WO2003065384A1 - Composition pour former une matiere dielectrique photosensible, et film de transfert, matiere dielectrique et elements electroniques utilisant celle-ci - Google Patents

Composition pour former une matiere dielectrique photosensible, et film de transfert, matiere dielectrique et elements electroniques utilisant celle-ci Download PDF

Info

Publication number
WO2003065384A1
WO2003065384A1 PCT/JP2002/013662 JP0213662W WO03065384A1 WO 2003065384 A1 WO2003065384 A1 WO 2003065384A1 JP 0213662 W JP0213662 W JP 0213662W WO 03065384 A1 WO03065384 A1 WO 03065384A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
composition
photosensitive
resin
forming
Prior art date
Application number
PCT/JP2002/013662
Other languages
English (en)
French (fr)
Inventor
Nobuyuki Ito
Hideaki Masuko
Satomi Hasegawa
Atsushi Ito
Katsumi Inomata
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002166087A external-priority patent/JP4106972B2/ja
Application filed by Jsr Corporation filed Critical Jsr Corporation
Priority to KR1020037012684A priority Critical patent/KR100913879B1/ko
Priority to EP02790898A priority patent/EP1471540A4/en
Priority to US10/472,940 priority patent/US7015256B2/en
Publication of WO2003065384A1 publication Critical patent/WO2003065384A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/0226Quinonediazides characterised by the non-macromolecular additives
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0047Photosensitive materials characterised by additives for obtaining a metallic or ceramic pattern, e.g. by firing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the present invention provides a composition for forming a photosensitive dielectric which can be suitably used for forming a pattern having high dimensional accuracy and a pattern, a transfer film obtained by applying the composition for forming a photosensitive dielectric to a support film, and
  • the present invention relates to a dielectric and an electronic component formed therefrom.
  • a technique has been known in which a high dielectric constant layer is provided on a multilayer printed wiring board or the like and this layer is used for a capacitor or the like.
  • This high dielectric constant layer is formed, for example, by adding a high dielectric constant inorganic powder to an organic solvent in which a thermosetting resin is dissolved, and by using a fiber such as a glass fiber in order to capture the brittleness of the thermosetting resin. It is prepared by impregnating the reinforcing material, and then dispersing the solvent by baking or the like to harden it.
  • it is usually difficult to obtain a layer having a high dielectric constant, for example, 20 or more, and a low leakage current even in a thin film.
  • a method of forming a dielectric layer by heating and firing an inorganic powder having a high dielectric constant at a high temperature is generally known.
  • this method requires baking at a high temperature of, for example, about 1000 ° C., and therefore cannot be applied to the case where a dielectric layer is provided while electronic components are mounted on a wiring board. There was a problem that it could not be universally applied to the manufacturing process.
  • a screen printing method or the like is known as a method for forming the dielectric layer.
  • the requirements for pattern positional accuracy become extremely strict. There was a problem that it could not be handled.
  • An object of the present invention is to solve the problems associated with the prior art as described above, and to provide a photosensitive layer having a small heat loss and capable of forming a dielectric layer having a high dielectric constant that can be manufactured by low-temperature firing with high dimensional accuracy. It is an object of the present invention to provide a composition for forming a conductive dielectric, a photosensitive transfer film, and a dielectric and an electronic component formed from the composition and the transfer film. Disclosure of the invention
  • the present inventors have conducted intensive studies to solve the above problems, and found that inorganic particles and Al A photosensitive dielectric forming composition containing a soluble resin and an additive, wherein the photosensitive dielectric forming composition contains a specific additive, or the photosensitive dielectric contains inorganic particles having a specific average particle size.
  • a dielectric-forming composition or a photosensitive transfer film coated with this composition it can be fired at temperatures as low as 500 ° C or lower, and has a high dielectric constant and a low dielectric loss tangent.
  • a dielectric having a pattern with high dimensional accuracy can be formed with a low leakage current, and the present invention has been completed.
  • the first composition for forming a photosensitive dielectric according to the present invention comprises: (A) an inorganic particle; (B) a resin capable of being alkali-developed; and (C) an additive.
  • the resin (B) which can be developed with Alkali, contains a soluble resin (B1) with a phenolic hydroxyl group,
  • the alkali-developable resin (B) contains an alkali-soluble resin (B1) having a phenolic hydroxyl group,
  • the average particle size of the crosslinked fine particles (C4) is 30 to 500 nm.
  • a second photosensitive dielectric forming composition according to the present invention comprises: (A) an inorganic particle; (B) an alkali developable resin; and (C) an additive.
  • a composition comprising:
  • the inorganic particles (A) are provided.
  • Additive (C) contains photosensitive acid-generating compound (C5)
  • the amount of the inorganic particles (A) is 20 to 95% by mass
  • the amount of the alkali-developable resin (B) is 1 to 60% by mass
  • the alkali-developable resin (B) is a (meth) acrylic resin, a hydroxystyrene resin, a novolak resin, a polyester resin, a polyimide resin, and a nylon resin. And at least one resin selected from the group consisting of polyetherimide resins.
  • a third photosensitive dielectric-forming composition according to the present invention comprises: (A) inorganic particles; (B) an alkali-developable resin; and (C) an additive.
  • a composition comprising: The inorganic particles (A)
  • the alkali-developable resin (B) contains an alkali-soluble resin (B2), and the additive (C)
  • the amount of the inorganic particles ( ⁇ ) is 20 to 95% by mass
  • the amount of the alkali-soluble resin ( ⁇ 2) is 1 to 60% by mass
  • the ethylenically unsaturated amounts of unsaturated group-containing compound (C6) is 0.1 to 30 mass 0/0, the amount of the photopolymerization initiator (C7) is 0.1 to 20 mass%
  • the alkali-soluble resin ( ⁇ 2) is preferably any one of (meth) acrylic resin, hydroxystyrene resin, novolak resin and polyester resin.
  • the ethylenically unsaturated group-containing compound (C6) is preferably a (meth) atalylate compound. Further, the ethylenically unsaturated group-containing compound
  • (C6) is preferably contained in the range of 20 to 500 parts by mass with respect to 100 parts by mass of the alkali-soluble resin ( ⁇ 2).
  • the amount of the inorganic particles ( ⁇ ) when the amount of the inorganic particles ( ⁇ ) is 100 parts by mass, the amount of the inorganic ultrafine particles ( ⁇ - ⁇ ) is 1 to 30 parts by mass. Preferably, the amount of the inorganic fine particles ( ⁇ -II) is 99 to 70 parts by mass. Further, the inorganic particles ( ⁇ ) are preferably made of a titanium-based metal oxide.
  • the second and third compositions for forming a photosensitive dielectric are heated at a temperature of 500 ° C. or less, It is preferable to be able to form a dielectric having a ratio of 20 or more and a dielectric loss tangent of 0.1 or less.
  • the photosensitive transfer film according to the present invention has a composition for forming a photosensitive dielectric comprising (A) inorganic particles, (B) an alkali-developable resin, and (C) an additive.
  • Additive (C) contains photosensitive acid-generating compound (C5)
  • the photosensitive transfer film according to the present invention is preferably capable of forming a dielectric having a dielectric constant of 20 or more and a dielectric loss tangent of 0.1 or less by heating at 500 ° C. or less.
  • the inorganic particles (A) are preferably a titanium-based metal oxide
  • the alkali-developable resin (B) is a (meth) acrylic resin, a hydroxystyrene resin, a nopolak resin, and a polyester resin. It is preferable that the resin is any of a resin, a polyimide resin, a nylon resin, and a polyetherimide resin.
  • the derivative according to the present invention is characterized by being formed using any one of the first to third photosensitive dielectric forming compositions.
  • the derivative according to the present invention is characterized in that the second or third photosensitive dielectric composition is used. It is formed by heating and curing the third photosensitive dielectric forming composition at a temperature of 500 ° C. or lower, and preferably has a dielectric constant of 20 or more and a dielectric loss tangent of 0.1 or less.
  • the derivative is preferably formed using the photosensitive transfer film.
  • the dielectric according to the present invention is a composition for forming a second photosensitive dielectric or the photosensitive composition.
  • the dielectric formed using the conductive transfer film may be a dielectric with a conductive foil formed on a conductive foil.
  • An electronic component according to the present invention includes the dielectric. BEST MODE FOR CARRYING OUT THE INVENTION
  • the composition for forming a photosensitive dielectric according to the present invention comprises: a roller kneader, a mixer, a homomixer, a pole mill, a bead mill, comprising: an inorganic particle (A), an alkali-developable resin (B) and an additive (C). It can be prepared by kneading using a kneading machine such as.
  • the first photosensitive dielectric forming composition according to the present invention comprises a phenolic hydroxyl group as the inorganic particles (A) and the alkali-developable resin (B). Heat-sensitive with alkali-soluble resin (Bl), compound (C1) having quinonediazide group as additive (C), and compound (C2) having at least two or more alkyl etherified amino groups in the molecule It is composed of an acid generator (C3) and, if necessary, contains crosslinked fine particles (C4) and a solvent (D). Further, the first photosensitive dielectric composition according to the present invention may contain, if necessary, other additives (E) such as an epoxy compound, an adhesion aid, and a leveling agent. .
  • E additives
  • the first photosensitive dielectric forming composition prepared as described above is a paste-like composition having fluidity suitable for coating, and has a viscosity of usually 10 to 50,000 mPa's, preferably It is desirable to be 20 to 10,000 mPa's.
  • the inorganic particles (A) used in the first photosensitive dielectric composition preferably have a dielectric constant of usually 30 or more, preferably 50 or more, and more preferably 70 or more. There is no problem with the high dielectric constant, and the upper limit is not particularly limited, but may be, for example, about 30,000.
  • titanium-based metal oxides are particularly preferred.
  • titanium-based metal oxide refers to a compound containing a titanium element and an oxygen element as essential elements.
  • Such titanium-based metal oxides include a titanium-based single metal oxide containing titanium as a single metal element constituting a crystal structure, and a titanium-based double oxide containing titanium and other metal elements as a metal element. Can be preferably used.
  • titanium-based single metal oxide examples include a titanium dioxide-based metal oxide.
  • examples of such a titanium dioxide-based metal oxide include titanium dioxide-based metal oxides having an anatase structure or a rutile structure.
  • titanium-based composite oxide examples include metal oxides such as barium titanate, lead titanate, strontium titanate, bismuth titanate, magnesium titanate, neodymium titanate, and calcium titanate.
  • metal oxides such as barium titanate, lead titanate, strontium titanate, bismuth titanate, magnesium titanate, neodymium titanate, and calcium titanate.
  • An example is a dashi.
  • titanium dioxide-based metal oxide means a system containing only titanium dioxide or a system containing a small amount of other additives in titanium dioxide, and the crystal structure of titanium dioxide, which is a main component, is It is retained, and the same applies to metal oxides of other systems.
  • titanium-based composite oxide is an oxide formed by combining a titanium-based single metal oxide and a metal oxide composed of at least one other metal element. Means no oxoacid ion.
  • the titanium-based metal oxide constituting such inorganic particles (A) includes, among titanium-based single metal oxides, a diacid having a rutile structure. Titanium-based metal oxides are preferred, and among the titanium-based composite oxides, barium titanate-based metal oxides can be preferably used.
  • barium titanate-based metal oxides can be particularly preferably used.
  • the average particle size of such inorganic particles is preferably 0.005 to 2.0 ⁇ m, more preferably 0.02 to 1.0 // m, still more preferably 0.02 to 0.8 ⁇ , and particularly preferably 0.02 to 0.3 ⁇ . Is desirable.
  • DwZDn which is a ratio of the weight average particle diameter (Dw) to the number average particle diameter (Dn) is preferably 1.05 or more, more preferably 1.1 or more, further preferably 1.2 or more, and particularly preferably 1.25 or more. Desirably. If the Dw / Dn force S is smaller than 1.05, the packing of the dielectric particles is poor and the leak current may increase when the film thickness is reduced.
  • the shape of the inorganic particles (A) used in the first photosensitive dielectric composition is not particularly limited, but may be spherical, granular, plate-like, scaly, whisker-like, rod-like, filament-like. And the like. Among these shapes, it is preferable that the shape is spherical, granular, flaky, or scaly.
  • the inorganic particles (A) having these shapes can be used alone or in combination of two or more.
  • the inorganic particles (A) used in the first photosensitive dielectric composition can be synthesized, for example, by a gas phase method, a sol-gel method, an RF plasma method, or the like.
  • the inorganic particles can be dispersed together with a dispersant into primary particles by a known dispersing method, a bead mill, a kneading method, a high-pressure homogenizer or the like.
  • the amount of the inorganic particles (A) in the first photosensitive dielectric composition is as follows: Particle + (Bl) Alkali-soluble resin having phenolic hydroxyl group + (C1) Compound having quinonediazide group + (C2) Compound having at least two or more alkyl etherified amino groups in molecule + (C3) Heat Assuming that the photosensitive acid generator + (C4) crosslinked fine particles are 100% by mass, the content is preferably 20 to 85% by mass, more preferably 30 to 85% by mass, and still more preferably 40 to 85% by mass. Desired ,. (B1) Alkali-soluble resin having a funolic hydroxyl group:
  • the alkali-soluble resin (B1) having a phenolic hydroxyl group (hereinafter also referred to as “phenolic resin (Bl)”) used in the first photosensitive dielectric-forming composition is not particularly limited, but is preferably a nopolak resin. preferable. Such a novolak resin is obtained by condensing phenols and aldehydes in the presence of a catalyst.
  • the phenols used at this time include, for example, phenol, 0-cresole, m-creso-nore, p-creso-no-re, o-ethyl-feno-no-le, m-ethino-le-no-no-le, p-ethino-le-no-no-le, o -Butynolephenole, m-Petite / Refenole, p-butylphenol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4-xylenol , 3,5-xylenol, 2,3,5-trimethylphenol, 3,4,5-trimethylphenol, catechol, resorcinol, pyrogallol, ⁇ -naphthol, ⁇ -naphthol and the like.
  • Aldehydes include formaldehyde, paraformaldehyde, acetoaldehyde, benzaldehyde and the like.
  • Specific examples of such a novolak resin include phenol-formaldehyde condensed nopolak resin, cresol-formaldehyde condensed nopolak resin, and phenol naphthol-formaldehyde condensed novolak resin.
  • phenolic resins (B1) other than nopolak resins include polyhydroxy resins. Examples thereof include styrene and a copolymer thereof, a phenol-xylylene-condensation resin, a cresol-xylylene-condensation resin, and a phenol-dicyclopentene-condensation resin.
  • the phenolic resin (B1) and a phenolic low-molecular compound other than the phenolic resin (B1) (hereinafter also referred to as “phenolic compound (bl)”) .) Can be used in combination.
  • phenolic compounds (b l) is preferably from 0 to 40% by mass, more preferably from 0 to 30% by mass, particularly preferably from 1 to 20% by mass, based on the total amount of the phenol resin (B1) and the phenol compound (bl). It can be contained in the range.
  • the phenolic resin (B1) must have a mass average molecular weight of 2,000 or more from the viewpoint of the resolution, thermal shock resistance, heat resistance, etc. of the obtained insulating film, and particularly in the range of about 2,000 to 20,000. Is preferred.
  • the content of the phenolic resin (B1) (or the total amount thereof when the phenolic compound (bl) is used in combination) is determined by the total composition ((A) + (Bl)). + (bl) + (C1) + (C2) + (C3) + (C4))
  • the amount 0/0 preferably from 13 to 45 wt%.
  • the compound having a quinonediazide group (hereinafter, also referred to as “quinonediazide compound (Cl)”) used in the first photosensitive dielectric composition is a compound having one or more phenolic hydroxyl groups.
  • quinonediazide compound (Cl) used in the first photosensitive dielectric composition is a compound having one or more phenolic hydroxyl groups.
