WO2004026789A1 - 圧電磁器組成物、圧電素子及びこれらの製造方法 - Google Patents

圧電磁器組成物、圧電素子及びこれらの製造方法 Download PDF

Info

Publication number
WO2004026789A1
WO2004026789A1 PCT/JP2003/011927 JP0311927W WO2004026789A1 WO 2004026789 A1 WO2004026789 A1 WO 2004026789A1 JP 0311927 W JP0311927 W JP 0311927W WO 2004026789 A1 WO2004026789 A1 WO 2004026789A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
ceramic composition
piezoelectric ceramic
piezoelectric element
compounds
Prior art date
Application number
PCT/JP2003/011927
Other languages
English (en)
French (fr)
Inventor
Satoshi Sasaki
Kenji Koseki
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corporation filed Critical Tdk Corporation
Priority to DE60335998T priority Critical patent/DE60335998D1/de
Priority to CNB038252635A priority patent/CN100434396C/zh
Priority to EP20030797674 priority patent/EP1547989B1/en
Priority to JP2004537607A priority patent/JP4670348B2/ja
Priority to KR20057004351A priority patent/KR100657194B1/ko
Publication of WO2004026789A1 publication Critical patent/WO2004026789A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • C04B35/493Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT containing also other lead compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • H10N30/8554Lead-zirconium titanate [PZT] based
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/872Interconnections, e.g. connection electrodes of multilayer piezoelectric or electrostrictive devices
    • H10N30/874Interconnections, e.g. connection electrodes of multilayer piezoelectric or electrostrictive devices embedded within piezoelectric or electrostrictive material, e.g. via connections
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • C04B2235/326Tungstates, e.g. scheelite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3289Noble metal oxides
    • C04B2235/3291Silver oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the present invention relates to a piezoelectric ceramic composition suitable for a laminated actuator, a piezoelectric buzzer, a sounding body, a sensor, and the like, a piezoelectric element using the same, and a method for producing the same.
  • a piezoelectric element composed of a piezoelectric ceramic composition is often used.
  • P b, Z r, P b (N i 1/3 Nb 2/3) a piezoelectric ceramic composition containing a composite oxide composed mainly of T i Z R_ ⁇ 3 system or, P b (M g i / 3 Nb 2/3) ( N it 1/3 Nb 2/3) T i Z r 0 piezoelectric ceramic composition, such as 3 systems is known.
  • a piezoelectric ceramic composition in which the firing temperature is reduced by adding a specific substance to the composite oxide has been proposed.
  • a piezoelectric ceramic composition to which Ag or Ag oxide is added, a piezoelectric ceramic composition to which MoO 3 is added, and the like are known.
  • a piezoelectric actuator which is an example of a laminated piezoelectric element to which a piezoelectric ceramic composition is applied, has characteristics such that a large displacement can be obtained with a small electric field, and the element can be easily miniaturized. And so on.
  • a laminated piezoelectric element is usually manufactured by laminating a piezoelectric layer made of a piezoelectric ceramic composition and an internal electrode and then firing the obtained laminated body, the firing temperature is set to 1200.
  • an expensive noble metal such as platinum (Pt) or palladium (Pd) that can withstand such a high temperature as the internal electrode. For this reason, the cost at the time of device production has tended to increase.
  • a piezoelectric ceramic composition whose firing temperature exceeds 1200 ° C. is applied to the piezoelectric layer, and a relatively inexpensive Ag or the like is used for the internal electrode to form a laminated type.
  • a process is performed in which the piezoelectric ceramic composition is pre-fired and then processed into a powder having a large specific surface area, or a pressure is applied during the main firing of the laminate. As a result, it was necessary to lower the firing temperature of the piezoelectric ceramic composition. As a result, the procedure for manufacturing a piezoelectric element was extremely complicated.
  • the Ag compound when an attempt is made to lower the firing temperature by adding an Ag compound such as Ag or an Ag oxide alone, the Ag compound is composed of the piezoelectric ceramic composition.
  • the amount that can be dissolved in the piezoelectric crystal is about 0.12 mol% in terms of Ag 20 .
  • Ag when an Ag compound in an amount exceeding that amount is added, Ag that cannot be completely dissolved remains at the crystal grain boundaries of the piezoelectric layer, which may cause silver migration. In this case, for example, in a humidity load reliability test, the insulation resistance of the piezoelectric layer tends to decrease.
  • the pressure at which a substance such as Ag as described above is added to the piezoelectric layer is obtained.
  • the curve showing the volume shrinkage ratio (shrinkage curve) with respect to the sintering time in the sintering reaction tended to be steep.
  • the piezoelectric ceramic composition constituting the piezoelectric layer includes the above-described composite oxide and the added substance to facilitate the formation of the piezoelectric layer.
  • the present invention has been made in view of such circumstances, and provides a new piezoelectric device that has good piezoelectric characteristics after firing and can use inexpensive Ag for the internal electrode of a laminated piezoelectric element. It is an object to provide a porcelain composition. It is another object of the present invention to provide a method for producing the piezoelectric ceramic composition, a piezoelectric element and a method for producing the same, and a piezoelectric element.
  • the present invention provides a composite oxide having a perovskite structure containing Pb, ⁇ , and D1 as main components, and a component (a) and / or Provides a piezoelectric ceramic composition comprising (b) a component.
  • the piezoelectric ceramic composition having such a configuration includes, for example, a composite oxide having a perovskite structure containing Pb, Zr, and Ti as main components, and an Ag and / or Ag compound. as well, which is formed by adding Mo and Z or Mo compounds, those containing molybdenum, silver [Ag 2 Mo0 4] are preferred. That is, a piezoelectric ceramic composition obtained by adding Ag and Mo as a metal or a compound thereof to a composite oxide having a perovskite structure containing Pb, Zr, and Ti as main components, Piezoelectric ceramic compositions containing silver molybdate [Ag 2 Mo OJ are preferred.
  • the piezoelectric ceramic composition having such a composition firing at the time of forming a piezoelectric element can be performed at a lower temperature than that of a conventional piezoelectric ceramic composition. Also, since silver molybdate has the property of being extremely stable in natural products, it has reduced the piezoelectric properties and the reliability of humidity resistance, which were problems when Ag or Mo was added alone. Very unlikely to cause.
  • the content of Pd is preferably set to 30% by mass or less.
  • the sintering temperature should be 115 ° C or less, preferably 1120 ° C or less. There is a need to.
  • the content of relatively expensive Pd in this alloy In order to further reduce the cost in manufacturing the element, it is preferable to reduce the content of relatively expensive Pd in this alloy. From this viewpoint, firing at a lower temperature is desired. For example, in order to make the Pd content 0% and obtain an electrode composed of only Ag, the firing temperature must be set to 950 ° C. or lower, preferably 900 ° C. or lower.
  • the piezoelectric ceramic composition firing at such a temperature of 950 ° C. or less can be performed. That is, firing at a temperature of 850 to 950 ° C., which is lower than that of the conventional composition, becomes possible. For this reason, the manufacturing process of the piezoelectric element can be simplified. Further, the piezoelectric element after sintering has not only excellent piezoelectric characteristics but also small deformation of the element. Furthermore, since firing at such a low temperature becomes possible, relatively inexpensive Ag can be used as an internal electrode when manufacturing a laminated piezoelectric element.
  • P b the composite oxide that have a peptidyl Ropusukaito structure mainly composed of elements of Z r and T i, the A g or compound A g 2 0, Mo or compound thereof to the Mo 0 3 when converted respectively, Ag 2 0 amount -Mo0 3 amount O. 1 2 molar% of Ag 2 0 0. 24 mol% under conditions to 0. 48 mol 0 /.
  • the piezoelectric ceramic composition is characterized in that Mo 2 O 3 is added in an amount of 0.12 mol% to 0.36 mol%.
  • the piezoelectric ceramic composition, the Moripuden silver in the composite oxide 0 - is suitable even 1 2 0.36 mol 0/0 obtained by adding ones.
  • the piezoelectric ceramic composition preferably those further containing lead molybdate [P b 2 Mo 0 5] .
  • Lead molybdate is formed, for example, by binding Mo, which could not bind to Ag in the reaction shown by the above-described mechanism, to excess Pb or its compound present in the piezoelectric ceramic composition. Also formed.
  • This lead molybdate can also be stably present in the piezoelectric ceramic composition or in the piezoelectric element described below, like the silver molybdate described above.
  • Mo which may cause a decrease in the occupancy of the conductive material of the internal electrode when present alone, is stabilized in the piezoelectric layer.
  • the piezoelectric ceramic composition having the above-described configuration stably contains Ag and Mo that alone degrade the piezoelectric characteristics and the humidity resistance reliability while reducing the firing temperature. be able to.
  • a piezoelectric element (a fired product for a piezoelectric ceramic) applicable to an electric element is obtained.
  • a piezoelectric element a piezoelectric element
  • the body, and a piezoelectric element containing Moripuden silver [Ag 2 MO0 4], molybdenum, silver [Ag 2 Mo_ ⁇ 4] ⁇ Pi lead molybdate piezoelectric element bodies containing [P b 2 Mo0 5] Can be exemplified.
  • the present invention also comprises a composite oxide having a perovskite structure containing Pb, Zr and Ti as main components, and the following component (A) and component Z or (B).
  • a piezoelectric ceramic composition is provided.
  • the firing temperature at the time of forming the piezoelectric element can be reduced, as in the case of the above-described piezoelectric ceramic composition.
  • silver molybdenum tungstate can be stably present in the composition or the piezoelectric element described below, the piezoelectric properties and moisture resistance Very little reduction.
  • the piezoelectric ceramic composition includes a composite oxide having a perovskite structure containing Pb, Zr, and Ti as main components, an Ag and / or Ag compound, and M o and / or Mo compound, and W and Z or W compound, and silver molybdenum tungstate [Ag 2 Mo (1 _ x) W x 0 4 ] (where X is It is preferably a number from 0.3 to 0.7). That is, a piezoelectric ceramic composition obtained by adding Ag, Mo, and W as a metal and / or a compound thereof to a composite oxide having a perovskite structure containing Pb, Zr, and Ti as main components. Te, molybdenum tungsten, silver [Ag 2 Mo (1 -X) W x 0 4] ( and ⁇ , X is 0.3 to 0.7 the number of) good piezoelectric ceramic composition characterized by containing .
  • the firing temperature can be reduced by about 100 ° C. as compared with the composition without the compound, Mo and Z or Mo compound, and W ′′ and / or W compound.
  • the mechanism by which the firing temperature is reduced is not necessarily clear, the present inventors speculate as follows.
  • a composite oxide having a perovskite structure containing Pb, Zr, and Ti as main components has an Ag and / or Ag compound, Mo and _ / or Mo compound.
  • the present inventors have studied the addition of the Wich compound, and have obtained the following findings.
  • W or a compound thereof is added to the piezoelectric ceramic composition, the sintering reaction during firing is promoted and a sufficient porcelain density can be obtained, but when W is added alone, particle growth during firing is hindered. It has been confirmed that firing at a low temperature tends to result in insufficient properties of the obtained piezoelectric ceramic composition.
  • the piezoelectric ceramic composition of the present invention having the above-described composition is liable to cause such inconvenience.
  • g is contained in the composition, the disadvantages due to these additions are extremely unlikely to occur, although the factor is not necessarily clear, but the mechanism described below. It is presumed to be due to.
  • a piezoelectric ceramic composition having such characteristics is used for manufacturing a laminated piezoelectric element, firing at a low temperature becomes possible, so that relatively inexpensive Ag can be used for the internal electrodes. become. Further, since this piezoelectric ceramic composition contains a combination of three components of Ag, Mo and W, the shrinkage carp due to the sintering reaction does not show so sharpness. This makes it possible to reduce the occurrence of warpage or undulation of the substrate when forming a stacked element. Furthermore, since the evaporation of Pb during firing can be suppressed, the manufacturing process can be greatly simplified. Then, the laminated piezoelectric element manufactured in this way not only has excellent piezoelectric characteristics, but also has characteristics of high stability and small deformation after firing.
  • a piezoelectric ceramic composition is obtained by adding Ag and Z or Ag compounds, Mo and / or Mo compounds, and W and no or W compounds to a composite oxide, is, Ag, Mo and W when converted to Ag 2 0, MO0 3 and W_ ⁇ 3 respectively, it is preferable to satisfy all of the following formulas (1) to (3).
  • the piezoelectric ceramic composition containing the composite oxide and silver molybdenum tungstate is obtained by adding silver molybdenum tungstate to the above-described composite oxide.
  • the piezoelectric ceramic composition having this configuration is a lead molybdenum tantalate stearate [Pb 2 Mo (1 — W v 0 4 ) (where X is a number from 0.3 to 0.7). It is more preferable to further contain Lead molybdenum tungstate is not able to bind to Ag in the reaction shown in the mechanism described above, and Mo and W bind to excess Pb or its compound existing in the piezoelectric ceramic composition. Also formed. In this way, Mo and W, which may cause a decrease in the occupancy of the conductive material of the internal electrode when present alone, are stabilized in the piezoelectric layer. Thereby, the stability of the obtained piezoelectric element is further improved.
  • these piezoelectric ceramic compositions also become piezoelectric bodies by firing at a predetermined temperature.
  • Such piezoelectric element molybdenum, tungsten, silver [Ag 2 Mo (1 - X ) W X 0 4] ( where, X is the number of from 0.3 to 0 7..)
  • the composite oxide further contains Zn, Mg, and Nb.
  • Zn, Mg, and Nb As preferred examples.
  • a P b (Zn 1/3 Nb 2/3 ) 0 3 — b Pb (Mg 1/3 Nb 2/3 ) 0 3 -c P b T i 0 3 -d Pb Z r 0 3 ( provided that a + b + c + d l.) are mentioned as preferred examples.
  • the piezoelectric ceramic composition of the present invention is applied to a piezoelectric layer, and two electrodes opposing each other, and a piezoelectric body disposed between the electrodes. And a piezoelectric layer, wherein the piezoelectric layer is made of the piezoelectric ceramic composition according to any of the above aspects of the present invention.
  • a laminated piezoelectric element according to the present invention includes an internal electrode, a piezoelectric layer, and an external electrode, wherein the internal electrode and the piezoelectric layer are alternately laminated, and the internal electrode is connected to the external electrode.
  • the piezoelectric layer is made of the piezoelectric ceramic composition according to any one of the above aspects of the present invention.
  • the single-plate or laminated piezoelectric element having such a configuration can be manufactured at a low firing temperature because the piezoelectric layer is made of the piezoelectric ceramic composition of the present invention. For this reason, it can be manufactured by a simple manufacturing process, and further, since an electrode made of Ag can be used as the internal electrode, the manufacturing cost is low.
  • the latter multilayer piezoelectric element includes an internal electrode, a piezoelectric layer, and an external electrode, wherein the internal electrode and the piezoelectric layer are alternately laminated, and a through hole formed in the laminating direction.
  • a laminated piezoelectric element in which an internal electrode and an external electrode are connected by an internal conductor, wherein the piezoelectric layer is made of the piezoelectric ceramic composition of any of the above-mentioned present invention is also suitable.
  • the piezoelectric layer in the single-plate piezoelectric element and the multilayer piezoelectric element may be any one of the piezoelectric elements of the present invention. Further, an electrode made of Ag is preferable as the internal electrode used for the multilayer piezoelectric element.
  • the present invention also provides the following several methods for easily producing the above-described piezoelectric ceramic composition of the present invention. That is, first, a step of calcining a raw material containing Pb, Zr and Ti to form a composite oxide having a perovskite structure; and, in the composite oxide, an Ag and / or Ag compound; and and manufacturing methods having the step of adding M o and Z or M o compound, a step of forming the complex oxide, and adding a molybdenum silver [a g 2 M o 0 4 ] to the complex oxide
  • the present invention provides a production method having the following. By these methods, a piezoelectric ceramic composition that can contain silver molybdate after firing is produced.
  • the method for producing the piezoelectric ceramic composition of the present invention includes a step of temporarily firing a raw material containing Pb, Zr, and Ti to form a composite oxide having a perovskite structure. Adding Ag and / or Ag compound, Mo and / or Mo compound, and W and Z or W compound to the composite oxide; and forming the composite oxide.
  • Process and silver oxide molybdenum tungstate [A g 2 M o (1 _ x) W x 0 4] ( where, X is 0.3 to 0.7 the number of.) are also suitable manufacturing method and a step of adding. By these methods, a piezoelectric ceramic composition that can contain silver molybdenum tungstate after firing is produced.
  • the present invention further provides a method for producing a piezoelectric element, comprising: firing a piezoelectric element precursor having the piezoelectric ceramic composition of the present invention before firing, at a firing temperature of 850-950 ° C. I will provide a.
  • FIG. 1 is a schematic sectional view showing an embodiment of a single-plate piezoelectric element according to the present invention.
  • FIG. 2 is a flowchart showing a manufacturing process of the piezoelectric element according to the present invention.
  • FIG. 3 is a schematic sectional view showing a first embodiment of the multilayer piezoelectric element according to the present invention.
  • FIG. 4 is a schematic sectional view showing a second embodiment of the multilayer piezoelectric element according to the present invention.
  • FIG. 5 is a flowchart showing a manufacturing process of a single-plate or multilayer piezoelectric element in the example.
  • FIG. 6 is a graph showing the results of examining the shrinkage behavior of the molded products of Samples 41 and 49 using a thermal analyzer.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a piezoelectric element (single-plate piezoelectric element) according to the present invention.
  • the single-plate piezoelectric element 10 has a piezoelectric layer 2 sandwiched between two electrodes 1 opposed to each other.
  • the electrode 1 of the piezoelectric element 10 having such a configuration is not particularly limited as long as the electrode 1 is made of a material such as a metal which is usually used as an electrode. Ag, Au, Pt, Pd, etc. can be exemplified, but from the viewpoint of reducing the manufacturing cost of the single-plate piezoelectric element 10, a less expensive electrode material Ag—Pd It is preferable to use an alloy or an electrode composed only of Ag.
  • the piezoelectric layer 2 is composed of the piezoelectric ceramic composition of the present invention.
  • the piezoelectric body of the present invention obtained by firing this piezoelectric ceramic composition can be used.
  • the piezoelectric ceramic composition that is a constituent material of the piezoelectric layer 2 include a first piezoelectric ceramic composition and a second piezoelectric ceramic composition described below.
  • the first piezoelectric ceramic composition comprises a composite oxide having a perovskite structure containing Pb, Zr and Ti as main components, and the following components (a) and / or (b): It is a characteristic.
  • the following component (a) or component (b) is preferably in a solid solution or dispersed state in the composite oxide.
  • the composite oxide having a perovskite structure an oxide further containing Zn, Mg, and Nb in addition to Pb, Zr, and Ti as main components is more preferable.
  • a P b (Z ni / 3 Nb 2/3) 0 3 one b P b (Mg 1/3 N b 2/3) 0 3 - c P b T i 0 3 - d P b Z r 0 3 (. provided that a + b + c + d 1) can be mentioned.
  • the first piezoelectric ceramic composition and more preferably that those which further contain a lead molybdate [P b 2 M o O 5 ].
  • a lead molybdate [P b 2 M o O 5 ].
  • excess Mo in the composition is present in a stable state.
  • the preferred content of this lead molybdate is 0 to 0.18 mol% based on the total molar amount of the composite oxide.
  • the first piezoelectric ceramic composition contains the composite oxide and the components (a) and (b) or (b).
  • Such a piezoelectric ceramic composition can be obtained, for example, by adding the component (a) and / or (b) to a composite oxide.
