WO2007113991A1 - ワックスの水素化分解方法及び燃料基材の製造方法 - Google Patents

ワックスの水素化分解方法及び燃料基材の製造方法 Download PDF

Info

Publication number
WO2007113991A1
WO2007113991A1 PCT/JP2007/054775 JP2007054775W WO2007113991A1 WO 2007113991 A1 WO2007113991 A1 WO 2007113991A1 JP 2007054775 W JP2007054775 W JP 2007054775W WO 2007113991 A1 WO2007113991 A1 WO 2007113991A1
Authority
WO
WIPO (PCT)
Prior art keywords
wax
catalyst
hydrocracking
catalyst layer
middle distillate
Prior art date
Application number
PCT/JP2007/054775
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Seki
Hirofumi Konno
Masahiro Higashi
Original Assignee
Nippon Oil Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corporation filed Critical Nippon Oil Corporation
Priority to CN200780011340.2A priority Critical patent/CN101410490B/zh
Priority to AU2007232039A priority patent/AU2007232039B2/en
Publication of WO2007113991A1 publication Critical patent/WO2007113991A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/12Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1022Fischer-Tropsch products

Definitions

  • Wax hydrocracking method and fuel substrate manufacturing method Wax hydrocracking method and fuel substrate manufacturing method
  • the present invention relates to a method for hydrocracking wax and a method for producing a fuel substrate.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-255241
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-255242 Disclosure of the invention
  • the olefin wax content tends to depend on the type of catalyst used in the synthesis and the reaction conditions.
  • FT wax is useful as a raw material for clean fuel.
  • Patent Documents 1 to 3 Even with this technology, it has been found difficult to maintain the middle distillate selectivity at a high level, and the yield of the middle distillate is reduced. For this reason, even if the wax contains olefin, a technology capable of sufficiently maintaining middle distillate selectivity in hydrocracking is necessary. However, an effective means for realizing this has not yet been developed. It is a fact.
  • the present invention has been made in view of the above circumstances, and a hydrocracking method of wax that makes it possible to maintain a high middle distillate selectivity when hydrocracking an olefin-containing wax.
  • Another object of the present invention is to provide a method for producing a fuel substrate using such a hydrocracking method.
  • the wax hydrocracking method of the present invention has a first catalyst layer containing a catalyst having substantially no acid function and a hydrogenation resolution in the presence of hydrogen.
  • the second catalyst layer containing the catalyst is provided in this order.
  • the catalyst means that the catalyst has no acid property or the catalyst has an acid property. Means that the acid sites do not participate in the isomerization and decomposition of paraffin or do not participate in the polymerization of olefins.
  • the wax containing olefins is The middle distillate selectivity in the hydrocracking of wax can be maintained at a high level, and the yield of components useful as a fuel base from which wax power can also be obtained should be ensured. Is possible.
  • the reaction temperature in the catalyst layer locally rises due to the exothermic reaction when the polyolefin comes into contact with the catalyst having hydrogenation ability. Conceivable.
  • the hydrocracking method of the wax of the present invention the olefin-containing wax is brought into contact with the catalyst layer that has an acid function and contains the catalyst, so that the hydrogenation resolution that is subsequently contacted can be reduced. It is inferred that the exothermic reaction with the existing catalyst was effectively suppressed, and the middle distillate selectivity of the hydrocracking catalyst was sufficiently maintained.
  • the catalyst contained in the first catalyst layer includes a support and a metal belonging to Group VIII supported on the support, and the amount of metal supported Is preferably 0.0005-0.010 mass% with respect to the carrier.
  • the support contains one or more oxides selected from the group consisting of silica, alumina, and zircoure force.
  • the wax hydrocracking method of the present invention is preferably obtained by the above-described wax power, fischer-tropsch synthesis method.
  • the catalyst contained in the second catalyst layer preferably contains ultra-stabilized Y-type zeolite.
  • the present invention provides a method for producing a fuel substrate, characterized in that a fuel substrate is obtained by fractionating the hydrocracked product obtained by the wax hydrocracking method of the present invention. .
  • a fuel substrate is obtained by fractionating the hydrocracked product obtained by the wax hydrocracking method of the present invention.
  • a wax hydrocracking method and a powerful hydrocracking method capable of maintaining the middle distillate selectivity at the time of hydrocracking olefin-containing wax at a high level.
  • the manufacturing method of the fuel base material to be used can be provided.
  • FIG. 1 is a flow diagram showing an example of a hydrocarbon oil (fuel base material) production apparatus in which the wax hydrocracking method of the present invention is carried out.
  • FIG. 2 is a flowchart showing another example of a hydrocarbon oil (fuel base material) production apparatus in which the wax hydrocracking method of the present invention is carried out.
  • FIG. 1 is a flow diagram showing an example of a hydrocarbon oil (fuel base) production apparatus in which the wax hydrocracking method of the present invention is carried out.
  • the hydrocarbon oil production equipment 100 shown in Fig. 1 is a flow diagram showing an example of a hydrocarbon oil (fuel base) production apparatus in which the wax hydrocracking method of the present invention is carried out.
  • the hydrocarbon oil production equipment 100 shown in Fig. 1 is a flow diagram showing an example of a hydrocarbon oil (fuel base) production apparatus in which the wax hydrocracking method of the present invention is carried out.
  • a hydrocarbon oil producing apparatus 100 shown in Fig. 1 is a reaction tower 10 for hydrocracking wax containing olefin, and a hydrocracked product that has passed through the reaction tower 10 is fractionated into a desired fraction. And a distillation column 20 for the purpose.
  • a supply line L1 for supplying wax to the reaction tower 10 is connected to the top of the reaction tower 10, and a line L2 for introducing hydrogen is connected to the line L1. Wax and hydrogen are supplied to the reaction tower 10 through these lines.
  • the bottom of the reaction tower 10 and the distillation tower 20 are connected by a transfer line L3, and the wax (hydrocracked product) that has passed through the reaction tower 10 is sent to the distillation tower 20 through this line L3.
  • the reaction tower 10 includes a first catalyst layer 12 containing a catalyst that does not substantially have an acid function, and a second catalyst layer containing a catalyst having hydrogenation resolution. 14 in that order from the top of the tower.