  • the compound having one or more phenolic hydroxyl groups is not particularly limited, but specifically, a compound having the following structure is preferred.
  • ⁇ ⁇ is each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms or a hydroxyl group.
  • Xr ⁇ is each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms or a hydroxyl group.
  • At least one of X 5 is a hydroxyl group.
  • A is a single bond, 0, S, CH 2 , C (CH 3 ) 2 ,
  • Xii ⁇ :. X 24 may be the same or different from each other, respectively, it is the same as that of the ⁇ proviso that at least one of Kaiiotaiota ⁇ kai 15 is hydroxyl Group.
  • R 4 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • X 25 to X 39 may be the same or different from each other, and are the same as those in the above ⁇ to ⁇ . However, at least one of ⁇ 25 to ⁇ 29 is a hydroxyl group. , ⁇ ⁇ ⁇ ⁇ 30 to ⁇ 34, at least one is a hydroxyl group, and R 5 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • X 40 to X 58 may be the same or different from each other, and are the same as those in the above ⁇ to ⁇ . However, at least one of X 40 to X 44 A hydroxyl group, at least one in X45 ⁇ X49 is hydroxyl, at least one Oite to ⁇ 5 0 ⁇ 54 is a hydroxyl group. Also, R G ⁇ ! 3 ⁇ 4 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. )
  • X 59 ⁇ X 72 may be the same or different from each other, respectively, the same as that of X] L ⁇ Xl 0. However, at least one in X59 ⁇ X 6 2 is hydroxyl a group, at least one in X 63 to X 6 7 is a hydroxyl group.
  • Such a quinonediazide compound (C1) include the following. 4,4'-dihydroxydiphenylmethane, 4,4'-dihydroxydiphenylether, 2,3,4-trihydroxybenzophenone, 2,3,4,4'-tetrahydroxybenzophenone, 2,3 , 4,2 ', 4'_pentahydroxybenzophenone, tris (4-hydroxyphenyl) methane, tris (4-hydroxyphenyl) ethane, 1,1-bis (4-hydroxyphenyl) 1-Pheninoleethane, 1,3-bis [1- (4-hydroxyphenyl) 1-1-methynoleethynole] benzene, 1,4-bis [11- (4-hydroxyphenyl) 1-1-methylethyl] benzene , 4,6-bis [1- (4-hydroxydrenophenone) 1-methinoleethinole]-1,3-dihydroxybenzene, 1,1-bis (4-hydroxydrenophenone
  • the quinonediazide compound (C1) is used in an amount of 10 to 100 parts by mass per 100 parts by mass of the finolol resin (B1) (or the total amount thereof when the fuynol compound (bl) is used in combination). It is desirably 50 parts by mass, preferably 15 to 30 parts by mass. If the amount of the quinonediazide compound (C1) is less than the lower limit of the above range, the residual film ratio of the unexposed portion may decrease or an image faithful to the mask pattern may not be obtained. If the amount of the quinonediazide compound (C1) exceeds the upper limit of the above range, the pattern shape may be degraded or foaming may occur during curing.
  • the compound (C2) (hereinafter, also referred to as “curing agent (C2)”) having at least two or more alkyletherified amino groups in the molecule used for the first photosensitive dielectric composition is described below. It functions as a crosslinking agent (curing agent) that reacts with the phenolic resin (B1).
  • the curing agent (C2) include all or part of active methylol groups such as (poly) methylolated melamine, (poly) methylolylated glycolperyl, (poly) methylolated benzoguanamine, and (poly) methylolated rare. And a nitrogen-containing compound obtained by alkyl etherifying the compound.
  • examples of the alkyl group include a methyl group, an ethyl group, a butyl group, and a mixture thereof, and may contain an oligomer component formed by partially self-condensing.
  • hexamethoxymethylated melamine, hexsuboxymethylated melamine, tetramethoxymethyl iridyl glycol peryl, tetrabutoxy methylated glycol peril, and the like can be used, and these curing agents (C2) are 1 Species may be used alone or in combination of two or more.
  • the amount of the curing agent (C2) in the first photosensitive dielectric composition is 100 parts by weight based on 100 parts by weight of the phenolic resin (B1) (the total amount when the phenolic compound (bl) is used in combination). It is desirable that the amount be 1 to 100 parts by weight, preferably 5 to 50 parts by weight. If the amount of the curing agent (C2) is less than the lower limit of the above range, the curing may be insufficient, and the electrical insulation of the obtained cured product may be reduced. And heat resistance may decrease.
  • the heat-sensitive acid generator (C3) (hereinafter referred to as “acid generator (C3)”) used in the first composition for forming a photosensitive dielectric is applied with an appropriate heat, for example, 50-250.
  • the compound is not particularly limited as long as it is a compound that generates an acid when heated to ° C, and examples thereof include a sulfonium salt and a diazonium salt, a halogen-containing compound, and a sulfonic ester compound.
  • the reaction between the alkyl ether group in the curing agent (C2) and the phenol resin (B1) is promoted by the catalytic action of the generated acid.
  • Examples of the acid generator (C3) include, for example, benzylmethylphenylsulfoniumhexafluoroantimonate, benzinolemethylphenolinoresolephonenium hexafenoleophosphate, benzene / leme Tinolefenorenorenotetramethylene tetrafluoronoreborate, benzylmethinolephenylsulfonium trifluoromethanesnolenate, benzinole (4-hydroxydrenophenolenone) Antimonate, benzinole (4-hydroxyphene) methinolesnorrefonium hexafluorophosphate, benzyl (4-hydroxyphenole) methyl sulfonium tetrafluoroborate, benzyl (4-ene) (Hydroxyphenyl) methylsnolefonium trifnoroleromethanesulfonate, benzase Jiazo -
  • the amount of the acid generator (C3) in the first photosensitive dielectric forming composition is 100 parts by weight based on 100 parts by weight of the phenolic resin (B1) (or the total amount thereof when the phenolic compound (bl) is used in combination). It is desirable that the amount be 0.1 to 10 parts by weight, preferably 0.5 to 5 parts by weight. If the amount of the acid generator (C3) is less than the lower limit of the above range, the obtained cured product may have reduced solvent resistance, and if it exceeds the upper limit of the above range, the electrical insulation may be reduced.
  • the crosslinked fine particles (C4) used in the first photosensitive dielectric forming composition are not particularly limited as long as the Tg of the polymer constituting the particles is 0 ° C or less, but the unsaturated polymer Is selected so that the Tg of the crosslinkable monomer having two or more functional groups (hereinafter, also referred to as “crosslinkable monomer”) and the copolymer constituting the crosslinked fine particles (C4) is 0 ° C. or lower 1 It is preferable to copolymerize with at least one kind of other monomer (hereinafter, also referred to as “other monomer”). Further, as another monomer, the Tg of the copolymer constituting the crosslinked fine particles (C4) is 0 ° C.
  • Preferably used are those obtained by copolymerizing a monomer having a functional group other than a polymerizable group such as a carboxyl group, an epoxy group, an amino group, an isocyanate group, a hydroxyl group, etc.
  • a monomer having a functional group other than a polymerizable group such as a carboxyl group, an epoxy group, an amino group, an isocyanate group, a hydroxyl group, etc.
  • crosslinkable monomers examples include dibutyl benzene, diaryl phthalate, ethylene glycol di (meth) atalylate, propylene glycol di (meth) atalylate, trimethylolpropane tri (meth) acrylate, pentae
  • examples thereof include compounds having a plurality of polymerizable unsaturated groups, such as risritol tri (meth) acrylate, polyethylene glycol di (meth) acrylate, and polypropylene glycol di (meth) acrylate. Of these, divinylbenzene is preferred.
  • the crosslinkable monomer used in producing the crosslinked fine particles (C4) used in the first photosensitive dielectric composition is preferably 1 to 20% by weight based on all monomers used in the copolymerization. And more preferably in the range of 2 to 10% by weight.
  • Examples of other monomers include butadiene, isoprene, dimethinolebutadiene, chloroprene, and 1,3-pentadiene;
  • Unsaturated amides such as (meth) acrylamide, crotonic acid amide, and caycinic acid amide;
  • Epoxy (meth) acrylate and hydroxyalkyl (meth) obtained by the reaction of diglycidyl ether of bisphenol II, diglycidyl ether of glycol, etc. with (meth) acrylic acid, hydroxyalkyl (meth) acrylate, etc.
  • Urethane (meth) atalylates obtained by reacting acrylate with polyisocyanate;
  • Epoxy group-containing unsaturated compounds such as glycidyl (meth) acrylate and (meth) aryl glycidyl ether;
  • Amino group-containing unsaturated compounds such as dimethylamino (meth) acrylate and getylamino (meth) acrylate;
  • Amide group-containing unsaturated compounds such as (meth) acrylamide and dimethyl (meth) acrylamide;
  • Examples include hydroxyl group-containing unsaturated compounds such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and hydroxybutyl (meth) acrylate.
  • These other monomers include butadiene, isoprene, (meth) acrylonitrile, alkyl (meth) acrylates, styrene, p-hydroxystyrene, p-isopropenylphenol, glycidyl (meth) ataryl Acid, (meth) acrylic acid, hydroxyalkyl (meth) acrylates, etc. It is preferably used.
  • a gen compound specifically, butadiene. It is desirable that such a gen compound is used in an amount of 20 to 80% by weight, preferably 30 to 70% by weight, based on all monomers used for copolymerization.
  • the crosslinked fine particles (C4) used in the first photosensitive dielectric composition when a gen compound such as butadiene as another monomer is copolymerized in the above-described amount with respect to all monomers, a rubber It becomes soft fine particles in a shape, and in particular, it is possible to prevent occurrence of cracks in the obtained cured film, and it is possible to obtain a cured film having excellent durability.
  • the average particle size of the crosslinked fine particles (C4) in the first photosensitive dielectric composition is usually 30 to 500 mn, preferably 40 to 200 mn, and more preferably 50 to 120 nm.
  • the method for controlling the particle size of the crosslinked fine particles (C4) is not particularly limited, but when synthesizing the crosslinked fine particles (C4) by emulsion polymerization, the number of micelles during the emulsion polymerization depends on the amount of the emulsifier used. A method of controlling and controlling the particle size can be exemplified.
  • the compounding amount of the crosslinked fine particles (C4) is 0 to 50 parts by weight, preferably 1 to 50 parts by weight, based on 100 parts by weight of the phenolic resin (B1) (or the total amount thereof when the phenolic compound (bl) is used in combination). It is desirable that the amount be 50 parts by weight, more preferably 5 to 30 parts by weight. If the blending amount of the crosslinked fine particles (C4) is less than the lower limit of the above range, the thermal shock resistance of the obtained cured film decreases, and if it exceeds the upper limit of the above range, the resolution and the heat resistance of the obtained cured film decrease. Or, the compatibility and dispersibility with other components may be reduced. When the composition for forming a photosensitive derivative contains crosslinked fine particles, the thermal shock resistance of the obtained cured film is improved. (D) Solvent:
  • the solvent (D) used in the first photosensitive dielectric composition is added to improve the handleability of the photosensitive insulating resin composition and to adjust the viscosity and storage stability.
  • the type of the solvent (D) is not particularly limited. For example, ethylene glycol monomethyl ether acetate, ethylene glycol monomethyl ether ether acetate, etc. / Rare acetates;
  • Propylene daricole monoalkynoleate ethers such as propylene daricole monomethynoate ether, propylene daricone monoethylene ether, propylene glycol monopropyl ether, and propylene glycol monomonobutynole ether;
  • Propylene glycol dialkyl ethers such as dimethinolate ether, propylene daricol getinole ether, propylene daricone resin propinoleate ether, and propylene daricol dibutyl ether;
  • Chole sonolevs such as Echilse mouth solv, and pt.
  • Carbitols such as butyl carbitol
  • Lactic esters such as methyl lactate, ethyl lactate, n-propyl lactate, and isopropyl lactate;
  • Aliphatic carboxylic acids such as ethyl acetate, n -propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, n-amyl acetate, isoamyl acetate, isopropyl propionate, n-butyl propionate, and isobutyl propionate Ters;
  • esters such as methyl 3-methoxypropionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, methyl pyruvate and ethyl pyruvate;
  • Aromatic hydrocarbons such as toluene and xylene
  • Amides such as N-dimethylformamide, N-methylacetamide, ⁇ , ⁇ -dimethylacetamide, ⁇ -methylpyrrolidone;
  • Ratatones such as ⁇ -butyrolactone and the like can be mentioned.
  • solvents (D) can be used alone or in combination of two or more.
  • the first photosensitive dielectric-forming composition may contain an epoxy compound, an adhesion aid, a leveling agent, and the like as other additives (II).
  • the epoxy compound include a novolak epoxy resin, a bisphenol epoxy resin, an alicyclic epoxy resin, and an aliphatic epoxy resin.
  • These other additives ( ⁇ ) can be contained to such an extent that the properties of the obtained photosensitive insulating resin composition are not impaired.
  • the second photosensitive dielectric forming composition comprises inorganic ultrafine particles (A-I) having an average particle diameter of less than 0.05 m and average particles.
  • Inorganic particles (A) composed of inorganic fine particles (A-II) having a diameter of 0.05 ⁇ m or more, an alkali developable resin (B), and a photosensitive acid-generating compound (C5) as an additive (C) are required.
  • a photosensitive acid-generating compound C5
  • the additive (E) can be prepared by kneading using a kneader such as a roll kneader, a mixer, a homomixer, a ball mill, or a bead mill.
  • a kneader such as a roll kneader, a mixer, a homomixer, a ball mill, or a bead mill.
  • the second photosensitive dielectric forming composition prepared as described above is a paste-like composition having fluidity suitable for application, and the viscosity thereof is usually 10 to 100,000 mPa's, preferably Is preferably 50 to 10,000 mPa's.
  • the second photosensitive dielectric forming composition is capable of forming a dielectric having a dielectric constant of 20 or more and a dielectric tangent of 0.1 or less by heating at 500 ° C or less. It is preferably a composition.
  • the inorganic particles (A) used in the second photosensitive dielectric forming composition include inorganic ultrafine particles (A-I) having an average particle size of less than 0.05 m and inorganic fine particles (A-I) having an average particle size of 0.05 m or more.
  • A-II the inorganic particles used in the first photosensitive dielectric composition can be used.
  • particles obtained by modifying the surface of the inorganic particles (A) with silica, alumina or the like can also be suitably used.
  • the amount of the inorganic particles (A) when the amount of the inorganic particles (A) is 100 parts by mass, the amount of the inorganic ultrafine particles (A-I) is 1 to 30 parts by mass, preferably 5 to 30 parts by mass. The amount is preferably 20 parts by mass, and the amount of the inorganic fine particles (A-II) is 99 to 70 parts by mass, preferably 95 to 80 parts by mass.
  • the amount of the inorganic particles is 100 parts by mass
  • the amount of the inorganic fine particles (A-II) is 99 to 70 parts by mass, preferably 95 to 80 parts by mass.
  • the average particle diameter of the entire inorganic particles including the inorganic ultrafine particles (A-I) and the inorganic fine particles (A-II) is preferably 0.005 to 2.0 m, more preferably 0.02 to 1.0 ⁇ in, and more preferably 0.02 to 0.8 ⁇ m, particularly preferably 0.02 to 0.3 m It is desirable. Further, at this time, DwZDn comprising the ratio of the weight average particle diameter (Dw) to the number average particle diameter (Dn) is preferably 1.05 or more, more preferably 1.1 or more, more preferably 1.2 or more, and particularly preferably 1.25 or more. It is desirable. If Dw / Dn is 1.05 or less, the packing of the dielectric particles is poor and the leakage current increases when the film thickness is reduced, which is not preferable.
