WO2004028688A1 - 水素化分解触媒および液状炭化水素の製造方法 - Google Patents

水素化分解触媒および液状炭化水素の製造方法 Download PDF

Info

Publication number
WO2004028688A1
WO2004028688A1 PCT/JP2003/011849 JP0311849W WO2004028688A1 WO 2004028688 A1 WO2004028688 A1 WO 2004028688A1 JP 0311849 W JP0311849 W JP 0311849W WO 2004028688 A1 WO2004028688 A1 WO 2004028688A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
hydrocracking
present
aluminosilicate
gas oil
Prior art date
Application number
PCT/JP2003/011849
Other languages
English (en)
French (fr)
Inventor
Hisao Sakoda
Hirofumi Konno
Original Assignee
Nippon Oil Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corporation filed Critical Nippon Oil Corporation
Priority to JP2004539467A priority Critical patent/JP4418368B2/ja
Priority to EP03798413.5A priority patent/EP1547683B1/en
Priority to AU2003266527A priority patent/AU2003266527A1/en
Publication of WO2004028688A1 publication Critical patent/WO2004028688A1/ja
Priority to US11/074,567 priority patent/US20050145541A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/106Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/12Noble metals
    • B01J29/126Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/16Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/166Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1022Fischer-Tropsch products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/06Gasoil