  • the wax of the present invention The hydrocracking method of is carried out.
  • Examples of the wax containing olefin used in the reaction tower 10 include waxes containing preferably 10% by mass or more, more preferably 15% by mass or more, and even more preferably 20% by mass or more. If the content of olefin is 10% by mass or more, the middle distillate selectivity will be lowered, so that the middle distillate selectivity maintaining effect of the present invention is particularly effective when hydrocracking such wax. More effective.
  • the wax has no particular limitation on the number of carbon atoms, and examples thereof include those containing hydrocarbons having 20 or more carbon atoms, preferably about 20 to 80 carbon atoms. In the present embodiment, it is more preferable that the wax contains 80% by mass or more of hydrocarbons having 20 to 80 carbon atoms!
  • the wax preferably contains a normal paraffin having 20 or more carbon atoms, more preferably 20 to 80 carbon atoms, preferably 75 mass% or more, more preferably 80 mass% or more. It is subjected to hydrocracking treatment in the reaction tower 10.
  • Various waxes of petroleum type and synthetic type can be used as a raw material as long as they contain olefin.
  • a particularly preferred wax is a so-called FT wax produced by a Fitzia-Tropsch synthesis method (FT synthesis method).
  • the FT tuss containing 80% by mass or more of hydrocarbons having 20 or more carbon atoms obtained by the FT synthesis method has 20 masses of olefins depending on the type of catalyst used in the synthesis and the reaction conditions. % May be included.
  • the middle distillate selectivity is sufficient. Can be maintained.
  • the catalyst contained in the first catalyst layer 12 is not particularly limited as long as it does not substantially have an acid function.
  • the catalyst is selected from the group consisting of silica, alumina, and zirconia force.
  • a carrier comprising one or more oxides carrying a metal belonging to Group VIII of the periodic table as an active metal.
  • Group VIII metal examples include cobalt, nickel, rhodium, palladium, iridium and platinum. Of these, nickel, rhodium, palladium, iri Nickel, palladium and platinum are more preferred, with zinc and platinum being preferred. These metals can be used alone or in combination of two or more.
  • These metals can be supported on the above-mentioned carrier by a conventional method such as impregnation or ion exchange.
  • the amount of metal supported is 0.1 with respect to the support 001-0. 050 mass% in which it is favorable preferred, from 0.005 to 0.010 preferably from it forces the mass 0/0! / ⁇ . If the loading capacity force is less than 0.001% by mass, the amount of catalyst required to obtain a sufficient effect of maintaining the middle distillate selectivity will increase, resulting in an enormous reaction tower and reduced process economics. There is a tendency. On the other hand, if the supported amount exceeds 0.050% by mass, the amount of metal used is excessive for the effect of maintaining the middle distillate selectivity obtained, and the process economy tends to decrease.
  • the catalyst contained in the second catalyst layer 14 is not particularly limited as long as it has hydrogenation resolving power.
  • a carrier comprising a solid acid is included in the periodic table as an active metal. Examples include those carrying metals belonging to Group VIII.
  • the catalyst contained in the second catalyst layer 14 may have a hydroisomerization ability in addition to the hydrogenation ability.
  • Decomposition means a chemical reaction accompanied by a decrease in molecular weight
  • isomerization means conversion to another compound having a different carbon skeleton while maintaining the molecular weight and the number of carbon atoms constituting the molecule.
  • Examples of the solid acid contained in the carrier include ultra-stabilized Y-type (USY) zeolite, mordenite, j8 zeolite, ferrierite, SSZ-22, silica alumina phosphate, silica alumina, alumina boria and silica zirco. Your etc. are mentioned.
  • USY zeolite is preferably contained in the carrier.
  • USY zeolite is a super-stabilized version of Y-type zeolite by hydrothermal treatment and Z or acid treatment.
  • the Y-type zeolite has the fine pore structure called micropores of 20A or less that is inherent to Y-type zeolite.
  • the average particle size is not particularly limited, but is preferably 1.0 m or less, more preferably 0. or less.
  • the molar ratio of silica Z alumina is preferably 25 to 120, and more preferably 30 to 60.
  • USY zeolite, silica alumina as a more preferable carrier, USY zeolite, silica alumina, Among them, those containing one or more kinds of solid acids selected from the medium strengths of alumina boria and silica zircoure are listed. Of these, those comprising USY zeolite and silica alumina are particularly preferred.
  • the catalyst carrier can be produced by molding a mixture containing the solid acid and the binder.
  • the binder is not particularly limited, but alumina, silica, silica alumina, titania, and magnesia are preferred.
  • Group VIII metal examples include cobalt, nickel, rhodium, palladium, iridium, platinum, and the like. Of these, palladium and platinum are more preferred, with nickel, rhodium, palladium, iridium and platinum being preferred. These metals can be used alone or in combination of two or more.
  • These metals can be supported on the above-mentioned carrier by a conventional method such as impregnation or ion exchange.
  • the volume of each of the first catalyst layer and the second catalyst layer is not particularly limited.
  • the ratio of the volume VI of the first catalyst layer to the volume V2 of the second catalyst layer [V1ZV2] is preferably set to be 1Z20 to 1Z4. If this ratio is less than 1Z20, it tends to be difficult to ensure sufficient middle distillate selectivity, and if it exceeds 1Z4, the effect of maintaining the middle distillate selectivity obtained with respect to the amount of catalyst used can be obtained. Tends to be relatively small, and the economics of the process tend to decline.
  • the ratio [D2ZD1] of the thickness D2 of the second catalyst layer to the thickness D1 of the first catalyst layer is preferably in the range of 1Z20 to LZ4.
  • the hydrocracking of the wax in the reaction tower 10 can be carried out under the following reaction conditions.
  • the hydrogen partial pressure is preferably from 1 to 12 MPa, more preferably from 2 to 6 MPa.
  • Oh _1 force preferred, 0.5-3.
  • Oh _1 force ⁇ more preferred! / ⁇ .
  • Hydrogen / oil iti 200, 850NL /: L force is preferred, 350-650NL /: L force is preferred! / !.
  • LHSV liquid hourly space velocity
  • the reaction temperature in hydrocracking is preferably 160 to 350, more preferably 200 to 330 ° C.
  • the power for supplying the wax in the down flow, the order of the first catalyst layer 12 and the second catalyst layer 14 is reversed as necessary, and the supply is performed in the up flow. You can also do it. In this case, the hydrocracked wax is transferred from the top of the reaction tower 10 to the distillation tower 20.