  • the component (a) When the component (a) is added, the component (a), Ag and / or the Ag compound, and Mo and / or the Mo compound, can sufficiently maintain the piezoelectric properties of the piezoelectric ceramic composition after firing. It is necessary to add as much as possible. For this purpose, these addition amount, the eight 8 ⁇ 2 ⁇ , when converted respectively of Mo in Mo_ ⁇ 3, it is preferable to satisfy all of the following formulas (i) ⁇ (iii).
  • any of these compounds can be used without particular limitation as long as the Ag and Mo components can be obtained by heating or the like.
  • examples include oxides, carbonates, hydroxides, and nitrates of Mo. Of these, oxides are preferred.
  • the piezoelectric ceramic composition obtained by such addition for example, after sintering, Ag in the additive that cannot be completely dissolved in the crystals formed by the piezoelectric ceramic composition is added to the M added simultaneously. By combining with o, silver molybdate is formed.
  • the silver molybdate in the piezoelectric ceramic composition thus formed can be identified by X-ray diffraction or X-ray microanalyzer.
  • the content of silver molybdate in the piezoelectric ceramic composition is preferably about 0.12 to 0.36 mol% based on the total number of moles of the composition.
  • the amount of silver molybdate to be added is set to an amount such that the piezoelectric ceramic composition after firing can maintain sufficient piezoelectric properties.
  • the addition of molybdenum, silver is preferably in a 0.1 2 to 0.36 mole 0/0 relative to the total molar amount of the composite oxides.
  • Second piezoelectric ceramic The composition is characterized by containing a composite oxide having a perovskite structure containing Pb, Zr and Ti as main components, and the following component (A) and component (B) or (B). is there.
  • a suitable composite acid used for the second piezoelectric ceramic composition the same as the above-described first piezoelectric ceramic composition can be used.
  • the second piezoelectric ceramic a component contains lead molybdenum tungstate [Pb 2 ⁇ (1 _ ⁇ ) W x 0 4 ] in addition to the composite oxide and silver molybdenum tungstate. Is more preferable. This allows excess Mo and W in the composition to exist in a stable state. It is preferable that lead molybdenum tungstate is contained in an amount of 0 to 0.18 mol% based on the total molar amount of the composite oxide.
  • the second piezoelectric ceramic composition having such a configuration is preferably obtained by adding the above components (A) and (N) or (B) to a composite oxide.
  • the added amounts of the components (A) Ag and Z or Ag compounds, Mo and Z or Mo compounds, and W and Z or W compounds are as follows: It is necessary that the piezoelectric properties of the piezoelectric ceramic composition after the addition be sufficiently maintained.
  • X is a number from 0.3 to 0.7.
  • a g to be added to the composite oxide, as a compound of Mo ⁇ Pi W is examples thereof include oxides, carbonates, hydroxides, and nitrates of these metals, with oxides being preferred.
  • oxides Ag 2 0, Mo 0 3 or W0 3 are preferred.
  • the component (A) When the component (A) is added to the composite oxide, for example, after firing, in a piezoelectric ceramic composition, A in an additive that cannot be completely dissolved in crystals formed from the composition. It is considered that g is recombined with (Mo + W) forming a liquid phase in the composition part to form silver molybdenum tandastate.
  • This silver molybdenum tungstenate can also be identified by the same means as the silver molybdate in the first piezoelectric ceramic composition.
  • the content of memory-flop Den silver tungstate in the piezoelectric ceramic Narubutsu is preferably a 0.1 2 to 0.36 mole 0/0 for all Monore number.
  • the amount of silver molybdenum tungstate which is the component (B)
  • the amount of silver molybdenum tungstate is 0.1 to 0.2% based on the total molar amount of the composite oxide. It is preferred to be 36 mol%. By doing so, it is possible to minimize a decrease in the properties of the piezoelectric ceramic composition after firing due to the addition of molybdenum tungstate.
  • FIG. 2 is a flowchart showing the steps of manufacturing a piezoelectric element according to the present invention.
  • a raw material compound (first raw material) containing the elements Pb, Zr, and Ti is weighed and blended so as to have a target composite oxide composition.
  • first raw material an oxide or carbonate of each metal constituting the composite oxide to be formed can be used.
  • P bO, Z nO, T I_ ⁇ 2, Nb 2 0 5, MgC_ ⁇ 3, Z R_ ⁇ 2 or the like is used as the starting compound.
  • the mixed first raw material is put into a ball mill or the like, and water is added. Then, alumina balls, zirconia balls, or the like are added as a pulverizing medium for pulverization, and the first raw material is stirred. Is wet-mixed and pulverized (step S2). Further, after mixing and milling the first raw material (Step S3), the mixture is heated at 700 to 900 ° C. for about 3 hours to perform preliminary calcination (Step S4). A solid phase reaction is caused to obtain a calcined product (composite oxide).
  • the calcined product is added to the components (a) and Z or (b) or
  • a raw material compound (second raw material) such as component (A) and Z or (B) is weighed and added so as to obtain a desired composition, and the calcined product and the second raw material are blended ( Step S 1 b), forming a piezoelectric ceramic composition.
  • the addition of the second raw material is preferably performed simultaneously with the wet mixing and pulverization of the piezoelectric ceramic composition described later.
  • the second raw material does not necessarily need to be added after the first raw material is calcined, and can be directly added to the first raw material. In order to prevent this as much as possible, the addition is preferably performed after the preliminary firing.
  • the obtained piezoelectric ceramic composition is wet-mixed and pulverized in the same manner as in Step S2 (Step S5), and a binder made of an organic substance such as polyvinyl alcohol is added (Step S6).
  • the precursor of the piezoelectric element is formed.
  • Step S7a After performing an appropriate granulation treatment on the element precursor (Step S7a), the element precursor is formed into a desired element shape such as a square plate under a pressurized condition (Step S7a).
  • Step S8a) Further, the obtained molded body is heated to several hundred degrees (for example, 300 to 500 ° C.) in an air atmosphere to remove the binder (debinding; step S9a). Further, the molded body after removing the binder is fired at 800 to 1000 ° C., more preferably 850 to 950 ° C. (Step S10a), and the piezoelectric element to be the piezoelectric layer 2 in the single-plate piezoelectric element 10 is formed.
  • the piezoelectric The electrode 1 is formed on the element body (step S 11) to obtain the single-plate piezoelectric element 10. Thereafter, a predetermined polarization is generated in the piezoelectric layer 1 of the obtained element, whereby the single-plate piezoelectric element 10 is commercialized.
  • FIG. 3 is a schematic cross-sectional view showing a first embodiment of the multilayer piezoelectric element according to the present invention.
  • the multilayer piezoelectric element 20 shown in FIG. 3 has internal electrodes 11 a and 11 b and a piezoelectric layer 12 that are alternately stacked, and the internal electrodes 11 a and lib are Protective layers 13a and 13b are provided on the outermost layer of the laminate formed by laminating the piezoelectric layers 12 with each other. Further, the internal electrodes 11a and the internal electrodes 11b are arranged alternately with each other, and the external electrodes 14 are connected to each of them.
  • the electrode material of the internal electrodes 11 a and lib in the multilayer piezoelectric element 20 is not particularly limited as long as it is a metal or the like generally used for an electrode, but the cost for manufacturing the element is not limited. From the viewpoint of reducing the cost, an Ag—Pd alloy or Ag that is a relatively inexpensive electrode material is preferable.
  • the external electrode 14 can be made of a normal electrode material without any particular limitation, and examples thereof include a gold electrode formed by sputtering or the like. '
  • the piezoelectric layer 12 is a layer composed of the piezoelectric ceramic composition of the present invention.-The first and second piezoelectric ceramic compositions described above are preferably 9 5 0. It is formed by firing in C.
  • the protective layers 13a and 13b have a role of protecting the laminated body composed of the internal electrodes 11a and 11b and the dielectric layer 12; It is composed of a piezoelectric layer having the same composition as that constituting the layer 12.
  • steps S1 to S6 are performed in the same manner as in the manufacture of the single-plate piezoelectric element 10 to obtain a precursor of the piezoelectric element. Then this An organic solvent, an organic plasticizer, and the like are appropriately added to the precursor of the piezoelectric element, and then mixed and pulverized by a pole mill or the like to obtain a slurry.
  • This slurry is applied on a base film such as polyethylene terephthalate (PET) by a known method and then dried.
  • a green sheet (sheet) that becomes the piezoelectric layer 12 after firing is obtained.
  • a metal paste or the like which is an electrode material, is applied on the green sheet by a screen printing method or the like so as to have a desired electrode shape, and then dried to form an internal electrode (internal electrode 11a or 1a). 1b) is formed (step S8b). Further, Step S7b and Step S8b are repeated a plurality of times to form a laminate of the green sheet and the internal electrodes.
  • step S 9 b After firing the laminate obtained above at a predetermined temperature (step S 9 b), the laminate is subjected to, for example, gold sputtering or the like to form an external electrode 14. Is formed (Step S10b), and a protective layer 13a, 13b is appropriately formed on the surface of the multilayer body to obtain a multilayer piezoelectric element 20.
  • FIG. 4 is a schematic sectional view showing a second embodiment of the multilayer piezoelectric element according to the present invention.
  • the laminated piezoelectric element 30 shown in FIG. 4 has internal electrodes 11 a and 11 b and a piezoelectric layer 12 alternately laminated, and internal electrodes 11 a and 11 b and a piezoelectric layer 12. It has protective layers 13a and 13b provided on the outermost layer of the laminated body made of the above.
  • the laminated body composed of the internal electrodes 11 a and 11 b and the piezoelectric layer 12 has a pair of through holes 18 penetrating in the laminating direction.
  • a through electrode 15 made of a conductive substance (conductor) is embedded inside.
  • each component of the multilayer piezoelectric element 30 having such a configuration is formed from a material substantially similar to that of the multilayer piezoelectric element 20 described above.
  • the piezoelectric ceramic material constituting the piezoelectric layer 12 in these elements has a state in which Ag, Mo, W, etc. are uniformly dispersed, Moreover, since the shrinkage carp at the time of firing is not so steep, the laminated piezoelectric elements 20 and 30 obtained after the firing have extremely little occurrence of warpage or undulation.
  • Example A in order to study a piezoelectric ceramic composition containing a composite oxide and the above-mentioned components (a) and Z or (b), a single plate or a laminate of samples 1 to 24 shown below was used. A piezoelectric element was formed, and the characteristics of the obtained element were evaluated.
  • FIG. 5 is a flowchart showing a manufacturing process of a single-plate or multilayer piezoelectric element in the example. is there.
  • P b 0, Z ⁇ 0, Nb 2 0 5, MgC0 3, T i 0 2, Z r 0 2 was prepared, and the basic composition 0.
  • P bT i O 3-0. 32 Pb Z r 0 Each raw material was weighed and blended so as to be 3 .
  • the element body was processed into a plate having a height of lmm.
  • a silver-baked electrode was formed on the plate-shaped element, it was processed into a size of 12 mm ⁇ 3 mm to prepare samples 1 to 24 of the single-plate piezoelectric element shown in FIG.
  • This single-plate piezoelectric element has a structure in which silver-baked electrodes 7 are formed on both surfaces of a piezoelectric layer 6 in FIG.
  • a green sheet was formed on a PET (polyethylene terephthalate) base film by a doctor blade method.
  • the obtained green sheet is printed using silver palladium paste or silver paste by a screen printing method so as to form an electrode pattern of a desired shape, and then dried to form an internal electrode (see FIG. In the multilayer piezoelectric element shown in FIG. 3, this corresponds to the internal electrode 11a.). Thereafter, the green sheet on which the internal electrodes were formed was peeled off from the PET base film.
  • the obtained laminate was thermocompression-bonded, it was cut into a predetermined chip shape to form a green chip. After debinding the green chips in an air atmosphere, they are packed in a closed container and fired for 3 hours at a predetermined temperature between 800 ° C and 110 ° C for each sample. Then, an element body of a laminated piezoelectric element was formed.
  • the external shape of this element body is 3 O mm in length, 6 mm in width, and about 0.3 mm in thickness.
  • the thickness of one layer of the piezoelectric layer formed from the green sheet is 3 mm.
  • the thickness per layer of the 0 im N internal electrode was 1 / xm to 2111, and the number of layers of the internal electrode was 10 in total.
  • a sample of the obtained single-plate piezoelectric element was subjected to a polarization treatment in an insulating oil at 120 ° C for 30 minutes at a voltage of 2 to 3 kVZmm, and then processed using an impedance analyzer.
  • the sample having the obtained piezoelectric characteristics was subjected to the following moisture resistance load reliability test.
  • a DC electric field of 1000 kV / m per thickness was applied to the piezoelectric layer in an environment with a temperature of 60 ° C and a humidity of 90% RH.
  • a moisture resistance load test was performed to confirm this.
  • an insulation resistance meter was used for measuring the resistance value of the element.
  • Sample 1 was obtained by baking at 110 ° C using a basic piezoelectric ceramic composition.
  • a piezoelectric element if the capacitance and the piezoelectric distortion constant change by 10% or more based on the characteristics of Sample 1, a problem may occur in product characteristics. Those with a change in capacitance and piezoelectric strain constant within 10% were judged to be particularly good. In the moisture resistance load test, those with an insulation resistance of 10 6 ⁇ or more after the test were judged to be particularly good.
  • Sample 2 was obtained when the firing temperature of sample 1 was 900 ° C, and the characteristics could not be measured without sintering. Did not.
  • Samples 3 and 4 are comparative examples.
  • Sample 3 is a case in which only Ag 20 is added, and the amount of Ag that can be dissolved in the piezoelectric layer crystal is 0.12 mol. /. Ag, which does not form a solid solution with the crystals of the piezoelectric layer, lowered the insulation resistance after the moisture resistance load test and deteriorated the reliability of the moisture resistance load.
  • Sample 4 is the case where ⁇ Ka ⁇ only Mo 0 3, Mo is considered as that making A g a compound of the internal electrode, thereby occupancy of a conductive component of the internal electrodes is decreased The capacitance was low.
  • Samples 5 to 14 are samples in which the combination of the addition amounts of Ag 20 and Mo O 3 was changed.
  • both Ag 2 O 3 and Mo 03 were added in a small amount, and the sintering was relatively insufficient, and the porcelain density, capacitance, and piezoelectric strain constant were relatively low.
  • Sample 1 5-24 is a sample with the addition of Ag 2 Mo0 4.
  • Sample 15 was an example in which the amount of addition was relatively small, and sintering was somewhat insufficient.
  • Sample 19 had a large amount of addition, and had relatively low piezoelectric strain characteristics.
  • the addition amount of Ag 2 Mo_ ⁇ 4 since this was found to be correct favored more in the range of 0.1 2 to 0.36 mol 0/0.
  • Samples 20 to 24 are examples in which the firing temperature was changed.
  • sample In No. 20 the sintering temperature was 800 ° C, and sintering was somewhat insufficient.
  • Sample 24 is 10
  • the internal electrode melts because the temperature is higher than the melting point of the internal electrode component Ag, forming a collection of island-like electrodes that are partially gathered due to surface tension. Was lower. This confirmed that the firing temperature was preferably 850 to 950 ° C.
  • Example B in order to examine a piezoelectric ceramic composition containing the composite oxide and the component (A) and the component Z or component (B), a single plate or a laminate of the following samples 25 to 52 was used. A piezoelectric element was formed, and the characteristics of the obtained element were evaluated.
  • the second raw material three kinds of oxides of Ag 2 ⁇ , Mo 3 , and W 3 , or Ag 2 (Mo. 5 W 0 .5) are used instead of Ag 2 ⁇ , Mo 3 , and Ag 2 Mo 4 . 5) 0 4 according amount are shown in Table 2, or, except with this added were weighed so as to have the composition shown in Table 3, the production of veneer and laminated piezoelectric element of example a
  • a single plate and a laminated piezoelectric element of Sample 25-52 were produced.
  • the sample obtained as a result of which the characteristics were obtained was subjected to the following moisture resistance reliability test.
  • a DC electric field of 1000 kVZm per thickness was applied to the piezoelectric layer in an environment with a temperature of 60 ° C and a humidity of 90% RH, and the change with time in the resistance value of the element was checked for up to 100 hours.
  • a load test was performed. Note that an insulation resistance tester was used to measure the resistance value of the element.
  • Tables 2 and 3 show the results obtained by the characteristic evaluation. In the table
  • PS is the porcelain density
  • C is the capacitance
  • d 3 i is the piezoelectric strain constant.
  • the sample 25 and 26 are conventional A g, and correspond to comparative examples because it does not contain a metal or a compound of Mo and W, also the sample 27 and 28 Ag 2 ⁇ and (Mo0 3 + W0 3 ) Corresponds to Comparative Example since only one of them is contained. [Table 2] CO
  • Sample 25 was obtained by baking at 1100 ° C using a basic piezoelectric ceramic composition.
  • a piezoelectric element if the capacitance and the piezoelectric distortion constant change by 10% or more based on the characteristics of this sample 25, a problem will occur in the product characteristics. Those with a change in capacitance and piezoelectric strain constant of less than 10% were judged to be particularly good.
  • the insulation resistance after the test in the humidity load test was judged to be particularly good more than 10 6 Omega.
  • the sintering temperature of sample 25 was 900 ° C, and the characteristics could not be measured without sintering.
  • Samples 27 'and 28 are comparative examples.
  • Sample 27 is a case where only Ag 20 is added, and the amount of Ag that can be dissolved in the piezoelectric layer crystal is 0.12 mol. /. Ag, which does not form a solid solution in the crystal of the piezoelectric layer, lowers the insulation resistance after the moisture resistance load test and degrades the reliability of the moisture resistance load.
  • Sample 28
  • Ag 2 0 is 0.24 to 0.48 mol 0 /.
  • (0.5Mo O 3 + 0. 5W_ ⁇ 3) is from 0.12 to 0.36 the molar 0/0, also, A g 2 0 amount or al (0. 5MoO 3 +0. 5W0 3 ) addition amount of subtracted value but a range not greater than 0.12 mol more preferably 0 proved.
  • Sample 39 to 48 are Mori flop Den silver tungstate [Ag 2 (M o 0. 5 W 0. 5) 0 4] is a sample was added.
  • Sample 39 was an example in which the amount of addition was relatively small, and sintering was somewhat insufficient. On the contrary, Sample 43 had a large amount of addition, and had relatively low piezoelectric strain characteristics.
  • a g 2 From this (Mo 0. 5 W 0. 5) 0 amount of 4 was found to range from 0.12 to 0.36 mol 0/0 is more preferable.
  • Samples 44 to 48 are examples in which the firing temperature was changed.
  • Sample 44 had a sintering temperature of 800 ° C and sintering was somewhat insufficient.
  • Sample 48 was fired at 1000 ° C. However, since the temperature was higher than the melting point of the internal electrode component Ag, the internal electrode was melted and 3 ⁇ 4 was melted. As a result, the capacitance became relatively low. This confirmed that the firing temperature was preferably 850 to 950 ° C. .
  • FIG. 6 is a graph showing the results of examining the shrinkage behavior of the sample 49 (the element of the comparative example containing no W) and the sample 41 (the element of the example) and then using a thermal analyzer. As shown in Fig. 6, when there is W (sample 41), it contracts relatively slowly from 500 ° C to 900 ° C, whereas when there is no W (sample 49), it shrinks to 900 ° C. Sudden shrinkage from around ° C was observed.
  • the piezoelectric strain characteristics and the capacitance characteristics are good, the reliability against moisture load is high, the warpage and undulation generated in the fired element are small, and the inside of the multilayer piezoelectric element is further improved.
  • Inexpensive Ag can be used for the electrode, and in addition, the piezoelectric ceramic composition can be provided which has a small deformation after firing, can suppress the evaporation of Pb, and can simplify the manufacturing process. Further, it is possible to provide a piezoelectric element using the same and a method for manufacturing the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

