布は、 空気遮断性、 バッグ収納コンパク ト性、 難燃性は問題なかったが、 樹脂の接着性面が劣っていた。
比較例 6
実施例 3で得られたヒートセッ ト後の織物を、 粘度 3 P a · s ( 3, 000 c P) の水系ウレタン樹脂液 (樹脂固形分 50 %) に浸潰し、 樹脂付着量が固形分 で 1 0 gZm2になるようにマングルにて絞った後、 1 3 0でで 2分間乾燥し、 ェ アバッグ基布を得た。 このようにして、 得られたエアバッグ基布の特性を第 1表に示した。 このエア バッグ基布は、 樹脂の接着性面については問題なかったが、 空気遮断性、 バッグ 収納コンパク ト性面が劣っていた。
実施例 4
単糸断面のアスペク ト比が 1. 0であるナイロン 6 6繊維であって、 総繊度が 47 0デシテックスで 72フィラメントの、 強度 8. 5 c N/デシテックス、 伸 度 2 1 %、 無撚りの糸を使用してゥォ一夕一ジエツ トルームでタテ糸とョコ糸の 密度がそれぞれ 5 5本 Z 2. 54 c mの平織物を製織し、 1 9 0でで 1分間ヒ一 トセッ トした。 該ヒートセッ ト後の織物を、 粘度が 1 5 P a ' s (1 5, 000 c P) の無溶剤系メチルビニルシリコーン樹脂液を、 せき板ナイフを用いたフロ 一ティングナイフコーターにて、 せき板ナイフと織物との接圧を 1 0 N / c m、 基布張力を 2 6 2 0 NZmに調整し、 樹脂付着量が 1 8 gZm2になるようにコ一 ティ ングを行った後、 1 90 で 2分間加硫処理を行い、 コーティングエアバッ グ基布を得た。
このようにして、 得られたエアバッグ基布の特性を第 1表に示した。 このエア バッグ基布は、 空気遮断性、 バッグ収納コンパク ト性、 難燃性に優れ、 樹脂の接 着性にも優れていた。
比較例 Ί
実施例 4で得られたヒ一トセッ ト後の織物に実施例 4で用いたのと同じ無溶剤 系メチルビ二ルシリコーン樹脂液を、 せき板ナイフを用いたフローティ ングナイ フコ一夕一により、 せき板ナイフの接圧を 0. 6 NZcmに保ち、 基布張力を 2 6 2 0 NZmに調整し、 樹脂付着量が 30 g Zm 2になるようにコ一ティングを行 つた後、 1 9 0でで 2分間加硫処理を行い、 コーティングエアバッグ基布を得た。 このようにして、 得られたエアバッグ基布の特性を第 1表に示した。 このエア バッグ基布は、 空気遮断性、 バッグ収納コンパク ト性、 難燃性は問題なかったが、 樹脂の接着性面が劣つていた。
実施例 5
単糸断面のアスペク ト比が 1. 0 (丸断面) であり、 総繊度が 47 0 d t e X で 7 2フィラメントである、 強度 8. 4 c N/d t e x、 伸度 2 2 %の無撚りの ナイロン 6 · 6繊維のフィラメント糸を用い、 ウォータージェッ トルームにて、 経糸と緯糸の織密度がともに 54本 2. 54 c mになるように調整した平組織 の織物を得た。 次いで該織物をアルキルベンゼンスルホン酸ソーダ 0. 5 gZl およびソ一ダ灰 0. 5 g/ 1を含んだ 80で温水浴中に 3分間浸漬した後、 1 3 0でで 2分間乾燥させ、 次いで 1 90でで 1分間ヒ一トセッ 卜した。 ヒートセッ ト後の織物の残留油分量は 0. 04重量%であった。 次いで該織物を粘度 1 2 P a - s ( 1 2, 0 00 c P) の無溶剤系メチルビニルシリコーン樹脂液を用い、 せき板ナイフを用いたフローティングナイフコーターにより、 樹脂付着量が 1 5 gZm2になるようにコーティングを行った後、 1 9 0でで 2分間加硫処理を行い コーティングエアバッグ基布を得た。 該基布の残留油分量は 0. 04重量%であ つた。