  • the distillation column 20 a known distillation column can be used.
  • the wax (hydrocracked product) that has passed through the reaction column 10 is, for example, naphtha (fraction having a boiling point of 145 ° C or lower), kerosene fraction (fraction having a boiling point of 145 to 260 ° C), light oil fraction. Fractions (boiling point: 260 to 360 ° C) and wax fractions (boiling point: 360 ° C or higher).
  • the naphtha, kerosene fraction and light oil fraction used as the fuel substrate can be recovered from lines L4 to L6 connected to the distillation column 20, for example.
  • the wax hydrocracking method of the present invention is provided with the reaction tower 10 to perform hydrocracking of wax containing olefin.
  • the middle distillate selectivity can be maintained at a high level, and components useful as a fuel base material (especially, middle distillate containing kerosene distillate and light oil distillate) can be obtained in high yield. Monkey.
  • the wax (hydrocracked product) that has passed through the reaction tower 10 is, for example, an unreacted hydrogen gas or a light hydrocarbon gas having a hydrocarbon power of 4 or less carbon atoms in a gas-liquid separation tank, It may be supplied to the distillation column 20 after being separated into a liquid hydrocarbon composition oil composed of hydrocarbons having 5 or more carbon atoms.
  • FIG. 2 is a flowchart showing another example of a hydrocarbon oil (fuel base material) production apparatus in which the wax hydrocracking method of the present invention is carried out.
  • the hydrocarbon oil production apparatus 110 shown in FIG. 2 includes two reaction towers 30 and 40 connected in series via a transfer line L7 instead of the reaction tower 10 in the hydrocarbon oil production apparatus 100.
  • the configuration is the same as that of the device 100.
  • the reaction tower 30 includes the catalyst layer 16 similar to the first catalyst layer described above
  • the reaction tower 40 includes the catalyst layer 18 similar to the second catalyst layer described above.
  • the hydrogenolysis in the reaction tower 30 and the counter-response 40 can be performed under the following reaction conditions.
  • the hydrogen partial pressure is preferably 1 to 12 MPa, more preferably 2 to 6 MPa.
  • Hydrogen / oil iti 200, 850NL / L force is preferred, 350-650NL / L force is preferred! / ⁇ .
  • the reaction temperature in hydrocracking is preferably 160 to 350 ° C, more preferably 200 to 330 ° C.
  • Examples of the catalyst contained in the catalyst layer 16 include the above-described catalysts having substantially no acid function.
  • Examples of the catalyst contained in the catalyst layer 18 include the above-described catalysts having hydrogenation resolution.
  • the volumes of the catalyst layer 16 of the reaction tower 30 and the catalyst layer 18 of the reaction tower 40 are not particularly limited. However, in this embodiment, the catalyst layer 16 with respect to the volume V4 of the catalyst layer 18 is used.
  • the volume V3 ratio [V3ZV4] is preferably set to be 1Z20 ⁇ 1Z4. Further, when the cross-sectional area when the catalyst layer 16 and the catalyst layer 18 are cut along a plane perpendicular to the flow direction is constant regardless of the cutting position, the catalyst layer 1 8 with respect to the thickness D3 of the catalyst layer 16 shown in FIG. Thickness of D4 Ratio [D4 / D3] is preferably in the range of 1Z20 ⁇ : LZ4! /.
  • USY zeolite with an average particle size of 0.4 ⁇ m (silica Z alumina molar ratio: 40), silica alumina (alumina content 14 mass%) and alumina binder as a binder were mixed and kneaded at a weight ratio of 3:57:40.
  • This carrier was impregnated with an aqueous chloroplatinic acid solution to carry platinum. 120 ° C And then dried at 500 ° C. for 1 hour to obtain catalyst 1.
  • the supported amount of platinum was 0.8% by mass with respect to the carrier.
  • a nickel nitrate aqueous solution was impregnated on a support made of alumina having an average pore diameter of 100 A in a cylindrical shape having a diameter of 1.5 mm and a length of about 3 mm, thereby supporting nickel. This was dried at 120 ° C. for 3 hours and then calcined at 500 ° C. for 1 hour to obtain Catalyst 2. The supported amount of nickel was 0.007% by mass with respect to the carrier.
  • a support formed by molding alumina having an average pore diameter of 100 A into a cylindrical shape having a diameter of 1.5 mm and a length of about 3 mm was impregnated with an aqueous chloroplatinic acid solution to support platinum. This was dried at 120 ° C. for 3 hours and then calcined at 500 ° C. for 1 hour to obtain Catalyst 3.
  • the supported amount of platinum was 0.005% by mass with respect to the carrier.
  • the fixed bed reactor was packed with 15 ml of catalyst 2 on the upstream side (upper layer) and 100 ml of catalyst 1 on the downstream side (lower layer), and a two-layer catalyst layer was provided in the reactor. Next, hydrogen was introduced into the reactor, and reduction treatment was performed at 345 ° C for 4 hours.
  • Equation 1 Dividing M Solution Beef Sheep (( ⁇ ⁇ ⁇ %)) _-(Raw (boiling point oil 3 and 60 degrees Celsius) Mass)) x lO... (1) The decomposition rate was calculated as a result of gas chromatographic measurement of hydrocracked products (product oil and product gas) of FT wax.
  • the product oil obtained by hydrocracking the wax was distilled to obtain a middle distillate having a boiling point of 145 ° C to 360 ° C.
  • middle distillate selectivity (mass%) and middle distillate yield (mass%) relative to the raw material FT wax were determined.
  • Table 1 shows the results obtained.
  • the middle distillate selectivity is the ratio (mass%) of the middle distillate having a boiling point of 145 ° C to 360 ° C in the distillate having a boiling point of 360 ° C or less obtained under the above hydrocracking conditions.
  • the wax was hydrocracked in the same manner as in Example 1 except that 10 ml of Catalyst 3 instead of Catalyst 2 was charged on the upstream side (upper layer) of the fixed bed reactor in Example 1.
  • the hydrogenolysis was performed at the same reaction temperature as in Example 1 without adjusting the reaction temperature based on the decomposition rate.
  • the decomposition rate at this time was 79%.
  • the hydrocracking of the wax was carried out in the same manner as in Example 1 except that the upstream side (upper layer) of the fixed bed reactor in Example 1 was not filled with catalyst 2.
  • the hydrogenolysis was performed at the same reaction temperature as in Example 1 without adjusting the reaction temperature based on the decomposition rate.
  • the decomposition rate at this time was 84%.
  • the fuel hydrocracking method and the fuel hydrocracking method using a powerful hydrocracking method that make it possible to maintain the middle distillate selectivity at the time of hydrocracking olefin-containing wax at a high level.
  • a method for producing a material can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