Definitions

  • the present invention relates to a catalyst for producing a liquid hydrocarbon from a paraffinic hydrocarbon in the presence of hydrogen, and a method for producing a liquid hydrocarbon using the catalyst.
  • amorphous aluminosilicate-containing catalysts have the drawback that, although the middle distillate selectivity and the pour point of gas oil are at a satisfactory high level, the decomposition activity is low. If a crystalline aluminosilicate such as zeolite is used instead of the amorphous aluminosilicate, on the contrary, although the decomposition activity is high, sufficient middle distillate selectivity and gas oil pour point cannot be obtained. In other words, high cracking activity, high middle distillate selectivity, A catalyst that satisfies the three low pour points simultaneously has not yet been developed, and this is a major obstacle to improving the economics of the hydrocracking process for paraffinic hydrocarbons.
  • An object of the present invention is to provide a novel hydrocracking catalyst for paraffinic hydrocarbons, which simultaneously satisfies the three requirements of high cracking activity, high middle distillate selectivity, and low pour point of the produced gas oil.
  • the goal is to improve economics.
  • the present invention provides that both (a) the crystalline aluminosilicate and (b) the amorphous aluminosilicate are contained in a weight ratio of 0.01 ⁇ (a) / (b) ⁇ 1.0. And a hydrocracking catalyst for paraffinic hydrocarbons.
  • the present invention relates to a hydrocracking catalyst for paraffinic hydrocarbons, wherein the catalyst contains a metal of Group VIb or a metal of Group VIII of the periodic table.
  • the present invention relates to a method for producing a liquid hydrocarbon, comprising hydrocracking a paraffinic hydrocarbon using the catalyst.
  • a method for producing a liquid hydrocarbon comprising hydrocracking a paraffinic hydrocarbon using the catalyst.
  • the aluminosilicate refers to a metal oxide composed of three elements of aluminum, silicon, and oxygen. Further, other metal elements can be coexistent within a range not to impair the effects of the present invention. It is desirable that the content be not more than mass%. Examples of coexisting metal elements include titanium, lanthanum, and manganese.
  • Crystalline aluminosilicate can be estimated by the ratio of 4-coordinate aluminum two ⁇ beam atoms in total Aruminiumu atom, this ratio is measurable ability by 27 A 1 solid NMR.
  • the crystalline aluminosilicate of the present invention has a four-coordinate aluminum ratio. More than 50% aluminosilicate. Any amount of 50% or more can be used as the crystalline aluminosilicate of the present invention. There is no particular limitation, but usually 70% or more, preferably 80% or more.
  • the amorphous aluminosilicate of the present invention is one in which the proportion of tetracoordinate aluminum is 3% or less.
  • zeolite As the crystalline aluminosilicate of the present invention, so-called zeolite can be used.
  • Preferred crystalline aluminosilicates include Y-type or USY-type zeolite, beta-type zeolite, mordenite, and ZSM-5. The most preferred crystalline aluminosilicate is USY zeolite. If necessary, two or more crystalline aluminosilicates can be used.
  • the alumina content in the crystalline aluminosilicate used in the present invention is not particularly limited, but is usually preferably from 1 to 10% by mass, more preferably from 2 to 8% by mass.
  • the particle size of the crystalline aluminosilicate used in the present invention is not particularly limited, but is preferably 3 ⁇ m or less, more preferably 1 ⁇ m or less, and particularly preferably 0.5 ⁇ m or less.
  • silicic alumina As the amorphous aminosilicate of the present invention, so-called silicic alumina can be used.
  • the alumina content in the amorphous aluminosilicate used in the present invention is not particularly limited, but is usually preferably 4 to 30% by mass, more preferably 8 to 20% by mass, Most preferably, it is 10 to 15% by mass.
  • the particle size of the amorphous aluminosilicate used in the present invention is not particularly limited, but is preferably 10 ⁇ m or less from the viewpoint of the strength of the catalyst after molding.
  • the paraffin-based hydrocarbon refers to a hydrocarbon having a paraffin molecule content of 70% or more.
  • the number of carbon atoms of the hydrocarbon molecule is not particularly limited, but usually about 10 to 100 carbon atoms are used.
  • the catalyst of the present invention is usually referred to as wax. It is particularly effective for the hydrocracking of parabuin hydrocarbons having 20 or more carbon atoms.
  • the method for producing the paraffinic hydrocarbon used as the raw material and the catalyst of the present invention can be applied to various types of petroleum-based and synthetic paraffin-based hydrocarbons.
  • the so-called FT wax produced by Fischer's Tropsch synthesis can be mentioned.
  • Paraffinic hydrocracking catalyst for hydrocarbon of the invention both the (a) crystalline Aruminoshi Riketo and (b) amorphous aluminosilicate, 0. 0 1 ⁇ (a) / (b) ⁇ 1. 0 The weight ratio is included.
  • a preferred weight ratio is 0.02 ⁇ (a) / (b) ⁇ 0.5, and a particularly preferred weight ratio is 0.04 ⁇ (a) / (b) ⁇ 0.2.
  • the catalyst of the present invention is prepared by using both the crystalline aluminosilicate and the amorphous aluminosilicate prepared before molding in the above-mentioned weight ratio, and molding the mixture by a conventional method using a binder such as alumina. it can. If necessary, it is also possible to select a method in which only the crystalline aluminosilicate is prepared before molding, and a predetermined amount of amorphous aluminosilicate 1 is formed at the time of molding the binder.
  • the catalyst according to the invention contains as active component a metal of group VIb and / or a metal of group VIII of the periodic table.
  • Specific examples of Group VI b metals include chromium and molybdenum tungsten, and specific examples of Group VIII metals include cobalt, nickel, rhodium, palladium, iridium, and platinum.
  • the catalyst of the present invention can be produced by supporting these metals on the above-mentioned molded body by a conventional method such as impregnation or ion exchange.
  • the type and amount of the metal to be supported can be appropriately selected as needed.
  • a noble metal such as platinum or palladium can be supported and used.
  • the loading amount is not particularly limited, but is usually 0.05 to 2 mass. / 0 .
  • base metals such as nickel, cobalt, tungsten, and molybdenum can be used in combination as needed.
  • a conventional fixed bed reactor can be used.
  • Typical reaction conditions include a temperature of 250 to 400 ° C, a hydrogen pressure of 0.5 to 1 ° MPa, and a liquid hourly space velocity of a paraffinic hydrocarbon material of 0.5 to 10 / h. Can be.
  • a catalyst containing both (a) crystalline aluminosilicate and (b) amorphous aluminosilicate in a weight ratio of 0.01 ⁇ (&) (13) ⁇ 1.0 should be used. This makes it possible to simultaneously satisfy the three requirements of high cracking activity, high middle distillate selectivity, and low pour point of the produced gas oil in the hydrocracking catalyst for paraffin hydrocarbons.
  • Catalyst A_1 was prepared by impregnating the carrier with an aqueous solution of dichlorotetraammineplatinum (II) in an amount of 1.0% by mass of the carrier as platinum, followed by drying and calcination. .
  • Catalyst A1 is charged into a fixed bed flow-through reactor, and the hydrogenated fraction of paraffinic hydrocarbons is Used for solution.
  • FT wax having a paraffin content of 91% and a carbon number distribution of 30 to 80 was used as a raw material.
  • the hydrogen pressure was 5 MPa and the liquid hourly space velocity was 2. OZh.
  • the reaction temperature at which a fraction having a boiling point of 360 ° C or lower is a decomposition product and the decomposition product at 60% by mass relative to the raw material is the decomposition temperature, and the boiling point of the decomposition product obtained at the decomposition temperature is 1
  • the ratio of the middle distillate at 45 to 360 ° C is defined as the middle distillate selectivity
  • catalyst A1 has a decomposition temperature of 295 ° C and a middle distillate selectivity of 81%.
  • the pour point of the gas oil fraction having a boiling point of 260 ° C to 360 ° C in this decomposition product was 13.5 ° C. table 1
  • Catalysts A2 to A5 were prepared in the same manner as Catalyst A1, and hydrocracking of paraffinic hydrocarbons was performed in the same manner as Catalyst A1. The results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Description