このようにして、 得られたエアバッグ基布の特性を第 1表に示した。 このエア バッグ基布は、 空気遮断性、 バッグ収納コンパク ト性、 難燃性に優れ、 かつ樹脂 との接着性についても優れていた。
実施例 6
単糸断面のアスペク ト比が 1. 0 (丸断面) であり、 総繊度が 47 0 d t e X で 7 2フィラメントである、 強度 8. 4 c N/d t e x、 伸度 2 2 %の無撚りの ナイロン 6 · 6繊維のフィラメント糸を用い、 ウォー夕一ジェッ トルームにて、 経糸と緯糸の織密度がともに 54本 2. 54 c mになるように調整し、 平組織 の織物を得た。 次いで該織物を 1 6 0でで 1分間ヒ一トセッ 卜した。 ヒートセッ ト後の織物の残留油分量は 0. 08重量%であった。 次いで該織物を粘度 1 2 P a - s ( 1 2, 0 00 c P) の無溶剤系メチルビニルシリコーン樹脂液を用い、 せき板ナイフを用いたフローティングナイフコーターにより、 樹脂付着量が 2 3 g/m 2になるようにコーティ ングを行った後、 1 90でで 2分間加硫処理を行い コーティングエアバッグ基布を得た。 該基布の残留油分量は 0. 08重量%であ つた。
このようにして、 得られたエアバッグ基布の特性を第 1表に示した。 このエア バッグ基布は、 空気遮断性、 バッグ収納コンパク ト性、 難燃性に優れ、 かつ機械 的特性や樹脂との接着性についても優れていた。 比較例 8
単糸断面のアスペク ト比が 1. 0 (丸断面) であり、 総繊度が 47 0 d t e X で 7 2フィ ラメントである、 強度 8. 4 c N/d t e , 伸度 22 %の無撚りの ナイロン 6 · 6繊維のフィラメント糸を用い、 ウォー夕一ジェッ トルームにて、 経糸の織密度が 5 8本 / 2. 54 cm、 緯糸の織密度が 56本 / 2. 54 cmに なるように調整し、 平組織の織物を得た。 次いで該織物をアルキルベンゼンスル ホン酸ソ一ダ 0. 5 g/ 1およびソーダ灰 0. 5 g/ 1 を含んだ 80で温水浴中 に 3分間浸潰した後、 1 30 ^で 2分間乾燥させ、 次いで 1 90でで 1分間ヒー トセッ トした。 ヒートセッ ト後の織物の残留油分量は 0. 04重量%であった。 次いで該織物を粘度 1 2 P a · s ( 1 2, 00 0 c P) の無溶剤系メチルビニル シリコーン樹脂液を用い、 せき板ナイフを用いたフローティングナイフコ一ター により、 樹脂付着量が 2 6 g/m2になるようにコーティ ングを行った後、 1 9 0 t:で 2分間加硫処理を行い、 コーティングエアバッグ基布を得た。 該基布の残留 油分量は 0. 04重量%であった。
このようにして得られたエアバッグ基布の特性を第 1表に示した。 このエアバ ッグ基布は空気遮断性、 機械的特性、 難燃性については問題なかったが、 樹脂と の接着性に劣っており、 かつ厚さが厚く剛軟度が大きいため、 バッグ収納コンパ ク ト性が劣っていた。
実施例 7