本発明のワックスの水素化分解方法は、水素存在下、オレフィンを含有するワックスを、実質的に酸機能を有していない触媒を含む第1の触媒層、及び、水素化分解能を有する触媒を含む第2の触媒層にこの順序で流通させることを特徴とする。

Description

明 細 書
ワックスの水素化分解方法及び燃料基材の製造方法
技術分野
[0001] 本発明は、ワックスの水素化分解方法及び燃料基材の製造方法に関する。
背景技術
[0002] 近年、環境負荷低減の観点から、硫黄分及び芳香族炭化水素の含有量が低ぐ環 境にやさしいクリーンな液体燃料が求められている。最近では、ガソリン及び軽油な どの液体燃料に対する硫黄分規制が急速に厳しくなつており、例えば、軽油に含ま れる硫黄分の規制値は 500ppmから 50ppmへと引き下げられている。そこで、石油 業界においては、クリーン燃料の製造方法として、一酸化炭素と、アスファルトや石炭 のガス化又は天然ガスの改質によって得られる水素とを原料としたフィッシャー ·トロ プシュ合成法 (以下、「FT合成法」と略す。)が検討されている。 FT合成法によれば、 ノ フィン含有量に富み、かつ硫黄分を含まな 、液体燃料基材を製造することがで きるため、その期待は非常に大きい。また、 FT合成法においてはワックスが生成し得 る力 このワックス(以下、「FTワックス」という場合もある。)を水素化分解し、その水素 化分解物をクリーン
燃料の基材として用いることも可能である。
[0003] ワックスを水素化分解して燃料基材を製造する場合、燃料基材として有用な成分は 水素化分解物のうちの中間留分であることから、この中間留分の収率が燃料製造プ 口セスの経済性向上に重要となる。そこで、ワックスの水素化分解における中間留分 選択性の向上を目的として、例えば、ワックスを、水素存在下、結晶性アルミノシリケ ートと周期律表第 VIb属の金属および Zまたは第 VIII属の金属とを含有する触媒に 接触させて水素化分解する方法が提案されている (例えば、特許文献 1〜3を参照) 特許文献 1:国際公開第 2004Z028688号パンフレット
特許文献 2:特開 2004— 255241号公報
特許文献 3:特開 2004— 255242号公報 発明の開示
発明が解決しょうとする課題
[0004] ところで、 FTワックスは、合成時に使用する触媒の種類や反応条件の違いによって そのォレフィン含有量が左右される傾向にある。上述したように FTワックスはクリーン 燃料の原料として有用であるが、本発明者らの検討によると、ォレフィンが多く含まれ る FTワックスを水素化分解しょうとすると、上記特許文献 1〜3に記載の技術であって も中間留分選択性を高水準に維持することが困難となり、中間留分の収率が低下し てしまうことが判明している。そのため、ワックスにォレフィンが含まれる場合であって も水素化分解における中間留分選択性を十分維持できる技術が必要であるが、これ を実現できる有効な手段は未だ開発されて 、な 、のが実情である。
[0005] 本発明は、上記実情に鑑みてなされたものであり、ォレフィン含有ワックスを水素化 分解する際の中間留分選択性を高水準に維持することを可能とするワックスの水素 化分解方法及びかかる水素化分解方法を用いる燃料基材の製造方法を提供するこ とを目的とする。
課題を解決するための手段
[0006] 本発明者らは、上記課題を解決するべく鋭意検討した結果、ォレフィンが含まれる ワックスを、水素化分解能を有する触媒に接触させる前に特定の触媒と接触させるこ とにより、分解生成物における中間留分 (沸点 145〜360°Cの留分)の含有量を高水 準に維持でき、その結果、燃料基材として有用な成分(中間留分)を収率よく得ること ができることを見出し、本発明を完成するに至った。
[0007] すなわち、本発明のワックスの水素化分解方法は、水素存在下、ォレフィンを含有 するワックスを、実質的に酸機能を有していない触媒を含む第 1の触媒層及び水素 化分解能を有する触媒を含む第 2の触媒層にこの順序で流通させることを特徴とす る。
[0008] 本発明にお 、て「実質的に酸機能を有して 、な 、触媒」とは、触媒が酸性質を有し ていない、又は、触媒が酸性質を有している場合には、その酸点がパラフィンの異性 化及び分解に関与しない、或いは、ォレフィンの重合に関与しないことを意味する。
[0009] 本発明のワックスの水素化分解方法によれば、ォレフィンを含有するワックスを上記 の触媒層に流通させることにより、ワックスの水素化分解における中間留分選択性を 高水準に維持することができ、ワックス力も取得される燃料基材として有用な成分の 収率を十分確保することが可能となる。
[0010] 本発明によって上記の効果が奏される理由は必ずしも明らかではないが、本発明 者らは以下のとおり推察する。まず、中間留分選択性の低下の大きな要因は、ォレフ インが水素化分解能を有する触媒に接触する際の発熱反応によって触媒層におけ る反応温度が局所的に上昇してしまうことにあると考えられる。これに対して、本発明 のワックスの水素化分解方法によれば、酸機能を有して 、な 、触媒を含む触媒層に ォレフィン含有ワックスを接触させることで、その後に接触する水素化分解能を有す る触媒での発熱反応が有効に抑制され、水素化分解触媒の中間留分選択性を十分 維持することができたものと推察される。
[0011] 本発明のワックスの水素化分解方法においては、第 1の触媒層に含まれる触媒が、 担体と、この担体上に担持された第 VIII族に属する金属とを含み、金属の担持量が 担体に対して 0. 005-0. 010質量%であるものであることが好ましい。
[0012] また、上記担体が、シリカ、アルミナ及びジルコユア力 なる群より選択される 1種以 上の酸化物を含むものであることが好まし 、。
[0013] 本発明のワックスの水素化分解方法においては、上記ワックス力 フイツシャ一.トロ プシュ合成法により得られるものであることが好ましい。
[0014] 本発明のワックスの水素化分解方法においては、第 2の触媒層に含まれる触媒が、 超安定化 Y型ゼオライトを含むものであることが好ましい。
[0015] また、本発明は、上記本発明のワックスの水素化分解方法によって得られた水素化 分解物を分留し燃料基材を得ることを特徴とする燃料基材の製造方法を提供する。 力かる燃料基材の製造方法によれば、ォレフィンを含有するワックスから燃料基材を 経済性よく製造することが可能となる。
発明の効果