明 細 書' 水素化分解触媒および液状炭化水素の製造方法
[技術分野]
本発明は、 水素の存在下でパラフィン系炭化水素から液状炭化水素を製造する ための触媒およびこの触媒を使用した液状炭化水素の製造方法に関する。
[背景技術]
硫黄分および芳香族炭化水素の含有量が低いクリーンな液体燃料への要求が近 年急速に高まってきている。 これに呼応して燃料油製造業界においても既に種々 のタリーン燃料製造法が検討されている。 その中でワックス等のパラフィン系炭 化水素を触媒存在下で水素化分解するプロセスが最も有力とされている。
パラフィン系炭化水素の水素化分解プロセスにおいては、 有用な中間留分を高 収率で得ること、 およびそれを低い反応温度で達成することが重要である。 これ に加えて、 得られる軽油留分の流動点の低いことも必要である。 換言すれば、 分 解活性が高く、 中間留分選択性も高く、 かつ生成軽油が低流動点を有する高性能 な水素化分解触媒の開発がプロセスの経済性向上の鍵を握っている。
減圧軽油の水素化分解は過去数十年の歴史を有する既に確立した技術である。 しかし、 パラフィン系炭化水素の反応性は減圧軽油と'は大きく異なり、 減圧軽油 の触媒をそのまま転用することが難しいため、 パラフィン系炭化水素用の.高性能 触媒の開発を目指して研究開発が現在精力的に続けられている。少数ではあるが、 既に特許も出願されている。 例えば、 特開平 6— 4 1 5 4 9号公報には非晶性ァ ルミノシリゲートを含有した担体に白金を担持した触媒が開示されている。
ところが非晶性アルミノシリケート含有触媒には、 中間留分選択性と軽油の流 動点は満足すべき高い水準にあるものの、 分解活性が低いという欠点がある。 非 晶性アルミノシリケートに代えて、 ゼォライ ト等の結晶性アルミノシリケートを 用いると、 今度は逆に、 分解活性は高いものの十分な中間留分選択性と軽油の流 動点が得られない。 即ち、 高分解活性、 高い中間留分選択性、 および生成軽油の 低流動点の三者を同時に満足する触媒がまだ開発されておらず、 これがパラフィ ン系炭化水素の水素化分解プロセスの経済性向上の大きな障害となっている。 本発明の目的は、 高分解活性、 高い中間留分選択性、 および生成軽油の低流動 点の三者を同時に満足する新規なパラフィン系炭化水素用水素化分解触媒を提供 することにより、 プロセスの経済性を向上させることにある。
[発明の開示]
本発明者らは鋭意検討した結果、 結晶性アルミノシリケートと非晶性アルミノ シリケートの両者を特定の比率で含む触媒が上述の課題を解決できることを見出 し、 本発明を完成するに至った。
すなわち、 本発明は、 (a ) 結晶性アルミノシリケ一トと (b ) 非晶性アルミ ノシリケートの両者を、 0 . 0 1≤ ( a ) / ( b ) ≤ 1 . 0の重量比で含むこと を特徴とするパラフィン系炭化水素用水素化分解触媒に関する。
また本発明は、 前記触媒が、 周期律表第 VI族 bの金属おょぴノまたは第 VIII 族の金属を含むことを特徴とするパラフィン系炭化水素用水素化分解触媒に関す る。
さらに本発明は、 前記触媒を用いて、 パラフィン系炭化水素を水素化分解する ことを特徴とする液状炭化水素の製造方法に関する。 以下に本発明を詳述する。
本発明においてアルミノシリケ一トとはアルミニウム、 珪素、 および酸素の 3 元素で構成される金属酸化物を指す。 また本発明の効果を妨げない範囲で他の金 属元素を共存させることもできるが、 他の金属元素の量はその酸化物としてアル ミナとシリカの合計量の 5質量%以下、 好ましくは 3質量%以下であることが望 ましい。 共存可能な金属元素として、 例えばチタン、 ランタン、 マンガン等を挙 げることができる。
アルミノシリケートの結晶性は、 全アルミニゥム原子中の 4配位のアルミ二ゥ ム原子の割合で見積もることができ、 この割合は 27A 1固体 N M Rにより測定可 能である。 本発明の結晶性アルミノシリケートとは 4配位アルミ二ゥムの比率が 5 0 %以上のアルミノシリケ一トである。 5 0 %以上であればいずれも本発明の 結晶性アルミ ノシリケートとして使用でき、 特に制限はないが、 通常は 7 0 %以 上のもの、 好ましくは 8 0 %以上のものを使用する。 また本発明の非晶性アルミ ノシリケートとは 4配位のアルミユウムの比率が 3 %以下のものである。
本発明の結晶性アルミノシリケートとして、 いわゆるゼォライ トを使用するこ とができ、 好ましい結晶性アルミノシリケートとしては Y型または U S Y型ゼォ ライ ト、 ベータ型ゼォライ ト、 モルデナィ ト、 Z S M— 5を挙げることができ、 最も好ましい結晶性アルミ ノシリケートとして U S Y型ゼォライ トを挙げること ができる。 また必要により 2種以上の結晶性アルミ ノシリゲートを使用すること もできる。
本発明で使用する結晶性アルミノシリケート中のアルミナ含量については特 段の制限は無いが、 通常は 1〜1 0質量%であることが好ましく、 2〜8質量% であることがより好ましい。
また本発明で使用する結晶性アルミノシリケートの粒子径については特段の 制限は無いが、 3 μ m以下であることが好ましく、 1 μ m以下がより好ましく、 0 . 5 μ m以下が特に好ましい。
本発明の非晶性ア^ミノシリケートとして、 いわゆるシリ力アルミナを使用す ることができる。
本発明で使用する非晶性アルミノシリケ一ト中のアルミナ含量については特に 制限は無いが、 通常は 4〜 3 0質量%であることが好ましく、 8〜2 0質量%で あることがより好ましく、 最も好ましくは 1 0〜 1 5質量%である。
また本発明で使用する非晶性アルミ ノ シリケートの粒子径については特段の 制限は無いが、成型後の触媒の強度の点から 1 0 μ m以下であることが好ましい。 また本発明で使用する非晶性アルミノシリケートの細孔容積についても特に制 限は無いが、 通常はひ. 5〜0 . 9 m 1 / gであることが好ましく、 より好まし くは 0 . 6〜0 . 8 m l / gである。
本発明においてパラフィン系炭化水素とは、 パラフィン分子の含有率が 7 0 % 以上の炭化水素を指す。 炭化水素分子の炭素数については特に制限はないが、 通 常、 1 0〜 1 0 0程度のものが用いられる。 本発明の触媒は、 通常ワックスと称 される炭素数 20以上のパラブイン系炭化水素の水素化分解に特に有効である。 原料となるパラフィン系炭化水素の製法については特に制限はなく、 本発明の 触媒は石油系および合成系の各種パラフィン系炭化水素に適用可能することがで きるが、 特に好ましいパラフィン系炭化水素として、 フィッシャー ' トロプシュ 合成により製造されるいわゆる F Tワックスを挙げることができる