  • the amount of the inorganic particles (A) (the total amount of the inorganic ultrafine particles (A-I) and the inorganic fine particles ( ⁇ - ⁇ )) in the second photosensitive dielectric forming composition is (A) inorganic particles + (B) Alkali-developable resin + (C5) 20 to 95% by mass, preferably 40 to 90% by mass, based on 100% by mass of the photosensitive acid-forming compound. / 0 , more preferably 60 to 85% by mass.
  • alkaline-developable resin used in the second photosensitive dielectric composition.
  • alkaline-developable refers to the property of being dissolved by an alkaline developer, and more specifically, it is only necessary to have a solubility to such an extent that the intended development processing is performed.
  • alkali-developable resin (B) examples include, for example, (meth) ataryl resin, hydroxystyrene resin, nopolak resin, polyester resin, polyimide resin, nylon resin, polyetherimide resin, and the like. It is a thing.
  • (meth) acrylic resins are preferred, and particularly preferred are, for example,
  • Examples of the above monomers 0> 2) include, for example, atrialic acid, methacrylic acid, maleic acid, fumaric acid, crotonic acid, itaconic acid, citraconic acid, mesaconic acid, cinnamate, and succinic acid monomer.
  • Examples of the monomer (b3) include glycidyl acrylate, glycidyl methacrylate, glycidyl ⁇ -ethyl acrylate, glycidyl ⁇ - ⁇ -propyl acrylate, glycidyl a-n-butyl acrylate, Acrylic acid 3,4-epoxybutyl, methacrylic acid 3,4-epoxybutyl, allylic acid-6,7-epoxyheptyl, methacrylic acid-6,7-epoxyheptyl, monoethylacrylic acid 6,7— Epoxy heptyl, N— [4- (2,3-epoxypropoxy) -1,3-dimethylbenzyl] acrylamide, N— [4-1 (2,3-epoxypropoxy) -1,3,5-dimethylphenyl Propyl] acryl amide.
  • Examples of the above-mentioned monomer (b4) which is another copolymerizable monomer include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) atalinoleate, and n- (meth) acrylate.
  • Monomers such as lauryl, benzyl (meth) acrylate, dicyclopentaninole (meth) acrylate;
  • Aromatic vinyl monomers such as styrene and ⁇ -methylstyrene; Conjugates such as butadiene and isoprene; Macro having a polymerizable unsaturated group such as (meth) atalyloyl group at one end of polymer chain such as polystyrene, poly (methyl) acrylate, poly (meth) acrylate, poly (meth) benzyl acrylate, etc. And monomers.
  • the copolymer of the monomer (b2) and the monomer (b4) or the copolymer of the monomer (b2) and the monomer (b3) and the monomer (b4) is composed of the monomer (b2) and the Z or the monomer (b3).
  • the presence of a copolymer component derived from the carboxyl group- or phenolic hydroxyl group-containing monomer of (1)) results in alkali solubility.
  • a copolymer of the monomer (b2), the monomer (b3) and the monomer (b4) is particularly preferable from the viewpoint of the dispersion stability of the inorganic particles (A) and the solubility in an alkali developer described later.
  • the content of the copolymer component unit derived from the monomer (b2) in this copolymer is preferably 150% by mass, particularly preferably 530% by mass, and the content of the copolymer component unit derived from the monomer (b3) is The content is preferably 150 mass. / 0 , particularly preferably 530% by mass, and the content of the copolymer component derived from the monomer (b4) is preferably 198% by mass, particularly preferably 4090% by mass.
  • the molecular weight of the alkali-soluble resin (B) constituting the second photosensitive dielectric composition is determined by GPC based on polystyrene equivalent mass average molecular weight (hereinafter, also simply referred to as “mass average molecular weight (Mw)”). Preferably, it is 5,000 5,000,000, and more preferably, 10,000 300,000.
  • the content of the alkali-developable resin (B) in the second photosensitive dielectric forming composition is usually 1,500 parts by mass, preferably 10 500 parts by mass, per 100 parts by mass of the inorganic particles (A). Preferably it is 10 200 parts by mass.
  • an alkali-developable resin in the second photosensitive dielectric composition is 1 to 60% by mass, preferably 2 to 40% by mass when (A) inorganic particles + (B) an alkali-developable resin + (C5) photosensitive acid-forming compound is 100% by mass. %, More preferably 5 to 30% by mass.
  • the second photosensitive dielectric composition may contain a resin other than an alkali-developable resin such as a bismaleide resin or an epoxy resin.
  • the photosensitive acid generating compound (C5) is a compound that generates an acid upon irradiation with radiation.
  • 1,2-benzoquinonediazidosulfonic acid ester 1,2-naphthoquinonediazidosnolephonate, 1,2-benzoquinonediazidosolenoic acid amide, 1,2-naphthoquinonediazidosulfonic acid amide And the like.
  • compounds having good transparency in the visible light region of 400 to 800 nm after irradiation with radiation such as 2,3,4-trihydroxybenzophenone, 2,3,4,4 '-Tetrahydroxybenzophenone, 3'-Methoxy 2,3,4,4'-Tetrahydroxybenzophenone, 2,2', 5,5'-Tetramethinole 2 ', 4,4' Droxitol rifenylmethane, 4,4 '-[1- [4- (1-1- (4-hydroxydrenyl) -1'-methylethyl] phenyl] ethylidene] diphenol and 2,4,4-trimethyl-2', 4 ', 7-trihydroxy-l-phenylflavan and the like, and 1,2-benzoquinone diazide-l-sulfonic acid, 1,2-naphthoquinone diazide 4-sulfonic acid or 1,2-naphthoquinone diazide 5-sulf
  • the content of the photosensitive acid-forming compound (C5) is preferably from 5 to 100 parts by mass, particularly preferably from 10 to 50 parts by mass, per 100 parts by mass of the alkali-developable resin (B). If the amount is less than the lower limit of the above range, the amount of acid generated by absorbing radiation decreases, so that it is not possible to make a difference in solubility in an aqueous alkali solution before and after irradiation, and it becomes difficult to pattern etch, and The heat resistance of the resulting pattern may be impaired.
  • the amount of the photosensitive acid-generating compound (C5) in the second photosensitive dielectric-forming composition is as follows: A) inorganic particles + (B) an alkali-developable resin + (C5) a photosensitive acid-generating compound.
  • A) inorganic particles + (B) an alkali-developable resin + (C5) a photosensitive acid-generating compound When it is expressed as mass%, it is desirably 0.1 to 30 mass%, preferably 0.5 to 20 mass%, more preferably 1 to 10 mass%.
  • the second photosensitive dielectric composition may contain a solvent (D) if necessary.
  • a solvent (D) affinity with inorganic ultrafine particles (AI) and inorganic fine particles (A-II), alkali-developable resin (B), photosensitive acid-generating compound (C5), and if necessary, It has good solubility with the other additives (E) described below, and can impart a suitable viscosity to the composition for forming a photosensitive dielectric, and can be easily evaporated and removed by drying.
  • a solvent (D) include:
  • Ketones such as getyl ketone, methyl butyl ketone, dipropyl ketone, and hexoxanone;
  • n-pentanoone 4-methyl-2-pentanole, cyclohexanol, di Alcohols such as acetone alcohol;
  • Ethanol alcohols such as ethylene glycolone monomethinoleate, ethylene glycolone monobutynoether, ethylene glycolone monobutynoether, propylene glycolone monomethineoleatene, propylene glycolone monoethynooleatene, and the like;
  • Alkyl esters of saturated aliphatic monocarboxylic acids such as mono-n-butyl acetate and amyl acetate;
  • Lactic acid esters such as ethyl lactate and l-n-butyl lactate
  • ether esters such as methinoreserosonoreb acetate, ethinoreseroso / reb acetate, propylene glycol monomethyl atenorea acetate, and ethyl 3-ethoxypropionate.
  • the content of the solvent (D) in the second photosensitive dielectric forming composition can be appropriately selected within a range in which good fluidity can be obtained, but usually, the inorganic particles (A) are 100 parts by mass. Is preferably 1 to 10,000 parts by mass, more preferably 10 to 1,000 parts by mass.
  • a plasticizer In addition to the above components (A), (B) and (C5), a plasticizer, an adhesion aid, a dispersant, a filler, a preservative It may contain other additives (E) such as a stabilizer, an antifoaming agent, an antioxidant, a UV absorber, a leveling agent, and a development accelerator.
  • E additives
  • Adhesion aids include silane-based coupling agents, aluminum-based coupling agents, titanate-based coupling agents, and zirconate-based coupling agents. At least one selected coupling agent can be used. Of these force coupling agents, a silane coupling agent [saturated alkyl group-containing (alkynole) alkoxysilane] such as a compound represented by the following formula (6), which can obtain excellent adhesion with a relatively small amount, is preferable. Used.
  • p is an integer of 3 to 20
  • m is an integer of 1 to 3
  • n is an integer of 1 to 3
  • a is an integer of 1 to 3.
  • p indicating the number of carbon atoms of the saturated alkyl group is an integer of 3 to 20, and preferably an integer of 4 to 16.
  • the content of the adhesion aid in the second photosensitive dielectric composition is 0.001 to 10 parts by mass, more preferably 0.001 to 5 parts by mass, based on 100 parts by mass of the inorganic particles (A). Is desirable.
  • a fatty acid is preferably used, and in particular, a fatty acid having 4 to 30, preferably 4 to 20 carbon atoms is preferable.
  • Preferred specific examples of the above fatty acids include fumaric acid, phthalic acid, malonic acid, itaconic acid, citraconic acid, octanoic acid, pendecylic acid, lauric acid, myristic acid, palmitic acid, pentadecanoic acid, stearic acid, and arachinic acid.
  • Unsaturated fatty acids such as elaidic acid, oleic acid, linoleic acid, linolenic acid, and arachidonic acid, and these can be used alone or in combination of two or more.
  • the content of the dispersant in the second photosensitive dielectric forming composition is desirably 0.001 to 10 parts by mass, preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the inorganic particles (A).
  • the filler examples include those capable of improving the dielectric constant.
  • conductive fine particles such as carbon fine powder (eg, acetylene black, ketien plaque, etc.), graphite fine powder, higher fullerenes, and semiconductor fine particles such as silicon carbide fine powder can be used.
  • the filler is used in an amount of 0 to 10 parts by mass, more preferably 0.05 to 3 parts by mass, based on 100 parts by mass of the inorganic particles (A). Preferably, an amount of 0.1 to 1 part by mass is used.
  • the third photosensitive dielectric forming composition according to the present invention comprises inorganic ultrafine particles (A-I) having an average particle diameter of less than 0.05 Inorganic particles ( ⁇ ) consisting of inorganic fine particles ( ⁇ -II) with a particle size of 0.05 ⁇ or more, Al-soluble resin ( ⁇ 2) as an alkali developable resin ( ⁇ ), and ethylene as an additive (C)
  • the unsaturated compound containing a unsaturated group (C6), the photopolymerization initiator (C7) and, if necessary, the solvent (D) and other additives (E) are mixed with a roll kneader, a mixer, a homomixer, It can be prepared by kneading using a kneading machine such as a pole mill or beads minole.
  • the composition for forming a photosensitive dielectric prepared as described above is a paste-like composition having fluidity suitable for application, and has a viscosity of usually 10 to 100,000 mPa's, preferably 50 to 100,000 mPa's. Desirably, ⁇ 10,000 mPa's.
  • the third photosensitive dielectric-forming composition can form a dielectric having a dielectric constant of 20 or more and a dielectric loss tangent of 0.1 or less when heated at 500 ° C or less. It is preferably an object.
  • the inorganic particles (A) used in the third photosensitive dielectric forming composition include inorganic ultrafine particles (A-I) having an average particle diameter of less than 0.05 im and inorganic fine particles (A-I) having an average particle diameter of 0.05 or more. II) The inorganic particles used in the second photosensitive dielectric composition can be used.
  • the amount of the inorganic particles (A) when the amount of the inorganic particles (A) is 100 parts by mass, the amount of the inorganic ultrafine particles (AI) is 1 to 30 parts by mass, preferably 5 to 20 parts by mass. Parts, and the amount of the inorganic fine particles (A-II) is 99 to 70 parts by mass, preferably Is preferably 95 to 80 parts by mass.
  • the amount of the inorganic particles when used, packing of the inorganic particles is improved, and a dielectric having a high dielectric constant can be obtained.
  • the average particle diameter of the entire inorganic particles including the inorganic ultrafine particles (A-I) and the inorganic fine particles ( ⁇ - ⁇ ) is preferably 0.005 to 2.0 m, more preferably 0.02 to ⁇ . ⁇ , More preferably, it is 0.02 to 0.8 ⁇ m, particularly preferably 0.02 to 0.3 ⁇ m.
  • Dw / Dn comprising the ratio of the weight average particle diameter (Dw) to the number average particle diameter (Dn) is preferably 1.05 or more, more preferably 1.1 or more, more preferably 1.2 or more, and particularly preferably 1.25 or more. It is desirable that If Dw / Dn is 1.05 or less, the packing of the dielectric particles is poor and the leakage current increases when the film thickness is reduced, which is not preferable.
  • the amount of the inorganic particles (A) (the total amount of the inorganic ultrafine particles (A-I) and the inorganic fine particles (A-II)) in the third photosensitive dielectric composition is (A) inorganic particles + (B2) alkali soluble resin + (C6) ethylenically unsaturated group-containing compound + (C7)
  • photopolymerization initiator is 100% by mass, 20 to 95% by mass, preferably 45 to 90% by mass, More preferably, the content is desirably 55 to 85% by mass.
  • alkali-soluble resin (B2) used in the third photosensitive dielectric composition can be used as the alkali-soluble resin (B2) used in the third photosensitive dielectric composition.
  • alkali-soluble refers to the property of being dissolved by an alkaline developer, and more specifically, it must be soluble to such an extent that the intended image processing is performed.
  • alkali-soluble resin (B2) examples include, for example, (meth) acrylic luster, hydroxystyrene luster, novolak S lure, and polyestenole luster.
  • (meth) acrylic resins are preferred. Particularly preferred are, for example,
  • a copolymer of a carboxyl group-containing monomer (b2) (hereinafter also referred to as “monomer (b2)”) and another copolymerizable monomer (b4) (hereinafter also referred to as “monomer (b4)”), or
  • Copolymers of the monomer (b2) with the OH group-containing monomer (b5) (hereinafter also referred to as “monomer (b5)”) and the monomer 0> 4) can be mentioned.
  • Examples of the monomer (b2) (carboxyl group-containing monomer) include the carboxyl group-containing monomer (b2) described in the second photosensitive photosensitive composition forming composition.
  • Examples of the above monomer (b5) (OH group-containing monomers) include:
  • a group of hydroxyl group-containing monomers such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate;
  • Examples include phenolic hydroxyl group-containing monomers such as o-hydroxystyrene, m-hydroxystyrene, and p-hydroxystyrene.
  • hydroxyl group-containing monomers such as 2-hydroxyhexyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 3-hydroxypropyl (meth) acrylate.
  • Examples of the monomer (b4) which is another copolymerizable monomer include the other copolymerizable monomers (b4) described in the second photosensitive dielectric composition.
  • the copolymer of the monomer (b2) and the monomer (b4) or the copolymer of the monomer (b2) and the monomer 0> 4) and the monomer (b5) is composed of the monomer (b2) and / or the monomer (B5) monomer containing carboxyl group or phenol raw hydroxyl group It has alkali solubility due to the presence of the derived copolymer component.
  • a copolymer of the monomer (b2), the monomer (b4) and the monomer (b5) is particularly preferable from the viewpoint of the dispersion stability of the inorganic particles (A) and the solubility in an alkali developer described later.
  • the content of the copolymer component units derived from the monomers 0 to 2) in this copolymer is preferably 1 to 50% by mass, particularly preferably 5 to 30% by mass.
