WO2003067764A1 - Appareil et procede de conversion a/n - Google Patents

Appareil et procede de conversion a/n Download PDF

Info

Publication number
WO2003067764A1
WO2003067764A1 PCT/JP2003/000875 JP0300875W WO03067764A1 WO 2003067764 A1 WO2003067764 A1 WO 2003067764A1 JP 0300875 W JP0300875 W JP 0300875W WO 03067764 A1 WO03067764 A1 WO 03067764A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
level
digital signal
signal
input signal
Prior art date
Application number
PCT/JP2003/000875
Other languages
English (en)
French (fr)
Inventor
Michiaki Arai
Masanobu Nishi
Original Assignee
Advantest Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corporation filed Critical Advantest Corporation
Priority to JP2003566987A priority Critical patent/JPWO2003067764A1/ja
Priority to DE10392236T priority patent/DE10392236T5/de
Priority to US10/502,897 priority patent/US7030800B2/en
Publication of WO2003067764A1 publication Critical patent/WO2003067764A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/18Automatic control for modifying the range of signals the converter can handle, e.g. gain ranging
    • H03M1/188Multi-path, i.e. having a separate analogue/digital converter for each possible range

Definitions

  • the present invention relates to an AD (analog-to-digital) conversion apparatus and method for converting an input signal into a digital signal, and more particularly, converts an input signal having a wide dynamic range of signal level and a relatively high frequency into a digital signal.
  • the present invention relates to an AD conversion apparatus and method that can be used. Background art
  • an input signal is converted into an intermediate frequency signal of, for example, about 1 to 21.4 MHz, and the intermediate frequency signal is converted into a digital signal.
  • Processing has been done.
  • an AD (analog-to-digital) converter that converts the input signal to a digital signal, it has a dynamic range exceeding 100 dB and a high sampling rate of 42.8 MSa / s or more. Things are required.
  • a / D converters that meet these requirements are extremely expensive.
  • FIG. 1 is a simplified block diagram of the AD converter shown in FIG. 4 of the U.S. Pat. Nos. 5,844,512. Hereinafter, the AD converter will be described with reference to FIG. The schematic configuration and operation will be described.
  • an input signal from an input terminal 11 is supplied to an anti-aliasing filter 12 and an envelope detector 14.
  • the input signal that has passed through the anti-aliasing filter 12 is supplied to the variable gain amplifier 13.
  • the envelope of the input signal input to the envelope detector 14 is detected, and the detected output is input to the gain adjuster 15 as a recommended gain.
  • the gain adjuster 15 refers to the output level of the envelope detector 14 and the gain set in the variable gain amplifier 13 to adjust the variable gain.
  • the gain of the variable gain amplifier 13 is changed and set so that the output level of the width unit 13 falls within a predetermined range.
  • the envelope detector 14 corresponds to the recommended gain detector 48 shown in FIG. 4 of the above-mentioned U.S. Pat. No. 5,844,512, and the gain adjuster 15 is a U.S. Pat. This corresponds to the gain setting rule processor 50 shown in FIG. 4 of Nos. 5, 84, 4 and 5.
  • the input signal is amplified by the variable gain amplifier 13 into a signal in a predetermined level range and supplied to the sample-and-hold circuit 16.
  • the output signal from the variable gain amplifier 1 3 in the sample en Dohorudo circuit 1 6 is sampled by the sampling clock CK S, the sample value is held.
  • the sample value held in the sample and hold circuit 16 is converted into a digital signal (digital value) by the AD converter 17 and supplied to the correction processing unit 18.
  • the correction processing unit 18 corrects the input digital signal by referring to the look-up taper 19 according to the output signal from the gain adjuster 15.
  • an error of a digital signal caused by a deviation of the input / output characteristic of the variable gain amplifier 13 from the ideal characteristic is corrected, and furthermore, according to a gain set for the variable gain amplifier 13, the variable gain amplifier 13 Correct to a digital signal indicating the level of the input signal before it is amplified.
  • the corrected digital signal is output to the output terminal 21 of the correction processing unit 18.
  • the correction processing section 18 corresponds to the scaling processor 64 shown in FIG. 4 of the above-mentioned U.S. Pat. Nos. 5,844,512.
  • the level of the input signal is detected by the envelope detector 14 and the gain of the variable gain amplifier 13 is set according to the detected level. Since the envelope detector 14 has a time constant and has a delay, the prior art inserts an anti-aliasing filter 12 before the variable gain amplifier 13 to remove aliasing and delay the input signal. Thus, the timing is adjusted, and the level of the input signal is controlled by the variable gain amplifier 13. However, if the anti-aliasing filter 12 and the delay line have a constant group delay and the frequency characteristics of the amplitude are not constant, the input signal is distorted by the anti-aliasing filter 12 and the delay line, Cannot be accurately converted to a digital signal. JP03 / 00875
  • the gain is 8 times at the level L 1, 4 times at the level L 2, 2 times at the level L 2, and the level as shown by the broken line 23, as shown in 2 A.
  • an example of the sample point 24 is shown by a black circle. Therefore, a signal obtained by sweeping (changing) the frequency of the input signal is input, analog-to-digital conversion is performed, and this digital signal is multiplied by a digital sine wave signal and a cosine wave signal.
  • a waveform in which the level changes stepwise at the gain switching point 25 of the variable gain amplifier 13 The waveforms are typical, and the correct display cannot be obtained.
  • One object of the present invention is to provide an AD converter capable of solving the above-mentioned problems of the prior art.
  • Another object of the present invention is to provide an AD conversion method that can solve the above-mentioned problems of the prior art.
  • At least one AD converter a signal obtained by digitally converting an input signal or a signal whose input signal is level-controlled and a signal obtained by digitally converting
  • An AD conversion device comprising: a selection unit for outputting an output according to the level level.
  • one AD converter that converts the input signal whose level is not controlled into a digital signal, and a signal whose level is controlled by a corresponding level controller are digitally converted.
  • At least one AD converter for converting the signal into a signal is provided, and the selecting means selects and outputs one of the digital signals according to the digital signals converted by the plurality of AD converters.
  • the selection means selects the next bit of the A / D converter in which the over bit of the output digital signal is “1”.
  • a first AD converter that converts the input signal that is not level-controlled to a digital signal, and a signal that is level-controlled by a corresponding level controller are provided.
  • a second A / D converter for converting the digital signal into a digital signal; and the selecting means sets the over bit of the digital signal output from the second A / D converter for converting the level-controlled signal to a digital signal to "0". From “1" to "1”, the digital signal output from the first AD converter is immediately selected and output, and the overbit of the digital signal output from the second AD converter becomes "1" or "0".
  • one main AD converter is provided as the AD converter, and the selection means receives the input signal and has a lower resolution than the main AD converter.
  • An AD converter for selecting a range, and an output signal from one level controller or the input signal whose level is not controlled in accordance with the digital signal converted by the AD converter for selecting a range.
  • a selection switch unit for supplying the data to the selection switch.
  • level controller one having a fixed gain or one having a preset gain can be used.
  • a low-level input signal is subjected to level control, and a high-level input signal is converted into a digital signal without or after level control.
  • a high-level input signal is converted into a digital signal without or after level control.
  • the selecting step is as follows: when the overbit of the digital signal based on the low-level input signal changes from “0” to "1", Digital signal based on the input signal of the above-mentioned low level, and even if the over-bit of the digital signal based on the input signal having the small level changes from "1" to "0", the state of "0" remains within the preset time.
  • the method further includes the step of retaining the selection of the digital signal based on the input signal having the higher level when the signal changes to 1 ".
  • an appropriate level range for the input signal is determined for each sample of the input signal, and the input signal is converted into a digital signal with or without level control accordingly. Therefore, it is not necessary to use an envelope detector or a gain adjuster as in the prior art, and the input signal can be converted into a digital signal with high accuracy. Also, rather than controlling the gain of the amplifier for each of a plurality of samples as in the prior art, a signal that is amplified by each amplifier and converted to a digital signal is selected, so that a more accurate digital signal can be obtained. In addition, there is no danger of hair noise accompanying the gain control.
  • FIG. 1 is a block diagram showing a conventional AD converter.
  • FIG. 2A is a waveform diagram for explaining an input signal waveform and a state of gain control in the AD converter shown in FIG.
  • FIG. 2B is a diagram illustrating an example of an amplitude-frequency characteristic of an input signal in the AD converter illustrated in FIG.
  • FIG. 3 is a block diagram showing a first embodiment of the AD converter according to the present invention.
  • FIG. 4 is a block diagram showing an example of a data selection unit of the AD converter shown in FIG.
  • FIG. 5 is a block diagram showing another example of the data selection unit of the AD converter shown in FIG. It is.
  • FIG. 6 is a diagram illustrating an example of the selection information of the data selection unit.
  • FIG. 7A is a diagram showing waveforms and sample points for explaining the effect of the present invention.
  • FIG. 7B is a diagram for explaining a state of gain control in the AD converter according to the present invention.
  • FIG. 8 is a block diagram showing a second embodiment of the AD converter according to the present invention.
  • FIG. 9 is a diagram showing an example of the relationship between the output of the AD converter for range selection of the AD converter shown in FIG. 8 and the gain of the amplifier to be selected.
  • Figure 1 0 is a diagram showing an example of the relationship between the sampling click-locking CK S and range selection clock CK A to the main AD converter AD converter shown in FIG.
  • FIG. 11 is a block diagram showing a third embodiment of the AD converter according to the present invention.
  • FIG. 12 is a diagram for explaining the operation of the A / D converter shown in FIG.
  • FIG. 13 is a time chart for explaining the operation of the AD converter shown in FIG.
  • FIG. 14 is a block diagram showing a fourth embodiment of the AD converter according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 3 is a block diagram showing a first embodiment of the AD converter according to the present invention.
  • the gain of the first embodiment differs from that of the first embodiment.
  • four amplifiers (or four level controllers with different control amounts from each other) 3 3— :! ⁇ 3 3-4 are supplied.
  • the gain of these amplifiers 3 3 1 1 to 3 3—4 is fixed, and in this example, the gain of the first amplifier 3 3—1 is 1
  • the gain of the second amplifier 33-2 is set to 2
  • the gain of the third amplifier 33-3 is set to 4
  • the gain of the fourth amplifier 33-4 is set to 8.
  • These amplifiers 33— :! ⁇ 33-4 output is the corresponding AD converter 34-:! To 34 to 4 respectively.
  • These AD converters 34-1 to 34-4 have the same characteristics, that is, have the same convertible level range, have the same resolution, and have the same clock CK S supplied from the clock terminal 35.
  • the corresponding amplifier 33— :! The output of ⁇ 33-4 is converted to a digital signal with the required resolution within the conversion level range.
  • the AD converters 34-1 to 34-4 incorporate the sample and hold circuit 16 of the prior art AD converter shown in FIG. If the sample-and-hold circuit is not built-in, a sample-and-hold circuit is provided before the AD converters 34-1 to 34-4.
  • AD converter 34::! Each output digital signal from .about.34-4 is input to the data selection unit 36.
  • the data selector 36 selects an appropriate digital signal corresponding to the level of the input signal from the input terminal 31 and supplies the digital signal to the correction processor 37.
  • the data selection unit 36 uses the digital signals from the AD converters 34-1 to 34-4 to select the output digital signal of the AD converter according to the level of the input signal. In other words, according to which of the divided level ranges (ranges) the input signal level belongs to, there are a plurality of predicted fluctuation ranges of the input signal level, and in this example, four. Select the output digital signal of the instrument.
  • the AD converter 34— :! An over-bit "1" is set at the output of the AD converter that inputs an amplifier that has been over-amplified so that it becomes larger than the operating range of ⁇ 34-4. Therefore, the AD converter 34— :! In this example, the fourth AD converter 34-4 is the first, the 30th converter 34-13 is the second, and so on. 34— 4.
  • the selection using the overbit can be performed by using the data selection unit 36 having the circuit configuration shown in FIG. 4, for example.
  • the first to fourth AD converters 34— :! 1st to 4th gates corresponding to each output digital signal of ⁇ 34 ⁇ 4 38 ⁇ :! To the fourth AD converter 34-4 to the control terminal of the fourth gate 38-4 through the inverter 39-4, and the non-operation of the third AND circuit 39-3. It is also supplied to the inverting input terminal, and the inverting input terminal of the third AND circuit 39-3 is supplied with the over bit of the third AD converter 34-3.
  • the over bit of the third AD converter 34-3 is also supplied to the non-inverting input terminal of the second AND circuit 39-2, and the inverting input terminal of the second AND circuit 39-2 is connected to the second AD converter 34-3. Provides 2 overbits.
  • the over bit of the second AD converter 34-2 is also supplied to the non-inverting input terminal of the first AND circuit 39-1, and the inverting input terminal of the first AND circuit 39-1 is connected to the first AD converter 34-1. — Provides 1 overbit.
  • each output of the first to third AND circuits 39_1 to 39-3 is applied to the first to third gates 38— :! To 38-3 control terminals.
  • the output digital signal of only one AD converter connected to an amplifier of an appropriate gain has four gates. — :! ⁇ 38— You will pass through one of the four. For example, if the level of the input signal amplified by the second amplifier 33-2 is in an appropriate level range for the second AD converter 34-2, the third and fourth AD converters 3-2 Since the over bits of 4-1 and 34-4 are "1", the output of the inverter 39-4 and the output of the third AND circuit 39-3 are both "0". Ports 38-4 and 38-3 are not opened. Also, the over bits of the first and second AD converters 341-1 and 34-2 are both "0", and the output of the first AND circuit 39-1 is "0".
  • Gate 38-1 does not open either. However, the over-bit "1" from the third AD converter 34-3 and the over-bit "0" from the second AD converter 34-2 are input to the second AND circuit 39-2, and the latter is inverted. Therefore, the output of the second AND circuit 39-2 becomes "1", and only the second gate 38-2 is opened. Therefore, only the output digital signal of the second AD converter 34-2 is output.
  • the A / D converter may be close to the limit level in its convertible level range, and the conversion linearity may be poor in some parts.
  • an appropriate output digital signal of the AD converter may be selected using the data selection unit 36 having a circuit configuration as shown in FIG.
  • the register 41 in which the reference value is set and the first to fourth four digital comparators 42— :! To 42-4, and a digital comparator 42- corresponding to the reference value set in the register 41 and each output digital signal of the first to fourth AD converters 34-1 to 34-4. ⁇ 42-4 are compared.
  • the outputs of the first to third comparators 42-1 to 42-3 are respectively connected to the first to third AND circuits 43-:! To the inverting input terminals 43 to 3 and the outputs of the second to fourth comparators 42—2 to 42—4, respectively, to the first to third AND circuits 43— :! To 43-3 non-inverting input terminals.
  • the output of the fourth comparator 42-4 is supplied to the control terminal of the fourth gate 38-4 through the inverter 43-4, and the first to third AND circuits 43- :! To 43-3 are supplied to the control terminals of the first to third gates 38-1 to 38-3, respectively.
  • the reference value set in the register 41 is, for example, each AD converter 34— :! ⁇
  • first to fourth comparators 42_1 to 42-4 correspond to the corresponding first to fourth AD converters 34— :! ⁇ 3
  • One digital signal selected as described above from the output digital signals of the first to fourth AD converters 34-1 to 34-4 is sent to the correction processing unit 37.
  • the correction processing unit 37 is provided with a characteristic correction unit 46 and a scale correction unit 48.
  • the input digital signal is converted into a scale correction unit 48
  • the scale is adjusted so that the input signal transmitted to the input terminal 31 becomes the same value as when the input signal is directly converted to a digital signal.
  • the amplifier 33 3 When the input / output characteristics of 33 3-4 are not always at the predetermined gain, the correction is also performed.
  • corrections are made for the first to fourth amplifiers 33-:! 1 to 4 look-up tables 4 5 — that are provided corresponding to. This is done by referring to ⁇ 4 5-4.
  • the second lookup table 45-2 corresponding to the second amplifier 33-2
  • the selection information indicating that the output digital signal of the second AD converter 34-2 is selected is sent from the data processing unit 36 to the correction processing unit 37 to be referred to.
  • the characteristic correction unit 46 of the correction processing unit 37 obtains correction data on the characteristics of the second amplifier 33-2 with reference to the corresponding second Norck-up table 45-2, and obtains the correction data of the second amplifier 33-2.
  • the characteristic of the input digital signal is corrected so that the same digital signal as that converted into a digital signal by the second AD converter 34-2 is read out.
  • the selection information generation unit 47 is, for example, an encoder that converts an input 4-bit control signal into a 2-bit code, and the selection information generation unit 47 converts the input 4-bit control signal into, for example, a diagram shown in FIG. As shown in Fig. 6, it is encoded into 2-bit selection information. Specifically, when the output of the first AD converter 34-1 connected to the first amplifier 33-1 having a gain of 1 is selected, the selection information generation unit 47 generates selection information 00.
  • the selection information 01 is output and the third amplifier 3 with a gain of 4 is output.
  • the selection information 10 is output, and the fourth amplifier 3 3 _4 connected to the fourth amplifier 33 of gain 8 is output.
  • selection information 11 is output.
  • the selection information 01 is sent from the data selector 36 to the correction processor 37.
  • the characteristic correction unit 46 and the scale correction unit 48 of the correction processing unit 37 correspond to the second amplifier 33-2 with a gain of 2 based on the input selection information 01.
  • the scale correction process in the scale correction unit 48 that is, the process of correcting the scale to the digital signal corresponding to the input signal arriving at the input terminal 31 refers to the look-up table based on the supplied selection information, This can be performed by dividing the selected digital signal by the gain of the amplifier connected to the AD converter that has output the digital signal selected by the selection unit 36. For example, if the amplifier gain is 2 If so, divide the digital signal by two. This can be achieved by shifting the digital signal in the scale correction unit 48 one bit to the right on the register in which it is stored. As described above, the first to fourth amplifiers 33-:! If each gain of ⁇ 3 3-4 is set to a power of 2 like 1, 2, 4, 8, this scale correction can be performed by shifting the digital data to the right by the number of powers on the register. Well, the scale correction process is simplified.
  • the selection information is any kind of information in the correction processing unit 37 that can know the gain of the amplifier connected to the AD converter that has output the digital signal selected by the data selection unit 36. It can be something. As shown in Fig. 6, when the four AD converters 3 4-1 to 3 4-4 are numbered by binary numbers, the relationship between the gain for scale correction and the binary number according to each number is calculated. You have to write it in the up table in advance. Alternatively, if the correction processing section 37 has a relationship between the gain for performing scale correction according to each number and the binary number, the scale correction section of the correction processing section 37 can be used without referring to the lookup table. At 48, scale correction can be performed. As described above, in the first embodiment, the AD converter 34-;!