本発明のパラフィン系炭化水素用の水素化分解触媒は (a ) 結晶性アルミノシ リケートと (b ) 非晶性アルミノシリケートの両者を、 0. 0 1≤ (a ) / (b) ≤ 1. 0の重量比で含むことを特徴とする。
好ましい重量比として 0. 0 2≤ ( a) / ( b ) ≤ 0. 5を、 特に好ましい重 量比として 0. 04≤ ( a ) / ( b ) ≤ 0. 2を挙げることができる。 ( a ) 7 (13) が 0. 0 1より小さいと分解活性が不足する。 また 1. 0より大きいと 中間留分選択性が低下する。
0. 0 1≤ (a ) / ( b ) ≤ 1. 0という極めて限定された重量比のときのみ 高分解活性、 高い中間留分選択性、 および生成軽油の低流動点の三者が周時に満 足される。 これは減圧軽油の水素化分解では観察されないパラフィン系炭化水素 の水素化分解に固有の新規な知見であり、 全く予期し得ないことであった。
本発明の触媒は、 成型前に用意した結晶性アルミノシリケートと非晶性アルミ ノシリケ一トの両者を前述の重量比で用い、 これをアルミナ等のバインダーを用 いて常法により成型することにより調製できる。 また必要に応じ、 結晶性アルミ ノシリケートのみを成型前に用意しておき、 パインダ一成型時に所定量の非晶性 アルミノシリケー 1、を形成させる方法を選択することもできる。
本発明の触媒は活性成分として周期律表第 VI 族 bの金属および または第 VIII族の金属を含む。 第 VI族 bの金属としては、 具体的にクロム、 モリブデン タングステンが挙げられ、 第 VIII 族の金属としては、 具体的にコバルト、 ニッ ケル、 ロジウム、 パラジウム、 イリジウム、 白金が挙げられる。 これらの金属を、 前述の成型体に含浸やイオン交換等の常法によって担持することにより本発明の 触媒を製造することができる。
担持する金属の種類と量は、 必要に応じて適宜選択することができる。 例えば 白金やパラジウム等の貴金属を担持して使用することができる。 これら貴金属の 担持量に特に制限はないが、 通常 0. 0 5〜2質量。 /0である。 一方、 ニッケル、 コバルト、 タングステン、 モリブデン等の卑金属金属を必要に応じて適宜組み合 わせて使用することもできる。
本発明の触媒の使用にあたっては、 従来の固定床反応装置を使用することがで きる。 代表的な反応条件として温度は 2 5 0〜4 00°C、 水素圧は 0. 5〜 1 ◦ MP a、 パラフィン系炭化水素原料の液空間速度は 0. 5〜1 0/hを挙げるこ とができる。
[産業上の利用可能性]
以上のように、 (a) 結晶性アルミノシリケートと (b ) 非晶性アルミノシリ ケートの両者を、 0. 0 1 ^ (& ) (13) ≤ 1. 0の重量比で含む触媒を用い ることにより、 パラフィン系炭化水素の水素化分解触媒において高分解活性, 高 い中間留分選択性、 および生成軽油の低流動点の三者を同時に満足することがで きる。
[発明を実施するための最良の形態]
以下に実施例及び比較例を挙げ本発明を具体的に説明するが、 本発明はこれら に限定されるものではない。
(実施例 1 )
表 1に示す結晶性アルミノシリケート (a ) と非晶性アルミノシリケート (b) を ( a ) / ( b ) = 0. 0 8の重量比で使用し、 ( a) と (b) の合計量の 3 0 質量%のべ一マイ トをバインダーとして加えて混練した後に直径 1 Z 1 6インチ (約 1. 6 mm) の円柱状に成型し、 さらにこれを焼成することにより触媒担体 を得た。
この担体に、 白金として担体の 1. 0質量%となる量のジクロロテトラアンミ ン白金 (II) の水溶液を含浸し、 さらにこれを乾燥おょぴ焼成することにより、 触媒 A_ 1を調製した。
触媒 A 1を固定床の流通式反応器に充填し、 パラフィン系炭化水素の水素化分 解に用いた。 ここではパラフィン含量が 9 1 %で 3 0から 8 0までの炭素数分布 を有する F Tワックスを原料とした。 この時の水素圧は 5 MP a、 原料の液空間 速度は 2. OZhであった。 沸点 3 6 0°C以下の留分を分解生成物、 原料に対し て 6 0質量%の分解生成物が得られる反応温度を分解温度、 分解温度で得られる 分解生成物の中で沸点が 1 4 5〜 3 6 0°Cの中間留分が占める割合を中間留分選 択率と定義すると、 触媒 A 1では分解温度が 2 9 5 °C、 中間留分選択性が 8 1 % であった。 また、 この分解生成物の中で沸点が 2 6 0°Cから 3 6 0°Cの軽油留分 の流動点は一 3 7. 5°Cであった。 表 1
Figure imgf000008_0001
(実施例 2〜 5 )
結晶性アルミノシリケート (a ) と非晶性アルミノシリケート (b ) を (a ) / ( b ) = 0. 0 1 5、 0. 1 8 1、 0. 3 7 5、 および 0. 8 1 4にしたこと 以外は触媒 A 1 と同様にして触媒 A 2〜A 5を調製し、 触媒 A 1 と同じ方法によ りパラフィン系炭化水素の水素化分解を行った。 その結果を表 2に示す。
(比較例:!〜 3 )
結晶性アルミノシリケ一ト ( a ) と非晶性アルミノシリケート (b) を (a )
/ (b ) = 0. 0 0 5、 1. 1 5 5、 2. 5 1 0にしたこと以外は触媒 A 1 と同 様にして触媒 B 1、 B 2、 B 3を調製し、 触媒 A 1 と同じ方法によりパラフィン 系炭化水素の水素化分解を行った。 その結果を表 2に示す。 (減圧軽油を分解原料とする対照実験)
パラフィン含量 9 1 %の FTワックスに代えて、 原油の精製工程で得られる減 圧軽油 (パラフィン含量 7. 6 %) を分解原料として用い、 上記の A 1〜A5、 B 1〜B 3の各触媒の性能を同様に評価した。 結果を表 2に示す。
表 2
Figure imgf000009_0001
表 2から明らかなように、 限定された (a ) / (b) を有する本発明の触媒で のみ、 パラフィン系炭化水素の水素化分解において高分解活性、 高い中間留分選 択性、 および生成軽油の低流動点の三者が同時に満足されることが分かる。 また 原料が減圧軽油の場合には特定の (a) Z (b) でのみ良好な結果となる現象は 起こらないことが対照実験から分かる。