単糸断面のアスペク ト比が 3. 0 (扁平断面) であり、 総繊度が 3 5 0 d t e xで 9 6フィラメントである、 強度 8. 4 c N/d t e x、 伸度 2 2 %の無撚り のナイロン 6 · 6繊維のフィ ラメント糸を用い、 エア一ジェッ トルームにて、 経 糸と緯糸の織密度がともに 6 3本 2. 54 c mになるように調整し、 平組織の 織物を得た。 次いで該織物をアルキルベンゼンスルホン酸ソーダ 0. 5 g/ l お よびソーダ灰 0. 5 gZ 1 を含んだ 8 0で温水浴中に 3分間浸潰した後、 1 3 0 でで 2分間乾燥させ、 次いで 190でで 1分間ヒートセッ トした。 ヒートセッ ト 後の織物の残留油分量は 0. 05重量%であった。 次いで該織物を粘度 8 P a - s (8, O O O c P) のトルエン希釈のメチルビニルシリコーン樹脂液 (樹脂固 形分 8 0 %) を用い、 せき板ナイフを用いたフローティングナイフコ一夕一によ り、 樹脂付着量が 1 0 gZm2になるようにコーティ ングを行った後、 1 3 0 で 1分間乾燥し、 2 0 0 で 2分間加硫処理を行い、 コーティングエアバッグ基布 を得た。 該基布の残留油分量は 0. 0 5重量%であった。
このようにして、 得られたエアバッグ基布の特性を第 1表に示した。 このエア バッグ基布は、 空気遮断性、 バッグ収納コンパク ト性、 難燃性に優れ、 かつ樹脂 との接着性についても優れていた。
比較例 9 "
単糸断面のアスペク ト比が 3. 0 (扁平断面) であり、 総繊度が 350 d t e xで 96フィラメントである、 強度 8. 4 c N/d t e x、 伸度 2 2 %の無撚り のナイロン 6 · 6繊維のフィラメント糸を用い、 エア一ジェッ トルームにて、 経 糸と緯糸の織密度がともに 5 7本 2. 54 c mになるように調整し、 平組織の 織物を得た。 該織物の残留油分量は 0. 1 7重量%であった。 次いで該織物を粘 度 8 P a ' s (8, 0 0 0 c P) のトルエン希釈のメチルビニルシリコーン樹脂 液 (樹脂固形分 8 0 %) を用い、 せき板ナイフを用いたフローティ ングナイフコ —夕一により、 樹脂付着量が 4 g/m2になるようにコーティングを行った後、 1 30でで 1分間乾燥し、 20 0でで 2分間加硫処理を行い、 コーティングェ.アバ ッグ基布を得た。 該基布の残留油分量は 0. 1 7重量%であった。
このようにして得られたエアバッグ基布の特性を第 1表に示した。 このエアバ ッグ基布はバッグ収納コンパク ト性については問題なかったが、 空気遮断性、 樹 脂との接着性、 難燃性が劣っていた。
第 1表一'
Figure imgf000024_0001
※表中の値は経方向/緯方向を表す。
第 1表一 2
Figure imgf000025_0001
※表中の値は経方向/緯方向を表す。
第 1表一 3
Figure imgf000026_0001
※表中の値は経方向/緯方向を表す
産業上の利用可能性
本発明によれば、 空気遮断性、 耐熱性、 収納コンパク ト性を同時に兼ね備え、 かつ樹脂被膜の接着性に優れたコーティングエアバッグ基布、 エアバッグ、 およ びその製造方法を提供することができるので、 エアバッグによる乗員保護システ ムを普及促進させることができる。