  • the signal is amplified by the amplifier corresponding to the most appropriate range (level range of the input signal) for the input signal, and is amplified by the corresponding AD converter. It is configured to select the converted digital signal. For example, if an input signal as shown by a solid line 22 in FIG. 7A is supplied to the input terminal 31, it is assumed that the input signal 22 is sampled at a point indicated by a circle 24 and those samples are The vicinity of point 24 is shown in Figure 7B, with the time axis enlarged, and the switching level of the level range of the input signal, that is, the operation level of which amplifier output is AD-converted, is shown in Figure 7B.
  • a digital signal obtained by AD-converting the output of the first amplifier 33-1 with a gain of 1 is selected.
  • a digital signal obtained by AD-converting the output of the second amplifier 33-2 having a gain of 2 is selected.
  • a gain of 4 is selected.
  • a digital signal obtained by AD-converting the output of the third amplifier 3 3—3 is selected. The output of vessel 3 3 4 so that the digital signal AD conversion is selected.
  • the signal that is amplified by the amplifier with the gain according to the level, and is converted into a digital signal in the appropriate convertible level range of the corresponding AD converter is selected.
  • the gain of the amplifier is controlled for each of a plurality of samples, a digital signal with higher accuracy can be obtained.
  • a waveform that changes continuously and has high accuracy similar to analog processing can be obtained without the waveform changing stepwise.
  • it instead of controlling the gain of the amplifier, it selects the signal that has been amplified by each amplifier and converted to a digital signal.
  • the quantization error for an input signal of level L4 or higher is 2 14 minutes after the scale is corrected.
  • the quantization error for an input signal of levels L3 to L4 is 1 1 2 which is 1/4 of the further, and the quantization error for an input signal of levels L2 to L3 is 2 1 4
  • the quantization error for an input signal of level L 2 or less is 1/4 of 1/4, and is 1/8 of 2 1/4 .
  • FIG. 8 is a block diagram showing a second embodiment of the AD converter according to the present invention. Parts and elements corresponding to those of the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted unless necessary. Is omitted.
  • the first to fourth amplifiers having different gains from each other (or four levels having different control amounts from each other). Controller) 3 3—1 to 3 3—4 are supplied to the A / D converter for converting the signals output from the first to fourth amplifiers 3 3—1 to 3 3—4 into digital signals. Is only one main A / D converter 3 4.
  • the gains of the first to fourth amplifiers 33-1 to 33-4 are the same as those in the first embodiment.
  • the gain of the first amplifier 33-1 is 1 and the gain of the second amplifier is 3.
  • 3 3—2 has a gain of 2
  • 3rd amplifier 3 3—3 has a gain of 4
  • 4th amplifier 3 3— 4 has a gain set to 8.
  • the main AD converter 34 converts the input signal into a digital signal with the required high resolution in the convertible level range ⁇ ⁇ , similarly to the first to fourth AD converters 34-1 to 34-4 shown in FIG. Convert to
  • the selection switch 51 is controlled according to the level of the input signal, that is, the range (level range) to which the level of the incoming input signal belongs. For this reason, the input signal that has passed through the unchaining / finolators 32 is branched and supplied to the range selecting AD converter 52.
  • This range selecting AD converter 52 has a considerably lower resolution than that of the main AD converter 34, but operates with a sampling pulse having a higher frequency than the sampling frequency for the main AD converter 34, and the main AD converter 34.
  • selection of the amplifier output by the selection switch 51 is completed, and before the main A / D converter 34 receives the signal of the next sample point, the selection switch 51 is connected to the next amplifier. The operating speed is selected so that the output can be selected.
  • the main AD converter 34 For example, from the clock generator 53, the main AD converter 34 generates a clock CK A of twice the frequency of the supplied sampling clock CK S in, this clock CK A range selection AD converter 52 Supplied to perform the sampling operation of the AD converter 52 for range selection.
  • the clock CK A also supplied to the sampling clock generator 54, wherein by adjusting the phase with the frequency division into one over a 2 min, main AD converter as the sampling click-locking CK S To the container 34.
  • the operations of the main AD converter 34 and the range selecting AD converter 52 described above will be specifically described with reference to FIG. For example, as shown in FIG.
  • a peak CK A having a period T P is generated from a peak generator 53, and in each of the peak CK A , a range selection AD converter 52 is used. Assume that the input signal is sampled and converted to a digital signal, and the time required for the conversion is one. In this case, FIG.
  • cycle 2T P of the sampling clock CK S mainly AD converter from the sampling clock generator 54 at each clock CK A by Ri to time T j or phase delayed 34 Supplied to
  • the main AD converter 34 in general, in order to vector Fast comprising the operation, the time that takes to its digital conversion for each sampling is assumed to be T 2, the main AD converter 34 sampling period 2 T P of, It is set to slightly larger than the time T 2 required for the digital conversion.
  • the digital output of the range selected for the AD converter 52 Ru is supplied to Suitsuchi controller 55, as can be seen from Figure 1 OA and beta, corresponding control signals to alternate digital output of the clock CK A is Suitsuchi It is supplied to the selection switch 51 through the control unit 55, and controls the switching of the selection switch 51.
  • the digital output of the range selecting AD converter 52 is input to the switch control unit 55, and the range to which the level of the input signal of the input terminal 31 belongs is determined. Based on this determination, the amplifiers 33-1 to 33 A control signal indicating which output of 33-4 is to be selected is generated in the switch control unit 55, and applied to the selection switch 51. As a result, the selection switch 51 is controlled so as to select the amplifier indicated by the applied control signal.
  • the first to fourth four amplifiers 33— :! If 33 to 4 are used, it is only necessary to determine which of the four ranges the level of the input signal belongs to. Therefore, the AD converter 52 for range selection has four levels corresponding to the four ranges. It only needs to output a range selection digital signal, so long as it can convert the level of the input signal into a digital signal of at least 2 bits.
  • four range selection digital signals "00", "01", "10", and "11" are output from the range selection AD converter 52. This is supplied to the switch control unit 55. Therefore, for example, as shown in FIG. 9, when the output digital signal is "00", the amplifier 34-4 having a gain of 8 is output.
  • the amplifier 33-3 having a gain 4 is output.
  • a control signal for selecting the amplifier 33-1 is generated from the switch control unit 55 in the case of "1 1", and is applied to the selection switch 51.
  • the selection switch 51 may be controlled to connect the amplifier to the main AD converter 34.
  • the input signal immediately before the main AD converter performs each sampling is appropriately amplified by a corresponding amplifier according to its level, and is input to the main AD converter. Therefore, it is apparent that the same operation and effect as those of the first embodiment can be obtained, and the description thereof is omitted.
  • the selection switch 51 needs to operate at a high speed, for example, a pin (PIN) It can be constituted by a switch circuit using a diode.
  • the switch control unit 55 generates a control signal for controlling the on / off of each pin diode of the selection switch 51.
  • the output digital signal from the main AD converter 34 is corrected by the correction processing section 37 in the same manner as in the first embodiment.
  • a control signal from the switch control unit 55 or an output signal of the AD converter 52 for range selection can be used. Since the AD converter 52 for range selection is a low bit converter, it can be obtained at low cost even if it operates at high speed. Therefore, as shown in FIG. 1 0 C, the clock CK A generated from the clock generator 5 3, a sampling clock CK S the same period 2 T P output from the sampling click-locking generator 5 4, as shown in FIG. 1 0 D, sampling clock CK S, and O urchin configured to output only from clock CK is delayed than a sampled click-locking generator 5 4 slightly greater than the time Is also good.
  • switching control cycle selection switch 5 1 when there is a risk that the hair-like noise is generated by switching the selection switch 5 1, switching control cycle selection switch 5 1 is identical to the period of sampling kuk-locking CK S Therefore, the phase should be shifted so that it is not affected by hair noise.
  • the input signal is simultaneously input to a plurality of amplifiers having different gains, and the digital signal obtained by digitally converting the output of the corresponding amplifier according to the range to which the level of the input signal belongs is described. They are common in that they are configured to select and output.
  • the first amplifier 33-1 having a gain of 1 may not be used. That is, as shown by the broken lines in FIGS. 3 and 8, the output of the anti-aliasing filter 32 may be directly supplied to the first AD converter 34-1 or the selection switch 51. .
  • the number of amplifiers is not limited to four. Considering that the amplifier 1 of gain 1 33-1 can be omitted, at least one amplifier having a gain larger than 1 may be used. By increasing the number of amplifiers, it is possible to use a high-speed, inexpensive A / D converter with a small number of output bits to digitally convert the output of one selected amplifier. There is an advantage that can be. Alternatively, when the number of output bits is the same (not reduced), the resolution of the AD converter can be improved.
  • the level control of the input signal is performed by the amplifier, but may be performed by the attenuator, or may be performed by using both the amplifier and the attenuator. .
  • at least one level controller should be used.
  • the level controller can be controlled exactly as required, the characteristic correction in the correction processing section 37 may be omitted.
  • FIG. 11 is a block diagram showing a third embodiment of the AD converter according to the present invention. Parts and elements corresponding to those of the first and second embodiments are denoted by the same reference numerals, and unless otherwise required. Description is omitted.
  • the third embodiment after the input signal from the input terminal 31 passes through the anti-aliasing filter 32, the first and second amplifiers having different gains from each other (or two level control units having different control amounts from each other). Unit) is supplied to 6 1-1 and 6 1-2. The gains of these amplifiers 6 1-1 and 6 1-2 are fixed. In the third embodiment, the gain of the first amplifier 6 1-1 is 1 and the gain of the second amplifier 6 1-2 is 8. Is set. These gains are only examples, and may be set to other values or not be a power of two in this way.
  • the outputs of these amplifiers 6 1 1 1 and 6 1 -2 are supplied to the corresponding first and second AD converters 6 2-1 and 6 2-2, respectively.
  • the AD converters 62-1 and 62-2 have the same characteristics, that is, they have the same convertible level range, have the same resolution, and are supplied from the port 35. operatively Ri by the same click-locking CK S that, the output of the corresponding amplifier 6 1 _ 1 and 6 1 2, and converts each of the digital signal with a resolution that is required in the conversion level range .
  • these AD converters 62-1 and 62-2 have a built-in sample-and-hold circuit 16 of the AD converter of the prior art shown in FIG. 1.
  • a sample-and-hold circuit is provided in front of the AD converters 62-1 and 62-2.
  • Each output digital signal from the AD converters 62-1 and 62-2 is input to the data selector 63.
  • the data selection section 63 is composed of a multiplexer 63-1 and a selection signal generation section 63-2.
  • the digital signals output from the AD converters 62-1 and 62-2 are input to the multiplexer 63-1.
  • the data selection unit 63 selects an appropriate digital signal corresponding to the level of the level of the input signal from the input terminal 31 and supplies the digital signal to the correction processing unit 37.
  • the correction processing unit 37 is provided with a characteristic correction unit and a scale correction unit (not shown) as in the first embodiment, as in the first embodiment.
  • the correction is performed.
  • the scale is adjusted so that the input signal transmitted to the input terminal 31 in the scale correction unit has the same value as when directly converted to a digital signal.
  • the predicted fluctuation range of the input signal level is divided into two, and the output of the AD converter corresponding to which of these division level ranges (ranges) the level of the input signal belongs to is divided. It is configured to select a digital signal.
  • This range switching is performed when the level of the input signal to the second AD converter 62-2 is larger than its convertible level range, the second AD converter 62-2 overflows, and the output digital signal overflows. This is performed using the fact that the bit becomes "1".
  • the digital signal output from the second AD converter 62-2 is also input to the selection signal generation section 63-2 of the data selection section 63, and the selection signal generation section 63-2 performs the second AD conversion.
  • the selection signal SEL 2 (for example, a signal of a logic high level) for selecting the second AD converter 62-2 is supplied to the multiplexer 63-1. And the digital signal of the second AD converter 62-2 is selected.
  • the first AD converter 62-1 is selected.
  • the selection signal SEL 1 (for example, a logic low level signal) for selecting the signal is supplied to the multiplexer 63-1 immediately to select the output digital signal of the first AD converter 62-1.
  • the selection signal generator 63 —2 supplies the selection signal SEL 2 to the multiplexer 63-1 to select the output digital signal of the second AD converter 62-2. Note that only the over-bit of the digital signal output from the second AD converter 62-2 may be input to the selection signal generating unit 62-2.
  • the switching level of the level range of the input signal 70 that is, the calculation of which amplifier output is AD-converted Assuming that the level is L 1 as shown in the figure, a digital signal obtained by AD-converting the output of the second amplifier 61-2 with a gain of 8 is selected while the level of the input signal is L 1 or less, and the level of the input signal is When L1 or more, the digital signal obtained by AD-converting the output of the first amplifier 61-1 with a gain of 1 is immediately selected.
  • the output of the second AD converter 62-2 is selected.
  • the output of the second amplifier 61-2 having a gain of 8 is output.
  • the digital signal after AD conversion is selected.
  • the selection signal generator 63-2 immediately outputs the output digital signal of the first AD converter 62-1.
  • the selection signal SEL 1 to be selected is output and supplied to the multiplexer 63-1. Even if the over bit changes from "1" to "0", the time during which this bit remains at "0" is longer than the preset time T10. It will be easily understood that in a short time, the selection signal SEL 1 is kept output.
  • the preset time T10 is set to an optimal time in consideration of the signal to be measured and various requirements of the measuring device. For example, the time is set to 1 / RBW (resolution bandwidth). can do.
  • the input signal is simultaneously input to two amplifiers having different gains from each other, and the over-bit of the digital signal output for each sample from the second AD converter 62-2 is obtained. It is configured to select a digital signal that has been amplified by an amplifier corresponding to the most appropriate range (level range of the input signal) for the input signal and converted by the corresponding AD converter. . Therefore, for each sample, a signal that has been amplified by an amplifier with a gain corresponding to that level and is converted into a digital signal within the appropriate convertible level range of the corresponding AD converter is selected. Compared to the case where the gain of the amplifier is controlled for each of a plurality of samples as in the prior art shown in (1), a digital signal with higher accuracy can be obtained. In addition, instead of controlling the gain of the amplifier, the amplifier that is amplified by each amplifier and converted into a digital signal is selected, so there is no danger of hair noise accompanying the gain control.
  • the first amplifier 61-1 having a gain of 1 may not be used. That is, as in the first and second embodiments, the output of the anti-aliasing filter 32 may be directly supplied to the first AD converter 62-1. Therefore, it is preferable to use the amplifier 61-1 having a gain of 1 from the viewpoint of making the input / output impedance and the phase characteristics uniform. Also, considering that the gain 6 amplifier 6 1-1 can be omitted, at least one amplifier having a gain larger than 1 should be used. Further, although the level control of the input signal is performed by the amplifier, it may be performed by the attenuator, or may be performed by using both the amplifier and the attenuator. In short, you have to use at least one level controller. In this case, if the level controller can be controlled exactly as required, the characteristic correction in the correction processing section 37 may be omitted.
  • FIG. 14 is a block diagram showing a fourth embodiment of the AD converter according to the present invention. As described above, the variable resolution amplifier is used as the second amplifier, and the setting of the measurement resolution bandwidth of the measuring device is performed. When changed, the gain of this variable gain amplifier is set to an optimal fixed value before the start of measurement.
  • the fourth embodiment uses the first and second two amplifiers 6 1 1 1 and 6 1 -2 and the outputs of these amplifiers 6 1 1 1 and 6 1 -2.
  • First and second two A / D converters 62-1 and 62-2 for converting into digital signals, respectively, are provided, the first amplifier 61-1 has a gain set to 1, and the second amplifier 62-1 Except for the fact that the gain (N) is variable, 1-2 is the same as the first embodiment except for the point that the gain (N) is variable. Therefore, parts and elements corresponding to those of the first and third embodiments are described. Are denoted by the same reference numerals, and their description will be omitted unless necessary.
  • the gain (N) of the second amplifier 61-2 is set to an optimal fixed value (for example, 2) before the measurement starts when the measurement resolution bandwidth setting of the measurement device is changed. , 4, or 8 which is preset to a specific fixed value corresponding to the setting of the measurement resolution bandwidth).
  • the digital signal selected by the data selection unit 36 is corrected by the correction processing unit 37, and further necessary processing is performed by the digital signal processing unit at the subsequent stage.
  • the bandwidth of the resolution bandwidth filter The smaller the is, the wider the dynamic range of the AD converters 62-1 and 62-2 is required. Therefore, as in the fourth embodiment, the gain of the second amplifier 61-2 is made variable, and the measurement resolution bandwidth is set before the start of measurement. If is set to an optimal value (fixed value) corresponding to the set measurement resolution bandwidth, the input signal can be converted to a digital signal with high accuracy.
  • the most appropriate range (level of the input signal) for the input signal can be obtained by using the digital output output for each sample from the AD converters 62-1 and 62-2.
  • the digital signal amplified by the corresponding amplifier and converted by the corresponding AD converter can be selected. Therefore, it is apparent that the same operation and effect as those of the first embodiment can be obtained, and the description thereof is omitted.
  • the first amplifier 61-1 having a gain of 1 may not be used. That is, as in the first and second embodiments, anti-aliasing is performed.
  • the output of the filter 32 may be connected directly to the first AD converter 62-1. However, it is preferable to use the amplifier 61-1 having a gain of 1 in terms of making the input / output impedance and the phase characteristics uniform.
  • the level control of the input signal is performed by the amplifier, it may be performed by the attenuator, or may be performed by using both the amplifier and the attenuator. In short, you need to use at least one level controller. In this case, if the control of the level controller can be performed exactly as required, the characteristic correction in the correction processing section 37 may be omitted.
  • an appropriate level range for the input signal is determined for each sample ⁇ / of the input signal, and the level of the input signal is controlled or adjusted accordingly. Since the digital signal is converted without control, there is no need to use an envelope detector or a gain adjuster as in the prior art, and the remarkable advantage that the input signal can be converted to the digital signal with high accuracy is obtained. can get. In addition, since each level controller controls the level and selects a signal converted into a digital signal, a digital signal with higher accuracy can be obtained. In addition, there is a risk of hair noise accompanying the gain control. Absent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)

