WO2004024305A1 - ポリメタフェニレンイソフタルアミド多孔質中空糸膜の製造法 - Google Patents

ポリメタフェニレンイソフタルアミド多孔質中空糸膜の製造法 Download PDF

Info

Publication number
WO2004024305A1
WO2004024305A1 PCT/JP2003/011062 JP0311062W WO2004024305A1 WO 2004024305 A1 WO2004024305 A1 WO 2004024305A1 JP 0311062 W JP0311062 W JP 0311062W WO 2004024305 A1 WO2004024305 A1 WO 2004024305A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
fiber membrane
porous hollow
isophthalamide
poly
Prior art date
Application number
PCT/JP2003/011062
Other languages
English (en)
French (fr)
Inventor
Toru Uda
Original Assignee
Nok Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corporation filed Critical Nok Corporation
Priority to AU2003261835A priority Critical patent/AU2003261835A1/en
Priority to US10/506,489 priority patent/US7393483B2/en
Priority to JP2004535884A priority patent/JPWO2004024305A1/ja
Priority to DE60323993T priority patent/DE60323993D1/de
Priority to EP03795250A priority patent/EP1537906B1/en
Publication of WO2004024305A1 publication Critical patent/WO2004024305A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0095Drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • B01D67/00113Pretreatment of the casting solutions, e.g. thermal treatment or ageing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/60Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/60Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
    • D01F6/605Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides from aromatic polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/081Heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber

Definitions

  • the present invention relates to a method for producing a porous hollow fiber membrane of poly (metaphenylene isophthalamide). More specifically, the present invention relates to a method for producing a polymethaphenylene isophthalamide porous hollow fiber membrane effectively used as a humidifying membrane for a polymer electrolyte fuel cell.
  • Solid polymer electrolyte membranes used in polymer electrolyte fuel cells do not exhibit ionic conductivity unless they contain a certain amount of water molecules. Bring. On the other hand, if the electrolyte membrane becomes too wet with water, the gas will not diffuse, and the power generation efficiency will decrease. For this reason, it is necessary to moderately humidify the electrolyte membrane in order to obtain a stable and high output.
  • Examples of the method for humidifying the electrolyte membrane include a bubbler humidification method, a water vapor addition method, and a humidification film method. Of these methods, only a water vapor contained in the exhaust gas is used as a water vapor selective permeable film, that is, a humidification film.
  • a humidifying membrane system that humidifies the electrolyte membrane by transferring it to the supply gas via a humidifier is considered to be promising in that it can reduce the weight and size of the humidifier.
  • the shape of the humidifying membrane used in the humidifying membrane system is preferably a hollow fiber membrane having a large permeation area per unit volume in the case of a membrane module.
  • the hollow fiber membrane since the humidification of the electrolyte membrane of a fuel cell, particularly a fuel cell for a mobile body, requires an extremely high humidification ability, the hollow fiber membrane has a high permeation rate due to the capillary condensation of water vapor. And condenses other gas A porous membrane is desirable because it can be controlled.
  • the present applicant firstly prepared a low-temperature solution polycondensation method polymetaphenylene isophthalamide membrane stock solution containing a water-soluble polymer and an inorganic salt under heating conditions of 70 ° C or more.
  • Japanese Patent Application Laid-Open No. 2001-286743 has proposed a method for producing a polymethaphenylene isophthalamide separation membrane by extruding into a coagulation bath for coagulation.
  • An object of the present invention is to provide a method for producing a polymetaphenylene isophthalamide porous hollow fiber membrane which has excellent moisture resistance and humidification performance and is effectively used as a humidification membrane for a polymer electrolyte fuel cell.
  • An object of the present invention is to provide a stock solution containing polymethaphenylene-isophthalamide, polyvinylpyrrolidone and an inorganic salt,
  • Polyphenylene isophthalamide weighs about 12 to 35 weight in a stock solution consisting of it and additives and an organic solvent. /. Preferably 14-25 weight. /. It is used at a rate that accounts for If polymetaphenylene isophthalamide is used at a lower ratio, the humidifying performance is excellent, but the molecular weight cut off of the membrane is large, so that the gas leakage is large, that is, the gas barrier property is low. On the other hand, when used in a higher ratio, the humidification performance is degraded, although the gas barrier property is excellent.
  • Polyvinylpyrrolidone has an average molecular weight of about 20,000 to 100,000, preferably about 30,000 to 50,000, and is about 4 to 10% by weight, preferably about 4 to 10% by weight, in the film-forming stock solution. It is used in such a proportion that it occupies about 6 to 8% by weight. If polybutylpyrrolidone is used at a lower ratio, the water vapor transmission rate will be lower and the molecular weight cut off of the membrane will be larger, resulting in a larger gas leak. On the other hand, if it is used in a higher ratio, the solubility of the meta-type amide will decrease, and the viscosity of the stock solution will become extremely high, and the spinning stability will decrease.
  • the inorganic salts include halides such as calcium chloride, lithium chloride, sodium chloride, potassium chloride, magnesium chloride, zinc chloride, aluminum chloride, sodium bromide, potassium nitrate, zinc nitrate, and aluminum nitrate. At least one of nitrates, carbonates such as potassium carbonate, and thiocyanides such as calcium thiocyanate is used, and calcium chloride or a mixture of calcium chloride and lithium chloride is preferably used. salt When a mixture of calcium chloride and lithium chloride is used, lithium chloride is used in a proportion of 50% by weight or less in the mixture.
  • inorganic salts are used in such a ratio that they occupy about 4 to 10% by weight, preferably about 6 to 8% by weight in the film forming stock solution. If the inorganic salt is used in a lower proportion, the humidification performance and the barrier properties of other gases are reduced, whereas if it is used in a higher proportion, the inorganic salt precipitates or becomes a meta-type in an organic solvent. The solubility of aramide is reduced.
  • the organic solvents that dissolve the above components and form the remainder in the film forming solution include dimethylformamide, getylformamide, dimethylacetamide, getylacetamide, and N-methyl-2.
  • -Aprotic polar solvents such as -pyrrolidone and dimethylimidazolidinone are used, and dimethylacetamide is preferably used.
  • JP-A-10-52631 The production of a porous hollow fiber membrane by dry-wet spinning of a membrane-forming stock solution obtained by adding an inorganic salt or a water-soluble polymer such as polyvinylpyrrolidone to polyphenylene isophthalamide is disclosed in JP-A-10-52631.
  • the dry-wet spinning here is performed at room temperature.
  • the value of the separation coefficient which is the ratio of the air permeation speed to the water vapor permeation speed, decreases, and the humidification performance decreases. I can't get it.
  • a film-forming solution containing polymethaphenylene-isophthalamide, polyvinylpyrrolidone and an inorganic salt is prepared as a uniform one-phase solution, and the temperature of the film-forming solution is 70 ° C or higher, preferably 90 to 90 ° C.
  • Dry / wet spinning is performed by discharging from a double annular nozzle while maintaining the temperature at 110 ° C. Maintaining such a film forming stock solution temperature is generally achieved by heating the stock solution tank, the piping section, and the double annular nozzle to such temperatures. If the temperature is lower than 70 ° C, the viscosity of the film forming stock solution will increase, and Even if it becomes difficult or the membrane can be formed, only a porous hollow fiber membrane with low humidification performance and low gas porosity can be obtained.
  • water or an aqueous liquid such as an aqueous solution of polypyrrolidone is used as a core liquid, and an aqueous liquid represented by water is used as a coagulation bath.
  • the dry and wet spun porous hollow fiber membrane is preferably heat-treated in water at 80 ° C or higher, preferably 80 to 121 ° C.
  • the heat treatment time varies depending on the environment in which the porous hollow fiber membrane is used, but the higher the treatment temperature, the shorter the treatment time is, for example, about 24 hours at 80 ° C and about 1 hour at 121 ° C. .
