WO2003095261A1 - Procede et dispositif permettant de commander un vehicule - Google Patents

Procede et dispositif permettant de commander un vehicule Download PDF

Info

Publication number
WO2003095261A1
WO2003095261A1 PCT/JP2003/005658 JP0305658W WO03095261A1 WO 2003095261 A1 WO2003095261 A1 WO 2003095261A1 JP 0305658 W JP0305658 W JP 0305658W WO 03095261 A1 WO03095261 A1 WO 03095261A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
driving force
wheel
vehicle body
tire
Prior art date
Application number
PCT/JP2003/005658
Other languages
English (en)
French (fr)
Inventor
Yasumichi Wakao
Keizo Akutagawa
Original Assignee
Kabushiki Kaisha Bridgestone
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Bridgestone filed Critical Kabushiki Kaisha Bridgestone
Priority to JP2004508541A priority Critical patent/JP4145871B2/ja
Priority to EP03723238.6A priority patent/EP1502805B1/en
Priority to US10/512,429 priority patent/US7423393B2/en
Publication of WO2003095261A1 publication Critical patent/WO2003095261A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • B60L3/102Indicating wheel slip ; Correction of wheel slip of individual wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/46Wheel motors, i.e. motor connected to only one wheel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a control method for a vehicle, and more particularly to a control method and a device for appropriately controlling braking / driving force applied to a wheel and suppressing disturbance acting on a sunset.
  • a target speed of the engine is calculated based on an input accelerator signal, and a vehicle speed sensor is used.
  • the engine speed is controlled by controlling the throttle valve opening, etc., so that the actual vehicle speed detected by the engine speed becomes the vehicle speed calculated from the above target speed, and the drive applied to the output shaft connected to the drive wheels
  • a common method is to control the torque.
  • the driving motor 5 controls the driving wheels 5OR by the driving torque detecting means 51.
  • the wheel speed sensor 52 detects the wheel speed
  • the target wheel speed calculating means 53 uses the target driving force (motor torque) to obtain the required driving torque.
  • Command value) and the detected output torque of the motor the target wheel speed in the adhesive state is calculated so that the detected wheel speed becomes the target wheel speed, and the motor drive is performed.
  • the control means 54 controls the braking / driving force generated by the electric motor 50M to control the braking / driving force applied to the drive wheels 5OR.
  • the ratio between the wheel rotational force and the vehicle body driving force is controlled to be the ratio between the mass of the wheel and the mass of the vehicle body.
  • the braking / driving force generated by the motor 50 M is detected by the motor drive / control means 54 by detecting the torque of the motor output shaft or directly detecting the motor current. Then, the magnitude of the current flowing through the electric motor 50 M is controlled. z
  • the motor torque is detected as the motor rotation angle 0m or the rotation speed ⁇ .
  • the deviation e between 6> m or ⁇ and the estimated rotation angle 6 »me or the estimated rotation speed c me estimated by the plant model is calculated, and the disturbance torque is estimated from the deviation e.
  • method of controlling to motor evening torque input to the actual plant e.g., see JP 2000- 217209 and detects the average rotational speed omega b of the average rotational speed omega Micromax driving wheels of the motor
  • a method of calculating the deviation ⁇ ⁇ , multiplying the deviation ⁇ by a gain k, and correcting the M by a torque command input to the motor using the correction value for example, see Japanese Patent Application Laid-Open No. 2002-152916
  • the drive wheels when controlling the attitude and speed of the vehicle detected by the auto rate sensor and the vehicle speed sensor, the drive wheels are added to the drive wheels according to the time constant of the behavior of the vehicle to be controlled.
  • the braking / driving force is controlled.
  • a low-pass filter is provided in the loop to remove the high-frequency component that is a noise component to the behavior of the vehicle, so that it takes about 100 ms to 10 seconds for engine-driven vehicles and about 1 ms for electric vehicles. Controls the braking / driving force applied to the drive wheels with a control cycle of ec to 10 sec.
  • a vehicle speed is detected using a vehicle speed sensor 55, and slip ratio calculating means 56 is used.
  • a sleep ratio determined by a speed difference between the wheel speed generated by the wheel spin and the vehicle speed is calculated from the detected vehicle speed and the wheel speed detected using the wheel speed sensor 52,
  • the above-mentioned target wheel speed is corrected so that the above-mentioned sleep ratio becomes a preset sleep ratio, thereby suppressing the rise of the above-mentioned slip ratio and performing control for shortening the braking / driving distance.
  • control is performed at the same control frequency.
  • the acceleration of the driving wheel is detected by an acceleration sensor.
  • a control method has also been proposed in which it is determined whether or not the vehicle is slipping, and when it is determined that the vehicle is slipping, the motor torque is reduced (for example, see Japanese Patent Application Laid-Open No. H11-178210). ) O
  • a small vibration having a frequency higher than the response frequency of the vehicle body is applied to the tire to change the frictional force between the tire and the road surface, so that the slip ratio or the slip angle of the tire is kept constant.
  • a method has also been proposed to control the running state of a vehicle by controlling the frictional force of the tires while maintaining the same (for example, WO 02/0
  • the disturbance applied to the tire due to a change in the tire contact pressure due to a change in the road surface condition or a change in the vibration under the panel including the suspension due to a change in the road surface condition is 100 msec or less. Since the influence of micro vibration cannot be compensated, there was a problem that the grounding of the tire was deteriorated.
  • a frequency region higher than the vehicle body response frequency, which is included in the detected motor torque and wheel speed is used. Because the fluctuation component of the above-mentioned fluctuation cannot be obtained, it was not possible to compensate for the influence of the disturbance applied to the above-mentioned evening sky.
  • the present invention has been made in view of the conventional problems, and provides a vehicle control method capable of compensating for a disturbance applied to a tire, improving a contact property between tyre road surfaces, and improving a vehicle's steering stability. It is intended to provide the device. Disclosure of the invention
  • the present inventors have extracted fluctuations in wheel speed or vehicle body driving force, and performed control to suppress fluctuations in the extracted wheel speed or vehicle body driving force.
  • the present inventors have found that the running state can be stabilized, and have reached the present invention.
  • the wheel speed detected by the wheel speed sensor and the vehicle driving force generated on the tire contact surface which is obtained from the driving force applied to the driving wheels and the wheel rotation force, are used to move the vehicle forward. Any of the changes in the attitude and speed of the vehicle body included in any of the above, and the fluctuation components caused by the tire disturbance are separated and extracted, and each of these fluctuation components is directly fed back to the target driving force.
  • the driving force or braking force applied to the driving wheels is controlled in accordance with the fluctuation component, and furthermore, the vibration of the tire is suppressed to suppress the tire deformation due to the above-mentioned disturbance of the tire, and the fluctuation of the driving force is reduced. By suppressing the vibration caused by the disturbance, stable vehicle control becomes possible.
  • the vehicle control method detects a driving force applied to a driving wheel and a wheel rotation force, and calculates a vehicle body driving force from the detected driving force and the wheel rotation force. , And calculates a fluctuation component of at least one frequency band of the calculated vehicle body driving force.Then, based on the extracted vehicle body driving force fluctuation component, brakes or drives the wheel or vibrates the wheel. Or the like, to control the running state of the vehicle.
  • the vehicle control method extracts a fluctuation component of the calculated vehicle body driving force in a plurality of frequency bands, and based on the extracted vehicle body driving force fluctuation component, It is characterized in that the applied braking / driving force is controlled. Accordingly, it becomes possible to simultaneously and accurately perform control such as braking / driving and attitude control of the vehicle, suppression of an increase in slip ratio, and compensation for tire disturbance.
  • a vehicle control method wherein in a vehicle driven by an engine, a driving force applied to an output shaft of a driving wheel is detected, and a vehicle drive calculated from the driving force and the wheel rotation force is calculated.
  • a fluctuation component of the force including at least a frequency band of 10 Hz to lkHz is extracted, and the running state of the vehicle is controlled based on the extracted fluctuation component, whereby the cycle is 100 ms ec or less.
  • disturbance small vibration
  • a vehicle control method is characterized in that in a vehicle controlled by a motor, a braking / driving force generated by a motor for driving / driving a drive wheel is detected, and the braking / driving power and the wheel are detected.
  • the vehicle control method according to claim 5 is characterized in that, out of the fluctuation components of the vehicle body driving force, a fluctuation component at 10 Hz to 200 Hz is extracted, and the control for suppressing the fluctuation of the vehicle body driving force is performed. Due to this, among the fluctuation components of 10 Hz to 10 kHz, it is caused by the natural vibration of the tire case, which is on the lower frequency side than the fine vibration due to the pattern block of the trade and the sipe It is possible to reduce disturbances in the vehicle body driving force by suppressing disturbances in the frequency band of evening dynamics.
  • the vehicle control method according to claim 6 is characterized in that, of the fluctuation components of the vehicle body driving force, a fluctuation component in a range of 30 ° to 100 Hz is extracted, and the control for suppressing the fluctuation of the vehicle body driving force is performed.
  • a fluctuation component in a range of 30 ° to 100 Hz is extracted, and the control for suppressing the fluctuation of the vehicle body driving force is performed.
  • the vehicle control method according to claim 7 is the vehicle control method according to any one of claims 1 to 6, wherein the left and right drive wheels are independently controlled. Unlike the conventional torque distribution by differentials such as gears, there is no limitation by the driving torque of the other driving wheel, so the driving torque of the left and right driving wheels must be set appropriately. Becomes possible.
  • a vehicle control method is the vehicle control method according to claim 7, wherein the left and right drive wheels are individually controlled based on a change in steering characteristics. As a result, changes in the steering characteristics can be suppressed, so that it is possible to reliably control the attitude and speed of the vehicle.
  • the vehicle control method controls the running state of the vehicle on the basis of the ground load acting on the tire, whereby the tire is controlled by a change in the ground load acting on the tire.
  • the change in the frictional force between the road surfaces can be compensated, and the control characteristics of the vehicle can be further improved.
  • the vehicle control method extracts wheel fluctuations such as fluctuations in wheel speed and wheel rotation force of at least one frequency band, and based on the extracted wheel fluctuations, It is characterized in that the driving wheels are braked and driven so as to suppress the fluctuation of the wheels.
  • the vehicle control method according to claim 11 is the vehicle control method according to claim 10, wherein a fluctuation of the wheel including at least a frequency band of 10 Hz to 10 kHz is extracted. Then, a braking / driving force of a motor for driving / driving the driving wheel is controlled using the extracted fluctuation of the wheel.
  • the vehicle control device is a means for detecting a wheel speed of a drive wheel, a means for calculating a wheel rotational force from the detected wheel speed, and added to the drive wheel.
  • Running state control means for controlling the running state of the vehicle based on the fluctuation component of the vehicle body driving force, and changes in the attitude and speed of the vehicle body included in the fluctuation component of the vehicle body driving force, and further, tire disturbance. Variable components caused by Then, the vehicle control characteristics are improved by controlling the running state of the vehicle based on these fluctuation components.
  • the vehicle control device is configured to detect a braking / driving force generated by a motor for braking / driving a driving wheel and detect a braking / driving force applied to the driving wheel. It is.
  • the vehicle control device is the vehicle control device according to claim 12 or claim 13, wherein the driving state control means includes: Means for braking / driving the wheels based on the above.
  • the vehicle control device is configured to extract a fluctuation component of the vehicle body driving force in a frequency band of 0.2 Hz to 100 Hz to determine a speed difference between the vehicle speed and the wheel speed. Calculation means are provided, and the wheels are braked and driven based on the calculated speed difference, whereby it is possible to suppress an increase in the slip ratio and perform appropriate wheel speed control. Become.
  • vehicle control device configured to independently control the left and right driving wheels to improve the turning stability of the vehicle.
  • the vehicle control device further comprising: means for extracting fluctuation components of the vehicle driving force of the left and right drive wheels in a frequency band of 10 Hz or less, wherein the extracted fluctuation components are By controlling the left and right drive wheels based on the vehicle, it is possible to suppress instability due to changes in steering and to control the vehicle attitude and the vehicle speed reliably. is there.
  • the vehicle control device comprising: a means for detecting a steering angle of a steering system; a means for detecting a yaw rate of a vehicle body; and a steering wheel based on the detected steering angle and magnitude of the yaw rate.
  • Means for detecting a change in the characteristics and determining the instability of the vehicle body, and when it is determined that the vehicle body is unstable, according to the change in the steering characteristics, the drive wheel inside the turn, and One or both of the driving wheels on the outer side of the turning are controlled to drive, whereby the stability of the attitude control can be further improved.
  • the vehicle control device is the vehicle control device according to any one of claims 12 to 18, wherein the traveling state control means includes: A means for applying vibration to the tire is provided to compensate for the effect of minute vibration applied to the tire.
  • the vehicle control device extracts the fluctuation component of the vehicle body driving force in the frequency band of 10 Hz to 10 kHz to calculate the magnitude of the disturbance acting on the tire. Means are provided, and vibration is applied to the tire based on the magnitude of the disturbance calculated above.
  • the vehicle control device further comprising: extracting a fluctuation component in the range of 10 Hz to 200 Hz from the fluctuation component of the vehicle body driving force, and extracting a fluctuation component included in the fluctuation component. It controls the disturbance in the frequency band of the tire dynamics caused by the natural vibration of the vehicle and controls the fluctuation of the vehicle body driving force.
  • the vehicle control device extracts, from among the fluctuation components of the vehicle body driving force, a fluctuation component in a range of 30 Hz to 100 Hz, and extracts a fluctuation component included in the fluctuation component.
  • the vertical panel and the front and rear panels are controlled so that disturbance near the resonance frequency of the front and rear panels is suppressed, and the fluctuation of the vehicle body driving force is reduced.
  • the vehicle control device is the vehicle control device according to any one of claims 12 to 22, further comprising means for detecting a contact load acting on the tire.
  • the running state of the vehicle is controlled based on the detected ground contact load, thereby compensating for the change in the frictional force between the tire and the road surface due to the change in the ground contact load acting on the tire. Therefore, the control characteristics of the vehicle can be further improved.
  • the vehicle control device is the vehicle control device according to claim 23, wherein: a means for detecting a displacement amount of a suspension; a means for detecting a vertical acceleration of a wheel; Means for calculating the ground contact load from the amount of displacement of the suspension and the vertical acceleration of the wheel so as to detect the ground load acting on the tire.
  • the vehicle control device further comprising: a means for detecting a wheel speed of the driving wheel; and a variation component in a frequency band of at least 10 Hz to LO kHz of the detected wheel speed.
  • running state control means for correcting the braking / driving force generated by the motor driving / braking the drive wheels using the extracted wheel speed fluctuation component.
  • the vehicle control device according to claim 26 is the vehicle control device according to any one of claims 12 to 25, wherein the motor is directly driven by a drive wheel. It was a direct drive.
  • the motor is an in-wheel motor that drives a wheel by an electric motor mounted on a wheel.
  • the vibration caused by a back crash of the gear is eliminated, and The control at the frequency can be performed reliably.
  • a vehicle control device wherein the motor is mounted on one or both of a lower part of a vehicle panel and a vehicle body side via a buffer member or a buffer device, and This is to reduce the level of variation in the contact force when traveling on uneven roads, which reduces the frequency range to be controlled, increases the degree of freedom in selecting the control frequency, and reduces the level of variation itself. Therefore, control in a high frequency range can be easily performed.
  • FIG. 1 is a diagram showing a configuration of a vehicle equipped with a vehicle control device of the present invention.
  • FIG. 2 is a diagram showing a configuration of a vehicle control device according to the best mode of the present invention.
  • FIG. 3 is a diagram showing a configuration of a driving force control means according to the present best mode.
  • FIG. 4 is a schematic diagram showing a control algorithm for vehicle control according to the present invention.
  • FIG. 5 is a schematic diagram showing a disturbance acting on the tire.
  • FIG. 6 is a diagram showing the effect of suppressing tire disturbance according to the present invention.
  • FIG. 7 is a diagram showing transmission characteristics of vehicle body driving force.
  • FIG. 8 is a diagram showing a method for determining vehicle body instability according to the present invention.
  • FIG. 9 is a diagram showing an example of a gearless direct drive-in wheel.
  • FIG. 10 is a diagram showing an example of the configuration of a flexible coupling used for the above-mentioned ink wheel.
  • FIG. 11 is a schematic diagram showing another control algorithm of the vehicle control of the present invention.
  • FIG. 12 is a block diagram showing a conventional vehicle control method. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a schematic diagram showing a configuration of a vehicle equipped with a vehicle control device 10 according to the present invention
  • FIG. 2 is a control block diagram of the vehicle control device 10.
  • This example describes an electric vehicle with two-wheel independent control in which the left and right rear wheels are independently controlled by two electric motors.
  • 1 L and 1 R are left and right front wheels that are driven wheels
  • 2 L and 2 R are left and right rear wheels that are driving wheels
  • 3 L and 3 R are the above left and right rear wheels (hereinafter, driving wheels).
  • a direct drive motor that directly controls and drives the drive wheels 2L and 2R as the electric motors 3L and 3R.
  • ⁇ ⁇ ⁇ ⁇ It is preferable to use an in-wheel-motor type of evening-in-one-out type or inner-in-all-out type. (However, in FIG. 1, in order to make it easier to see the structure of the invention, the electric motors 3L and 3R are driven by driving wheels. 2L, 2R outside).
  • 4 is an accelerator signal detecting means for detecting a degree of acceleration of an accelerator pedal (not shown) and outputting a necessary driving force signal of the vehicle
  • 5 is a steering angle detecting means for detecting a steering angle of a steering system
  • 6 is a steering angular velocity of a vehicle body.
  • the sensing sensors, 7L and 7R are the vertical accelerometers 8L and 8R respectively attached to the left and right wheels, and the suspension displacement gauges respectively attached to the left and right suspensions.
  • L, 9R, and ground contact load detecting means for detecting the ground load acting on the tires of the left and right drive wheels 2 L, 2 R.
  • 10 is an electric motor for controlling / driving the drive wheels 21 ⁇ , 2 R.
  • the left and right motor controllers 11L, 11R that drive and control the 3L, 3R and the braking / driving force of the drive wheels 2L, 2R output from the motor controllers 11L, 11R.
  • Driving force detecting means 12L, 12R for detecting each, and wheels for detecting the rotational speed of the driving wheels 2L, 2R Sensor 13 L, 13R and said driving force detecting means 12L, 12 R at the detected longitudinal force and wheel speed sensors 13 L, 13 from the wheel speed and the detected R of the vehicle driving force
  • the fluctuation component is extracted and the braking / driving force added to that of the left and right drive wheels 2 L and 2 R is output.
  • This is output to the left and right motor controllers 11 L and 11 R, and
  • This is a vehicle control device including braking / driving force control means 14 for controlling braking means such as an ABS control device (not shown) to drive the left and right drive wheels 2L, 2R.
  • braking / driving force control means 14 for controlling braking means such as an ABS control device (not shown) to drive the left and right drive wheels 2L, 2R.
  • a sensor that generates 100 pulses or more per wheel rotation or a sensor with a rotation resolution of 1/100 or more is used to make the control cycle 5 ms ec or less. It is more preferable to use a motor having 500 or more pulses per rotation of the wheel or a rotation resolution of 1/500 or more.
  • the braking / driving force control means 14 detects a change in the steering characteristic from the steering angle signal from the steering angle detection means 5 and the steering signal from the steering sensor 6.
  • a vehicle instability determining unit for determining vehicle instability from the detected steering characteristics; a running state detecting unit for detecting a running state of the vehicle; and an accelerator signal detecting unit.
  • the braking / driving force applied to the left and right driving wheels 2L, 2R detected by the left and right driving force detecting means 12L, 12R, and the wheel speed sensor 13L The vehicle body driving force is calculated using the wheel speed signal from the 13R, and the vehicle body driving force fluctuation component extraction unit 21 that extracts the vehicle body driving force fluctuation component, and the extracted vehicle body driving force fluctuation component Is detected by the traveling state detecting means 17. Based on the running state of the vehicle and the ground load force from the ground load detecting means 7L and 7R, the braking / driving force applied to the left and right drive wheels 2L and 2R is calculated.