明糸田書
圧電磁器組成物、 圧電素子及びこれらの製造方法
技術分野
【0001】 本発明は、 積層型ァクチユエータ、 圧電ブザー、 発音体及ぴセン サなどに適した圧電磁器組成物及びそれを用いた圧電素^"、 並びにこれらの製造 方法に関する。
背景技術
【0002】 近年、 圧電素子を応用した装置として、 積層型の圧電ァクチユエ ータ等、 圧電磁器層と内部電極層とを交互に積み重ねた積層型の素子を用いるも のが盛んに開発されている。
【0003】 このような圧電素子としては、 圧電磁器組成物から構成されるも のが多く用いられている。 例えば、 P b、 Z r、 T iを主成分とする複合酸化物 を含む圧電磁器組成物である P b (N i 1/3Nb 2/3) Z r〇3系や、 P b (Mg i/3Nb 2/3) (N i 1/3Nb 2/3) T i Z r 03系等の圧電磁器組成物が知られて いる。 '
【0004】 また、 複合酸化物に特定の物質を添加することにより焼成温度を 低下させた圧電磁器組成物も提案されている。 具体的には、 A g又は A g酸化物 を添加した圧電磁器組成物や、 M o O 3を添加した圧電磁器組成物等が知られて いる。
【0005】 さらに、 圧電磁器組成物中に A gの金属、 合金、 化合物等を添加 することよって、 圧電磁器組成物の特性を改良することが可能であることも知ら れている。
発明の開示
【0006】 圧電磁器組成物を適用した積層型圧電素子の一例である圧電ァク チユエータは、 小さな電界で大きな変位が得られるといった特性を有しているほ か、 素子の小型化が容易になる等の利点を有している。 しかしながら、 このよう な積層型の圧電素子は、 通常、 圧電磁器組成物からなる圧電体層と内部電極とを 積層した後に、 得られた積層体を焼成する工程により製造されるため、 焼成温度 が 1 2 0 0 °Cを超えるような圧電磁器組成物を用いる場合、 内部電極としては、 かかる高温にも耐え得る白金 (P t ) やパラジウム (P d ) 等の高価な貴金属を 用いる必要があった。 このため、 素子製造時のコストが増大する傾向にあった。
【0 0 0 7】 したがって、 圧電体層に焼成温度が 1 2 0 0 °Cを超えるような圧 電磁器組成物を適用し、 また内部電極に比較的安価な A g等を用いて積層型圧電 素子を製造するためには、 例えば、 圧電磁器組成物を仮焼成した後に比表面積の 大きな粉体に加工したり、 また積層体の本焼成時に加圧したりする等の工程を実. 施することによって、 圧電磁器組成物の焼成温度を低下させる必要があった。 そ の結果、 圧電素子の製造は、 その手順が極めて煩雑なものとなっていた。
【0 0 0 8】 一方、 A gや A g酸化物等の A g化合物を単独で添加することに より焼成温度を低下させようとした場合、 A g化合物が圧電磁器組成物から構成 される圧電体結晶中に固溶できる量は、 A g 2 0に換算して 0 . 1 2モル%程度 である。 このため、 それを超える量の A g化合物の添加を行うと、 固溶しきれな い A gが圧電体層の結晶粒界に残存し、 シルバーマイグレーションを生じる場合 があった。 こうなると、 例えば、 耐湿負荷信頼性試験において、 圧電体層の絶縁 ¾抗が低下する傾向にある。
【0 0 0 9】 また、 M oや M o酸化物等の M o化合物を単独で添加した圧電磁 器組成物には、 添加した M o化合物が内部電極を構成している A gと化合してし まい、 内部電極中の導電物質占有率が低くなつて、 誘電率の低下が生じるという 問題があった。
【0 0 1 0】 さらに、 従来の圧電磁器組成物を用いて積層型圧電素子等を生じ させた場合、 焼成時において、 内部電極と圧電体層との縮率の違いに基づく局所 的な素子変形が生じる場合があった。
【0 0 1 1】 またさらに、 上述のような A g等の物質を圧電体層に添加した圧 電磁器組成物を用いた積層型圧電素子においては、 焼結反応における焼結時間に 対する体積収縮率を示す曲線 (収縮カーブ) が急峻となる性質を示す傾向にあつ た。 また、 この収縮カープの急峻さを解消するための温度プロファイルの制御も 容易ではなかった。 このため、 焼成時における内部電極と圧電体層との収縮のバ ランスを制御することが困難であり、 特に、 面積が比較的大きく、 また厚みの薄 い積層型の圧電素子を形成させようとした場合、 得られる素子に反りやうねり等 が生じてしまっていた。
【0 0 1 2】 ところで、 圧電素子を形成させる場合には、 圧電体層を構成する 圧電磁器組成物には、 上述した複合酸化物や添加物質のほ力 \ 層形成を容易にす るためのバインダーを含有させることが多い。 この場合には、 素子の形成時に脱 バインダー及び焼成の 2つの工程を実施することが必要となる。 かかる 2つのェ 程においては、 まず、 バインダーの飛散を促進するために開放雰囲気下で脱バイ ンダーを実施する。 その後、 圧電磁器組成物中に含まれる元素 (主に P b ) の蒸 発を防止するために、 脱バインダー後の素子を密閉容器に移してから焼成を実施 する。 '
【0 0 1 3】 上記従来の圧電磁器組成物によってある程度低い焼成温度が実現 され、 これにより圧電素子の製造工程を多少省略することができた場合であって も、 素子の製造においては、 未だこのような複雑な手順が必要とされるため、 圧 電素子の製造工程の更なる簡略化を図れる圧電磁器組成物が求められている。
【0 0 1 4】 本発明はかかる事情に鑑みてなされたものであり、 焼成後の圧電 特性が良好で、 積層型圧電素子の内部電極に安価な A gを用いることができる新 規な圧電磁器組成物を提供することを目的とする。 また、 この圧電磁器組成物の 製造方法、 圧電素子及びその製造方法、 並びに圧電素体を提供することを目的と する。
【0 0 1 5】 上記目的を達成するために、 本発明は、 P b、 ∑ 及び丁 1を主 成分とするぺロブスカイト構造を有する複合酸化物と、 下記 (a ) 成分及び/又 は (b) 成分とを含有してなる圧電磁器組成物を提供する。
(a) A g及び/又は A g化合物、 並びに、 Mo及びノ又は Mo化合物
(b) モリブデン酸銀 [Ag2Mo OJ
【0016】 このような構成を有する圧電磁器組成物としては、例えば、 P b、 Z r及び T iを主成分とするぺロブスカイ ト構造を有する複合酸化物に、 Ag及 びノ又は A g化合物、 並びに、 Mo及び Z又は Mo化合物を添加してなるもので あり、 モリブデン酸銀 [Ag2Mo04] を含有するものが好ましい。 すなわち、 Pb、 Z r及ぴ T iの元素を主成分とするぺロブスカイ ト構造を有する複合酸化 物に、 A gおよび Moを金属またはその化合物として添加してなる圧電磁器組成 物であって、 モリブデン酸銀 [A g 2Mo OJ を含有する圧電磁器組成物が好ま しい。
【0017】 このような組成を有する圧電磁器組成物によると、 圧電素子形成 の際の焼成を、 従来の圧電磁器組成物に比してより低い温度で実施することがで きるようになる。 また、 モリブデン酸銀は、 ,祖成物中で極めて安定であるという 特性を有しているため、 A g又は M oの単独添加で問題となっていた圧電特性や 耐湿負荷信頼性の低下を引き起こすことが極めて少ない。
【0018】 低温条件下で圧電磁器 成物の焼成が可能になることは、 上述し た圧電素子の製造コストゃ製造手順の複雑化の問題を解消できるようになること のほか、 以下に示す理由からも好ましい。 すなわち、 近年、 積層型圧電素子であ る圧電ァクチユエータにおいては、 內部電極の材料として、 比較的安価で且つ耐 熱性等の特性に優れていることから、 銀 'パラジウム合金 (Ag— P d合金) が 頻繁に用いられている。 し力 し、 この合金からなる電極において P dの含有量が 30質量%を超えると、 焼成中に P dの還元反応が生じやすくなる傾向にあるこ とが知られている。 こうなると、 素子の圧電体層にクラックが発生したり、 電極 が剥離したりといった不都合が生じる場合がある。 このため、 Ag— P d合金か らなる電極においては、 P dの含有量を 30質量%以下とすることが好適である。 P dの含有量を 3 0質量%以下とするためには、 A g— P dの状態図に基づいて、 1 1 5 0 °C以下、 好ましくは 1 1 2 0 °C以下の焼成温度とする必要がある。
【0 0 1 9】 また、 素子製造時のコストの更なる低減を図る場合にも、 この合 金における比較的高価な P dの含有量を低くすることが好ましい。 この観点から も、 より低い温度での焼成が望まれる。 例えば、 P dの含有量を 0 %にして A g のみから構成される電極とするには、 焼成温度を 9 5 0 °C以下、 好ましくは 9 0 0 °C以下とする必要がある。
【0 0 2 0】 上記圧電磁器組成物によれば、 このような 9 5 0 °C以下の温度で の焼成が可能となる。 すなわち、 8 5 0〜9 5 0 °Cという従来の組成物に比して 低い温度での焼成が可能となる。 このため、 圧電素子の製造工程の簡略化が図れ るようになる。 また、 焼成後の圧電素子は、 圧電特性に優れるようになるととも に、 素子の変形が小さいという特性も有するものとなる。 さらに、 このように低 い温度での焼成が可能となるため、 積層型圧電素子を製造する際には、 内部電極 として比較的安価な A gを用いることが可能となる。
【0 0 2 1】 この圧電磁器組成物において、 組成物中に A gを含有しているに もかかわらず圧電素子の特性が低下しない原因については、 未だ明らかではない ものの、 本発明者らは以下のようなメカニズムによるものと推測している。 すな わち、 この組成を有する圧電磁器組成物においては、 焼成温度 8 0 0 °C付近で圧 電体層の結晶への A gの固溶が開始され、 8 0 0 °Cから 8 5 0 °Cの間で完了する。 このとき、 圧電体層の結晶中に固溶しきれない A gは、 同時に含有している M o と化合してモリブデン酸銀を形成する。 このモリブデン酸銀は、 組成物中又は以 下に述べる圧電素体中で極めて安定に存在できるという特性を有している。 この ため、 この圧電磁器組成物においては、 単独で存在した場合には圧電素子の耐湿 負荷信頼性を低下させるおそれのある A gが安定化された状態となっている。 そ の結果、 A gを含有させることに起因する特性の低下は極めて小さくなる。
【0 0 2 2】 複合酸化物に、 A g及ぴ Z又は A g化合物、 並びに、 M o及び Z 又は Mo化合物を添加させる場合、 これらの含有量は、 §§ 2〇に、 Mo を Mo 03にそれぞれ換算したときの添加量が、 下記式 ( i ) ~ (iii) の全てを 満たすことが好ましい。
A g 20添カ卩量一 Mo 03添加量 0. 1 2モル% ··· ( )
0. 24モル%≤ g 2 O添加量 48モル。/。 ··· (ϋ)
0. 12モル%≤1^ 003添加量≤ 0. 36モル% … (iii)
すなわち、 P b、 Z r及び T iの元素を主成分とするぺロプスカイト構造を有す る複合酸化物に、 A gまたはその化合物を A g 20に、 Moまたはその化合物を Mo 03にそれぞれ換算したとき、 Ag 20添加量—Mo03添加量 O. 1 2モ ル%の条件下で Ag 20を 0. 24モル%〜0. 48モル0/。、 Mo O 3を 0. 1 2 モル%〜 0. 36モル%添加したことを特徴とする圧電磁器組成物が好ましい。
【0023】 また、上記圧電磁器組成物は、複合酸化物にモリプデン酸銀を 0 - 1 2— 0. 36モル0 /0添加してなるものであっても好適である。
【0024】 さらに、 この圧電磁器組成物は、モリブデン酸鉛 [P b 2Mo 05] を更に含有するものであると好ましい。 モリブデン酸鉛は、 例えば、 上述したメ 力二ズムで示される反応において A gと結合できなかった Moが、 圧電磁器組成 物に存在している余剰の P b又はその化合物に結合することによつても形成され る。 このモリプデン酸鉛も、 上述のモリブデン酸銀と同様に圧電磁器組成物中又 は以下に述べる圧電素体中で安定に存在できる。 これにより、 単独で存在すると 内部電極の導電性物質の占有率の低下を引き起こすおそれのある Moが、 圧電体 層中で安定化される。
【0025】 このようにして、 上述の構成を有する圧電磁器組成物は、 焼成温 度の低下を図りつつ、 単独では圧電特性や耐湿負荷信頼性を劣化させる A gや M oを安定に含有することができる。
【0026】 これらの圧電磁器組成物は、 所定の温度で焼成することにより、 電素子に適用可能な圧電素体 (圧電磁器用焼成物) となる。 このような圧電素 体としては、 モリプデン酸銀 [Ag2Mo04] を含有する圧電素体や、 モリブデ ン酸銀 [Ag2Mo〇4]及ぴモリブデン酸鉛 [P b 2Mo05] を含有する圧電素 体が例示できる。
【0027】 本発明はまた、 Pb、 Z r及び T iを主成分とするぺロプスカイ ト構造を有する複合酸化物と、 下記 (A) 成分及び Z又は (B) 成分と、 を含有 してなる圧電磁器組成物を提供する。
(A) A g及びノ又は A g化合物、 Mo及び Z又は Mo化合物、 並びに、 W及び /又は W化合物
(B) モリブデンタングステン酸銀 [Ag2Mo _χ) Wx04] (伹し、 Xは 0. 3〜0. 7の数である。)
【0028】 このような組成を有する圧電磁器組成物によっても、 上述の圧電 磁器組成物と同様に、 圧電素子形成の際の焼成温度を低下することができるよう になる。 また、 モリプデンタングステン酸銀は、 組成物中又は以下に述べる圧電 素体中で安定に存在できるため、 Ag、 Mo又は Wの単独添加で問題となってい た圧電特性や耐湿負荷信頼性の低下を引き起こすことが極めて少ない。
【0029】 より具体的には、 この圧電磁器組成物としては、 Pb、 Z r及び T iの元素を主成分とするぺロプスカイト構造を有する複合酸化物に、 Ag及び /又は A g化合物、 M o及び/又は M o化合物、 並びに、 W及び Z又は W化合物 を添加してなるものであり、モリプデンタングステン酸銀 [Ag 2Mo (1_x) Wx 04] (但し、 Xは 0. 3〜0. 7の数である。) を含有するものであると好まし い。 すなわち、 P b、 Z r及び T iの元素を主成分とするぺロプスカイト構造を 有する複合酸化物に、 Ag、 Mo及び Wを金属及び/又はその化合物として添加 してなる圧電磁器組成物であって、 モリブデンタングステン酸銀 [Ag2Mo (1 -X) Wx04] (伹し、 Xは 0. 3〜0. 7の数) を含有することを特徴とする圧電 磁器組成物がよい。
【0030】 こうして得られた圧電磁器組成物によれば、 A g及び/又は A g 化合物、 M o及び Z又は M o化合物、 並びに、 W "及び/又は W化合物を添加しな かつた場合の組成物と比較して、 焼成温度を 1 0 0 °C程度低下させることができ る。このように焼成温度の低下が生じるメカニズムは必ずしも明らかではないが、 本発明者らは以下のように推察している。
【0 0 3 1】 すなわち、 P b、 Z r及び T iを主成分とするぺロプスカイト構 造を有する複合酸化物に、 A g及び/又は A g化合物、 M o及び _/又は M o化合 物、 並びに、 W及び/又は W化合物を添カ卩してなる組成物においては、 A g及び