[0016] 本発明によれば、ォレフィン含有ワックスを水素化分解する際の中間留分選択性を 高水準に維持することを可能とするワックスの水素化分解方法及び力かる水素化分 解方法を用いる燃料基材の製造方法を提供することができる。 図面の簡単な説明
[0017] [図 1]本発明のワックスの水素化分解方法が実施される炭化水素油 (燃料基材)製造 装置の一例を示すフロー図である。
[図 2]本発明のワックスの水素化分解方法が実施される炭化水素油 (燃料基材)製造 装置の他の例を示すフロー図である。
符号の説明
[0018] 10, 30, 40· ··反応塔、 12…第 1の触媒層、 14…第 2の触媒層、 16· ··触媒層(第 1 の触媒層)、 18· ··触媒層 (第 2の触媒層)、 20· ··蒸留塔、 100, 110· ··炭化水素油製 造装置。
発明を実施するための最良の形態
[0019] 以下、添付図面を参照しながら、本発明の好適な実施形態について詳細に説明す る。なお、図面の説明において、同一または相当要素には同一の符号を付し、重複 する説明は省略する。
[0020] 図 1は、本発明のワックスの水素化分解方法が実施される炭化水素油 (燃料基材) 製造装置の一例を示すフロー図である。図 1に示される炭化水素油製造装置 100は
、ォレフィンを含有するワックスから、燃料基材として有用な成分が含まれる炭化水素 油を製造する装置である。
[0021] 図 1に示される炭化水素油製造装置 100は、ォレフィンを含有するワックスを水素 化分解する反応塔 10と、反応塔 10を経た水素化分解物を所望の留分に分留するた めの蒸留塔 20とを備えている。そして、反応塔 10の塔頂部にはワックスを反応塔 10 に供給するための供給ライン L1が接続されており、さらにこのライン L1には水素が導 入されるライン L2が接続されて 、る。これらのラインを通じて反応塔 10にワックス及び 水素が供給される。また、反応塔 10の底部と蒸留塔 20とが移送ライン L3で接続され ており、反応塔 10を経たワックス (水素化分解物)はこのライン L3を通じて蒸留塔 20 に送られる。
[0022] 本実施形態においては、反応塔 10が、実質的に酸機能を有していない触媒を含 む第 1の触媒層 12、及び、水素化分解能を有する触媒を含む第 2の触媒層 14を塔 頂部側からこの順で有している。そして、この反応塔 10において、本発明のワックス の水素化分解方法が実施される。
[0023] 反応塔 10に供されるォレフインを含有するワックスとしては、ォレフィンを好ましくは 10質量%以上、より好ましくは 15質量%以上、さらにより好ましくは 20質量%以上含 有するワックスが挙げられる。ォレフィンの含有量が 10質量%以上であると中間留分 選択性の低下の度合いが大きくなるため、このようなワックスを水素化分解する場合 は特に本発明による中間留分選択性の維持効果がより有効に発揮される。
[0024] ワックスとしては、その炭素数については特に制限はないが、例えば、炭素数 20以 上、好ましくは炭素数 20〜80程度の炭化水素を含むものが挙げられる。本実施形 態においては、ワックスが炭素数 20〜80の炭化水素を 80質量%以上含むものであ ることがより好まし!/、。
[0025] また、本実施形態においては、好ましくは炭素数 20以上、より好ましくは炭素数 20 〜80のノルマルパラフィンを、好ましくは 75質量%以上、より好ましくは 80質量%以 上含有するワックスが反応塔 10での水素化分解処理に供される。
[0026] ワックスは、ォレフィンを含有するものであれば特に制限はなぐ石油系および合成 系の各種ワックスを原料にすることができる。特に好ましいワックスとしては、フイツシャ 一 ·トロプシュ合成法 (FT合成法)により製造される 、わゆる FTワックスを挙げること ができる。
[0027] FT合成法によって得られた炭素数 20以上の炭化水素を 80質量%以上含む FTヮ ッタスには、合成に用 ヽた触媒の種類や反応条件等の違 、によりォレフィンが 20質 量%以上含まれることがある。このようなワックスを水素化分解する場合、特に中間留 分選択性の低下を抑制することが困難となるが、本発明のワックスの水素化分解方 法によれば、中間留分選択性を十分維持することができる。
[0028] 第 1の触媒層 12に含まれる触媒としては、実質的に酸機能を有していないものであ れば特に限定されないが、例えば、シリカ、アルミナ及びジルコユア力 なる群より選 択される 1種以上の酸化物を含んで構成される担体に、活性金属として周期律表第 VIII族に属する金属を担持したものが挙げられる。
[0029] 第 VIII族の金属としては、具体的にはコバルト、ニッケル、ロジウム、パラジウム、イリ ジゥム及び白金などが挙げられる。これらのうち、ニッケル、ロジウム、パラジウム、イリ ジゥム及び白金が好ましぐニッケル、パラジウム及び白金がより好ましい。これらの金 属は 1種を単独で又は 2種以上を組み合わせて使用できる。
[0030] これらの金属は、含浸やイオン交換等の常法によって上述の担体に担持させること ができる。担持する金属量は、担体に対して 0. 001-0. 050質量%であることが好 ましく、 0. 005〜0. 010質量0 /0であること力より好まし!/ヽ。力力る担持量力 0. 001 質量%未満であると、中間留分選択性の維持効果を十分得るために必要とする触媒 量が増えることで反応塔が巨大化し、プロセスの経済性が低下する傾向にある。一方 、上記担持量が 0. 050質量%を超えると、得られる中間留分選択性の維持効果に 対して使用する金属量が過剰となり、プロセスの経済性が低下する傾向にある。
[0031] 第 2の触媒層 14に含まれる触媒としては水素化分解能を有して ヽるものであればよ ぐ例えば、固体酸を含んで構成される担体に、活性金属として周期律表第 VIII族に 属する金属を担持したものが挙げられる。また、第 2の触媒層 14に含まれる触媒は、 水素化分解能以外に水素化異性ィ匕能を有していてもよい。なお、分解とは分子量の 低下を伴う化学反応を意味し、異性化とは分子量及び分子を構成する炭素数を維持 したまま、炭素骨格の異なる他の化合物への転換を意味する。