  • left and right motor controllers 11L and 11R it has left and right motor controllers 11L and 11R, a braking / driving force control unit 22 that outputs to the ABS control device 30, and a running state control means 20 that controls the running state of the vehicle.
  • the left and right drive wheels 2L, 2R are determined according to the steering characteristics.
  • the braking / driving force to the driving wheels 2L and 2R is controlled independently.
  • FIG. 3 is a functional block diagram showing the configuration of the traveling state control means 20.
  • the vehicle body driving power fluctuation component extracting unit 21 detects the wheel speed detected by the wheel speed sensor 13 detecting the wheel speed of the driving wheel 2.
  • Wheel torque calculating means 23 for calculating wheel torque from speed, and electric motor From the driving force F m detected by the driving force detecting means 12 for detecting the driving force (braking / driving force) generated in the evening 3 and the wheel torque F w calculated by the wheel torque calculating means 23 described above.
  • car body driving force F d F m - F w and the vehicle body driving force calculating means 2 4 for calculating a body driving force variation component to extract the fluctuation component of the plurality of frequency bands of the computed vehicle driving force F d extraction Delivery means 25.
  • the braking / driving force control unit 22 calculates a main driving force, a slip ratio control driving force, and a tire disturbance compensation driving force, which will be described later, based on the extracted fluctuation components of the vehicle body driving force.
  • Wheel control means 29 is provided for controlling the left and right drive wheels 2L, 2R based on the grounding load from the detection means 7 and controlling the vibration of the tires.
  • Vehicle driving force fluctuating component extraction unit 2 in particular, a 1 0 H z low frequency component extracting means for extracting the following frequency band component 2 5 A of the vehicle body driving force F d, the F d 0 .2 Hz to 100 Hz Middle frequency component extraction means for extracting the frequency band component of 25 Hz, and high frequency component extraction for extracting the frequency band component of 10 ⁇ to 10 kHz Means 25 C, and extracts F dL , F m , which are fluctuation components of the vehicle body driving force F d in a plurality of frequency bands, and extracts the F dL from the main driving force of the braking / driving force control unit 22 Is output to the calculating means 26, is output to the slip ratio control driving force calculating means 27, and is output to the tire disturbance compensation driving force calculating means 28.
  • a 1 0 H z low frequency component extracting means for extracting the following frequency band component 2 5 A of the vehicle body driving force F d, the F d 0 .2 Hz to 100
  • the main driving force calculating means 26 is based on the above F dL , the required driving force from the accelerator signal detecting means 4, the change in steering characteristics from the driving state detecting means 17, and the result of the determination of vehicle instability. Then, the main driving force for braking / driving drive wheel 2 (left and right drive wheels 2L, 2R) is calculated. Further, the slip ratio control driving force calculating means 2 7, upper Symbol vehicle driving force F d from the integrated and the wheel speed V w which is the vehicle speed V and the detected calculated by the cars body speed V and the wheel speed V w A speed difference is obtained, a slip ratio is calculated using the speed difference, and a slip ratio control drive for controlling braking / driving applied to the drive wheels 2 based on the above and the calculated slip ratio.
  • the tire disturbance compensation driving force calculating means 28 calculates the tire disturbance compensation driving force for compensating the disturbance acting on the tire by using the above-mentioned F ffl .
  • the wheel control means 29 calculates the braking / driving applied to each of the (drive wheel 2) of the left and right horse wheel driving wheels 2 L and 2 R from the main driving force and the slip ratio control driving force calculated above. To the motor controller 11 (left and right motor controllers 11 L and 11 R) to control the driving force of the driving wheel 2 and superimpose the tire disturbance compensation driving force on the braking / driving.
  • the tire disturbance is suppressed by applying vibration to the tires, and if necessary, the braking devices such as the ABS control device 30 are controlled to control the driving wheels 2L, 2R and the driven wheels 1L, 1R. Control to apply a braking force to the vehicle.
  • the vehicle control device 10 having the above configuration will be described.
  • the vehicle driving force F d, as shown in FIG. 5, such as the fluctuation component due to fluctuation component and panel under vibration N 2 due to disturbance of the tire contact ground includes fast fluctuation components than the vehicle body changes.
  • the low-frequency component extracting means 2 5 A extracts 1 0 H z following frequency band component of the vehicle body driving force F d, the main driving force calculating means 2 6, the vehicle body driving force F I to compensate for differences in the calculated vehicle body speed V and the detected wheel speed V w from d Unihidari controls right drive wheels 2 L, 2 II to the applied braking and driving, respectively. This result, the wheel speed V w is closer to the vehicle speed V.
  • the main driving force calculation means 26 calculates the above F dL , the necessary driving force (target driving force) from the accelerator signal detection means 4, and Based on the steering characteristic change from the state detecting means 17 and the determination result of the vehicle instability, the left and right driving wheels 2 are adjusted so that the driving force detected by the driving force detecting means 12 becomes the target driving force. Calculates the optimal value of the main driving force applied to L and 2R and outputs it to the left and right motor controllers 11L and 11R, and independently controls the left and right drive wheels 2L and 2R. I do.
  • the mid-band frequency component extracting means 25 B, the F d 0. 2Hz ⁇ : extracting a frequency band component F ffl of L 00H z, and the vehicle speed and the wheel speed by Suridzupu ratio control driving force calculating means 27 The slip rate is calculated based on the speed difference. Then, a slip ratio control driving force for compensating the driving force is calculated so that the calculated slip ratio becomes a preset slip ratio, and the main driving force is corrected by the slip ratio control driving force. To control the slip rate.
  • the low-frequency component extraction means 25A is used to extract frequency band components of the vehicle driving force of 10 Hz or less to control the main driving power of the left and right driving wheels 2L and 2R.
  • vehicle instability suppression control which is difficult to handle with sleep rate control, becomes possible.
  • the slip ratio control driving force generally does not improve even if a fast time constant change far away from the vehicle body behavior change time constant is compensated for, the effect is not suitable for controlling the wheel speed as in this example.
  • Accurate slip ratio control can be performed by using the slip ratio control driving force in the frequency band of the frequency band component F ffl of 0.2 Hz to 100 Hz.
  • the high-frequency component extraction means 25C sets 10 Hz to: LOkH extracting a frequency band component F ffl of z, the tire disturbance compensation force arithmetic unit 2 8, the evening Yui catcher disturbance compensation drive to compensate for variations in the driving force caused by disturbances and panels under vibration N 2 for I catcher ground plane
  • the tire disturbance compensation driving force is input to the wheel control means 29 and superimposed on the main driving force, thereby compensating for the disturbance due to the influence of the ground contact surface applied to the tire or vibration under the panel. ing.
  • the above disturbance may be suppressed by separately applying a small vibration to the tire.
  • the control cycle approaches the response time constant of the tire.
  • the wheels driving wheels
  • the driving force component in the frequency band caused by the dynamics of the tire is extracted and acts on the tire. It detects disturbances and controls the dynamic properties of the tires.
  • the fluctuation component of the driving force in the above frequency band is generated between the tire and the road surface, and is much faster than the behavior of the vehicle body or the operation speed of the driver, which deteriorates the grounding property between the tyre road surface.
  • the high-frequency component extraction means 25C extracts the frequency band component F ffl from 10 kHz to 10 kHz to reduce the disturbance disturbance driving force.
  • the high-frequency component extraction means 25C extracts the frequency band component F ffl from 10 kHz to 10 kHz to reduce the disturbance disturbance driving force.
  • the tread of the tread is adjusted. Eliminates the effects of micro-vibration due to the effects of pattern blocks and sipes.
  • driving force fluctuations in the frequency band of tire dynamics (frequency band of 100 Hz to 200 Hz), which is caused by the natural vibration of the tire case due to the above-mentioned disturbance, which is on the lower frequency side, are considered. Suppress.
  • the fluctuation components of the vehicle body driving force the fluctuation components at 30 Hz to 100 Hz are extracted, and the vertical panel of the tire, which increases due to the disturbance, and the resonance frequency of the front and rear panel near the resonance frequency. Suppress driving force fluctuation.
  • FIGS. 6 (a) and 6 (b) are diagrams showing frequency analysis results of the driving force Fn and the wheel speed Vw in the conventional control and the control of the present invention.
  • both of the driving force F n and the wheel speed V w, of the disturbance, including the tire disturbance It can be seen that the peak has disappeared.
  • Rukoto to suppress the tire disturbance as described above as shown in FIG. 7, 1 0 fluctuation component H z ⁇ 1 k H z due to the aforementioned tire disturbance vehicle driving force F d is suppressed Runode, transfer characteristics of the vehicle body driving force F d has also been confirmed to be improved.
  • the ground load is detected by the ground load detecting means 7 to compensate for the main driving force.
  • vertical accelerometers 8L and 8R are attached to the left and right drive wheels 2L and 2R at their respective wheel sections to reduce the force applied under the panel.
  • the suspension displacement meters 9 L and 9 I are attached to the suspension, the force applied to the suspension is calculated from the amount of displacement of the suspension and the displacement acceleration, and the displacement load is calculated by adding these two forces.
  • the above-mentioned contact load can be detected in real time by adding a load at rest obtained from the displacement amount of the suspension at rest of the vehicle to this displacement load.
  • the traveling state detecting means 17 detects a change in the steering characteristic from the steering angle signal from the steering angle detecting means 5 and the movement rate signal from the yaw rate sensor 6, and detects left and right driven wheels 2L, 2L.
  • the magnitude of the braking / driving force of R is adjusted, in this example, unlike the conventional driving force control, the left and right driving wheels 2L, 2R are independently controlled. That is, in the conventional control, since the total sum of the driving torques is constant, the driving torque of one driving wheel is limited by the driving torque of the other.
  • the drive wheels 2 L and 2 R are independently controlled.
  • the distribution of the driving force of the driving wheels 2L and 2R is conventionally performed.
  • the steering characteristic detecting means 15 and A traveling state detecting means 17 provided with a vehicle body instability determining means 16 is provided to detect a change in steering characteristics from the steering angle signal and the rotation rate signal.
  • the driving force of the left and right driving wheels 2L, 2R is controlled according to the change of the steering characteristic.
  • the driving force in the understeer (U / S) direction is increased by increasing the driving force inside the turning and decreasing the driving force outside.
  • Control to generate The tire stress takes a maximum value when no driving force is generated, and the contact load on the outside of the turn increases.
  • the turning control of this example allows the vehicle to turn without significantly impairing the turning speed of the vehicle. it can.
  • the distance between the rudder angle (X coordinate) and the center point of the trajectory of the spin point (X, Y) representing the rate (Y coordinate) is defined as an unstable parameter.
  • the body instability is determined from the size of the evening.
  • the spin point (X, Y) is located below the broken line 1 and the vehicle is turning left, so the vehicle tends to oversteer. Therefore, if the above-mentioned unstable parameter is larger than the above case and the vehicle body is determined to be unstable, the driving force inside the turn is increased and the current driving force is maintained while maintaining the current driving force. Control so that the outside driving force is reduced in proportion to the distance (unstable parameters). As a result, the hysteresis for the steering angle is reduced, and the operability and stability of the vehicle can be improved.
  • the electric motors 3L, 3R used in the present invention include, as described above, a direct drive of an outer opening and an inner opening and a one-end type that directly controls and drives the driving wheels 2L and 2R. It is preferable to use the in-wheel motor, but the gear If there is a crash, it becomes a two-perspective system and generates unnecessary vibration. Therefore, it is preferable to use a gearless direct drive in wheel. Also, in gearless direct drive-in-wheel motors, there is no gear back crash, so control at high frequencies can be performed reliably.
  • Fig. 9 is a diagram showing an example of the configuration of a gearless direct drive in-wheel motor.
  • the in-wheel motor 40 is mounted on the inner side in the wheel radial direction.
  • the ring-shaped non-rotating side case 40a and the ring-shaped rotating side case 4Ob which is concentrically arranged outside the non-rotating side case 40a and has a mouth 40R attached thereto.
  • the non-rotating side case 40a is connected to the linear motion guide member 41a and the linear motion guide member 41a.
  • a vehicle 42 which is a vehicle underbody part, via a shock absorbing mechanism 41 having a shock absorber 4 lb composed of a spring member and a damper that expands and contracts in the operating direction, and attaches the rotating case 40b.
  • the flexible force coupling 43 includes a hollow disk-shaped motor side plate 42a, a hollow disk-shaped wheel side plate 42b attached to the wheel 2, and the plates 42a, 42b.
  • the cross guide 45 includes a plurality of cross guides 45 that are orthogonal to each other, as shown in Fig. 10 (a).
  • the guide rail 45A on the motor side and the guide rail 45B on the wheel side are orthogonal to each other along the guide grooves 45a and 45b of the cross guide body 45C. Can be operated.
  • the flexible coupling 43 includes four cross guides 45 between the motor-side plate 42a and the wheel-side plate 42a.
  • the guide rails 45 A of each cross guide 45 are placed at intervals (90 ° intervals), and the operating direction of the guide rails 45 A is 4 They are arranged so that they are in the 5 ° direction. Therefore, the operating directions of the guide rails 45A of each motor side are all in the same direction (45 ° direction), and the operating directions of the guide rails 45B of each wheel are all Operation of the side guide rail 4 5 A
  • the directions are orthogonal to the directions.
  • the rotational force from the rotating case 4 Ob of the in-wheel motor 40 is first input to the motor-side guide rail 45A via the motor-side plate 42a.
  • the circumferential force input to the motor side guide rail 45 A is transmitted to the wheel side guide rail 45 B through the cross guide body 45 C to drive the wheel 44.
  • the gearless direct drive in-wheel motor 40 is used as the electric motor, and the in-wheel motor 40 is connected to the underbody of the vehicle via the shock absorbing mechanism 41 as described above.
  • the rotating case 4Ob is mounted on the wheel 44 via the flexible coupling 43, the disturbance on the ground plane input from the tire 46 will be provided. Vibration due to tire contact force fluctuation, such as vibration caused by tires and vibration under the panel, can be suppressed. Therefore, the vibration input to the wheels is further reduced, so that the frequency range to be controlled is reduced, the degree of freedom in selecting the control frequency is increased, and the fluctuation level itself is reduced. Control in the region can be easily performed, and more stable and accurate control can be performed.
  • Slip ratio control for controlling braking / driving force, and compensation for disturbance acting on tires
  • a braking / driving force control unit 22 that calculates the tire disturbance compensation driving force and controls the running state of the vehicle, and calculates the calculated main driving force, slip ratio control driving force, and tire disturbance compensation driving force.
  • the optimal driving force applied to the drive wheel 2 from This is calculated and sent to the motor controller 11 to control and drive the drive wheel 2 and to apply micro-vibration to the tire to suppress the micro-vibration that occurs between the tire and the road surface.
  • the vehicle speed can be reliably controlled, and the contact between the tire and the road surface can be improved. Therefore, steering stability can be improved, and vehicle control characteristics can be improved.
  • the turning stability of the vehicle can be improved.
  • a steering angle detecting means 5 for detecting a steering angle of the steering system
  • a rate sensor 6 for detecting a yaw rate of the vehicle body
  • an A steering characteristic detecting means 15 for detecting a steering change state such as steering or understeering
  • a vehicle body instability determining means 16 for determining the instability of the vehicle body from the change in the steering characteristic.
  • the grounding load detecting means 7L and 7R for detecting the grounding load acting on the tire are provided and the driving force is controlled based on the detected grounding load, the grounding load acting on the tire is provided. It is possible to compensate for the change in the frictional force between the tire and the road surface due to the change in the vehicle speed, and to further improve the control characteristics of the vehicle.
  • the best mode has been described for an electric vehicle, even in the case of an engine vehicle, the driving force and the wheel rotation force are detected to calculate the vehicle body driving force, and a plurality of frequencies are calculated from the fluctuation of the vehicle body driving force.
  • a similar effect can be obtained by extracting a fluctuation component of the band and controlling the driving force applied to the driving wheels based on the extracted fluctuation component of the vehicle body driving force.
  • the above-mentioned driving force is extracted by extracting a frequency band component of the vehicle driving force including the frequency band of 10 Hz to L kHz. What is necessary is to control.
  • the disturbance disturbance compensating driving force obtained by the tire disturbance compensating driving force calculating means 26 is superimposed on the main driving force to compensate for the disturbance disturbance.
  • An actuator is provided for applying minute dynamic vibration to the driving wheel 2L, 2R or the driven wheel 1L, 1R in the rotation direction or width direction of the wheel, and the actuator is calculated as described above. It is also possible to adopt a configuration in which driving is performed based on the tire disturbance compensation driving force to apply minute vibration to the evening bar and reduce the influence of the evening disturbance.
  • the driving force detecting means 12 L, 12 R generates an electric motor 3 driving the driving wheels 2 L, 2 R output from the motor controller 11 L, 11 R.
  • the driving force is detected by detecting the torque of the output shaft of motor 3 or by directly detecting the driving current of motor 3.
  • the driving force for generating 3 may be obtained.
  • a driving force F n and the wheel rotational force F w generated by the electric motor evening 3 for braking and driving the driving wheels 2 calculates a vehicle driving force F d
  • the vehicle driving force F d Based on the multiple fluctuation components, the driving wheel 2 was controlled or driven, or the tires were slightly vibrated, but the frequency range was higher than the behavior of the vehicle body or the driver's operation speed.
  • the vibration caused by the fluctuation of the ground contact force of the tire in the frequency band of Hz to 10kHz is mainly reflected in the fluctuation of the wheel such as the fluctuation of the wheel speed and the wheel rotation force.
  • a wheel speed sensor 13 detects a wheel speed of a driving wheel 2 to extract a fluctuation component of the wheel speed, and controls a motor 3 to control an electric motor 3.
  • the wheel speed fluctuation that is, the tire ground contact surface shown in FIG.
  • Disturbance Such as fluctuation component due to fluctuation component and panel under vibration N 2 by 2Z, performs control so as to cancel the variation of the wheel due to the ground force variation of the tire.
  • a fluctuation component in the frequency band of 110 112 to 101 1 112 is used as a fluctuation component of the wheel speed sensor 13 used for control.
  • a wheel rotation force fluctuation component calculated from the wheel speed is obtained, and the electric motor 3 is controlled so as to cancel out the wheel rotation force fluctuation component. You may.
  • a turning traveling test was performed using an electric vehicle of two-wheel independent control as an experimental vehicle, and a critical turning speed was measured.
  • the road friction coefficient of the test road is 0.4 and the radius of gyration is 30 m.
  • the vehicle keeps turning while increasing the speed of the vehicle, and the speed when the steering amount exceeds the threshold is defined as the limit speed.
  • the test vehicle shows an over-steer tendency in the marginal area. Therefore, taking a left turn as an example, the steering angle will swing to the right in the limit area to suppress spin, and the speed at the time of turning to the right is defined as the above limit speed.
  • Control (1) performs tire disturbance compensation
  • control (2) performs tire disturbance compensation
  • And sleep rate control
  • Table 2 below shows a 10-point evaluation of the steering feeling in the above-mentioned limit range by the conventional control and the control according to the present invention (without load compensation and with load compensation).
  • the steering feeling has already been improved compared to the conventional one.
  • the steering filling performance was further improved by performing load compensation.
  • the driving force applied to the driving wheels and the wheel rotational force are detected, and the vehicle driving force is calculated from the detected driving force and the wheel rotational force.
  • the vehicle driving force is calculated from the detected driving force and the wheel rotational force.
  • the braking / driving the wheels or giving vibration to the wheels Since the running state is controlled, the braking / driving force applied to the wheels can be appropriately controlled, and the influence of the minute vibration of the tire can be compensated. Therefore, the contact property of the tire is improved, and the steering stability of the vehicle can be improved. Further, since the control of the attitude and speed of the vehicle and the control of the sleep rate can be performed in an appropriate control frequency range, stable vehicle control can be performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Regulating Braking Force (AREA)
  • Vehicle Body Suspensions (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Description