Claims

請 求 の 範 囲
1. 繊維布帛の少なくとも片面が樹脂で被覆されており、 かつ該布帛を構成する 少なくとも一部の単糸が該樹脂で包囲されており、 かつ該布帛を構成する少なく とも一部の単糸が該樹脂で包囲されていないことを特徴とするコーティングエア バッグ基布。
2. 該樹脂で包囲されている単糸の割合が全単糸に対して 3〜 2 0 %の範囲内に ある、 請求の範囲第 1項に記載のコーティングエアバッグ基布。
3. 該樹脂で包囲されている単糸の割合が全単糸に対して 5 ~ 1 5 %の範囲内に ある、 請求の範囲第 2項に記載のコ一ティングエアバッグ基布。
4. 該樹脂が布帛の厚さの 1 0〜 7 0 %の範囲内で浸透している、 請求の範囲第 1〜 3項のいずれかに記載のコーティングエアバッグ基布。
5. 該樹脂が布帛の厚さの 1 5〜 5 0 %の範囲内で浸透している、 請求の範囲第 4項に記載のコーティングエアバッグ基布。
6. 該樹脂の付着量が 5〜 3 0 gZm2の範囲内にある、 請求の範囲第 1〜5項の いずれかに記載のコーティングエアバッグ基布。
7. 該樹脂の付着量が 5〜 2 0 g/m2の範囲内にある、 請求の範囲第 6項に記載 のコ一ティングエアバッグ基布。
8. 該樹脂が、 無溶剤系シリコーン樹脂である、 請求の範囲第 1〜 7項のいずれ かに記載のコーティングエアバッグ基布。
9. J I S L I 096 A法に規定される方法で測定した通気度が 0. O l c c /cm2 / s e c以下である、 請求の範囲第 1〜 8項のいずれかに記載のコーテ ィングエアバッグ基布。
1 0. 流体 (空気) を 1 9. 6 k P aの圧力に調整して流したときに通過する空 気流量を測定した通気度が 1 c c /c m2/ s e c以下である、 請求の範囲第 1へ 9項のいずれかに記載のコーティングエアバッグ基布。
1 1. 残留油分量が 0. 1重量%以下である、 請求の範囲第 1〜 1 0項のいずれ かに記載のコ一ティングエアバッグ基布。
1 2. 樹脂被覆前の繊維布帛の残留油分量が 0. 1重量%以下である、 請求の範 囲第 1 1項に記載のコーティングエアバッグ基布。 、
1 3. 中央部の厚み T 1と塗工端部の厚み T 2との関係が、 0. 9≤T 1 /T 2 であり、 かつ、 該基布の基布幅 Wと樹脂が塗工された塗工幅 Cとの関係が 0. 9
5≤C/W≤ 0. 9 9の範囲内にある、 請求の範囲第 1〜 1 2項のいずれかに記 載のコーティングエアバッグ基布。
1 4. 中央部の厚み T 1と塗工端部の厚み T 2との関係が、 0. 9 5≤T 1 /T 2である、 請求の範囲第 1 3項に記載のコーティングエアバッグ基布。
1 5. FMV S S 3 0 2に基づいて測定した難燃性が 1 0 0 mmZm i n未満で ある、 請求の範囲第 1〜 1 4項のいずれかに記載のコーティングエアバッグ基布 c
1 6. 請求の範囲第 1〜 1 5項のいずれかに記載のコーティングエアバッグ基布 を用いたエアバッグ。
1 7. 繊維布帛に、 粘度が 5〜 2 0 P a . s ( 5, 0 0 0〜 2 0 , O O O c P) の範囲内にある樹脂液を、 鋭角刃のコーティングナイフを用いたナイフコ一夕一 により、 コ一ティ ングナイフと該布帛との接圧を 1〜 1 5N/cmの範囲内でコ 一ティングすることを特徴とするコ一ティングエアバッグ基布の製造方法。
18. 基布張力が 500〜 3, 000 NZmの範囲内で樹脂液を塗工する、 請求 の範囲第 17項に記載のコーティ ングエアバッグ基布の製造方法。
19. 繊維布帛の精練加工を施さずに樹脂液を塗工する、 請求の範囲第 1 7項ま たは第 18項に記載のコーティングエアバッグ基布の製造方法。
PCT/JP2003/012707 2002-10-04 2003-10-03 コーティングエアバッグ基布およびエアバッグ WO2004031472A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/529,848 US8211813B2 (en) 2002-10-04 2003-10-03 Coated base fabric for air bags and air bags
CA 2501032 CA2501032C (en) 2002-10-04 2003-10-03 Coated base fabric for air bags and air bags
EP20030751321 EP1548180B1 (en) 2002-10-04 2003-10-03 Coated base fabric for air bags and air bags

