WO2003095560A1 - Composition au silicium pouvant etre soumise a traitement, pour la production de materiaux magnetiques composites mous, et materiaux magnetiques composites mous - Google Patents

Composition au silicium pouvant etre soumise a traitement, pour la production de materiaux magnetiques composites mous, et materiaux magnetiques composites mous Download PDF

Info

Publication number
WO2003095560A1
WO2003095560A1 PCT/JP2003/006031 JP0306031W WO03095560A1 WO 2003095560 A1 WO2003095560 A1 WO 2003095560A1 JP 0306031 W JP0306031 W JP 0306031W WO 03095560 A1 WO03095560 A1 WO 03095560A1
Authority
WO
WIPO (PCT)
Prior art keywords
soft magnetic
group
composite soft
magnetic material
curable silicone
Prior art date
Application number
PCT/JP2003/006031
Other languages
English (en)
French (fr)
Inventor
Kazuhiro Sekiba
Takashi Tanaka
Hisanori Sasaki
Hideomi Takahashi
Original Assignee
Dow Corning Toray Silicone Co., Ltd.
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Corning Toray Silicone Co., Ltd., Tdk Corporation filed Critical Dow Corning Toray Silicone Co., Ltd.
Priority to AU2003242306A priority Critical patent/AU2003242306A1/en
Priority to US10/512,713 priority patent/US20050176885A1/en
Priority to EP03730499A priority patent/EP1505122A4/en
Publication of WO2003095560A1 publication Critical patent/WO2003095560A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0083Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive non-fibrous particles embedded in an electrically insulating supporting structure, e.g. powder, flakes, whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]
    • Y10T428/2995Silane, siloxane or silicone coating