明 細 車両制御方法及び車両制御装置 技術分野
本発明は、 車両の制御方法に関するもので、 特に、 車輪に加わる制駆動力を適 切に制御するとともに、 夕ィャに作用する外乱を抑制するための制御方法とその 装置に関する。 背景技術
従来、 駆動輪に加わる駆動力を制御して車両の走行状態を制御する方法として は、 エンジン駆動車であれば、 入力されたアクセル信号に基づき、 エンジンの目 標回転数を演算し、 車速センサで検出される実際の車速が上記目標回転数から算 出される車速になるように、 スロヅトルバルブ開度などを制御してエンジン回転 数を制御して、 駆動輪に連結される出力軸に加えられる駆動トルクを制御する方 法が一般的である。
また、 電気モー夕により駆動輪を制駆動する電気自動車においては、 第 1 2図 の制御フローに示すように、 駆動トルク検出手段 5 1により、 駆動輪 5 O Rを制 駆動する電気モ一夕 5 0 Mの出力トルクを検出するとともに、 車輪速センサ 5 2 で車輪速を検出し、 目標車輪速演算手段 5 3にて、 必要とされる駆動トルクを得 るための目標駆動力 (モー夕トルク指令値) と上記検出されたモ一夕の出力トル クとを用いて、 上記検出された車輪速が上記目標車輪速になるように、 粘着状態 における目標車輪速を演算し、 モー夕駆動 ·制御手段 5 4により、 上記電気モー 夕 5 0 Mの発生する制駆動力を制御して駆動輪 5 O Rに加えられる制駆動力を制 御するようにしている。 このとき、 上記車輪回転力と車体駆動力との比が、 車輪 の質量と車体の質量との比となるように制御される。 なお、 上記モー夕 5 0 Mの 発生する制駆動力は、 モ一夕出力軸のトルクを検出したり、 モー夕電流を直接検 出したりするなどして、 モー夕駆動 ·制御手段 5 4にて、 上記電気モ一夕 5 0 M に流れる電流の大きさを制御する。 z また、 電気モー夕 50Mの出力トルクの変動に伴う車両の振動が発生した場合 、 これを制御する方法として、 例えば、 モー夕トルクをモ一夕回転角度 0mもし くは回転速度 ωιηとして検出し、 この 6>mもしくは ωιηと、 プラントモデルで推 定されたモー夕回転角度の推定値 6»me もしくは回転速度の推定値 c me との偏差 eを算出し、 この偏差 eから外乱トルクを推定して実プラントに入力されるモー 夕トルクを制御する方法 (例えば、 特開 2000— 217209号公報参照) や 、 モータの平均回転数 ωΜと駆動輪の平均回転数 ω bとを検出してその偏差△ ω を算出し、 この偏差 Δωにゲイン kを乗じた補正値て, を用いてモー夕へ入力す るトルク指令て Mを補正する方法 (例えば、 特開 2002— 152916号公報 参照) などが提案されている。
また、 スイッチング回路にて駆動する SRモー夕を用いた車両において、 モー 夕から検出したモー夕回転数信号から、 バンドパスフィル夕により上記共振周波 数帯域の信号を取り出してこれをフィードバックして、 上記モー夕または車体の 共振に起因するモー夕振動によるモー夕軸の回転ムラを低減する方法も提案され ている (例えば、 特開 2002— 171778号公報参照) 。
また、 上記の車両制御においては、 ョ一レートセンサや車速センサで検出され る車両の姿勢や車速の制御を行う際に、 制御対象である車両の挙動の時定数に応 じて駆動輪に加わる制駆動力を制御するようにしている。 具体的には、 ループ内 にローパスフィル夕を設けて上記車両の挙動に対するノィズ成分となる高周波成 分を除去することにより、 エンジン駆動車では、 約 100msec〜10sec の、 電気自動車では、 約 1 ms e c〜 10 s e cの制御周期で駆動輪に加わる制 駆動力を制御する。
一方、 低//路での走行においては、 路面//を推定し、 この路面 に基づいて車 両の走行状態を制御する方法が行われている。 路面〃の推定方法としては、 例え ば、 タイヤと路面との間の摩擦特性を含む車輪共振系への入力に対する応答出力 の精度向上のため車輪速の振動を抽出し、 この車輪速の振動から周期的な振動の みを選択し、 この周期的な振動に基づいて車輪共振系の伝達関数を同定すること により路面/ zを推定する方法が提案されている (例えば、 特開平 11— 1781 20号公報参照) 。 また、 低//路での急発進における車輪のスピン抑制のためには、 第 1 2図に示 すように、 車体速センサ 5 5を用いて車体速を検出し、 スリップ率演算手段 5 6 にて、 上記検出された車体速と車輪速センサ 5 2を用いて検出された車輪速とか ら車輪スピンによって発生する車輪速一車体速間の速度差によって決定されるス リヅプ率を演算し、 上記スリヅプ率が予め設定されたスリヅプ率になるように上 記目標車輪速を補正して上記スリップ率の上昇を抑制し、 制駆動距離を短縮する 制御を行っているが、 この制御についても、 車両挙動の情報を基に駆動輪に加わ る制駆動力の制御を行うため、 同じ制御周波数での制御を行つている。
また、 車体速と車輪速との速度差からスリップ率を算出する代わりに、 駆動輪 部の加速度を加速度センサで検出し、 この加速度センサの出力と駆動輪の回転増 加量との関係から、 当該車両がスリップしているかどうかを判定し、 スリヅプと 判定した場合にはモ一夕トルクを減少させる制御方法も提案されている (例えば 、 特開平 1 1一 1 7 8 1 2 0号公報参照) o
また、 路面状態に応じて、 タイヤに車体の応答周波数よりも高い周波数をもつ 微小振動を与えてタイャと路面間の摩擦力を変化させることで、 タイャのスリッ プ率またはスリヅプ角を一定の状態を維持したままで、 タイヤの摩擦力を制御し て車両の走行状態を制御する方法も提案されいる (例えば、 国際公開第 0 2 / 0
0 4 6 3号パンフレツト参照) 。 しかしながら、 上記エンジン駆動車の一般的車両制御では、 周期が 1 0 0 m s e c以下の、 路面状態の変化に起因するタイヤ接地圧の変動やサスペンションを 含むパネ下振動の変化等によるタイヤに加わる外乱 (微小振動) の影響を補償す ることができないため、 タイャの接地性を悪化させているといつた問題点があつ た。 一方、 電気自動車においては、 上記エンジン駆動車よりも短い周期の制御が 可能であるにもかかわらず、 上記検出されたモ一夕トルクや車輪速に含まれる、 車体の応答周波数よりも高い周波数領域の変動成分を特ィ匕することができないた め、 上記夕ィャに加わる外乱の影響を補償することができなかった。
また、 タイヤに直接微小振動を与える方法では、 タイヤの摩擦力制御のみを行 つているため、 車両の姿勢や車速の制御については十分とはいえなかった。 更に、 車両の姿勢や車速の制御やスリップ率の制御を、 同じ制御周波数範囲で 行っているため、 車両の姿勢や車速の制御に対しては、 オーバ一フィードバック になるなど、 十分な車両制御ができなかった。 本発明は、 従来の問題点に鑑みてなされたもので、 タイヤに加わる外乱を補償 して、 タイヤー路面間の接地性を向上させ、 車両の操縦安定性を向上させること のできる車両制御方法とその装置を提供することを目的とする。 発明の開示
本発明者らは、 鋭意検討を重ねた結果、 車輪速または車体駆動力の変動を抽出 し、 この抽出された車輪速または車体駆動力の変動を抑制する制御を行うこどに より、 車両の走行状態を安定させることができることを見いだし、 本発明に到つ たものである。 具体的には、 車輪速センサにより検出される車輪速や、 駆動輪に 加えられる駆動力と車輪回転力とから求められる、 タイャ接地面で発生している 、 車体を前進させるための車体駆動力のいずれかに含まれる車体の姿勢や車速の 変化、 更には、 タイヤ外乱に起因する変動成分を分離して抽出し、 これらの各変 動成分を直接目標駆動力にフィ一ドバックしたり、 各変動成分に応じて駆動輪に 加えられる駆動力や制動力を制御したり、 更には、 タイヤに振動を与えて上記夕 ィャ外乱によるタイャ変形を抑制したりするなどして駆動力の変動や上記外乱に 起因する振動を抑制することにより、 安定した車両制御が可能となる。
すなわち、 本発明の請求の範囲 1に記載の車両制御方法は、 駆動輪に加えられ る駆動力と車輪回転力とを検出して、 上記検出された駆動力と車輪回転力とから 車体駆動力を算出し、 上記算出された車体駆動力の、 少なくとも 1つの周波数帯 域の変動成分を抽出し、 上記抽出された車体駆動力の変動成分に基づいて、 車輪 を制駆動したり、 車輪に振動を与えたりして、 車両の走行状態を制御するように したことを特徴とする。
請求の範囲 2に記載の車両制御方法は、 上記算出された車体駆動力の複数の周 波数帯域における変動成分を抽出し、 上記抽出された車体駆動力の変動成分に基 づいて、 駆動輪に加えられる制駆動力を制御するようにしたことを特徴とするも ので、 これにより、 車両の制駆動や姿勢制御、 スリップ率の上昇抑制、 タイヤ外 乱の補償等の制御を同時にかつ的確に行うことが可能となる。
請求の範囲 3に記載の車両制御方法は、 エンジンにより駆動される車両におい て、 駆動輪の出力軸に加えられる駆動力を検出して、 上記駆動力と車輪回転力と から算出される車体駆動力の、 少なくとも 10Hz〜lkHzの周波数帯域を含 む変動成分を抽出し、 上記抽出された変動成分に基づいて車両の走行状態を制御 するようにしたもので、 これにより、 周期が 100ms e c以下の、 路面状態の 変化に起因するタイヤ接地圧の変動やサスペンションを含むバネ下振動の変化等 によるタイヤに加わる外乱 (微小振動) の影響を補償することが可能となり、 夕 ィャの接地性を向上させることができる。
また、 請求の範囲 4に記載の車両制御方法は、 モー夕により制駆動される車両 において、 駆動輪を制駆動するモ一夕の発生する制駆動力を検出して、 上記制駆 動力と車輪回転力とから算出される車体駆動力の、 少なくとも 10Hz〜l Ok H zの周波数帯域を含む変動成分を抽出し、 上記抽出された変動成分に基づいて 車両の走行状態を制御するようにしたもので、 これにより、 周期が 100 ms e c以下の、 路面状態の変化に起因する夕ィャ接地圧の変動ゃサスペンシヨンを含 むパネ下振動の変化等によるタイヤに加わる外乱 (微小振動) の影響を確実に補 償することが可能となり、 タイャの接地性を更に向上させることができる。 請求の範囲 5に記載の車両制御方法は、 上記車体駆動力の変動成分のうち、 1 0Hz〜 200Hzにおける変動成分を抽出して、 車体駆動力の変動を抑制する 制御を行うようにしたことを特徴とするもので、 これにより、 上言己 10Hz〜l 0 kHzの変動成分のうち、 トレヅドのパターンプロックやサイプの影響による 微細振動よりも低周波側にある、 タイャケースの固有振動などに起因する夕ィャ ダイナミックスの周波数帯域での外乱を抑制して、 車体駆動力の変動を低減する ことが可會 となる。
請求の範囲 6に記載の車両制御方法は、 上記車体駆動力の変動成分のうち、 3 0Ηζ~100 Hzにおける変動成分を抽出して、 車体駆動力の変動を抑制する 制御を行うようにしたことを特徴とするもので、 これにより、 上記 10Hz〜l 0kHzの変動成分のうち、 タイヤの縦パネ、 及び、 前後パネの共振周波数近傍 での外乱を抑制することが可能となる。
請求の範囲 7に記載の車両制御方法は、 請求の範囲 1〜請求の範囲 6のいずれ かに記載の車両制御方法において、 左, 右の駆動輪を独立に制御するようにした ことを特徴とするもので、 従来のギア等の差動装置(デフ) によるトルク配分と は異なり、 他方の駆動輪の駆動トルクによる制限がないので、 左, 右の駆動輪の 駆動トルクを適切に設定することが可能となる。
請求の範囲 8に記載の車両制御方法は、 上記請求の範囲 7に記載の車両制御方 法において、 ステアリング特性の変化に基づいて左, 右の駆動輪をそれそれ制御 するようにしたもので、 これにより、 ステアリング特性の変化を抑制できるので 、 車両の姿勢や車速の制御を確実に行うことが可能となる。
請求の範囲 9に記載の車両制御方法は、 タイヤに作用する接地荷重に基づいて 車両の走行状態を制御するようにしたもので、 これにより、 タイヤに作用する接 地荷重の変化に伴うタイヤ一路面間の摩擦力の変化を補償することができ、 車両 の制御特性を更に向上させることが可能となる。
また、 請求の範囲 1 0に記載の車両制御方法は、 少なくとも 1つの周波数帯域 の車輪速や車輪回転力の変動などの、 車輪の変動を抽出し、 上記抽出された車輪 の変動に基づいて、 上記車輪の変動を抑制するように駆動輪を制駆動することを 特徴とする。
請求の範囲 1 1に記載の車両制御方法は、 請求の範囲 1 0に記載の車両制御方 法において、 上記車輪の、 少なくとも 1 0 H z〜l 0 k H zの周波数帯域を含む 変動を抽出し、 この抽出された車輪の変動を用いて駆動輪を制駆動するモ一夕の 制駆動力を制御するようにしたことを特徴とする。
また、 請求の範囲 1 2に記載の車両制御装置は、 駆動輪の車輪速を検出する手 段と、 上記検出された車輪速から車輪回転力を算出する手段と、 上記駆動輪に加 えられる駆動力を検出する手段と、 上記駆動力と車輪回転力とから車体駆動力を 演算する手段と、 上記演算された車体駆動力から少なくとも 1つの周波数帯域の 変動成分を抽出する手段と、 上記抽出された車体駆動力の変動成分に基づいて車 両の走行状態を制御する走行状態制御手段とを備え、 車体駆動力の変動成分に含 まれる車体の姿勢や速度の変化、 更には、 タイヤ外乱に起因する変動成分を分離 して抽出し、 これらの変動成分に基づいて車両の走行状態を制御することにより 、 車両制御特性を向上させるようにしたものである。