  • the content of the copolymer component unit derived from the monomer (b5) is preferably 1 to 50% by mass, particularly preferably 5 to 30% by mass, and the copolymer component unit derived from the monomer (b4) is preferably
  • the content ratio is preferably from 1 to 98% by mass, particularly preferably from 40 to 90% by mass. / 0 .
  • the molecular weight of the alkali-soluble resin (B2) constituting the third photosensitive dielectric forming composition is determined by GPC based on polystyrene equivalent mass average molecular weight (hereinafter, also simply referred to as “mass average molecular weight (Mw)”). Preferably, it is preferably 5,000 to 5,000,000, more preferably 10,000 to 300,000.
  • the content of the alkali-soluble resin (B2) in the third photosensitive dielectric-forming composition is usually 1 to 500 parts by mass, preferably 10 to 500 parts by mass, per 100 parts by mass of the inorganic particles (A). Preferably it is 10 to 200 parts by mass.
  • the amount of the alkali-soluble resin (B2) in the third photosensitive dielectric-forming composition is as follows: (A) inorganic particles + (B2) alkali-soluble resin + (C6) an ethylenically unsaturated group-containing compound + ( C7)
  • the photopolymerization initiator is 100% by mass, it is desirably 1 to 60% by mass, preferably 2 to 30% by mass, and more preferably 5 to 30% by mass.
  • the third photosensitive dielectric forming composition may contain a resin other than an alkali-soluble resin such as a polyimide resin, a bismaleimide resin, and an epoxy resin.
  • a resin other than an alkali-soluble resin such as a polyimide resin, a bismaleimide resin, and an epoxy resin.
  • the ethylenically unsaturated group-containing compound (C6) constituting the third photosensitive dielectric forming composition contains an ethylenically unsaturated group, and is radically polymerized by a photopolymerization initiator (C7) described later.
  • a photopolymerization initiator C7
  • Di (meth) acrylates of anorecylene glycolones such as ethylene glycolone and propylene daricone;
  • Di (meth) acrylates of polyalkylene glycols such as polyethylene glycol and polypropylene dalicol;
  • Di- (meth) acrylates of hydroxy-terminated polymers such as hydroxy-terminated polybutadiene, hydroxy-polyisoprene at both ends, and hydroxy-polyproprotatonone at both ends;
  • Poly (meth) acrylates of trihydric or higher polyhydric alcohols such as glycerin, 1,2,4-butanetriol, trimethylolalkane, tetramethylolalkane, pentaerythritol and dipentaerythritol tonole;
  • Poly (meth) acrylates of cyclic polyols such as 1,4-cyclohexanediol and 1,4-benzenediols;
  • the (meth) acrylate compound in addition to the above-mentioned compounds, the compounds shown in the monomers (b2), (b4) and (b5) constituting the alkali-soluble resin (B2) described above are used.
  • the compounds shown in the monomers (b2), (b4) and (b5) constituting the alkali-soluble resin (B2) described above are used.
  • ethylenically unsaturated group-containing compounds (C6) including (meth) acrylate compounds can be used alone or in combination of two or more.
  • the above-mentioned Alkyli-soluble resin (B2) 100 It is used in an amount of 20 to 500 parts by mass, preferably 20 to 480 parts by mass, more preferably 40 to 250 parts by mass with respect to parts by mass.
  • the amount of the ethylenically unsaturated group-containing compound (C) in the third photosensitive dielectric forming composition is as follows: (A) inorganic particles + (B2) alkali-soluble resin + (C6) ethylenic resin.
  • the amount of the unsaturated group-containing compound + (C7) photopolymerization initiator is 100% by mass, it is desirably 0.1 to 30% by mass, preferably 2 to 20% by mass, and more preferably 5 to 15% by mass.
  • the photopolymerization initiator (C7) constituting the third photosensitive dielectric forming composition a radical is generated in an exposure step described later, and the polymerization reaction of the above-mentioned ethylenically unsaturated group-containing compound (C6) is performed.
  • the compound is not particularly limited as long as the compound initiates the reaction.
  • photopolymerization initiator (C6) examples include:
  • Azo compounds or azide compounds such as azoisobutyronitrile and 4-azidobenzaldehyde;
  • Organic sulfur compounds such as mercaptan disulfide
  • Organic peroxides such as benzoyl peroxide, di-tert-butyl peroxide, tert-butylinoleic peroxide, cumenehydride peroxide, paramethanehydride peroxide, and the like;
  • imidazole dimers such as 2,2'-bis (2-chlorophenyl) -4,5,4 ', 5'-tetraphenyl 1,2'-biimidazole.
  • a sensitizer, a sensitizing aid, a hydrogen donor, a chain transfer agent, and the like may be used in combination with the photopolymerization initiator (C7).
  • the content of the photopolymerization initiator (C7) is usually 0.1 to 200 parts by mass, preferably 100 to 100 parts by mass of the total amount of the alkali-soluble resin (B2) and the compound containing an ethylenically unsaturated group (C6). Desirably, it is 1 to 50 parts by mass.
  • the amount of the photopolymerization initiator (C7) in the third photosensitive dielectric forming composition is as follows: A) inorganic particles + (B2) alkali-soluble resin + (C6) ethylenically unsaturated group-containing compound + (C7) 0.1-20% by mass, preferably 100% by mass of photopolymerization initiator It is preferably 0.2 to 5% by mass, more preferably 0.3 to 3% by mass.
  • the third photosensitive dielectric composition may contain a solvent (D), if necessary.
  • a solvent D
  • affinity with inorganic ultrafine particles (A-I) and inorganic fine particles (A-II) alkali-soluble resin (B2), ethylenically unsaturated group-containing compound (C6), photopolymerization initiation Good solubility with the agent (C7) and other additives (E) described below, which are contained as necessary, and can impart an appropriate viscosity to the composition for forming a photosensitive dielectric.
  • it can be easily evaporated and removed by drying.
  • solvent (D) examples include the solvent (D) described in the second photosensitive dielectric composition, and may be used alone or in combination of two or more. it can.
  • the content of the solvent (D) in the third photosensitive dielectric forming composition can be appropriately selected within a range where good fluidity can be obtained, but usually, the inorganic particles (A) are 100 parts by mass.
  • the amount is preferably 1 to 10,000 parts by mass, more preferably 10 to 1,000 parts by mass.
  • the third photosensitive dielectric forming composition may further include a plasticizer, an adhesion aid, a dispersant, a filler, and a preservative, if necessary. It may contain other additives (E) such as a stabilizer, an antifoaming agent, an antioxidant, a UV absorber, a leveling agent, and a development accelerator.
  • examples of the adhesion auxiliary agent used in the composition for forming a photosensitive dielectric include the adhesion auxiliary described in the second composition for forming a photosensitive dielectric.
  • Third photosensitive dielectric The content of the adhesion aid in the composition for forming is desirably 0.001 to 10 parts by mass, more preferably 0.001 to 5 parts by mass, per 100 parts by mass of the inorganic particles (A).
  • Examples of the dispersant for the inorganic particles (A) used in the third photosensitive dielectric composition include the dispersants described in the second photosensitive dielectric composition.
  • the content of the dispersant in the third photosensitive dielectric composition is preferably 0.001 to 10 parts by mass, and more preferably 0.01 to 5 parts by mass, per 100 parts by mass of the inorganic particles (A). Good.
  • the filler used in the third photosensitive dielectric composition examples include the fillers described in the second photosensitive dielectric composition.
  • the filler is used in an amount of 0 to 10 parts by mass, more preferably 0.05 to 3 parts by mass, per 100 parts by mass of the inorganic particles (A). It is particularly preferred to use amounts of from 0.1 to 1 part by weight.
  • the photosensitive transfer film according to the present invention can be obtained by applying a second photosensitive dielectric forming composition on a support film and providing a photosensitive transfer layer on the support film.
  • a protective film may be provided on the surface of the hydrophilic transfer layer.
  • the support film constituting the photosensitive transfer film according to the present invention is preferably a resin film or a conductive foil having heat resistance and solvent resistance and having flexibility.
  • the flexibility of the support film allows the roll coater Therefore, the photosensitive transfer layer can be formed by applying the paste composition, and the photosensitive transfer layer can be stored and supplied in a rolled state.
  • the supporting film is a conductive foil, after laminating the dielectric layer on another substrate, pattern the conductive 1 to raw foil using another dry film photoresist (DFR), and then expose this After exposing and developing the dielectric layer as a mask, it can be used as an upper electrode of the dielectric layer.
  • DFR dry film photoresist
  • the resin used for the support film examples include polyethylene terephthalate, polyester, polyethylene, polypropylene, polystyrene, polyimide, polyvinyl alcohol, fluorine-containing resins (eg, polyfluoroethylene), nylon, and cellulose.
  • the thickness of the support film is preferably, for example, from 20 to 100 ⁇ , and from the viewpoint of strength and the like, from 25 to 50 / zm. It is preferable that the surface of the resin support film has been subjected to release processing! / ,. This is because, when the release treatment is performed, the support film can be easily peeled off in the pattern forming step described later.
  • the release treatment for example, a treatment of applying a silicon release agent, a fluorine release agent, or a silicon monofluoride release agent is preferably used.
  • the conductive foil used for the support film examples include foils made of various alloys such as copper, gold, silver, platinum, nickel, stainless steel, aluminum, and iron alloy.
  • these foils copper, gold, silver, white gold, Eckel, and aluminum are particularly preferable from the viewpoints of oxidation resistance, conductivity, and flexibility.
  • a laminate of a plurality of conductive foils or a substrate laminated on a resin substrate or a nonwoven fabric resin-impregnated substrate may be used.
  • the thickness of such a conductive foil is not particularly limited, but is usually in the range of 5 to 75 ⁇ , preferably 8 to 50 ⁇ ⁇ , and particularly preferably in the range of 10 to 25 ⁇ m. desirable.
  • the same protective film can be used as the support film.
  • the surface of the protective film is usually subjected to a release treatment, and the peel strength between the protective film Z and the photosensitive transfer layer needs to be smaller than the peel strength between the support film Z and the photosensitive transfer layer.
  • the photosensitive transfer layer constituting the photosensitive transfer film of the present invention is obtained by applying the above-described composition for forming a photosensitive dielectric on a support film, and drying the coated film to remove a part or all of the solvent. Can be formed.
  • a method for applying the photosensitive dielectric forming composition on a supporting film to obtain a photosensitive transfer layer is to efficiently form a large (for example, above) coating film having excellent uniformity of the film thickness.
  • a coating method using a roll coater, a coating method using a blade coater, a coating method using a slit coater, a coating method using a curtain coater, a coating method using a wire coater, and the like are mentioned as preferable examples. be able to.
  • the drying conditions of the coating film are 50 to 150 ° C for about 0.5 to 30 minutes, and the residual ratio of the solvent (content in the photosensitive transfer layer) after drying is usually 2% by mass or less. Or less than 1% by mass.
  • the thickness of the photosensitive transfer layer formed on at least one side of the support film as described above is desirably 1 to 10 ⁇ , preferably 3 to 70 ⁇ , and more preferably 5 to 50 ⁇ m.
  • the content of the inorganic particles (A) in the photosensitive transfer layer is preferably 30 to 90% by mass, and more preferably 40 to 80% by mass, based on the entire photosensitive transfer layer in the transfer film. .
  • a transfer film can be obtained.
  • a dielectric having a dielectric constant of 5 or more and a dielectric loss tangent of 0.1 or less can be formed by heating at 500 ° C. or less.
  • a dielectric constant of 5 or more, preferably 10 or more, a dielectric loss tangent of 0.1 or less, and a capacitance of 5 nFZcm 2 or more can be obtained by heating at 500 ° C or less.
  • a dielectric can be formed.
  • the dielectric constant of 20 or more and the dielectric loss tangent can be obtained by heating at 500 ° C or less. Can form a dielectric having a value of 0.1 or less.
  • the method for forming a dielectric layer pattern using the first photosensitive dielectric forming composition includes: (1) a step of applying the photosensitive dielectric forming composition; (2) an exposing step of the dielectric layer; And (4) a step of curing the dielectric layer pattern.
  • the first photosensitive dielectric forming composition according to the present invention is applied onto a substrate such as a silicon wafer provided with a wiring pattern or the like, and dried to evaporate a solvent or the like to form a coating film.
  • a coating method for example, a coating method such as a date coating method, a spray method, a non-coating method, a roll coating method, a spin coating method, a curtain coating method, a screen printing method, etc. can be used. Can be appropriately controlled by adjusting the coating means and the solid concentration or viscosity of the composition for forming a photosensitive dielectric.
  • Examples of the above substrate include, but are not limited to, printed wiring boards, copper-clad laminates (CCL), SUS substrates, polyimide substrates with copper foil, ceramic substrates, silicon wafers (such as W-CSP), and alumina substrates. Plate-shaped member.
  • Radiation is selectively irradiated (exposed) to the surface of the dielectric layer formed in the above coating step through a desired mask pattern to form a latent image of the pattern on the dielectric layer.
  • the radiation used for exposure includes, for example, ultraviolet rays, electron beams, and laser beams from low-pressure mercury lamps, high-pressure mercury lamps, metal halide lamps, g-ray steppers, i-ray steppers, and the like. It is appropriately selected according to the thickness of the body layer. For example, in the case of ultraviolet irradiation from a high-pressure mercury lamp, the thickness is about 1,000 to 20,000 J / m2 when the thickness of the dielectric layer is 0.5 to 50 m.
  • the exposed dielectric layer is developed with an alkaline developer to dissolve and remove the exposed portions to obtain a coating film on which a desired pattern is formed.
  • the phenolic resin (B1) Since the inorganic particles (A) contained in the dielectric layer are uniformly dispersed in the phenolic resin (B1), the phenolic resin (B1) is dissolved by dissolving and washing the phenolic resin (B1) as a binder. The inorganic particles (A) that exist in the portion where the iron has dissolved are also removed.
  • Examples of the developing method in this case include a shower developing method, a spray developing method, an immersion developing method, and a paddle developing method.
  • the development conditions are usually about 1 to 10 minutes at 20 to 40 ° C.
  • alkaline developer examples include, for example, an alkaline compound such as sodium hydroxide, hydroxide hydroxide, aqueous ammonia, tetramethylammonium hydroxide, and choline having a concentration of 0.1 to 10% by mass.
  • Al dissolved in water to about A strong aqueous solution can be used.
  • the alkaline aqueous solution may be supplemented with a suitable amount of a water-soluble organic solvent such as methanol or ethanol, a surfactant, or the like.
  • a cured film can be obtained by performing a heat treatment after development in order to develop capacitor characteristics.
  • the acid generator (C3) is decomposed to generate an acid.
  • the catalytic reaction of this acid accelerates the curing reaction between the curing agent (C2) and the phenolic resin (B1).
  • the curing conditions are not particularly limited, but the coating can be cured by heating at a temperature of 100 to 250 ° C. for about 30 minutes to 10 hours, depending on the use of the cured product. In addition, heating can be carried out in two stages in order to sufficiently promote curing and prevent deformation of the obtained pattern shape.
  • the first stage at a temperature of 50 to 100 ° C, 10 It can be cured by heating for about 2 minutes to 2 hours, and at the second stage at a temperature of 100 to 250 ° C for about 20 minutes to 8 hours.
  • a general open-air or infrared furnace can be used as a force D heat facility.
  • the dielectric obtained from the first photosensitive dielectric composition according to the present invention preferably has a dielectric constant of 5 or more, preferably 10 or more, and more preferably 15 or more.
  • the upper limit of the dielectric constant is not particularly limited, but may be, for example, about 200. It is desirable that the dielectric obtained from the first photosensitive dielectric composition has a dielectric loss tangent of 0.1 or less, preferably 0.08 or less, and more preferably 0.06 or less.
  • the lower limit of the dielectric loss tangent is not particularly limited, but may be, for example, about 0.001.