Definitions

  • the present invention relates to a curable silicone composition for forming a composite soft magnetic material and a composite soft magnetic material, and more particularly, to a composite soft magnetic material having excellent electromagnetic wave absorption characteristics, even if the soft magnetic powder is highly filled to obtain the composite soft magnetic material.
  • the present invention relates to a curable silicone composition capable of forming a soft magnetic material with good moldability, and a composite soft magnetic material having excellent electromagnetic wave absorption properties, and excellent flame retardancy and thermal conductivity.
  • the electromagnetic wave absorption characteristics in the present invention represent a broad range including not only absorption of a far electromagnetic field but also absorption of a near electromagnetic field. Background art
  • a curable silicone composition containing a soft magnetic powder and a composite soft magnetic material obtained by curing the same are described in, for example, JP-A-2000-294977, JP-A-2001-44687, and JP-A-2001-294752. It is publicly known from Japanese Unexamined Patent Publication No. 2001-119189. Generally, in order to improve the electromagnetic wave absorption characteristics of a composite soft magnetic material, it is necessary to highly fill a soft magnetic powder into a curable silicone composition. However, when the soft magnetic powder is highly filled into the curable silicone yarn composition, there has been a problem that a uniform composition cannot be obtained, and the moldability of the obtained composition deteriorates.
  • an object of the present invention is to obtain a composite soft magnetic material having excellent electromagnetic wave absorption properties, even if the soft magnetic powder is highly filled, the composite soft magnetic material can be formed with good moldability.
  • Another object of the present invention is to provide a composite soft magnetic material having excellent electromagnetic wave absorption characteristics and excellent flame retardancy and heat conductivity. Disclosure of the invention
  • the curable silicone composition for forming a composite soft magnetic material of the present invention comprises (A) a curable organopolysiloxane, (B) a curing agent, (C) a soft magnetic powder, and (D) a general formula: [R I a R 2 (3. A ) S iO (R 2 2 S i O) n ] b S i RV (b + c)] (OR 3 ) c
  • R 1 is a monovalent hydrocarbon group having an aliphatic unsaturated bond
  • R 2 is a monovalent hydrocarbon group having the same or different aliphatic unsaturated bonds
  • R 3 Is an alkyl group or an alkoxyalkyl group
  • a is an integer of 1 to 3
  • b is an integer of 1 to 3
  • c is an integer of 1 to 3
  • b + c is 2 to 3.
  • An integer of 4 and n is an integer of 0 or more.
  • the composite soft magnetic material of the present invention is obtained by curing the above composition.
  • the component (A) is a curable organopolysiloxane which is a main component of the present composition
  • the component (B) is a curing agent for crosslinking the component (A).
  • the properties of the cured product obtained by curing the present composition are not limited, and examples thereof include a high-hardness rubber, a low-hardness rubber, and a gel.
  • the curing mechanism of the present composition is not limited, and examples thereof include a hydrosilylation reaction, a free radical reaction with an organic peroxide, and a condensation reaction.In particular, the composition is quickly cured by heating to generate by-products.
  • the reaction is a hydrosilylation reaction.
  • the component (A) is preferably an organopolysiloxane having an average of at least 0.1 silicon-bonded alkenyl group per molecule, Further, an organopolysiloxane having an average of 0.5 or more silicon atom-bonded alkenyl groups in one molecule is preferable, and in particular, an average of 0.8 or more silicon atom-bonded alkenyl groups in one molecule is preferable. It is preferable that the organopolysiloxane is an organopolysiloxane. This is because if the average value of the silicon-bonded alkenyl groups in one molecule is less than the lower limit of the above range, the obtained composition tends to be insufficiently cured.
  • alkenyl group in the organopolysiloxane examples include a butyl group, Examples thereof include an aryl group, a butenyl group, a pentyl group, and a hexenyl group, and preferably a butyl group.
  • Examples of the group bonded to a silicon atom other than the alkenyl group in the organopolysiloxane include an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group; Cycloalkyl groups such as cyclopentyl group and cyclohexyl group; aryl groups such as phenyl group, tolyl group and xylyl group; aralkyl groups such as benzyl group and phenethyl group; 3,3,3-trifluoropropyl group; —Halogenated alkyl groups such as methyl propyl group, and the like, preferably an alkyl group and an aryl group, and particularly preferably a methyl group and a phenyl group.
  • an alkyl group such as a methyl group, an ethyl group, a propyl group,
  • the viscosity of the organopolysiloxane at 25 ° C. is not limited, but is preferably in the range of 50 to 100,000 OraPa's, and particularly preferably 100 to 50 ° C. , which is preferably in the range of 0 0 mPa's. This is because if the viscosity at 25 ° C is less than the lower limit of the above range, the physical properties of the obtained cured silicone material tend to be significantly reduced, while if the viscosity exceeds the upper limit of the above range. This is because the handling efficiency of the obtained curable silicone composition tends to be significantly reduced.
  • the molecular structure of such an organopolysiloxane is not limited and includes, for example, linear, branched, partially branched linear, and dendritic (dendrimer). It is linear with some branches. Further, the organopolysiloxane may be a single polymer having these molecular structures, a copolymer having these molecular structures, or a mixture of these polymers.
  • organopolysiloxanes include, for example, dimethylpolysiloxane having a dimethyl bulsiloxy group at both ends of a molecular chain, dimethylpolysiloxane having a dimethylvinylsiloxane at both ends of a molecular chain, and dimethyl having a dimethylvinylsiloxy group at both ends of a molecular chain.
  • Siloxane 'Methylphenylsiloxane copolymer, Molecular chain Both ends dimethylvinylsiloxy group-blocked dimethylsiloxane, Methylvinylsiloxyxane copolymer, Both ends of molecular chain Trimethylsiloxy group dimethylsiloxane.
  • An organosiloxane copolymer comprising a siloxane unit represented by 1/2 and a siloxane unit represented by the formula: CH 3 SiO 3/2 and a siloxane unit represented by the formula: (CH 3 ) 2 Si ⁇ 2/2 is obtained. No.
  • the component (B) comprises an organopolysiloxane having an average of two or more silicon-bonded hydrogen atoms per molecule and a platinum-based catalyst.
  • Examples of a group bonded to a silicon atom bond other than a hydrogen atom in the organopolysiloxane include an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group and a hexyl group; a cyclopentyl group A cycloalkyl group such as a cyclohexyl group; an aryl group such as a phenyl group, a trinole group, and a xylyl group; an aralkyl group such as a benzyl group and a phenethyl group; —Halogenated alkyl groups such as chloropropyl group, etc., preferably an alkyl group and an aryl group, particularly preferably a methyl group and a phenyl group.
  • the viscosity of the organopolysiloxane at 25 ° C. is not limited, but is preferably in the range of 1 to 100,00 OmPa's, and particularly preferably in the range of 1 to 5,000 OraPa's. .
  • the molecular structure of such an organopolysiloxane is not limited, and examples thereof include straight-chain, branched-chain, partially branched straight-chain, cyclic, and dendritic (dendrimer).
  • the organopolysiloxane may be a single polymer having these molecular structures, a copolymer having these molecular structures, or a mixture of these polymers.
  • organopolysiloxanes include, for example, dimethylpolysiloxane having dimethyl hydrogen-terminated at both ends of the molecular chain, dimethylsiloxane having both ends of trimethylsiloxy group at the molecular chain and methylhydrogensiloxane copolymer having both ends at the molecular chain, and dimethyl-terminal at both ends of the molecular chain.
  • the content of the organopolysiloxane is based on 1 mol of a silicon atom-bonded alkenyl group in the component (A).
  • the amount of the silicon-bonded hydrogen atom in the above is preferably in the range of 0.1 to 10 mol, particularly preferably in the range of 0.1 to 5 mol.
  • platinum-based catalyst examples include chloroplatinic acid, an alcohol solution of chloroplatinic acid, a platinum olefin complex, a platinum alkenylsiloxane complex, and a platinum carbonyl complex.
  • the content of the platinum-based catalyst is preferably such that the platinum metal in the catalyst is in the range of 0.01 to 1.0 ppm by weight with respect to the component (A).
  • the amount is preferably in the range of 1 to 50 ppm. This is because if the content of this component is less than the lower limit of the above range, the curable silicone composition to be obtained tends not to be sufficiently hardened. This is because the curing rate of the curable silicone composition obtained does not significantly increase even if it is contained.
  • the organopolysiloxane of the component (A) is not particularly limited, but an organopolysiloxane having at least one silicon atom-bonded alkenyl group in one molecule.
  • the alkenyl group in this organopolysiloxane is preferably a siloxane.
  • the same alkenyl group as described above is exemplified, and a butyl group is preferable.
  • Examples of the group bonded to a silicon atom other than the alkenyl group in the organopolysiloxane include the same alkyl group, cycloalkyl group, aryl group, aralkyl group, and halogenated alkyl group as described above. And preferably an alkyl group or an aryl group, and particularly preferably Or a methyl or phenyl group.
  • the viscosity of the organopolysiloxane at 25 ° C. is not limited, but is preferably in the range of 50 to 100,000 OmPa's, and particularly preferably in the range of 100 to 50,000 OmPa's.
  • the molecular structure of such an organopolysiloxane is not limited and includes, for example, linear, branched, partially branched linear, and dendritic (dendrimer). It is linear with some branches. Further, the organopolysiloxane may be a single polymer having these molecular structures, a copolymer having these molecular structures, or a mixture of these polymers.
  • organopolysiloxanes examples include, for example, dimethylpolysiloxane having a dimethylvinylsiloxy group at both ends of a molecular chain, dimethylpolysiloxane having a methylphenylvinyl-2-siloxy group at both ends of a molecular chain, and dimethylsiloxane having a dimethylvinylsiloxy group at both ends of a molecular chain.
  • the component (B) is an organic peroxide.
  • Benzoyl peroxide, p 1-Methylbenzoylperoxide, dicumylperoxide, 2,5-dimethylbis (2,5-t-butyl-butoxy) hexane, di-t-butyl-peroxide, t-butylperbenzoate Is exemplified.
  • the content of the organic peroxide is preferably in the range of 0 :! to 5 parts by weight based on 100 parts by weight of the component (A).
  • the component (A) is an organopolysiloxane having at least two silanol groups or silicon-bonded hydrolyzable groups in one molecule.
  • the silicon atom-bonded hydrolyzable group in the organopolysiloxane include an ethoxy group such as a methoxy group, an ethoxy group and a propoxy group; a vinyloxy group, an isopropyloxy group, a 1-ethyl-2-methylvinyloxy group.
  • Alkoxyalkoxy groups such as methoxyxetoxy, ethoxypropoxy, etc .; acyloxy groups such as acetoxy, octanoyloxy; ketoxime groups such as dimethylketoxime, methylethylketoxim; Amino groups such as dimethylamino, getylamino, and butylamino groups; aminoxy groups such as dimethylaminooxy and ethylamino groups; and amide groups such as N-methylacetoamide and N-ethylacetoamide.
  • the group bonded to a silicon atom other than the silanol group or the silicon atom-bonded hydrolyzable group in the organopolysiloxane include the same alkyl group, cycloalkyl group, alkenyl group and aryl group as described above. And an aralkyl group and a hydrogenated alkyl group.
  • the viscosity of the organopolysiloxane at 25 ° C. is not limited, but is preferably in the range of 20 to 100,000 OmPa's, and in particular, 100 to 100,000. It is preferably within the range of 0 O mPa's.
  • the organosiloxane corresponding to the component (D) is not included in this component.
  • organopolysiloxanes include, for example, dimethylpolysiloxane having silanol groups at both ends of molecular chain, dimethylsiloxane having silanol groups at both ends of molecular chain, methyl phenylsiloxane copolymer, dimethylpolysiloxane having trimethoxysiloxy group at both ends of molecular chain.
  • Polysiloxane molecular chain terminal trimethoxysiloxy group-blocked dimethylsiloxane / methylphenylsiloxane copolymer, molecular chain terminal methyldimethoxysiloxy group-blocked dimethylpolysiloxane, molecular chain terminal triethoxy Examples thereof include dimethylpolysiloxanes with siloxyloxy groups and trimethoxysilylethyl groups at both ends of molecular chains.
  • the component (B) is composed of silane having at least three silicon-bonded hydrolyzable groups in one molecule or a partial hydrolyzate thereof, and It is a catalyst for condensation reaction accordingly.
  • Examples of the silicon atom-bonded hydrolyzable group in this silane include the same alkoxy group, alkoxyalkoxy group, acyloxy group, ketoxime group, alkenoxy group, amino group, aminoxy group, and amide group as described above.
  • Examples of the group bonded to a silicon atom other than the hydrolyzable group in this silane include the same alkyl group, cycloalkyl group, alkenyl group, aryl group, aralkyl group, and halogenated alkyl group as described above. Is exemplified.
  • Examples of such a silane or a partially hydrolyzed product thereof include methyltriethoxysilane, burtriethoxysilane, vinylinoletriethoxysilane, and ethyl orthosilicate.
  • the content of the silane or its partial hydrolyzate is preferably in the range of 0.01 to 20 parts by weight based on 100 parts by weight of the component (A). It is preferably in the range of 0.1 to 10 parts by weight. This is because if the content of the silane or its partial hydrolyzate is less than the lower limit of the above range, the storage stability of the obtained composition tends to decrease, and the adhesiveness tends to decrease. On the other hand, if the amount exceeds the upper limit of the above range, the resulting composition tends to be remarkably slow in curing.
  • the condensation reaction catalyst is an optional component, and is not essential when, for example, a silane having an aminoxy group, an amino group or a ketoxime group is used as a curing agent.
  • Examples of such a condensation reaction catalyst include organic titanates such as tetrabutyl titanate and tetraisopropyl titanate; diisopropoxybis (acetyl acetate) titanium; diisopropoxybis (ethyl acetate acetate) )
  • Organic titanium chelate compounds such as titanium; organic aluminum compounds such as aluminum tris (acetyl acetate), aluminum tris (ethyl acetate); zirconium tetra (acetyl acetate); zirconium tetrabutyrate of Organoaluminum compounds; Organotin compounds such as dibutyltin dioctoate, dibutyltin dilaurate, butyltin-2-ethylhexoate; tin naphth
  • Metal salts of organic carboxylic acids include amide compounds such as hexylamine and dodecylamine phosphate, and salts thereof; quaternary ammonium salts such as benzyltriethylammonium acetate; lower fatty acids of alkali metals such as potassium acetate and lithium nitrate Salts; dialkylhydroxyxylamines such as dimethylhydroxyxoleamine and ethynolehydroxylamine; and other organic silicon compounds containing a guanidyl group.
  • the content of the condensation reaction catalyst is not limited, but is preferably in the range of 0.01 to 20 parts by weight with respect to 100 parts by weight of the component (A). It is preferably in the range of 10 to 10 parts by weight. This is because when the catalyst is essential, if the content of the catalyst is less than the lower limit of the above range, the obtained composition tends to be insufficiently cured. If the upper limit of the above range is exceeded, the storage stability of the obtained composition tends to decrease.
  • the component (C) is a soft magnetic powder for imparting electromagnetic wave absorption properties to the composite soft magnetic material formed by curing the present composition.
  • the soft magnetic metal powder or oxidized Magnetic powder (flight powder) is used.
  • Such soft magnetic metal powders include Fe—Si alloy, Fe_Al alloy, Fe_Si—A1 alloy, Fe—Si—Cr alloy, Fe—Ni alloy, and Fe— Ni—Co alloy, Fe—Ni—Mo alloy, Fe—Co alloy, Fe_Si—A1—Cr alloy, Fe—Si—B alloy, Fe—Si— Examples include iron-based alloy powder such as Co-B alloy, or iron powder (carbonyl iron powder).
  • Such ferrite powders include Mn—Zn ferrite, Mn—Mg—Zn ferrite, Mg—Cu—Zn ferrite, Ni_Zn ferrite, and Ni—Cu—Zn Examples include spinel-based ferrites such as ferrite and Cu—Zn ferrite, and hexagonal ferrites such as W-type, Y-type, Z-type, and M-type. Ferrite powder is a non-combustible substance, and is therefore more effective than metal magnetic powder from the viewpoint of flame retardancy. Furthermore, since ferrite generally has a higher electric resistance than a metal-based magnetic material, it is also suitable when insulation is required. Also, from the aspect of shape, granular, spherical, Flat shapes are available.