  • polymethaphenylene isophthalamide porous hollow fiber membranes have a large heat shrinkage, and when used in a high temperature environment, the membrane module may be damaged by the shrinkage stress of the membrane. Sex can be avoided.
  • an inorganic salt is added to the film-forming solution.
  • the inorganic salt remains in the membrane, there is a possibility that inorganic ions that cause a decrease in output during use of the fuel cell may be eluted.
  • by performing the heat treatment it is possible to avoid such a possibility.
  • the porous hollow fiber membrane that has been dry-wet spun and preferably further heat-treated has a concentration of about 5 to 50 weight. /.
  • it is moisturized by immersing it in an aqueous solution of a humectant of about 10 to 30% by weight.
  • a polyhydric alcohol such as glycerin, ethylene glycol, propylene dalicol, or polyglycerin, or polybutylpyrrolidone is used.
  • Polymetaphenylene isophthalamide 16.39 weight by weight. / 0
  • the polymethaphenylene isophthalamide porous hollow fiber membrane (outside diameter: 680 m, inside diameter: 450 ⁇ ) obtained in this way was placed on a branched metal tube (both ends of a SUS tube in opposite directions). And two ends of a porous hollow fiber membrane are sealed with an epoxy resin adhesive so that the effective length of the membrane is 15 cm.
  • a pencil module was made.
  • the inside of the porous hollow fiber membrane is supplied with moist air at a temperature of 80 ° C and a humidity of 80% under a pressure of 0.5 MPa at a flow rate of 0.25 NL / min. Sweep air humidified by water vapor permeated from the inside to the outside of the porous hollow fiber membrane at a flow rate of 0.28 NL / min. Water vapor in the sweep air was sampled by passing the air through a cooled trap tube, and the water vapor transmission rate (P H2Q ), which is an indicator of humidification performance, was measured from the weight of the water vapor.
  • Example 1 a membrane-forming stock solution was prepared without adding calcium chloride and polyvinylpyrrolidone. However, polymeta-phenylene-isophthalamide only swelled and did not dissolve in dimethylacetamide.
  • Example 1 An attempt was made to prepare a membrane-forming stock solution without adding sodium chloride, but polymetaphenylene isophthalamide only swelled and did not dissolve in dimethylacetamide. .
  • Example 1 a stock solution was prepared without adding polypyrrolidone. However, the stock solution became cloudy at 70 ° C. or higher and separated into two phases. Comparative Example 4
  • Example 1 the polymetaphenylene isophthalamide porous hollow fiber membrane (outside) was obtained by dry-wet spinning at room temperature (25 ° C) without heating the stock solution tank, the pipe section, and the double annular nozzle. The same measurement was performed for a diameter of 700 ⁇ and an inner diameter of 480 ⁇ m).
  • Example 1 the film was obtained by sufficiently drying the film without performing the moisturizing treatment. The same measurement was performed on the obtained polymetaphenylene sophtalamide porous hollow fiber membrane (outside diameter: 680 ⁇ , inside diameter: 450 ⁇ ).
  • Polyamideimide 20% by weight (Amoco 'Japan Product Torlon 4000 ⁇ )
  • Polyvinylpyrrolidone (average molecular weight 40 000) A uniform film-forming solution consisting of 4 "dimethylacetamide 76" is passed through a stock solution tank at room temperature (25 ° C), piping and a double annular nozzle. The same measurement was performed on a polyamideimide porous hollow fiber membrane (outer diameter: 650 ⁇ , inner diameter: 420 m) obtained by dry-wet spinning and then subjected to a moisturizing treatment in the same manner as in Example 1.
  • Example 1 The measurement results in Example 1 and Comparative Example 46 described above are shown in Table 1 below. Measurement items Example 1 Comparative example 4 Comparative example 5 Comparative example 6
  • Example 2 the amount of calcium chloride was changed to 3.25% by weight, and 3.25% by weight of lithium chloride was further used.
  • the resulting polymetha-phenylene phthalamide porous hollow fiber membrane (outer diameter 680 ⁇ inner diameter 450 ⁇ ⁇ ) was measured in the same manner as in Example 1.
  • Example 2 the following was used as a stock solution for film formation.
  • Porimetafue - isophthalamide ami de (Conex) 19.27 weight 0/0 Calcium chloride 6.26 "Poly Bulle pyrrolidone (average molecular weight 40, 000) 7.03 // dimethyl ⁇ Seto Ami de 67.44 // The same measurement as in Example 1 was performed on the obtained polymetaphenylene isophthalamide porous hollow fiber membrane (outer diameter: 690 ⁇ , inner diameter: 450 m).
  • Example 2 the following was used as a stock solution for film formation.
  • Porimetafue - isophthalamide ami de (Conex) 10.66 weight 0/0 Calcium chloride 6.93 // poly Bulle pyrrolidone (average molecular weight 40, 000) 7.78 "dimethyl ⁇ Seto Ami de 74.63 // give The same measurement as in Example 1 was performed on the obtained polymetaphenylene sophtalamide porous hollow fiber membrane (outside diameter: 660 zm, inside diameter: 420 m).
  • Example 2 the following was used as a stock solution for film formation.
  • Example 2 the following was used as a stock solution for film formation.
  • Example 2 polyvinylpyrrolidone (average molecular weight: 10,000) was used in place of polyvinylpyrrolidone (average molecular weight: 40,000) at the same ratio, and the resulting polymethaphenylene isophthalamide porous hollow fiber was used. The same measurement as in Example 1 was performed on the membrane (outer diameter: 670 ⁇ , inner diameter: 440 ⁇ ).
  • Example 2 when polybipyrrolidone (average molecular weight: 120,000) was used in place of polypyrrolidone (average molecular weight: 40,000) at the same ratio, the viscosity of the film forming stock solution was extremely high. However, spinning was difficult.
  • Example 2 the following was used as a stock solution for film formation.
  • Example 2 the following was used as a stock solution for film formation.
  • the polymetafide porous hollow fiber membrane according to the present invention has excellent heat and moisture resistance and good humidification properties, and is also excellent in mechanical strength and gas barrier properties, it can be effectively used as a humidification membrane. Specifically, it is suitably used as a humidifying membrane for a polymer electrolyte fuel cell, particularly as a humidifying membrane for a solid polymer fuel cell for a mobile object. It is also used for dehumidifiers.
  • the breaking strength of the porous hollow fiber membrane after lump heat treatment for 1000 hours or more in a humid environment with a temperature of 100 ° C and a humidity of 80% is lOMPa or more. Elongation of 80% or more and elongation at break of 80% or more before wet heat treatment were obtained.
  • the obtained porous hollow fiber membrane is heat-treated in water at 80 ° C or higher prior to the moisturizing treatment after dry-wet spinning, not only the separation coefficient aH 2 Q / AIR is increased, but also the high-temperature environment. It is possible to avoid the possibility that the membrane module will be damaged by the use below, and the elution of inorganic ions remaining in the membrane will occur.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Abstract