Description

明 細 書 A D変換装置及び方法 技術分野
この発明は入力信号をデジタル信号に変換する A D (アナログ一デジタル) 変 換装置及び方法に関し、 詳しく言うと、 信号レベルのダナミックレンジが広く、 かつ周波数が比較的高い入力信号をデジタル信号に変換することができる A D変 換装置及び方法に関する。 背景技術
例えばスぺク トラムアナライザ、 ネットワークアナライザなどにおいては、 入 力信号を、 例えば 1 〜 2 1 . 4 MH z程度の中間周波数の信号に変換し、 この中 間周波数の信号をデジタル信号に変換して処理することが行われている。 この場 合、 入力信号をデジタル信号に変換する A D (アナログ一デジタル) 変換装置と して、 1 0 0 d Bを越えるダイナミックレンジと、 4 2 . 8 Mサンプル/秒以上 の高いサンプリングレートを有するものが要求される。 このような要求を満たす A D変換装置は著しく高価なものとなる。
このような問題を解決する A D変換装置が米国特許第 5 , 8 4 4 , 5 1 2号 (
1 9 9 8年 1 2月 1日発行) において提案されている。 図 1はこの米国特許第 5 , 8 4 4 , 5 1 2号の図 4に示された A D変換装置を簡単化して示すブロック図 であり、 以下、 図 1を参照してこの A D変換装置の概略の構成及び動作について 説明する。
図 1に示すように、 入力端子 1 1よりの入力信号はアンチエイリァシング · フ ィルタ 1 2と包絡線検波器 1 4とに供給される。 アンチエイリァシング ·フィル タ 1 2を通過した入力信号は可変利得増幅器 1 3へ供給される。 一方、 包絡線検 波器 1 4に入力された入力信号はその包絡線が検出され、 その検出出力は推奨利 得として利得調整器 1 5に入力される。 利得調整器 1 5は包絡線検波器 1 4の出 カレベルと可変利得増幅器 1 3に設定されている利得とを参照して、 可変利得増 幅器 1 3の出力レベルが所定の範囲に入るように、 可変利得増幅器 1 3の利得を 変更設定する。 なお、 包絡線検波器 1 4は上記米国特許第 5, 8 4 4 , 5 1 2号 の図 4に示された推奨利得検出器 4 8に対応し、 また、 利得調整器 1 5は米国特 許第 5 , 8 4 4, 5 1 2号の図 4に示された利得設定ルールプロセッサ 5 0に対 応する。
このようにして入力信号は可変利得増幅器 1 3により所定のレベル範囲の信号 に増幅されてサンプルアンドホールド回路 1 6に供給される。 このサンプルアン ドホールド回路 1 6において可変利得増幅器 1 3からの出力信号はサンプリング クロック C K Sによりサンプリングされ、 そのサンプル値が保持される。 サンプ ' ルアンドホールド回路 1 6に保持されたサンプル値は A D変換器 1 7によってデ ジタル信号 (デジタル値) に変換され、 補正処理部 1 8に供給される。 この補正 処理部 1 8は入力されたデジタル信号を、 利得調整器 1 5からの出力信号に応じ てルックアップテープノレ 1 9を参照することにより、 補正する。 例えば、 可変利 得増幅器 1 3の入出力特性の理想特性からのずれによって生じるデジタル信号の 誤差を補正し、 さらに、 可変利得増幅器 1 3に対する設定利得に応じて、 この可 変利得増幅器 1 3によって増幅される前の入力信号のレベルを示すデジタル信号 に補正する。 この補正されたデジタル信号は補正処理部 1 8の出力端子 2 1に出 力される。 なお、 補正処理部 1 8は上記米国特許第 5 , 8 4 4 , 5 1 2号の図 4 に示されたスケーリングプロセッサ 6 4に対応する。
図 1に示した先行技術の A D変換装置においては、 包絡線検波器 1 4により入 力信号のレベルを検出し、 その検出レベルに応じて可変利得増幅器 1 3の利得を 設定している。 包絡線検波器 1 4は時定数を持ち、 遅れを伴うために、 先行技術 では可変利得増幅器 1 3の前段にアンチエイリァシング · フィルタ 1 2を挿入し てエイリアシングを除去すると共に、 入力信号を遅延させてタイミングを合せ、 入力信号のレベルを、 可変利得増幅器 1 3により制御している。 しかしながら、 アンチエイリアシング · フィルタ 1 2や遅延線は群遅延が一定で、 かつ振幅の周 波数特性が一定でないと、 入力信号はこのアンチエイリァシング · フィルタ 1 2 や遅延線により歪みを受け、 入力信号を精度よくデジタル信号に変換することが できない。 JP03/00875
また、 入力信号の包絡線検波によりそのレベルを検出しているため、 例えば図
2 Aに示すように、 実線 2 2で示す入力信号に対し、 利得は破線 2 3で示すよう にレベル L 1で 8倍、 レベル L 2で 4倍、 レべノレ L 3で 2倍、 レベル L 4で 1倍 に設定され、 複数のサンプルごとに変化される。 図 2 A中にサンプル点 2 4の例 を黒丸で示す。 このため、 入力信号の周波数を掃引した (変化させた) 信号を入 力し、 アナログ一デジタル変換を行ない、 このデジタル信号にデジタル正弦波信 号と余弦波信号を乗算し、 これら乗算値の二乗和を取り、 入力信号の振幅周波数 特性を求めると、 例えば図 2 Bに示すように、 可変利得増幅器 1 3の利得の切替 え箇所 2 5でレベルがステップ的に変化した波形、 つまり、 不連続的な波形とな り、 正しい表示が得られない。
さらに、 可変利得増幅器 1 3の利得を切替えた際に増幅出力信号に髪状の雑音 (インパルス状のノイズ) が発生するが、 この雑音部分がサンプルアンドホール ド回路 1 6におけるサンプリング時点と一致すると雑音をサンプリングしてしま レ、、 誤ったデジタル信号を出力してしまう。 発明の開示
この発明の 1つの目的は、 上述した先行技術の課題を解決することができる A D変換装置を提供することである。
この発明の他の目的は、 上述した先行技術の課題を解決することができる A D 変換方法を提供することである。
上記目的を達成するために、 この発明の一面においては、 少なくとも 1つの A D変換器と、 入力信号をデジタル変換した信号又は入力信号がレベル制御され、 かつデジタル変換された信号を、 上記入力信号のレベルの大きさに応じて出力さ せる選択手段とを具備する A D変換装置が提供される。
この発明の一形態によれば、 上記 A D変換器として、 レベル制御されていない 上記入力信号をデジタル信号に変換する 1つの AD変換器と、 対応するレベル制 御器でレベル制御された信号をデジタル信号に変換する少なくとも 1つの A D変 換器とが設けられ、 上記選択手段は、 上記複数の A D変換器で変換されたデジタ ル信号に応じて、 これらデジタル信号の 1つを選択出力する。 上記選択手段は、 上記複数の AD変換器がその入力信号のレベルの大きさの順 に順番付けされた場合に、 出力デジタル信号のオーバビットが "1" である AD 変換器の次の順番のオーバビットが "0" である AD変換器の出力デジタル信号 を選択する手段であっても、 或いは上記各 A D変換器よりのデジタル信号と基準 値とを比較する複数の比較器と、 上記複数の A D変換器がその入力信号のレベル の大きさの順に順番付けされた場合に、 比較器出力が基準値以上である比較器と 対応する AD変換器の、 次の順番の比較器出力が基準値以下である比較器と対応 する AD変換器の出力デジタル信号を選択する手段であってもよい。
この発明の他の形態によれば、 上記 AD変換器として、 レベル制御されていな い上記入力信号をデジタル信号に変換する第 1AD変換器と、 対応するレベル制 御器でレベル制御された信号をデジタル信号に変換する第 2 AD変換器とが設け られ、 上記選択手段は、 レベル制御された信号をデジタル信号に変換する上記第 2 AD変換器から出力されるデジタル信号のオーバビットが "0" から "1" に なると、 上記第 1 AD変換器から出力されるデジタル信号を直ちに選択出力し、 上記第 2 AD変換器から出力されるデジタル信号のオーバビットが "1" か " 0" になっても、 この "0" の状態が予め設定された時間内に "1" に変わった ときには上記第 1AD変換器から出力されるデジタル信号の選択を保持する。 この発明のさらに他の形態によれば、 上記 AD変換器として 1個の主 AD変換 器が設けられ、 上記選択手段は、 上記入力信号が入力され、 上記主 AD変換器よ りも分解能が小さいレンジ選択用 A D変換器と、 このレンジ選択用 A D変換器に よつて変換されたデジタル信号に応じて 1つのレベル制御器からの出力信号又は レベル制御されていない上記入力信号を上記主 A D変換器へ供給する選択スイツ チ部とを備えている。
上記レベル制御器としてその利得が固定であるもの、 或いはその利得が予め設 定可能であるものを使用することができる。
この発明の他の面においては、 レベルの小さい入力信号はレベル制御した後、 レベルの大きい入力信号はレベル制御することなく又はレベル制御した後、 それ ぞれデジタル信号に変換する段階と、 上記レベルの小さい入力信号に基づくデジ タル信号のオーバビットが "1" であるときには上記レベルの大きい入力信号に 基づくデジタル信号を選択し、 上記レベルの小さい入力信号に基づくデジタル信 号のオーバビットが " 0 " であるときには上記レベルの小さい入力信号に基づく デジタル信号を選択する段階とを含む A D変換方法が提供される。
この発明の好ましい一形態においては、 上記選択段階は、 上記レベルの小さい 入力信号に基づくデジタル信号のォ一バビットが " 0 " から " 1 " になると、 直 ちに上記レベルの大きレ、入力信号に基づくデジタル信号を選択し、 上記レベルの 小さい入力信号に基づくデジタノレ信号のォ一バビットが " 1 " から " 0 " になつ ても、 この " 0 " の状態が予め設定された時間内に " 1 " に変わったときには上 記レベルの大きい入力信号に基づくデジタル信号の選択を保持する段階をさらに 含む。
この発明によれば、 入力信号の各サンプル毎に、 入力信号に対して適切なレべ ル範囲が決定され、 それに応じて入力信号をレベル制御して或いはレベル制御せ ずにデジタル信号に変換するから、 先行技術のように包絡線検波器や利得調整器 を使用する必要がなくなり、 入力信号を高い精度でデジタル信号に変換すること ができる。 また、 先行技術のように、 複数のサンプル毎に増幅器の利得を制御す るのではなく、 各増幅器で増幅され、 デジタル信号に変換されたものを選択する ため、 より精度の高いデジタル信号が得られ、 しかも、 利得の制御に伴う髪状雑 音が発生する恐れもない。 図面の簡単な説明
図 1は先行技術の A D変換装置を示すプロック図である。
図 2 Aは図 1に示した A D変換装置における入力信号波形と、 利得制御の状態 を説明するための波形図である。
図 2 Bは図 1に示した A D変換装置における入力信号の振幅一周波数特性の一 例を示す図である。
図 3はこの発明による A D変換装置の第 1実施例を示すブロック図である。 図 4は図 3に示された A D変換装置のデータ選択部の一例を示すプロック図で ある。
図 5は図 3に示された A D変換装置のデータ選択部の他の例を示すプロック図 である。
図 6はデータ選択部の選択情報の一例を示す図である。
図 7 Aはこの発明の効果を説明するための波形とサンプル点を示す図である。 図 7 Bはこの発明による AD変換装置における利得制御の状態を説明するため の図である。
図 8はこの発明による A D変換装置の第 2実施例を示すブロック図である。 図 9は図 8に示した A D変換装置のレンジ選択用 A D変換器の出力と、 選択す る増幅器の利得との関係例を示す図である。
図 1 0は図 8に示した A D変換装置の主 A D変換器に対するサンプリングク口 ック C K Sとレンジ選択用クロック C KAとの関係例を示す図である。
図 1 1はこの発明による A D変換装置の第 3実施例を示すブロック図である。 図 1 2は図 1 1に示した A D変換装置の動作を説明するための図である。 図 1 3は図 1 1に示した AD変換装置の動作を説明するためのタイムチャート である。
図 1 4はこの発明による A D変換装置の第 4実施例を示すブロック図である。 発明を実施するための最良の形態
以下、 この発明の好ましい実施例について添付図面を参照して詳細に説明する
。 しかしながら、 この発明は多くの異なる形態で実施可能であるから、 以下に述 ベる実施例にこの発明が限定されると解釈するべきではない。 後述の実施例は、 以下の開示が十分で、 完全なものであり、 この発明の範囲をこの分野の技術者に 十分に知らせるために提供されるものである。
まず、 図 3乃至図 7を参照してこの発明による A D変換装置の第 1実施例につ いて詳細に説明する。
図 3はこの発明による A D変換装置の第 1実施例を示すブロック図であり、 入 力端子 3 1よりの入力信号はアンチエイリアシング ' フィルタ 3 2を通過した後 、 互いに利得が異なるこの第 1実施例では 4つの増幅器 (又は互いに制御量が異 なる 4つのレベル制御器) 3 3—:!〜 3 3— 4へ供給される。 これら増幅器 3 3 一 1〜 3 3— 4の利得は固定であり、 この例では第 1増幅器 3 3— 1は利得が 1 に、 第 2増幅器 33— 2は利得が 2に、 第 3増幅器 33— 3は利得が 4に、 第 4 増幅器 33— 4は利得が 8に設定されている。 これら利得は単なる一例であり、 他の値に設定しても、 或いはこのように 2のべき乗にしなくてもよい。