[0032] 担体に含まれる固体酸としては、例えば、超安定化 Y型 (USY)ゼォライト、モルデ ナイト、 j8ゼォライト、フェリエライト、 SSZ— 22、シリカアルミナフォスフェート、シリカ アルミナ、アルミナボリア及びシリカジルコユアなどが挙げられる。これらのうち USY ゼォライトが担体に含まれることが好ましい。 USYゼォライトは、 Y型のゼォライトを水 熱処理及び Z又は酸処理により超安定化したものであり、 Y型ゼオライトが本来有す る 20A以下のミクロ細孔と呼ばれる微細細孔構造にカ卩え、 20〜: LOOAの範囲に新 たな細孔が形成されている。担体として USYゼォライトを使用する場合、その平均粒 子径に特に制限は無いが、好ましくは 1. 0 m以下、より好ましくは 0. 以下で ある。また、 USYゼォライトにおいて、シリカ Zアルミナのモル比率 (アルミナに対する シリカのモル比率;以下、「シリカ/アルミナ比」という。)は 25〜120であると好ましく 、 30〜60であるとより好ましい。特に、平均粒子径 0. 以下、且つ、シリカ Zァ ルミナ比 30以上の USYゼォライトを用いるのが好ま U、。
[0033] 本実施形態にぉ 、て更に好適な担体としては、 USYゼォライトと、シリカアルミナ、 アルミナボリア及びシリカジルコユアの中力 選ばれる 1種類以上の固体酸とを含ん で構成されるものが挙げられる。これらのうち、 USYゼォライトとシリカアルミナとを含 んで構成されるものが特に好まし 、。
[0034] 触媒担体は、上記固体酸とバインダーとを含む混合物を成形して製造することがで きる。バインダーとしては、特に制限はないが、アルミナ、シリカ、シリカアルミナ、チタ 二了、マグネシアが好ましぐアルミナがより好ましい。
[0035] 第 VIII族の金属としては、具体的にはコバルト、ニッケル、ロジウム、パラジウム、イリ ジゥム、白金などが挙げられる。これらのうち、ニッケル、ロジウム、パラジウム、イリジ ゥム及び白金が好ましぐパラジウム及び白金がより好ましい。これらの金属は 1種を 単独で又は 2種以上を組み合わせて使用できる。
[0036] これらの金属は、含浸やイオン交換等の常法によって上述の担体に担持させること ができる。
[0037] 第 1の触媒層及び第 2の触媒層のそれぞれの体積は特に限定されないが、本発明 においては第 2の触媒層の体積 V2に対する第 1の触媒層の体積 VIの比 [V1ZV2 ]が 1Z20〜1Z4となるように設定することが好ましい。かかる比が、 1Z20未満であ ると中間留分選択性を十分に確保することが困難となる傾向にあり、 1Z4を越えると 触媒の使用量に対して得られる中間留分選択性の維持効果が相対的に小さくなり、 プロセスの経済性が低下する傾向にある。
[0038] また、反応塔 10が有する第 1の触媒層及び第 2の触媒層を流れ方向に垂直な平面 で切断したときの断面積が切断位置によらず一定である場合、図 1に示される第 1の 触媒層の厚み D1に対する第 2の触媒層の厚み D2の比 [D2ZD1]を 1Z20〜: LZ4 の範囲内とすることが好ましい。
[0039] 反応塔 10でのワックスの水素化分解は、次のような反応条件下で行うことができる。
水素分圧は、 l〜12MPaが好ましぐ 2〜6MPaがより好ましい。ワックスの液空間速 度(LHSV) iま、 0. 2〜5. Oh_1力好ましく、 0. 5〜3. Oh_1力 ^より好まし!/ヽ。水素/油 itiま、 200〜850NL/:L力好ましく、 350〜650NL/:L力より好まし!/ヽ。
[0040] なお、本明細書において、「: LHSV (liquid hourly space velocity;液空間速度)」と は、触媒が充填されている触媒層の容量当たりの、標準状態(25°C、 101325Pa)に おける原料油(ォレフインを含むワックス)の体積流量のことをいい、単位「h_1」は時 間(hour)の逆数を示す。また、水素 Z油比における水素容量の単位である「NL」は 、正規状態(0°C、 101325Pa)における水素容量 (L)を示す。
[0041] また、水素化分解における反応温度は、 160〜350でカ 子ましく、 200〜330°C力 より好まし 、。
[0042] なお、図 1に示される反応塔 10ではワックスをダウンフローで供給する力 必要に応 じて第 1の触媒層 12及び第 2の触媒層 14の順序を逆にし、アップフローで供給する こともできる。この場合、水素化分解処理を経たワックスは反応塔 10の塔頂部から蒸 留塔 20へと移送される。
[0043] 蒸留塔 20としては、公知の蒸留塔を使用できる。蒸留塔 20では、反応塔 10を経た ワックス (水素化分解物)が、例えば、ナフサ (沸点 145°C以下の留分)、灯油留分( 沸点 145〜260°Cの留分)、軽油留分 (沸点 260〜360°Cの留分)、ワックス留分 (沸 点 360°C以上の留分)のように所望の留分に分別される。燃料基材として利用される ナフサ、灯油留分及び軽油留分はそれぞれ、例えば、蒸留塔 20に接続されたライン L4〜L6から回収できる。
[0044] 上記の炭化水素油製造装置 100によれば、本発明のワックスの水素化分解方法が 実施される反応塔 10を備えることにより、ォレフィンを含有するワックスを水素化分解 する場合であっても中間留分選択性を高水準に維持することができ、燃料基材として 有用な成分 (特には、灯油留分及び軽油留分が含まれる中間留分)を収率よく得るこ とがでさる。
[0045] 本実施形態では、反応塔 10を経たワックス (水素化分解物)は、例えば、気液分離 槽で、未反応水素ガスや炭素数 4以下の炭化水素力 なる軽質炭化水素ガスと、炭 素数 5以上の炭化水素からなる液状の炭化水素組成油とに分離された後、蒸留塔 2 0に供給されてもよい。
[0046] 図 2は、本発明のワックスの水素化分解方法が実施される炭化水素油 (燃料基材) 製造装置の他の例を示すフロー図である。図 2に示される炭化水素油製造装置 110 は、炭化水素油製造装置 100における反応塔 10に代えて、移送ライン L7を介して 直列に接続された 2つの反応塔 30及び 40を備えていること以外は炭化水素油製造 装置 100と同様の構成を有している。炭化水素油製造装置 110では、反応塔 30が 上述した第 1の触媒層と同様の触媒層 16を備え、反応塔 40が上述した第 2の触媒 層と同様の触媒層 18を備えており、これら 2つの反応塔 30及び 40によって本発明の ワックスの水素化分解方法が実施される。