ポリメタフェニレンイソフタルアミド、ポリビニルピロリドンおよび無機塩を含有する製膜原液を、製膜原液温度を70℃以上に保持したまま二重環状ノズルから吐出させ、乾湿式紡糸した後保湿処理してポリメタフェニレンイソフタルアミド多孔質中空糸膜を製造する。その際、乾湿式紡糸後保湿処理に先立って、得られた多孔質中空糸膜を80℃以上の水中で熱処理することが好ましい。得られたポリメタフェニレンイソフタルアミド多孔質中空糸膜は、温度100℃、湿度80%の湿熱条件下で1000時間以上湿熱処理した後の破断強度が10MPa以上、破断伸びが80%以上であり、かつ破断伸びが湿熱処理前の80%以上を保持しており、また耐湿温性と加湿性能とにすぐれているので、固体高分子型燃料電池用加湿膜などとして有効に用いられる。

Description

明 細 書 ポリメタフヱニレンイソフタルアミド多孔質中空糸膜の製造法
技術分野
本発明は、 ポリメタフエ二レンイソフタルアミ ド多孔質中空糸膜の製 造法に関する。 さらに詳しくは、 固体高分子型燃料電池用加湿膜などと して有効に用いられるポリメタフヱニレンイソフタルアミ ド多孔質中空 糸膜の製造法に関する。
背景技術
固体高分子型燃料電池に使用される固体高分子電解質膜は、 水分子を ある程度含んだ状態でなくてはイオン伝導性を示さないため、 この電解 質膜が乾燥すると発電効率の急激な低下をもたらす。 一方、 電解質膜が 水で濡れすぎた場合も、 ガスが拡散しなくなるため、 発電効率が低下す る。 このため安定して高い出力を得るには、 電解質膜を適度に加湿する 必要がある。 電解質膜を加湿する方法としては、 バブラ一加湿方式、 水 蒸気添加方式およぴ加湿膜方式などが挙げられるが、 これらの中でも排 ガス中に含まれる水蒸気のみを水蒸気選択透過膜、 すなわち加湿膜を介 して供給ガスに移動させ、 電解質膜を加湿する加湿膜方式が、 加湿器を 軽量、 小型化できる点で有望であるとされている。
この加湿膜方式で使われる加湿膜の形状としては、 膜モジュールとし た場合の単位体積当りの透過面積が大きい中空糸膜形状が望ましい。 ま た、 燃料電池、 特に移動体用燃料電池の電解質膜の加湿には、 極めて高 い加湿能力が求められるため、 中空糸膜の状態としては、 水蒸気の毛管 凝縮により高い透過速度が得られる点とこの凝縮により他の気体をバリ ャできる点で多孔質膜が望ましい。
かかる多孔質膜を得ることを目的として、 本出願人は先に水溶性重合 体および無機塩を含有する低温溶液重縮合法ポリメタフェニレンイソフ タルアミ ド製膜原液を 70°C以上の加熱条件下で凝固浴中に押出し、 凝固 させることによりポリメタフヱニレンイソフタルアミ ド分離膜を製造す る方法を提案している(特開 2001-286743号公報)。
一方、 燃料電池、 特に移動体用燃料電池には、 長時間にわたって作動 可能な耐久性が求められるため、 加湿膜に対しても高温高湿環境下で長 時間劣化しない耐湿熱性が求められる。 しかしながら、 耐湿熱性を満足 しょうとした場合、 加湿性能が低い加湿膜となってしまい、 耐湿熱性と 加湿性能の二つの性能を同時に満足させることは困難であった。 発明の開示
本発明の目的は、 耐湿温性と加湿性能とにすぐれ、 固体高分子型燃料 電池用加湿膜などとして有効に用いられるポリメタフエ二レンイソフタ ルアミド多孔質中空糸膜の製造法を提供することにある。
かかる本発明の目的は、 ポリメタフエ-レンイソフタルアミ ド、 ポリ ビニルピロリ ドンおょぴ無機塩を含有する製膜原液を、 製膜原液温度を
70°C以上に保持したまま二重環状ノズルから吐出させ、 乾湿式紡糸した 後保湿処理してポリメタフヱニレンイソフタルアミ ド多孔質中空糸膜を 製造することによつて達成され、 好ましくは乾湿式紡糸後保湿処理に先 立って、 得られた多孔質中空糸膜の 80°C以上の水中での熱処理が行われ る。
ポリメタフエ-レンィソフタルアミドとしては次のような繰り返し単 位
-NH- (m-C6H4) -NHC0- (m - C6H -CO- が用いられ、 実際には市販品であるデュポン社製品ノーメックスや帝人 テクノプロダクツ製品コーネックスなどを用いることができる。 ポリメ タフェニレンイソフタルアミ ドは、 それと添加剤おょぴ有機溶媒からな る製膜原液中、 約 12〜35重量。/。、 好ましくは 14〜25重量。/。を占めるような 割合で用いられる。 ポリメタフエ二レンイソフタルアミドがこれより少 ない割合で用いられると、 加湿性能は優れているものの、 膜の分画分子 量が大きくなるため、 気体のリーク量が大きく、 すなわち気体バリヤ性 が低くなる。 一方、 これより多い割合で用いられると、 気体バリヤ性に は優れているものの、 加湿性能が低下するようになる。
ポリビニルピロリ ドンは、 その平均分子量が約 20, 000〜100, 000、 好 ましくは約 30, 000〜50, 000のものが、 製膜原液中約 4〜: 10重量%、 好まし くは約 6〜8重量%占めるような割合で用いられる。 ポリビュルピロリ ド ンがこれより少ない割合で用いられると、 水蒸気透過速度が低くなり、 また膜の分画分子量が大きくなるため、 気体のリーク量が大きくなるよ うになる。 一方、 これより多い割合で用いられると、 メタ型ァラミ ドの 溶解性が低下するようになり、 製膜原液の粘度が非常に高くなるため、 紡糸安定性が低下するようになる。 また、 ポリビュルピロリ ドンの平均 分子量がこれより小さいと、 加湿性能およぴ気体パリャ性に劣るように なり、 一方これより大きい平均分子量のものが用いられると、 製膜原液 の粘度が高くなり、 紡糸が困難となる。
また、 無機塩としては、 塩化カルシウム、 塩化リチウム、 塩化ナトリ ゥム、 塩化カリウム、 塩化マグネシウム、 塩化亜鉛、 塩化アルミニウム、 臭化ナトリゥム等のハロゲン化物、 硝酸力リウム、 硝酸亜鉛、 硝酸アル ミニゥム等の硝酸塩、 炭酸カリウム等の炭酸塩、 チォシアン化カルシゥ ム等のチォシアン化物などの少くとも一種が用いられ、 好ましくは塩化 カルシウム、 塩化カルシウムと塩化リチウムの混合物が用いられる。 塩 化カルシウムと塩化リチウムの混合物が用いられる場合には、 塩化リチ ゥムは混合物中 50重量%以下の割合で用いられる。 これらの無機塩は、 製膜原液中約 4〜10重量%、 好ましくは約 6〜8重量%占めるような割合で 用いられる。 無機塩がこれより少な 、割合で用いられると、 加湿性能や 他の気体のバリヤ性が低くなり、 一方これより多い割合で用いられると、 無機塩が析出したり、 有機溶媒中へのメタ型ァラミドの溶解性が低下す るようになる。
以上の各成分を溶解させ、 製膜溶液への残部を形成する有機溶媒とし ては、 ジメチルホルムアミ ド、 ジェチルホルムアミ ド、 ジメチルァセト アミ ド、 ジェチルァセトアミ ド、 N-メチル -2-ピロリ ドン、 ジメチルイ ミダゾリジノン等の非プロトン性極性溶媒が用いられ、 好ましくはジメ チルァセトアミ ドが用いられる。