これら増幅器 33—:!〜 33— 4の出力は対応する AD変換器 34—:!〜 34 一 4へそれぞれ供給される。 これら AD変換器 34— 1〜34— 4は同一特性の ものであり、 つまり、 変換可能なレベル範囲が同一であり、 かつ同一の分解能を 持ち、 クロック端子 35から供給される同一のクロック CKSにより動作され、 対応する増幅器 33— :!〜 33— 4の出力を、 変換レベル範囲内では要求される 分解能でデジタル信号にそれぞれ変換するものである。 また、 これら AD変換器 34— 1〜34— 4には、 図示していないが、 図 1に示した先行技術の AD変換 装置のサンプルアンドホールド回路 16が内蔵されている。 なお、 サンプルアン ドホールド回路が内蔵されていない場合には、 AD変換器 34— 1〜34— 4の 前段にサンプルアンドホールド回路を設ける。
AD変換器 34— :!〜 34— 4よりの各出力デジタル信号はデータ選択部 36 に入力される。 データ選択部 36は、 入力端子 3 1よりの入力信号のレベルの大 きさに対応した適切なデジタル信号を選択して補正処理部 37へ供給する。 この 実施例では、 データ選択部 36は AD変換器 34— 1〜34— 4からのデジタル 信号を利用して、 入力信号のレベルの大きさに応じた AD変換器の出力デジタル 信号を選択する。 つまり、 入力信号レベルの予測される変動範囲を複数個に、 こ の例では 4つに、 分割した分割レベル範囲 (レンジ) の何れに入力信号のレベル が属するかに応じて、 対応する AD変換器の出力デジタル信号を選択する。 周知のように、 AD変換器 34—:!〜 34— 4はその入力信号のレベルがその 変換可能レベル範囲より大きいと、 オーバフローしてしまレ、、 変換された出力デ ジタル信号のォ一バビットが "1" となる。 つまり、 入力端子 31よりの入力信 号を、 AD変換器 34—:!〜 34— 4の動作範囲よりも大きくなるように増幅し 過ぎた増幅器を入力とする AD変換器の出力にはオーバビット "1" が立つ。 従 つて、 利得が大きい増幅器の出力を入力する順に AD変換器 34—:!〜 34— 4 を順序付け、 この例では第 4 AD変換器 34— 4を 1番目、 第3 0変換器34 一 3を 2番目とし、 以下同様に順番を付け、 これら AD変換器 34— 1〜34— 4中でオーバビット "1" が立っている AD変換器を前記順番に調べ、 最初にォ 一バビットが立っていない、 即ち、 オーバビットが "0" の AD変換器の出力を 選択すれば、 適切な A D変換器の出力デジタル信号を選択することができる。 このオーバビットを調べることは逆にォ一バビットが立っていない "0" の A D変換器から順に調べ、 最初にオーバビット "1" が立っている AD変換器の 1 つ前の AD変換器の出力を選択するようにしてもよい。 要するに、 オーバビット 力 S "1" の A D変換器に接続された増幅器のうちで利得が最小のものよりも、 1 段階利得が小さい増幅器が接続された AD変換器の出力データを選択する。 逆に 言えば、 オーバビットが "0" の AD変換器に接続された増幅器のうちで利得が 最大のものに接続された A D変換器の出力データを選択すればよい。
このようにオーバビットを利用する選択は、 例えば図 4に示す回路構成のデー タ選択部 36を使用することによって実施できる。 図 4に示すように、 第 1〜第 4 AD変換器 34— :!〜 34— 4の各出力デジタル信号を対応する第 1〜第 4ゲ —ト 38—:!〜 38— 4へそれぞれ供給し、 第 4 AD変換器 34— 4のオーバビ ットを、 インバータ 39— 4を通じて第 4ゲート 38— 4の制御端子へ供給する と共に第 3 AND回路 39— 3の非反転入力端子へも供給し、 この第 3 AND回 路 39— 3の反転入力端子には第 3 A D変換器 34— 3のオーバビットを供給す る。 また、 第 3AD変換器 34— 3のオーバビッ トを第 2AND回路 39— 2の 非反転入力端子へも供給し、 この第 2 AND回路 39— 2の反転入力端子には第 2 AD変換器 34— 2のオーバビッ トを供給する。 この第 2 AD変換器 34— 2 のオーバビットを第 1 AND回路 39— 1の非反転入力端子へも供給し、 この第 1 AND回路 39— 1の反転入力端子には第 1 AD変換器 34— 1のオーバビッ トを供給する。 そして、 これら第 1〜第 3 AND回路 39_ 1〜39— 3の各出 力を第 1〜第 3ゲート 38— :!〜 38— 3の各制御端子へ供給する。
上記構成によれば、 入力信号レベルが分割された範囲 (レンジ) のどれに入る かに応じて、 適切な利得の増幅器に接続された 1つの AD変換器の出力デジタル 信号のみが 4つのゲート 38—:!〜 38— 4の 1つを通過することになる。 例え ば、 第 2増幅器 33— 2によって増幅された入力信号のレベルが第 2 AD変換器 34— 2に対して適切なレベル範囲になる場合には、 第 3及び第 4 AD変換器 3 4一 3及び 34— 4の各オーバビットは "1" となり、 インバータ 39— 4の出 力と第 3 AND回路 39— 3の各出力は共に "0" となるから、 第 4及び第 3ゲ ート 38— 4及び 38— 3は開らかれなレ、。 また、 第 1及び第 2 AD変換器 34 一 1及び 34— 2の各オーバビットは共に "0" となり、 従って、 第 1 AND回 路 39— 1の出力は " 0" となるから、 第 1ゲート 38— 1も開らかれない。 し かし、 第 2AND回路 39— 2には第 3AD変換器 34— 3からのオーバビット "1" と、 第 2 AD変換器 34— 2からのオーバビット "0" が入力され、 後者 は反転されて "1" となるため、 第 2 AND回路 39— 2の出力は "1" となり 、 第 2ゲート 38— 2のみが開らかれる。 よって、 第 2 AD変換器 34— 2の出 力デジタル信号のみが出力されることになる。
A D変換器はその変換可能レベル範囲中の限界レベルに近レ、部分では変換の直 線性が悪くなる場合がある。 このような点も考慮して、 例えば図 5に示すような 回路構成のデータ選択部 36を使用して適切な AD変換器の出力デジタル信号を 選択するようにしてもよい。
図 5に示す回路構成では、 基準値を設定したレジスタ 41と第 1〜第 4の 4つ のデジタル比較器 42—:!〜 42— 4を設け、 レジスタ 41に設定した基準値と 、 第 1〜第 4AD変換器 34— 1〜34— 4の各出力デジタル信号とを対応する デジタル比較器 42— :!〜 42— 4においてそれぞれ比較する。 第 1〜第 3比較 器 42— 1〜42— 3の出力をそれぞれ第 1〜第 3 AND回路 43—:!〜 43— 3の反転入力端子へ供給し、 第 2〜第 4比較器 42— 2〜42— 4の出力をそれ ぞれ第 1〜第 3 AND回路 43—:!〜 43— 3の非反転入力端子へ供給する。 ま た、 第 4比較器 42— 4の出力を、 インバータ 43— 4を通じて、 第 4ゲート 3 8— 4の制御端子へ供給し、 第 1〜第 3 AND回路 43— :!〜 43— 3の出力を それぞれ第 1〜第 3ゲート 38— 1〜38— 3の制御端子へ供給する。
ここで、 レジスタ 41に設定される基準値は、 例えば各 AD変換器 34—:!〜
34-4の変換レベル範囲の上限値の 80 %程度の値に選定する。 また、 第 1〜 第 4比較器 42_ 1〜42— 4は、 対応する第 1〜第 4 AD変換器 34— :!〜 3
4一 4からのデジタル信号の方が基準値より大であれば " 1" を出力し、 小であ れば "0" を出力するものとする。 上記構成によれば、 図 4を参照して上述したデータ選択部と同様に、 例えば第 2増幅器 3 3— 2の出力が第 2 AD変換器 3 4— 2の適切な変換レベル範囲内に あつたとすると、 第 1及び第 2比較器 4 2— 1及び 4 2— 2の各出力は " 0 " と なり、 第 3及び第 4比較器 4 2— 3及び 4 2— 4の各出力は " 1 " となるから、 第 1〜第 3 A N D回路 4 3—:!〜 4 3— 3、 及びインバータ 4 3— 4の入力状態 は、 図 4に示したデータ選択部の第 1〜第 3 A N D回路 3 9—:!〜 3 9— 3、 及 びインバータ 3 9— 4の入力状態と同一となり、 第 2ゲート 3 8— 2のみが開ら かれる。 よって、 第 2 A D変換器 3 4— 2の出力デジタル信号のみが選択される ことになる。 なお、 上述した第 1〜第 4比較器 4 2—:!〜 4 2— 4の出力を利用 したデジタル信号の選択に、 前記オーバビットを利用した各種の選択手法を同様 に用いることもできる。
第 1〜第 4 A D変換器 3 4— 1〜3 4— 4の出力デジタル信号から以上のよう にして選択された 1つのデジタル信号は補正処理部 3 7に送られる。 この補正処 理部 3 7には、 この実施例では特性補正部 4 6とスケール補正部 4 8とが設けら れており、 入力されたデジタル信号は、 必要に応じて、 スケール補正部 4 8にお いて入力端子 3 1に伝送されてきた入力信号を直接デジタル信号に変換した場合 と同一値となるように、 スケール合せが行なわれ、 また、 特性補正部 4 6におい て、 増幅器 3 3— :!〜 3 3— 4の入出力特性が必ずしも所定の利得になっていな い場合に、 その補正も行なわれるように構成されている。
これらの補正は第 1〜第 4増幅器 3 3—:!〜 3 3— 4にそれぞれ対応して設け られた第 1〜第 4ルックアップテーブル 4 5— :!〜 4 5— 4を参照することによ つて行なわれる。 例えば、 第 2増幅器 3 3— 2と対応した第 2ルックアップテー プル 4 5— 2は、 第 2 A D変換器 3 4— 2の出力デジタノレ信号がデータ選択部 3 6によって選択されると、 この第 2 A D変換器 3 4— 2の出力デジタル信号が選 択されたことを指示する選択情報がデータ処理部 3 6から捕正処理部 3 7に送ら れることによって参照される。 補正処理部 3 7の特性補正部 4 6は、 対応する第 2ノレックアツプテーブル 4 5— 2を参照して第 2増幅器 3 3— 2の特性に関する 補正データを入手し、 第 2増幅器 3 3— 2の入力信号を、 その増幅器 3 3— 2に 設定された本来の正しい利得で増幅した信号、 この例では 2倍に増幅した信号、 を第 2 A D変換器 3 4 - 2でデジタル信号に変換したものと同じデジタル信号が 読み出されるように、 入力されたデジタル信号の特性を補正し、 また、 スケール 補正部 4 8は、 同じく第 2ルックアップテーブル 4 5— 2を参照してスケールに 関する補正データを入手し、 特性が補正されたデジタル信号を、 入力端子 3 1に 伝送されてきた入力信号に対応するデジタル信号にスケール補正するように構成 されている。
データ選択部 3 6から補正処理部 3 7に供給される上述の選択情報を生成する ために、 例えば図 4及び図 5に示す回路構成では、 第 1〜第 4ゲート 3 8— :!〜 3 8 - 4の各制御端子へ供給される制御信号を選択情報生成部 4 7にも入力する 。 この選択情報生成部 4 7は、 例えば入力された 4ビットの制御信号を 2ビット の符号に変換するエンコーダであり、 選択情報生成部 4 7は入力された 4ビッ ト の制御信号を、 例えば図 6に示すように 2ビットの選択情報に符号化する。 具体 的には、 選択情報生成部 4 7は、 利得 1の第 1増幅器 3 3— 1に接続された第 1 A D変換器 3 4— 1の出力が選択された場合には選択情報 0 0を出力し、 利得 2 の第 2増幅器 3 3— 2に接続された第 2 A D変換器 3 4— 2の出力が選択された 場合には選択情報 0 1を出力し、 利得 4の第 3増幅器 3 3— 3に接続された第 3 A D変換器 3 4— 3の出力が選択された場合には選択情報 1 0を出力し、 そして 利得 8の第 4増幅器 3 3 _ 4に接続された第 4 A D変換器 3 4— 4の出力が選択 された場合には選択情報 1 1を出力する。
従って、 この第 1実施例の場合には、 例えば第 2 A D変換器 3 4— 2の出力デ ジタル信号が選択されると、 選択情報 0 1がデータ選択部 3 6から補正処理部 3 7に供給される力ゝら、 補正処理部 3 7の特性補正部 4 6及びスケ一ル補正部 4 8 は入力された選択情報 0 1に基づき、 利得 2の第 2増幅器 3 3— 2に対応する第 2ルックアツプテ一ブル 4 5— 2を参照することになる。
スケール補正部 4 8におけるスケール補正処理、 つまり、 入力端子 3 1に到来 した入力信号に対応するデジタル信号にスケールを補正する処理は、 供給された 選択情報に基づいてルックアツプテーブルを参照し、 データ選択部 3 6が選択し たデジタル信号を出力した A D変換器と接続されている増幅器の利得で選択され たデジタル信号を割算することによって実施できる。 例えば、 増幅器の利得が 2 であればデジタル信号を 2で割算する。 これは、 スケール補正部 4 8においてデ ジタル信号をそれが格納されているレジスタ上において 1ビット右へシフトすれ ばよレ、。 前述したように、 第 1〜第 4増幅器 3 3—:!〜 3 3— 4の各利得を 1、 2、 4、 8のように 2のべき乗に設定しておけば、 このスケール補正はそのべき 乗する数だけデジタルデータをレジスタ上において右へシフトすればよく、 スケ ール補正処理が簡単になる。