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2002292239A JP4419378B2 (ja) 2002-10-04 2002-10-04 エアバッグ用基布およびその製造方法
JP2002-292239 2002-10-04
JP2002-352283 2002-12-04
JP2002352283A JP2004183152A (ja) 2002-12-04 2002-12-04 エアバッグ用基布およびエアバッグ
JP2002-376972 2002-12-26
JP2002376972A JP4423853B2 (ja) 2002-12-26 2002-12-26 エアバッグ用基布およびエアバッグ

Publications (1)

Publication Number Publication Date
WO2004031472A1 true WO2004031472A1 (ja) 2004-04-15

Family

ID=32074153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012707 WO2004031472A1 (ja) 2002-10-04 2003-10-03 コーティングエアバッグ基布およびエアバッグ

Country Status (6)

Country Link
US (1) US8211813B2 (ja)
EP (1) EP1548180B1 (ja)
KR (1) KR100680564B1 (ja)
CA (1) CA2501032C (ja)
TW (1) TWI241965B (ja)
WO (1) WO2004031472A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100529247C (zh) * 2004-08-20 2009-08-19 因温斯特技术公司 改进耐边缘梳化性的聚酯
WO2013133382A1 (ja) * 2012-03-09 2013-09-12 旭化成せんい株式会社 エアバッグ用基布

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8137752B2 (en) * 2003-12-08 2012-03-20 Syscom Advanced Materials, Inc. Method and apparatus for the treatment of individual filaments of a multifilament yarn
JP2007302151A (ja) * 2006-05-12 2007-11-22 Toyoda Gosei Co Ltd エアバッグ
JP5044168B2 (ja) * 2006-08-24 2012-10-10 セーレン株式会社 エアバッグ用基布及びエアバッグ
EP2179425B1 (en) 2007-07-16 2019-05-22 Micrometal Technologies Inc. Electrical shielding material composed of metallized stainless steel monofilament yarn
US8142869B2 (en) * 2007-09-27 2012-03-27 Toyoda Gosei Co., Ltd. Coated base fabric for airbags
JP5532377B2 (ja) * 2007-12-07 2014-06-25 東洋紡株式会社 エアバッグ用布帛
CN101883890B (zh) * 2007-12-07 2012-11-21 东洋纺织株式会社 气囊用织物
WO2009084873A2 (en) * 2007-12-28 2009-07-09 Kolon Industries, Inc. An inflatable fabrics and an air-bag
EP2284311B1 (en) * 2008-05-15 2014-01-08 Toyobo Co., Ltd. copolymerized polyether polyamide resin
US9157173B2 (en) 2008-08-07 2015-10-13 Invista North America S.A.R.L. Process of making a woven fabric for vehicle airbags
KR20100117527A (ko) * 2009-04-24 2010-11-03 주식회사 코오롱 에어백 가스 주입용 튜브형 직물 부재 및 그의 제조방법
PL2436836T3 (pl) 2009-05-29 2017-08-31 Toyobo Co., Ltd. Powlekana tkanina bazowa na poduszkę powietrzną i sposób jej wytwarzania
US20120040109A1 (en) * 2010-08-16 2012-02-16 Nextec Applications, Inc. Product and method for encapsulated fabric
KR101441736B1 (ko) * 2010-10-21 2014-09-24 코오롱인더스트리 주식회사 에어백 및 그 제조방법
WO2012092505A1 (en) 2010-12-29 2012-07-05 Syscom Advanced Materials Metal and metallized fiber hybrid wire
WO2013095054A1 (ko) * 2011-12-21 2013-06-27 코오롱인더스트리 주식회사 아라미드 원단 및 이를 포함하는 차량용 에어백
DE102012003806A1 (de) * 2012-02-24 2013-08-29 Gm Global Technology Operations, Llc Elastische Struktur für den Einsatz in einem Energieabsorptionssystem eines Kraftfahrzeuges sowie Energieabsorptionssystem als Insassenschutz und/oder Fußgängerschutz
US20130241183A1 (en) * 2012-03-15 2013-09-19 Ramesh Keshavaraj Coated airbag, method for making the same, and airbag module comprising the coated airbag
WO2014046159A1 (ja) * 2012-09-20 2014-03-27 東洋紡株式会社 エアバッグ用コート布及びその製造方法
KR101984944B1 (ko) * 2012-09-28 2019-06-03 코오롱인더스트리 주식회사 에어백용 원단의 제조방법
JP6210327B2 (ja) 2013-09-27 2017-10-11 豊田合成株式会社 エアバッグ基布用塗料並びにエアバッグ基布及びその製造方法
US9745693B2 (en) 2014-03-18 2017-08-29 Schroth Safety Products, Llc Flame resistant fabric for aviation airbags
ES2721443T3 (es) * 2014-03-31 2019-07-31 Toyo Boseki Tejido recubierto para airbag
US10655248B2 (en) 2014-06-24 2020-05-19 Kolon Industries, Inc. Method of preparing polyester fabric for airbag
JP6405849B2 (ja) * 2014-09-30 2018-10-17 豊田合成株式会社 縫製エアバッグ及びその製造方法
WO2016158858A1 (ja) * 2015-03-30 2016-10-06 東レ株式会社 エアバッグ用コート基布、エアバッグおよびエアバッグ用コート基布の製造方法
BR112018009095A2 (pt) * 2015-11-06 2019-02-19 Invista Textiles Uk Ltd panos, artigos, airbags e método para formar um pano
JP6973373B2 (ja) 2016-03-16 2021-11-24 東洋紡株式会社 エアバッグ用コーティング基布およびその製造方法
CN111304803B (zh) 2017-05-02 2021-09-03 英威达纺织(英国)有限公司 低渗透性和高强度织造织物及其制造方法
MX2020003165A (es) 2017-09-29 2022-04-05 Invista Textiles Uk Ltd Bolsas de aire y metodos para producir bolsas de aire.