  • the dielectric obtained from the first photosensitive dielectric forming composition has an electrostatic capacitance of It is desirable that the capacity be 5 nFZcm 2 or more, preferably lOnFZcm 2 or more, and more preferably 15 nF / cm 2 or more.
  • the upper limit of the capacitance is not particularly limited, but may be, for example, about 50 nFZcm 2 or more.
  • the dielectric constant, dielectric loss tangent, and capacitance are values measured by the method described in JIS K6481 (frequency: 1 MHz).
  • leakage current when using the dielectric as a capacitor is good Mashiku 10_ 8 AZcm 2 or less, more preferably 10_ 9 AZcm 2 or less, still more preferably at lO-iQAZcm 2 below.
  • the thickness of the dielectric is preferably 50 ⁇ m or less, more preferably 20 ⁇ m or less, and further preferably the following.
  • the lower limit of the thickness of the finolem is not particularly limited, but is usually 0.5 ⁇ or more.
  • the method for forming a dielectric layer pattern using the second or third photosensitive dielectric-forming composition includes: (1-1) a step of applying the photosensitive dielectric-forming composition or (1-12) A step of transferring a conductive transfer layer, a step of exposing a dielectric layer, a step of developing a dielectric layer, and a step of curing a dielectric layer pattern.
  • the second or third photosensitive dielectric forming composition is applied to the substrate using, for example, an applicator to form a dielectric layer.
  • preferred coating machines include spinners, screen printing machines, gravure coaters, roll coaters, bar coaters, die coaters and the like.
  • the substrate on which the second photosensitive dielectric forming composition is applied is not particularly limited.
  • a printed wiring board, a copper-clad laminate (CCL SUS substrate, with copper foil) examples include plate members made of polyimide substrates, ceramic substrates, silicon wafers (such as W-CSP), and alumina substrates.
  • the substrate on which the third photosensitive dielectric composition is applied is not particularly limited, and examples thereof include a printed substrate, a silicon wafer (such as W-CSP), a plate-shaped member made of glass, alumina, and the like.
  • W-CSP silicon wafer
  • a plate-shaped member made of glass, alumina, and the like can be
  • a second or third composition for forming a photosensitive dielectric is printed on a printed wiring board or the like by a screen printer or the like, and the composition for forming the photosensitive dielectric is formed by using an oven or the like.
  • the composition can be dried to form a dielectric layer.
  • the photosensitive transfer layer composed of the photosensitive transfer film of the present invention is transferred onto a substrate.
  • the substrate examples include a plate-shaped member made of a substrate on which the second photosensitive dielectric composition is applied. It is permissible to use a plate in which a desired pattern is formed in advance on the surface.
  • a plate-shaped member made of a substrate on which the second photosensitive dielectric composition is applied. It is permissible to use a plate in which a desired pattern is formed in advance on the surface.
  • the substrate surface if necessary, before chemical treatment with a silane coupling agent, plasma treatment, ion plating, sputtering, gas phase reaction, vacuum deposition, etc. The treatment may be performed appropriately.
  • An example of the transfer step is as follows. After peeling off the protective film of the photosensitive transfer film used as necessary, the photosensitive transfer film is overlaid on the substrate so that the surface of the photosensitive transfer layer is in contact with the substrate. Is thermocompressed with a heating roller or the like. As a result, the photosensitive transfer layer is transferred onto the substrate and is brought into close contact therewith.
  • the transfer conditions for example, conditions such that the surface temperature of the heating roller is 20 to 140 ° C, the roll pressure by the heating roller is l to 5 kgZcm 2 , and the moving speed of the heating roller is 0.1 to 10.0 mZ minutes are used. Can show You.
  • the substrate may be preheated, and the preheating temperature may be, for example, 40 to 100 ° C.
  • the surface of the dielectric layer formed as described above is selectively irradiated (exposed) with a radiation through an exposure mask to form a latent image of a pattern on the dielectric layer.
  • a conductive foil with a dry film resist is further laminated in the above-mentioned step (11-1), or the step (1-2)
  • the conductive foil can be used as a mask for exposure by forming a dielectric layer with a conductive foil using a conductive foil as the support film, patterning the conductive foil, and then performing chemical etching. is there.
  • the radiation selectively irradiated (exposed) in the exposure step includes, for example, visible light, ultraviolet light, far ultraviolet light, electron beam or X-ray, and more preferably visible light, ultraviolet light, and far ultraviolet light. UV light is used.
  • the exposure pattern of the exposure mask varies depending on the purpose. For example, a dot pattern of 10 to 1000 / zm square is used.
  • Examples of the radiation irradiating apparatus include an ultraviolet irradiating apparatus used in a photolithography method and an exposure apparatus used in manufacturing a semiconductor and a liquid crystal display device, but are not particularly limited to these. Absent.
  • an alkaline developing solution can be used as the developing solution used in the developing step. This makes it possible to easily dissolve and remove the alkali-developable resin (B) contained in the dielectric layer. Since the inorganic ultrafine particles (A-I) and the inorganic fine particles (A-II) contained in the dielectric layer are uniformly dispersed in the alkali-developable resin (B), the alkali-developable binder (Binder) is used. By dissolving and washing the possible resin (B), the inorganic ultrafine particles (A-I) and inorganic fine particles (A-—) existing in the portion where the alkali-developable resin (B) is dissolved Is also removed at the same time.
  • Examples of the active ingredient of such a developer include, for example,
  • Inorganic alkaline compounds such as potassium hydrogen hydride, sodium dihydrogen phosphate, lithium silicate, sodium silicate, potassium silicate, lithium carbonate, sodium carbonate, potassium carbonate, lithium borate, sodium borate, potassium borate, ammonia;
  • Tetramethylinoammonium hydroxide trimethylhydroxyxetinolenmonoxide, monomethylamine, dimethylamine, trimethylamine, monoethylamine, getylamine, triethylamine, monoisopropylamine, disopropylamine, ethanolamine, etc.
  • Compounds and the like can be mentioned.
  • the developer used in the developing step can be prepared by dissolving one or more of the above-mentioned compounds in a solvent such as water.
  • concentration of the alkaline compound in the alkaline developer is usually 0.001 to 10% by mass, preferably 0.01 to 5% by mass.
  • the alkali developer may contain additives such as a nonionic surfactant or an organic solvent.
  • the method may include a step of scraping unnecessary portions remaining on the exposed portion of the plate.
  • the processing conditions include the type, composition and concentration of the developing solution, the developing time, the developing temperature, the developing method (for example, the immersion method, the oscillating method, the shower method, the spray method, and the paddle method). Can be selected appropriately.
  • a dielectric layer pattern (a pattern corresponding to the exposure mask) composed of the dielectric layer residual portion and the dielectric layer removed portion is formed.
  • the pattern is formed by thermally curing the dielectric layer pattern.
  • a heat hardening treatment can be carried out by heating at a temperature of 500 ° C. or lower, preferably at a temperature of 100 to 500 ° C., more preferably at a temperature of 150 to 300 ° C.
  • the heating time is preferably in the range of 1 minute to 24 hours, more preferably 10 minutes to 12 hours.
  • Examples of the heating method for heating and curing the second or third photosensitive dielectric forming composition include a method of heating with an oven, an infrared lamp, a hot plate, or the like.
  • the dielectric obtained from the second or third photosensitive dielectric forming composition or the photosensitive transfer film according to the present invention has a dielectric constant of 20 or more, preferably 23 or more, more preferably 25 or more, Particularly preferably, it is desired to be 30 or more.
  • the upper limit of the dielectric constant is not particularly limited, but may be, for example, about 200.
  • the dielectric obtained from the second or third photosensitive dielectric forming composition or the photosensitive transfer film preferably has a dielectric loss tangent of 0.1 or less, preferably 0.08 or less, more preferably 0.06 or less.
  • the lower limit of the dielectric loss tangent is not particularly limited, but may be, for example, about 0.001.
  • the dielectric constant and the dielectric loss tangent are values measured by the method described in JIS K6481 (frequency 1 MHz).
  • the leakage current is preferably 10 to 19 AZcm 2 or less, more preferably 10_ioAZcm 2 or less, and still more preferably 10 to 11 AZcm 2 or less. desirable.
  • the thickness of the dielectric is preferably 20 izm or less, more preferably 10 m or less.
  • the lower limit of the thickness is not particularly limited, but is usually 1 ⁇ m or more.
  • a dielectric formed using the first photosensitive dielectric forming composition of the present invention can be obtained by heating and firing at a low temperature of 500 ° C. or less, having a dielectric constant of 5 or more, and Since the dielectric loss tangent is 0.1 or less and the capacitance is 4 nF / cm 2 , or using the second or third photosensitive dielectric forming composition of the present invention or the photosensitive transfer film of the present invention
  • the dielectric formed by heating can be obtained by heating and firing at a temperature as low as 500 ° C or less, and has a dielectric constant of 20 or more and a dielectric loss tangent of 0.1 or less.
  • Electronic components such as capacitors can be formed. Also, electronic components such as printed circuit boards, semiconductor packages, capacitors, and high-frequency antennas provided with the dielectric can be small and have high density.
  • a dielectric having a dielectric constant of 5 or more and a dielectric loss tangent of 0.1 or less can be formed at a low heating temperature of 500 ° C. or less.
  • a dielectric having a low heating temperature of 500 ° C. or less, a dielectric tangent of 0.1 or less, and a high capacitance of 5 nF / cm 2 or more can be formed.
  • the second or third photosensitive dielectric forming composition according to the present invention when the photosensitive transfer film of the present invention is used, as described above, at a low heating temperature of 500 ° C or less, Furthermore, a dielectric having a low dielectric tangent of 0.1 or less and a high dielectric constant of 20 or more can be formed.
  • the dielectric according to the present invention is thin and has a high dielectric constant, it is suitably used in electronic components such as printed circuit boards, semiconductor packages, capacitors, and high frequency antennas.
  • the electronic component according to the present invention includes the dielectric, the electronic component can be reduced in size and thickness.
  • the mass average molecular weight (Mw) is an average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC) (trade name: HLC-802A) manufactured by Tosoh Corporation.
  • the patterning characteristics and dielectric characteristics of the dielectric pattern were evaluated as follows.
  • the width and width of the obtained dielectric pattern were measured using a scanning electron microscope (SEM). Regarding the accuracy of the width, those with a range of 500 ⁇ ⁇ 10 ⁇ were evaluated as “ ⁇ ”, and the others were evaluated as “ ⁇ ”. Observations were also made for missing patterns, and those with no missing were evaluated as “ ⁇ ”, and those with missing were evaluated as “: ⁇ ”.
  • Electrode preparation In Examples 1 to 10 and Comparative Examples 1 to 6, an upper electrode (thickness: 0.5 m) was formed on the upper surface of the obtained dielectric pattern by aluminum vapor deposition. In Examples 11 to 13 and Comparative Example III, the copper foil on the upper surface of the obtained dielectric pattern with copper foil was used as the upper electrode. In Examples 14 to 17 and Reference Examples 1 and 2, electrodes (area: lcm 2 , thickness: Ol Aim) with a guide ring were formed on the upper surface of the obtained dielectric pattern by aluminum evaporation.
  • Dielectric constant measurement and dielectric loss tangent measurement 10 points of dielectric constant and dielectric loss tangent at 1MHz between the copper foil side of printed wiring board or silicon wafer substrate and top electrode by LCR meter (HP4284A, manufactured by Hewlett Packard). The measurements were taken and the average was determined.
  • Leak current measurement Leak current between the copper foil side and the electrode was measured at 10 points using an insulation resistance tester (manufactured by Adpantest), and the average value was determined.
  • the cured film was subjected to a moisture and heat resistance test under the conditions of 121 ° C, 100% humidity, and 2 atm for 72 hours, and infrared spectroscopy was performed before and after the test. Evaluation was based on criteria.
  • A-1 Barium titanate particles (trade name “BT-01”, manufactured by Sakai Chemical Industry Co., Ltd., average particle diameter 0.1 ⁇ m)
  • A-2 Barium titanate particles (trade name “; BT-02”, manufactured by Sakai Chemical Industry Co., Ltd., average particle diameter 0.2 ⁇ m)
  • bl-l l, l-bis (4-hydroxyphenyl) 1 1 1 [4 1 ⁇ 1 1 1 (4-hydroxy phenyl) 1 1-methinoleethinole ⁇ phenyl
  • the inorganic particles (A), phenolic resin (Bl), phenolic compound (bl), quinonediazide compound (C1), curing agent (C2) and acid generator (C3), crosslinked fine particles (A) C4) is dissolved in a solvent (D), kneaded with a bead mill, and filtered through a stainless mesh (500 mesh) and a filter with a pore size of l ⁇ m to prepare a composition for forming a photosensitive dielectric. did.
  • composition for forming a photosensitive biodielectric was applied to a silicon wafer with Cu sputter using a spinner, and the coating was dried at 100 ° C for 5 minutes to completely remove the solvent.
  • a photosensitive dielectric layer having a thickness of 59 wm was formed.
  • the photosensitive dielectric layer was irradiated with i-rays (ultraviolet light having a wavelength of 365 mn) from an ultra-high pressure mercury lamp through an exposure mask (a dot pattern of 500 ⁇ ⁇ angle).
  • the irradiation dose was 500 mJ / cm 2 .
  • the exposed photosensitive dielectric layer was subjected to a development process using a 2.38% by mass aqueous solution of tetramethylammonium hydroxide (25 ° C) as a developing solution by a sharper method for 2 minutes. I went over it. Subsequently, a washing treatment with ultrapure water was carried out, whereby the photosensitive dielectric layer which was irradiated with ultraviolet rays and was soluble was removed to form a pattern.
  • the silicon wafer on which the photosensitive dielectric layer pattern was formed was cured in an oven at a temperature of 200 ° C for 60 minutes. As a result, a dielectric pattern was obtained on the surface of the silicon wafer substrate.
  • the patterning characteristics and the dielectric characteristics of the obtained dielectric pattern were measured according to the evaluation method. Table 1 shows the results.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Ham component Type Parts by weight Type Parts by weight Type Parts by weight Type Parts by weight Type Parts by weight Light (A) Inorganic particles A-1 150 A-1 350 A-2 150 A-1 150 A-1 150
  • Thickness ( ⁇ m) 1 1 1 1 1 1 1 1 1 Kuchino 13 ⁇ 4 beef 4 8 13 12 6
  • A-1 Barium titanate particles (trade name ⁇ -01), manufactured by Sakai Chemical Industry Co., Ltd., average particle diameter 0.1 m, dielectric constant 500)
  • A-2 Barium titanate particles (trade name "; BT-02", manufactured by Sakai Chemical Industry Co., Ltd., average particle diameter 0.2111, dielectric constant 500)
  • A-3 Palladium titanate nanoparticles (Nissin Engineering, average particle size 0.03 ⁇ , dielectric constant 400)
  • ⁇ -4 barium titanate particles (made by Toho Titanium, average particle diameter 0 .: m, dielectric constant 400)
  • Titanure-nanoparticles (trade name: RTIPBC, CHI Chemical Co., average particle size 0.02 ⁇ , dielectric constant 100)
  • reaction solution 32 g of pyridine and 71 g of acetic anhydride were added, and a dehydration ring closure reaction was performed at 100 ° C. for 3 hours. Subsequently, the reaction solution was purified by distillation under reduced pressure to obtain a polyimide NMP solution having a solid content of 20%.
  • the inorganic ultrafine particles (A-1), the inorganic fine particles (A-11), the alkali developable resin (B), the photosensitive acid generating compound (C5) and the solvent (D) were After kneading with a bead mill, the mixture was filtered through a stainless mesh (500 mesh) and a filter having a pore size of 1 m to prepare a photosensitive dielectric composition.