  • the soft magnetic powder in consideration of the current frequency of electromagnetic noise, it is preferable to use flat soft magnetic powder. This is because the demagnetizing field against the soft magnetic powder is suppressed by making the soft magnetic powder flat, and as a result, a magnetic resonance phenomenon can be realized at a frequency of 1 GHz or less, which is the center of the current noise problem. is there.
  • the size of the soft magnetic powder the average particle size when it becomes 50% by total weight from the smaller particle sizes determined by a particle size distribution meter D 5. And the case, D 5. Is preferably in the range of 1 to 5 ⁇ , more preferably in the range of 3 to 30 ⁇ .
  • the aspect ratio is preferably in the range of 5 to 100, and particularly preferably in the range of 10 to 50.
  • a flat soft magnetic metal powder is preferably used. This is because soft magnetic metal powders are relatively easy to flatten, and as a result, as described above, high radio wave absorption performance is achieved at frequencies below 1 GHz, which is the center of current noise problems. This is because it can be done. Since the flat soft magnetic metal powder has a large specific surface area and high activity, the powder surface is oxidized from the viewpoint of safety in the manufacturing process of the composite soft magnetic material and flame retardancy of the composite soft magnetic material. It is preferable that it is done.
  • Such a component (C) can be prepared by the production method described in Japanese Patent Publication No. 54-27557 and Japanese Patent No. 2,523,388.
  • the content of the component (C) is not limited, in order to form a composite soft magnetic material having good electromagnetic wave absorption properties, the content of the component (C) should be within the range of 40 to 1,000 parts by weight per 100 parts by weight of the component. It is preferred that in particular, in order to form a composite soft magnetic material having excellent electromagnetic wave absorption characteristics, the content of the component (C) should be within the range of 50 to 1,000 parts by weight based on 100 parts by weight of the component ( ⁇ ). More preferably, it is within the range of 100 to 1,000 parts by weight, particularly preferably within the range of 200 to 1,000 parts by weight.
  • the content of the component (C) should be 40 to 900 parts by weight per 100 parts by weight of the component ( ⁇ ). It is preferably within the range, particularly in the range of 40 to 800 parts by weight. Preferably, it is within the range. From the above, the content of the component (C) is preferably in the range of 50 to 900 parts by weight with respect to 100 parts by weight of the component (A), and more preferably 100 to 9 parts by weight. It is preferably in the range of 100 parts by weight, and particularly preferably in the range of 200 to 800 parts by weight.
  • the component (D) is an organosiloxane that does not deteriorate the moldability of the obtained composition even when the composition is highly filled with the component (C).
  • R 1 in the above formula is a monovalent hydrocarbon group having an aliphatic unsaturated bond, such as a butyl group, an aryl group, a butyl group, a hexenyl group, a decenyl group, a pendenyl group, a dodecenyl group, and a tridecenyl group.
  • Linear alkenyl groups such as tetradecenyl group, pentadecenyl group, hexadecenyl group, heptadecenyl group, octadecenyl group, nonadecenyl group and eicosenyl group; isopropenyl group, 2-methyl-2-propenyl group and 2-methyl-1 Branched-chain alkenyl groups such as 0-pentadecenyl group; cyclic alkyl groups having an aliphatic unsaturated bond such as vinylcyclohexyl group and butylcyclododecyl group; aryl groups having an aliphatic unsaturated bond such as vinyl fuel group.
  • An aralkyl group having an aliphatic unsaturated bond such as a benzyloxy group or a phenylene group; , Preferably a straight-chain alkenyl group, particularly preferably a Bulle group, hexenyl group Ariru group to.
  • the position of the aliphatic unsaturated bond in R 1 is not limited, but is preferably a position farther from the silicon atom to be bonded.
  • R 2 in the above formula is the same or different and is a monovalent hydrocarbon group having no aliphatic unsaturated bond, such as methyl, ethyl, propyl, butyl, hexyl, and decyl.
  • Linear alkyl groups such as isopropyl group, tertiary butyl group, and isobutyl group; cyclic alkyl groups such as cyclohexyl group; aryl groups such as phenyl group, tolyl group and xylyl group.
  • An aralkyl group such as a benzyl group or a phenyl group, preferably an alkyl group or an aryl group, more preferably Or an alkyl group having 1 to 4 carbon atoms, particularly preferably a methyl group or an ethyl group.
  • R 3 is an alkyl group or an alkoxyalkyl group, for example, a linear alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, and a decyl group; an isopropyl group and a tertiary butyl group Branched alkyl groups such as tert-butyl group and isobutyl group; cyclic alkyl groups such as cyclohexyl group; and alkoxyalkyl groups such as methoxetoxy group, ethoxyethoxy group and methoxypropoxy group.
  • a linear alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, and a decyl group
  • an isopropyl group and a tertiary butyl group Branched al
  • a in the above formula is an integer of 1 to 3, and is preferably 1.
  • b in the above formula is an integer of 1 to 3, and is preferably 1.
  • c in the above formula is an integer of 1 to 3, and is preferably 3.
  • b + c in the above equation is an integer of 2 to 4.
  • n in the above formula is an integer of 0 or more, preferably an integer of 0 to 100, more preferably an integer of 1 to 100, and more preferably an integer of 5 to 100. And more preferably an integer of 10 to 100, particularly preferably an integer of 10 to 75.
  • R 1 in the formula is a monovalent hydrocarbon group having an aliphatic unsaturated bond, and the same groups as described above are exemplified.
  • R 2 in the formula is the same or different and is a monovalent hydrocarbon group having no aliphatic unsaturated bond, and examples thereof include the same groups as described above.
  • a in the above formula is an integer of 1 to 3, and is preferably 1.
  • n in the above formula is an integer of 0 or more, preferably an integer of 0 to 100, more preferably an integer of 1 to 100, and more preferably an integer of 5 to 100. And more preferably an integer of 10 to 100, and particularly preferably an integer of 10 to 75.
  • alkyl having at least two silicon-bonded alkoxy groups in one molecule Coxysilane compounds have the general formula:
  • R 2 in the formula is a monovalent hydrocarbon group having no aliphatic unsaturated bond, and examples thereof include the same groups as described above.
  • R 3 is an alkyl group or an alkoxyalkyl group, and the same groups as described above are exemplified.
  • d in the formula is an integer of 2 to 4, and is preferably 4.
  • alkoxysilane compounds include, for example, dialkoxydialkylsilane compounds such as dimethoxydimethylsilane, dimethoxydimethylsilyl, ethoxydimethylsilane, and methoxyethoxysilane; trimethoxymethylsilane, trimethoxylsilane, Trialkoxyalkylsilane compounds such as trimethoxypropyl silane, triethoxymethylsilane, and triethoxyshethylsilane; and tetraalkoxysilane compounds such as tetramethoxysilane, tetraethoxysilane, and tetrapropoxysilane.
  • the acid catalyst include fatty acids such as acetic acid and propionic acid.
  • Examples of the component (D) include the following compounds.
  • the content of the component (D) is not limited as long as the surface of the component (C) can be treated to improve the dispersibility in the obtained curable silicone composition for forming a composite soft magnetic material.
  • C) The amount is preferably in the range of 0.05 to 10 parts by weight, more preferably 0.1 to 10 parts by weight, based on 100 parts by weight of the component. , 0.1 to 5 parts by weight.
  • the content of the component (D) is less than the lower limit of the above range, when the component (C) is contained in a large amount, the moldability of the obtained curable silicone composition for forming a composite soft magnetic material is reduced. This is because the component (C) tends to sediment and separate during storage of the obtained composite soft magnetic material, while if the upper limit of the above range is exceeded, the physical properties of the obtained composite soft magnetic material are reduced. This is because the strength tends to decrease.
  • a method of treating the surface of the component (C) with the component (D) for example, a method of mixing the components (C) and (D) and treating the surface of the component (C) with the component (D) in advance A method of mixing the components (A) and (C), then mixing the component (D), and treating the surface of the component (C) in the component (A) with the component (D).
  • the latter method is preferred.
  • the component (D) may be contained in the state where the surface of the component (C) is treated or may be simply contained in the composition.
  • the composition may contain other optional components, for example, fillers such as fumed silica, precipitated silica, and fumed titanium oxide, and the surface of the filler may be an organic silicon.
  • fillers such as fumed silica, precipitated silica, and fumed titanium oxide
  • the surface of the filler may be an organic silicon.
  • a filler hydrophobically treated with a compound and may further contain a pigment, a dye, a fluorescent dye, a heat-resistant additive, a flame retardant imparting agent such as a triazole compound, a plasticizer, and an adhesion imparting agent.
  • the present composition when the present composition is cured by a hydrosilylation reaction, 2-methyl-3- Butyn-1-2-noreth, 2-Feninole-3-butyn-1-ono-ole, 1_ethininole-1 1-Acetylene-based compounds such as hexanol, 3-methyl-3-pentene-11-yne, 3, It is preferable to contain a curing reaction inhibitor such as an enyne compound such as 5-dimethyl-3-hexene-1-yne, a hydrazine compound, a phosphine compound, or a mercaptan compound.
  • the content of the curing reaction inhibitor is not limited, but is preferably in the range of 0.001 to 1.0% by weight with respect to the present composition. Will be described in detail.
  • the composite soft magnetic material of the present invention is obtained by curing the composition.
  • the method of curing the composition is not limited. For example, a method of molding the composition and leaving it at room temperature, a method of molding the composition and heating it to 50 to 200 ° C., and an injection molding Method.
  • the properties of the composite soft magnetic material thus obtained are not limited, and examples thereof include a low-hardness rubber, a low-hardness rubber, and a gel.
  • the form of the composite soft magnetic material is not limited, and examples thereof include a sheet-shaped form in addition to a form formed into various shapes by using a mold. Examples of such a sheet-shaped composite soft magnetic material include those in which a releasable film is adhered to both sides, or those in which a film is integrated on one side and a releasable film is adhered to the other side.
  • the composition is sandwiched between films which can be peeled from a cured product of the composition, and the composition is pressed to a predetermined thickness, and then heat-cured.
  • This heating method may be either heating while pressing, or removing from the press and heating in an oven.
  • the surface of the film may be previously coated with a silane coupling agent, a titanium coupling agent, an aluminum coupling agent, or the like.
  • a silane coupling agent such as plasma treatment, corona treatment, or alkali treatment
  • a film that can be peeled off from the cured product of the composition In a state where the composition is sandwiched, a method of pressing to a predetermined thickness and curing by heating is exemplified.
  • organosiloxane oligomer represented by the formula:
  • the moldability of the curable silicone composition for forming a composite soft magnetic material was evaluated as follows.
  • Thickness 2 The curable silicone composition for forming a composite soft magnetic material is sandwiched between two tetrafluoroethylene resin film films so that the thickness is 2 cm. The composition was cured by heating. Thereafter, the tetrafluoroethylene resin film was peeled off, and it was observed whether or not a sheet-like composite soft magnetic material could be formed. If a uniform composite soft magnetic material could be formed, it was determined that the moldability was good: ⁇ , The case where a uniform composite soft magnetic material could not be molded was evaluated as poor moldability: X, and evaluated.
  • the electromagnetic wave absorption characteristics, flame retardancy, and thermal conductivity of the composite soft magnetic material were measured as follows.
  • the curable silicone composition for forming a composite soft magnetic material sandwiched between 0.2 mm thick polypropylene resin films so as to have a thickness of 0.5 After heating for 0 minutes to cure the composition, the polypropylene resin film was peeled off to prepare a sheet-shaped composite soft magnetic material.
  • the magnetic permeability of the composite soft magnetic material was measured at a frequency of 10 MHz using an RF impedance Z material analyzer 4291B manufactured by Agilent Technologies. Note that the electromagnetic wave absorption performance of a soft magnetic material is generated by energy absorption due to the magnetic resonance phenomenon, and the energy absorption due to magnetic resonance increases as the magnetic permeability of the material increases. The absorption properties were evaluated.
  • the composition was cured by heating at 120 ° C. for 60 minutes.
  • the thermal conductivity of the obtained composite soft magnetic material was measured by a rapid thermal conductivity meter QTM-500 manufactured by Kyoto Electronics Industry Co., Ltd. according to the hot wire method specified in JIS R2616.
  • 0.1 part by weight of 1,3-divinyl 1,1,3,3-tetramethyldisiloxane complex of platinum having a platinum content of 0.5% by weight is mixed with the mixture to form a composite soft magnetic material.
  • a silicone rubber composition for formation was prepared. Table 1 shows the moldability of the silicone rubber composition for forming a composite soft magnetic material and various properties of the sheet-shaped composite soft magnetic material obtained by curing the same.
  • a dimethylsiloxane having a viscosity of 2 OraPa's and having an average of three silicon-bonded hydrogen atoms in one molecule at both ends of the molecular chain, and having a trimethylsiloxane-blocked dimethylsiloxane.
  • Content of atom-bonded hydrogen atoms 0.13% by weight) 1.43 parts by weight and as a curing reaction inhibitor, 0.05 parts by weight of mouth hexanol were mixed.
  • This mixture is mixed with 0.1 part by weight of a platinum 1,3-divinyl 1,1,3,3-tetramethyldisiloxane complex having a platinum content of 0.5% by weight to form a composite.
  • a silicone rubber composition for forming a soft magnetic material was prepared. Table 1 shows the moldability of the silicone rubber composition for forming a composite soft magnetic material and various properties of the sheet-shaped composite soft magnetic material obtained by curing the same.
  • Example 1 the formula:
  • a silicone rubber composition for forming a composite soft magnetic material was prepared in the same manner as in Example 1 except that the organosiloxane oligomer represented by the formula (1) was not added.
  • Table 1 shows the moldability of the silicone rubber composition for forming a composite soft magnetic material and various properties of the sheet-shaped composite soft magnetic material obtained by curing the same.
  • Example 1 the formula:
  • organosiloxane oligomer represented by the formula:
  • a silicone rubber composition for forming a composite soft magnetic material was prepared in the same manner as in Example 1 except that the same amount of the organosiloxane oligomer represented by the following formula was added.
  • Table 1 shows the moldability of the silicone rubber composition for forming the composite soft magnetic material and various properties of the sheet-shaped composite soft magnetic material obtained by curing the same.
  • a silicone rubber composition for forming a composite soft magnetic material was prepared in the same manner as in Example 3 except that the organosiloxane oligomer represented by was not added.
  • Table 1 shows the moldability of the silicone rubber composition for forming a composite soft magnetic material and various properties of the sheet-shaped composite soft magnetic material obtained by curing the same.
  • the curable silicone composition for forming a composite soft magnetic material of the present invention can form the composite soft magnetic material with good moldability even if the soft magnetic powder is highly filled in order to obtain a composite soft magnetic material having excellent electromagnetic wave absorption characteristics. be able to. Further, the composite soft magnetic material of the present invention can provide an electromagnetic noise countermeasure material for an electronic device having excellent electromagnetic wave absorption characteristics and excellent flame retardancy and thermal conductivity. However, since it is possible to achieve flame retardancy, it is possible to provide an electromagnetic noise countermeasure material with a low environmental load.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