(M o +W) が液相を形成するようになり、 これにより焼結反応が促進されて焼 成温度が低下するものと考えられる。
【0 0 3 2】 なお、 本発明者らが Wィヒ合物の添加について検討を行った結果、 以下に示すような知見を得ている。 すなわち、 圧電磁器組成物に W又はその化合 物を添加すると、 焼成時の焼結反応が促進されて充分な磁器密度が得られるよう になるものの、 Wの単独添加では焼成時の粒子成長が阻害されやすく、 低い温度 の焼成では、 得られる圧電磁器組成物の特性が不充分となってしまうことが確認 された。
【0 0 3 3】 これに対して、 上述の組成を有する本発明の圧電磁器組成物は、 このような不都合を生じやすい" Wゃ圧電素子の耐湿負荷信頼性を低下させるおそ れのある A gを組成物中に含有しているにもかかわらず、 これらの添加に起因す る不都合を生じることが極めて少ないものとなる。 この要因については、 必ずし も明らかではないものの、 以下に示すメカニズムによるものと推測される。
【0 0 3 4】 すなわち、 A g、 M o及び Wを組み合わせて含有している上述の 圧電磁器且成物においては、 焼成温度 8 0 0 °C付近で圧電体層の結晶への A gの 固溶が開始され、 8 0 0 °Cから 8 5 0 °Cの間で完了する。 このとき、 圧電体層の 結晶中に固溶しきれない A gは、 液相を形成している (M o +W) と再化合する 等してモリブデンタングステン酸銀を形成する。 このモリブデンタングステン酸 銀は、 圧電磁器組成物中又は以下に述べる圧電素体中で極めて安定に存在できる 化合物である。 このため、 圧電体層中の A gや Wは、 組成物中で安定化された状 態となり、 これにより上述の不都合を生じることが極めて少なくなる。
【0035】 このような特性を有する圧電磁器組成物を積層型圧電素子の製造 に用いた場合、 低温での焼成が可能となるため、 内部電極に比較的安価な A gを 用いることができるようになる。 また、 この圧電磁器組成物は、 Ag、 Mo及び Wの 3成分を組み合わせて含有しているため、 焼結反応による収縮カープがそれ ほど急峻性を示さなくなる。 これにより、 積層型の素子を形成させる際の基板の 反りやうねりの発生を低減することが可能となる。 さらに、 焼成時における Pb の蒸発を抑制できるため、 製造工程を大幅に簡略化できる。 そして、 こう して製 造された積層型圧電素子は、 圧電特性に優れるのみならず、 安定性が高く且つ焼 成後の変形も小さいという特性を有するようになる。
【0036】 複合酸化物中に、 A g及び Z又は A g化合物、 Mo及び/又は M o化合物、並びに、 W及びノ又は W化合物を添加して圧電磁器組成物を得る場合、 これらの添加量は、 Ag、 Mo及び Wをそれぞれ Ag 20、 Mo03及び W〇3に 換算したときに、 下記式 (1) 〜 (3) の全てを満たすことが好ましい。
Ag 20添加量—((1一 X) ■ Mo 03 + X■ W03)添加量≤ 0. 12モル0 /0
(1)
0. 24モル%≤ g 20添加量≤ 0. 48モル% … (2)
0. 12モル%^ (Mo 03+W03) 添加量≤0. 36モル% … (3)
[伹し、 Xは 0. 3〜0. 7の数である。]
【0037】 また、 この複合酸化物及ぴモリブデンタングステン酸銀を含有し ている圧電磁器組成物は、 上述した複合酸化物に、 モリブデンタングステン酸銀
[Ag2Mo (i-x) WxOj (但し、 Xは 0. 3〜0. 7の数である。) を 0. 1 2 〜0. 36モル%添加してなるものであっても好適である。
【0038】 さらに、 この構成を有する圧電磁器組成物は、 モリブデンタンダ ステン酸鉛 [Pb2Mo (1— Wv04] (但し、 Xは 0. 3〜0. 7の数である。) を更に含有するものであると更に好ましい。 モリブデンタングステン酸鉛は、 上 述のメカニズムに示される反応において A gに結合できなかつた M o及び Wが、 圧電磁器組成物中に存在している余剰の P b又はその化合物に結合することによ つても形成される。 こうして、 単独で存在した場合には内部電極の導電性物質の 占有率の低下を引き起こすおそれのある Mo及び Wが、 圧電体層中で安定化され る。 これにより、 得られる圧電素子の安定性が一層向上する。
【0039】 これらの圧電磁器組成物も、 上述の圧電磁器組成物と同様に、 所 定の温度で焼成することにより圧電素体となる。 このような圧電素体としては、 モリブデンタングステン酸銀 [Ag2Mo (1X)WX04] (但し、 Xは 0. 3~0. 7の数である。) を含有する圧電素体や、 モリブデンタングステン酸銀 [Ag 2M o (1_x) Wx04] (伹し、 Xは 0. 3〜0. 7の数である。) 及びモリブデンタン グステン酸鉛 [P b 2Mo (1x) Wx4] (但し、 Xは 0. 3〜0. 7の数である。) を含有する圧電素体が例示できる。
【0040】 上記本発明の圧電磁器組成物においては、 複合酸化物が、 Z n、 Mg及び Nbを更に含有してなるものであるとより好ましい。'これらの元素から 構成される複合酸化物としては、 a P b (Z n1/3Nb 2/3) 03— b Pb (M g 1/3Nb 2/3) 03- c P b T i 03-d Pb Z r 03 (但し、 a + b + c + d= l である。) が好適な例として挙げられる。
【0041】 本発明による単板圧電素子は、 圧電層に上記本発明の圧電磁器組 成物を適用するのが好適であり、 互いに対抗する 2つの電極と、 該電極間に配置 された圧電体層と、 を備えるものであって、 圧電体層が、 上記本発明のいずれか の圧電磁器組成物からなることを特徴とするものである。
【0042】 また、 本発明による積層型圧電素子は、 内部電極、 圧電体層及び 外部電極を備え、 内部電極と圧電体層が交互に積層され、 且つ、 内部電極が外部 電極に接続されたものであって、 圧電体層が上記本発明のいずれかの圧電磁器組 成物からなることを特徴とするものである。 【0 0 4 3】 このような構成を有する単板又は積層型圧電素子は、 圧電体層が 上記本発明の圧電磁器組成物からなるものであるため、 低い焼成温度で製造可能 である。 このため、 簡便な製造工程で製造することができ、 更に、 内部電極とし て A gからなる電極を用いることが可能となるため製造にかかるコストも低いも のとなる。
【0 0 4 4】 後者の積層型圧電素子としては、 内部電極、 圧電体層及び外部電 極を備え、 内部電極と圧電体層が交互に積層され、 且つ、 積層方向に形成された スルーホール内部の導体により内部電極と外部電極とが接続された積層型圧電素 子であって、 圧電体層が上記本発明のいずれかの圧電磁器組成物からなるものも 好適である。
【0 0 4 5】 なお、上記単板圧電素子及び積層型圧電素子における圧電体層は、 上記本発明のいずれかの圧電素体であってもよい。 また、 上記積層型圧電素子に 用いる内部電極としては、 A gからなる電極が好ましい。
【0 0 4 6】 本発明はまた、 上記本発明の圧電磁器組成物を平易に製造するた めの、 以下に示すいくつかの方法を提供する。 すなわち、 まず、 P b、 Z r及び T iを含む原料を仮焼成してぺロブスカイト構造を有する複合酸化物を形成する 工程と、 複合酸化物に、 A g及び/又は A g化合物、 並びに、 M o及び Z又は M o化合物を添加する工程とを有する製造方法や、 上記複合酸化物を形成する工程 と、 複合酸化物にモリブデン酸銀 [A g 2M o 0 4] を添加する工程とを有する製 造方法を提供する。 これらの方法により、 焼成後にモリブデン酸銀を含有し得る 圧電磁器組成物が製造される。
【0 0 4 7】 また、 本発明の圧電磁器組成物の製造方法としては、 P b、 Z r 及び T iを含む原料を仮焼成してぺロプスカイト構造を有する複合酸化物を形成 する工程と、 複合酸化物に A g及び/又は A g化合物、 M o及び/又は M o化合 物、 並びに、 W及び Z又は W化合物を添加する工程とを有する製造方法や、 上記 複合酸化物を形成する工程と、 複合酸化物にモリブデンタングステン酸銀 [A g 2M o ( 1 _x) Wx 04] (但し、 Xは 0 . 3〜0 . 7の数である。) を添加する工程と を有する製造方法も好適である。 これらの方法により、 焼成後にモリブデンタン グステン酸銀を含有し得る圧電磁器組成物が製造される。
【0 0 4 8】 本発明はさらに、 上記本発明の圧電磁器組成物を備える本焼成前 の圧電素子前駆体を、 焼成温度 8 5 0 - 9 5 0 °Cで焼成する圧電素子の製造方法 を提供する。
図面の簡単な説明
図 1は、 本発明による単板圧電素子の実施形態を示す模式断面図である。 図 2は、 本発明による圧電素子の製造工程を示すフロー図である。
図 3は、 本発明による積層型圧電素子の第 1の実施形態を示す模式断面図であ る。
図 4は、 本 明による積層型圧電素子の第 2の実施形態を示す模式断面図であ る。
図 5は、 実施例における単板又は積層型圧電素子の製造工程を示すフロー図で ある。
図 6は、 試料 4 1と試料 4 9を成形したものを、 熱分析装置により収縮挙動を 調べた結果を示すグラフである。
発明を実施するための最良の形態
【0 0 4 9】 以下、 本発明の好適な実施形態について、 図面を参照して詳細に 説明する。 なお、 同一の要素には同一の符号を付し、 重複する説明を省略する。 また、 上下左右等の位置関係は、 図面の位置関係に基づくものとする。
【0 0 5 0】 図 1は、 本発明による圧電素子 (単板圧電素子) の実施形態を示 す模式断面図である。 単板圧電素子 1 0は、 互いに対抗する 2つの電極 1の間に 圧電体層 2が挟持されてなるものである。
【0 0 5 1】 このような構成を有する圧電素子 1 0における電極 1としては、 通常電極として使用される金属等の材料から構成されるものであれば特に制限な く適用することができ、 Ag、 Au、 P t、 P d等が例示できるが、 単板圧電素 子 10の製造コスト等を抑える観点からは、 より安価な電極材料である A g— P d合金や、 A gのみから構成される電極を用いることが好ましい。
【0052】 また、 圧電体層 2は、 本発明の圧電磁器組成物から構成されるも のであり、 例えば、 この圧電磁器組成物を焼成してなる本発明の圧電素体とする ことができる。 圧電体層 2の構成材料である圧電磁器組成物としては、 以下に示 す第 1の圧電磁器組成物及び第 2の圧電磁器組成物が挙げられる。
【0053】 まず、 第 1の圧電磁器組成物について説明する。 第 1の圧電磁器 組成物は、 P b、 Z r及び T iを主成分とするぺロブスカイト構造を有する複合 酸化物と、 下記 (a) 成分及び/又は (b) 成分とを含有することを特徴とする ものである。 この圧電磁器組成物においては、 下記 (a) 成分又は (b) 成分は、 好ましくは複合酸化物中に固溶又は分散された状態となっている。
(a) A g及び Z又は A g化合物、 並びに、 Mo及び Z又は Mo化合物
(b) モリブデン酸銀 [Ag2Mo04]
【0054】 ぺロブスカイト構造を有する複合酸化物としては、 主成分である P b、 Z r及び T iのほか、 Z n、 Mg及ぴ Nbを更に含有して構成される酸化 物がより好ましい。 具体的には、 このような複合酸化物としては、 a P b (Z n i/3Nb 2/3) 03一 b P b (Mg 1/3N b 2/3) 03- c P b T i 03- d P b Z r 03 (但し、 a + b + c + d= 1である。) が挙げられる。
【0055】 また、第 1の圧電磁器組成物は、モリブデン酸鉛 [ P b 2M o O 5] を更に含有するものであるとより好ましい。 これにより、 組成物中の余剰の Mo が安定な状態で存在するようになる。 このモリブデン酸鉛の好適な含有量は、 複 合酸化物の全モル量に対して 0〜0. 1 8モル%である。
【0056】 上述したように、第 1の圧電磁器組成物は複合酸化物と、上記( a ) 及びノ又は (b) 成分とを含有するものである。 このような圧電磁器組成物は、 例えば、 複合酸化物中に (a) 及び/又は (b) 成分を添加することによって得 ることができる。
【0057】 (a) 成分を添加する場合、 (a) 成分である A g及び 又は A g 化合物、 並びに、 Mo及び/又は Mo化合物は、 焼成後の圧電磁器組成物が充分 に圧電特性を維持できるような量を添加する必要がある。 そのためには、 これら の添加量は、 八8を §2〇に、 Moを Mo〇3にそれぞれ換算したときに、 下記 式 ( i) 〜 (iii) の全てを満たすことが好ましい。
Ag 20添加量— Mo03添加量≤ 0. 1 2モル% ··· ( i )
0. 24モル%≤Ag 2 O添加量 0. 48モル% ·'· (ϋ)
0. 12モル0/。 Mo 03添加量 0. 36モル% … (iii)
【0058】 A g及び Moの化合物をそれぞれ添加する場合、 これらの化合物 としては、 加熱等によって A g及び Mo成分が得られるものであれば特に制限な く用いることができ、 例えば、 A g及び Moの酸化物、 炭酸塩、 水酸化物、 硝酸 塩が挙げられる。 なかでも酸化物が好ましい。 A gや Moの酸化物としては、 例 えば、 Ag2〇や Mo03が好適である。
【0059】 かかる添加により得られた圧電磁器組成物においては、 例えば焼 成後等に、圧電磁器組成物が形成する結晶中に固溶しきれない添加物中の A gが、 同時に添加した M oと化合することによってモリブデン酸銀が形成されるように なる。 こうして形成された圧電磁器組成物中のモリブデン酸銀は、 X線回折や X 線マイクロアナライザによって同定することができる。 なお、 圧電磁器組成物中 のモリプデン酸銀の含有量は、 組成物の全モル数に対して 0. 12〜0. 36モ ル%程度が好ましい。
【0060】 一方、 (b) 成分を添加する場合も、 上述と同様に、添加するモリ ブデン酸銀の添加量を、 焼成後の圧電磁器組成物が充分な圧電特性を維持できる ような量とする必要がある。 そのためには、 モリブデン酸銀の添加量は、 複合酸 化物の全モル量に対して 0. 1 2〜0. 36モル0 /0とすることが好ましい。
【006 1】 次に、 第 2の圧電磁器組成物について説明する。 第 2の圧電磁器 組成物は、 P b、 Z r及び T iを主成分とするぺロブスカイト構造を有する複合 酸化物と、 下記 (A) 成分及びノ又は (B) 成分とを含有することを特徴とする ものである。 なお、 第 2の圧電磁器組成物に用いる好適な複合酸ィヒ物としては、 上述した第 1の圧電磁器組成物と同様のものが挙げられる。
(A) A g及び Z又は A g化合物、 Mo及び Z又は Mo化合物、 並びに、 W及び /又は W化合物
(B) モリブデンタングステン酸銀 [Ag 2Mo d-χ) Wx04] (但し、 Xは 0. 3〜0. 7の数である。)
【0062】 また、 第 2の圧電磁器 a成物は、 複合酸化物及びモリブデンタン グステン酸銀に加えて、モリブデンタングステン酸鉛 [P b 2Μο (1_χ) Wx04] を含有するものであるとより好ましい。 これにより、 組成物中における余剰の M o及び Wが安定な状態で存在できるようになる。モリブデンタングステン酸鉛は、 複合酸化物の全モル量に対し 0〜0. 1 8モル%含有されていることが好まし い。