請求の範囲 1 3に記載の車両制御装置は、 駆動輪を制駆動するモ一夕の発生す る制駆動力を検知して、 上記駆動輪に加えられる制駆動力を検出するようにした ものである。
請求の範囲 1 4に記載の車両制御装置は、 請求の範囲 1 2または請求の範囲 1 3に記載の車両制御装置において、 上記走行状態制御手段に、 上記抽出された車 体駆動力の変動成分に基づいて車輪を制駆動する手段を設けたものである。 請求の範囲 1 5に記載の車両制御装置は、 上記車体駆動力の、 0 . 2 H z〜 1 0 0 H zの周波数帯域の変動成分を抽出して車体速度と車輪速度との速度差を算 出する手段を設け、 上記算出された速度差に基づいて車輪を制駆動するようにし たもので、 これにより、 スリップ率の上昇を抑制して、 適切な車輪速制御を行う ことが可能となる。
また、 請求の範囲 1 6に記載の車両制御装置は、 左, 右の駆動輪を独立に制御 して、 車両の旋回安定性を向上させるようにしたものである。
請求の範囲 1 7に記載の車両制御装置は、 左, 右の駆動輪の車体駆動力の 1 0 H z以下の周波数帯域の変動成分をそれぞれ抽出する手段を設け、 上記抽出され た各変動成分に基づいて左, 右の駆動輪をそれそれ制御することにより、 ステア リングの変化に伴う不安定化を抑制して、 車両の姿勢制御や車速の制御を確実に 行うことを可能としたものである。
請求の範囲 1 8に記載の車両制御装置は、 操舵系の舵角を検出する手段と、 車 体のョーレートを検出する手段と、 上記検出された舵角とョ一レートの大きさか ら、 ステアリング特性の変化を検出するとともに車体の不安定性を判定する手段 とを設け、 車体が不安定と判定された場合には、 上記ステアリング特性の変ィ匕に 応じて、 旋回内側の駆動輪、 及び、 旋回外側の駆動輪のいずれか一方、 あるいは 両方を制駆動するようにしたもので、 これにより、 姿勢制御の安定性を更に向上 させることが可能となる。
また、 請求の範囲 1 9に記載の車両制御装置は、 請求の範囲 1 2〜請求の範囲 1 8のいずれかに記載の車両制御装置において、 上記走行状態制御手段に、 タイ ャに振動を与える手段を設けて、 タイヤに加わる微小振動の影響を補償するよう にしたものである。
請求の範囲 2 0に記載の車両制御装置は、 上記車体駆動力の 1 0 H z〜 1 0 k H zの周波数帯域の変動成分を抽出してタイヤに作用する外乱の大きさを算出す る手段を設け、 上記算出された外乱の大きさに基づいてタイヤに振動を与えるよ うにしたものである。
請求の範囲 2 1に記載の車両制御装置は、 上記車体駆動力の変動成分のうち、 1 0 H z〜2 0 0 H zにおける変動成分を抽出して、.上記変動成分に含まれる夕 ィャケースの固有振動などに起因するタイヤダイナミヅクスの周波数帯域での外 乱を抑制し、 車体駆動力の変動を低減する制御を行うようにしたものである。 請求の範囲 2 2に記載の車両制御装置は、 上記車体駆動力の変動成分のうち、 3 0 Η ζ〜1 0 0 H zにおける変動成分を抽出して、 上記変動成分に含まれる夕 ィャの縦パネ、 及び、 前後パネの共振周波数近傍での外乱を抑制し、 車体駆動力 の変動を低減する制御を行うようにしたものである。
また、 請求の範囲 2 3に記載の車両制御装置は、 請求の範囲 1 2〜請求の範囲 2 2のいずれかに記載の車両制御装置において、 タイヤに作用する接地荷重を検 出する手段を設け、 上記検出された接地荷重に基づいて車両の走行状態を制御す るようにしたもので、 これにより、 タイヤに作用する接地荷重の変化に伴うタイ ャ—路面間の摩擦力の変化を補償することができるので、 車両の制御特性を更に 向上させることが可能となる。
請求の範囲 2 4に記載の車両制御装置は、 請求の範囲 2 3に記載の車両制御装 置において、 サスペンションの変位量を検出する手段と、 ホイールの上下加速度 を検出する手段と、 上記検出されたサスペンションの変位量とホイールの上下加 速度とから上記接地荷重を算出する手段とを備え、 タイヤに作用する接地荷重を 検出するようにしたものである。
また、 請求の範囲 2 5に記載の車両制御装置は、 駆動輪の車輪速を検出する手 段と、 上記検出された車輪速の少なくとも 1 0 H z〜: L O kH zの周波数帯域の 変動成分を抽出する手段と、 上記抽出された車輪速の変動成分を用いて駆動輪を 制駆動するモー夕の発生する制駆動力を補正する走行状態制御手段とを備えたも ので、 これにより、 タイヤ外乱に起因する車輪速の変動を低減して車両の走行状 態を安定させることが可能となる。
また、 請求の範囲 2 6に記載の車両制御装置は、 請求の範囲 1 2〜請求の範囲 2 5のいずれかに記載の車両制御装置において、 上記モ一夕を、 直接駆動輪を駆 動するダイレクトドライブモ一夕としたものである。
請求の範囲 2 7に記載の車両制御装置は、 上記モー夕を、 車輪に取付けられた 電気モ一夕によりホイールを駆動するインホイールモ一夕としたものである。 請求の範囲 2 8に記載の車両制御装置は、 上記モ一夕を、 ギヤレスのダイレク トドライブインホイ一ルモ一夕とすることにより、 ギヤのバッククラッシュに起 因する'振動をなくして、 高い周波数での制御を確実に行うことができるようにし たものである。
請求の範囲 2 9に記載の車両制御装置は、 上記モ一夕を、 緩衝部材または緩衝 装置を介して、 車輛パネ下部、 及び、 車体側のいずれか一方、 あるいは、 両方に 取付けて、 車両の凹凸路走行時における接地力の変動レベルを低減するようにし たもので、 これにより、 制御すべき周波数領域が少なくなり、 制御周波数の選択 の自由度が大きくなるとともに、 変動レベルそのものが小さくなつているので、 高い周波数領域での制御を容易に行うことができる。 図面の簡単な説明
第 1図は、 本発明の車両制御装置を搭載した車両の構成を示す図である。 第 2図は、 本発明の最良の形態に係る車両制御装置の構成を示す図である。 第 3図は、 本最良の形態に係わる駆動力制御手段の構成を示す図である。 第 4図は、 本発明の車両制御の制御ァルゴリズムを示す模式図である。
第 5図は、 タイヤに作用する外乱を示す模式図である。
第.6図は、 本発明によるタイャ外乱の抑制効果を示す図である。
第 7図は、 車体駆動力の伝達特性を示す図である。
第 8図は、 本発明による車体不安定性の判定方法を示す図である。
第 9図は、 ギヤレスのダイレクトドライブインホイ一ルモ一夕の一例を示す図 である。 第 10図は、 上記ィンホイ一ルモ一夕に使用されるフレキシブルカツプリング の一構成例を示す図である。
第 11図は、 本発明の車両制御の他の制御アルゴリズムを示す模式図である。 第 12図は、 従来の車両制御方法を示すプロック図である。 発明を実施するための最良の形態
以下、 本発明の最良の形態について、 図面に基づき説明する。
第 1図は、 本発明による車両制御装置 10を搭載した車両の構成を示す模式図 であり、 第 2図は上記車両制御装置 10の制御ブロック図である。 本例では、 2 台の電動モー夕により左, 右の後輪を独立に制駆動する 2輪独立制御の電気自動 車について説明する。各図において、 1 L, 1Rは従動輪である左, 右の前輪、 2L, 2Rは駆動輪である左, 右の後輪、 3L, 3Rは上記左, 右の後輪 (以下 、 駆動輪という) 2L, 2 Rを制駆動する電気モータで、 この電気モー夕 3 L, 3Rとしては、 駆動輪 2 L, 2 Rを直接制駆動するダイレクトドライブモー夕を 用いることが好ましく、 特に、 ァゥ夕一口一夕型あるいはインナ一口一夕型のィ ンホイールモー夕を用いることが好ましい (但し、 第 1図では、 発明の構成を見 易くするため、 電気モ一夕 3L, 3Rを駆動輪 2L, 2Rの外側に表示した) 。
4は図示しないアクセルペダルの閧度を検出して車両の必要駆動力信号を出力 するアクセル信号検出手段、 5はステアリング系の舵角を検出する舵角検出手段 、 6は車体のョ一角速度を検出するョ一レートセンサ、 7L, 7Rは左, 右のホ ィール部にそれそれ取付けられた上下加速度計 8 L, 8Rと、 左, 右のサスペン シヨン部にそれそれ取付けられたサスペンション変位計 9 L, 9Rとを備え、 左 , 右の駆動輪 2 L, 2 Rのタイヤに作用する接地荷重を検出する接地荷重検出手 段、 10は駆動輪21^, 2 Rを制駆動する電気モー夕 3 L, 3 Rを駆動'制御す る左, 右のモー夕コントローラ 11 L, 11 Rと、 このモ一タコントロ一ラ 11 L, 11Rから出力される駆動輪 2L, 2 Rの制駆動力をそれそれ検出する駆動 力検出手段 12L, 12Rと、 上記駆動輪 2L, 2 Rの回転速度を検出する車輪 速センサ 13 L, 13Rと、 上記駆動力検出手段 12L, 12 Rで検出された制 駆動力と、 車輪速センサ 13 L, 13 Rで検出された車輪速とから車体駆動力の 変動成分を抽出して左, 右の駆動輪 2 L, 2 Rのそれそれに加える制駆動力を演 箅し、 これを上記左, 右のモー夕コントローラ 11 L, 1 1Rに出力するととも に、 図示しない ABS制御装置等の制動手段を制御して、 左, 右の駆動輪 2 L, 2 Rを制駆動する制駆動力制御手段 14とを備えた車両制御装置である。
なお、 上記車輪速センサ 13L, 13Rとしては、 制御周期を 5ms e c以下 にするためには、 車輪 1回転当たり 100パルス以上を発生するセンサ、 あるい は回転分解能が 1/100以上のセンサを用いることが好ましく、 車輪 1回転当 たり 500パルス以上、 あるいは回転分解能が 1/500以上のものを用いるよ うにすれば、 更に好ましい。
制駆動力制御手段 14は、 第 2図に示すように、 舵角検出手段 5からの舵角信 号とョ一レートセンサ 6からのョ一レート信号とから、 ステアリング特性の変化 を検出するステアリング特性検出手段 15と、 上記検出されたステアリング特性 から車両の不安定性を判定する車両不安定性判定手段 16とを有し、 車両の走行 状態を検出する走行状態検出手段 17と、 アクセル信号検出手段 4からの必要駆 動力信号と、 左, 右の駆動力検出手段 12 L, 12 Rで検出された左, 右の駆動 輪 2 L, 2 Rに加えられる制駆動力と、 車輪速センサ 13 L, 13Rからの車輪 速信号とを用いて車体駆動力を演算するとともに、 上記車体駆動力の変動成分を 抽出する車体駆動力変動成分抽出部 2 1、 及び、 上記抽出された車体駆動力変動 成分と、 上記走行状態検出手段 17で検出された車両の走行状態と、 接地荷重検 出手段 7L, 7 Rからの接地荷重力とに基づいて、 左, 右の駆動輪 2 L, 2Rの それそれに加えられる制駆動力を演算して左, 右のモ一夕コントローラ 11 L, 1 1 Rや、 AB S制御装置 30に出力する制駆動力制御部 22とを有し、 車両の 走行状態を制御する走行状態制御手段 20とを備え、 左, 右の駆動輪 2 L, 2R や前輪 1 L, 1 Rを制駆動するとともに、 車体が不安定と判定された場合には、 上記ステアリング特性の変ィ匕に応じて、 左, 右の駆動輪 2 L, 2Rへの制駆動力 を独立に制御するようにしている。
第 3図は、 上記走行状態制御手段 20の構成を示す機能プロック図で、 車体駆 動力変動成分抽出部 2 1は、 駆動輪 2の車輪速を検出する車輪速センサ 13で検 出された車輪速から車輪回転力を算出する車輪回転力算出手段 23と、 電気モー 夕 3の発生する駆動力 (制駆動力) を検出する駆動力検出手段 1 2で検出された 駆動力 Fmと、 上記車輪回転力算出手段 2 3で算出された車輪回転力 Fwとから車 体駆動力 Fd= Fm— Fwを演算する車体駆動力演算手段 2 4と、 上記演算された 車体駆動力 Fdの複数の周波数帯域の変動成分を抽出する車体駆動力変動成分抽 出手段 2 5とを備えている。 また、 制駆動力制御部 2 2は、 上記抽出された車体 駆動力の各変動成分に基づいて後述する主駆動力, スリップ率制御駆動力, タイ ャ外乱補償駆動力をそれそれ演算する主駆動力演算手段 2 6と、 スリヅプ率制御 駆動力算出手段 2 7と、 タイヤ外乱補償駆動力演算手段 2 8と、 上記主駆動力, スリップ率制御駆動力, タイヤ外乱補償駆動力、 及び、 接地荷重検出手段 7から の接地荷重とに基づいて、 左, 右の駆動輪 2 L , 2 Rを制駆動したり、 タイヤに 振動を与えるたりする制御を行う車輪制御手段 2 9とを備えている。
車体駆動力変動成分抽出手段 2 5は、 詳細には、 上記車体駆動力 Fdの 1 0 H z以下の周波数帯域成分 を抽出する低域周波数成分抽出手段 2 5 Aと、 上記 Fdの 0 . 2 H z〜 l 0 0 H zの周波数帯域成分 を抽出する中域周波数成分 抽出手段 2 5 Bと、 1 0 Η ζ〜 1 0 k H zの周波数帯域成分 を抽出する高域 周波数成分抽出手段 2 5 Cとを備え、 車体駆動力 Fdの複数の周波数帯域の変動 成分である FdL, Fm, をそれぞれ抽出して、 上記 FdLを制駆動力制御部 2 2 の主駆動力演算手段 2 6に、 をスリップ率制御駆動力算出手段 2 7に、 をタイャ外乱補償駆動力演算手段 2 8に出力する。