明 細 書 複合軟磁性体形成用硬化性シリコ一ン組成物および複合軟磁性体 技術分野
本発明は、 複合軟磁性体形成用硬化性シリコーン組成物および複合軟磁性体に 関し、 詳しくは、 電磁波吸収特性が優れる複合軟磁性体を得るため軟磁性粉を高 充填しても、 前記複合軟磁性体を成形性良く形成することができる硬化性シリコ ーン組成物、 および電磁波吸収特性が優れ、 かつ難燃性および熱伝導性が優れる 複合軟磁性体に関する。 なお、 本発明での電磁波吸収特性とは、 遠方電磁界の吸 収だけでなく、 近傍電磁界に対する吸収効果も含んだ広義の範囲を表している。 背景技術
軟磁性粉を含有する硬化性シリコーン組成物、 およびそれを硬化してなる複合 軟磁性体は、 例えば、 特開 2000— 294977号公報、 特開 2001— 44 687号公報、 特開 2001— 294752号公報、 特開 2001— 1 1918 9号公報により公知である。 一般に、 複合軟磁性体の電磁波吸収特性を向上させ るためには、 軟磁性粉を硬化性シリコーン組成物中に高充填する必要がある。 しかし、 軟磁性粉を硬化性シリコーン糸且成物に高充填すると、 均一な組成物が 得られなかったり、 また、 得られる組成物の成形性が悪化するという問題があつ た。
本発明者らは上記の課題について鋭意検討した結果、 本発明に達した。
すなわち、 本発明の目的は、 電磁波吸収特性が優れる複合軟磁性体を得るため 軟磁性粉を高充填しても、 前記複合軟磁性体を成形性良く形成することができる 硬化性シリコーン組成物、 および電磁波吸収特性が優れ、 かつ難燃性および熱伝 導性が優れる複合軟磁性体を提供することにある。 発明の開示
本発明の複合軟磁性体形成用硬化性シリコーン組成物は、 (A)硬化性オルガノ ポリシロキサン、 (B)硬化剤、 (C)軟磁性粉、 および(D)—般式: [RI aR2 (3.a) S iO (R2 2 S i O)n]b S i RV(b+c)] (O R3) c
(式中、 R1は脂肪族不飽和結合を有する一価炭化水素基であり、 R2は同種もしく は異種の脂肪族不飽和結合を有さない一価炭化水素基であり、 R3はアルキル基ま たはアルコキシアルキル基であり、 aは 1〜3の整数であり、 bは 1〜3の整数 であり、 cは 1〜3の整数であり、 かつ、 b + cは 2〜4の整数であり、 nは 0 以上の整数である。 )
で表されるオルガノシロキサン、 から少なくともなることを特徴とする。
また、 本発明の複合軟磁性体は、 上記の組成物を硬化してなることを特徴とす る。 発明を実施するための最良の形態
はじめに、 本発明の複合軟磁性体形成用硬化性シリコーン組成物を詳細に説明 する。
(A)成分は本組成物の主剤である硬化性オルガノポリシロキサンであり、 (B) 成分は前記(A)成分を架橋するための硬化剤である。 本組成物を硬化して得られ る硬化物の性状は限定されないが、 例えば、 高硬度のゴム状、 低硬度のゴム状、 ゲル状が挙げられる。 また、 本組成物の硬化機構は限定されず、 例えば、 ヒ ドロ シリル化反応、 有機過酸化物によるフリーラジカル反応、 縮合反応が挙げられ、 特に、 加熱により速やかに硬化し、 副生成物が発生しないことからヒドロシリル 化反応であることが好ましい。
本組成物がヒ ドロシリル化反応により硬化する場合には、 (A)成分は一分子中 に平均 0 . 1個以上のケィ素原子結合アルケニル基を有するオルガノポリシロキサ ンであることが好ましく、 さらに、 一分子中に平均 0. 5個以上のケィ素原子結合 アルケニル基を有するオルガノポリシロキサンであることが好ましく、 特に、 一 分子中に平均 0. 8個以上のケィ素原子結合アルケニル基を有するオルガノポリシ ロキサンであることが好ましい。 これは、 一分子中のケィ素原子結合アルケニル 基の平均値が上記範囲の下限未満であると、 得られる組成物が十分に硬化しなく なる傾向があるからである。
このオルガノポリシロキサン中のアルケニル基としては、 例えば、 ビュル基、 ァリル基、 ブテニル基、 ペンテュル基、 へキセニル基が挙げられ、 好ましくは、 ビュル基である。 また、 このオルガノポリシロキサン中のアルケニル基以外のケ ィ素原子に結合している基としては、 例えば、 メチル基、 ェチル基、 プロピル基 、 ブチル基、 ペンチル基、 へキシル基等のアルキル基;シクロペンチル基、 シク 口へキシル基等のシクロアルキル基;フエニル基、 トリル基、 キシリル基等のァ リール基;ベンジル基、 フエネチル基等のァラルキル基; 3 , 3, 3—トリフルォ 口プロピル基、 3—クロ口プロピル基等のハロゲン化アルキル基が挙げられ、 好 ましくは、 アルキル基、 ァリール基であり、 特に好ましくは、 メチル基、 フエ二 ル基である。 また、 このオルガノポリシロキサンの 2 5 °Cにおける粘度は限定さ れないが、 5 0〜 1 0 0 , 0 0 O raPa' sの範囲内であることが好ましく、 特に、 1 0 0〜5 0 , 0 0 O mPa' sの範囲内であることが好ましレ、。 これは、 2 5 °Cにおけ る粘度が上記範囲の下限未満であると、 得られるシリコーン硬化物の物理的特性 が著しく低下する傾向があるからであり、 一方、 上記範囲の上限を超えると、 得 られる硬化性シリコーン組成物の取扱作業性が著しく低下する傾向があるからで ある。 このようなオルガノポリシロキサンの分子構造は限定されず、 例えば、 直 鎖状、 分岐鎖状、 一部分岐を有する直鎖状、 樹枝状 (デンドリマー状) が挙げら れ、 好ましくは、 直鎖状、 一部分岐を有する直鎖状である。 また、 このオルガノ ポリシロキサンは、 これらの分子構造を有する単一の重合体、 これらの分子構造 からなる共重合体、 またはこれらの重合体の混合物であってもよい。
このようなオルガノポリシロキサンとしては、 例えば、 分子鎖両末端ジメチル ビュルシロキシ基封鎖ジメチルポリシロキサン、 分子鎖両末端メチルフエ二ルビ 二ルシロキシ基封鎖ジメチルポリシロキサン、 分子鎖両末端ジメチルビ二ルシロ キシ基封鎖ジメチルシロキサン 'メチルフエニルシロキサンコポリマー、 分子鎖 両末端ジメチルビ二ルシロキシ基封鎖ジメチルシ口キサン ·メチルビ二ルシロキ サンコポリマー、 分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン . メチルビニルシロキサンコポリマー、 分子鎖両末端ジメチルビニルシロキシ基封 鎖メチル(3, 3, 3—トリフルォロプロピル)ポリシロキサン、 分子鎖両末端シラ ノール基封鎖ジメチルシロキサン 'メチノレビニルシロキサンコポリマー、 分子鎖 両末端シラノール基封鎖ジメチルシロキサン ·メチルビュルシロキサン ·メチル フエニルシロキサンコポリマー、 式: (CH3)3SiO1/2で表されるシロキサン単位 と式: (CH3)2(CH2=CH) SiO1/2で表されるシロキサン単位と式: CH3SiO 3/2で表されるシロキサン単位と式: (CH3)2Si〇2/2で表されるシロキサン単位か らなるオルガノシロキサンコポリマーが挙げられる。
本組成物がヒ ドロシリル化反応により硬化する場合には、 (B)成分は、 一分子 中に平均 2個以上のケィ素原子結合水素原子を有するオルガノポリシロキサンと 白金系触媒からなる。
このオルガノポリシロキサン中の水素原子以外のケィ素原子結合に結合してい る基としては、 例えば、 メチル基、 ェチル基、 プロピル基、 ブチル基、 ペンチル 基、 へキシル基等のアルキル基;シクロペンチル基、 シクロへキシル基等のシク 口アルキル基; フエ二ノレ基、 トリノレ基、 キシリル基等のァリール基;ベンジル基 、 フエネチル基等のァラルキル基; 3, 3, 3 _トリフルォロプロピル基、 3—ク ロロプロピル基等のハロゲン化アルキル基が挙げられ、 好ましくは、 アルキル基 、 ァリール基であり、 特に好ましくは、 メチル基、 フエニル基である。 また、 こ のオルガノポリシロキサンの 25 °Cにおける粘度は限定されないが、 1〜: 100, 00 OmPa'sの範囲内であることが好ましく、 特に、 1〜 5, 00 OraPa'sの範囲内 であることが好ましい。 このようなオルガノポリシロキサンの分子構造は限定さ れず、 例えば、 直鎖状、 分岐鎖状、 一部分岐を有する直鎖状、 環状、 樹枝状 (デ ンドリマー状) が挙げられる。 このオルガノポリシロキサンは、 これらの分子構 造を有する単一の重合体、 これらの分子構造からなる共重合体、 またはこれらの 重合体の混合物であってもよい。
このようなオルガノポリシロキサンとしては、 例えば、 分子鎖両末端ジメチル ハイドロジェンシ口キシ基封鎖ジメチルポリシロキサン、 分子鎖両末端トリメチ ルシロキシ基封鎖ジメチルシロキサン ·メチルハイ ドロジェンシロキサンコポリ マー、 分子鎖両末端ジメチルハイドロジェンシ口キシ基封鎖ジメチルシロキサン 'メチルハイ ドロジェンシロキサンコポリマー、 式: (CH3)3Si01/2で表される シロキサン単位と式: (CH3)2HSiO1/2で表されるシロキサン単位と式: SiO4/, で表されるシロキサン単位からなるオルガノシロキサンコポリマーが挙げられる 本組成物において、 このオルガノポリシロキサンの含有量は、 (A)成分中のケ ィ素原子結合アルケニル基 1モルに対して、 本成分中のケィ素原子結合水素原子 が 0 . 1〜1 0モルの範囲内となる量であることが好ましく、 特に、 0 . 1〜5モ ルの範囲内となる量であることが好ましい。 これは本成分の含有量が上記範囲の 下限未満となる量であると、 得られる硬化性シリコーン組成物が十分に硬化しな くなる傾向があるからであり、 一方、 上記範囲の上限を超えると、 得られるシリ コーン硬化物が非常に硬質となり、 表面に多数のクラックを生じたりする傾向が あるからである。
また、 白金系触媒としては、 塩化白金酸、 塩化白金酸のアルコール溶液、 白金 のォレフイン錯体、 白金のアルケニルシロキサン錯体、 白金のカルボニル錯体が 例示される。 白金系触媒の含有量は、 (A)成分に対して触媒中の白金金属が重量 単位で 0 . 0 1〜1, 0 0 O ppmの範囲内となる量であることが好ましく、 特に、 0 . 1〜5 0 O ppmの範囲内となる量であることが好ましい。 これは、 本成分の含有 量が上記範囲の下限未満であると、 得られる硬化性シリコーン組成物が十分に硬 ィ匕しなくなる傾向があるからであり、 一方、 上記範囲の上限を超える量を含有し ても得られる硬化性シリコーン組成物の硬化速度は著しくは向上しないからであ る。
また、'本組成物がフリーラジカル反応により硬化する場合には、 (A)成分のォ ルガノポリシロキサンは特に限定されないが、 一分子中に少なくとも 1個のケィ 素原子結合アルケニル基を有するオルガノポリシロキサンであることが好ましい このオルガノポリシロキサン中のアルケニル基としては、 前記と同様のァルケ エル基が例示され、 好ましくは、 ビュル基である。 また、 このオルガノポリシ口 キサン中のアルケニル基以外のケィ素原子に結合している基としては、 前記と同 様のアルキル基、 シクロアルキル基、 ァリール基、 ァラルキル基、 ハロゲン化ァ ルキル基が例示され、 好ましくは、 アルキル基、 ァリール基であり、 特に好まし くは、 メチル基、 フエニル基である。 また、 このオルガノポリシロキサンの 25 °Cにおける粘度は限定されないが、 50〜 100, 00 OmPa'sの範囲内であるこ とが好ましく、 特に、 100〜50, 00 OmPa'sの範囲内であることが好ましい 。 これは、 25°Cにおける粘度が上記範囲の下限未満であると、 得られるシリコ ーン硬化物の物理的特性が著しく低下する傾向があるからであり、 一方、 上記範 囲の上限を超えると、 得られる硬化性シリコーン組成物の取扱作業性が著しく低 下する傾向があるからである。 このようなオルガノポリシロキサンの分子構造は 限定されず、 例えば、 直鎖状、 分岐鎖状、 一部分岐を有する直鎖状、 樹枝状 (デ ンドリマー状) が挙げられ、 好ましくは、 直鎖状、 一部分岐を有する直鎖状であ る。 また、 このオルガノポリシロキサンは、 これらの分子構造を有する単一の重 合体、 これらの分子構造からなる共重合体、 またはこれらの重合体の混合物であ つてもよレヽ。
このようなオルガノポリシロキサンとしては、 例えば、 分子鎖両末端ジメチル ビュルシロキシ基封鎖ジメチルポリシロキサン、 分子鎖両末端メチルフヱニルビ 二ルシロキシ基封鎖ジメチルポリシロキサン、 分子鎖両末端ジメチルビユルシロ キシ基封鎖ジメチルシロキサン 'メチルフエニルシロキサンコポリマー、 分子鎖 両末端ジメチルビ二ルシロキシ基封鎖ジメチルシロキサン ·メチルビニルシロキ サンコポリマー、 分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン · メチルビュルシロキサンコポリマー、 分子鎖両末端ジメチルビ二ルシロキシ基封 鎖メチル(3, 3, 3—トリフルォロプロピル)ポリシロキサン、 分子鎖両末端シラ ノール基封鎖ジメチルシロキサン 'メチルビニルシロキサンコポリマー、 分子鎖 両末端シラノール基封鎖ジメチルシロキサン ·メチルビュルシロキサン ·メチル フエ-ルシロキサンコポリマー、 式: (CH3)3Si〇1/2で表されるシロキサン単位 と式: (CH3)2(CH2=CH) Si01/2で表されるシロキサン単位と式: CH3SiO 3/2で表されるシロキサン単位と式: (CH3)2SiO2/2で表されるシロキサン単位か らなるオルガノシロキサンコポリマーが挙げられる。
また、 本組成物がフリーラジカル反応により硬化する場合には、 (B)成分は有 機過酸化物である。 この有機過酸化物としては、 ベンゾィルパーオキサイ ド、 p 一メチルベンゾィルパーォキサイ ド、 ジクミルパーォキサイド、 2 , 5—ジメチル ビス(2 , 5 - t—ブチルバ一才キシ)へキサン、 ジ一 t—ブチルバ一ォキサイド、 t—ブチルパーべンゾエートが例示される。 この有機過酸化物の含有量は、 (A) 成分 1 0 0重量部に対して 0 . :!〜 5重量部の範囲内であることが好ましい。 また、 本組成物が縮合反応により硬化する場合には、 (A)成分は、 一分子中に 少なくとも 2個のシラノ一ル基もしくはケィ素原子結合加水分解性基を有するォ ルガノポリシロキサンである。 このオルガノポリシロキサン中のケィ素原子結合 加水分解性基としては、 例えば、 メ トキシ基、 エトキシ基、 プロポキシ基等のァ ノレコキシ基; ビニロキシ基、 イソプロぺニルォキシ基、 1—ェチルー 2—メチルビ ニルォキシ基等のアルケノキシ基;メ トキシェトキシ基、 ェトキシェトキシ基、 メ トキシプロポキシ基等のアルコキシアルコキシ基;ァセトキシ基、 ォクタノィ ルォキシ基等のァシロキシ基;ジメチルケトォキシム基、 メチルェチルケトォキ シム基等のケトォキシム基;ジメチルァミノ基、 ジェチルァミノ基、 ブチルアミ ノ基等のアミノ基;ジメチルアミノキシ基、 ジェチルァミノキシ基等のアミノキ シ基; N—メチルァセトアミ ド基、 N—ェチルァセトアミ ド基等のアミ ド基が挙 げられる。 また、 このオルガノポリシロキサン中のシラノール基またはケィ素原 子結合加水分解性基以外のケィ素原子に結合している基としては、 前記と同様の アルキル基、 シクロアルキル基、 アルケニル基、 ァリール基、 ァラルキル基、 ノヽ ロゲン化アルキル基が例示される。 また、 このオルガノポリシロキサンの 2 5 °C における粘度は限定されないが、 2 0〜 1 0 0, 0 0 O mPa' sの範囲内であること が好ましく、 特に、 1 0 0〜 1 0 0 , 0 0 O mPa' sの範囲内であることが好ましい 。 なお、 (D)成分に該当するオルガノシロキサンは本成分に含まれない。