Claims

請 求 の 範 囲
1. ( a ) 結晶性アルミノシリケートと ( b ) 非晶性アルミノシリケ一 トの両者を、 0. 0 1≤ (a ) / (b ) ≤ 1. 0の重量比で含むことを特徴とす るパラフィン系炭化水素用水素化分解触媒。
2. 周期律表第 VI 族 bの金属おょぴノまたは第 VIII 族の金属を含む ことを特徴とする請求の範囲第 1項に記載の触媒。
3. 請求の範囲第 1項または第 2項に記載の触媒を用いて、 パラフィン 系炭化水素を水素化分解することを特徴とする液状炭化水素の製造方法。
PCT/JP2003/011849 2002-09-24 2003-09-17 水素化分解触媒および液状炭化水素の製造方法 WO2004028688A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004539467A JP4418368B2 (ja) 2002-09-24 2003-09-17 水素化分解触媒および液状炭化水素の製造方法
EP03798413.5A EP1547683B1 (en) 2002-09-24 2003-09-17 Hydrocracking catalyst and process for production of liquid hydrocarbons
AU2003266527A AU2003266527A1 (en) 2002-09-24 2003-09-17 Hydrocracking catalyst and process for production of liquid hydrocarbons
US11/074,567 US20050145541A1 (en) 2002-09-24 2005-03-08 Hydrocracking catalyst and process of producing liquid hydrocarbon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-277424 2002-09-24
JP2002277424 2002-09-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/074,567 Continuation US20050145541A1 (en) 2002-09-24 2005-03-08 Hydrocracking catalyst and process of producing liquid hydrocarbon