[0047] 反応塔 30及び反応答 40での水素化分解は、次のような反応条件下で行うことがで きる。水素分圧は、 l〜12MPaが好ましぐ 2〜6MPa力 り好ましい。ワックスの液空 f¾速度(LHSV) iま、 0. 2〜5. 0h_1力好ましく、 0. 5〜3. 0h_1力 ^より好まし!/ヽ。水素 /油 itiま、 200〜850NL/L力好ましく、 350〜650NL/L力より好まし!/ヽ。また、 水素化分解における反応温度は、 160〜350°Cが好ましぐ 200〜330°Cがより好ま しい。
[0048] 触媒層 16に含まれる触媒としては、上述した実質的に酸機能を有していない触媒 が挙げられる。また、触媒層 18に含まれる触媒としては、上述した水素化分解能を有 する触媒が挙げられる。
[0049] また、反応塔 30の触媒層 16及び反応塔 40の触媒層 18のそれぞれの体積は特に 限定されな ヽが、本実施形態にぉ ヽては触媒層 18の体積 V4に対する触媒層 16の 体積 V3の比 [V3ZV4]が 1Z20〜1Z4となるように設定することが好ま 、。また、 触媒層 16及び触媒層 18を流れ方向に垂直な平面で切断したときの断面積が切断 位置によらず一定である場合、図 2に示される触媒層 16の厚み D3に対する触媒層 1 8の厚み D4の比 [D4/D3]を 1Z20〜: LZ4の範囲内とすることが好まし!/、。
実施例
[0050] 以下、実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例に 限定されるものではない。
[0051] <触媒の調製 >
(触媒 1)
平均粒子径 0. 4 μ mの USYゼォライト(シリカ Zアルミナのモル比: 40)、シリカァ ルミナ(アルミナ含有量 14質量%)及びバインダーとしてアルミナバインダーを重量 比 3 : 57 :40で混合混練し、これを直径 1. 5mm、長さ約 3mmの円柱状に成型し、担 体を得た。この担体に、塩化白金酸水溶液を含浸し、白金を担持した。これを 120°C で 3時間乾燥し、次いで 500°Cで 1時間焼成することで触媒 1を得た。なお、白金の 担持量は、担体に対して 0. 8質量%であった。
[0052] (触媒 2)
平均細孔径 100 Aのアルミナを直径 1. 5mm、長さ約 3mmの円柱状に成型した担 体に、硝酸ニッケル水溶液を含浸し、ニッケルを担持した。これを 120°Cで 3時間乾 燥し、次いで 500°Cで 1時間焼成することで触媒 2を得た。なお、ニッケルの担持量 は、担体に対して 0. 007質量%であった。
[0053] (触媒 3)
平均細孔径 100 Aのアルミナを直径 1. 5mm、長さ約 3mmの円柱状に成型した担 体に、塩化白金酸水溶液を含浸し、白金を担持した。これを 120°Cで 3時間乾燥し、 次いで 500°Cで 1時間焼成することで触媒 3を得た。なお、白金の担持量は、担体に 対して 0. 005質量%であった。
[0054] <ォレフイン含有ワックスの水素化分解 >
(実施例 1)
固定床反応器の上流側(上層)に触媒 2を 15ml、下流側(下層)に触媒 1を 100ml それぞれ充填し、反応器内に 2層構成の触媒層を設けた。次に、この反応器に対し て、水素を導入し、 345°Cで 4時間の還元処理を施した。
[0055] 還元処理後、反応器の塔頂 (触媒層の上層側)より、原料である FTワックス (炭素数
20〜81の炭化水素の含有量 95質量0 /0、ノルマルパラフィン含有量: 78質量0 /0、ォ レフイン含有量: 16質量%)を 200mlZhの速度で供給して、水素気流下、下記の反 応条件でワックスを水素化分解した。
[0056] すなわち、 FTワックスに対して水素 Z油比 590NLZLで水素を塔頂より供給し、水 素分圧 4MPaの条件下、下記式(1)で定義される分解率が 80質量%となるように反 応温度を調節した。このときの反応温度は 315°Cであった。
[数 1] 分刀解 M牛率羊 ( (晳Λ量里%ん)) _ - (生 (沸成点油 3及60び°C生以成下ガのス留の分合の計質質量量) ) x lOし … ( 1 ) なお、分解率は、 FTワックスの水素化分解物(生成油及び生成ガス)のガスクロマト グラフィー測定の結果力 算出した。
[0057] 更に、ワックスの水素化分解により得られた生成油を蒸留し、沸点 145°C〜360°C の中間留分を得た。得られた中間留分について、中間留分選択性 (質量%)及び原 料である FTワックスに対する中間留分収率 (質量%)を求めた。得られた結果を表 1 に示す。なお、中間留分選択性は、上記水素化分解条件で得られた沸点 360°C以 下の留分の中で沸点 145°C〜360°Cの中間留分が占める割合 (質量%)を意味する
[0058] (実施例 2)
実施例 1における固定床反応器の上流側(上層)に、触媒 2の代わりに触媒 3を 10 ml充填したこと以外は実施例 1と同様にしてワックスの水素化分解を行った。なお、 分解率に基づく反応温度の調節は行わず実施例 1と同じ反応温度で水素化分解を 実施した。このときの分解率は 79%であった。
[0059] その後、実施例 1と同様にして中間留分を得、中間留分選択性及び中間留分収率 を求めた。得られた結果を表 1に示す。
[0060] (比較例 1)
実施例 1における固定床反応器の上流側(上層)に触媒 2を充填しな力つたこと以 外は実施例 1と同様にしてワックスの水素化分解を行った。なお、分解率に基づく反 応温度の調節は行わず実施例 1と同じ反応温度で水素化分解を実施した。このとき の分解率は 84%であった。
[0061] その後、実施例 1と同様にして中間留分を得、中間留分選択性及び中間留分収率 を求めた。得られた結果を表 1に示す。
[0062] [表 1]
Figure imgf000012_0001
表 1に示されるように、酸機能を有して ヽな ヽ触媒層及び水素化分解能を有する触 媒層の順にワックスを流通させた実施例 1及び 2のワックスの水素化分解方法は、ヮッ タスがォレフィンを高濃度で含有する場合であっても十分に高い中間留分選択性を 維持することができ、中間留分を十分な収率で得ることができることが確認された。 産業上の利用可能性
本発明によれば、ォレフィン含有ワックスを水素化分解する際の中間留分選択性を 高水準に維持することを可能とするワックスの水素化分解方法及び力かる水素化分 解方法を用いる燃料基材の製造方法を提供することができる。