このようなオルガノポリシロキサンとしては、 例えば、 分子鎖両末端シラノー ル基封鎖ジメチルポリシロキサン、 分子鎖両末端シラノール基封鎖ジメチルシ口 キサン 'メチルフエニルシロキサンコポリマー、 分子鎖両末端トリメ トキシシロ キシ基封鎖ジメチルポリシロキサン、 分子鎖両末端トリメ トキシシロキシ基封鎖 ジメチルシロキサン ·メチルフエニルシロキサンコポリマー、 分子鎖両末端メチ ルジメ トキシシロキシ基封鎖ジメチルポリシロキサン、 分子鎖両末端トリエトキ シシロキシ基封鎖ジメチルポリシロキサン、 分子鎖両末端トリメ トキシシリルェ チル基封鎖ジメチルポリシロキサンが挙げられる。
また、 本組成物が縮合反応により硬化する場合には、 (B )成分は、 一分子中に 少なくとも 3個のケィ素原子結合加水分解性基を有するシランもしくはその部分 加水分解物、 および必要に応じて縮合反応用触媒である。
このシラン中のケィ素原子結合加水分解性基としては、 前記と同様のアルコキ シ基、 アルコキシアルコキシ基、 ァシロキシ基、 ケトォキシム基、 アルケノキシ 基、 アミノ基、 アミノキシ基、 アミ ド基が例示される。 また、 このシラン中の加 水分解性基以外のケィ素原子に結合している基としては、 前記と同様のアルキル 基、 シクロアルキル基、 アルケニル基、 ァリール基、 ァラルキル基、 ハロゲン化 アルキル基が例示される。 このようなシランもしくはその部分化水分解物として は、 例えば、 メチルトリエトキシシラン、 ビュルトリエトキシシラン、 ビニノレ ト リァセトキシシラン、 ェチルオルソシリゲートが挙げられる。
本組成物において、 このシランもしくはその部分加水分解物の含有量は、 (A) 成分 1 0 0重量部に対して 0 . 0 1〜2 0重量部の範囲内であることが好ましく、 特に、 0 . 1〜1 0重量部の範囲内であることが好ましい。 これは、 このシランも しくはその部分加水分解物の含有量が上記範囲の下限未満の量であると、 得られ る組成物の貯蔵安定性が低下したり、 また、 接着性が低下する傾向があるからで あり、 一方、 上記範囲の上限をこえる量であると、 得られる組成物の硬化が著し く遅くなつたりする傾向があるからである。
また、 縮合反応用触媒は任意の成分であり、 例えば、 アミノキシ基、 アミノ基 、 ケトォキシム基を有するシランを硬化剤として用いる場合には必須ではない。 このような縮合反応用触媒としては、 例えば、 テトラブチルチタネート、 テトラ ィソプロピルチタネート等の有機チタン酸エステル;ジィソプロポキシビス(ァセ チルアセテート)チタン、 ジイソプロポキシビス(ェチルァセトアセテート)チタン 等の有機チタンキレート化合物;アルミニウムトリス(ァセチルァセトネート)、 アルミニウムトリス(ェチルァセトァセテート)等の有機アルミニウム化合物;ジ ルコニゥムテトラ(ァセチルァセトネート)、 ジルコニウムテトラブチレート等の 有機アルミニウム化合物;ジブチルスズジォク トエート、 ジブチルスズジラウレ 一ト、 ブチルスズー 2—ェチルへキソエート等の有機スズ化合物;ナフテン酸ス ズ、 ォレイン酸スズ、 ブチル酸スズ、 ナフテン酸コバルト、 ステアリン酸亜鉛等 の有機カルボン酸の金属塩;へキシルァミン、 燐酸ドデシルァミン等のァミン化 合物、 およびその塩;ベンジルトリェチルアンモニゥムアセテート等の 4級アン モニゥム塩;酢酸カリゥム、 硝酸リチウム等のアルカリ金属の低級脂肪酸塩;ジ メチルヒ ドロキシノレアミン、 ジェチノレヒ ドロキシルァミン等のジアルキルヒ ドロ キシルァミン;その他、 グァニジル基含有有機ケィ素化合物が挙げられる。
縮合反応用触媒の含有量は限定されないが、 (A)成分 100重量部に対して 0. 01〜20重量部の範囲内であることが好ましく、 特に、 0. :!〜 10重量部の範 囲内であることが好ましい。 これは、 この触媒が必須である場合、 この触媒の含 有量が上記範囲の下限未満の量であると、 得られる組成物が十分に硬化しなくな る傾向があるからであり、 一方、 上記範囲の上限をこえると、 得られる組成物の 貯蔵安定性が低下する傾向があるからである。
(C)成分は、 本組成物を硬化することにより形成される複合軟磁性体に電磁波 吸収特性を付与するための軟磁性粉であり、 例えば、 組成的な観点から軟磁性金 属粉または酸化物磁性粉 (フ ライ ト粉) が使用される。 このような軟磁性金属 粉としては、 F e— S i合金、 F e_A l合金、 F e_S i— A 1合金、 F e— S i— C r合金、 F e—N i合金、 F e— N i— C o合金、 F e— N i— Mo合 金、 F e— Co合金、 F e _S i— A 1— C r合金、 F e— S i— B合金、 F e 一 S i— C o— B合金等の鉄系の合金粉、 あるいは鉄粉 (カーボニル鉄粉) が例 示される。 また、 このようなフェライ ト粉としては、 Mn— Znフェライ ト、 M n— Mg— Z nフェライ ト、 Mg— C u— Z nフェライ ト、 N i _Znフェライ ト、 N i— Cu— Z nフェライト、 Cu— Z nフェライ ト等のスピネル系フェラ ィト、 W型、 Y型、 Z型、 M型等の六方晶フェライ 卜が例示される。 フェライ ト 粉はそれ自体不燃物であるため、 難燃性の観点からは、 金属磁性粉よりも有効で ある。 さらには、 フェライ トは金属系磁性材よりも電気抵抗が一般的に高いため 、 絶縁性を要求される場合にも好適である。 また、 形状面からは、 粒状、 球状、 扁平状が利用可能である。 これらのうち、 現状の電磁ノイズの周波数を考慮した 場合、 扁平状の軟磁性粉を用いることが好ましい。 これは、 軟磁性粉を扁平形状 とすることによって軟磁性粉に対する反磁界が抑制され、 その結果、 現在のノィ ズ問題の中心である 1 GH z以下の周波数において磁気共鳴現象を実現できるた めである。 また、 軟磁性粉の大きさとしては、 粒度分布計によって求められた粒 径の小さいほうから重量を累計して 50%になったときの平均粒径を D 5。とした場 合、 D5。が 1〜5 Ομπιの範囲内であることが好ましく、 さらには、 3〜30 πι の範囲内であることがより好ましい。 また、 軟磁性粉の形状が扁平状の場合には 、 ァスぺク ト比が 5〜100の範囲内であることが好ましく、 特に、 10〜50 の範囲内であることが好ましい。 これらの軟磁性粉のうち、 扁平状の軟磁性金属 粉が好適に使用される。 これは、 軟磁性金属粉は、 材料の扁平化が比較的容易で あるため、 その結果、 前述したように現在のノイズ問題の中心である 1 GH ζ以 下の周波数において高い電波吸収性能が実現できるためである。 なお、 扁平状の 軟磁性金属粉は、 比表面積が大きく活性が高いため、 複合軟磁性体の製造工程で の安全性ならびに複合軟磁性体の難燃性の観点から、 粉体表面が酸化処理されて いることが好ましい。 また、 これらの軟磁性粉については、 単独の種類を用いて もよいし、 目的に応じ、 複数の種類を併用しても良い。 このような(C)成分は、 特公昭 54— 27557号公報や特許第 2, 523, 388号公報に記載された製 造方法により調製することができる。
(C)成分の含有量は限定されないが、 良好な電磁波吸収特性を有する複合軟磁 性体を形成するためには、 (Α)成分 100重量部に対して 40-1, 000重量部 の範囲内であることが好ましい。 特に電磁波吸収特性の優れた複合軟磁性体を形 成するためには、 (C)成分の含有量は、 (Α)成分 100重量部に対して 50〜1, 000重量部の範囲内であることが好ましく、 さらに、 100〜1, 000重量部 の範囲内であることが好ましく、 特に、 200〜 1, 000重量部の範囲内である ことが好ましい。 一方、 成形性の優れた複合軟磁性体形成用硬化性シリコーン組 成物を得るためには、 (C)成分の含有量は、 (Α)成分 100重量部に対して 40 〜900重量部の範囲内であることが好ましく、 特に、 40〜 800重量部の範 囲内であることが好ましい。 以上のことから、 (C)成分の含有量は、 (A)成分 1 0 0重量部に対して 5 0〜9 0 0重量部の範囲内であることが好ましく、 さらに 、 1 0 0〜9 0 0重量部の範囲内であることが好ましく、 特に、 2 0 0〜8 0 0 重量部の範囲内であることが好ましい。 これは、 (C )成分の含有量が上記範囲の 下限未満であると、 得られる複合軟磁性体の磁気特性が不十分となる傾向がある からであり、 一方、 上記範囲の上限を超えると、 得られる(A)成分中に(C)成分 を均一に分散できなくなる傾向があり、 かつ、 成形が困難となるからである。
(D)成分は、 本組成物中に(C)成分を高充填しても、 得られる組成物の成形性 を悪化させないためのオルガノシロキサンであり、 一般式:
[R1 aR2 (3-a) S i O (R2 2 S i O) n]b S i R2 [4_(b+c) ] (O R3) c
で表される。 上式中の R 1は脂肪族不飽和結合を有する一価炭化水素基であり、 例 えば、 ビュル基、 ァリル基、 ブテュル基、 へキセニル基、 デセニル基、 ゥンデセ ニル基、 ドデセニル基、 トリデセニル基、 テトラデセニル基、 ペンタデセニル基 、 へキサデセニル基、 ヘプタデセニル基、 ォクタデセニル基、 ノナデセニル基、 エイコセニル基等の直鎖状アルケニル基;イソプロぺニル基、 2—メチル—2— プロぺニル基、 2—メチルー 1 0—ゥンデセニル基等の分岐鎖状アルケニル基; ビニルシクロへキシル基、 ビュルシクロドデシル基等の脂肪族不飽和結合を有す る環状アルキル基; ビニルフュエル基等の脂肪族不飽和結合を有するァリール基 ; ビュルべンジル基、 ビュルフエネチル基等の脂肪族不飽和結合を有するァラル キル基が挙げられ、 好ましくは、 直鎖状アルケニル基であり、 特に好ましくは、 ビュル基、 ァリル基、 へキセニル基である。 R 1中の脂肪族不飽和結合の位置は限 定されないが、 結合するケィ素原子より遠い位置であることが好ましい。 また、 上式中の R2は同種もしくは異種の脂肪族不飽和結合を有さない一価炭化水素基で あり、 例えば、 メチル基、 ェチル基、 プロピル基、 ブチル基、 へキシル基、 デシ ル基等の直鎖状アルキル基;イソプロピル基、 ターシャリ一ブチル基、 ィソブチ ル基等の分岐鎖状アルキル基;シクロへキシル基等の環状アルキル基;フエニル 基、 トリル基、 キシリル基等のァリール基;ベンジル基、 フヱネチル基等のァラ ルキル基が挙げられ、 好ましくは、 アルキル基、 ァリール基であり、 さらに好ま しくは、 炭素原子数 1〜4のアルキル基であり、 特に好ましくは、 メチル基、 ェ チル基である。 また、 R3はアルキル基またはアルコキシアルキル基であり、 例え ば、 メチル基、 ェチル基、 プロピル基、 ブチル基、 へキシル基、 デシル基等の直 鎖状アルキル基;イソプロピル基、 ターシャリ一プチル基、 ィソブチル基等の分 岐鎖状アルキル基;シク口へキシル基等の環状アルキル基;メ トキシェトキシ基 、 エトキシエトキシ基、 メ トキシプロポキシ基等のアルコキシアルキル基が挙げ られ、 好ましくは、 アルキル基であり、 特に好ましくは、 メチル基、 ェチル基、 プロピル基である。 また、 上式中の aは 1〜3の整数であり、 好ましくは 1であ る。 また、 上式中の bは 1〜3の整数であり、 好ましくは 1である。 また、 上式 中の cは 1〜3の整数であり、 好ましくは 3である。 ここで、 上式中の b + cは 2〜4の整数である。 また、 上式中の nは 0以上の整数であり、 好ましくは 0〜 1 0 0の整数であり、 より好ましくは 1〜1 0 0の整数であり、 より好ましくは 5〜 1 0 0の整数であり、 より好ましくは 1 0〜 1 0 0の整数であり、 特に好ま しくは 1 0〜7 5の整数である。
このような(D)成分を調製する方法としては、 例えば、 一般式:
R'aR2 (3-a) S i O (R2 2 S i O) nH
で表される分子鎖片末端シラノール基封鎖オルガノシロキサンと一分子中に少な くとも 2個のケィ素原子結合アルコキシ基を有するアルコキシシラン化合物とを 酢酸等の酸触媒の存在下で脱アルコール縮合反応させる方法が挙げられる。 このシラノール末端オルガノシロキサンにおいて、 式中の R1は脂肪族不飽和結 合を有する一価炭化水素基であり、 前記と同様の基が例示される。 また、 式中の R2は同種もしくは異種の脂肪族不飽和結合を有さない一価炭化水素基であり、 前 記と同様の基が例示される。 また、 上式中の aは 1〜3の整数であり、 好ましく は 1である。 また、 上式中の nは 0以上の整数であり、 好ましくは 0〜 1 0 0の 整数であり、 より好ましくは 1〜1 0 0の整数であり、 より好ましくは 5〜 1 0 0の整数であり、 より好ましくは 1 0〜 1 0 0の整数であり、 特に好ましくは 1 0〜7 5の整数である。
また、 一分子中に少なくとも 2個のケィ素原子結合アルコキシ基を有するアル コキシシラン化合物は、 一般式:
R2 (4d)Si(OR3)d
で表される。 このアルコキシシラン化合物において、 式中の R2は脂肪族不飽和結 合を有さない一価炭化水素基であり、 前記と同様の基が例示される。 また、 R3は アルキル基またはアルコキシアルキル基であり、 前記と同様の基が例示される。 また、 式中の dは 2〜4の整数であり、 好ましくは 4である。
このようなアルコキシシラン化合物としては、 例えば、 ジメ トキシジメチルシ ラン、 ジメ トキシジェチルシラン、 ジェトキシジメチルシラン、 ジェトキシジェ チルシラン等のジアルコキシジアルキルシラン化合物; トリメ トキシメチルシラ ン、 トリメ トキシェチルシラン、 トリメ トキシプロビルシラン、 トリエトキシメ チルシラン、 トリエトキシェチルシラン等のトリアルコキシアルキルシラン化合 物;テトラメ トキシシラン、 テトラエトキシシラン、 テトラプロボキシシラン等 のテトラアルコキシシラン化合物が挙げられる。 また、 酸触媒としては、 例えば 、 酢酸、 プロピオン酸等の脂肪酸が挙げられる。
このような(D)成分としては、 次のような化合物が例示される。
(CH2=CH) (CH3) 2SiO[(CH3) 2SiO]5Si (0CH3) 3
(CH2=CHCH2) (CH3)2SiO[(CH3)2SiO]5Si (0CH3)3
(CH2=CHCH2CH2CH2CH2) (CH3) 2SiO[(CH3) 2SiO] 5Si (0CH3) 3
(CH2=CH) (CH3)2SiO[(CH3)2SiO]7Si (0CH3)3
(CH2=CH) (CH3) 2S i 0 [ (CH3) 2S iO]7Si (0C2H5) 3
(CH2=CHCH2) (CH3)2SiO[(CH3)2SiO]7Si (0CH3)3
(CH2=CHCH2CH2CH2CH2) (CH3) 2SiO[ (CH3) 2SiO] 7Si (0CH3) 3
(CH2=CH) (CH3) 2SiO[(CH3) 2SiO] 7SiCH3 (0CH3) 2
(CH2=CH) (CH3) 2SiO [ (CH3) 2SiO] 7SiCH3 (0CH3) 2
(CH2=CH) (CH3)2SiO[(CH3)2SiO]25Si (0CH3)3
(CH2=CHCH2) (CH3)2SiO[(CH3)2SiO]25Si (0CH3)3
(CH2=CHCH2CH2CH2CH2) (CH3) 2SiO[ (CH3) 2SiO] 25Si (0CH3) 3
(CH2=CH) (CH3) 2S i 0 [ (CH3) 2SiO]25Si (0C2H5) 3 (CH2=CH) (CH3) 2SiO [ (CH3) 2SiO] 25SiCH3 (0CH3) 2