Publications (1)

Publication Number Publication Date
WO2004028688A1 true WO2004028688A1 (ja) 2004-04-08

Family

ID=32040407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011849 WO2004028688A1 (ja) 2002-09-24 2003-09-17 水素化分解触媒および液状炭化水素の製造方法

Country Status (6)

Country Link
US (1) US20050145541A1 (ja)
EP (1) EP1547683B1 (ja)
JP (1) JP4418368B2 (ja)
AU (1) AU2003266527A1 (ja)
MY (1) MY147201A (ja)
WO (1) WO2004028688A1 (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007080920A1 (ja) * 2006-01-13 2007-07-19 Nippon Oil Corporation ワックスの水素化処理方法、並びに、燃料基材及び潤滑油基材の製造方法
WO2007086299A1 (ja) * 2006-01-30 2007-08-02 Nippon Oil Corporation ワックスの水素化分解方法及び燃料基材の製造方法
JP2007204505A (ja) * 2006-01-30 2007-08-16 Nippon Oil Corp 水素化処理方法
JP2007211097A (ja) * 2006-02-08 2007-08-23 Nippon Oil Corp ワックスの水素化処理方法
JP2007211217A (ja) * 2006-02-13 2007-08-23 Nippon Oil Corp 合成油の水素化処理方法
WO2007097235A1 (ja) * 2006-02-21 2007-08-30 Nippon Oil Corporation 燃料基材の製造方法
JP2007238870A (ja) * 2006-03-10 2007-09-20 Nippon Oil Corp 炭化水素油の製造方法および炭化水素油
WO2007114001A1 (ja) * 2006-03-30 2007-10-11 Nippon Oil Corporation ワックスの水素化分解方法
WO2007114012A1 (ja) * 2006-03-31 2007-10-11 Nippon Oil Corporation 水素化分解触媒および燃料基材の製造方法
WO2007113991A1 (ja) * 2006-03-31 2007-10-11 Nippon Oil Corporation ワックスの水素化分解方法及び燃料基材の製造方法
JP2007269902A (ja) * 2006-03-30 2007-10-18 Nippon Oil Corp ワックスの水素化分解方法
JP2007269901A (ja) * 2006-03-30 2007-10-18 Nippon Oil Corp 合成油の処理方法、水素製造用炭化水素油及びディーゼル燃料基材用炭化水素油
JP2007270061A (ja) * 2006-03-31 2007-10-18 Nippon Oil Corp 液体燃料基材の製造方法
JP2007270058A (ja) * 2006-03-31 2007-10-18 Nippon Oil Corp 灯油基材の製造方法
JP2007270060A (ja) * 2006-03-31 2007-10-18 Nippon Oil Corp ワックスの水素化処理方法
JP2007269899A (ja) * 2006-03-30 2007-10-18 Nippon Oil Corp 合成油の処理方法、灯油煙点向上剤用炭化水素油及びディーゼル燃料基材用炭化水素油
JP2007289931A (ja) * 2006-03-30 2007-11-08 Nippon Oil Corp 水素化分解触媒および燃料基材の製造方法
WO2008062595A1 (fr) * 2006-11-21 2008-05-29 Nippon Oil Corporation Procédé de fabrication d'un combustible liquide
JP2008169356A (ja) * 2007-01-15 2008-07-24 Nippon Oil Corp 液体燃料の製造方法
WO2008139909A1 (ja) * 2007-05-01 2008-11-20 Nippon Oil Corporation 液体燃料の製造方法
JP2012211344A (ja) * 2012-08-08 2012-11-01 Jx Nippon Oil & Energy Corp ワックスの水素化分解方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4313237B2 (ja) * 2004-03-29 2009-08-12 新日本石油株式会社 水素化分解触媒および液状炭化水素の製造方法
US20090026112A1 (en) * 2006-02-09 2009-01-29 Jan Lodewijk Maria Dierickx Fluid catalytic cracking process
CN101410182A (zh) * 2006-03-30 2009-04-15 新日本石油株式会社 加氢裂化催化剂和制备燃料基础材料的方法
FR2951192B1 (fr) 2009-10-13 2011-12-30 Inst Francais Du Petrole Procede de production de distillat moyen a partir de cires fischer tropsch utilisant un catalyseur a base de zeolithe modifiee