Claims

請求の範囲
[1] 水素存在下、
ォレフィンを含有するワックスを、
実質的に酸機能を有していない触媒を含む第 1の触媒層、及び、水素化分解能を 有する触媒を含む第 2の触媒層にこの順序で流通させることを特徴とするワックスの 水素化分解方法。
[2] 第 1の触媒層に含まれる前記触媒が、担体と、該担体上に担持された第 VIII族に 属する金属とを含み、前記金属の担持量が前記担体に対して 0. 005〜0. 010質量 %であるものであることを特徴とする請求項 1に記載のワックスの水素化分解方法。
[3] 前記担体が、シリカ、アルミナ及びジルコユア力 なる群より選択される 1種以上の 酸ィ匕物を含むものであることを特徴とする請求項 2に記載のワックスの水素化分解方 法。
[4] 前記ワックスが、フィッシャー 'トロプシュ合成法により得られるものであることを特徴 とする請求項 1〜3のいずれ力 1項に記載のワックスの水素化分解方法。
[5] 第 2の触媒層に含まれる前記触媒が、超安定化 Y型ゼオライトを含むものであること を特徴とする請求項 1〜4のいずれか 1項に記載のワックスの水素化分解方法。
[6] 請求項 1〜5のいずれか 1項に記載のワックスの水素化分解方法により得られる水 素化分解物を分留し燃料基材を得ることを特徴とする燃料基材の製造方法。
PCT/JP2007/054775 2006-03-31 2007-03-12 ワックスの水素化分解方法及び燃料基材の製造方法 WO2007113991A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200780011340.2A CN101410490B (zh) 2006-03-31 2007-03-12 蜡的加氢裂化方法和燃料基材的制造方法
AU2007232039A AU2007232039B2 (en) 2006-03-31 2007-03-12 Method for hydrocracking wax and method for producing fuel base material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006100324A JP4886338B2 (ja) 2006-03-31 2006-03-31 ワックスの水素化分解方法及び燃料基材の製造方法
JP2006-100324 2006-03-31

Publications (1)

Publication Number Publication Date
WO2007113991A1 true WO2007113991A1 (ja) 2007-10-11

Family

ID=38563263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054775 WO2007113991A1 (ja) 2006-03-31 2007-03-12 ワックスの水素化分解方法及び燃料基材の製造方法

Country Status (6)

Country Link
JP (1) JP4886338B2 (ja)
CN (1) CN101410490B (ja)
AU (1) AU2007232039B2 (ja)
MY (1) MY146909A (ja)
RU (1) RU2425093C2 (ja)
WO (1) WO2007113991A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5660956B2 (ja) * 2011-03-31 2015-01-28 独立行政法人石油天然ガス・金属鉱物資源機構 水素化分解触媒及び炭化水素油の製造方法
JP5660957B2 (ja) * 2011-03-31 2015-01-28 独立行政法人石油天然ガス・金属鉱物資源機構 再生水素化分解触媒及び炭化水素油の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3816296A (en) * 1972-11-13 1974-06-11 Union Oil Co Hydrocracking process
JPS61126196A (ja) * 1984-11-22 1986-06-13 Res Assoc Residual Oil Process<Rarop> 炭化水素類の水素化分解方法
JPH06158058A (ja) * 1992-08-18 1994-06-07 Shell Internatl Res Maatschappij Bv 炭化水素燃料の製造方法
US5378348A (en) * 1993-07-22 1995-01-03 Exxon Research And Engineering Company Distillate fuel production from Fischer-Tropsch wax
US20030057134A1 (en) * 2001-07-06 2003-03-27 Institut Francais Du Petrole Process for the production of middle distillates by hydroisomerisation and hydrocracking feeds from the fischer-tropsch process
WO2004028688A1 (ja) * 2002-09-24 2004-04-08 Nippon Oil Corporation 水素化分解触媒および液状炭化水素の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4551443A (en) * 1984-11-27 1985-11-05 Shell Oil Company Catalysts for the selective hydrogenation of acetylenes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3816296A (en) * 1972-11-13 1974-06-11 Union Oil Co Hydrocracking process
JPS61126196A (ja) * 1984-11-22 1986-06-13 Res Assoc Residual Oil Process<Rarop> 炭化水素類の水素化分解方法
JPH06158058A (ja) * 1992-08-18 1994-06-07 Shell Internatl Res Maatschappij Bv 炭化水素燃料の製造方法
US5378348A (en) * 1993-07-22 1995-01-03 Exxon Research And Engineering Company Distillate fuel production from Fischer-Tropsch wax
US20030057134A1 (en) * 2001-07-06 2003-03-27 Institut Francais Du Petrole Process for the production of middle distillates by hydroisomerisation and hydrocracking feeds from the fischer-tropsch process
WO2004028688A1 (ja) * 2002-09-24 2004-04-08 Nippon Oil Corporation 水素化分解触媒および液状炭化水素の製造方法

Also Published As

Publication number Publication date
CN101410490A (zh) 2009-04-15
RU2008143253A (ru) 2010-05-10
RU2425093C2 (ru) 2011-07-27
CN101410490B (zh) 2013-05-29
AU2007232039A1 (en) 2007-10-11
JP4886338B2 (ja) 2012-02-29
JP2007270067A (ja) 2007-10-18
MY146909A (en) 2012-10-15
AU2007232039B2 (en) 2011-09-29

Similar Documents

Publication Publication Date Title
JP4908022B2 (ja) 炭化水素油の製造方法および炭化水素油
JP5090457B2 (ja) ディーゼル燃料の製造方法
JP5179504B2 (ja) 合成ナフサの製造方法
JP2010514776A (ja) キシレン化合物のマルチゾーン製造方法
JP4908038B2 (ja) 合成油の処理方法、水素製造用炭化水素油及びディーゼル燃料基材用炭化水素油
JP5159785B2 (ja) ディーゼル燃料基材の製造方法および得られるディーゼル燃料基材
AU2007208855B2 (en) Method of hydrogenolysis of wax and process for producing fuel base
JP4848191B2 (ja) 合成油の水素化処理方法
JP4908037B2 (ja) 合成油の処理方法、灯油煙点向上剤用炭化水素油及びディーゼル燃料基材用炭化水素油
WO2007113967A1 (ja) 合成油の処理方法、炭化水素油の製造方法、水素製造用炭化水素油、灯油煙点向上剤用炭化水素油、及びディーゼル燃料基材用炭化水素油
JP4886338B2 (ja) ワックスの水素化分解方法及び燃料基材の製造方法
JP4778816B2 (ja) 水素化処理方法
AU2007232010B2 (en) Method of hydrotreating wax and process for producing fuel base
RU2443756C2 (ru) Способы получения жидкого топлива
WO2007091518A1 (ja) ワックスの水素化処理方法及び燃料基材の製造方法
JP4711849B2 (ja) 燃料基材の製造方法
JP4852314B2 (ja) 水素化処理方法
WO2007102397A1 (ja) ワックスの水素化分解方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738247

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007232039

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2007232039

Country of ref document: AU

Date of ref document: 20070312

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 200780011340.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2008143253

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 07738247

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: PI 20083513

Country of ref document: MY