なお、 選択情報は補正処理部 3 7において、 データ選択部 3 6が選択したデジ タル信号を出力した A D変換器と接続されている増幅器の利得を知ることができ る情報であればどのようなものでもよレ、。 図 6に示したように 4つの A D変換器 3 4— 1〜3 4— 4を 2進数で番号付けした場合には、 各番号に応じてスケール 補正する利得と 2進数番号との関係をルツクァップテーブルに予め記載しておけ ばよレ、。 或いは、 補正処理部 3 7に各番号に応じてスケール補正する利得と 2進 数番号との関係を設けておけば、 ルックァップテーブルを参照しなくても補正処 理部 3 7のスケール補正部 4 8においてスケール補正を行なうことができる。 上述したように、 この第 1実施例においては、 A D変換器 3 4—;!〜 3 4— 4 力 各サンプル毎に出力されるデジタル出力を利用して、 入力信号に対して最も 適切なレンジ (入力信号のレベル範囲) に対応した増幅器で増幅され、 対応する A D変換器で変換されたデジタル信号を選択するように構成されている。 例えば 、 図 7 Aに実線 2 2で示すような入力信号が入力端子 3 1に供給された場合、 こ の入力信号 2 2が黑丸 2 4で示す点でサンプリングされるものとして、 それらサ ンプル点 2 4の近傍を、 特に時間軸を拡大して図 7 Bに示し、 また、 入力信号の レベル範囲の切替えレベル、 つまり、 何れの増幅器の出力を AD変換するかの演 算レベルを図 7 Bに示すように L 4、 L 3、 L 2とすると、 入力信号のレベルが L 4以上の場合には利得 1の第 1増幅器 3 3 - 1の出力を A D変換したデジタル 信号が選択され、 レベル L 3〜L 4の範囲の場合には利得 2の第 2増幅器 3 3— 2の出力を A D変換したデジタル信号が選択され、 レベル L 2〜L 3の範囲の場 合には利得 4の第 3増幅器 3 3— 3の出力を AD変換したデジタル信号が選択さ れ、 レベル L 2以下の場合には利得 8の第 4増幅器 3 3— 4の出力を A D変換し たデジタル信号が選択されることになる。 このように、 各サンプル毎にそのレベルに応じた利得の増幅器で増幅され、 対 応する A D変換器の適切な変換可能レベル範囲内とされてデジタノレ信号に変換さ れたものが選択されるから、 図 2 Aに示した先行技術のように、 複数のサンプル 毎に増幅器の利得を制御する場合と比較して、 より精度の高いデジタル信号が得 られ、 しかも、 図 2 Bに示したような表示をする場合には、 波形がステップ的に 変化することなく、 アナログ処理と同様な連続的に変化する精度のよい波形が得 られる。 また、 増幅器の利得を制御するのではなく、 各増幅器で増幅され、 デジ タル信号に変換されたものを選択するため、 利得の制御に伴う髪状雑音が発生す る恐れもなレ、。
なお、 A D変換器 3 4— 1 〜 3 4— 4として 1 4ビッ トのものを用いれば、 ス ケールを補正した後においては、 レベル L 4以上の入力信号に対する量子化誤差 は 2 1 4分の 1であり、 レベル L 3 〜 L 4の入力信号に対する量子化誤差は 2 1 4 分の 1のさらに 1 Z 2であり、 レベル L 2 〜 L 3の入力信号に対する量子化誤差 は 2 1 4分の 1のさらに 1 / 4であり、 レベル L 2以下の入力信号に対する量子 化誤差は 2 1 4分の 1のさらに 1ノ 8である。
次に、 図 8乃至図 1 0を参照してこの発明による A D変換装置の第 2実施例に ついて詳細に説明する。
図 8はこの発明による A D変換装置の第 2実施例を示すプロック図であり、 上 記第 1実施例と対応する部分や素子には同一参照符号を付け、 必要のない限りそ れらの説明を省略する。 この第 2実施例においては、 入力端子 3 1よりの入力信 号はアンチエイリァシング ' フィルタ 3 2を通過した後、 互いに利得が異なる第 1〜第 4増幅器 (又は互いに制御量が異なる 4つのレベル制御器) 3 3— 1 〜 3 3— 4に供給されるが、 これら第 1〜第 4増幅器 3 3— 1 〜 3 3— 4から出力さ れる信号をデジタル信号に変換するための A D変換器は 1つの主 A D変換器 3 4 だけである。 ただし、 第 1〜第 4増幅器 3 3— 1 〜 3 3— 4から出力される信号 は選択スィッチ 5 1により 1つのみが選択されて主 AD変換器 3 4へ供給される ように構成されている。 なお、 第 1〜第 4増幅器 3 3— 1 〜 3 3— 4の利得は上 記第 1実施例の場合と同じであり、 第 1増幅器 3 3— 1は利得が 1に、 第 2増幅 器 3 3— 2は利得が 2に、 第 3増幅器 3 3— 3は利得が 4に、 第 4増幅器 3 3— 4は利得が 8に設定されている。 また、 主 A D変換器 34は図 3に示した第 1〜 第 4 AD変換器 34— 1〜34— 4と同様に、 変換可能なレベル範囲內では要求 される高分解能で入力信号をデジタル信号に変換する。
選択スィッチ 51は入力信号のレベルの大きさ、 つまり、 到来した入力信号の レベルが属するレンジ (レベル範囲) に応じて制御される。 このため、 アンチェ ィリアシング · フイノレタ 32を通過した入力信号は分岐されてレンジ選択用 AD 変換器 52へ供給される。 このレンジ選択用 AD変換器 52は主 AD変換器 34 の分解能よりもかなり分解能が低いが、 主 AD変換器 34に対するサンプリング 周波数よりも高い周波数のサンプリングパルスにより動作し、 かつ主 AD変換器 34が 1つのサンプル点の信号を受信する前に、 選択スィッチ 51による増幅器 出力の選択が終了し、 主 AD変換器 34が次のサンプル点の信号を受信する前に 、 選択スィッチ 5 1が次の増幅器出力の選択を行なうことができるように、 その 動作速度が選定されている。
例えば、 クロック発生器 53から、 主 AD変換器 34に供給するサンプリング クロック CKSの周波数の 2倍の周波数のクロック CKAを発生させ、 このクロ ック CKAをレンジ選択用 A D変換器 52に供給してレンジ選択用 A D変換器 5 2をサンプリング動作させる。 同時に、 このクロック CKAをサンプリングクロ ック生成部 54にも供給し、 ここでその周波数を 2分の 1に分周すると共に位相 を調整して、 サンプリングク口ック CKSとして主 AD変換器 34へ供給する。 上述した主 AD変換器 34及びレンジ選択用 AD変換器 52の動作について図 10を参照して具体的に説明する。 例えば、 図 1 OAに示すように、 周期 TPの ク口ック CKAがク口ック発生器 53から発生され、 各ク口ック CKA毎にレン ジ選択用 AD変換器 52において入力信号がサンプリングされてデジタル信号に 変換され、 その変換に要する時間が 1 であるとする。 この場合には、 図 10 B に示すように、 周期が 2TPのサンプリングクロック CKSは各クロック CKAよ り時間 T j以上位相が遅れた時点でサンプリングクロック生成部 54から主 A D 変換器 34へ供給される。 一方、 主 AD変換器 34においては、 一般に、 その動 作をなるベく高速にするために、 各サンプリング毎にそれのデジタル変換に要す る時間が T2であるとすると、 主 A D変換器 34のサンプリング周期 2 TPを、 デジタル変換に要する時間 T2よりも僅かに大に設定している。
レンジ選択用 AD変換器 52のデジタル出力はスィツチ制御部 55に供給され るが、 図 1 OA及び Βから理解できるように、 クロック CKAの 1つおきのデジ タル出力に対応する制御信号がスィツチ制御部 55を通じて選択スィツチ 51に 供給され、 この選択スィッチ 51の切替えを制御する。 つまり、 レンジ選択用 A D変換器 52のデジタル出力がスィッチ制御部 55に入力され、 入力端子 31の 入力信号のレベルがどのレンジに属するかが決定され、 この決定に基づき、 増幅 器 33— 1〜33— 4のどの出力を選択するかを指示する制御信号がスィッチ制 御部 55において生成され、 選択スィッチ 5 1に印加される。 これにより選択ス イッチ 51は印加された制御信号によって指示された増幅器を選択するように制 御される。
上記第 1実施例のように第 1〜第 4の 4つの増幅器 33—:!〜 33— 4が使用 されている場合には、 入力信号のレベルが 4つのレンジの何れに属するかを決定 すればよく、 従って、 レンジ選択用 AD変換器 52は 4つのレンジに対応する 4 つのレンジ選択用デジタル信号を出力すればよいので、 入力信号のレベルを最低 2ビットのデジタル信号に変換できるものであればよレ、。 2ビットのデジタル信 号に変換する場合には、 "00" 、 "01" 、 "1 0" 、 "1 1" の 4つのレン ジ選択用デジタル信号がレンジ選択用 A D変換器 52から出力されてスィッチ制 御部 55に供給されることになる。 よって、 例えば図 9に示すように、 出力デジ タル信号が "00" の場合には利得 8の増幅器 34— 4を、 "01" の場合には 利得 4の増幅器 33— 3を、 "10" の場合には増幅器 33— 2を、 " 1 1 " の 場合には増幅器 33一 1をそれぞれ選択する制御信号をスィツチ制御部 55から 発生させて選択スィッチ 51に印加し、 この制御信号に対応する増幅器を主 AD 変換器 34に接続するように選択スィツチ 51を制御すればよい。
このように構成すれば、 主 AD変換器 34が各サンプリングを行なう直前の入 力信号が、 そのレベルに応じて対応する増幅器によって適切な増幅が与えられて 主 AD変換器 34に入力される。 よって、 前述した第 1実施例の場合と同様の作 用及び効果が得られることは明白であるのでその説明を省略する。
選択スィツチ 51は高速度で動作する必要があるので、 例えばピン (P I N) ダイォ一ドを用いたスィツチ回路により構成することができ、 その場合にはスィ ツチ制御部 5 5は選択スィツチ 5 1の各ピンダイォードをオンオフ制御する制御 信号を生成することになる。
主 A D変換器 3 4からの出力デジタル信号は補正処理部 3 7で上記第 1実施例 と同様に補正処理される。 その場合の選択情報はスィツチ制御部 5 5からの制御 信号又はレンジ選択用 A D変換器 5 2の出力信号を用いることができる。 レンジ 選択用 A D変換器 5 2は低ビットの変換器であるから、 高速動作するものでも安 価に入手することができる。 よって、 図 1 0 Cに示すように、 クロック発生器 5 3から発生されるクロック C KAを、 サンプリングク口ック生成部 5 4から出力 されるサンプリングクロック C K Sと同一周期 2 T Pとし、 図 1 0 Dに示すよう に、 サンプリングクロック C K Sを、 時間 よりも僅かに大きい時間だけクロ ック C KAよりも遅延させてサンプリングク口ック生成部 5 4から出力させるよ うに構成してもよい。
なお、 上記第 2実施例において、 選択スィッチ 5 1の切替えにより髪状雑音が 発生する恐れがある場合には、 選択スィッチ 5 1の切替え制御周期はサンプリン グク口ック C K Sの周期と同一であるから、 その位相を髮状雑音の影響を受けな い程度にずらせばよい。
上記第 1実施例及び第 2実施例は、 入力信号を互いに利得が異なる複数の増幅 器に同時に入力し、 入力信号のレベルが属するレンジに応じて対応する増幅器の 出力をデジタル変換したデジタル信号を選択出力させるように構成した点で共通 している。 これら実施例において、 利得 1の第 1増幅器 3 3— 1は使用しなくて もよい。 つまり、 図 3及び図 8に破線で示すように、 アンチエイリアシング 'フ ィルタ 3 2の出力を直接第 1 A D変換器 3 4— 1又は選択スィツチ 5 1 へ供給す るように接続してもよい。 し力 し、 入出力インピーダンスや位相特性を揃えるな どの点から、 利得 1の増幅器 3 3— 1を使用することが好ましい。 また、 上述し たように、 増幅器の数は 4つに限定されない。 利得 1の増幅器 3 3— 1が省略で きることを考慮すれば、 少なくとも 1個の 1より大きい利得の増幅器を用いれば よい。 増幅器の数を多くすれば、 選択された 1つの増幅器の出力をデジタル変換 する A D変換器として出力ビット数が少ない高速、 安価なものを用いることがで きるという利点がある。 或いは、 出力ビット数が同じである (少なくしない) 場 合には A D変換器の分解能を向上させることができる。
さらに、 上記第 1実施例及び第 2実施例においては、 入力信号のレベル制御を 増幅器により行なったが、 減衰器によって行なってもよいし、 増幅器と減衰器の 両者を用いても行なってもよい。 要するに、 レベル制御器を少なくとも 1つ用い ればよい。 また、 上記第 1実施例及び第 2実施例において、 レベル制御器の制御 を正確に要求通りに行なうことができる場合には、 補正処理部 3 7における特性 補正は省略してもよレ、。
次に、 図 1 1乃至図 1 3を参照してこの発明による AD変換装置の第 3実施例 について詳細に説明する。