主駆動力演算手段 2 6は、 上記 FdLと、 アクセル信号検出手段 4からの必要駆 動力、 及び、 走行状態検出手段 1 7からのステアリング特性変化、 及び、 車両不 安定性の判定結果に基づき、 駆動輪 2 (左, 右の駆動輪 2 L , 2 R) を制駆動す るための主駆動力を演算する。 また、 スリップ率制御駆動力算出手段 2 7は、 上 記車体駆動力 Fdを積算して算出した車体速 Vと上記検出した車輪速 Vwとから車 体速 Vと車輪速 Vwとの速度差を求め、 この速度差を用いてスリヅプ率を算出す るとともに、 上記 と、 上記算出されたスリップ率とに基づいて駆動輪 2に加 えられる制駆動を制御するためのスリップ率制御駆動力を演算する。 また、 タイ ャ外乱補償駆動力演算手段 2 8は、 上記 Ffflを用いて、 タイヤに作用する外乱を 補償するためのタイャ外乱補償駆動力を演算する。 車輪制御手段 2 9は、 上記演算された主駆動力、 スリップ率制御駆動力から、 左, 右の馬区動輪 2 L, 2 Rの (駆動輪 2 ) のそれぞれに加えられる制駆動を演算 してモー夕コントローラ 1 1 (左, 右のモ一夕コントローラ 1 1 L, 1 1 R) に 送り、 駆動輪 2の駆動力を制御したり、 上記タイヤ外乱補償駆動力を上記制駆動 に重畳してタイヤに振動を加えて上記タイヤ外乱を抑制するとともに、 必要に応 じて、 AB S制御装置 3 0等の制動装置を制御して駆動輪 2 L , 2 R及び従動輪 1 L , 1 Rに制動力を与える制御を行う。 次に、 上記構成の車両制御装置 1 0の動作について説明する。
電気モ一夕 3の発生する駆動力 Fnは、 第 4図に示すように、 駆動輪 2を回転 させるための車輪回転力 と、 車体を前進させるための車体駆動力 Fdとに分け られる。 したがって、 モータコントローラ 1 1から得られる電気モ一夕 3の発生 する駆動力 Fnと、 車輪速センサ 1 3で検出された駆動輪 2の車輪速 Vwの変化か ら得られる車輪回転力 Fwとから、 タイヤ接地面で発生している車体駆動力 Fd= Fm— Fwが求められる。 この車体駆動力 Fdは、 第 5図に示すように、 タイヤ接 地面の外乱 による変動成分やパネ下振動 N2による変動成分のような、 車体変 化よりも速い変動成分を含んでいる。
そこで、 本例では、 車輪回転力算出手段 2 3により、 車輪速センサ 1 3で検出 された駆動輪 2の車輪速 Vwとから車輪回転力 Fwを算出するとともに、 車体駆動 力演算手段 2 4により、 駆動力検出手段 1 2で検出された電気モー夕 3の発生す る駆動力 Fmと、 上記車輪回転力 Fwとから車体駆動力 Fd= Fn—: Fwを演算した後 、 車体駆動力変動成分抽出手段 2 5により、 上記車体駆動力 Fdの複数の周波数 帯域の変動成分を抽出する。
具体的には、 低域周波数成分抽出手段 2 5 Aにより、 上記車体駆動力 Fdの 1 0 H z以下の周波数帯域成分 を抽出し、 主駆動力演算手段 2 6により、 上記 車体駆動力 Fdから算出した車体速 Vと検出された車輪速 Vwとの差を補償するよ うに左, 右の駆動輪 2 L, 2 IIに加えられる制駆動をそれぞれ制御する。 この結 果、 車輪速 Vwは車体速 Vに近づく。 このとき、 主駆動力演算手段 2 6は、 上記 FdLと、 アクセル信号検出手段 4からの必要駆動力 (目標駆動力) 、 及び、 走行 状態検出手段 17からのステアリング特性変化、 及び、 車両不安定性の判定結果 とに基づき、 上記駆動力検出手段 12で検出された駆動力が目標駆動力になるよ うに、 左, 右の駆動輪 2 L, 2 Rに加えられる主駆動力の最適値をそれそれ演算 して、 左, 右のモー夕コントローラ 11 L, 11Rに出力し、 左, 右の駆動輪 2 L, 2 Rを独立に制御する。
また、 中域周波数成分抽出手段 25 Bでは、 上記 Fdの 0. 2Hz〜: L 00H zの周波数帯域成分 Ffflを抽出して、 スリヅプ率制御駆動力算出手段 27により 車体速度と車輪速度との速度差を算出して、 上記速度差に基づいてスリップ率を 算出する。 そして、 上記算出されたスリップ率が予め設定されたスリップ率にな るように、 上記駆動力を補償するスリップ率制御駆動力を算出し、 このスリップ 率制御駆動力により、 上記主駆動力を補正してスリップ率を制御する。
具体的には、 車両が通常路面 ( =1) から水溜まりなどの低 路に進入した ±易合には、 低/ z路では駆動力が路面に伝わらないため、 車輪は空転する。 このた め、 抽出される車輪速 vwは上昇し、 上記抽出された車輪速 vwの変動成分の上昇 により、 車輪速 Vwと車体速 V間に速度差が生じスリップ率が上昇する。 このと き、 目標スリップ率を λとすると、 車体速 Vに対して、 車輪速 Vwを V= (1— λ) vwとなるように、 上記スリヅプ率制御駆動力を求めるようにする。 なお、 本例では、 上述したように、 車体速 Vを車体駆動力 Fdを積算して算出するよう にしているので、 車速センサなど車体速度の情報なしにスリヅプ率の制御を行う ことができる。
また、 本例では、 低域周波数成分抽出手段 25 Aを用いて、 車体駆動力 の 10 Hz以下の周波数帯域成分 を抽出して左, 右の駆動輪 2L, 2Rの主駆 動力をそれそれ制御するようにしているので、 スリヅプ率制御では対応が難しい 車両不安定化抑制制御が可能となる。 また、 スリップ率制御駆動力は、 一般に、 車体の挙動変化の時定数からかけ離れた速い時定数の変化まで補償しても効果は 上がらないので、 本例のように、 車輪速の制御に適当な 0. 2Hz〜100Hz の周波数帯域成分 Ffflを周波数帯域のスリヅプ率制御駆動力を用いることにより 、 正確なスリップ率制御を行うことが可能となる。
更に、 本例では、 高域周波数成分抽出手段 25Cにより、 10Hz〜: LOkH zの周波数帯域成分 Ffflを抽出し、 タイヤ外乱補償駆動力演算手段 2 8により、 上記夕ィャ接地面の外乱 やパネ下振動 N2による駆動力の変動を補償する夕ィ ャ外乱補償駆動力を算出して、 このタイャ外乱補償駆動力を上記車輪制御手段 2 9に入力して主駆動力に重畳ことにより、 タイヤに加わる接地面あるいはパネ下 振動などの影響による外乱を補償するようにしている。 なお、 別途、 タイヤに微 小振動を付加することにより、 上記外乱を抑制するようにしてもよい。
一般に、 制御周期が短くなると、 制御周期はタイヤの応答時定数に近づいてく る。 本例では、 このとき、 車輪 (駆動輪) をタイヤとホイールとが一体であると して扱うのではなく、 タイヤのダイナミックスに起因する周波数帯域にある駆動 力成分を抽出しタイヤに作用する外乱を検出し、 タイヤの動的性質を制御するよ うにしている。 上記周波数帯域にある駆動力の変動成分は、 タイヤ—路面間に発 生しているもので、 車体の挙動や運転者の操作速度に比べて非常に速く、 これが タイヤー路面間の接地性を悪化させていたが、 上記のように、 高域周波数成分抽 出手段 2 5 Cにより、 1 0 Η ζ〜1 0 k H zの周波数帯域成分 Ffflを抽出して夕 ィャ外乱補償駆動力を算出し補償したり、 あるいは、 上記タイヤ外乱補償駆動力 に基づいてタイヤに微小振動を付加することより、 タイヤー路面間に発生する微 小振動を抑制することができるので、 タイヤ一路面間の接地性を向上させること ができ、 操縦安定性の向上を図ることが可能となる。
具体的には、 上記車体駆動力の上記 1 0 H z〜: 1 0 k H zの変動成分のうち、 2 0 0 H zを超える変動成分を抽出してこれを補償することにより、 トレッドの パターンブロックやサイプの影響による微細振動の影響を排除する。 また、 これ よりも低周波側にある、 上記外乱によるタイヤケースの固有振動などに起因する タイヤダイナミックスの周波数帯域 (1 0 H z〜2 0 0 H zの周波数帯域) での 駆動力変動を抑制する。 更には、 上記車体駆動力の変動成分のうち、 3 0 H z〜 1 0 0 H zにおける変動成分を抽出し、 上記外乱により増大するタイヤの縦パネ 、 及び、 前後パネの共振周波数近傍での駆動力変動を抑制する。
第 6図 (a ) , ( b ) は、 従来の制御と本発明の制御における駆動力 Fnと、 車輪速 Vwの周波数分析結果を示す図で、 同図から明らかなように、 本発明の制 御による制御では、 駆動力 Fnと車輪速 Vwのいずれも、 タイヤ外乱を含む外乱の ピークがなくなつていることが分かる。 また、 上記のようにタイヤ外乱を抑制す ることで、 第 7図に示すように、 車体駆動力 Fdの上記タイヤ外乱に起因する 1 0 H z ~ 1 k H zの変動成分が抑制されるので、 車体駆動力 Fdの伝達特性も改 善されていることが確認された。
ところで、 タイヤ一路面間の摩擦力は接地面圧 (接地荷重) に比例することか ら、 制御性を向上させるためには、 上記主駆動力を上記接地荷重に比例するよう に補償する必要がある。
本例では、 上記接地荷重を、 接地荷重検出手段 7により検出して主駆動力を補 償する。 具体的には、 第 1図に示すように、 左, 右の駆動輪 2 L , 2 Rのそれそ れのホイール部に上下加速度計 8 L , 8 Rを取付けて、 パネ下に加わる力を算出 するとともに、 サスペンションにサスペンション変位計 9 L , 9 I を取付けて、 サスペンションの変位量と変位変加速度とからサスペンションに加わる力を算出 し、 これら 2つの力を加算して変位荷重を算出し、 この変位荷重に、 車両静止時 のサスペンション変位量から求めた静止時の荷重を加えることで、 上記接地荷重 をリアル夕ィムに検出することができる。
次に、 本発明による旋回安定性制御について説明する。
走行状態検出手段 1 7は、 舵角検出手段 5からの舵角信号とョーレートセンサ 6からのョ一レート信号とから、 ステアリング特性の変ィ匕を検出して左, 右の駆 動輪 2 L , 2 Rの制駆動力の大きさを調整するが、 本例では、 従来の駆動力制御 とは異なり、 左, 右の駆動輪 2 L , 2 Rを独立制御するようにしている。 すなわ ち、 従来の制御は、 駆動トルクの総和が一定であることから、 一方の駆動輪の駆 動トルクは、 他方の駆動トルクの制限を受けていたが、 本例では、 左, 右の駆動 輪 2 L , 2 Rをそれそれ独立に制駆動する。
例えば、 車両が旋回半径に対して限界速度近くに進入し、 車体の挙動がオーバ —ステア (0/S ) に変化している場合、 従来は、 駆動輪 2 L , 2 Rの駆動力の 配分を制御して車体の挙動をアンダーステア (U/S ) 方向に制御することによ り、 スピンを抑制して旋回を維持するようにしていたが、 本発明では、 ステアリ ング特性検出手段 1 5と車体不安定性判定手段 1 6とを備えた走行状態検出手段 1 7を設け、 舵角信号とョ一レート信号とからステアリング特性の変化を検出し て車体不安定性を判定するとともに、 ステアリング特性の変ィ匕に応じて、 左, 右 の駆動輪 2 L, 2 Rの駆動力を制御するようにしている。
例えば、 車両が旋回半径に対して限界速度近くに進入した場合には、 旋回内側 の駆動力を増加させて、 外側の駆動力を減少させることにより、 アンダーステア (U/S )方向に駆動力を発生させるように制御する。 タイヤ応力は、 駆動力が 発生していないとき最大値をとり、 更に旋回外側の接地荷重が高くなるので、 本 例の旋回制御により、 車両の旋回速度を大きく損なうことなく車両を旋回させる ことができる。
車体不安定性判定手段 1 6では、 第 8図の矢印 3で示す、 車両の特性によって 決まる、 通常運転時の時の舵角 (deg) とョーレート (deg/sec) との関係を示す 破線 1と、 旋回時の舵角 (X座標) とョ一レ一ト (Y座標) を表わすスピン点 ( X, Y) の軌跡の中心点との距離を不安定パラメ一夕とし、 この不安定パラメ一 夕の大きさから車体不安定性を判定する。
同図においては、 スピン点 (X, Y) は、 破線 1の下に位置しており、 かつ、 車両は左旋回中であるので、 車両はォ一バーステア傾向にある。 したがって、 上 記不安定パラメ一夕が上記の場合より更に大きく、 車体が不安定と判定された場 合には、 旋回内側の駆動力は増加させて、 現状の駆動力を維持したまま、 上記距 離 (不安定パラメ一夕) に比例して外側の駆動力を減少させるように制御する。 これにより、 舵角に対するヒステリシスが減少し、 車両の操作性と安定性をとも に向上させることが可能となる。
但し、 一様に旋回しているだけではなく、 急激な車両の方向転換が必要とされ る場合などには、 状況に応じては、 逆転 (後退) 側に駆動を加えることにより、 操縦性を損なわないようにする。 なお、 駆動力を残している駆動輪については、 上記スリップ率制御、 タイヤ外乱補償、 接地荷重補償を行って、 車両の安定性を 図るようにすることはいうまでもない。 また、 本発明に用いられる電気モ一夕 3 L , 3 Rとしては、 上述したように、 駆動輪 2 L , 2 Rを直接制駆動するアウター口一夕型あるいはィンナ一口一夕型 のダイレクトドライブインホイ一ルモ一夕を用いることが好ましいが、 ギヤのパ ヅククラヅシュがあると 2†貫性系となり、 不用な振動が発生するので、 ギヤレス のダイレクトドライブインホイ一ルモ一夕を用いることが好ましい。 また、 ギヤ レスのダイレクトドライブインホイールモー夕では、 ギヤのバッククラッシュが ないので、 高い周波数での制御を確実に行うことができる。