【0063】 かかる構成を有する第 2の圧電磁器組成物は、 好ましくは、 複合 酸化物に上記 (A) 及びノ又は (B) 成分を添加して得られるものである。
【0064】 まず、 (A) 成分を添加する場合、 (A) 成分である Ag及び Z又 は A g化合物、 Mo及び Z又は Mo化合物、 並びに、 W及び Z又は W化合物の添 加量は、 添加後の圧電磁器組成物の圧電特性を充分に維持することが可能な程度 しなければならない。
【0065】 この場合、 これらの添加量は、 Ag、 M o及び Wをそれぞれ A g 20、 Mo 03及び W〇3に換算したときに、 下記式 (1) 〜 (3) の全てを満た すような量とすることが望ましい。 なお、 下記式中、 Xは 0. 3〜0. 7の数で め
Ag 2〇添加量一((1一 X) · Mo 03 + X · W〇3)添加量≤ 0. 1 2モル% … (1) 0. 24
Figure imgf000018_0001
20添加量≤ 0. 48モル%. '" (2)
0. 12モル0/ 0≤ (Mo O 3+WO3) 添加量≤0. 36モル% ··· (3) 【0066】 複合酸化物中に添加させる A g、 Mo及ぴ Wの化合物としては、 例えば、 これらの金属の酸化物、 炭酸塩、 水酸化物、 硝酸塩が挙げられ、 なかで も酸化物が好ましい。 この酸化物としては、 Ag20、 Mo 03又は W03が好適 である。
【0067】 複合酸化物中に (A) 成分を添加した場合、 例えば焼成後に、 圧 電磁器組成物中において、 当該組成物から形成される結晶中に固溶しきれない添 加物中の A gが、.組成部中で液相を形成している (Mo +W) と再化合すること によりモリプデンタンダステン酸銀が形成すると考えられる。 このモリブデンタ ングステン酸銀も、 上記第 1の圧電磁器組成物におけるモリブデン酸銀と同様の 手段で同定可能である。 なお、 圧電磁器 成物中のモリプデンタングステン酸銀 の含有量は、 全モノレ数に対して 0. 1 2〜0. 36モル0 /0であると好ましい。
[0068] 一方、 (B) 成分を添加する場合、 (B) 成分であるモリブデンタ ングステン酸銀の添カ卩量は、 複合酸化物の全モル量に対して、 0. 1 2〜0. 3 6モル%とすることが好ましい。 こうすることで、 モリブデンタングステン酸塩 の添加による焼成後の圧電磁器組成物の特性の低下を最低限に抑制することが可 能となる。
【0069】 次に、 このように構成された単板圧電素子 10の製造方法につい て、 図 2を参照しつつ説明する。 図 2は、 本発明による圧電素子の製造工程を示 すフロー図である。
【0070】 まず、 P b、 Z r及び T iの元素を含む原料化合物 (第 1の原料) を、目的とする複合酸化物の組成となるように秤量して配合する。 (ステップ S 1 a )。 この第 1の原料としては、形成させる複合酸化物を構成する各金属の酸化物 や炭酸塩を用いることができる。 例えば、 a P b (Z n 1/3Nb 2/3) 〇3— b P b (Mg 1/aNb 2/3) 0。一 c P b T i 03— d P b Z r 03 (但し、 a + b + c + d = lである。)で表される複合酸化物を形成させる場合には、 P bO、 Z nO、 T i〇2、 Nb 205、 MgC〇3、 Z r〇2等が原料化合物として用いられる。
【0071】 次に、 配合された第 1の原料をボールミル等に入れて水を加えた 後に、 粉砕のための粉碎メディアとしてアルミナボールやジルコニァボール等を 加えて攪拌して、第 1の原料を湿式混合粉砕する(ステップ S 2)。さらに、混合 - 粉碎された第 1の原料を乾燥させた後(ステップ S 3)、 700〜900°Cで 3時 間程度加熱して仮焼成を行い(ステップ S 4)、第 1の原料に固相反応を生じさせ て仮焼成物 (複合酸化物) を得る。
【0072】 この仮焼成物に、 上記 (a) 及び Z又は (b) 成分、 又は、 上記
(A) 及び Z又は (B) 成分等の原料化合物 (第 2の原料) を、 所望の組成が得 られるように秤量して添加し、 仮焼成物と第 2の原料とを配合して (ステップ S 1 b)、圧電磁器組成物を形成する。 この第 2の原料の添加は、後述する圧電磁器 組成物の湿式混合粉砕と同時 行うと好ましい。 なお、 この第 2の原料は、 必ず しも第 1の原料の仮焼成後に添加する必要はなく、 第 1の原料中に直接添加する こともできる力 仮焼成時の加熱等による望ましくない組成変化を極力防ぐため、 仮焼成後の添加であることが好ましい。
【0073】 その後、 得られた圧電磁器組成物を、 ステップ S 2と同様にして 湿式混合粉砕した後 (ステップ S 5)、ポリビニルアルコール等の有機物からなる バインダーを添加して (ステップ S 6)、 圧電素子の前駆体を形成する。
【0074】 次いで、 この素子前駆体に、 適宜の造粒処理を実施した後 (ステ ップ S 7 a),例えば、加圧条件下で角板状等の所望の素子形状に成形し (ステツ プ S 8 a)、 さらに、得られた成形体を大気雰囲気下で数百度(例えば 300〜5 00°C) に加熱するなどしてバインダーを除去する (脱バインダー;ステップ S 9 a )。 さらに、バインダー除去後の成形体を 800〜 1000 °C、 より好ましく は 850〜950°Cで焼成して(ステップ S 1 0 a),単板圧電素子 10における 圧電体層 2となる圧電素体を形成した後、 焼き付けや真空蒸着等によりこの圧電 素体に電極 1を形成して (ステップ S 1 1 ) 単板圧電素子 1 0を得る。 その後、 得られた素子における圧電体層 1に所定の分極を生じさせることによって、 単板 圧電素子 1 0が製品化される。
【0 0 7 5】 次に、 本発明による積層型圧電素子の好適な実施形態を、 図 3及 び図 4を参照しつつ説明する。 図 3は、 本発明による積層型圧電素子の第 1の実 施形態を示す模式断面図である。 図 3に示される積層型圧電素子 2 0は、 交互に 積層された内部電極 1 1 a , 1 1 bと圧電体層 1 2とを有しており、 この内部電 極 1 1 a , l i bと圧電体層 1 2とが積層してなる積層体の最外層には保護層 1 3 a及び 1 3 bが設けられている。 また、 内部電極 1 1 aと内部電極 1 1 bとは 互いに交互に配置された状態となっており、 これらのそれぞれに外部電極 1 4が 接続されている。
【0 0 7 6】 積層型圧電素子 2 0における内部電極 1 1 a , l i bの電極材料 としては、 一般的に電極に用いられる金属等であれば特に制限はないが、 素子の 製造にかかるコストを低減する観点から、 比較的安価な電極材料である A g— P d合金や A gが好ましい。 外部電極 1 4も同様に、 通常の電極材料からなるもの を特に制限なく用いることができ、 例えばスパッタリング等により形成された金 電極が例示できる。 '
【0 0 7 7】 圧電体層 1 2は、 本発明の圧電磁器組成物から構成される層であ り、 -上述した第 1及び第 2の圧電磁器組成物を、 好ましくは 8 5 0〜 9 5 0。Cで 焼成することにより形成されたものである。 また、 保護層 1 3 a及び 1 3 bは、 これらの内部電極 1 1 a, 1 1 b及び庄電体層 1 2から構成される積層体を保護 する役割を有するものであり、 圧電体層 1 2を構成しているものと同じ組成系の 圧電体層からなる。
【0 0 7 8】 このような構成を有する積層型圧電素子 2 0の製造方法について、 図 2を参照しつつ説明する。 まず、 上述した単板圧電素子 1 0の製造と同様にス テツプ S 1〜ステップ S 6までを実施して圧電素子の前駆体を得る。 次に、 この 圧電素子の前駆体に、 適宜有機溶剤や有機可塑剤等を加えた後、 ポールミル等で 混合粉砕を行ってスラリーを得る。
【0 0 7 9】 このスラリーを、例えば、 ポリエチレンテレフタレート (P E T ) 等のベースフィルム上に、 公知の方法により塗布した後に乾燥させ、 焼成後に圧 電体層 1 2となるグリーンシート (シート) を形成する (ステップ S 7 b )。次に、 このグリーンシート上に電極材料である金属のペースト等を、 スクリーン印刷法 等により所望の電極形状となるように塗布した後、 乾燥させることにより内部電 極 (内部電極 1 1 a又は 1 1 b ) を形成する (ステップ S 8 b )。 さらに、 このス テツプ S 7 bとステップ S 8 bとを複数回繰り返して、 グリーンシート及び内部 電極との積層体を形成する。
【0 0 8 0】 次いで、 上で得られた積層体を、 所定の温度で焼成した後 (ステ ップ S 9 b )、この積層体に、例えば金のスパッタリング等を施して外部電極 1 4 を形成し (ステップ S 1 0 b ) , さらに積層体の表面に保護層 1 3 a, 1 3 bを適 宜形成することにより積層型圧電素子 2 0を得る。
【0 0 8 1】 図 4は、 本発明による積層型圧電素子の第 2の実施形態を示す模 式断面図である。 図 4に示される積層型圧電素子 3 0は、 交互に積層された内部 電極 1 1 a , 1 1 b及び圧電体層 1 2と、 内部電極 1 1 a , 1 1 b及び圧電体層 1 2から る積層体の最外層に設けられた保護層 1 3 a及び 1 3 bを有してい る。 また、 内部電極 1 1 a, 1 1 b及ぴ圧電体層 1 2から構成される積層体には、 積層方向に貫通する一対のスルーホール 1 8が形成されており、 このスルーホー ル 1 8の内部には導電性の物質 (導体) からなる貫通電極 1 5が埋め込まれてい る。 さらに、 この一対の貫通電極 1 5のそれぞれには外部電極 1 4が接続されて おり、 内部電極 1 1 a, l i bと外部電極 1 4とは、 貫通電極 1 5によって両者 の導通が図られている。このような構成を有する積層型圧電素子 3 0の各構成は、 上述した積層型圧電素子 2 0とほぼ同様の材料から形成されるものである。
【0 0 8 2】 このような構成を有する積層型圧電素子 2 0及び積層型圧電素子 3 0は、 圧電体層 2が上記本発明の圧電磁器組成物から構成されるものであるた め、 素子形成時の焼成温度を 8 5 0〜9 5 0 °C程度とすることができる。 このた め、 内部電極 1 l a , 1 1 bとして、 比較的安価な A g— P d合金や、 特に好ま しくは A g単体から構成される電極を採用できるようになり、 積層型圧電素子 2 0及び 3 0の製造コストを低減できるようになる。
【0 0 8 3】 また、 これらの圧電磁器組成物の製造においては、 上述のような 低温条件で焼成が可能になることから、 積層体をマグネシア (M g O) などの密 閉容器中ではなく、 大気雰囲気下で焼成させた場合であっても、 焼成による複合 酸化物中の P bの蒸発がほとんど生じない。
【0 0 8 4】 さらに、 これらの素子における圧電体層 1 2を構成している圧電 磁器糸且成物は、 A g、 M o、 W等が均一に分散された状態となっており、 また、 焼成時の収縮カープもそれほど急峻なものとはならないため、 この焼成後に得ら れる積層型圧電素子 2 0及び 3 0は、 反りやうねり等の発生が極めて少ないもの となる。
【0 0 8 5】
〔実施例]
以下、 本発明を実施例により更に詳細に説明するが、 本発明はこれらの実施例 に限定されるものではない。
【0 0 8 6】
[実施例 A]
実施例 Aにおいては、 複合酸化物と、 上記 (a ) 及び Z又は (b ) 成分とを含 有する圧電磁器組成物について検討するために、 以下に示す試料 1〜 2 4の単板 又は積層型圧電素子を形成し、 得られた素子の特性評価を行った。
【0 0 8 7】
(単板及び積層型圧電素子の製造)
図 5は、 実施例における単板又は積層型圧電素子の製造工程を示すフロー図で ある。 まず、 複合酸化物の原料化合物 (第 1の原料) として、 P b 0、 Z η 0、 Nb 205、 MgC03、 T i 02、 Z r 02を準備し、 基本組成が 0. l P b (Z n1/3Nb 2/3) O3-0. 2 Pb (Mg 1/3Nb2/3) O3—0. 38 P bT i O 3-0. 32 Pb Z r 03になるように各原料を秤量して配合させた。
【0088】 これらをボールミルにて湿式混合させた後に乾燥させ、 更に 90 0°Cで 3時間の仮焼成を行って仮焼成粉 (仮焼成物) を得た。 この仮焼成粉を再 ぴポールミルで湿式粉碎する際に、 表 1に示す添加量にしたがって添加成分 (第 2の原料) である Ag 20及び Mo 03、 又は Ag 2Mo 04を添加した。 次いで、 これらを更に湿式粉砕した後、 乾燥して圧電材料 (圧電磁器組成物) を得た。
【0089】 ここから、 まず、 単板圧電素子を作製するために以下に示す工程 を実施した。 まず、 上で得られた圧電材料にポリビュルアルコール系バインダー を加えて造粒した後、 約 1 96 MP aの圧力下で、 一辺が約 20mm、 厚さ 1. 5 mmの角板状に成形した。 こ.の成形体を、大気雰囲気中で脱バインダーした後、 マグネシア (MgO) の密閉容器に入れて、 試料ごとに 800°Cから 1 100°C の間の所定の温度で 3時間にわたり焼成を行い、 単板圧電素子用の素子素体を得 た。
【0090】 さらに、 アルキメデス法によりこの素子素体の磁器密度; 0 sを求 めた後、 高さ lmmの板状に加工した。 次いで、 この板状素体に銀焼付電極を形 成した後、 12 mm X 3 mmのサイズに加工して図 1に示す単板圧電素子の試料 1〜24を作製した。 この単板圧電素子は、 図 1において、 圧電体層 6の両面に 銀焼付電極 7が形成された構造を有している。
【0091】 次に、 積層型圧電素子の試料を作製するために以下に示す工程を 実施した。 まず、 上で得られた圧電材料に有機バインダー、 有機溶剤及び有機可 塑剤を加え、 ボールミルで 20時間混合粉碎を行ってスラリ一を作製した。
【0092】 このスラリーを用いて、 ドクターブレード法により PET (ポリ エチレンテフタレート) 製のベースフィルム上にグリーンシートを作製した。 さ らに、 得られたグリーンシート上に、 銀パラジウムペース トまたは銀ペース トを 用いて、 スクリーン印刷法により所望の形状の電極パターンとなるように印刷し た後、 乾燥して、 内部電極 (図 3に示す積層型圧電素子において、 内部電極 1 1 aに該当する。) を形成した。 この後、 P E T製のベースフィルムから内部電極が 形成されたグリーンシートを剥離した。
[ 0 0 9 3 ] 次いで、 上記と同様にグリーンシートを作製した後、 その上に上 記と同様に電極の印刷を行い内部電極 (図 3に示す積層型圧電素子において、 内 部電極 1 1 bに該当する。)を形成した。 これらのグリーンシートを交互に積層さ せた後、 得られた積層体の最外層に上記と同じ組成系のダリーンシートを複数層 積層して保護層 (図 3に示す積層型圧電素子において、 保護層 1 3 a, 1 3 bに 該当する。) を形成した。