(CH2=CH) (CH3) 2S i 0 [ (CH3) 2S i 0] 5。S i (0CH3) 3
(CH2=CHCH2) (CH3) 2SiO[ (CH3) 2S i 0] 5。S i (0CH3) 3
(CH2=CHCH2CH2CH2CH2) (CH3) 2SiO[ (CH3) 2SiO] 5。Si (0CH3) 3
(CH2=CH) (CH3) 2SiO[ (CH3) 2SiO] 50Si (OC2H5) 3
(CH2=CH) (CH3) 2SiO [ (CH3) 2SiO] 50SiCH3 (0CH3) 2
(D)成分の含有量は、 (C )成分の表面を処理して、 得られる複合軟磁性体形成 用硬化性シリコーン組成物中への分散性を向上できる量であれば限定されないが 、 (C)成分 1 0 0重量部に対して 0 . 0 5〜1 0重量部の範囲内であることが好ま しく、 さらに、 0 . 1〜1 0重量部の範囲内であることが好ましく、 特に、 0 . 1 〜 5重量部の範囲内であることが好ましい。 これは、 (D)成分の含有量が上記範 囲の下限未満であると、 (C)成分を多量に含有した場合に、 得られる複合軟磁性 体形成用硬化性シリコーン組成物の成形性が低下したり、 得られる複合軟磁性体 の貯蔵中に(C)成分が沈降分離しやすくなる傾向があるからであり、 一方、 上記 範囲の上限を超えると、 得られる複合軟磁性体の物理的強度が低下する傾向があ るからである。
( C)成分の表面を(D)成分で処理する方法としては、 例えば、 (C)成分と(D) 成分を混合して、 (C )成分の表面を予め(D)成分で処理する方法、 (A)成分と(C )成分を混合した後、 (D)成分を混合して、 (A)成分中で(C )成分の表面を(D)成 分で処理する方法が挙げられ、 特に、 後者の方法が好ましい。 このようにして得 られた本組成物中には、 (D)成分は(C)成分の表面を処理した状態で含有されて いる力 \ または本組成物中に単に含有されていてもよい。
本組成物には、 本発明の目的を損なわない限り、 その他任意の成分として、 例 えば、 ヒュームドシリカ、 沈降性シリカ、 ヒュームド酸化チタン等の充填剤、 こ の充填剤の表面を有機ケィ素化合物により疎水化処理した充填剤;その他、 顔料 、 染料、 蛍光染料、 耐熱添加剤、 トリァゾール系化合物等の難燃性付与剤、 可塑 剤、 接着付与剤を含有してもよい。 特に、 本組成物がヒ ドロシリル化反応により 硬化する場合には、 本組成物の取扱作業性を向上させるため、 2—メチル—3— ブチン一 2—ォーノレ、 2—フエ二ノレ一 3—ブチン一 2—ォーノレ、 1 _ェチニノレ一 1 —シク口へキサノール等のアセチレン系化合物、 3—メチル一 3—ペンテン一 1 _イン、 3 , 5—ジメチル _ 3—へキセン— 1—イン等のェン一イン化合物、 ヒ ドラジン系化合物、 フォスフィン系化合物、 メルカブタン系化合物等の硬化反 応抑制剤を含有することが好ましい。 この硬化反応抑制剤の含有量は限定されな いが、 本組成物に対して 0 . 0 0 1 〜 1 . 0重量%の範囲内であることが好ましい 次に、 本発明の複合軟磁性体について詳細に説明する。
本発明の複合軟磁性体は、 前記組成物を硬化してなることを特徴とする。 前記 組成物を硬化させる方法は限定されず、 例えば、 前記組成物を成形後、 室温で放 置する方法、 前記組成物を成形後、 5 0〜 2 0 0 °Cに加熱する方法、 射出成形す る方法が挙げられる。 また、 このようにして得られる複合軟磁性体の性状は限定 されないが、 例えば、 髙硬度のゴム状、 低硬度のゴム状、 ゲル状が挙げられる。 また、 複合軟磁性体の形態については限定されず、 例えば、 金型を使用すること により各種形状に成形したものの他、 シート状での形態も挙げられる。 このよう なシート状の複合軟磁性体としては、 両面に剥離性のフィルムを密着したもの、 あるいは、 片面にフィルムを一体化し、 もう片面に剥離性のフィルムを密着した ものが例示される。
シート状の複合軟磁性体を作製する方法としては、 前記組成物の硬化物に対し て剥離可能なフィルムの間に前記組成物を挟み込んだ状態で、 所定の厚さにプレ スし、 加熱硬化させる方法が例示される。 この加熱方法としては、 プレスしなが ら加熱するか、 ー且プレスから取り出して、 オーブンで加熱する方法のどちらで も良い。
また、 片面にフィルムを一体化してなるシート状の複合軟磁性体を作製する方 法としては、 必要により、 フィルムの表面を予め、 シランカップリング剤、 チタ ンカツプリング剤、 アルミニウムカツプリング剤等によりプライマー処理するか 、 またはプラズマ処理、 コロナ処理、 アルカリ処理等により表面処理を施した易 接着性のフィルムと、 前記組成物の硬化物に対して剥離可能なフィルムとの間に 、 前記組成物を挟み込んだ状態で、 所定の厚さにプレスし、 加熱硬化させる方法 が例示される。 実施例
本発明の複合軟磁性体形成用硬化性シリコーン組成物および複合軟磁性体を実 施例、 比較例により詳細に説明する。 なお、 実施例中の特性は 2 5 °Cにおける値 である。 なお、 実施例で用いた、 式:
(CH2=CH) (CH3) 2SiO[ (CH3) 2SiO] 25Si (0CH3) 3
で表されるオルガノシロキサンオリゴマーは、 式:
(CH2=CH) (CH3) 2SiO[ (CH3) 2Si0]250H
で表されるオルガノシロキサンオリゴマーにテトラメ トキシシラン (前記オルガ ノシロキサンオリゴマー 1モルに対して 1 0モルとなる量) を加えて、 酢酸触媒 の存在下で加熱することにより、 脱メタノ一ル縮合反応させることにより調製し た。
また、 複合軟磁性体形成用硬化性シリコーン組成物の成形性は次のようにして 評価した。
[複合軟磁性体形成用硬化性シリコーン組成物の成形性]
厚さ 2匪の四フッ化工チレン樹脂フィルムの間に、 複合軟磁性体形成用硬化 性シリコーン組成物の厚さが 2讓となるように挟み込んだ状態で、 1 2 0 °Cで 6 0分間加熱して、 前記組成物を硬化させた。 その後、 四フッ化工チレン樹脂フィ ルムを剥がし取り、 シート状の複合軟磁性体を成形できたかどうかを観察し、 均 一な複合軟磁性体を成形できた場合を成形性が良好であるとして:〇、 均一な複 合軟磁性体を成形できなかった場合を成形性が不良であるとして: X、 として評 価した。
また、 複合軟磁性体の電磁波吸収特性、 難燃性、 および熱伝導率は次のように して測定した。
[複合軟磁性体の電磁波吸収特性]
厚さ 0 . 2 mmのポリプロピレン樹脂フィルムの間に、 複合軟磁性体形成用硬化性 シリコーン組成物の厚さが 0 . 5讓となるように挟み込んだ状態で、 1 2 0 °Cで 6 0分間加熱して、 前記組成物を硬化させ、 その後、 ポリプロピレン樹脂フィルム を剥がし取り、 シート状の複合軟磁性体を作成した。 この複合軟磁性体の透磁率 をアジレントテクノロジ一社製の RFインピーダンス Zマテリアルアナライザ 4 291 Bを使用して、 周波数 10MHzにて測定した。 なお、 軟磁性体における電磁 波吸収性能は、 磁気共鳴現象によるエネルギー吸収により発生し、 材料の透磁率 が大きいほど磁気共鳴によるエネルギー吸収が増加するため、 ここでは、 透磁率 を測定することにより電磁波吸収特性を評価した。
[複合軟磁性体の難燃性]
厚さ 2mraの四フッ化工チレン樹脂フィルムの間に、 複合軟磁性体形成用硬化 性シリコーン組成物の厚さが 0. 5 mmとなるように挟み込んだ状態で、 120°Cで 60分間加熱して、 前記組成物を硬化させた。 その後、 四フッ化工チレン樹脂フ イルムを剥がし取り、 シート状の複合軟磁性体を成形し、 UL 94に規定の 2 0讓垂直燃焼試験に従って難燃性を評価した。
[複合軟磁性体の熱伝導率]
複合軟磁性体形成用硬化性シリコーン組成物の厚さが 15讓となるように成形 した状態で、 1 20°Cで 60分間加熱して、 前記組成物を硬化させた。 得られた 複合軟磁性体の熱伝導率を J I S R 2616に規定の熱線法に従って、 京都 電子工業株式会社製の迅速熱伝導率計 QTM— 500により測定した。
[実施例 1 ]
混合装置により、 粘度が 40 OmPa'sである分子鎖両末端ジメチルビニルシロキ シ基封鎖ジメチルポリシロキサン (ビュル基の含有量 = 0.44重量%) 9. 87 重量部、 粘度が 35, 00 OmPa'sである分子鎖両末端ジメチルビ二ルシロキシ基 封鎖ジメチルポリシロキサン (ビュル基の含有量 =0. 09重量0 /0) 20. 58重 量部、 特許第 2, 523, 388号公報に記載された方法に基づいて調製された、 D50 (粒度分布計で測定された粒子径の小さいほうから重量を累計して 50%にな つたときの粒子径) が 15 //mであり、 比表面積が 1.4 m2/ gである、 粉砕扁 平加工を施し、 表面に酸化皮膜の処理を施した F e— S i— C r合金粉 67. 5重 量部、 および式: (CH2=CH) (CH3) 2SiO[(CH3) 2SiO] 25Si (0CH3) 3
で表されるオルガノシロキサンオリゴマー 1.0重量部を混合して、 前記合金粉の 表面を該オルガノシロキサンオリゴマーにより処理した。
次に、 粘度が 5mPa'sであり、 一分子中に平均 5個のケィ素原子結合水素原子を 有する分子鎖両末端トリメチルシ口キシ基封鎖ジメチルシロキサン ·メチルハイ ドロジェンシロキサンコポリマー (ケィ素原子結合水素原子の含有量 =0. 74重 量%) 0.9重量部、 および硬化反応抑制剤として、 1—ェチニルー 1—シクロへ キサノール 0.05重量部を混合した。
最後に、 この混合物に、 白金含有量が 0.5重量%である白金の 1, 3—ジビニ ルー 1, 1, 3, 3—テトラメチルジシロキサン錯体 0. 1重量部を混合して複合軟 磁性体形成用シリコーンゴム組成物を調製した。 この複合軟磁性体形成用シリコ ーンゴム組成物の成形性、 およびこれを硬化して得られたシート状複合軟磁性体 の諸特性を表 1に示した。
[実施例 2]
混合装置により、 粘度が 10, 00 OraPa'sである分子鎖両末端ジメチルビエル シロキシ基封鎖ジメチルポリシロキサン (ビュル基の含有量 =0. 12重量。/。) 1 9. 92重量部、 特許第 2, 523, 388号公報に記載された方法に基づいて調製 された、 D5。 (粒度分布計で測定された粒子径の小さいほうから重量を累計して 5 0%になったときの粒子径) が 1 5 μπιであり、 比表面積が 0.4 m gである 、 粉砕扁平加工を施し、 表面に酸化皮膜の処理を施した F e_S i— C r合金粉 77.5重量部、 および式:
(CH2=CH) (CH3)2SiO[(CH3)2SiO]25Si (0CH3)3
で表されるオルガノシロキサンオリゴマー 1.0重量部を混合し、 前記合金粉の表 面を該オルガノシロキサンオリゴマーにより処理した。
次に、 粘度が 2 OraPa'sであり、 一分子中に平均 3個のケィ素原子結合水素原子 を有する分子鎖両末端トリメチルシ口キシ基封鎖ジメチルシロキサン 'メチルハ ィ ドロジヱンシロキサンコポリマー (ケィ素原子結合水素原子の含有量 =0. 1 3 重量%) 1.43重量部、 および硬化反応抑制剤として、 1—ェチュル一 1—シク 口へキサノール 0.05重量部を混合した。
最後に、 この混合物に、 白金含有量が 0. 5重量%である白金の 1, 3—ジビニ ノレ一 1, 1, 3, 3—テトラメチルジシロキサン錯体 0. 1重量部を混合して複合軟 磁性体形成用シリコーンゴム組成物を調製した。 この複合軟磁性体形成用シリコ ーンゴム組成物の成形性、 およびこれを硬化して得られたシート状複合軟磁性体 の諸特性を表 1に示した。
[実施例 3]
混合装置により、 粘度が 40 OmPa'sである分子鎖両末端ジメチルビニルシロキ シ基封鎖ジメチルポリシロキサン (ビュル基の含有量 =0.44重量%) 3.89 重量部、 粘度が 35, 00 OmPa'sである分子鎖両末端ジメチルビ二ルシロキシ基 封鎖ジメチルポリシロキサン (ビュル基の含有量 =0.09重量%) 8. 1 1重量 部、 特公昭 54— 27557号公報に記載された方法に基づいて調製された、 D5
(粒度分布計で測定された粒子径の小さいほうから重量を累計して 50%になつ たときの粒子径) が Ι Ο μπιであり、 比表面積が 0.5 m2// gである、 粉砕加工 を施した Mn— Mg— Znフェライト粉 86. 5重量部、 および式:
(CH2=CH) (CH3) 2SiO[(CH3) 2SiO]25Si (0CH3) 3
で表されるオルガノシロキサンオリゴマー 1.0重量部を混合し、 前記フェライ ト 粉の表面を該オルガノシロキサンオリゴマーにより処理した。
次に、 粘度が 5mPa'sであり、 一分子中に平均 5個のケィ素原子結合水素原子を 有する分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン 'メチルハイ ドロジェンシロキサンコポリマー (ケィ素原子結合水素原子の含有量 =0. 74重 量%) 0. 35重量部、 および硬化反応抑制剤として、 1ーェチュル一 1—シク口 へキサノール 0.05重量部を混合した。
最後に、 この混合物に、 白金含有量が 0. 5重量%である白金の 1, 3—ジビニ ノレ一 1, 1, 3, 3—テトラメチルジシロキサン錯体 0. 1重量部を混合して複合軟 磁性体形成用シリコーンゴム組成物を調製した。 この複合軟磁性体形成用シリコ ーンゴム組成物の成形性、 およびこれを硬化して得られたシート状複合軟磁性体 の諸特性を表 1に示した。 [比較例 1 ]
実施例 1において、 式:
(CH2=CH) (CH3) 2S i 0 [ (CH3) 2S i 0] 25S i (0CH3) 3
で表されるオルガノシロキサンオリゴマーを添加しない以外は実施例 1と同様に して複合軟磁性体形成用シリコーンゴム組成物を調製した。 この複合軟磁性体形 成用シリコーンゴム組成物の成形性、 およびこれを硬化して得られたシート状複 合軟磁性体の諸特性を表 1に示した。
[比較例 2 ]
実施例 1において、 式:
(CH2=CH) (CH3) 2SiO[ (CH3) 2SiO] 25Si (0CH3) 3
で表されるオルガノシロキサンオリゴマーの替わりに、 式:
(CH3) 3SiO[ (CH3) 2SiO]23Si (0CH3) 3
で表されるオルガノシロキサンオリゴマーを同量添加した以外は実施例 1と同様 にして複合軟磁性体形成用シリコーンゴム組成物を調製した。 この複合軟磁性体 形成用シリコーンゴム組成物の成形性、 およびこれを硬化して得られたシート状 複合軟磁性体の諸特性を表 1に示した。
[比較例 3 ]
実施例 3において、 式:
(CH2=CH) (CH3) 2SiO[ (CH3) 2SiO]25Si (0CH3) 3
で表されるオルガノシロキサンオリゴマーを添加しない以外は実施例 3と同様に して複合軟磁性体形成用シリコーンゴム組成物を調製した。 この複合軟磁性体形 成用シリコーンゴム組成物の成形性、 およびこれを硬化して得られたシート状複 合軟磁性体の諸特性を表 1に示した。
Figure imgf000023_0001
産業上の利用可能性
本発明の複合軟磁性体形成用硬化性シリコーン組成物は、 電磁波吸収特性が優 れる複合軟磁性体を得るため軟磁性粉を高充填しても、 前記複合軟磁性体を成形 性良く形成することができる。 また、 本発明の複合軟磁性体は電磁波吸収特性が 優れ、 かつ難燃性および熱伝導性が優れる電子機器の電磁ノィズ対策材料を提供 することができ、 さらには、 ハロゲン系材料を含まない場合でも、 難燃性を実現 できるため、 環境負荷の少ない電磁ノィズ対策材料を提供することができる。