図 1 1はこの発明による A D変換装置の第 3実施例を示すプロック図であり、 上記第 1及び第 2実施例と対応する部分や素子には同一参照符号を付け、 必要の ない限りそれらの説明を省略する。 この第 3実施例においては、 入力端子 3 1よ りの入力信号はアンチエイリアシング ' フィルタ 3 2を通過した後、 互いに利得 が異なる第 1及び第 2増幅器 (又は互いに制御量が異なる 2つのレベル制御器) 6 1— 1及び 6 1—2に供給される。 これら増幅器 6 1— 1及び 6 1— 2の利得 は固定であり、 この第 3実施例では第 1増幅器 6 1— 1は利得が 1に、 第 2増幅 器 6 1—2は利得が 8に設定されている。 これら利得は単なる一例であり、 他の 値に設定しても、 或いはこのように 2のべき乗にしなくてもよレ、。
これら増幅器 6 1一 1及び 6 1—2の出力は対応する第 1及び第 2 A D変換器 6 2—1及び 6 2— 2へそれぞれ供給される。 A D変換器 6 2— 1及び 6 2 - 2 は同一特性のものであり、 つまり、 変換可能なレベル範囲が同一であり、 かつ同 一の分解能を持ち、 ク口ック端子 3 5から供給される同一のク口ック C K Sによ り動作され、 対応する増幅器 6 1 _ 1及び 6 1— 2の出力を、 変換レベル範囲内 では要求される分解能でデジタル信号にそれぞれ変換するものである。 また、 こ れら A D変換器 6 2— 1及び 6 2— 2には、 図示しないが、 図 1に示した先行技 術の A D変換装置のサンプルアンドホールド回路 1 6が内蔵されている。 なお、 サンプルアンドホールド回路が内蔵されていない場合には、 A D変換器 6 2— 1 及び 6 2 _ 2の前段にサンプルアンドホールド回路を設ける。 AD変換器 62— 1及び 62— 2よりの各出力デジタル信号はデータ選択部 6 3に入力される。 このデータ選択部 63はマルチプレクサ 63一 1と選択信号発 生部 63— 2とから構成されており、 AD変換器 62— 1及び 62— 2から出力 されるデジタル信号はマルチプレクサ 63— 1に入力される。 データ選択部 63 は、 入力端子 31からの入力信号のレベルの大きさに対応した適切なデジタル信 号を選択して補正処理部 37へ供給する。 この補正処理部 37には、 上記第 1実 施例と同様に、 図示しないが、 特性補正部とスケール補正部とが設けられており 、 入力されたデジタル信号は、 第 1ルックアップテーブル 45— 1又は第 2ルツ クアップテーブル 45— 2を参照することによって、 特性補正部において、 增幅 器 6 1—1及び 6 1— 2の入出力特性が必ずしも所定の利得になっていない場合 に、 その補正が行なわれ、 また、 スケール補正部において入力端子 31に伝送さ れてきた入力信号を直接デジタル信号に変換した場合と同一値となるように、 ス ケール合せが行なわれるように構成されている。
この第 3実施例では、 入力信号レベルの予測される変動範囲を 2つに分割し、 これら分割レベル範囲 (レンジ) の何れに入力信号のレベルが属するかに応じて 対応する AD変換器の出力デジタル信号を選択するように構成されている。 この レンジの切替えは、 第 2 AD変換器 62— 2に対する入力信号のレベルがその変 換可能レベル範囲より大きいときに、 この第 2 AD変換器 62— 2がオーバフロ 一して出力デジタル信号のオーバビットが "1" になることを利用して行なわれ る。 具体的には、 第 2 AD変換器 62— 2から出力されるデジタル信号をデータ 選択部 63の選択信号発生部 63— 2にも入力し、 この選択信号発生部 63— 2 において第 2 AD変換器 62— 2から出力されるデジタル信号のオーバビットが "0" であるときには第 2 AD変換器 62— 2を選択する選択信号 SEL 2 (例 えば論理高レベルの信号) をマルチプレクサ 63一 1に供給して第 2 AD変換器 62— 2のデジタル信号を選択させ、 第 2 AD変換器 62— 2がオーバフローし てデジタル信号のオーバビットが "1" になったときには第 1AD変換器 62— 1を選択する選択信号 SEL 1 (例えば論理低レベル信号) を直ちにマルチプレ クサ 63— 1に供給して第 1AD変換器 62- 1の出力デジタル信号を選択させ る。 また、 第 1AD変換器 62— 1のデジタル信号が選択されているときに、 第 2 AD変換器 62— 2の出力デジタル信号のオーバビットが "0" になり、 この オーバビット "0" が予め設定された時間 T 1 0内に "1" にならないときには 、 選択信号発生部 63— 2は選択信号 S E L 2をマルチプレクサ 63— 1に供給 して第 2 AD変換器 62— 2の出力デジタル信号を選択させる。 なお、 第 2AD 変換器 62— 2から出力されるデジタル信号のオーバビットのみを選択信号発生 部 63— 2に入力してもよい。
例えば、 図 1 2に実線 70で示すような入力信号が入力端子 3 1に供給された 場合、 この入力信号 70のレベル範囲の切替えレベル、 つまり、 何れの増幅器の 出力を AD変換するかの演算レベルを図示するように L 1とすると、 入力信号の レベルが L 1以下であるうちは利得 8の第 2増幅器 61— 2の出力を A D変換し たデジタル信号が選択され、 入力信号のレベルが L 1以上になると、 利得 1の第 1増幅器 61— 1の出力を AD変換したデジタル信号が直ちに選択される。 また 、 入力信号のレベルが L 1以上になったため、 利得 1の第 1増幅器 61— 1の出 力を AD変換したデジタル信号が選択されているときに、 第 2 AD変換器 62— 2の出力デジタル信号のオーバビットが "0" になり、 このォ一バビット "0" が予め設定された時間 T 10内に "1" にならないときには、 利得 8の第 2増幅 器 6 1— 2の出力を AD変換したデジタル信号が選択される。
この第 2 AD変換器 62— 2のオーバビットと選択信号発生部 63— 2から出 力される選択信号との関係を図 1 3のタイムチャートに示す。 第 2 AD変換器 6 2— 2のオーバビット力 S "0" であるとき、 及び "1" から "0" になり、 かつ 予め設定された時間 T 10経過しても "0" であるときには、 選択信号発生部 6
3— 2は第 2 AD変換器 62- 2の出力デジタル信号を選択する選択信号 S E L 2を出力してマルチプレクサ 6 3— 1に供給する。 一方、 第2八0変換器62— 2のォ一バビットが "0" から "1" になると、 選択信号発生部 63— 2は直ち に第 1 AD変換器 62- 1の出力デジタル信号を選択する選択信号 S E L 1を出 力してマルチプレクサ 63— 1に供給し、 たとえオーバビットが "1" から "0 " になってもこの "0" に留まる時間が予め設定された時間 T 10より短いとき には、 選択信号 SEL 1を出力したままに保持するということが容易に理解され よう。 なお、 上記予め設定される時間 T 1 0は測定すべき信号や測定装置の種々の要 件を勘案した最適な時間に設定されることになるが、 例えば 1 / R B W (分解能 帯域幅) に設定することができる。
このように、 この第 3実施例は、 入力信号を互いに利得が異なる 2つの増幅器 に同時に入力し、 第 2 AD変換器 6 2— 2から各サンプル毎に出力されるデジタ ル信号のオーバビットを利用して、 入力信号に対して最も適切なレンジ (入力信 号のレベル範囲) に对応した増幅器で増幅され、 対応する A D変換器で変換され たデジタル信号を選択するように構成されている。 従って、 各サンプル毎にその レベルに応じた利得の増幅器で増幅され、 対応する A D変換器の適切な変換可能 レベル範囲内とされてデジタル信号に変換されたものが選択されるから、 図 2 A に示した先行技術のように、 複数のサンプル毎に増幅器の利得を制御する場合と 比較して、 より精度の高いデジタル信号が得られる。 また、 増幅器の利得を制御 するのではなく、 各増幅器で増幅され、 デジタル信号に変換されたものを選択す るため、 利得の制御に伴う髪状雑音が発生する恐れもない。
なお、 上記第 3実施例においても、 利得 1の第 1増幅器 6 1— 1は使用しなく てもよい。 つまり、 上記第 1及び第 2実施例のように、 アンチエイリアシング ' フィルタ 3 2の出力を直接第 1 A D変換器 6 2— 1へ供給するように接続しても よい。 し力 し、 入出力インピーダンスや位相特性を揃えるなどの点から、 利得 1 の増幅器 6 1— 1を使用することが好ましい。 また、 利得 1の増幅器 6 1— 1が 省略できることを考慮すれば、 少なくとも 1個の 1より大きい利得の増幅器を用 いればよレ、。 さらに、 入力信号のレベル制御を増幅器により行なったが、 減衰器 によって行なってもよいし、 増幅器と減衰器の両者を用いても行なってもよい。 要するに、 レベル制御器を少なくとも 1つ用いればよレ、。 この場合、 レベル制御 器の制御を正確に要求通りに行なうことができるならば、 補正処理部 3 7におけ る特性補正は省略してもよい。
上記第 3実施例では第 2増幅器 6 1— 2として固定利得の増幅器を使用したが 、 可変利得の増幅器を第 2増幅器 6 1— 2として使用し、 測定装置の測定分解能 帯域幅の設定が変えられたときに、 測定開始前にこの可変利得増幅器の利得を最 適な固定値に変更設定するように構成してもよい。 図 1 4はこの発明による A D変換装置の第 4実施例を示すプロック図であり、 上記したように可変利得の増幅器を第 2増幅器として使用し、 測定装置の測定分 解能帯域幅の設定が変えられたときに、 測定開始前にこの可変利得増幅器の利得 を最適な固定値に設定するように構成したものである。
図 1 4から明瞭なように、 この第 4実施例は、 第 1及び第 2の 2つの増幅器 6 1一 1及び 6 1—2と、 これら増幅器 6 1一 1及び 6 1— 2の出力をデジタル信 号にそれぞれ変換する第 1及び第 2の 2つの A D変換器 6 2— 1及び 6 2— 2が 設けられ、 第 1増幅器 6 1— 1は利得が 1に設定され、 第 2増幅器 6 1— 2は利 得 (N) が可変である点を除くと、 他の構成は前述した第 1実施例と同様である ので、 上記第 1実施例及び第 3実施例と対応する部分や素子には同一参照符号を 付け、 必要のない限りそれらの説明を省略する。
上述したように、 第 2増幅器 6 1—2の利得 (N) は、 測定装置の測定分解能 帯域幅の設定が変えられたときに、 測定開始前にその利得が最適な固定値 (例え ば 2、 4、 又は 8のような測定分解能帯域幅の設定に対応する特定の固定値) に 予め設定される。 データ選択部 3 6によって選択されたデジタル信号は、 補正処 理部 3 7において補正処理された後、 後段のデジタル信号処理部でさらに必要な 処理が行なわれるが、 例えば分解能帯域幅フィルタの帯域幅が狭くなるほど、 A D変換器 6 2— 1、 6 2— 2のダイナミックレンジが広いことが要求される。 従 つて、 この第 4実施例のように第 2増幅器 6 1— 2の利得を可変にし、 測定開始 前に、 測定分解能帯域幅を設定したときに、 同時に、 第 2増幅器 6 1— 2の利得 をこの設定された測定分解能帯域幅に対応する最適な値 (固定値) に設定してお けば、 入力信号を高い精度でデジタル信号に変換することができる。
このように構成すれば、 A D変換器 6 2— 1、 6 2— 2から各サンプル毎に出 力されるデジタル出力を利用して、 入力信号に対して最も適切なレンジ (入力信 号のレベル範囲) に対応した増幅器で増幅され、 対応する A D変換器で変換され たデジタル信号を選択することができる。 従って、 前述した第 1実施例の場合と 同様の作用及び効果が得られることは明白であるのでその説明を省略する。 なお、 上記第 4実施例においても、 利得 1の第 1増幅器 6 1— 1は使用しなく てもよい。 つまり、 上記第 1及び第 2実施例のように、 アンチエイリアシング . フィルタ 3 2の出力を直接第 1 A D変換器 6 2— 1 へ供給するように接続しても よい。 しかし、 入出力インピーダンスや位相特性を揃えるなどの点から、 利得 1 の増幅器 6 1— 1を使用することが好ましい。 また、 入力信号のレベル制御を增 幅器により行なったが、 減衰器によって行なってもよいし、 増幅器と減衰器の両 者を用いても行なってもよい。 要するに、 レベル制御器を少なくとも 1つ用いれ ばよレ、。 この場合、 レベル制御器の制御を正確に要求通りに行なうことができる ならば、 補正処理部 3 7における特性補正は省略してもよレ、。
以上の説明で明白なように、 この発明によれば、 入力信号の各サンプ^/毎に、 入力信号に対して適切なレベル範囲が決定され、 それに応じて入力信号をレベル 制御して或いはレベル制御せずにデジタル信号に変換するから、 先行技術のよう に包絡線検波器や利得調整器を使用する必要がなくなり、 入力信号を高い精度で デジタル信号に変換することができるという顕著な利点が得られる。 また、 各レ ベル制御器でレベル制御され、 デジタル信号に変換されたものを選択するため、 より精度の高いデジタル信号が得られ、 しかも、 利得の制御に伴う髪状雑音が発 生する恐れもない。
以上、 この発明を図示した好ましい実施例について記載したが、 この発明の精 神及び範囲から逸脱することなしに、 上述した実施例に関して種々の変形、 変更 及び改良が生かし得ることはこの分野の技術者には明らかであろう。 従って、 こ の発明は例示の実施例に限定されるものではなく、 添付の請求の範囲によって定 められるこの発明の範囲内に入る全てのそのような変形、 変更及び改良をも包含 するものであるということを理解すべきである。