【0 0 9 4】 得られた積層体を加熱圧着した後、 所定のチップ形状となるよう に切断してグリーンチップを形成した。 このグリーンチップに大気雰囲気中で脱 バインダー処理を実施した後、 密閉容器に詰めて、 試料ごとに 8 0 0 °Cから 1 1 0 0 °Cの間の所定の温度で 3時間にわたる焼成を行い、 積層型圧電素子の素子素 体を形成した。
【0 0 9 5】 なお、 この素子素体の外形は縦 3 O mm X横 6 mm X厚み約 0 .
3 6 mmとし、 グリーンシートから形成される圧電体層の一層当たりの厚さは 3
0 i mN 内部電極の一層当たりの厚さは 1 /x m〜2 111、 内部電極の層数は合計 で 1 0とした。 なお、 試料 1の圧電素子では、 内部電極として金属成分 P d : A g = 3 0 : 7 0である合金を用い、 その他の試料では金属成分として A gのみを 用いた。
【0 0 9 6】 その後、 素子素体の両端面に外部電極 (図 3に示す積層型圧電素 子において、外部電極 1 4に該当する。) を、金をスパッタリングすることにより 形成して、 図 3に示す構造を有する積層型圧電素子を得た。 図 3に示すように内 部電極 1 1 a , l i bは交互に両端面に接続されている。 【0097】
(特性評価)
上述のようにして得られた試料 1〜 24の単板圧電素子及び積層型圧電素子を 用いて、 各種の特性評価を行った。 なお、 試料 1〜2では第 2の原料を用いず、 試料 3では第 2の原料として Ag20のみを用い、 試料 4では第 2の原料として Mo〇 3のみを用い、 試料 5〜14では第 2の原料として Ag 20及び Mo 03を 用い、試料 15〜24では第 2の原料として A g 2Mo〇4を用いて、 上述の方法 により単板圧電素子及び積層型圧電素子を作製した。 まず、 得られた単板圧電素 子の試料に、 1 20°Cの絶縁油中で電圧 2〜3 k VZmm、 30分の条件で分極 処理を施した後、 インピーダンスアナライザーを用いて、 処理後の試料の静電容 量 C、 共振周波数 f r及び反共振周波数 f aを測定し、 これらの結果から圧電歪 定数 d31を求めた。
【0098】 また、 得られ 積層型圧電素子の試料に、 LCRメータにより、 静電容量 Cを測定した後、 これにより圧電特性が得られた試料について、 以下に 示す耐湿負荷信頼性試験を実施した。 この試験においては、 温度 60°C、 湿度 9 0%RHの環境下で、 圧電体層に厚みあたり 1000 k V/mの直流電界を印加 し、 素子の抵抗値の経時変化を 100時間後まで確認する耐湿負荷試験を実施し た。 なお、 素子の抵抗値の測定には絶縁抵抗計を用いた。
【0099】 この特性評価により得られた結果をまとめて表 1に示す。 表中の p sは磁器密度、 Cは静電容量、 d 3 iは圧電歪定数をそれぞれ表している。なお、 試料 1及び 2は従来例であり上記 (a) 及ぴ (b) 成分を含んでおらず、 また、 試料 3及び 4は上記 (a) 成分における A g及び Moのうち、 いずれか一方のみ を含有していることから、 どちらも比較例に該当する。
【表 1】
Figure imgf000026_0001
【0100】 試料 1は、 基本的な圧電磁器組成物を用い、 1 10 o°cで焼成し て得られたものである。 圧電素子においては、 静電容量および圧電歪定数がこの 試料 1の特性を基準にして 10 %以上変化していると製品特性上の問題を生じる 場合があることから、 以下の考察においては、 静電容量および圧電歪定数の変化 が 10%以内のものを特に良好であると判断した。 また、 耐湿負荷試験では試験 後の絶縁抵抗が 106 Ω以上のものを特に良好であると判断した。 試料 2は、 試 料 1の焼成温度を 900°Cとした場合であり、 焼結しておらず特性の測定ができ なかった。
【01 01】 試料 3及び 4は比較例である。 試料 3は A g 20のみを添加した 場合であり、 圧電体層結晶に固溶可能な A gの量である 0. 1 2モル。/。を越えて おり、 圧電体層の結晶に固溶しない A gによつて耐湿負荷試験後の絶縁抵抗が低 下するとともに、 耐湿負荷信頼性が悪くなつた。 また、 試料 4は Mo 03のみを 添カ卩した場合であり、 Moが内部電極の A gと化合物を作っているものと考えら れ、 これにより内部電極の導電成分の占有率が低下して静電容量が低いものとな つた。
【0102】 試料 5から 14までは、 A g 20と Mo O 3の添加量の組み合わせ を変化させた試料である。 試料 5は Ag2〇、 Mo 03ともに添加量が少なく、 比 較的焼結不足であり、 磁器密度や静電容量、 圧電歪定数が比較的低いものとなつ た。
【0103】 試料 8と 1 Ofま、 A g 20添加量と Mo 03添加量との差が大きい 例である。 この場合、 A gの圧電体層の結晶への固溶量と Moの量を差し引いた 分の A gが固溶できずに残る傾向にあり、 耐湿負荷信頼性後の絶縁抵抗が比較的 低いものとなった。 また、 試料 14では、 添加物 (特に Mo03) の量が過剰で あり、 圧電歪特性が低下した。
【0104】 以上より、 Ag20が 0. 24~0. 48モル0/。、 M o O 3が 0. 1 2〜0. 36モル0 /0であり、 また、 A g 20添加量から Mo 03添加量を差し引 いた値が 0. 12モル%より大きくならない範囲がより好ましいことが判明した。
【0105】 また、 試料 1 5〜24は Ag2Mo04を添加した試料である。 試 料 1 5は添加量が比較的少ない場合の例であり焼結がやや不充分であった。 試料 1 9は逆に添加量が多い場合であり、 圧電歪特性が比較的低いものとなった。 こ のことから Ag2Mo〇4の添加量は 0. 1 2〜0. 36モル0 /0の範囲がより好ま しいことが判明した。
【0106】 さらに、 試料 20〜 24は焼成温度を変化させた例である。 試料 20は焼成温度が 800 °Cであり、 焼結がやや不充分であつた。 試料 24は 1 0
00°Cで焼成したものであるが、 内部電極成分 A gの融点より高い温度であるた め内部電極が溶融して、 表面張力により部分的に集まつた島状電極の集合となり 静電容量が低いものとなった。 これにより焼成温度は 850〜950°Cが好まし いことが確認された。
【0107】
[実施例 B]
実施例 Bにおいては、 複合酸化物と、 上記 (A) 成分及び Z又は (B) 成分と を含有する圧電磁器組成物について検討するために、 以下に示す試料 25〜52 の単板又は積層型圧電素子を形成し、 得られた素子の特性評価を行った。
【0108】
(単板及び積層型圧電素子の製造)
第 2の原料として、 Ag2〇、 Mo03、 Ag2Mo04に代えて、 Ag2〇、 M o〇3、 W03の 3種類の酸化物、 又は Ag2 (Mo。. 5W0. 5) 04を、 表 2に示 す添加量にしたがって、 又は、 表 3に示す組成となるように秤量して添加したこ と以外は、 実施例 Aにおける単板及び積層型圧電素子の製造と同様にして試料 2 5-52の単板及び積層型圧電素子を製造した。なお、試料 25の圧電素子では、 内部電極として金属成分 P d : Ag = 30 : 70である合金を用い、 その他の試 料では金属成分として A gのみを用いた。
【0109】
(特性評価)
得られた試料 25〜52の単板及び積層型圧電素子を用いて、 各種の特性評価 を行った。 なお、 試料 25〜 26では第 2の原料を用いず、 試料 27では第 2の 原料として Ag20のみを用い、試料 28では第 2の原料として Mo03及び WO 3のみを用い、試料 29〜38では第 2の原料として Ag2〇、 Mo03及びW〇3 を用い、 試料 39〜48では第 2の原料として A g 2 (Mo o. 5W0 J 〇4を用 い、 試料 49〜52では第 2の原料として Ag 2Mo (1_x) Wx04 (伹し、 Xは 0、 0. 3、 0. 7又は 1。) を用いて、 上述の方法により単板圧電素子及び積層 型圧電素子を作製した。 まず、 得られた単板圧電素子の試料に、 1 20°Cの絶縁 油中で電圧 2〜 3 k V/mm, 30分の条件で分極処理を施した後、 インピーダ ンスアナライザーを用いて、 処理後の試料の静電容量 C、 共振周波数 f r及び反 共振周波数 ί aを測定し、 これらの結果から圧電歪定数 d 31を求めた。
【0110】 また、 得られた積層型圧電素子の試料に、 LCRメータにより、 静電容量 Cを測定した後、 これにより特性が得られた試料について、 以下に示す 耐湿負荷信頼性試験を実施した。 この試験においては、 温度 60°C、 湿度 90% RHの環境下で、 圧電体層に厚みあたり 1000 k VZmの直流電界を印加し、 素子の抵抗値の経時変化を 100時間後まで確認する耐湿負荷試験を実施した。 なお、 素子の抵抗値の測定には絶縁抵抗計を用いた。
【011 1】 さらに、 試料 49〜52の圧電素子を用い、 素子に生じた反りの 評価を行った。 反りの評価は、 レーザ式の 3次元形状測定装置 (日本デジテック 社製) を用いて行い、 素子の全体の反り量が 50 m以下を良好とし、 それを超 えるものを不良とする判定を行った。
【011 2】 この特性評価により得られた結果を表 2及び表 3に示す。 表中の
P Sは磁器密度、 Cは静電容量、 d 3 iは圧電歪定数をそれぞれ表している。なお、 試料 25及び 26は従来例であり A g、 Mo及び Wの金属又はその化合物を含ん でいないため比較例に該当し、 また、 試料 27及び 28は Ag2〇及び (Mo03 +W03) のうちいずれか一方のみを含有していることから比較例に該当する。 【表 2】 CO
Figure imgf000030_0001
単板圧電素子 寳層型圧電素子
添加物の量と成分比 (X)
ΑαοΜθι W O/i CO 24モメレ%—定^ 耐湿負荷試験
皿 磁器密度 静電容量 圧 ®歪定数 後、絶縁抵抗 反 yの評価
X値 (°C) p s(Mq/m3) C(pF) d3i(pC/N) (Ω )
. 49 0 900 7.78 660 235 1.02 1010 X
50 0.3 900 7.74 640 230 0.96 109 O
51 0.7 900 7.70 630 225 0.95 109 O
52 1 900 7.68 510 110 0.75 106 O
¾】3 【01 1 3】 試料 25は、 基本的な圧電磁器組成物を用い、 1 100°Cで焼成 して得られたものである。 圧電素子においては、 静電容量および圧電歪定数がこ の試料 25の特性を基準にして 10%以上変化していると製品特性上の問題を生 じることから、以下の考察においては、静電容量および圧電歪定数の変化が 10 % 以内のものを特に良好であると判断した。 また、 耐湿負荷試験では試験後の絶縁 抵抗が 106 Ω以上のものを特に良好であると判断した。 試料 26は、 試料 25 の焼成温度を 900 °Cとした場合であり、 焼結しておらず特性の測定ができなか つた。
【01 14】 試料 2 7'と 28は比較例である。 試料 27は A g 20のみを添加 した場合であり、 圧電体層結晶に固溶可能な A gの量である 0. 12モル。/。を越 えており、 圧電体層の結晶に固溶しない A gによって耐湿負荷試験後の絶縁抵抗 が低下しているとともに、 耐湿負荷信頼性が悪くなつている。 また、 試料 28は
(0. 5MoO3+0. 5 WO.) のみを添加した場合であり、 Moが内部電極の A gと化合物を作っているものと考えられ、 これにより内部電極の導電成分の占 有率が低下して静電容量が低いものとなつた。
【01 1 5】 試料 29力、ら 38までは、 Ag2〇と (0. 5MoO3+0. 5W 03)の添加量の組み合わせを変化させた試料である。試料 29は A g 2〇、 (0. 5MoO3+0. 5 WO 3) ともに添加量が少なく比較的焼結不足であり、 磁器密 度や静電容量、 圧電歪定数が比較的低いものとなった。
【011 6】 試料 32と 34は、 Ag 20添加量と (0. 5MoO3+0. 5W 03) 添加量との差が大きい例である。 この場合、 A gの圧電体層の結晶への固 溶量と (Mo+W) の量を差し引いた分の A gが固溶できずに残る傾向にあり、 耐湿負荷信頼性後の絶縁抵抗が比較的低いものとなつた。 また、 試料 38では、 添加物 (特に Mo O 3) の量が他に比べ過剰であり、 圧電歪特性が比較的低下し た。
【01 1 7】 以上より、 Ag20が 0. 24〜0. 48モル0/。、 (0. 5Mo O 3+0. 5W〇3) が 0. 12〜0. 36モル0 /0であり、 また、 A g 20添加量か ら (0. 5MoO3+0. 5W03) 添加量を差し引いた値が 0. 12モル0 より 大きくならない範囲がより好ましいことが判明した。
【0118】 また、試料 39〜48はモリプデンタングステン酸銀 [Ag2 (M o 0. 5W0. 5) 04] を添加した試料である。 試料 39は添加量が比較的少ない場 合の例であり焼結がやや不充分であった。 試料 43は逆に添加量が多い場合であ り、圧電歪特性が比較的低いものとなった。 このことから A g2 (Mo 0. 5W0. 5) 04の添加量は 0. 12〜0. 36モル0 /0の範囲がより好ましいことが判明した。
【0119】 さらに、 試料 44〜48は焼成温度を変化させた例である。 試料 44は焼成温度が 800°Cであり、 焼結がやや不充分であった。 試料 48は 10 00°Cで焼成したものであるが、 内部電極成分 A gの融点より高い温度であるた め内部電; ¾が溶融して、 表面張力により部分的に集まった島状電極の集合となり 静電容量が比較的低いものとなった。 これにより焼成温度は 850〜950°Cが 好ましいことが確認された。 .
【0120】 表 3において、 試料 49は X=0すなわち Wがない場合である。 この場合、 良好な特性は得られるが、 焼成後の素子の反り量が大きくなつた。 図 6は、 試料 49 (Wを含有していない比較例の素子) 及び試料 41 (実施例の素 子)を成形した後、熱分析装置により収縮挙動を調べた結果を示すグラフである。 図 6に示すように、 Wがある場合 (試料 41) は、 500°C〜900°Cまで比較 的穏やかに収縮しているのに対して、 Wがない場合 (試料 49) には、 900°C 近くからの急激な収縮が見られた。
【0121】 また、 試料 50及び 51は、 それぞれ X=0. 3、 X=0. 7の 場合であり、 各特性において良好な効果が得られた。 さらに、 試料 52は X=l すなわち Moがない場合である。 この場合焼結はするが、 誘電率、 圧電特性 (d 31) が低く、 いずれの特性も低いものとなった。 したがって、 圧電磁器組成物中 に含有している A g 2 o (1_x) Wx04で表されるモリブデンタングステン酸銀 の Xの範囲は 0 . 3〜0 . 7とする必要があることが判明した。
産業上の利用可能性
【0 1 2 2】 本発明によれば、 圧電歪特性や静電容量特性が良好で耐湿負荷信 頼性が高く、 焼成後の素子に生じる反りやうねりも少なく、 更に積層型圧電素子 の内部電極に安価な A gを用いることができ、 加えて焼成後の変形が小さく、 P bの蒸発を抑制して製造工程を簡略化できる圧電磁器組成物を提供することが可 能になる。 また、 それを用いた圧電素子及びこれらの製造方法を提供することが 可能になる。