  • composition for forming a photosensitive dielectric is applied on a printed wiring board using a spinner, and the coating is dried at 100 ° C for 5 minutes to completely remove the solvent, and a 7 ⁇ m-thick photosensitive dielectric is formed. A body layer was formed.
  • the photosensitive dielectric layer was irradiated with i-rays (ultraviolet light having a wavelength of 365 nm) from an ultra-high pressure mercury lamp through an exposure mask (a dot pattern of 500 111 squares). Dose was lOOmJZcm 2.
  • the exposed photosensitive dielectric layer is subjected to a current image processing by a Shaft method using a 0.12% by mass aqueous solution of tetramethylammonium hydroxide (25 ° C) as a developing solution. I went over a minute. Subsequently, a washing treatment with ultrapure water was carried out, whereby the photosensitive dielectric layer which was irradiated with ultraviolet rays and was soluble was removed to form a pattern. (4) Dielectric layer pattern curing process
  • the printed wiring board on which the photosensitive dielectric layer pattern was formed was cured in an oven at a temperature of 200 ° C. for 60 minutes. As a result, a dielectric pattern was obtained on the surface of the printed wiring board.
  • Example 8 the composition for forming a photosensitive dielectric was prepared at the compounding ratio shown in Table 3. After forming a photosensitive dielectric layer having a thickness of 7 ⁇ in the same manner as in Example 6 except that the composition for forming a photosensitive dielectric was used, an exposure step, a developing step, and a curing step were performed. Then, a dielectric pattern was prepared. Table 3 shows the evaluation results of the patterning characteristics and the dielectric characteristics of the obtained dielectric pattern.
  • a composition for forming a photosensitive dielectric was prepared in the same manner as in Example 6 at the compounding ratios shown in Table 3. After forming a photosensitive dielectric layer having a thickness of 5 ⁇ in the same manner as in Example 6, except that the composition for forming a photosensitive dielectric was used, an exposure step, a developing step, and a curing step were performed. Then, a dielectric pattern was prepared. Table 3 shows the evaluation results of the pattern Jung property and the dielectric property of the obtained dielectric pattern.
  • a composition for forming a photosensitive dielectric was prepared in the same manner as in Example 6 at the compounding ratios shown in Table 3.
  • the same procedures as in Example 6 were carried out, except that the composition for forming a photosensitive dielectric was used, and that the curing process was performed under a temperature atmosphere of 230 ° C. in the curing step.
  • an exposure step, a development step, and a curing step were performed to form a dielectric pattern.
  • Table 3 shows the evaluation results of the patterning characteristics and the dielectric characteristics of the obtained dielectric pattern.
  • a composition for forming a photosensitive dielectric was prepared in the same manner as in Example 6 at the compounding ratios shown in Table 3. After forming a photosensitive dielectric layer having a thickness of 3 m, an exposure step, a development step, and a curing step were performed in the same manner as in Example 6, except that the composition for forming a photosensitive dielectric was used. A dielectric pattern was prepared. Table 3 shows the evaluation results of the patterning characteristics and dielectric characteristics of the obtained dielectric pattern.
  • Example 6 the composition for forming a photosensitive dielectric material was prepared at the compounding ratio shown in Table 3. After forming a photosensitive dielectric layer having a thickness of 3 ⁇ in the same manner as in Example 6, except that the composition for forming a photosensitive dielectric was used, an exposure step, a developing step, and a curing step were performed. Then, a dielectric pattern was prepared. Table 3 shows the evaluation results of the patterning characteristics and dielectric characteristics of the obtained dielectric pattern.
  • Example 6 Example 7 Example 8 Example 9 Example 1 row 10 Comparative example 6 Component part Part part Type part Ham
  • Weight average molecular weight ( Mw ) 50,000 100,000 50,000 80,000 50,000 50,000
  • composition for forming a photosensitive dielectric obtained above is applied to a supporting film (300 mm wide, 500 mm long, 13 // m thick) made of copper foil using a die coater, and the coating film is heated to 100 ° C. Then, the solvent was removed by drying for 5 minutes, and a photosensitive dielectric forming layer having a thickness of 10 ⁇ was formed on the support film to prepare a photosensitive transfer film.
  • a photosensitive transfer film was overlaid on the surface of the printed wiring board such that the surface of the photosensitive transfer layer was in contact with the surface, and the photosensitive transfer film was heat-pressed with a heating roller.
  • the pressing conditions were as follows: the surface temperature of the heating roller was 120 ° C., the roll pressure was 4 kgZcm 2 , and the moving speed of the heating roller was 0.5 mZ.
  • a substrate was obtained in which the photosensitive dielectric layer with the copper foil was transferred to and adhered to the surface of the printed wiring board.
  • the film thickness of this photosensitive dielectric forming layer was measured, it was in the range of 10 m soil: m.
  • i-line ultraviolet light of 365 nm wavelength
  • an ultra-high pressure mercury lamp 500 square dot pattern
  • the irradiation amount was 400 mJ / cm 2 .
  • the exposed photosensitive dielectric layer is subjected to a shower process using a 0.12% by mass aqueous solution of tetramethylammonium hydroxide (30 ° C) as a developing solution. Went over a minute.
  • a water washing treatment with ultrapure water was performed, whereby the photosensitive dielectric layer solubilized by irradiation with ultraviolet rays was removed, and a pattern was formed.
  • the printed wiring board on which the photosensitive dielectric forming layer pattern with copper foil was formed was cured in an oven at a temperature of 200 ° C for 30 minutes. As a result, a dielectric pattern with a copper foil was obtained on the surface of the printed wiring board.
  • Example 6 the composition for forming a photosensitive dielectric was prepared at the compounding ratio shown in Table 4. After forming a photosensitive dielectric layer having a thickness of 10 Aim, an exposure step, a development step, and a curing step were performed in the same manner as in Example 11 except that the composition for forming a photosensitive dielectric was used. A dielectric pattern was prepared. Table 4 shows the evaluation results of the patterning characteristics and the dielectric characteristics of the obtained dielectric pattern.
  • Example 6 the composition for forming a photosensitive dielectric was prepared at the compounding ratio shown in Table 4.
  • the composition for forming a photosensitive dielectric was used, and that the curing treatment was performed in a temperature atmosphere of 230 ° C. in the curing step, Thick After forming a 10-m-thick photosensitive dielectric layer, an exposure step, a development step, and a curing step were performed to produce a dielectric pattern.
  • Table 4 shows the patterning characteristics and the evaluation results of the dielectric characteristics of the obtained dielectric pattern.
  • Example 6 the composition for forming a photosensitive dielectric was prepared at the compounding ratio shown in Table 4. After forming a photosensitive dielectric layer having a thickness of 10 m, an exposure step, a development step, and a curing step were performed in the same manner as in Example 11, except that the composition for forming a photosensitive dielectric was used, A dielectric pattern was made. Table 4 shows the evaluation results of the pattern Jung property and the dielectric property of the obtained dielectric pattern.
  • Example 1 row 11 Example 1 row 12
  • Example 1 row 13 Comparative Example ⁇ Component part Part type Ham
  • Thickness m 10 10 10 10 10 10 Dielectric constant 20 20 20 13
  • A-1 Barium titanate particles (trade name: “BT-01”, manufactured by Sakai Chemical Industry Co., Ltd., average particle size ⁇ . ⁇ ⁇ ⁇ dielectric constant 500)
  • ⁇ -4 Barium titanate particles (made by Toho Titanium, average particle size 0.1 / ⁇ , dielectric constant 400)
  • Titania nanoparticle (trade name "RTIPBC”, Shia Kasei, average particle size 0.02 jam, dielectric constant 100)
  • composition for forming a photosensitive dielectric is applied to a printed wiring board using a spinner, and the coating is dried at 100 ° C for 5 minutes to completely remove the solvent, and the photosensitive dielectric having a thickness of 7 ⁇ A body layer was formed.
  • the photosensitive dielectric layer was irradiated with i-rays (ultraviolet light having a wavelength of 365 nm) from an ultrahigh-pressure mercury lamp through an exposure mask (a dot pattern of 500 ⁇ angle).