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS508996B1 (ja) * 1970-12-28 1975-04-09
US4600498A (en) * 1979-10-15 1986-07-15 Union Oil Company Of California Mild hydrocracking with a zeolite catalyst containing silica-alumina
JPH07323230A (ja) * 1994-05-30 1995-12-12 Uop Inc 硫黄に感受性のある成分を含む耐硫黄改質触媒系および同触媒系を用いた炭化水素の改質プロセス

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4164465A (en) * 1976-06-23 1979-08-14 Exxon Research & Engineering Co. Hydrocarbon cracking with catalyst containing a CO oxidation promoter in ultra-stable zeolite particles
US4517074A (en) * 1979-10-15 1985-05-14 Union Oil Company Of California Hydrocarbon conversion process
US4376039A (en) * 1980-10-10 1983-03-08 Exxon Research And Engineering Co. Hydrocarbon conversion catalysts and processes utilizing the same
US4551229A (en) * 1984-03-19 1985-11-05 Chevron Research Company Cracking of heavy hydrocarbons with improved yields of valuable liquid products
US5401704A (en) * 1990-10-23 1995-03-28 Mobil Oil Corporation Hydrocracking catalyst and process using small crystal size zeolite Y
DE69322260T2 (de) * 1992-04-10 1999-04-22 Chevron Usa Inc Verfahren zur umwandlung von kohlenwasserstoffen
US6841062B2 (en) * 2001-06-28 2005-01-11 Chevron U.S.A. Inc. Crude oil desulfurization

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS508996B1 (ja) * 1970-12-28 1975-04-09
US4600498A (en) * 1979-10-15 1986-07-15 Union Oil Company Of California Mild hydrocracking with a zeolite catalyst containing silica-alumina
JPH07323230A (ja) * 1994-05-30 1995-12-12 Uop Inc 硫黄に感受性のある成分を含む耐硫黄改質触媒系および同触媒系を用いた炭化水素の改質プロセス

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOLANTA R. GRZECHOWIAK, ET AL: "DETERMINATION OF THE HYDROCRACKING AND HYDROISOMERIZATION ACTIVITIES OF CATALYSTS CONTAINING ZEOLITES Y AND ZSM-5 FOR HIGH BOILING HYDROCARBONS CONVERSION", COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS, vol. 52, no. 6, 1987, pages 1545 - 1549, XP002974640 *
See also references of EP1547683A4 *

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007080920A1 (ja) * 2006-01-13 2007-07-19 Nippon Oil Corporation ワックスの水素化処理方法、並びに、燃料基材及び潤滑油基材の製造方法
JP2007186613A (ja) * 2006-01-13 2007-07-26 Nippon Oil Corp ワックスの水素化処理方法
WO2007086299A1 (ja) * 2006-01-30 2007-08-02 Nippon Oil Corporation ワックスの水素化分解方法及び燃料基材の製造方法
JP2007204506A (ja) * 2006-01-30 2007-08-16 Nippon Oil Corp ワックスの水素化分解方法
JP2007204505A (ja) * 2006-01-30 2007-08-16 Nippon Oil Corp 水素化処理方法
JP2007211097A (ja) * 2006-02-08 2007-08-23 Nippon Oil Corp ワックスの水素化処理方法
JP2007211217A (ja) * 2006-02-13 2007-08-23 Nippon Oil Corp 合成油の水素化処理方法
WO2007094199A1 (ja) * 2006-02-13 2007-08-23 Nippon Oil Corporation 合成油の水素化処理方法及び燃料基材の製造方法
WO2007097235A1 (ja) * 2006-02-21 2007-08-30 Nippon Oil Corporation 燃料基材の製造方法
JP2007224091A (ja) * 2006-02-21 2007-09-06 Nippon Oil Corp 燃料基材の製造方法
JP2007238870A (ja) * 2006-03-10 2007-09-20 Nippon Oil Corp 炭化水素油の製造方法および炭化水素油
WO2007114001A1 (ja) * 2006-03-30 2007-10-11 Nippon Oil Corporation ワックスの水素化分解方法
JP2007289931A (ja) * 2006-03-30 2007-11-08 Nippon Oil Corp 水素化分解触媒および燃料基材の製造方法
JP2007269897A (ja) * 2006-03-30 2007-10-18 Nippon Oil Corp ワックスの水素化分解方法
JP2007269902A (ja) * 2006-03-30 2007-10-18 Nippon Oil Corp ワックスの水素化分解方法
JP2007269901A (ja) * 2006-03-30 2007-10-18 Nippon Oil Corp 合成油の処理方法、水素製造用炭化水素油及びディーゼル燃料基材用炭化水素油
JP2007269899A (ja) * 2006-03-30 2007-10-18 Nippon Oil Corp 合成油の処理方法、灯油煙点向上剤用炭化水素油及びディーゼル燃料基材用炭化水素油
JP2007270061A (ja) * 2006-03-31 2007-10-18 Nippon Oil Corp 液体燃料基材の製造方法
JP2007270058A (ja) * 2006-03-31 2007-10-18 Nippon Oil Corp 灯油基材の製造方法
JP2007270067A (ja) * 2006-03-31 2007-10-18 Nippon Oil Corp ワックスの水素化分解方法及び燃料基材の製造方法
WO2007113991A1 (ja) * 2006-03-31 2007-10-11 Nippon Oil Corporation ワックスの水素化分解方法及び燃料基材の製造方法
WO2007114012A1 (ja) * 2006-03-31 2007-10-11 Nippon Oil Corporation 水素化分解触媒および燃料基材の製造方法
JP2007270060A (ja) * 2006-03-31 2007-10-18 Nippon Oil Corp ワックスの水素化処理方法
JP5925406B2 (ja) * 2006-03-31 2016-06-01 Jxエネルギー株式会社 水素化分解触媒の製造方法および燃料基材の製造方法
JP2015193007A (ja) * 2006-03-31 2015-11-05 Jx日鉱日石エネルギー株式会社 水素化分解触媒および燃料基材の製造方法
JP5408879B2 (ja) * 2006-11-21 2014-02-05 Jx日鉱日石エネルギー株式会社 液体燃料の製造方法
WO2008062595A1 (fr) * 2006-11-21 2008-05-29 Nippon Oil Corporation Procédé de fabrication d'un combustible liquide
AU2007322907B2 (en) * 2006-11-21 2011-11-24 Nippon Oil Corporation Process for producing liquid fuel
JP2013079402A (ja) * 2006-11-21 2013-05-02 Jx Nippon Oil & Energy Corp 液体燃料の製造方法
JP2008169356A (ja) * 2007-01-15 2008-07-24 Nippon Oil Corp 液体燃料の製造方法
JP5268177B2 (ja) * 2007-05-01 2013-08-21 Jx日鉱日石エネルギー株式会社 液体燃料の製造方法
WO2008139909A1 (ja) * 2007-05-01 2008-11-20 Nippon Oil Corporation 液体燃料の製造方法
JP2012211344A (ja) * 2012-08-08 2012-11-01 Jx Nippon Oil & Energy Corp ワックスの水素化分解方法