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2853936B2 (ja) * 1992-06-26 1999-02-03 東レ株式会社 エアバッグ
JP2001089949A (ja) * 1999-09-14 2001-04-03 Toray Ind Inc エアバッグ用織物
JP3206758B2 (ja) * 1991-07-05 2001-09-10 東レ株式会社 エアバッグ用織物の製造方法およびエアバッグ
WO2001077435A1 (fr) * 2000-04-07 2001-10-18 Asahi Kasei Kabushiki Kaisha Tissu enduit et coussin de securite gonflable
JP2001288641A (ja) * 2000-03-31 2001-10-19 Toyo Tire & Rubber Co Ltd エアバッグ用の織布とその製造方法
JP2001329468A (ja) * 2000-05-12 2001-11-27 Ashimori Ind Co Ltd エアバッグ用基布
US20010046823A1 (en) * 1998-12-08 2001-11-29 Toyo Tire & Rubber Co., Ltd. Fabric for air bag
JP2001355144A (ja) * 2000-06-13 2001-12-26 Asahi Kasei Corp エアバッグ用基布及びエアバッグ
JP2003328244A (ja) * 2002-05-01 2003-11-19 Toyobo Co Ltd エアバッグ用基布及びそれを用いたエアバッグ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002061200A1 (fr) * 2001-02-01 2002-08-08 Asahi Kasei Kabushiki Kaisha Etoffe et sac gonflable a revetement de silicone