ポリフエ二レンイソフタルアミ ドに無機塩またはポリビニルピロリ ド ン等の水溶性重合体を添加した製膜原液を乾湿式紡糸して多孔質中空糸 膜を製造することは、 特開平 10 - 52631号公報などに記載されているが、 ここでの乾湿式紡糸は室温下で行われている。 乾湿式紡糸を室温下で行 うと、 後記比較例 4の結果に示されるように、 水蒸気透過速度に対する 空気透過速度の比である分離係数の値が小さくなり、 加湿性能が低下し たものし力得られなレ、。
本発明においては、 ポリメタフエ-レンイソフタルアミ ド、 ポリビ- ルピロリ ドンおよび無機塩を含有する製膜原液を均一な 1相溶液として 調製した上、 製膜原液温度を 70°C以上、 好ましくは 90〜: 110°Cに保持し たまま二重環状ノズルから吐出させ、 乾湿式紡糸することが行われる。 このような製膜原液温度の保持は、 一般には原液タンク、 配管部分お よび二重環状ノズルをこのような温度に加熱しておくことにより達成さ れる。 この温度が 70°C以下では、 製膜原液の粘度が高くなるため製膜が 困難となったり、 また製膜できたとしても、 加湿性能や他の気体のパリ ャ性の低い多孔質中空糸膜しか得られない。
乾湿式紡糸に際しては、 水、 ポリビュルピロリ ドン水溶液等の水性液 が芯液として用いられ、 また凝固浴としては水によって代表される水性 液が用いられる。
乾湿式紡糸された多孔質中空糸膜は、 80°C以上、 好ましくは 80〜12 1°Cの水中で熱処理されることが好ましい。 熱処理時間は、 多孔質中空 糸膜が使用される環境により異なるが、 高い処理温度ほど短時間の処理 で足り、 例えば 80°Cでは 24時間程度、 121°Cでは 1時間程度の熱処理が行 われる。
一般に、 ポリメタフエ二レンイソフタルアミ ド多孔質中空糸膜は熱収 縮が大きいため、 高温環境下で使用すると膜の収縮応力により膜モジュ ールが破損するおそれがあるが、 上記熱処理により、 かかる可能性を回 避することができる。
また、 本発明では製膜厚液中に無機塩を添加しているが、 この無機塩 が膜に残存した場合には、 燃料電池使用時に出力低下の要因となる無機 イオンが溶出するおそれもあるが、 上記熱処理を行うことにより、 かか る可能性を回避することも可能となる。
乾湿式紡糸され、 好ましくはさらに熱処理されたされた多孔質中空糸 膜は、 濃度約 5〜50重量。/。、 好ましくは約 10〜30重量%の保湿剤水溶液中 に浸漬させて保湿処理される。 保湿剤としては、 グリセリン、 エチレン グリコール、 プロピレンダリコール、 ポリグリセリン等の多価アルコー ルまたはポリビュルピロリ ドンなどが用いられる。 発明を実施するための最良の形態
次に、 実施例について本発明を説明する。 実施例 1
ポリメタフエ二レンイソフタルアミ ド 16. 39重量。 /0
(デュポン社製品ノーメッタス)
塩化カルシウム 9. 06 " ポリビュルピロリ ドン(平均分子量 40, 000) 3. 64 !' ジメチルァセトアミ ド 70, 91 " よりなる均一な:!相状態の製膜原液を、 いずれも 100°Cに加熱された原液 タンク、 配管部分および二重環状ノズルを通して乾湿式紡糸し、 25°Cの 水凝固浴中に押出し、 浴中を通過させた後、 ロールに巻き取った。 次い で、 得られた多孔質中空糸膜を 20重 4%ダリ,セリン水溶液中に 12時間浸 漬した後、 膜を十分に乾燥させた。
このようにして得られたポリメタフエ-レンイソフタルアミ ド多孔質 中空糸膜 (外径 680 m、 内径 450 μ ηι)を、 枝別れした金属管(SUS製チュー ブの両端に、 互いに反対方向に向けた Τ字型チュ一ブ継手を接続したも の)内に 2本入れ、 膜の有効長が 15cmになるように、 多孔質中空糸膜両端 部をェポキシ樹脂系接着剤で封止して、 ペンシルモジュールを作製した。 この多孔質中空糸膜の内側には、 温度 80°C、 湿度 80%の湿潤空気を 0. 5 MPaの加圧下、 0. 25NL/分の流量で供給し、 またその外側には、 温度 80°C、 湿度 0%のスイープ空気を 1. 2MPaの加圧下、 0. 28NL/分の流量で流し、 多 孔質中空糸膜の内側から外側へ透過した水蒸気によつて加湿されたスィ 一プ空気を、 冷却されたトラップ管を通すことによってスイープ空気中 の水蒸気を採取し、 その水蒸気重量から加湿性能の指針である水蒸気透 過速度(PH2Q)を測定した。
また、 モジュール内の多孔質中空糸膜の内側に、 温度 80°Cの乾燥空気 を 0. 2MPaの加圧下にデッドエンド方式により供給し、 多孔質中空糸膜の 外側に透過した空気を容積法により求め、 空気透過速度(PAIR)の測定お よぴ水蒸気透過速度に対する空気透過速度の比である分離係数( a„20/AI R)を算出した。
さらに、 この多孔質中空糸膜を、 温度 100°C、 湿度 80%の恒温恒湿槽に 入れて 1000時間の湿熱処理を行った後、 標点間距離 50ram、 引張速度 30mm /分の条件下で引張試験を行い、 破断強度および破断伸びを算出すると 共に、 湿熱処理前の破断伸びに対する湿熱処理後の破断伸びの比として 破断伸び保持率を算出した。
比較例 1
実施例 1において、 塩化カルシウムおよびポリビ-ルピロリ ドンを添 加しないで製膜原液を調製しょうとしたが、 ポリメタフエ-レンイソフ タルァミ ドは膨潤するのみで、 ジメチルァセトアミドに溶解することは なかった。
比較例 2
実施例 1において、 塩ィ匕カルシウムを添カ卩しないで製膜原液を調製し ようとしたが、 ポリメタフエ二レンイソフタルァミ ドは膨潤するのみで、 ジメチルァセトアミドに溶解することはなかった。
比較例 3
実施例 1において、 ポリビュルピロリ ドンを添加しないで製膜原液を 調製しょうとしたが、 製膜原液は 70°C以上で白濁し、 2相に分離した。 比較例 4
実施例 1において、 原液タンク、 配管部分および二重環状ノズルを加 熱せず、 室温(25°C)下で乾湿式紡糸して、 得られたポリメタフエ二レン イソフタルアミ ド多孔質中空糸膜(外径 700 μ ιη、 内径 480 μ m)について同 様の測定を行った。
比較例 5
実施例 1において、 保湿処理を行わずに膜を十分に乾燥させて得られ たポリメタフエ二レンィソフタルアミ ド多孔質中空糸膜(外径 680 μιη 内径 450μιη)について同様の測定が行われた。
比較例 6
ポリアミ ドイミド 20重量% (ァモコ ' ジャパン製品トーロン 4000Τ)
ポリビニルピロリ ドン(平均分子量 40 000) 4 " ジメチルァセトアミ ド 76 " よりなる均一な 目状態の製膜原液を、 室温 (25°C)の原液タンク、 配管 部分おょぴ二重環状ノズルを通して乾湿式紡糸し、 以下実施例 1と同様 に保湿処理迄を行って得られたポリアミ ドイミド多孔質中空糸膜 (外径 6 50μηι、 内径 420 m)について、 同様の測定が行われた。
以上の実施例 1および比較例 4 6における測定結果は、 次の表 1に 示される。 測定項目 実施例 1 比較例 4 比較例 5 比較例 6
[膜性能]
P [cm3(STP)ん m2 ·秒 · cmHg] 3.7X10"3 5.3 X 10— 4 5.4X10-3 6.2 X 10一3
PAIR[cm3(STP) /cm2 ·秒 · cmHg] 7.6X10— 8 9.0X10— 7 4.1 X 10一6 1.9X10 -8 a H20/AIR 49000 580 1300 380000