Also Published As

Publication number Publication date
AU2003266527A1 (en) 2004-04-19
EP1547683B1 (en) 2017-01-11
JPWO2004028688A1 (ja) 2006-01-19
EP1547683A1 (en) 2005-06-29
US20050145541A1 (en) 2005-07-07
EP1547683A4 (en) 2010-11-10
MY147201A (en) 2012-11-14
JP4418368B2 (ja) 2010-02-17

Similar Documents

Publication Publication Date Title
WO2004028688A1 (ja) 水素化分解触媒および液状炭化水素の製造方法
AU2005225266B2 (en) Hydrocracking catalyst and process for producing liquid hydrocarbon
JP2021511958A (ja) 炭化水素をリフォーミングするための改質usy型ゼオライト触媒
JPS58134035A (ja) アルカン類の脱水素環化法
JPH02113090A (ja) 炭化水素供給原料の接触熱分解法
RU2100074C1 (ru) Композиция, пригодная для использования в качестве основного катализатора гидрогенизационных процессов, каталитическая композиция для превращения углеводородных нефтепродуктов и способ превращения углеводородов нефтепродуктов
JP2007533807A5 (ja)
US4882040A (en) Reforming process
JPS5824352A (ja) 結晶質シリカゼオライト含有触媒及びそれを使用する炭化水素の水素化処理
KR20140133823A (ko) 티타니아-결합된 제올라이트 eu-2 촉매 조성물 및 상기 조성물의 제조 방법 및 사용 방법
JP5303110B2 (ja) 液体燃料の製造方法
JP6046776B2 (ja) 水素化分解触媒および燃料基材の製造方法
JPS581973B2 (ja) ケツシキウセイアルミノケイサンエンスイテンヘンカンシヨクバイノ セイホウ
JP4267936B2 (ja) 水素化分解触媒および液状炭化水素の製造方法
JP4009575B2 (ja) 芳香族炭化水素化合物の転化用触媒および転化方法
JPH09155198A (ja) 芳香族炭化水素化合物の転化用触媒および転化方法
JP5408879B2 (ja) 液体燃料の製造方法
JP2004255242A (ja) 水素化分解触媒および液状炭化水素の製造方法
FI86603B (fi) Katalytisk komposit foer konvertering av kolvaeten.
JPH09187658A (ja) 芳香族炭化水素化合物の転化用触媒および転化方法
JP2007289931A (ja) 水素化分解触媒および燃料基材の製造方法
JPS63267442A (ja) 中間留分生成用水素化分解触媒
JPS6128718B2 (ja)
JP2007269824A (ja) 液体燃料基材の製造方法
JP2008169356A (ja) 液体燃料の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004539467

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11074567

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2003798413

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003798413

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003798413

Country of ref document: EP