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3206758B2 (ja) * 1991-07-05 2001-09-10 東レ株式会社 エアバッグ用織物の製造方法およびエアバッグ
JP2853936B2 (ja) * 1992-06-26 1999-02-03 東レ株式会社 エアバッグ
US20010046823A1 (en) * 1998-12-08 2001-11-29 Toyo Tire & Rubber Co., Ltd. Fabric for air bag
JP2001089949A (ja) * 1999-09-14 2001-04-03 Toray Ind Inc エアバッグ用織物
JP2001288641A (ja) * 2000-03-31 2001-10-19 Toyo Tire & Rubber Co Ltd エアバッグ用の織布とその製造方法
WO2001077435A1 (fr) * 2000-04-07 2001-10-18 Asahi Kasei Kabushiki Kaisha Tissu enduit et coussin de securite gonflable
JP2001329468A (ja) * 2000-05-12 2001-11-27 Ashimori Ind Co Ltd エアバッグ用基布
JP2001355144A (ja) * 2000-06-13 2001-12-26 Asahi Kasei Corp エアバッグ用基布及びエアバッグ
JP2003328244A (ja) * 2002-05-01 2003-11-19 Toyobo Co Ltd エアバッグ用基布及びそれを用いたエアバッグ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1548180A1 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100529247C (zh) * 2004-08-20 2009-08-19 因温斯特技术公司 改进耐边缘梳化性的聚酯
WO2013133382A1 (ja) * 2012-03-09 2013-09-12 旭化成せんい株式会社 エアバッグ用基布
JP5486741B2 (ja) * 2012-03-09 2014-05-07 旭化成せんい株式会社 エアバッグ用基布
US9352718B2 (en) 2012-03-09 2016-05-31 Asahi Kasei Fibers Corporation Base fabric for airbags

Also Published As

Publication number Publication date
TW200417480A (en) 2004-09-16
US20070031621A1 (en) 2007-02-08
EP1548180A4 (en) 2006-09-06
CA2501032C (en) 2011-11-01
KR100680564B1 (ko) 2007-02-08
TWI241965B (en) 2005-10-21
EP1548180B1 (en) 2012-08-29
KR20050053734A (ko) 2005-06-08
US8211813B2 (en) 2012-07-03
CA2501032A1 (en) 2004-04-15
EP1548180A1 (en) 2005-06-29

Similar Documents

Publication Publication Date Title
WO2004031472A1 (ja) コーティングエアバッグ基布およびエアバッグ
JP3855775B2 (ja) コ−トエアバッグ用基布
JP4419378B2 (ja) エアバッグ用基布およびその製造方法
WO2016158858A1 (ja) エアバッグ用コート基布、エアバッグおよびエアバッグ用コート基布の製造方法
JPWO2005031052A1 (ja) 高密度袋織基布
WO2008023843A1 (fr) Support textile pour coussin gonflable et coussin gonflable
JP3871103B2 (ja) エアバッグ用基布およびエアバッグ
WO2017057299A1 (ja) エアバッグ用基布、エアバッグ、及びエアバッグ用基布の製造方法
JP3849818B2 (ja) エアバッグ用基布およびエアバッグとその製造方法
WO2023171130A1 (ja) エアバッグ用コート布
WO2020153446A1 (ja) エアバッグ用コーティング基布およびそれを含むエアバッグ
JP2002069790A (ja) エアバッグ用基布およびエアバッグ
JP4207637B2 (ja) カーテンエアバッグ用基布およびカーテンエアバッグおよびその製造方法
JP2004183152A (ja) エアバッグ用基布およびエアバッグ
JP2012158850A (ja) エアバッグ織物
JPH082359A (ja) 高滑脱抵抗性エアーバッグ用織物
JP4655373B2 (ja) エアバッグ基布およびエアバッグ
JP2010013770A (ja) エアバッグ用織物およびエアバッグ
JP4019635B2 (ja) 低通気織物の製造方法
JPH11286846A (ja) エアバッグ用織物
JP4629882B2 (ja) エアバッグ
JP4604359B2 (ja) エアバッグ基布およびエアバッグ
JPH11293540A (ja) エアバッグ用基布およびその製造方法
JP2000234273A (ja) エアバッグ用基布およびその製造方法
JP2024126654A (ja) 車両用エアバッグ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2501032

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 20038A09145

Country of ref document: CN

Ref document number: 1020057005833

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003751321

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057005833

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003751321

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007031621

Country of ref document: US

Ref document number: 10529848

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10529848

Country of ref document: US