  • i-rays ultraviolet light having a wavelength of 365 nm
  • the irradiation amount was 400 mJ / cm 2 .
  • the exposed photosensitive dielectric layer was subjected to a development process using a 0.5% by mass aqueous solution of sodium carbonate (30 ° C.) for one minute using a shaping method.
  • a water washing treatment with ultrapure water was performed, thereby removing the uncured photosensitive dielectric layer while not being irradiated with ultraviolet rays, thereby forming a pattern.
  • the curing treatment was performed in an atmosphere of 200 ° C for 30 minutes. As a result, a dielectric pattern was obtained on the surface of the printed wiring board.
  • a composition for forming a photosensitive dielectric was prepared in the same manner as in Example 14 at the compounding ratio shown in Table 5. After forming a photosensitive dielectric layer having a thickness of 7 ⁇ in the same manner as in Example 14 except that the photosensitive dielectric forming composition was used, an exposure step, a development step, and a curing step were performed. A dielectric pattern was prepared. Table 5 shows the evaluation results of the patterning characteristics and the dielectric characteristics of the obtained dielectric pattern.
  • a composition for forming a photosensitive dielectric was prepared in the same manner as in Example 14 at the compounding ratio shown in Table 5. After forming a photosensitive dielectric layer having a thickness of 5 ⁇ in the same manner as in Example 14 except that the photosensitive dielectric forming composition was used, an exposure step, a development step, and a curing step were performed. A dielectric pattern was prepared. Table 5 shows the evaluation results of the patterning characteristics and the dielectric characteristics of the obtained dielectric pattern.
  • Example 14 In the same manner as in Example 14, a composition for forming a photosensitive dielectric was prepared at the compounding ratio shown in Table 5. After forming a photosensitive dielectric layer having a thickness of 3 ⁇ m, an exposure step, a development step, and a curing step were performed in the same manner as in Example 14, except that the composition for forming a photosensitive dielectric was used. A dielectric pattern was prepared. Table 5 shows the evaluation results of the patterning characteristics and the dielectric characteristics of the obtained dielectric pattern.
  • a composition for forming a photosensitive dielectric was prepared in the same manner as in Example 14 at the compounding ratio shown in Table 5. After forming a photosensitive dielectric layer having a thickness of 5 / m, an exposure step, a development step, and a curing step were performed in the same manner as in Example 14 except that the photosensitive dielectric forming composition was used. A dielectric pattern was prepared. Table 5 shows the evaluation results of the pattern characteristics and the dielectric properties of the obtained dielectric pattern.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials For Photolithography (AREA)

Description

明 細 書 感光性誘電体形成用組成物、 ならびにそれを用いた転写
誘電体および電子部品 技術分野
本発明は寸法精度の高レ、パターンを形成するために好適に使用することがで きる感光性誘電体形成用組成物、 感光性誘電体形成用組成物を支持フィルムに 塗布した転写フィルム、 ならびにこれらから形成される誘電体および電子部品 に関する。 背景技術
近年、 多層プリント配線基板等に高誘電率層を設け、 この層をコンデンサ等 に利用する技術が知られている。 この高誘電率層は、 たとえば、 熱硬化性樹脂 を溶解させた有機溶剤に高誘電率の無機粉末を添加したものを、 熱硬化性樹脂 の脆さを捕うために、 ガラス繊維等の繊維強化材に含浸させ、 その後、 溶剤を 焼成などにより飛散させて硬化させる等の方法により調製されている。 しかし ながら、 従来の方法では、 通常、 たとえば 20以上などの高い誘電率であって 'かつ薄膜でも低いリーク電流を有する層を得ることは困難であった。
また、 各種の無機粉末を用いて高誘電率の誘電体層を得る試みもなされ、 た とえば、 ポリスチレンに無機粉末として Fe304、 あるいは ZnO +カーボンなど を添加すると、高い誘電率の誘電体層を得ることができることが知られている。 しかしこのような系では、 誘電率を高くすることができても、 得られる誘電体 層の誘電正接が大きくなるため、 交流電場における誘電体層での発熱が大きく なり、 誘電体のフィルムを設けた多層プリント配線基板等の劣化、 熱応力によ る接合部の破断等の不良原因となり、 半導体基板の信頼性、 耐久性が低下し易 いという問題点があった。
一方、 高い誘電率を得るためには、 通常、 高誘電率の無機粉末を高温で加熱 焼成して誘電体層を形成する方法が知られている。 しかしながらこの方法は、 たとえば 1000°C程度の高温で焼成する必要があるため、配線基板上に電子部品 が装着されている状態で誘電体層を設ける場合には適用できず、 種々の半導体 基板の製造プロセスに汎用的に適用できないという問題点があつた。
さらに、 誘電体層の形成方法としてスクリーン印刷法等が知られているが、 基板の大型化おょぴ高精細化に伴い、 パターンの位置精度の要求が非常に厳し くなり、 通常の印刷では対応できないという問題があった。
このため、 低温焼成により、 高い誘電率で、 熱損失の小さい誘電体層を提供 するとともに、 寸法精度の高いパターンを形成しうる感光性誘電体形成用糸且成 物の出現が望まれていた。 発明の目的
本発明は、 前記のような従来技術に伴う問題を解決しようとするものであつ て、 熱損失が小さく、 低温焼成によって製造可能な高誘電率の誘電体層を寸法 精度良く形成できるような感光性誘電体形成用組成物、 感光性転写フィルムな らぴにこの組成物や転写フィルムから形成された誘電体およぴ電子部品を提供 することを目的としている。 発明の開示
本発明者らは、 前記問題を解決すべく鋭意研究した結果、 無機粒子、 アル力 リ可溶性樹脂および添加剤を含む感光性誘電体形成用組成物であって、 特定の 添加剤を含有する感光性誘電体形成用組成物、 あるいは特定の平均粒子径持つ 無機粒子を含有する感光性誘電体形成用組成物またはこの組成物を塗布した感 光性転写フィルムを用いることにより、 500°C以下とレ、う低温での焼成が可能 で、 高誘電率かつ低誘電正接であり、 薄膜でも低いリーク電流で、 なおかつ寸 法精度の高いパターンの誘電体を形成することができることを見出し、 本発明 を完成するに至った。
すなわち、 本発明に係る第一の感光性誘電体形成用組成物は、 (A) 無機粒子 と、 (B) アルカリ現像可能な樹脂と、 (C) 添加剤とを含有する感光性誘電体形 成用組成物であって、
アル力リ現像可能な樹脂 (B) はフエノール性水酸基を有するアル力リ可溶性 樹脂 (B1) を含有し、
添加剤 (C) は、
(C1) キノンジアジド基を有する化合物と、
(C2)分子中に少なくとも 2つ以上のアルキルエーテルィ匕されたアミノ基を有 する化合物と、
(C3) 熱感応性酸発生剤とを含有する
ことを特徴としている。
また、 第一の感光性誘電体形成用組成物にお!/ヽて、
アルカリ現像可能な樹脂 (B) はフエノール性水酸基を有するアルカリ可溶性 樹脂 (B1) を含有し、
添加剤 (C) は、
(C1) キノンジアジド基を有する化合物と、
(C2)分子中に少なくとも 2つ以上のアルキルエーテル化されたアミノ基を有 する化合物と、
(C3) 熱感応性酸発生剤と、
(C4) 架橋微粒子とを含有する
ことが好ましく、 前記架橋微粒子 (C4) の平均粒径は 30〜500nmであること が好ましい。
本発明に係る第二の感光性誘電体形成用組成物は、 (A) 無機粒子と、 (B) ァ ルカリ現像可能な樹脂と、 (C) 添加剤とを含有する感光性誘電体形成用組成物 であって、
無機粒子 (A) は、
(A-I) 平均粒子径が 0.05 μ πι未満の無機超微粒子と、
(Α— II) 平均粒子径が 0.05 μ m以上の無機微粒子とを含有し、
添加剤 (C) は感光性酸生成化合物 (C5) を含有する
ことを特徴としている。
前記無機粒子 (A) の量は 20〜95質量%、
前記アルカリ現像可能な樹脂 (B) の量が 1〜60質量%、
前記感光性酸生成化合物 (C5) の量が 0.1〜30質量%
であることが好ましい。
第二の感光性誘電体形成用組成物において、 アルカリ現像可能な樹脂 (B) は、 (メタ) アクリル系樹脂、 ヒ ドロキシスチレン樹脂、 ノボラック樹脂、 ポリ エステル樹脂、 ポリイミド樹脂、 ナイ口ン樹脂、 ポリエーテルィミド樹脂から なる群から選択される少なくとも 1種の樹脂であることが好ましい。
本発明に係る第三の感光性誘電体形成用組成物は、 (A) 無機粒子と、 (B) ァ ルカリ現像可能な樹脂と、 (C) 添加剤とを含有する感光性誘電体形成用組成物 であって、 無機粒子 (A) は、
(A— I) 平均粒子径が 0.05 μ m未満の無機超微粒子と、
(A-II) 平均粒子径が 0.05 μ m以上の無機微粒子とを含有し、
アルカリ現像可能な樹脂 (B) はアルカリ可溶性樹脂 (B2) を含有し、 添加剤 (C) は、
(C6) エチレン性不飽和基含有化合物と、
(C7) 光重合開始剤とを含有する
ことを特 ί敷としている。
前記無機粒子 (Α) の量は 20〜95質量%、
前記アルカリ可溶性樹脂 (Β2) の量は 1〜60質量%、
前記エチレン性不飽和基含有化合物 (C6) の量は 0.1〜30質量0 /0、 前記光重合開始剤 (C7) の量は 0.1〜20質量%
であることが好ましい。
前記アルカリ可溶性樹脂 (Β2) は、 (メタ) アクリル系榭脂、 ヒドロキシス チレン樹脂、 ノボラック樹脂またはポリエステル樹脂のいずれかであることが 好ましい。 前記エチレン性不飽和基含有化合物 (C6) は、 (メタ) アタリレー ト化合物であることが好ましい。 また、 前記エチレン性不飽和基含有化合物
(C6) は、 アルカリ可溶性樹脂 (Β2) 100質量部に対して 20〜500質量部の 範囲で含まれていることが好ましい。
第二および第三の感光性誘電体形成用組成物において、 前記無機粒子 (Α) の量を 100質量部としたとき、無機超微粒子 (Α-Ι) の量は 1〜30質量部であ り、 無機微粒子 (Α— II) は 99〜70質量部であることが好まじい。 また、 無機 粒子 (Α) は、 チタン系金属酸ィ匕物からなることが好ましい。
第二および第三の感光性誘電体形成用組成物は、 500°C以下の加熱で、 誘電 率が 20以上、誘電正接が 0.1以下の誘電体を形成することが可能であることが 好ましい。
本発明に係る感光性転写フィルムは、 (A) 無機粒子と、 (B) アルカリ現像可 能な樹脂と、(C)添加剤とを含有する感光性誘電体形成用組成物が膜厚 1〜100 μ ιηで支持フィルム上に設けられている感光性転写フィルムであって、 無機粒子 (Α) は、 ― (Α-Ι) 平均粒子径が 0.05 μ m未満の無機超微粒子と、
(A-II) 平均粒子径が 0.05 μ m以上の無機微粒子とを含有し、
添加剤 (C) は感光性酸生成化合物 (C5) を含有する
ことを特徴としている。
本発明に係る感光性転写フィルムは、 500°C以下の加熱で、誘電率が 20以上、 誘電正接が 0.1以下の誘電体を形成することが可能であることが好ましい。 前記感光性転写フィルムにおいて、 無機粒子 (A) はチタン系金属酸化物で あることが好ましく、 アルカリ現像可能な樹脂 (B) は、 (メタ) アクリル系樹 脂、 ヒドロキシスチレン樹脂、 ノポラック樹脂、 ポリエステノレ樹脂、 ポリイミ ド樹脂、 ナイ口ン樹脂、 ポリエーテルィミド榭脂のいずれかであることが好ま しい。
本発明に係る誘導体は、 第一 ~ "第三のいずれかの感光性誘電体形成用組成物 を用いて形成されることを特徴としている。 また、 本発明に係る誘導体は、 第 二または第三の感光性誘電体形成用組成物を 500°C以下で加熱して硬化させる ことにより形成され、その誘電率は 20以上、誘電正接は 0.1以下であることが 好ましい。 さらに、 本発明に係る誘導体は、 前記感光性転写フィルムを用いて 形成されることが好ましい。
本発明に係る誘電体は、 第二の感光性誘電体形成用組成物あるいは前記感光 性転写フィルムを用レ、て形成される誘電体が導電性箔上に形成されている導電 性箔付き誘電体であってもよレ、。
本発明に係る電子部品は、 前記誘電体を含むことを特徴としている。 発明を実施するための最良の形態
まず、 本発明に係る感光性誘電体形成用組成物の詳細について説明する。 本発明に係る感光性誘電体形成用,組成物は、 無機粒子 (A)、 アルカリ現像可 能な樹脂(B)および添加剤(C) を、 ロール混練機、 ミキサー、ホモミキサー、 ポールミル、 ビーズミルなどの混練機を用いて混練することにより調製するこ とができる。
<第一の感光性誘電体形成用組成物〉 本発明に係る第一の感光性誘電体形成用組成物は、 無機粒子 (A)、 アルカリ 現像可能な樹脂 (B) としてフ ノール性水酸基を有するアルカリ可溶性樹脂 (Bl)、 添加剤 (C) としてキノンジアジド基を有する化合物 (C1) と、 分子 中に少なくとも 2つ以上のアルキルエーテルィヒされたアミノ基を有する化合物 (C2) と熱感応性酸発生剤 (C3) とから構成され、 必要に応じて、 架橋微粒 子 (C4) および溶剤 (D) を含有する。 また、 本発明の第一の感光性誘電体形 成用組成物は必要に応じ、 エポキシ化合物、 密着助剤、 レべリング剤などのそ の他の添加剤 (E) などを含有することもできる。
上記のようにして調製される第一の感光性誘電体形成用組成物は、 塗布に適 した流動性を有するペース ト状の組成物であり、 その粘度は、 通常 10〜 50,000mPa's、 好ましくは 20〜10,000mPa'sであることが望ましい。
以下、第一の感光性誘電体形成用組成物を構成する各成分について説明する。 (A) 無機粒子: 第一の感光性誘電体形成用組成物において使用する無機粒子 (A) は、 誘電 率が通常 30以上、 好ましくは 50以上、 さらに好ましくは 70以上であること が望ましい。 誘電率は高い分には問題なく、 上限値は特に限定されないが、 た とえば、 30,000程度であってもよい。
このような無機粒子 (A) としては、 金属酸化物からなるものが好ましく用 いられ、 特にチタン系金属酸化物が好ましい。 ここで、 「チタン系金属酸化物」 とはチタン元素と酸素元素とを必須元素として含む化合物をいう。 このような チタン系金属酸化物としては、 結晶構造を構成する金属元素としてチタンを単 一で含むチタン系単一金属酸化物と、 金属元素としてチタンおよび他の金属元 素を含むチタン系複酸化物とを好ましく用いることができる。
前記チタン系単一金属酸化物としては、 たとえば、 二酸化チタン系金属酸化 物が挙げられる。 このような二酸化チタン系金属酸化物としては、 アナターゼ 構造またはルチル構造の二酸ィ匕チタン系金属酸ィヒ物が挙げられる。
前記チタン系複酸化物としては、 たとえば、 チタン酸バリウム系、 チタン酸 鉛系、 チタン酸ストロンチウム系、 チタン酸ビスマス系、 チタン酸マグネシゥ ム系、 チタン酸ネオジゥム系、 チタン酸カルシウム系等の金属酸ィ匕物が挙げら れる。
なお、前記「二酸化チタン系金属酸化物」 とは、二酸化チタンのみを含む系、 または二酸化チタンに他の少量の添加物を含む系を意味し、 主成分である二酸 化チタンの結晶構造が保持されているものであり、 他の系の金属酸ィヒ物につい ても同様である。
また、 前記 「チタン系複酸化物」 とは、 チタン系単一金属酸化物と、 少なく とも 1種の他の金属元素からなる金属酸化物とが複合して生ずる酸化物であり、 構造の単位としてォキソ酸のイオンが存在しないものをいう。 第一の感光性誘電体形成用組成物においては、 このような無機粒子 (A) を 構成するチタン系金属酸化物としては、 チタン系単一金属酸化物のうちでは、 ルチル構造の二酸ィ匕チタン系金属酸化物が好ましく、 チタン系複酸化物のうち では、 チタン酸バリゥム系金属酸ィ匕物を好ましく用いることができる。
これらのうちでは、 チタン酸バリウム系金属酸ィ匕物を特に好ましく用いるこ とができる。