Claims

請求の範匪
1. P b、 Z r及び T iを主成分とするぺロブスカイト構造を有する複合酸 化物と、 下記 (a) 成分及び/又は (b) 成分と、 を含有する圧電磁器糸且成物。
(a) A g及び//又は A g化合物、 並びに、 Mo及びノ又は Mo化合物
(b) モリブデン酸銀 [Ag2Mo04]
2. P b、 Z r及び T iを主成分とするぺロプスカイト構造を有する複合酸 化物に、 A g及び/又は Ag化合物、 並びに、 Mo及び/又は Mo化合物を添加 してなるものであり、 モリプデン酸銀 [Ag2MoOj を含有する圧電磁器糸且成 物。
3. P b、 Z r及び T iを主成分とするぺロプスカイト構造を有する複合酸 化物に、 モリブデン酸銀 [ 82]^004] を0. 12〜0. 36モル0 /0添加して なる圧電磁器組成物。
4. P b、 Z r及び T iを主成分とするぺロブスカイト構造を有する複合酸 化物に、 A g及びノ又は A g化合物、 並びに、 M o及び/又は M o化合物を添加 してなるものであり、 §§ 20に、 Moを Mo O 3にそれぞれ換算したとき の添加量が、 下記式 ( i ) 〜 (: iii) の全てを満たす圧電磁器組成物。
A g 20添加量—Mo 03添加量≤ 0. 1 2モル% … ( i )
0. 24モル%≤Ag 2〇添加量≤0. 48モル% … (ϋ)
0. 12モノレ%≤Mo 03添加量≤ 0. 36モノレ% … (iii)
5. モリブデン酸鉛 [P b 2Mo 05] を更に含有する請求項 1~4のいずれ か一項に記載の圧電磁器組成物。
6. P b、 Z r及び T iを主成分とするぺロプスカイト構造を有する複合酸 化物と、 下記 (A) 成分及び/又は (B) 成分と、 を含有する圧電磁器組成物。
(A) A g及び/又は A g化合物、 Mo及び/又は Mo化合物、 並びに、 W及び Z又は W化合物
(B) モリブデンタングステン酸銀 [Ag2Mo (1_x) Wx04] (但し、 Xは 0. 3〜0. 7の数である。)
7. P b、 Z r及ぴ T iを主成分とするぺロプスカイト構造を有する複合酸 化物に、 A g及び/又は A g化合物、 Mo及び 又は Mo化合物、 並びに、 W及 びノ又は W化合物を添加してなるものであり、 モリブデンタングステン酸銀 [A g 2Μο (1-χ) Wx04] (伹し、 Xは 0. 3〜0. 7の数である。) を含有する圧 電磁器組成物。
8. P b、 Z r及び T iを主成分とするぺロブスカイト構造を有する複合酸 化物に、モリブデンタングステン酸銀 [A g 2Mo (1_x) Wx04] (伹し、 Xは 0. 3〜0. 7の数である。) を 0. 1 2〜0. 3 6モル%添加してなる圧電磁器組成 物。
9. P b、 Z r及び T iを主成分とするぺロブスカイト構造を有する複合酸 化物に、 A g及び/又は A g化合物、 Mo及び/又は Mo化合物、 並びに、 W及 ぴノ又は W化合物を添加してなるものであり、 A g、 Mo及び Wをそれぞれ A g 20、 Mo 03及び WO 3に換箅したときの添カ卩量が、 下記式 (1) 〜 (3) の全 てを満たす圧電磁器組成物。
§ 20添加量—((1ー ) . ]^ 003 + ' 03)添加量^ 0. 1 2モル% … ( 1 )
0. 24モノレ0 /o A g 20添加量≤ 0. 4 8モル% … (2)
0. 1 2モル0/ 0≤ (Mo 03+W03) 添加量 O. 3 6モル% … (3)
[但し、 Xは 0. 3〜0. 7の数である。]
1 0. モリブデンタングステン酸鉛 [P b 2Μο (1_χ) Wx04] (但し、 Xは 0. 3〜0. 7の数である。) を更に含有する請求項 6〜 9のいずれか一項に記載 の圧電磁器組成物。
1 1. 前記複合酸化物は、 Z n、 Mg及ぴ N bを更に含有する請求項 1〜 1 0 のいずれか一項に記載の圧電磁器組成物。
1 2. 前記複合酸化物は、 a P b (Z n 1/3N b 2/3) 03— b P b (Mg 1/3 Nb 2/3) 03- c P b T i 03-d P b Z r 03 (但し、 a + b + c + d= lで ある。) である請求項 1〜 1 1のいずれか一項に記載の圧電磁器組成物。
1 3. 請求項 1〜 4のいずれか一項に記載の圧電磁器組成物を焼成してなり、 モリブデン酸銀 [Ag2Mo〇4] を含有する圧電素体。
14. 請求項 1〜 5のいずれか一項に記載の圧電磁器組成物を焼成してなり、 モリブデン酸銀 [A g 2M o O 4]及びモリブデン酸鉛 [P b 2Mo 05] を含有す る圧電素体。
1 5. 請求項 6〜 9のいずれか一項に記載の圧電磁器組成物を焼成してなり、 モリブデンタングステン酸銀 [Ag 2Mo (1x) WxOj (伹し、 Xは 0· 3〜0. 7の数である。) を含有する圧電素体。
1 6. 請求項 6〜 10のいずれか一項に記載の圧電磁器組成物を焼成してな り、 モリブデンタングステン酸銀 [Ag 2Mo (1_x) Wx04] (伹し、 Xは 0. 3 〜0. 7の数である。) 及びモ,リブデンタングステン酸鉛 [Pb 2Mo (1_x) Wx 04] (伹し、 Xは 0. 3〜0. 7の数である。) を含有する圧電素体。
1 7. 互いに対抗する 2つの電極と、 該電極間に配置された圧電体層と、 を備 える単板圧電素子であって、
前記圧電体層は、 請求項 1〜 12のいずれか一項に記載の圧電磁器組成物から なる単板圧電素子。
18. 互いに対抗する 2つの電極と、 該電極間に配置された圧電体層と、 を備 える単板圧電素子であって、
前記圧電体層は、 請求項 1 3〜16のいずれか一項に記載の圧電素体である単 板圧電素子。
19. 内部電極、 圧電体層及び外部電極を備え、 前記内部電極と前記圧電体 層が交互に積層され、 且つ、 前記内部電極が前記外部電極に接続された積層型圧 電素子であって、
前記圧電体層は、 請求項 1〜 12のいずれか一項に記載の圧電磁器組成物から なる積層型圧電素子。
20. 内部電極、 圧電体層及び外部電極を備え、 前記内部電極と前記圧電体 層が交互に積層され、 且つ、 前記内部電極が前記外部電極に接続された積層型圧 電素子であって、
前記圧電体層は、 請求項 1 3〜16のいずれか一項に記載の圧電素体である積 層型圧電素子。
21. 内部電極、 圧電体層及び外部電極を備え、 前記内部電極と前記圧電体 層が交互に積層され、 且つ、 前記積層方向に形成されたスルーホール内部の導体 により前記内部電極と前記外部電極とが接続された積層型圧電素子であって、 前記圧電体層は、 請求項 1〜 1 2のいずれか一項に記載の圧電磁器組成物から なる積層型圧電素子。
22. 内部電極、 圧電体層及び外部電極を備え、 前記内部電極と前記圧電体 層が交互に積層され、 且つ、 前記積層方向に形成されたスルーホール内部の導体 により前記内部電極と前記外部電極とが接続された積層型圧電素子であって、 前記圧電体層は、 請求項 1 3〜16のいずれか一項に記載の圧電素体である積 層型圧電素子。
23. 前記内部電極は、 A gからなる請求項 1 9〜22のいずれか一項に記 載の積層型圧電素子。
24. P b、 Z r及び T iを含む原料を仮焼成してぺロブスカイト構造を有 する複合酸化物を形成する工程と、
前記複合酸化物に、 A g及びノ又は A g化合物、 並びに、 Mo及び/又は Mo 化合物を添加する工程と、
を有する圧電磁器組成物の製造方法。
25. P b、 Z r及び T iを含む原料を仮焼成してぺロプスカイト構造を有 する複合酸化物を形成する工程と、
前記複合酸化物に、 モリブデン酸銀 [Ag2MoQ4] を添加する工程と、 を有する圧電磁器組成物の製造方法。
26. Pb、 Z r及ぴ T iを含む原料を仮焼成してぺロブスカイト構造を有 する複合酸化物を形成する工程と、
前記複合酸化物に、 A g及び 又は A g化合物、 Mo及び Z又は Mo化合物、 並びに、 W及び 又は W化合物を添加する工程と、
を有する圧電磁器組成物の製造方法。
27. P b、 Z r及び T iを含む原料を仮焼成してぺロプスカイト構造を有 する複合酸化物を形成する工程と、
前記複合酸化物に、モリブデンタングステン酸銀 [Ag 2Mo (1_X) Wx04] (伹 し、 Xは 0. 3〜0. 7の数である。) を添加する工程と、
を有する圧電磁器組成物の製造方法。
28. ·請求項 1〜 12のいずれか一項に記載の圧電磁器組成物を備える本焼 成前の圧電素子前駆体を、 焼成温度 8 50〜950°Cで焼成する圧電素子の製造 方法。
PCT/JP2003/011927 2002-09-18 2003-09-18 圧電磁器組成物、圧電素子及びこれらの製造方法 WO2004026789A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE60335998T DE60335998D1 (de) 2002-09-18 2003-09-18 Piezoelektrische porzellanzusammensetzung, piezoelektrisches element und herstellungsverfahren dafür
CNB038252635A CN100434396C (zh) 2002-09-18 2003-09-18 压电陶瓷组合物、压电元件及它们的制造方法
EP20030797674 EP1547989B1 (en) 2002-09-18 2003-09-18 Piezoelectric porcelain composition, piezoelectric element, and method for production thereof
JP2004537607A JP4670348B2 (ja) 2002-09-18 2003-09-18 圧電磁器組成物、圧電素子及びこれらの製造方法
KR20057004351A KR100657194B1 (ko) 2002-09-18 2003-09-18 압전자기 조성물, 압전소자 및 이들의 제조방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002272037 2002-09-18
JP2002-272037 2002-09-18
JP2003-096661 2003-03-31
JP2003096661 2003-03-31