Claims

請 求 の 範 囲
1 . 入力信号のレベルを制御する少なくとも 1つのレベル制御器と、
少なくとも 1つの A D変換器と、
入力信号をデジタル変換した信号又は入力信号がレベル制御され、 かつデジタ ル変換された信号を、 上記入力信号のレベルの大きさに応じて出力させる選択手 段と、
を具備することを特徴とする A D変換装置。
2 . 上記 A D変換器として、 レベル制御されていない上記入力信号をデジタル信 号に変換する 1つの A D変換器と、 対応するレベル制御器でレベル制御された信 号をデジタル信号に変換する少なくとも 1つの A D変換器とが設けられ、 上記選択手段は、 上記複数の AD変換器で変換されたデジタル信号に応じて、 これらデジタ /レ信号の 1つを選択し、 出力する手段である
ことを特徴とする請求項 1に記載の AD変換装置。
3 . 上記選択手段は、 上記複数の AD変換器がその入力信号のレベルの大きさの 順に順番付けされた場合に、 出力デジタル信号のオーバビットが " 1 " である A D変換器の次の順番のオーバビッ卜が " 0 " である A D変換器の出力デジタル信 号を選択する手段である
ことを特徴とする請求項 2に記載の A D変換装置。
4 . 上記選択手段は、 上記各 A D変換器よりのデジタル信号と基準値とを比較す る複数の比較器と、 上記複数の A D変換器がその入力信号のレベルの大きさの順 に順番付けされた場合に、 比較器出力が基準値以上である比較器と対応する A D 変換器の、 次の順番の比較器出力が基準値以下である比較器と対応する A D変換 器の出力デジタル信号を選択する手段である
ことを特徴とする請求項 2に記載の A D変換装置。
5. 上記 AD変換器として、 レベル制御されていない上記入力信号をデジタル信 号に変換する第 1 A D変換器と、 対応するレベル制御器でレベル制御された信号 をデジタル信号に変換する第 2 AD変換器とが設けられ、
上記選択手段は、 レベル制御された信号をデジタル信号に変換する上記第 2 A D変換器から出力されるデジタル信号のオーバビットが "0" から "1" になる と、 上記第 1AD変換器から出力されるデジタル信号を直ちに選択出力し、 上記 第 2 AD変換器から出力されるデジタル信号のオーバビットが "1" から "0" になっても、 この "0" の状態が予め設定された時間内に "1" に変わったとき には上記第 1 A D変換器から出力されるデジタル信号の選択を保持する手段であ る
ことを特徴とする請求項 1に記載の A D変換装置。
6. 上記 AD変換器として 1個の主 AD変換器が設けられ、
上記選択手段は、 上記入力信号が入力され、 上記主 AD変換器よりも分解能が 小さいレンジ選択用 A D変換器と、 このレンジ選択用 AD変換器によって変換さ れたデジタル信号に応じて 1つのレベル制御器からの出力信号又はレベル制御さ れていない上記入力信号を上記主 AD変換器へ供給する選択スィツチ部とを備え ている
ことを特徴とする請求項 1に記載の A D変換装置。
7. 上記デジタル信号の選択状態を表わす選択情報を生成する選択情報生成部と 上記レベル制御器毎にその出力補正特性が記憶されているルックアツプテープ ノレと、
上記選択されたデジタル信号の特性を、 上記選択情報に応じて上記ルックアツ プテ一プルの 1つを参照して補正する特性補正部と、
を具備することを特徴とする請求項 2乃至 5の何れか 1つに記載の AD変換装置
8 . 上記レベル制御器の選択状態を表わす選択情報を生成する選択情報生成部と 上記レベル制御器毎にその出力補正特性が記憶されているルックアップテープ ルと、
上記主 A D変換器から出力されるデジタル信号の特性を、 上記選択情報に応じ て上記ルツクァップテーブルの 1つを参照して補正する特性補正部と、 を具備することを特徴とする請求項 6に記載の A D変換装置。
9 . 上記デジタル信号の選択状態を表わす選択情報を生成する選択情報生成部と 入力信号のレベルに応じたスケール補正データが記憶されているルックアップ テープノレと、
上記選択されたデジタル信号を、 上記選択情報に応じて上記ルックアツプテ一 プルの 1つを参照して入力信号のレベルの大きさに応じたデジタル信号に補正す るスケール補正部と、
を具備することを特徴とする請求項 2乃至 5及び 7の何れか 1つに記載の A D変
1 0 . 上記レベル制御器の選択状態を表わす選択情報を生成する選択情報生成部 と、
入力信号のレベルに応じたスケール補正データが記憶されているルックアップ テープノレと、
上記主 A D変換器から出力されるデジタル信号を、 上記選択情報に応じて上記 ノレックァップテーブルの 1つを参照して入力信号のレベルの大きさに応じたデジ タル信号に補正するスケール補正部と、
を具備することを特徴とする請求項 6又は 8に記載の A D変換装置。
1 1 . 上記レベル制御器はその利得が固定であることを特徴とする請求項 1に記 載の A D変換装置。
12. 上記レベル制御器はその利得が予め設定可能であることを特徴とする請求 項 1に記載の A D変換装置。
1 3. レベルの小さい入力信号はレベル制御した後、 レベルの大きい入力信号は レベル制御することなく又はレベル制御した後、 それぞれデジタル信号に変換す る段階と、
上記レベルの小さい入力信号に基づくデジタル信号のォ一バビットが "1" で あるときには上記レベルの大きい入力信号に基づくデジタル信号を選択し、 上記 レベルの小さい入力信号に基づくデジタル信号のオーバビットが "0" であると きには上記レベルの小さレ、入力信号に基づくデジタル信号を選択する段階と、 を含むことを特徴とする AD変換方法。
14. 上記選択段階は、 上記レベルの小さい入力信号に基づくデジタル信号のォ 一バビットが "0" から "1" になると、 直ちに上記レベルの大きい入力信号に 基づくデジタル信号を選択し、 上記レベルの小さい入力信号に基づくデジタル信 号のオーバビットが "1" から "0" になっても、 この "0" の状態が予め設定 された時間内に "1" に変わったときには上記レベルの大きい入力信号に基づく デジタル信号の選択を保持する段階をさらに含むことを特徴とする請求項 1 0に 記載の A D変換方法。
PCT/JP2003/000875 2002-01-30 2003-01-30 Appareil et procede de conversion a/n WO2003067764A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003566987A JPWO2003067764A1 (ja) 2002-01-30 2003-01-30 Ad変換装置及び方法
DE10392236T DE10392236T5 (de) 2002-01-30 2003-01-30 Analog/Digital-Umsetzvorrichtung und -verfahren
US10/502,897 US7030800B2 (en) 2002-01-30 2003-01-30 Analog-to-digital conversion apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002021639 2002-01-30
JP2002-21639 2002-01-30