第 9図は、 ギヤレスのダイレクトドライブインホイールモ一夕の一構成例を示 す図で、 このインホイールモ一夕 4 0は、 ホイール径方向内側設けられた、 ステ 一夕 4 0 S取付けられた環状の非回転側ケース 4 0 aと、 この非回転側ケース 4 0 aの外側に同心円状に配置された、 口一夕 4 0 Rが取付けられた環状の回転側 ケース 4 O bとを、 軸受け 4 0 jを介して回転可能に連結したもので、 本例では 、 上記非回転側ケ一ス 4 0 aを、 直動ガイド部材 4 1 aと、 この直動ガイド部材 4 1 aの稼動方向に伸縮するバネ部材とダンパーとから成るショックァブゾーバ 4 l bとを備えた緩衝機構 4 1を介して車両の足回り部品であるナヅクル 4 2に 取付け、 上記回転側ケース 4 0 bを、 フレキシブル力ヅプリング 4 3を介してホ ィール 4 4に取付けて、 上記ィンホールモータ 4 0をパネ下質量に対してダイナ ミヅクダンパーのウェイ トとして作用させるようにしてある。
上記フレキシブル力ヅプリング 4 3は、 中空円盤状のモ一夕側プレート 4 2 aと 、 ホイール 2に取付けられた中空円盤状のホイール側プレート 4 2 b、 上記プレ —ト 4 2 a, 4 2 b間を結合する複数個のクロスガイド 4 5とを備えたもので、 クロスガイド 4 5は、 詳細には、 第 1 0図 (a) に示すように、 直交する 2軸の 直動ガイドを組合わせたもので、 モ一夕側ガイドレール 4 5 Aとホイール側ガイ ドレ一ル 4 5 Bとは、 クロスガイド本体 4 5 Cの案内溝 4 5 a , 4 5 bに沿って 互いに直交する方向に稼動することができる。
フレキシブルカップリング 4 3は、 第 1 0図 (b ) に示すように、 モー夕側プ レート 4 2 aとホイール側プレ一ト 4 2 aとの間に、 上記クロスガイド 4 5を 4 個等間隔 (9 0 ° 間隔) に配置するとともに、 上記各クロスガイ ド 4 5のモ一 夕側ガイドレ一ル 4 5 Aを、 その稼動方向が全て上記口一夕 4 O Rの径方向に対 して 4 5 ° 方向になるように配置している。 したがって、 各モ一夕側ガイ ドレ ール 4 5 Aの稼動方向は全て同方向 (4 5 ° 方向) を向き、 各ホイール側ガイ ドレール 4 5 Bの全ての稼動方向は、 上記各モ一夕側ガイ ドレ一ル 4 5 Aの稼動 方向に対してそれそれ直交する方向となる。
したがって、 インホイ一ルモ一夕 4 0の回転側ケース 4 O bからの回転力は、 まず、 モ一夕側プレート 4 2 aを介して、 モー夕.側ガイドレール 4 5 Aに入力さ れる。 このモー夕側ガイドレ一ル 4 5 Aに入力された周方向の力はクロスガイド 本体 4 5 Cを通して、 ホイール側ガイ ドレ一ル 4 5 Bに伝達されホイール 4 4を 駆動する。
このように、 電動モー夕としてギヤレスのダイレクトドライブインホイ一ノレモ —夕 4 0を用いるとともに、 上記インホイールモー夕 4 0を、 上記のように、 緩 衝機構 4 1を介して車両の足回り部品であるナックル 4 2に取付け、 上記回転側 ケース 4 O bを、 フレキシブルカヅプリング 4 3を介してホイ一ル 4 4に取付け るようにすれば、 タイヤ 4 6から入力される接地面の外乱による振動や、 パネ下 振動のような、 タイヤの接地力変動に起因する振動を抑制することができる。 し たがって、 車輪に入力する振動が更に低減されるので、 制御すべき周波数領域が 少なくなり、 制御周波数の選択の自由度が大きくなるとともに、 変動レベルその ものが小さくなつているので、 高い周波数領域での制御を容易に行うことができ 、 更に安定した精度の高い制御を行うことができる。 このように、 本最良の形態によれば、 駆動輪 2の車輪速 Vwを検出する車輪速 センサ 1 3と、 上記車輪速 Vwから車輪回転力 Fwを算出する車輪回転力算出手段 2 3と、 駆動輪 2を制駆動する電気モ一夕 3の発生する駆動力 (制駆動力) Fffl を検出する駆動力検出手段 1 2と、 上記駆動力 Fmと車輪回転力 Fwとから車体駆 動力 Fdを演算する車体駆動力演算手段 2 4と、 上記車体駆動力 Fdの複数の周波 数帯域の変動成分を抽出する車体駆動力変動成分抽出手段 2 5と、 上記抽出され た車体駆動力の変動成分に基づいて、 駆動輪 2を駆動するための主駆動力や、 車 体速度と車輪速度との速度差から算出されるスリップ率に基づいて駆動輪 2に加 えられる制駆動力を制御するためのスリップ率制御駆動力、 及び、 タイヤに作用 する外乱を補償するためのタイヤ外乱補償駆動力をそれそれ演算して車両の走行 状態を制御する制駆動力制御部 2 2とを備え、 上記演算された主駆動力、 スリツ プ率制御駆動力、 タイヤ外乱補償駆動力から駆動輪 2に加えられる最適駆動力を 演算してモー夕コントローラ 1 1に送り、 駆動輪 2を制駆動するとともに、 タイ ャに微小振動を付加してタイヤ一路面間に発生する微小振動を抑制するようにし たので、 車両の姿勢や車速の制御を確実に行うことができるとともに、 タイヤ一 路面間の接地性を向上させることができる。 したがって、 操縦安定性の向上を図 ることができ、 車両制御特性を向上させることができる。
また、 左右の駆動輪を独立に制御するようにしたので、 車両の旋回安定性を向 上させることができる。
更に、 操舵系の舵角を検出する舵角検出手段 5と、 車体のョーレートを検出す るョ一レ一トセンサ 6と、 上記検出された舵角とョ一レートの大きさから、 ォ一 バーステアリングかアンダーステアリングかといつたステアリングの変化状況を 検出するステアリング特性検出手段 1 5、 及び、 上記ステアリング特性の変化か ら車体の不安定性を判定する車体不安定性判定手段 1 6とを設け、 車体が不安定 と判定された場合には、 上記ステアリングの変化状況に応じて、 旋回内側の駆動 力、 及び、 旋回外側の駆動力のいずれか一方、 あるいは両方を増減させる制御を 行うようにしたので、 車両の旋回安定性を著しく向上させることができる。 また、 タイヤに作用する接地荷重を検出する接地荷重検出手段 7 L , 7 Rを設 け、 上記検出された接地荷重に基づいて上記駆動力を制御するようにしたので、 タイヤに作用する接地荷重の変化に伴うタイヤ一路面間の摩擦力の変化を補償す ることができ、 車両の制御特性を更に向上させることができる。 なお、 本最良の形態では、 電気自動車について説明したが、 エンジン車の場合 にも、 駆動力と車輪回転力とを検出して車体駆動力を算出し、 この車体駆動力の 変動から複数の周波数帯域の変動成分を抽出し、 上記抽出された車体駆動力の変 動成分に基づいて、 上記駆動輪に加えられる駆動力を制御することにより、 同様 の効果を得ることができる。但し、 エンジン車の場合には、 制御周期が電気自動 車よりも長いので、 車体駆動力の 1 0 H z〜: L k H zの周波数帯域を含む周波数 帯域成分を抽出して上記駆動力を制御すればよい。
また、 上記最良の形態では、 タイヤ外乱補償駆動力演算手段 2 6で得られた夕 ィャ外乱補償駆動力を主駆動力に重畳して夕ィャ外乱を補償するようにしたが、 駆動輪 2 L , 2 R、 あるいは、 従動輪 1 L , 1 Rに車輪の回転方向あるいは幅方 向に微小動的振動を付与するためのァクチユエ一夕を設け、 このァクチユエ一夕 を上記算出されたタイャ外乱補償駆動力に基づいて駆動して夕ィャに微小振動を 付カロして上記夕ィャ外乱による影響を低減するような構成としてもよい。
また、 本例では、 後輪が駆動輪で前輪が従動輪である 2輪駆動車について説明 したが、 2輪駆動車や 4輪駆動車などについても同様の制御が適用可能であるこ とはいうまでもない。
また、 本例では、 駆動力検出手段 1 2 L , 1 2 Rは、 モー夕コントローラ 1 1 L, 1 1 Rから出力される駆動輪 2 L , 2 Rを駆動する電気モー夕 3の発生する の駆動力を検出したが、 上記駆動力は、 上記モー夕 3の出力軸のトルクを検出し たり、 モー夕 3の駆動電流を直接検出したりするなどして、 これらの値から電気 モー夕 3の発生するの駆動力を求めるようにしてもよい。
また、 上記例では、 車体駆動力の変動成分から 3つの周波数帯域の変動成分を 抽出した場合について説明したが、 制御に使用する周波数帯域の数、 及び、 帯域 幅等は上記例に限定されるものではなく、 車両の性能や目標スペック等により適 宜決定されるものである。
また、 上記最良の形態では、 駆動輪 2を制駆動する電気モー夕 3の発生する駆 動力 F nと車輪回転力 F wとから車体駆動力 F dを演算し、 上記車体駆動力 F dの複 数変動成分に基づいて、 駆動輪 2を制駆動したり、 タイヤに微小振動を付カ卩した りしたが、 車体の挙動や運転者の操作速度に比べてその周波数領域が高い、 1 0 H z〜l 0 k H zの周波数帯域にあるタイヤの接地力変動に起因する振動は、 主 に、 車輪速や車輪回転力の変動などの、 車輪の変動に反映されるので、 このよう な、 車輪自体の変動を検出し、 この検出された車輪の変動のみを用いて駆動輪を 制駆動する制駆動力を制御して、 上記車輪の変動を抑制するようにしても、 タイ ヤー路面間の接地性を十分に向上させることができる。 具体的には、 第 1 1図に 示すように、 車輪速センサ 1 3により駆動輪 2の車輪速を検出し、 上記車輪速の 変動成分を抽出し、 電気モー夕 3を制御するモ一夕コントローラ 1 1へ入力され る駆動力 ί の指令値から上記車輪速の変動成分に比例する駆動力を減算するこ とにより、 車輪速の変動、 すなわち、 第 5図に示した、 タイヤ接地面の外乱 2Z による変動成分やパネ下振動 N2による変動成分のような、 タイヤの接地力変動 に起因する車輪の変動を打ち消すような制御を行う。 このとき、 制御に用いる車 輪速センサ 1 3の変動成分としては、 上記のように、 1 0 11 2〜1 0 1^ 11 2の周 波数帯域の変動成分を用いる。 あるいは、 上記車輪速の変動成分に代えて、 車輪 速から算出される車輪回転力の変動成分を求め、 この車輪回転力の変動成分を打 ち消すように上記電気モー夕 3を制御するようにしてもよい。
【実施例 1 ]
本発明の効果を検証するため、 2輪独立制御の電気自動車を実験車両として用 いて旋回走行試験を行い、 限界旋回速度を測定した。試験路の路面摩擦係数は 0 . 4で、 回転半径は 3 0 mである。車両の速度を上昇させながら旋回を続け、 操 舵量が閾値を超えたときの速度を限界速度とする。 試験車両は限界域ではオーバ —ステアの傾向を示す。 そのため、 左旋回を例にとると、 限界域ではスピン抑制 のために舵角は右に振れることになるが、 この右に振れたときの速度を上記限界 速度とした。
以下の表 1は、 従来の制御 (制御なし) と、 本発明による制御による限界速度 を比較した表で、 制御 ( 1 ) はタイヤ外乱補償を行ったもの、 制御 ( 2 ) はタイ ャ外乱補償とスリヅプ率制御との両方を行ったものである。
【表 1】
Figure imgf000024_0001
表 1から明らかなように、 本発明の駆動力制御により、 限界旋回速度を 5 %〜 1 0 %向上させることができた。
また、 以下の表 2は、 従来の制御と、 本発明による制御 (荷重補償なし、 及び 、 荷重補償あり) による上記限界域での操舵フィーリング性を 1 0段階評価した もので、 本発明の荷重なし制御では、 既に、 従来よりも操舵フィーリング性が向 差替え用紙(規則 26) 上しているが、 荷重補償を行うことにより、 操舵フィ一リング性が更に向上する ことが確認された。
【表 2】
Figure imgf000025_0001
また、 試験車両を 4 4 km/hで旋回走行させた場合の、 従来の制御と、 本発 明による駆動力配分制御、 及び、 各輪独立制御 (不安定性判定) によるスピン発 生の有無について調べた結果を以下の表 3に示す。
【表 3】
Figure imgf000025_0002
表 3に示したように、 同じ速度で旋回した場合、 駆動力配分制御では急激なス テアリング操作をしたときにスビンが発生したが、 各輪独立制御を加えることで 、 スピンの発生をなくすことができた。
【実施例 2】
また、 実験車両にて、 車輪速の情報のみをもとに、 上記第 1 3図に示すような 、 車輪回転力の変動成分を抑制する制御を行い、 これをドライアスファルト路面 を走行させて、 その操縦安定性について従来の制御 (制御なし) と比較した結果 を以下の表 4に示す。
【表 4】
差替え用紙(規則 26) 制御の有無 評点
なし + 6
あり + 7 表 4より明らかなように、 車輸速の倩報のみをもとに車両の走行状態を制御し た場合でも、 制御の有無による官能評価の結果は、 従来に対して優れていること が確認された。 産業上の利用可能性
以上説明したように本発明によれば、 駆動輪に加えられる駆動力と車輪回転力 とを検出して、 上記検出された駆動力と車輪回転力とから車体駆動力を算出し、 上記算出された車体駆動力の、 少なくとも 1つの周波数帯域の変動成分を抽出し 、 上記抽出された車体駆動力の変動成分に基づいて、 車輪を制駆動したり、 車輪 に振動を与えたりして、 車両の走行状態を制御するようにしたので、 車輪に加わ る制駆動力を適切に制御することができるとともに、 タイヤに加わる外乱微小振 動の影響を補償することができる。 したがって、 タイヤの接地性が向上し、 車両 の操縦安定性を向上させることができる。 また、 車両の姿勢や車速の制御ゃスリ ヅプ率の制御を、 適切な制御周波数範囲で行うことができるので、 安定した車両 制御を行うことができる。
差替え用紙 (規則 26)