Publications (1)

Publication Number Publication Date
WO2004026789A1 true WO2004026789A1 (ja) 2004-04-01

Family

ID=32032870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011927 WO2004026789A1 (ja) 2002-09-18 2003-09-18 圧電磁器組成物、圧電素子及びこれらの製造方法

Country Status (8)

Country Link
US (1) US7067965B2 (ja)
EP (1) EP1547989B1 (ja)
JP (1) JP4670348B2 (ja)
KR (1) KR100657194B1 (ja)
CN (1) CN100434396C (ja)
DE (1) DE60335998D1 (ja)
TW (1) TWI281464B (ja)
WO (1) WO2004026789A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258301A (ja) * 2006-03-22 2007-10-04 Tdk Corp 積層型圧電素子及びその製造方法
WO2016031994A1 (ja) * 2014-08-29 2016-03-03 京セラ株式会社 圧電磁器板および板状基体ならびに電子部品
JP2017152532A (ja) * 2016-02-24 2017-08-31 日本特殊陶業株式会社 圧電素子およびその製造方法
JP2017204506A (ja) * 2016-05-09 2017-11-16 株式会社シマノ 圧電素子および圧電素子の製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174974A (ja) * 2003-12-08 2005-06-30 Matsushita Electric Ind Co Ltd 積層圧電体部品の製造方法
JP4497321B2 (ja) * 2003-12-26 2010-07-07 日本電気株式会社 圧電アクチュエータ
JP4873327B2 (ja) * 2005-06-03 2012-02-08 株式会社村田製作所 圧電素子
DE102005027364A1 (de) * 2005-06-14 2006-12-21 Robert Bosch Gmbh Piezoaktor
EP1943376A4 (en) * 2005-11-04 2009-10-28 Ceracomp Co Ltd PIEZOELECTRIC MONOCRYSTAL AND PROCESS FOR PRODUCING THE SAME, AND PIEZOELECTRIC AND DIELECTRIC ELEMENTS THEREOF
DE102006057691A1 (de) 2006-12-07 2008-06-12 Robert Bosch Gmbh Niedrig sinterndes, piezoelektrisches Material auf Blei-Zirkonat-Titanat-Mischkristall-Basis, Verfahren zu dessen Herstellung sowie ein dieses Material umfassendes piezoelektrisches Bauelement
DE102007022093A1 (de) * 2007-05-11 2008-11-13 Epcos Ag Piezoelektrisches Vielschichtbauelement
DE102007045089A1 (de) * 2007-09-07 2009-03-12 Epcos Ag Keramikmaterial, Verfahren zur Herstellung desselben und elektrokeramisches Bauelement umfassend das Keramikmaterial

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544762B2 (ja) * 1986-04-17 1993-07-07 Marukon Denshi Kk
US5954993A (en) * 1997-02-19 1999-09-21 Murata Manufacturing Co., Ltd. Piezoelectric ceramic composition and method for producing piezoelectric ceramics
JP2002255646A (ja) * 2000-12-28 2002-09-11 Nippon Soken Inc 低温焼成化誘電体セラミックス、積層型誘電体素子、誘電体セラミックスの製造方法および助剤酸化物

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3649353A (en) * 1969-02-05 1972-03-14 Nasa Screened circuit capacitors
US4041140A (en) * 1974-07-16 1977-08-09 Matsushita Electric Industrial Co., Ltd. Method of making a sulphide ceramic body
JPH0524917A (ja) 1991-07-17 1993-02-02 Hitachi Metals Ltd 圧電磁器組成物
JP3639881B2 (ja) 1995-06-19 2005-04-20 太平洋セメント株式会社 圧電組成物
JP3867320B2 (ja) 1996-06-21 2007-01-10 株式会社村田製作所 圧電体磁器組成物
DE69737086T2 (de) * 1996-08-27 2007-05-16 Seiko Epson Corp. Trennverfahren, verfahren zur übertragung eines dünnfilmbauelements, und unter verwendung des übertragungsverfahrens hergestelltes flüssigkristall-anzeigebauelement
JPH10139540A (ja) 1996-10-31 1998-05-26 Toyota Central Res & Dev Lab Inc 圧電材料
US5935485A (en) * 1996-10-31 1999-08-10 Kabushiki Kaisha Toyota Chuo Kenkyusho Piezoelectric material and piezoelectric element
JPH10316467A (ja) 1997-05-15 1998-12-02 Matsushita Electric Ind Co Ltd 圧電磁器組成物とその製造方法
JP4221765B2 (ja) * 1997-08-29 2009-02-12 ソニー株式会社 光集積化酸化物装置および光集積化酸化物装置の製造方法
JPH11163433A (ja) 1997-11-27 1999-06-18 Hitachi Metals Ltd 積層型圧電セラミックス振動子および製造方法
JPH11168248A (ja) 1997-12-04 1999-06-22 Fujitsu Ltd 圧電素子及びその製造方法
JP3520403B2 (ja) * 1998-01-23 2004-04-19 セイコーエプソン株式会社 圧電体薄膜素子、アクチュエータ、インクジェット式記録ヘッド、及びインクジェット式記録装置
JP3108724B2 (ja) 1999-01-22 2000-11-13 ファインセラミックス技術研究組合 高耐久性圧電複合セラミックス及びその製法
JP2001058872A (ja) 1999-08-19 2001-03-06 Tokin Corp 圧電磁器材料
JP2001089237A (ja) * 1999-09-20 2001-04-03 Tdk Corp 圧電磁器組成物
JP3554735B2 (ja) * 2000-10-23 2004-08-18 独立行政法人産業技術総合研究所 複合構造物およびその作製方法並びに作製装置
US6734607B2 (en) * 2000-12-28 2004-05-11 Denso Corporation Integrally fired, laminated electromechanical transducing element
JP2003142479A (ja) * 2001-11-02 2003-05-16 Fujitsu Ltd 半導体装置、エピタキシャル膜の製造方法、およびレーザアブレーション装置
JP3928082B2 (ja) * 2002-03-08 2007-06-13 富士通株式会社 Icカード及びその使用方法
JP3971279B2 (ja) * 2002-09-20 2007-09-05 キヤノン株式会社 圧電体素子の製造方法
US7071007B2 (en) * 2002-12-06 2006-07-04 Taiwan Semiconductor Manufacturing Co., Ltd. Method of forming a low voltage drive ferroelectric capacitor
JP4811556B2 (ja) * 2004-04-23 2011-11-09 セイコーエプソン株式会社 圧電素子、液体噴射ヘッドおよび液体噴射装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544762B2 (ja) * 1986-04-17 1993-07-07 Marukon Denshi Kk
US5954993A (en) * 1997-02-19 1999-09-21 Murata Manufacturing Co., Ltd. Piezoelectric ceramic composition and method for producing piezoelectric ceramics
JP2002255646A (ja) * 2000-12-28 2002-09-11 Nippon Soken Inc 低温焼成化誘電体セラミックス、積層型誘電体素子、誘電体セラミックスの製造方法および助剤酸化物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1547989A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258301A (ja) * 2006-03-22 2007-10-04 Tdk Corp 積層型圧電素子及びその製造方法
WO2016031994A1 (ja) * 2014-08-29 2016-03-03 京セラ株式会社 圧電磁器板および板状基体ならびに電子部品
CN105683128A (zh) * 2014-08-29 2016-06-15 京瓷株式会社 压电陶瓷板以及板状基体、和电子部件
JP6082161B2 (ja) * 2014-08-29 2017-02-15 京セラ株式会社 圧電磁器板および板状基体ならびに電子部品
US10177300B2 (en) 2014-08-29 2019-01-08 Kyocera Corporation Piezoelectric ceramic, manufacturing method therefor, and electronic component
US10297744B2 (en) 2014-08-29 2019-05-21 Kyocera Corporation Piezoelectric ceramic plate, plate-shaped substrate and electronic component
JP2017152532A (ja) * 2016-02-24 2017-08-31 日本特殊陶業株式会社 圧電素子およびその製造方法
JP2017204506A (ja) * 2016-05-09 2017-11-16 株式会社シマノ 圧電素子および圧電素子の製造方法

Also Published As

Publication number Publication date
TWI281464B (en) 2007-05-21
KR100657194B1 (ko) 2006-12-14
US7067965B2 (en) 2006-06-27
EP1547989B1 (en) 2011-02-09
US20040222719A1 (en) 2004-11-11
EP1547989A1 (en) 2005-06-29
CN100434396C (zh) 2008-11-19
JP4670348B2 (ja) 2011-04-13
KR20050057323A (ko) 2005-06-16
TW200415135A (en) 2004-08-16
DE60335998D1 (de) 2011-03-24
EP1547989A4 (en) 2009-03-25
JPWO2004026789A1 (ja) 2006-01-26
CN1701048A (zh) 2005-11-23

Similar Documents

Publication Publication Date Title
KR102498100B1 (ko) 적층 세라믹 콘덴서
EP2159205B1 (en) Piezoelectric ceramic electronic component
EP2003665B1 (en) Dielectric ceramic composition with Core-Shell particles and electronic device
EP2980043B1 (en) Dielectric ceramic composition and dielectric element
KR20190012106A (ko) 적층 세라믹 콘덴서 및 그 제조 방법
JP5386848B2 (ja) 圧電磁器
KR101575614B1 (ko) 유전체 세라믹 및 적층 세라믹 콘덴서
US8035474B2 (en) Semi-conductive ceramic material and NTC thermistor using the same
JP2009242167A (ja) 圧電磁器及びそれを用いた圧電素子
JP3180681B2 (ja) 積層セラミックコンデンサ
WO2004026789A1 (ja) 圧電磁器組成物、圧電素子及びこれらの製造方法
KR100678882B1 (ko) 적층 세라믹 콘덴서
KR20180094786A (ko) 적층 세라믹 콘덴서 및 그 제조 방법
CN116013688A (zh) 陶瓷电子组件
JP2007043133A (ja) 積層バリスタ
JP5087938B2 (ja) 誘電体セラミック組成物及び積層セラミックコンデンサ
JP6094682B2 (ja) 積層型圧電セラミック電子部品、及び積層型圧電セラミック電子部品の製造方法
JP2006041392A (ja) 積層セラミックコンデンサ
JP2009177017A (ja) 積層型ptcサーミスタ及びその製造方法
JP2001006902A (ja) 積層型半導体セラミック電子部品
KR20170078064A (ko) 유전체 조성물 및 이를 포함하는 적층 세라믹 커패시터
CN114823146A (zh) 陶瓷电子器件及其制造方法
JP2021158276A (ja) セラミック原料粉末、セラミック電子部品の製造方法、およびセラミック原料粉末の製造方法
JP7310077B2 (ja) 誘電体組成物及びこれを含む電子部品
JPH07235440A (ja) 積層型セラミック素子の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004537607

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057004351

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003797674

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038252635

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057004351

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003797674

Country of ref document: EP