[湿熱処理後の機械的強度]
破断強度 (MPa) 10.8 12.6 10.8 7.8 破断伸び (%) 88 75 86 15 破断伸ぴ保持率 (%) 89 92 85 36 実施例 2
ポリメタフエ二レンィソフタルァミ ド 16.2重量%
(帝人テクノプロダクツ製品コーネックス) 塩化カルシウム 6, 5 / ポリ ビュルピロリ ドン(平均分子量 40, 000) 7. 3 " ジメチルァセトアミ ド 70. 0 " よりなる均一な 1相状態の製膜原液を、 いずれも 100°Cに加熱された原液 タンク、 配管部分おょぴ二重環状ノズルを通して乾湿式紡糸し、 25°Cの 水凝固浴中に押出し、 これを通過させた後、 ロールに巻き取った。 ロー ルに巻き取った多孔質中空糸膜を 30cmずつの長さにカツトし、 イオン交 換水中で 121°C、 1時間のオートクレーブ熱処理を行った後、 イオン交換 水で多孔質中空糸膜を流水洗浄し、 乾燥した。 最後に、 保湿処理として、 この多孔質中空糸膜を 20重量%グリセリン水溶液中に 12時間浸漬した後、 膜を十分に乾燥させた。
このようにして得られたポリメタフヱニレンイソフタルアミ ド多孔質 中空糸膜(外径 680 μ πι、 内径 450 m)について、 実施例 1と同様にして、 水蒸気透過速度 (PH2。)、 空気透過速度(PAIR)およぴ分離係数(ひ H2O/AIR)の測 定および算出を行った。
実施例 3
実施例 2において、 塩化カルシウム量を 3. 25重量%に変更し、 さらに 塩化リチウム 3. 25重量%が用いられ、 得られたポリメタフエ-レンィソ フタルアミド多孔質中空糸膜(外径 680 μ πκ 内径 450 μ πι)について、 実施 例 1と同様の測定が行われた。
実施例 4
実施例 2において、 製膜原液として以下のものが用いられた。
ポリメタフエ-レンイソフタルアミ ド(コーネックス) 19. 27重量0 /0 塩化カルシウム 6. 26 " ポリビュルピロリ ドン(平均分子量 40, 000) 7. 03 // ジメチルァセトアミ ド 67. 44 // 得られたポリメタフエ二レンイソフタルアミ ド多孔質中空糸膜 (外径 690 μ ιη、 内径 450 m)について、 実施例 1と同様の測定が行われた。
比較例 7
実施例 2において、 製膜原液として以下のものが用いられた。
ポリメタフエ-レンイソフタルアミ ド(コーネックス) 10. 66重量0 /0 塩化カルシウム 6. 93 // ポリビュルピロリ ドン(平均分子量 40, 000) 7. 78 " ジメチルァセトアミ ド 74. 63 // 得られたポリメタフエ二レンィソフタルアミ ド多孔質中空糸膜 (外径 6 60 z m, 内径 420 m)について、 実施例 1と同様の測定が行われた。
比較例 8
実施例 2において、 製膜原液として以下のものが用いられた。
ポリメタフエ二レンイソフタルアミ ド(コーネックス) 16· 74重量0 /0 塩化カノレシゥム 3. 36 " ポリビュルピロリ ドン(平均分子量 40, 000) 7. 55 !' ジメチルァセトアミ ド ' 72. 35 !' しかるに、 製膜原液中のポリメタフヱニレンイソフタルアミ ドが完全 に溶解しなかった。
比較例 9
実施例 2において、 製膜原液として以下のものが用いられた。
ポリメタフエ二レンイソフタルアミ ド(コーネックス) 15. 36重量0 /0 塩化カノレシゥム 11. 37 // ポリビニルピロリ ドン(平均分子量 40, 000) 6. 92 // ジメチルァセトアミ ド 66. 35 " しかるに、 製膜原液中のポリメタフエ-レンイソフタルアミ ドおよび 塩化力ルシゥムが完全に溶解しなかつた。 比較例 10
実施例 2において、 ポリ ビュルピロリ ドン(平均分子量 40, 000)の代わ りに、 ポリビニルピロリ ドン(平均分子量 10, 000)が同割合で用いられ、 得られたポリメタフエ-レンイソフタルアミ ド多孔質中空糸膜 (外径 670 μ ιη、 内径 440 μ ηι)について、 実施例 1と同様の測定が行われた。
比較例 11
実施例 2において、 ポリビュルピロリ ドン(平均分子量 40, 000)の代わ りに、 ポリビエルピロリ ドン(平均分子量 120, 000)が同割合で用いられ たところ、 製膜原液の粘度が非常に高く、 紡糸が困難であった。
比較例 12
実施例 2において、 製膜原液として以下のものが用いられた。
ポリメタフエ二レンイソフタルアミ ド(コーネックス) 16. 82重量0 /0 塩化カルシウム 6. 75 " ポリ ビュルピロリ ドン(平均分子量 40, 000) 3. 74 " ジメチルァセトアミ ド 72. 69 " 得られたポリメタフヱニレンイソフタルアミ ド多孔質中空糸膜 (外径 670 μ ΐΆ, 内径 440 μ ιη)について、 実施例 1と同様の測定が行われた。
比較例 13
実施例 2において、 製膜原液として以下のものが用いられた。
ポリメタフエ二レンイソフタルアミ ド(コーネックス) 15. 47重量0 /0 塩化カルシウム 6. 21 " ポリ ビニルピロリ ドン(平均分子量 40, 000) 11. 46 // ジメチルァセトアミ ド 66. 86 I! しかるに、 製膜原液の粘度が非常に高く、 紡糸が困難であった。
以上の実施例 2〜4、 比較例 7、 10および 12における測定結果は、 次 の表 2に示される。 表 2
Figure imgf000013_0001
[cm3 (STP)ん m2 ·秒 · cmHg] 「cm3(STP)/cm2 ·秒 · cmHg] ひ赚 IR 実施例 2 4.6X10一3 2.8X10— 8 160000 " 3 5.2Χ1(Γ3 5.7 X 10— 8 91000 / 4 3.1X10—4 5.8Χ1(Γ9 53000 比較例 7 6.1 X 10一3 3· 6X10一5 170 " 10 2.9X10一3 1.5X10一7 19000 // 12 2.5X10一3 2.4X10— 7 10000 産業上の利用可能性
本発明に係るポリメタフ ド多孔質中空糸膜は、 耐湿熱性おょぴ加湿特性にすぐれており、 また機械的強度や気体パリャ 性の点でも良好であるので、 加湿膜として有効に用いることができ、 具 体的には固体高分子型燃料電池用加湿膜、 特に移動体用固体高分子型燃 料電池加湿膜として好適に使用される。 また、 除湿装置などにも使用さ れる。
耐湿温性おょぴ機械的強度についていえば、 温度が 100°C、 湿度が 80% の湿熱環境下で 1000時間以上湿熱処理した後の多孔質中空糸膜の破断強 度は lOMPa以上、 破断伸びが 80%以上であり、 かつ破断伸びが湿熱処理前 の 80%以上保持しているものが得られている。
また、 乾湿式紡糸後保湿処理に先立って、 得られた多孔質中空糸膜を 80°C以上の水中で熱処理した場合には、 分離係数 aH2Q/AIRが高められる ばかりではなく、 高温環境下での使用により膜モジュールが破損するお それおよぴ膜に残存する無機イオン溶出のおそれを回避することができ る。