Claims

請 求 の 範 囲
1. 駆動輪に加えられる駆動力と車輪回転力とを検出して、 上記検出された駆 動力と車輪回転力とから車体駆動力を算出し、 上記算出された車体駆動力 の、 少なくとも 1つの周波数帯域の変動成分を抽出し、 上記抽出された車 体駆動力の変動成分に基づいて、 車輪を制駆動したり、 車輪に振動を与え たりして、 車両の走行状態を制御するようにしたことを特徴とする車両制 御方法。
2. 上記算出された車体駆動力の複数の周波数帯域における変動成分を抽出し 、 上記抽出された車体駆動力の変動成分に基づいて、 駆動輪に加えられる 制駆動力を制御するようにしたことを特徴とする請求の範囲 1に記載の車 両制御方法。
3. 駆動輪の出力軸に加えられる駆動力を検出し、 上記駆動力と車輪回転力と から算出される車体駆動力の、 少なくとも 10Hz〜lkHzの周波数帯 域を含む変動成分を抽出することを特徴とする請求の範囲 1または請求の 範囲 2に記載の車両制御方法。
4. 駆動輪を制駆動するモ一夕の発生する制駆動力を検出し、 上記制駆動力と 車輪回転力とから算出される車体駆動力の、 少なくとも 10Hz〜l Ok H zの周波数帯域を含む変動成分を抽出することを特徴とする請求の範囲 1または請求の範囲 2に記載の車両制御方法。
5. 上記車体駆動力の変動成分のうち、 10Hz〜200 Hzにおける変動成 分を抽出して、 車体駆動力の変動を抑制する制御を行うようにしたことを 特徴とする請求の範囲 3または請求の範囲 4に記載の車両制御方法。
6. 上記車体駆動力の変動成分のうち、 30Ηζ〜100Hzにおける変動成 分を抽出して、 車体駆動力の変動を抑制する制御を行うようにしたことを 特徴とする請求の範囲 5に記載の車両制御方法。
7. 左, 右の駆動輪を独立に制御するようにしたことを特徴とする請求の範囲 1〜請求の範囲 6のいずれかに記載の車両制御方法。
8. ステアリング特性の変化に基づいて左, 右の駆動輪をそれそれ制御するよ うにしたことを特徴とする請求の範囲 7に記載の車両制御方法。
9. タイヤに作用する接地荷重に基づいて車両の走行状態を制御するようにし たことを特徴とする請求の範囲 1〜請求の範囲 8のいずれかに記載の車両 制御方法。
10. 少なくとも 1つの周波数帯域の車輪の変動を抽出し、 上記抽出された車 輪の変動に基づいて、 上記車輪の変動を抑制するように駆動輪を制駆動す ることを特徴とする車両制御方法。
11. 上記車輪の、 少なくとも 10Hz〜: L OkHzの周波数帯域を含む変動 を抽出し、 この抽出された車輪の変動を用いて駆動輪を制駆動するモー夕 の制駆動力を制御するようにしたことを特徴とする請求の範囲 10に記載 の車両制御方法。
12. 駆動輪の車輪速を検出する手段と、 上記検出された車輪速から車輪回転 力を算出する手段と、 上記駆動輪に加えられる駆動力を検出する手段と、 上記駆動力と車輪回転力とから車体駆動力を演算する手段と、 上記演算さ れた車体駆動力から少なくとも 1つの周波数帯域の変動成分を抽出する手 段と、 上記抽出された車体駆動力の変動成分に基づいて車両の走行状態を 制御する走行状態制御手段とを備えたことを特徴とする車両制御装置。
13. 駆動輪を制駆動するモ一夕の発生する制駆動力を検知して、 上記駆動輪 に加えられる制駆動力を検出するようにしたことを特徴とする請求の範囲 12に記載の車両制御装置。
14. 上記走行状態制御手段は、 上記抽出された車体駆動力の変動成分に基づ いて車輪を制駆動する手段を有することを特徴とする請求の範囲 12また は請求の範囲 13に記載の車両制御装置。 ·
15. 上記車体駆動力の、 0. 2Hz〜: L OOHzの周波数帯域の変動成分を 抽出して車体速度と車輪速度との速度差を算出する手段を設け、 上記算出 された速度差に基づいて車輪を制駆動するようにしたことを特徴とする請 求の範囲 14に記載の車両制御装置。
16. 左, 右の駆動輪を独立に制御するようにしたことを特徴とする請求の範 囲 12〜請求の範囲 15のいずれかに記載の車両制御装置。
17. 左, 右の駆動輪の車体駆動力の、 10Hz以下の周波数帯域の変動成分 をそれぞれ抽出する手段を設け、 上記抽出された各変動成分に基づいて左 , 右の駆動輪をそれそれ制御するようにしたことを特徴とする請求の範囲 16に記載の車両制御装置。
18. 操舵系の舵角を検出する手段と、 車体のョーレートを検出する手段と、 上記検出された舵角とョ一レートの大きさから、 ステアリング特性の変化 を検出するとともに車体の不安定性を判定する手段とを設け、 車体が不安 定と判定された場合には、 上記ステアリング特性の変化に応じて、 旋回内 側の駆動輪、 及び、 旋回外側の駆動輪のいずれか一方、 あるいは両方を制 駆動するようにしたことを特徴とする請求の範囲 1 Ίに記載の車両制御装
19. 上記走行状態制御手段は、 上記抽出された車体駆動力の変動成分に基づ いてタイヤに振動を与える手段を有することを特徴とする請求の範囲 12
〜請求の範囲 18のいずれかに記載の車両制御装置。
20. 上記車体駆動力の 10Hz〜: L OkHzの周波数帯域の変動成分を抽出 してタイヤに作用する外乱の大きさを算出する手段を設け、 上記算出され た外乱の大きさに基づいてタイヤに振動を与えるようにしたことを特徴と する請求の範囲 19に記載の車両制御装置。
21. 上記車体駆動力の変動成分のうち、 10Hz~200Hzにおける変動 成分を抽出して、 車体駆動力の変動を抑制する制御を行うようにしたこと を特徴とする請求の範囲 20に記載の車両制御装置。
22. 上記車体駆動力の変動成分のうち、 30 Hz〜: L 00Hzにおける変動 成分を抽出して、 車体駆動力の変動を抑制する制御を行うようにしたこと を特徴とする請求の範囲 2 1に記載の車両制御装置。
23. タイヤに作用する接地荷重を検出する手段を設け、 上記検出された接地 荷重に基づいて車両の走行状態を制御するようにしたことを特徴とする請 求の範囲 12〜請求の範囲 22のいずれかに記載の車両制御装置。
24. サスペンションの変位量を検出する手段と、 ホイールの上下加速度を検 出する手段と、 上記検出されたサスペンションの変位量とホイールの上下 加速度とから上記接地荷重を算出する手段とを備えたことを特徴とする請 求の範囲 2 3に記載の車両制御装置。
. 駆動輪の車輪速を検出する手段と、 上記検出された車輪速の少なくとも 1 0 Η ζ〜1 0 k H zの周波数帯域の変動成分を抽出する手段と、 上記抽 出された車輪速の変動成分を用いて駆動輪を制駆動するモー夕の発生する 制駆動力を補正する走行状態制御手段とを備えたことを特徴とする車両制 . 上記モー夕を、 直接駆動輪を駆動するダイレクトドライブモ一夕とした ことを特徴とする請求の範囲 1 2〜請求の範囲 2 5のいずれかに記載の車 両制御装置。
. 上記モー夕を、 車輪に取付けられた電気モー夕によりホイールを駆動す るィンホイールモー夕としたことを特徴とする請求の範囲 2 6記載の車両 制御装置。
. 上記モータを、 ギヤレスのダイレクトドライブインホイールモ一夕とし たことを特徴とする請求の範囲 2 7記載の車両制御装置。
. 上記モー夕を、 緩衝部材または緩衝装置を介して、 車輛パネ下部、 及び 、 車体側のいずれか一方、 あるいは、 両方に取付けたことを特徴とする請 求の範囲 2 8記載の車両制御装置。
PCT/JP2003/005658 2002-05-07 2003-05-06 Procede et dispositif permettant de commander un vehicule WO2003095261A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004508541A JP4145871B2 (ja) 2002-05-07 2003-05-06 車両制御方法及び車両制御装置
EP03723238.6A EP1502805B1 (en) 2002-05-07 2003-05-06 Method and device for controlling vehicle
US10/512,429 US7423393B2 (en) 2002-05-07 2003-05-06 Car control method and car control apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002132008 2002-05-07
JP2002-132008 2002-05-07

Publications (1)

Publication Number Publication Date
WO2003095261A1 true WO2003095261A1 (fr) 2003-11-20

Family

ID=29416626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/005658 WO2003095261A1 (fr) 2002-05-07 2003-05-06 Procede et dispositif permettant de commander un vehicule

Country Status (5)

Country Link
US (1) US7423393B2 (ja)
EP (1) EP1502805B1 (ja)
JP (1) JP4145871B2 (ja)
CN (1) CN1325298C (ja)
WO (1) WO2003095261A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006034012A (ja) * 2004-07-16 2006-02-02 Toyota Motor Corp 車輪のスリップ率演算方法及び車輪の制駆動力制御方法
JP2006067646A (ja) * 2004-08-24 2006-03-09 Toyota Motor Corp 車両制御装置
EP1645455A2 (en) * 2004-10-07 2006-04-12 Toyota Jidosha Kabushiki Kaisha Braking and drive force control apparatus for a vehicle
JP2007209068A (ja) * 2006-01-31 2007-08-16 Nissan Motor Co Ltd 電動車両の駆動力制御装置、自動車及び電動車両の駆動力制御方法
JP2008126733A (ja) * 2006-11-17 2008-06-05 Ntn Corp インホイール型モータ内蔵センサ付き車輪用軸受装置
JP2008167623A (ja) * 2007-01-04 2008-07-17 Toyota Motor Corp 電動車両
WO2010100294A1 (es) * 2009-03-06 2010-09-10 Figueras International Seating, S.L. Butaca para salas de auditorio o similares
WO2012029133A1 (ja) * 2010-08-31 2012-03-08 トヨタ自動車株式会社 車両の制駆動力制御装置
US8307931B2 (en) 2006-09-19 2012-11-13 Ntn Corporation Sensor-equipped axle unit having a built-in motor of in-wheel type
JP2014166069A (ja) * 2013-02-26 2014-09-08 Jtekt Corp 車両
CN105223034A (zh) * 2015-10-20 2016-01-06 南车株洲电力机车有限公司 一种制动性能测试方法及其系统
JP2018078665A (ja) * 2016-11-07 2018-05-17 株式会社Subaru 車両の制御装置