Claims

請求の範囲
1 . (A)硬化性オルガノポリシロキサン、 (B )硬化剤、 (C)軟磁性粉、 およ び (D)—般式:
[R 'eR'o-a) S i O (R2 2 S i O)丄 S i R2 [4(b+c)】 (O R3) c
(式中、 R1は脂肪族不飽和結合を有する一価炭化水素基であり、 R2は同種もしく は異種の脂肪族不飽和結合を有さない一価炭化水素基であり、 R3はアルキル基ま たはアルコキシアルキル基であり、 aは 1〜3の整数であり、 bは 1〜3の整数 であり、 cは 1〜3の整数であり、 かつ、 b + cは 2〜4の整数であり、 nは 0 以上の整数である。 )
で表されるオルガノシロキサン、 から少なくともなる複合軟磁性体形成用硬化性 シリコーン組成物。
2 . 硬化性シリコーン組成物がヒ ドロシリル化反応により硬化することを特 徴とする、 請求項 1記載の複合軟磁性体形成用硬化性シリコーン組成物。
3 . ( C)成分が、 軟磁性金属粉または酸化物磁性粉 (フェライ ト粉) である ことを特徴とする、 請求項 1記載の複合軟磁性体形成用硬化性シリコーン組成物
4 . 軟磁性金属粉が、 表面が酸化処理されている扁平状金属粉であることを 特徴とする、 請求項 3記載の複合軟磁性体形成用硬化性シリコーン組成物。
5 . (C)成分の含有量が、 (A)成分 1 0 0重量部に対して 4 0〜1, 0 0 0重 量部であることを特徴とする、 請求項 1記載の複合軟磁性体形成用硬化性シリコ ーン組成物。
6 . (D)成分の含有量が、 (C )成分 1 0 0重量部に対して 0 . 0 5〜1 0重量 部であることを特徴とする、 請求項 1記載の複合軟磁性体形成用硬化性シリコー ン組成物。
7 . 請求項 1乃至 6のいずれか 1項記載の硬化性シリコーン組成物を硬化し てなる複合軟磁性体。
8 . シート状であることを特徴とする、 請求項 7記載の複合軟磁性体。
PCT/JP2003/006031 2002-05-14 2003-05-14 Composition au silicium pouvant etre soumise a traitement, pour la production de materiaux magnetiques composites mous, et materiaux magnetiques composites mous WO2003095560A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2003242306A AU2003242306A1 (en) 2002-05-14 2003-05-14 Curable silicone composition for the production of composite soft magnetic materials, and composite soft magnetic materials
US10/512,713 US20050176885A1 (en) 2002-05-14 2003-05-14 Curable silicone composition for the production of composite soft magnetic materials, and composite soft magnetic materials
EP03730499A EP1505122A4 (en) 2002-05-14 2003-05-14 TREATMENT-PROCESSABLE SILICON COMPOSITION FOR THE PRODUCTION OF MOUS COMPOSITE MAGNETIC MATERIALS, AND MOUS COMPOSITE MAGNETIC MATERIALS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-138719 2002-05-14
JP2002138719A JP4365067B2 (ja) 2002-05-14 2002-05-14 複合軟磁性体形成用硬化性シリコーン組成物および複合軟磁性体