Claims

請 求 の 範 囲
1 . ポリメタフエ二レンイソフタルアミ ド、 ポリ ビュルピロリ ドンおよ ぴ無機塩を含有する製膜原液を、 製膜原液温度を 70°C以上に保持したま ま二重環状ノズルから吐出させ、 乾湿式紡糸した後保湿処理することを 特徴とするポリメタフエ二レンイソフタルアミ ド多孔質中空糸膜の製造 法。
2 . ポリメタフエ二レンイソフタルアミ ド 12〜35重量0 /0、 ポリ ビュルピ ロリ ドン 4〜10重量%、 無機塩 4〜10重量%および残部が非プロ トン性極 性溶媒よりなる製膜原液が用 、られた請求項 1記載のポリメタフエニレ ンイソフタルアミド多孔質中空糸膜の製造法。
3 . 平均分子量が20,000〜100,000のポリ ビニルピロリ ドンが用いられ た請求項 1または 2記載のポリメタフエ二レンイソフタルアミド多孔質 中空糸膜の製造法。
4 . 無機塩が塩化カルシウムまたはこれと塩化リチウムとの混合物であ る請求項 1または 2記載のポリメタフエ二レンイソフタルアミド多孔質 中空糸膜の製造法。
5 . 乾湿式紡糸後保湿処理に先立って、 得られた多孔質中空糸膜を 80°C 以上の水中で熱処理する請求項 1記載のポリメタフエ-レンイソフタル アミ ド多孔質中空糸膜の製造法。
6 . 80〜121°Cの水中で熱処理が行われる請求項 5記載ポリメタフエ二 レンイソフタルアミ ド多孔質中空糸膜の製造法。
7 . 請求項 1または 5記載の方法により製造されたポリメタフエ二レン イソフタルアミ ド多孔質中空糸膜。
8 . 温度 100°C、 湿度 80%の湿熱条件下で 1000時間以上湿熱処理した後の 多孔質中空糸膜の破断強度が lOMPa以上、 破断伸びが 80%以上であり、 か つ破断伸ぴが湿熱処理前の 80%以上を保持している請求項 7記載のポリ メタフエ二レンイソフタルアミ ド多孔質中空糸膜。
9 . 加湿膜として用いられる請求項 7記載のポリメタフヱニレンイソフ タルアミ ド多孔質中空糸膜。
1 0 . 固体高分子型燃料電池用加湿膜として用いられる請求項 9記載の ポリメタフエ-レンイソフタルアミ ド多孔質中空糸膜。
PCT/JP2003/011062 2002-09-09 2003-08-29 ポリメタフェニレンイソフタルアミド多孔質中空糸膜の製造法 WO2004024305A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2003261835A AU2003261835A1 (en) 2002-09-09 2003-08-29 PROCESS FOR PRODUCTION OF POLY(m-PHENYLENEISOPHTHAL- AMIDE) POROUS HOLLOW FIBER MEMBRANE
US10/506,489 US7393483B2 (en) 2002-09-09 2003-08-29 Process for production of poly(m-phenyleneisophthal-amide) porous hollow fiber membrane
JP2004535884A JPWO2004024305A1 (ja) 2002-09-09 2003-08-29 ポリメタフェニレンイソフタルアミド多孔質中空糸膜の製造法
DE60323993T DE60323993D1 (de) 2002-09-09 2003-08-29 Embran aus poly(m-phenylenisophthal-amid)
EP03795250A EP1537906B1 (en) 2002-09-09 2003-08-29 Process for production of poly(m-phenyleneisophthal- amide) porous hollow fiber membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002262251 2002-09-09
JP2002-262251 2002-09-09

Publications (1)

Publication Number Publication Date
WO2004024305A1 true WO2004024305A1 (ja) 2004-03-25

Family

ID=31986402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011062 WO2004024305A1 (ja) 2002-09-09 2003-08-29 ポリメタフェニレンイソフタルアミド多孔質中空糸膜の製造法

Country Status (8)