Publications (1)

Publication Number Publication Date
WO2003067764A1 true WO2003067764A1 (fr) 2003-08-14

Family

ID=27677801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/000875 WO2003067764A1 (fr) 2002-01-30 2003-01-30 Appareil et procede de conversion a/n

Country Status (4)

Country Link
US (1) US7030800B2 (ja)
JP (1) JPWO2003067764A1 (ja)
DE (1) DE10392236T5 (ja)
WO (1) WO2003067764A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007514338A (ja) * 2003-10-15 2007-05-31 バリアン・メディカル・システムズ・テクノロジーズ・インコーポレイテッド 信号のダイナミックレンジを増加するための複数の信号利得を有するデータ信号増幅器及びプロセッサ
US7376189B2 (en) * 2003-09-11 2008-05-20 Sharp Kabushiki Kaisha Remote control signal reception circuit, remote control signal reception method, remote control signal reception program, and computer-readable storage medium storing the program
JP2008182546A (ja) * 2007-01-25 2008-08-07 Pioneer Electronic Corp アナログデジタル変換装置及びアナログデジタル変換方法
US7906417B2 (en) 2007-09-28 2011-03-15 Fujitsu Limited Compound semiconductor device with T-shaped gate electrode and its manufacture
US8916459B2 (en) 2007-08-28 2014-12-23 Fujitsu Limited Compound semiconductor device with mesa structure
JP2015050715A (ja) * 2013-09-03 2015-03-16 株式会社東芝 集約・中継局装置
JP2016017778A (ja) * 2014-07-04 2016-02-01 日本無線株式会社 A/d変換装置
JP2017188733A (ja) * 2016-04-01 2017-10-12 ローム株式会社 信号処理回路、クーロンカウンタ回路、電子機器

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7356186B2 (en) * 2002-08-23 2008-04-08 Kulas Charles J Digital representation of audio waveforms using peak shifting to provide increased dynamic range
CN1801611B (zh) * 2005-12-20 2010-05-05 深圳兰光电子集团有限公司 一种低音增效处理的方法和装置
AU2006332837A1 (en) * 2005-12-28 2007-07-12 Nirinjan Bikko Breathing biofeedback device
US9779751B2 (en) 2005-12-28 2017-10-03 Breath Research, Inc. Respiratory biofeedback devices, systems, and methods
EP2005576A1 (en) 2006-03-27 2008-12-24 Shell Internationale Research Maatschappij B.V. Amplifier and method of amplifying an input signal
JP2008078702A (ja) * 2006-09-19 2008-04-03 Fujitsu Ltd 増幅器故障検出装置
JP2008182425A (ja) * 2007-01-24 2008-08-07 Denso Corp フィルタ回路
US7439897B1 (en) * 2007-04-26 2008-10-21 Agilent Technologies, Inc. Staggered interleaved Nyquist regions avoid guard band induced holes when sampling a band limited signal
WO2009006465A2 (en) * 2007-07-03 2009-01-08 Shell Oil Company System and method for measuring a time-varying magnetic field and method for production of a hydrocarbon fluid
US7541956B1 (en) * 2008-01-31 2009-06-02 Delta Electronics, Inc. Inverter system with variable input gain apparatus and method for the same
US7864467B2 (en) * 2008-02-06 2011-01-04 International Business Machines Corporation Gain control for data-dependent detection in magnetic storage read channels
US7952502B2 (en) * 2008-08-29 2011-05-31 Broadcom Corporation Imbalance and distortion cancellation for composite analog to digital converter (ADC)
US8319673B2 (en) * 2010-05-18 2012-11-27 Linear Technology Corporation A/D converter with compressed full-scale range
TWI413362B (zh) * 2010-07-16 2013-10-21 Novatek Microelectronics Corp 自動增益控制電路與方法及放大器裝置
DE102011080737A1 (de) * 2011-08-10 2013-02-14 Siemens Aktiengesellschaft Einrichtung zur Messbereichserweiterung und ein zugehöriges Verfahren
US9814438B2 (en) 2012-06-18 2017-11-14 Breath Research, Inc. Methods and apparatus for performing dynamic respiratory classification and tracking
US10426426B2 (en) 2012-06-18 2019-10-01 Breathresearch, Inc. Methods and apparatus for performing dynamic respiratory classification and tracking
CN103546154B (zh) * 2012-07-17 2016-08-10 固纬电子实业股份有限公司 模拟数字转换的位元扩展系统及其位元扩展方法
US10284217B1 (en) * 2014-03-05 2019-05-07 Cirrus Logic, Inc. Multi-path analog front end and analog-to-digital converter for a signal processing system
US10198276B2 (en) * 2015-12-18 2019-02-05 Rohde & Schwarz Ghbh & Co. Kg Configuration of a frequency converter, frequency converter kit and method for configuring a frequency converter
EP3923481A4 (en) 2019-03-04 2022-02-16 Mitsubishi Electric Corporation RECEIVER DEVICE AND RECEIPT METHOD
JP7384778B2 (ja) * 2020-12-07 2023-11-21 株式会社東芝 アナログデジタル変換器及び電子装置
JP7233625B1 (ja) * 2021-02-03 2023-03-06 三菱電機株式会社 受信装置及びa/d変換方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5098771U (ja) * 1974-01-10 1975-08-16
JPS61203719A (ja) * 1985-03-07 1986-09-09 Pioneer Electronic Corp 信号処理回路
JPH0332226A (ja) * 1989-06-29 1991-02-12 Yamaha Corp A/d変換装置
JPH0661858A (ja) * 1992-08-06 1994-03-04 Nec Corp A/d変換器
JPH07191962A (ja) * 1991-07-18 1995-07-28 General Electric Co <Ge> 浮動小数点増幅器用の補正回路
JPH07321655A (ja) * 1994-05-27 1995-12-08 Fujitsu Ltd A/d変換器の高分解能化方法
JPH10209868A (ja) * 1997-01-17 1998-08-07 Canon Inc A/d変換装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5844512A (en) * 1997-07-28 1998-12-01 Hewlett-Packard Company Autoranging apparatus and method for improved dynamic ranging in analog to digital converters
US6369740B1 (en) * 1999-10-22 2002-04-09 Eric J. Swanson Programmable gain preamplifier coupled to an analog to digital converter
EP1439636A1 (en) * 2003-01-08 2004-07-21 Agilent Technologies, Inc., a corporation of the State of Delaware Automatic gain control method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5098771U (ja) * 1974-01-10 1975-08-16
JPS61203719A (ja) * 1985-03-07 1986-09-09 Pioneer Electronic Corp 信号処理回路
JPH0332226A (ja) * 1989-06-29 1991-02-12 Yamaha Corp A/d変換装置
JPH07191962A (ja) * 1991-07-18 1995-07-28 General Electric Co <Ge> 浮動小数点増幅器用の補正回路
JPH0661858A (ja) * 1992-08-06 1994-03-04 Nec Corp A/d変換器
JPH07321655A (ja) * 1994-05-27 1995-12-08 Fujitsu Ltd A/d変換器の高分解能化方法
JPH10209868A (ja) * 1997-01-17 1998-08-07 Canon Inc A/d変換装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7376189B2 (en) * 2003-09-11 2008-05-20 Sharp Kabushiki Kaisha Remote control signal reception circuit, remote control signal reception method, remote control signal reception program, and computer-readable storage medium storing the program
JP2007514338A (ja) * 2003-10-15 2007-05-31 バリアン・メディカル・システムズ・テクノロジーズ・インコーポレイテッド 信号のダイナミックレンジを増加するための複数の信号利得を有するデータ信号増幅器及びプロセッサ
JP2008182546A (ja) * 2007-01-25 2008-08-07 Pioneer Electronic Corp アナログデジタル変換装置及びアナログデジタル変換方法
US8916459B2 (en) 2007-08-28 2014-12-23 Fujitsu Limited Compound semiconductor device with mesa structure
US7906417B2 (en) 2007-09-28 2011-03-15 Fujitsu Limited Compound semiconductor device with T-shaped gate electrode and its manufacture
US8183558B2 (en) 2007-09-28 2012-05-22 Fujitsu Limited Compound semiconductor device with T-shaped gate electrode
JP2015050715A (ja) * 2013-09-03 2015-03-16 株式会社東芝 集約・中継局装置
JP2016017778A (ja) * 2014-07-04 2016-02-01 日本無線株式会社 A/d変換装置
JP2017188733A (ja) * 2016-04-01 2017-10-12 ローム株式会社 信号処理回路、クーロンカウンタ回路、電子機器

Also Published As

Publication number Publication date
US20050068211A1 (en) 2005-03-31
JPWO2003067764A1 (ja) 2005-06-02
US7030800B2 (en) 2006-04-18
DE10392236T5 (de) 2005-03-03

Similar Documents

Publication Publication Date Title
WO2003067764A1 (fr) Appareil et procede de conversion a/n
US4896155A (en) Method and apparatus for self-calibration of subranging A/D converter
JP3556401B2 (ja) ディジタル補償型のアナログ・ディジタル変換器
US7161514B2 (en) Calibration method for interleaving an A/D converter
JP4684743B2 (ja) A/d変換回路、a/d変換器およびサンプリングクロックのスキュー調整方法
US5006851A (en) Analog-to-digital converting system
US4903024A (en) A/D converter system with error correction and calibration apparatus and method
US7656339B2 (en) Systems and methods for analog to digital conversion
US8947284B2 (en) AD converter and AD conversion method
JP2014232973A (ja) Sarアナログ・デジタル変換方法およびsarアナログ・デジタル変換回路
JP3706187B2 (ja) ビデオ無線周波又は中間周波信号のa/d変換用回路
KR100276784B1 (ko) 데이터-획득 시스템에서 아날로그 신호를 디지틀 신호로 변환하는 방법 및 아날로그-디지틀 변환 회로
EP0191478A2 (en) Measurement circuit for evaluating a digital-to-analog converter
US5760730A (en) Method and system for analog-to-digital signal conversion with simultaneous analog signal compression
JP2006074415A (ja) A/d変換器およびサンプリングクロックのデューティ制御方法
JP4493145B2 (ja) 任意波形発生器
KR20010051846A (ko) 아날로그-디지털 변환기, 마이크로컴퓨터 및아날로그-디지털 변환방법
JP4610753B2 (ja) Adコンバータ
JPH0526372B2 (ja)
KR100280494B1 (ko) 아날로그/디지털 변환기
US20040189498A1 (en) Digital equalization apparatus
JP2671669B2 (ja) 波形解析装置
JPH08335879A (ja) D/aコンバータのバイポーラ出力のゲイン調整回路
CN118740151A (zh) 基于斜坡信号的adc时钟失配校准方法、装置及n通道时间交织adc
JPS6382130A (ja) デジタルオ−デイオ再生方式

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE JP US

WWE Wipo information: entry into national phase

Ref document number: 2003566987

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10502897

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 10392236

Country of ref document: DE

Date of ref document: 20050303

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10392236

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607