Publications (1)

Publication Number Publication Date
WO2003095560A1 true WO2003095560A1 (fr) 2003-11-20

Family

ID=29416876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006031 WO2003095560A1 (fr) 2002-05-14 2003-05-14 Composition au silicium pouvant etre soumise a traitement, pour la production de materiaux magnetiques composites mous, et materiaux magnetiques composites mous

Country Status (5)

Country Link
US (1) US20050176885A1 (ja)
EP (1) EP1505122A4 (ja)
JP (1) JP4365067B2 (ja)
AU (1) AU2003242306A1 (ja)
WO (1) WO2003095560A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9903009B2 (en) 2004-03-31 2018-02-27 Tdk Corporation Rare earth magnet and method for manufacturing same
CN115353740A (zh) * 2022-08-24 2022-11-18 上海市同仁医院 一种具有电磁屏蔽功能的聚硅氧烷材料及其制备方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4646496B2 (ja) * 2003-02-13 2011-03-09 東レ・ダウコーニング株式会社 熱伝導性シリコーン組成物
WO2005101941A1 (ja) * 2004-03-30 2005-10-27 Geltec Co., Ltd. 電磁波吸収体
WO2006013947A1 (ja) 2004-08-06 2006-02-09 Mitsubishi Gas Chemical Company, Inc. 絶縁化超微粉末および高誘電率樹脂複合材料
JP4977976B2 (ja) * 2004-08-06 2012-07-18 三菱瓦斯化学株式会社 絶縁化超微粉末および高誘電率樹脂複合材料
WO2008126416A1 (ja) * 2007-04-11 2008-10-23 Toda Kogyo Corporation 電磁波干渉抑制シート、高周波信号用フラットケーブル、フレキシブルプリント基板及び電磁波干渉抑制シートの製造方法
JP5380022B2 (ja) * 2007-09-19 2014-01-08 電気化学工業株式会社 有機無機複合組成物
JP5697589B2 (ja) * 2008-03-20 2015-04-08 ホガナス アクチボラグ (パブル) 強磁性粉末組成物及びその生産方法
CN102598163B (zh) * 2009-09-18 2017-05-03 霍加纳斯股份有限公司 铁磁粉末复合物及其制造方法
EP2537165A1 (en) * 2010-02-18 2012-12-26 Höganäs AB Ferromagnetic powder composition and method for its production
JP2012044084A (ja) * 2010-08-23 2012-03-01 Sony Chemical & Information Device Corp 電磁波吸収性熱伝導シート及び電磁波吸収性熱伝導シートの製造方法
JP5853381B2 (ja) * 2011-03-09 2016-02-09 Tdk株式会社 アンテナ用磁性材料、並びに、アンテナ及び無線通信機器
JP2014216495A (ja) * 2013-04-25 2014-11-17 Tdk株式会社 軟磁性体組成物、磁芯、コイル型電子部品および成形体の製造方法
EP3096333B1 (en) * 2014-01-14 2020-08-26 Hitachi Metals, Ltd. Magnetic core and coil component using same
CN106663513B (zh) * 2014-07-16 2019-09-27 日立金属株式会社 磁芯、磁芯的制造方法以及线圈部件
US11370937B2 (en) 2019-03-04 2022-06-28 Momentive Performance Materials Inc. Protective coating composition and coated metallic substrate comprising same
US20200283908A1 (en) * 2019-03-04 2020-09-10 Momentive Performance Materials Inc. Protective coating composition and coated metallic substrate comprising same
CN111710520B (zh) * 2020-07-14 2022-01-21 香磁磁业(深圳)有限公司 一种磁铁材料的制备方法
CN111961439A (zh) * 2020-08-17 2020-11-20 苏州超弦新材料有限公司 一种高性能吸波粉体表面处理工艺
CN114381125A (zh) * 2021-12-13 2022-04-22 江苏科化新材料科技有限公司 固体硅树脂复合物、电感封装材料及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04252266A (ja) * 1991-01-29 1992-09-08 Toray Dow Corning Silicone Co Ltd シリコーンゴム組成物
JPH069657A (ja) * 1991-01-29 1994-01-18 Toray Dow Corning Silicone Co Ltd オルガノペンタシロキサンおよびその製造方法
JPH1092623A (ja) * 1996-09-12 1998-04-10 Tokin Corp 電磁干渉抑制体
JPH10130508A (ja) * 1996-10-31 1998-05-19 Toray Dow Corning Silicone Co Ltd 付加反応硬化型導電性シリコーン組成物および導電性シリコーン硬化物の製造方法
JPH1112481A (ja) * 1997-06-20 1999-01-19 Toray Dow Corning Silicone Co Ltd 熱伝導性ポリマー組成物
JP2000044583A (ja) * 1998-05-27 2000-02-15 Nippon Unicar Co Ltd シロキサンを含有する組成物
JP2001294752A (ja) * 2000-04-11 2001-10-23 Shin Etsu Chem Co Ltd 電磁波吸収性熱伝導性シリコーンゴム組成物
JP2002129019A (ja) * 2000-10-25 2002-05-09 Shin Etsu Chem Co Ltd 電磁波吸収性シリコーンゴム組成物
WO2002092693A1 (fr) * 2001-05-14 2002-11-21 Dow Corning Toray Silicone Co., Ltd. Composition de silicone thermoconductrice

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63251466A (ja) * 1987-04-06 1988-10-18 Shin Etsu Chem Co Ltd 熱伝導性液状シリコ−ンゴム組成物
JPH0767784B2 (ja) * 1990-10-11 1995-07-26 信越化学工業株式会社 シリコーンゴム積層体及びその製造方法
JP3270489B2 (ja) * 1991-01-30 2002-04-02 東レ・ダウコーニング・シリコーン株式会社 硬化性オルガノポリシロキサン組成物
EP0919115B1 (de) * 1996-08-18 2003-10-29 Helmut Kahl Leitfähiges dichtungsmaterial und dichtungsprofil
JPH11116807A (ja) * 1997-10-13 1999-04-27 Suzuki Sogyo Co Ltd 熱伝導性シリコーンゴム組成物及びその成形体
EP1146591A2 (en) * 2000-04-10 2001-10-17 Hitachi, Ltd. Electromagnetic wave absorber, method of manufacturing the same and appliance using the same
JP3925835B2 (ja) * 2000-04-10 2007-06-06 株式会社日立製作所 電磁波吸収材とその製造法及びそれを用いた各種用途
JP3608612B2 (ja) * 2001-03-21 2005-01-12 信越化学工業株式会社 電磁波吸収性熱伝導組成物及び熱軟化性電磁波吸収性放熱シート並びに放熱施工方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04252266A (ja) * 1991-01-29 1992-09-08 Toray Dow Corning Silicone Co Ltd シリコーンゴム組成物
JPH069657A (ja) * 1991-01-29 1994-01-18 Toray Dow Corning Silicone Co Ltd オルガノペンタシロキサンおよびその製造方法
JPH1092623A (ja) * 1996-09-12 1998-04-10 Tokin Corp 電磁干渉抑制体
JPH10130508A (ja) * 1996-10-31 1998-05-19 Toray Dow Corning Silicone Co Ltd 付加反応硬化型導電性シリコーン組成物および導電性シリコーン硬化物の製造方法
JPH1112481A (ja) * 1997-06-20 1999-01-19 Toray Dow Corning Silicone Co Ltd 熱伝導性ポリマー組成物
JP2000044583A (ja) * 1998-05-27 2000-02-15 Nippon Unicar Co Ltd シロキサンを含有する組成物
JP2001294752A (ja) * 2000-04-11 2001-10-23 Shin Etsu Chem Co Ltd 電磁波吸収性熱伝導性シリコーンゴム組成物
JP2002129019A (ja) * 2000-10-25 2002-05-09 Shin Etsu Chem Co Ltd 電磁波吸収性シリコーンゴム組成物
WO2002092693A1 (fr) * 2001-05-14 2002-11-21 Dow Corning Toray Silicone Co., Ltd. Composition de silicone thermoconductrice

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1505122A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9903009B2 (en) 2004-03-31 2018-02-27 Tdk Corporation Rare earth magnet and method for manufacturing same
CN115353740A (zh) * 2022-08-24 2022-11-18 上海市同仁医院 一种具有电磁屏蔽功能的聚硅氧烷材料及其制备方法
CN115353740B (zh) * 2022-08-24 2023-09-12 上海市同仁医院 一种具有电磁屏蔽功能的聚硅氧烷材料及其制备方法

Also Published As

Publication number Publication date
EP1505122A4 (en) 2007-07-04
JP4365067B2 (ja) 2009-11-18
AU2003242306A8 (en) 2003-11-11
AU2003242306A1 (en) 2003-11-11
EP1505122A1 (en) 2005-02-09
US20050176885A1 (en) 2005-08-11
JP2003327831A (ja) 2003-11-19

Similar Documents

Publication Publication Date Title
JP4255287B2 (ja) 熱伝導性シリコーン組成物
WO2003095560A1 (fr) Composition au silicium pouvant etre soumise a traitement, pour la production de materiaux magnetiques composites mous, et materiaux magnetiques composites mous
JP4828145B2 (ja) 熱伝導性シリコーンゴム組成物
JP4828146B2 (ja) 熱伝導性シリコーンゴム組成物
JP4590253B2 (ja) オルガノポリシロキサンおよびシリコーン組成物
EP1592749B1 (en) Thermoconductive silicone composition
KR20090130005A (ko) 실리콘 엘라스토머 조성물 및 실리콘 엘라스토머
CN114599710B (zh) 聚有机硅氧烷、其制造方法以及导热性硅酮组合物
JP2006131905A (ja) マイクロ波活性シリコーンエラストマー
JP3904853B2 (ja) 熱伝導性シリコーンゴム組成物及びそれを用いたヒーターロール
JP2003261769A (ja) 耐熱熱伝導性熱圧着用シリコーンゴムシート
JP3127093B2 (ja) 熱伝導性シリコーンゴム組成物
JP3621848B2 (ja) シリコーンゴム組成物、その製造方法及びヒーターロール
KR20050016398A (ko) 복합 연자성체 형성용 경화성 실리콘 조성물 및 복합연자성체
JP3904469B2 (ja) 流動性を有する硬化性オルガノポリシロキサン組成物
JP2004359719A (ja) 導電性シリコーンゴム組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020047018333

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003730499

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10512713

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003730499

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020047018333

Country of ref document: KR