Country Link
US (1) US7393483B2 (ja)
EP (1) EP1537906B1 (ja)
JP (1) JPWO2004024305A1 (ja)
KR (1) KR100712393B1 (ja)
CN (1) CN1309460C (ja)
AU (1) AU2003261835A1 (ja)
DE (1) DE60323993D1 (ja)
WO (1) WO2004024305A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508101A (ja) * 2007-12-19 2011-03-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Mpd−i糸用一段階延伸
JP2012020232A (ja) * 2010-07-14 2012-02-02 Unitika Ltd ポリアミド透湿膜及びその製造方法
JP2012135757A (ja) * 2010-12-09 2012-07-19 Toray Ind Inc 複合半透膜、複合半透膜エレメントおよび複合半透膜の製造方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8800837B2 (en) 2007-04-13 2014-08-12 Covidien Lp Powered surgical instrument
US7771637B2 (en) * 2007-12-19 2010-08-10 E. I. Du Pont De Nemours And Company High-speed meta-aramid fiber production
US7780889B2 (en) * 2007-12-19 2010-08-24 E.I. Du Pont De Nemours And Company Multistage draw with relaxation step
US7771638B2 (en) * 2007-12-19 2010-08-10 E. I. Du Pont De Nemours And Company Rapid plasticization of quenched yarns
WO2010045430A2 (en) * 2008-10-15 2010-04-22 National University Of Singapore Dual-layer hollow fibers with enhanced flux as forward osmosis membranes for water reuses and protein enrichment
CN102847450A (zh) * 2011-06-30 2013-01-02 中国科学院生态环境研究中心 一种聚间苯二甲酰间苯二胺中空纤维纳滤膜的制备方法
CN102489170B (zh) * 2011-12-23 2014-03-12 重庆绿色智能技术研究院 中空纤维超滤膜及其制备方法
CN105561797A (zh) * 2014-10-15 2016-05-11 中国石油化工股份有限公司 一种干燥高分子复合薄膜的制备方法
CN105561798A (zh) * 2014-10-15 2016-05-11 中国石油化工股份有限公司 一种干燥高分子薄膜的制备方法
CN107029564B (zh) 2016-02-03 2020-11-06 微宏动力系统(湖州)有限公司 一种芳香族聚酰胺多孔膜制备方法及芳香族聚酰胺多孔膜
KR102377158B1 (ko) * 2017-10-27 2022-03-23 에누오케 가부시키가이샤 가습막용 폴리페닐술폰 중공사 막의 제조법
CN111054220B (zh) * 2019-12-30 2021-11-09 安徽普朗膜技术有限公司 一种有机管式膜的干燥方法
CN112111804B (zh) * 2020-09-17 2021-08-31 株洲时代新材料科技股份有限公司 一种间位芳香族聚酰胺纤维及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0781593A2 (de) * 1995-12-28 1997-07-02 Hoechst Aktiengesellschaft Verfahren zur Herstellung von Polyetheramidlösungen, unter Verwendung der Polyetheramidlösungen erhältliche dampfsterilisierbare Dialysemembranen sowie Verfahren zur Herstellung dieser Membranen
JPH1052631A (ja) * 1996-06-03 1998-02-24 Nok Corp 中空糸膜の製造法
JP2001286743A (ja) * 2000-04-10 2001-10-16 Nok Corp ポリ−m−フェニレンイソフタルアミド分離膜の製造法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3822202A (en) * 1972-07-20 1974-07-02 Du Pont Heat treatment of membranes of selected polyimides,polyesters and polyamides
US5091080A (en) * 1990-11-30 1992-02-25 Bend Research, Inc. Adsorbents for the removal of volatile substances from aqueous systems
JP3188067B2 (ja) * 1993-09-13 2001-07-16 豊田工機株式会社 動力舵取装置
JPH07148252A (ja) * 1993-12-01 1995-06-13 Teijin Ltd 血液浄化用中空糸膜
DE4418843A1 (de) * 1994-05-30 1995-12-07 Hoechst Ag Poröse Membrane aus aromatischem Polyamid
US6355730B1 (en) * 1995-06-30 2002-03-12 Toray Industries, Inc. Permselective membranes and methods for their production
JP3431455B2 (ja) * 1997-06-12 2003-07-28 エヌオーケー株式会社 多孔質高分子除湿膜
DK1172466T3 (da) * 2000-02-16 2007-05-21 Teijin Ltd Fremgangsmåde til fremstilling af en fiber bestående af fuldstændigt aromatisk polyamid af meta-typen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0781593A2 (de) * 1995-12-28 1997-07-02 Hoechst Aktiengesellschaft Verfahren zur Herstellung von Polyetheramidlösungen, unter Verwendung der Polyetheramidlösungen erhältliche dampfsterilisierbare Dialysemembranen sowie Verfahren zur Herstellung dieser Membranen
JPH1052631A (ja) * 1996-06-03 1998-02-24 Nok Corp 中空糸膜の製造法
JP2001286743A (ja) * 2000-04-10 2001-10-16 Nok Corp ポリ−m−フェニレンイソフタルアミド分離膜の製造法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1537906A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508101A (ja) * 2007-12-19 2011-03-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Mpd−i糸用一段階延伸
JP2012020232A (ja) * 2010-07-14 2012-02-02 Unitika Ltd ポリアミド透湿膜及びその製造方法
JP2012135757A (ja) * 2010-12-09 2012-07-19 Toray Ind Inc 複合半透膜、複合半透膜エレメントおよび複合半透膜の製造方法

Also Published As

Publication number Publication date
CN1309460C (zh) 2007-04-11
EP1537906A4 (en) 2005-11-23
AU2003261835A1 (en) 2004-04-30
DE60323993D1 (de) 2008-11-20
CN1625436A (zh) 2005-06-08
US20050170176A1 (en) 2005-08-04
KR20050033545A (ko) 2005-04-12
KR100712393B1 (ko) 2007-05-02
EP1537906A1 (en) 2005-06-08
JPWO2004024305A1 (ja) 2006-01-05
EP1537906B1 (en) 2008-10-08
US7393483B2 (en) 2008-07-01

Similar Documents

Publication Publication Date Title
WO2004024305A1 (ja) ポリメタフェニレンイソフタルアミド多孔質中空糸膜の製造法
TWI595920B (zh) Positive osmosis membrane and positive osmosis treatment system
JP5927712B2 (ja) 高性能膜
JP2006255502A (ja) 多孔質ポリフェニルスルホン樹脂中空糸膜の製造法
JP2010506365A (ja) 加湿器用膜
CN109621746B (zh) 一种亲疏水双层聚偏氟乙烯膜的制备方法
JP2011502775A5 (ja)
JP2014094374A5 (ja)
JP6256705B2 (ja) 複合分離膜
JP6964680B2 (ja) 加湿膜用ポリフェニルスルホン中空糸膜の製造法
KR20180048692A (ko) 비용제 유도 상분리법용 제막 원액 및 이것을 사용한 다공질 중공사막의 제조 방법
CN109309183A (zh) 一种芳香族聚酰胺多孔膜、制备方法及锂离子二次电池
JP2014012273A (ja) 加湿用中空糸膜および加湿用膜モジュール
JP5553699B2 (ja) ポリアミド透湿膜及びその製造方法
JP2004290751A (ja) 水蒸気透過膜の製造法
JP5906674B2 (ja) 中空糸炭素膜およびその製造方法
CN109621741B (zh) 一种正渗透复合膜的制备方法
JP2014124563A (ja) 多孔質ポリエーテルスルホン中空糸膜用製膜原液
JP2007289944A (ja) 加湿用膜およびその製造方法
JP2001286743A (ja) ポリ−m−フェニレンイソフタルアミド分離膜の製造法
JP2009101346A (ja) 加湿用膜およびその製造方法
WO2023276483A1 (ja) 正浸透膜、及びそれを含む正浸透膜モジュール
CN108126524B (zh) 一种有机超、微滤膜的干膜制备方法
JP2006179273A (ja) 複合水蒸気透過膜
JP2000189773A (ja) 除湿膜及び除湿膜の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2004535884

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003795250

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038030209

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020047012913

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10506489

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003795250

Country of ref document: EP