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7634342B2 (en) * 2005-03-18 2009-12-15 Honda Motor Co., Ltd. Method for deploying a torque reduction and torque limitation command through per wheel torque control of a controllable 4-wheel-drive system
JP4965131B2 (ja) * 2006-01-27 2012-07-04 トヨタ自動車株式会社 インホイールモータ
US8950520B2 (en) 2006-07-07 2015-02-10 Hydro-Gear Limited Partnership Front steering module for a zero turn radius vehicle
EP2038162B1 (en) * 2006-07-07 2011-04-27 Hydro-Gear Limited Partnership Electronic steering control apparatus
GB0613941D0 (en) * 2006-07-13 2006-08-23 Pml Flightlink Ltd Electronically controlled motors
WO2008029524A1 (fr) * 2006-09-07 2008-03-13 Yokohama National University Dispositif d'estimation de rapport de glissement et dispositif de contrôle de rapport de glissement
US7756620B2 (en) * 2006-11-06 2010-07-13 Gm Global Technology Operations, Inc. Methods, systems, and computer program products for tire slip angle limiting in a steering control system
JP4693790B2 (ja) * 2007-01-09 2011-06-01 ヤマハ発動機株式会社 自動二輪車、その制御装置および制御方法、並びに自動二輪車のスリップ量検出装置およびスリップ量検出方法
JP4779982B2 (ja) * 2007-02-02 2011-09-28 トヨタ自動車株式会社 移動体及び移動体の制御方法
CN100480664C (zh) * 2007-05-24 2009-04-22 清华大学 一种全轮驱动的电驱动车辆运动参数的测试方法
GB2456350B (en) * 2008-01-14 2012-12-19 Protean Electric Ltd Electric in-wheel drive arrangement
WO2009090386A2 (en) * 2008-01-14 2009-07-23 Qed Group Limited Improvements relating to electric motors and vehicles
US8744682B2 (en) * 2008-05-30 2014-06-03 GM Global Technology Operations LLC Reducing the effects of vibrations in an electric power steering (EPS) system
US7908917B2 (en) * 2008-08-12 2011-03-22 Kobe Steel, Ltd. Driving control method of tire testing machine and tire testing machine
US8044629B2 (en) * 2008-08-29 2011-10-25 Northern Illinois University Self-tuning vibration absorber
DE102009000044A1 (de) * 2009-01-07 2010-07-08 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Fahrzeuges, insbesondere eines Hybridfahrzeuges
GB2463130B (en) * 2009-07-29 2011-06-22 Protean Holdings Corp Torque control system
JP5473020B2 (ja) * 2010-01-22 2014-04-16 日立建機株式会社 電気駆動車両
CN101841288B (zh) * 2010-03-19 2012-10-10 同济大学 基于电流控制的车用电机的运动控制方法
GB2478800B (en) * 2010-05-07 2012-02-22 Protean Electric Ltd An electric motor
CN103189729B (zh) * 2010-08-26 2015-09-23 日产自动车株式会社 车体振动估计装置以及使用它的车体减振控制装置
US9440674B2 (en) 2010-09-15 2016-09-13 GM Global Technology Operations LLC Methods, systems and apparatus for steering wheel vibration reduction in electric power steering systems
US9266558B2 (en) 2010-09-15 2016-02-23 GM Global Technology Operations LLC Methods, systems and apparatus for steering wheel vibration reduction in electric power steering systems
JP5440874B2 (ja) * 2010-09-30 2014-03-12 アイシン・エィ・ダブリュ株式会社 制御装置
US8905071B2 (en) 2010-10-26 2014-12-09 Air Lift Company Integrated manifold system for controlling an air suspension
US9327762B2 (en) 2010-12-14 2016-05-03 GM Global Technology Operations LLC Electric power steering systems with improved road feel
US20120150376A1 (en) * 2010-12-14 2012-06-14 Amp Electric Vehicles Inc. Independent control of drive and non-drive wheels in electric vehicles
JP5562277B2 (ja) * 2011-03-07 2014-07-30 Ntn株式会社 電気自動車
JP6005724B2 (ja) * 2011-03-29 2016-10-12 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh ホイールがスピンしている状況下にある4wd車両のための車両速度の推定
JP5934470B2 (ja) * 2011-03-30 2016-06-15 日立オートモティブシステムズ株式会社 サスペンション装置
US8682556B2 (en) * 2011-03-30 2014-03-25 Nissin Kogyo Co., Ltd. Control device for controlling drive force that operates on vehicle
DE102011100814A1 (de) * 2011-05-06 2012-11-08 Audi Ag Einrichtung zur Antriebsschlupfregelung für ein Fahrzeug mit elektromotorischem Fahrzeugantrieb
KR101449112B1 (ko) * 2012-08-10 2014-10-08 현대자동차주식회사 전기 자동차의 모터 토크 제어를 이용한 노면 요철 통과 시 발생하는 파워 트레인의 진동 저감
US9132814B2 (en) * 2012-09-18 2015-09-15 Gm Global Technology Operationd Llc Systems and methods for vibration mitigation in a vehicle
DE102013008680A1 (de) * 2013-05-22 2014-08-14 Audi Ag Verfahren und System zum Betreiben wenigstens eines Elektromotors, mittels welchem ein Kraftwagen angetrieben wird
JP6223717B2 (ja) * 2013-06-03 2017-11-01 Ntn株式会社 電気自動車のスリップ制御装置
JP6236672B2 (ja) * 2013-09-26 2017-11-29 日立オートモティブシステムズ株式会社 電動車両の制御装置
US9481256B2 (en) 2014-01-30 2016-11-01 Amp Electric Vehicles Inc. Onboard generator drive system for electric vehicles
CN103935265B (zh) * 2014-04-24 2016-10-05 吴刚 一种电动汽车的车身稳定控制系统
CN104074966A (zh) * 2014-05-24 2014-10-01 刘元 离合辅助系统
JP5752298B2 (ja) * 2014-06-09 2015-07-22 三菱重工業株式会社 高周波成分と低周波成分の分離装置
JP6389955B2 (ja) * 2015-03-27 2018-09-12 カルソニックカンセイ株式会社 電動車両の駆動力制御装置
US10752257B2 (en) 2016-02-19 2020-08-25 A Truly Electric Car Company Car operating system that controls the car's direction and speed
RU2633129C1 (ru) * 2016-08-24 2017-10-11 Общество с ограниченной ответственностью "Полимагнит Санкт-Петербург" Мотор-колесо транспортного средства и транспортное средство с таким мотор-колесом
CN106394560B (zh) * 2016-09-09 2018-08-28 山东理工大学 一种轮毂驱动电动汽车底盘协调控制系统
CN106553651B (zh) * 2016-11-29 2018-08-24 成都雅骏新能源汽车科技股份有限公司 一种电动汽车电制动力分配方法
JP6469071B2 (ja) * 2016-12-26 2019-02-13 株式会社Subaru 車両の制動制御装置
JP6412192B2 (ja) * 2017-03-17 2018-10-24 株式会社Subaru 車両の制御装置
CN109110141A (zh) * 2017-06-26 2019-01-01 深圳市道通智能航空技术有限公司 油门控制方法、装置、动力系统及无人飞行器
GB2571331B (en) * 2018-02-26 2021-06-23 Jaguar Land Rover Ltd BEV torque split control
CN108674409A (zh) * 2018-05-23 2018-10-19 南通科技职业学院 一种智能汽车的动力控制方法及装置
CA3112408A1 (en) * 2018-09-21 2020-03-26 ePower Engine Systems Inc Control of clutchless vehicle electronic shift transmissions operating as bi-directional power transfer devices
WO2023032012A1 (ja) * 2021-08-30 2023-03-09 日産自動車株式会社 電動車両の制御方法及び電動車両の制御装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08294204A (ja) * 1995-04-20 1996-11-05 Nissan Motor Co Ltd 電気自動車用モータ制御装置
JPH09215106A (ja) * 1996-02-09 1997-08-15 Toyota Motor Corp 回生制動システム
JPH10210604A (ja) * 1997-01-21 1998-08-07 Toyota Motor Corp 電気自動車用駆動制御装置
JPH11187506A (ja) * 1997-12-18 1999-07-09 Toyota Motor Corp 電気自動車用駆動制御装置
JP2000217209A (ja) * 1999-01-22 2000-08-04 Toyota Motor Corp 電動機を駆動力源とした車両の制振装置
US20020060545A1 (en) * 2000-09-25 2002-05-23 Aisin Seiki Kabushiki Kaisha Vibration reduction control apparatus for an electric motor and design method of a vibration reduction control for the electric motor
JP2003009566A (ja) * 2001-06-18 2003-01-10 Nissan Motor Co Ltd 電動モータを用いた車両の制振制御装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW325448B (en) * 1994-08-29 1998-01-21 Toyoda Chuo Kenkyusho Kk Anti-lock brake controlling apparatus
DE19630553A1 (de) * 1996-07-18 1998-01-29 Reiner Ruehle Beschleunigungsabhängige Ansteuerung für einen Elektromotor
JP3451848B2 (ja) * 1996-09-10 2003-09-29 トヨタ自動車株式会社 電気自動車の駆動制御装置
CN1127192C (zh) * 1998-07-22 2003-11-05 中国科学技术大学 电动车异步型车轮电机
US6616250B1 (en) * 1999-02-27 2003-09-09 Continental Teves, Ag & Co.Ohg Method of controlling the performance of a motor vehicle
JP3740005B2 (ja) * 1999-11-01 2006-01-25 トヨタ自動車株式会社 制動トルク制御装置
JP4271801B2 (ja) * 1999-11-19 2009-06-03 茂 長野 車輪のブレーキ制御装置
JP3731424B2 (ja) * 2000-02-10 2006-01-05 トヨタ自動車株式会社 制動操作速度検知装置及び車両用制動制御装置
TW486438B (en) * 2000-03-09 2002-05-11 Sumitomo Rubber Ind Device and method for determining coefficient of road surface friction
JP4754766B2 (ja) * 2000-06-28 2011-08-24 株式会社ブリヂストン 車両制御方法及び車両制御装置
JP3719116B2 (ja) * 2000-08-30 2005-11-24 トヨタ自動車株式会社 車輌の駆動力制御装置
EP1205331B1 (en) * 2000-11-14 2005-09-07 Nissan Motor Company, Limited Driving force control apparatus
JP3536820B2 (ja) * 2001-02-05 2004-06-14 日産自動車株式会社 ハイブリッド式車両制御装置
WO2003026120A2 (en) * 2001-09-14 2003-03-27 Delphi Technologies, Inc. Complementary force and position control for an automotive steering system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08294204A (ja) * 1995-04-20 1996-11-05 Nissan Motor Co Ltd 電気自動車用モータ制御装置
JPH09215106A (ja) * 1996-02-09 1997-08-15 Toyota Motor Corp 回生制動システム
JPH10210604A (ja) * 1997-01-21 1998-08-07 Toyota Motor Corp 電気自動車用駆動制御装置
JPH11187506A (ja) * 1997-12-18 1999-07-09 Toyota Motor Corp 電気自動車用駆動制御装置
JP2000217209A (ja) * 1999-01-22 2000-08-04 Toyota Motor Corp 電動機を駆動力源とした車両の制振装置
US20020060545A1 (en) * 2000-09-25 2002-05-23 Aisin Seiki Kabushiki Kaisha Vibration reduction control apparatus for an electric motor and design method of a vibration reduction control for the electric motor
JP2003009566A (ja) * 2001-06-18 2003-01-10 Nissan Motor Co Ltd 電動モータを用いた車両の制振制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1502805A4 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006034012A (ja) * 2004-07-16 2006-02-02 Toyota Motor Corp 車輪のスリップ率演算方法及び車輪の制駆動力制御方法
JP4534641B2 (ja) * 2004-07-16 2010-09-01 トヨタ自動車株式会社 車輪のスリップ率演算装置及び車輪の制駆動力制御装置
JP2006067646A (ja) * 2004-08-24 2006-03-09 Toyota Motor Corp 車両制御装置
JP4529588B2 (ja) * 2004-08-24 2010-08-25 トヨタ自動車株式会社 車両制御装置
EP1645455A2 (en) * 2004-10-07 2006-04-12 Toyota Jidosha Kabushiki Kaisha Braking and drive force control apparatus for a vehicle
EP1645455A3 (en) * 2004-10-07 2014-07-30 Toyota Jidosha Kabushiki Kaisha Braking and drive force control apparatus for a vehicle
JP2007209068A (ja) * 2006-01-31 2007-08-16 Nissan Motor Co Ltd 電動車両の駆動力制御装置、自動車及び電動車両の駆動力制御方法
US8307931B2 (en) 2006-09-19 2012-11-13 Ntn Corporation Sensor-equipped axle unit having a built-in motor of in-wheel type
JP2008126733A (ja) * 2006-11-17 2008-06-05 Ntn Corp インホイール型モータ内蔵センサ付き車輪用軸受装置
JP2008167623A (ja) * 2007-01-04 2008-07-17 Toyota Motor Corp 電動車両
WO2010100294A1 (es) * 2009-03-06 2010-09-10 Figueras International Seating, S.L. Butaca para salas de auditorio o similares
WO2012029133A1 (ja) * 2010-08-31 2012-03-08 トヨタ自動車株式会社 車両の制駆動力制御装置
JP5348328B2 (ja) * 2010-08-31 2013-11-20 トヨタ自動車株式会社 車両の制駆動力制御装置
US9008934B2 (en) 2010-08-31 2015-04-14 Toyota Jidosha Kabushiki Kaisha Braking-driving force control device of vehicle
JP2014166069A (ja) * 2013-02-26 2014-09-08 Jtekt Corp 車両
CN105223034A (zh) * 2015-10-20 2016-01-06 南车株洲电力机车有限公司 一种制动性能测试方法及其系统
JP2018078665A (ja) * 2016-11-07 2018-05-17 株式会社Subaru 車両の制御装置
US10639997B2 (en) 2016-11-07 2020-05-05 Subaru Corporation Control apparatus of vehicle

Also Published As

Publication number Publication date
CN1325298C (zh) 2007-07-11
US20050274560A1 (en) 2005-12-15
JPWO2003095261A1 (ja) 2005-09-08
EP1502805A1 (en) 2005-02-02
EP1502805A4 (en) 2013-08-28
JP4145871B2 (ja) 2008-09-03
US7423393B2 (en) 2008-09-09
EP1502805B1 (en) 2018-09-19
CN1659059A (zh) 2005-08-24

Similar Documents

Publication Publication Date Title
WO2003095261A1 (fr) Procede et dispositif permettant de commander un vehicule
JP3882116B2 (ja) 車両の走行安定性制御方法
US9187080B2 (en) Control apparatus for vehicle
US7788011B2 (en) Braking and drive force control apparatus for a vehicle
US9238462B2 (en) Control apparatus for vehicle
JP4867369B2 (ja) 電動車両の駆動力制御装置、自動車及び電動車両の駆動力制御方法
US20150290995A1 (en) Suspension control system
CN108248583B (zh) 一种汽车电子稳定控制系统及其分层控制方法
JPH0986381A (ja) 4輪駆動車のトラクション制御装置
JP2010081720A (ja) 車両用駆動力制御装置
CN108248454A (zh) 车身稳定控制系统、方法及汽车
JP4754766B2 (ja) 車両制御方法及び車両制御装置
JP4193706B2 (ja) 路面摩擦係数検出装置
US11505073B1 (en) Method for controlling driving force of vehicle
KR101316862B1 (ko) 차량의 토크 벡터링 시스템 및 그것의 제어방법
JP6267440B2 (ja) 車両制御装置
JP4797586B2 (ja) 車輌の制駆動力制御装置
JP4725431B2 (ja) 電動車両の駆動力推定装置、自動車および電動車両の駆動力推定方法
JP3626388B2 (ja) 車両の姿勢制御装置
JP2008049996A (ja) 車両の運動制御装置
JP6318795B2 (ja) 車両用旋回走行制御装置、車両用旋回走行制御方法
JP2008167640A (ja) 電気自動車の車両制御装置、及び電気自動車の駆動システム
JP3626654B2 (ja) 車両の姿勢制御装置
JP2020066361A (ja) 車両用制御装置
JPH0986203A (ja) 車両におけるヨーモーメント制御方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004508541

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003723238

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003812792X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003723238

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10512429

Country of ref document: US