このような無機粒子の平均粒子径は、 好ましくは 0.005〜2.0 μ m、 より好ま しくは 0.02〜1.0// m、 さらに好ましくは 0.02〜0.8〃πι、 特に好ましくは 0.02 〜0.3 μ ιηであることが望ましい。 また、 このとき重量平均粒子径 (Dw) と数 平均粒子径 (Dn) の比からなる DwZDnは、 好ましくは 1.05以上、 より好ま しくは 1.1以上、 さらに好ましくは 1.2以上、 特に好ましくは 1.25以上である ことが望ましい。 Dw/Dn力 S 1.05より小さいと、 膜厚を薄くした場合に誘電 体粒子のパッキングが悪くリーク電流が大きくなることがある。
第一の感光性誘電体形成用組成物において用いられる無機粒子 (A) の形状 は、 特に制限されるものではないが、 球状、 粒状、 板状、 麟片状、 ゥイスカー 状、 棒状、 フィラメント状などの形状が挙げられる。 これらの形状のうち、 球 状、 粒状、 片状、 鱗片状であることが好ましい。 これらの形状の無機粒子 (A) は、 一種単独で、 または二種以上を組み合わせて用いることができる。
第一の感光性誘電体形成用組成物において使用する無機粒子 (A) は、 たと えば気相法やゾルゲル法、 RFプラズマ法などにより合成することができる。 気相法で合成した無機粒子を溶剤に分散するには、 分散剤を併用して公知の分 散方法、 ビーズミル、 混練法、 高圧ホモジナイザーなどにより一次粒子にまで 分散させることができる。
第一の感光性誘電体形成用組成物における無機粒子 (A) の量は、 (A) 無機 粒子 + (Bl) フエノール性水酸基を有するアルカリ可溶性樹脂 + (C1) キノ ンジアジド基を有する化合物 + (C2) 分子中に少なくとも 2つ以上のアルキル エーテル化されたアミノ基を有する化合物 + (C3) 熱感応性酸発生剤 + (C4) 架橋微粒子を 100質量%としたとき、 好ましくは 20〜85質量%、 より好まし くは 30〜85質量%、 さらに好ましくは 40〜85質量%であることが望ましレ、。 (B1) フユノール性水酸基を有するアル力リ可溶性樹脂:
第一の感光性誘電体形成用組成物において用いられるフヱノール性水酸基を 有するアルカリ可溶性樹脂 (B1) (以下、 「フエノール樹脂 (Bl)」 ともいう。) としては、 特に限定されないが、 ノポラック樹脂が好ましい。 このようなノボ ラック樹脂はフエノール類とアルデヒド類とを触媒の存在下で、 縮合させるこ とにより得られる。
この際使用されるフエノール類としては、たとえばフエノール、 0—クレゾー グレ、 m—クレゾ一ノレ、 p—クレゾ一ノレ、 o—ェチルフエノーノレ、 m—ェチノレフエ ノーノレ、 p—ェチノレフェノ一ノレ、 o—ブチノレフエノーノレ、 m—プチ/レフエノ一ノレ、 p—ブチルフエノール、 2,3—キシレノール、 2,4一キシレノール、 2,5—キシレ ノール、 2,6—キシレノール、 3,4—キシレノール、 3,5—キシレノール、 2,3,5 —トリメチルフエノール、 3,4,5—トリメチルフエノール、 カテコール、 レゾル シノール、ピロガロール、 α—ナフトール、 β—ナフトールなどが挙げられる。 また、 アルデヒド類としてはホルムアルデヒド、 パラホルムアルデヒ ド、 ァ セトアルデヒド、 ベンズアルデヒ ドなどが挙げられる。 このようなノボラック 樹脂としては、 具体的には、 フエノール ホルムアルデヒ ド縮合ノポラック樹 月旨、 クレゾール ホルムアルデヒ ド縮合ノポラック樹脂、 フエノールーナフト ール ζホルムアルデヒ ド縮合ノボラック樹脂などが挙げられる。
また、 ノポラック樹脂以外のフエノール樹脂 (B1) としては、 ポリヒ ドロキ シスチレンおよびその共重合体、フエノール一キシリ レンダリコール縮合樹脂、 クレゾールーキシリ レンダリコール縮合樹脂、 フエノール一ジシク口ペンタジ ェン縮合樹脂などを挙げることができる。
第一の感光性誘電体形成用組成物ではまた、 上記フ ノール樹脂 (B1) と、 上記フエノール樹脂 (B1) 以外のフエノール性低分子化合物 (以下、 「フエノ ール化合物 (bl)」 ともいう。) とを併用することができる。 たとえば、 4,4'一 ジヒ ドロキシジフエニルメタン、 4,4'ージヒ ドロキシジフエニルエーテノレ、 ト リス (4—ヒ ドロキシフェニ^") メタン、 1,1一ビス (4-ヒ ドロキシフエ二ノレ) —1一フエニノレエタン、 ト リス (4ーヒ ドロキシフエ二ノレ) ェタン、 1,3—ビス [1 一 (4ーヒ ドロキシフエ-ル) 一1—メチノレエチル] ベンゼン、 1,4一ビス [1一 (4-ヒ ドロキシフエニル) 一 1ーメチルェチル] ベンゼン、 4,6_ビス [1— (4 ーヒ ドロキシフエ二ノレ) ー1—メチノレエチノレ] ー1,3—ジヒ ドロキシベンゼン、 1,1一ビス (4ーヒ ドロキシフエニル) -1- [4一 {1一 (4—ヒ ドロキシフエ二 ノレ) 一 1ーメチノレエチル } フエ二ノレ] ェタン、 1,1,2,2—テトラ (4ーヒ ドロキシ フエニル) ェタンなどが挙げられる。 これらのフエノール化合物 (bl) は、 フ ェノール樹脂 (B1) とフエノール化合物 (bl) との合計量に対して、 好ましく は 0〜40質量%、 より好ましくは 0〜30質量%、特に好ましくは 1〜20質量% の範囲で含有することができる。
フヱノール樹脂 (B1) は、 得られる絶縁膜の解像性、 熱衝撃性、 耐熱性など の観点から、質量平均分子量が 2,000以上であることが必要であり、特に 2,000 —20,000程度の範囲が好ましい。
第一の感光性誘電体形成用組成物において、 フエノール樹脂 (B1) の含有量 (フエノール化合物 (bl) を併用する場合はそれらの合計量) は、 組成物全体 ( (A) + (Bl) + (bl) + (C1) + (C2) + (C3) + (C4) ) の 10〜50質 量0 /0、 好ましくは 13〜45質量%である。 フエノール樹脂 (B1) の割合がこの 範囲であると、 得られる感光性絶縁樹脂組成物を用いて形成された膜がアル力 リ水溶液による十分な現像性を有している。
(C1) キノンジアジド基を有する化合物:
第一の感光性誘電体形成用組成物において用いられるキノンジアジド基を有 する化合物 (以下、 「キノンジアジド化合物 (Cl)」 ともいう。) は、 フエノー ル性水酸基を 1つ以上有する化合物と 1,2—ナフトキノンジアジドー 4一スルホ ン酸または 1,2—ナフトキノンジアジド一 5—スルホン酸とのエステル化合物 である。 前記フエノール性水酸基を 1つ以上有する化合物としては特に、 限定 されないが具体的には下記に示す構造の化合物が好ましい。
Figure imgf000014_0001
(式 (1) において、 Χ Χκ)は、 それぞれ独立に、 水素原子、 炭素数 1〜4の アルキル基、 炭素数 1〜4のアルコキシ基または水酸基である。 ただし、 Xr~
X5の少なくとも 1つは水酸基である。また、 Aは単結合、 0、 S、 CH2、 C(CH3)2
C(CF3)2、 C二 O、 または S02である。)
Figure imgf000014_0002
(式(2) において、 Xii〜: X24は、 それぞれ相互に同一または異なってもよく、 前記 Χι〜Χιοの場合と同様である。 ただし、 Χιι〜Χ15の少なくとも 1つは水酸 基である。また、 〜R4は、水素原子または炭素数 1〜4のアルキル基である。)
Figure imgf000015_0001
(式(3) において、 X25〜X39は、 それぞれ相互に同一または異なってもよく、 前記 Χι〜Χιοの場合と同様である。 ただし、 Χ25〜Χ29において少なくとも 1つ は水酸基であり、 Χ30〜Χ34において少なくとも 1つは水酸基である。 また、 R5 は、 水素原子または炭素数 1〜4のアルキル基である。)
Figure imgf000015_0002
(式(4) において、 X40〜X58は、 それぞれ相互に同一または異なってもよく、 前記 Χι〜Χιοの場合と同様である。 但し、 X40〜X44において少なくとも 1つは 水酸基であり、 X45〜X49において少なくとも 1つは水酸基であり、 Χ50〜Χ54に おいて少なくとも 1つは水酸基である。 また、 RG〜! ¾は、水素原子または炭素 数 1〜4のアルキル基である。)
Figure imgf000016_0001
(式(5) において、 X59〜X72は、それぞれ相互に同一または異なってもよく、 前記 X]L〜Xl0と同様である。 ただし、 X59〜X62において少なくとも 1つは水酸 基であり、 X63〜X67において少なくとも 1つは水酸基である。)
このようなキノンジアジド化合物 (C1) の具体例としては、 以下のものが挙 げられる。 4,4'ージヒ ドロキシジフエニルメタン、 4,4'—ジヒ ドロキシジフエ二 ルエーテル、 2,3,4-トリヒ ドロキシベンゾフエノン、 2,3,4,4'—テトラヒ ドロキ シベンゾフエノン、 2,3,4,2',4'_ペンタヒ ドロキシベンゾフエノン、 トリス (4 ーヒ ドロキシフエ二ノレ) メタン、 トリス (4—ヒ ドロキシフエニル) ェタン、 1,1一ビス (4ーヒ ドロキシフエ-ノレ) 一 1一フエニノレエタン、 1,3—ビス [1一 (4 ーヒ ドロキシフエ二ノレ) 一 1ーメチノレエチノレ] ベンゼン、 1,4一ビス [1一 (4— ヒ ドロキシフエニル) 一1—メチルェチル] ベンゼン、 4,6—ビス [1— (4ーヒ ドロキシフエ二ノレ) 一 1—メチノレエチノレ] — 1,3—ジヒ ドロキシベンゼン、 1,1 —ビス (4ーヒ ドロキシフエ二ノレ) 一 1— [4一 {1一 (4ーヒ ドロキシフヱ二ノレ) 一 1一メチルェチル } フエニル] ェタンなどと 1,2—ナフトキノンジアジドー 4 —スルホン酸または 1,2—ナフトキノンジアジドー 5—スルホン酸とのエステ ル化合物。
第一の感光性誘電体形成用組成物においては、 キノンジアジド化合物 (C1) は、 フニノール樹脂 (B1) (フユノール化合物 (bl) を併用する場合はそれら の合計量) 100質量部に対して 10〜50質量部、好ましくは 15〜30質量部であ ることが望ましい。 キノンジアジド化合物 (C1) の配合量が上記範囲の下限未 満では未露光部の残膜率が低下したり、 マスクパターンに忠実な像が得られな いことがある。 また、 キノンジアジド化合物 (C1) の配合量が上記範囲の上限 を超えるとパターン形状が劣化したり、 硬化時に発泡することがある。
(C2)分子中に少なくとも 2つ以上のアルキルエーテル化されたアミノ基を有 する化合物 (硬化剤) :
第一の感光性誘電体形成用組成物に用いられる分子中に少なくとも 2つ以上 のアルキルエーテル化されたアミノ基を有する化合物 (C2) (以下、 「硬化剤 (C2)」 ともいう。) は、 前記フエノール樹脂 (B1) と反応する架橋剤 (硬化 剤) として作用するものである。 硬化剤 (C2) としては (ポリ) メチロール化 メラミン、 (ポリ) メチロ一ル化グリコールゥリル、 (ポリ) メチロール化ベン ゾグアナミン、 (ポリ) メチロール化ゥレアなどの活性メチロール基の全部また は一部をアルキルエーテル化した含窒素化合物を挙げることができる。ここで、 アルキル基としてはメチル基、 ェチル基、 プチル基、 またはこれらを混合した ものを挙げることができ、 一部自己縮合してなるオリゴマー成分を含有してい てもよい。 具体的にはへキサメ トキシメチル化メラミン、 へキサブトキシメチ ル化メラミン、 テトラメ トキシメチルイ匕グリコールゥリル、 テトラブトキシメ チル化グリコールゥリルなどを用いることができ、 これらの硬化剤 (C2) は 1 種単独または 2種以上を併用しても構わない。
第一の感光性誘電体形成用組成物における硬化剤 (C2) の配合量は前記フユ ノール樹脂 (B1) (フ ノール化合物 (bl) を併用する場合はそれらの合計量) 100重量部に対して、 1〜100重量部、 好ましくは 5〜50重量部であることが 望ましい。 硬化剤 (C2) の配合量が上記範囲の下限未満では硬化が不十分にな り、 得られる硬化物の電気絶縁性が低下したりすることがあり、 上記範囲の上 限を越えるとパターニング特性が低下したり、 耐熱性が低下することがある。
(C3) 熱感応性酸発生剤:
第一の感光性誘電体形成用組成物に用いられる熱感応性酸発生剤 (C3) (以 下、 「酸発生剤 (C3)」 という。) は、 適当な熱を加える、 たとえば 50〜250°C に加熱することによって酸を発生する化合物ならば特に制限されないが、 たと えばスルホ二ゥム塩やジァゾユウム塩、 ハロゲン含有化合物、 スルホン酸エス テル化合物などが挙げられる。 この発生した酸の触媒作用により硬化剤 (C2) 中のアルキルエーテル基とフヱノール樹脂 (B1) との反応が促進される。 酸発生剤 (C3) の例としては、 たとえばベンジルメチルフヱニルスルホニゥ ムへキサフルォロアンチモネ一ト、 ベンジノレメチルフエニノレスノレホニゥムへキ サフノレオ口ホスフエ一ト、 ベンジ/レメチノレフエニノレスノレホニゥムテトラフノレオ ロボレ一ト、 ベンジルメチノレフェニルスルホニゥムトリフルォロメタンスノレホ ネート、 ベンジノレ (4ーヒ ドロキシフエ二ノレ) メチノレスノレホニゥムへキサフノレ ォロアンチモネート、 ベンジノレ (4ーヒ ドロキシフエ-ノレ) メチノレスノレホニゥ ムへキサフルォロホスフェート、 ベンジル (4—ヒ ドロキシフエ二ノレ) メチル スルホ二ゥムテトラフルォロボレート、 ベンジル (4ーヒ ドロキシフエニル) メチルスノレホニゥムトリフノレオロメタンスルホネート、 ベンゼンジァゾ -ゥム へキサフノレオ口アンチモネ一ト、 ベンゼンジァゾニゥムへキサフルォロホスフ エート、 ベンゼンジァゾ二ゥムテトラフノレオロボレート、 ベンゼンジァゾニゥ ムトリフルォロメタンスルホネート、 ナフタレンジァゾニゥムへキサフ /レオ口 アンチモネ一ト、 ナフタレンジァゾニゥムトリフルォロメタンスルホネ一トな どが挙げられる。
第一の感光性誘電体形成用組成物における酸発生剤 (C3) の配合量は前記フ ェノール樹脂 (B1) (フエノール化合物 (bl) を併用する場合はそれらの合計 量) 100重量部に対して、 0.1〜10重量部、 好ましくは 0.5〜5重量部であるこ とが望ましい。 酸発生剤 (C3) の配合量が上記範囲の下限未満では得られる硬 化物の耐溶剤性が低下したりすることがあり、 上記範囲の上限を越えると電気 絶縁性が低下することがある。
(C4) 架橋微粒子:
第一の感光性誘電体形成用組成物に用いられる架橋微粒子 (C4) は、 該粒子 を構成する重合体の Tgが 0°C以下であれば特に限定されるものではないが、 不飽和重合性基を 2個以上有する架橋性モノマー (以下、 「架橋性モノマー」 ともいう。) と、 架橋微粒子 (C4) を構成する共重合体の Tgが 0°C以下となる ように選択される 1種以上のその他のモノマー (以下、 「その他のモノマー」 ともいう。) とを共重合したものが好ましく、 さらに、 その他のモノマーとして 架橋微粒子 (C4) を構成する共重合体の Tgが 0°C以下となるようなものであ つて、 重合性基以外の官能基、 たとえば、 カルボキシル基、 エポキシ基、 アミ ノ基、 イソシァネート基、 水酸基等の官能基を有するモノマーを共重合したも のが好ましく用いられる。
架橋性モノマーの例としては、 ジビュルベンゼン、 ジァリルフタレート、 ェ チレングリコールジ (メタ) アタリレート、 プロピレングリコールジ (メタ) アタリレート、 トリメチロールプロパントリ (メタ) アタリレート、 ペンタエ リスリ トールトリ (メタ) アタリレート、 ポリエチレングリコールジ (メタ) アタリレート、 ポリプロピレングリコールジ (メタ) アタリレートなどの重合 性不飽和基を複数有する化合物を挙げることができる。 なかでも、 ジビニルべ ンゼンが好ましい。
第一の感光性誘電体形成用組成物に用いられる架橋微粒子 (C4) を製造する 際に用いられる架橋性モノマーは、 共重合に用いられる全モノマーに対して好 ましくは 1〜20重量%の範囲、より好ましくは 2〜10重量%の範囲で用いられ る。
その他のモノマーの例としては、 ブタジエン、 イソプレン、 ジメチノレブタジ ェン、 クロ口プレン、 1,3—ペンタジェンなどのジェンィ匕合物;
(メタ) アタリロニ ト リノレ、 ひ一クロロアクリロニ ト リノレ、 α—クロロメチ ルアクリロニトリル、 α—メ トキシアクリロニトリル、 α—エトキシアタリ口 二トリル、 クロトン酸-トリル、 ケィ皮酸二トリル、 イタコン酸ジ二トリル、 マレイン酸ジ二トリル、 フマル酸ジニトリルなどの不飽和二トリル化合物類; (メタ) ァクリルアミ ド、 Ν,Ν'—メチレンビス (メタ) ァクリルアミ ド、 Ν,Ν' 一エチレンビス (メタ) アクリルアミ ド、 Ν,Ν'—へキサメチレンビス (メタ) アクリルアミ ド、 Ν—ヒドロキシメチル (メタ) アクリルアミ ド、 Ν— (2—ヒ ドロキシエチ^^ (メタ) アクリルアミ ド、 Ν,Ν—ビス (2—ヒ ドロキシェチル)
(メタ) アクリルアミ ド、 クロトン酸アミ ド、 ケィ皮酸アミ ド等の不飽和アミ ド類;
(メタ) アクリル酸メチル、 (メタ) アクリル酸ェチル、 (メタ) アクリル酸 プロピル、 (メタ) アクリル酸プチル、 (メタ) アクリル酸へキシル、 (メタ) ァ クリル酸ラウリル、 ポリエチレングリコール (メタ) アタリレート、 ポリプロ ピレンダリコール(メタ) ァクリレートなどの (メタ) ァクリル酸エステル類; スチレン、 α—メチノレスチレン、 ο—メ トキシスチレン、 ρ—ヒ ドロキシスチ レン、 ρ—イソプロぺユルフェノールなどの芳香族ビュル化合物;
ビスフエノール Αのジグリシジルエーテル、 グリコールのジグリシジルエー テルなどと (メタ) アクリル酸、 ヒドロキシアルキル (メタ) アタリレートな どとの反応によって得られるエポキシ (メタ) アタリレートおよびヒ ドロキシ アルキル (メタ) アタリレートと、 ポリイソシアナートとの反応によって得ら れるウレタン (メタ) アタリレート類;
グリシジル (メタ) アタリレート、 (メタ) ァリルグリシジルエーテルなどの エポキシ基含有不飽和化合物;
(メタ) アクリル酸、 ィタコン酸、 コハク酸ー 3 _ (メタ) アタリ口キシェ チル、 マレイン酸一 j8— (メタ) ァクリロキシェチル、 フタル酸ー j3 _ (メタ) アタリ口キシェチル、 へキサヒ ドロフタル酸ー jS— (メタ) アタリロキシェチ ルなどの不飽和酸化合物;
ジメチルァミノ (メタ) アタリレート、 ジェチルァミノ (メタ) ァクリレー ト等のアミノ基含有不飽和化合物;
(メタ) アクリルアミ ド、 ジメチル (メタ) アクリルアミ ド等のアミ ド基含 有不飽和化合物;
ヒドロキシェチル (メタ) アタリレート、 ヒ ドロキシプロピル (メタ) ァク リレート、 ヒ ドロキシブチル (メタ) アタリレート等の水酸基含有不飽和化合 物などを例示することができる。
これらのその他のモノマーとしては、 ブタジエン、 イソプレン、 (メタ) ァク リロ二トリル、 (メタ) アクリル酸アルキルエステル類、 スチレン、 p—ヒドロ キシスチレン、 p—イソプロぺニルフエノール、 グリシジル (メタ) アタリ レ ート、 (メタ) アクリル酸、 ヒ ドロキシアルキル (メタ) ァクリレート類などが 好ましく用いられる。
このようなその他のモノマーとしては、 少なくとも 1種のジェン化合物、 具 体的にはブタジエンを用いることが好ましい。 このようなジェン化合物は、 共 重合に用いる全モノマーに対して 20〜80重量%、好ましくは 30〜70重量%の 量で用いられることが望ましい。
第一の感光性誘電体形成用組成物に用いられる架橋微粒子 (C4) は、 その他 のモノマーとしてブタジエンなどのジェン化合物が全モノマーに対して上記の ような量で共重合されていると、 ゴム状の軟らかい微粒子となり、 特に得られ る硬化膜にクラック (割れ) が生ずるのを防止でき、 耐久性に優れた硬化膜を 得ることができる。
第一の感光性誘電体形成用組成物における架橋微粒子 (C4)の平均粒子径は、 通常 30〜500mn、 好ましくは 40〜200mn、 さらに好ましくは 50〜120nmで あることが好ましい。 架橋微粒子 (C4) の粒径コントロール方法は、 特に限定 されるものではないが、 乳化重合により架橋微粒子 (C4) を合成する場合、 使 用する乳化剤の量により、 乳化重合中のミセルの数を制御し、 粒径をコント口 ールする方法が例示できる。
また、 架橋微粒子 (C4) の配合量は前記フエノール樹脂 (B1) (フエノール 化合物 (bl) を併用する場合はそれらの合計量) 100重量部に対して、 0〜50 重量部、好ましくは 1〜50重量部、 さらに好ましくは 5〜30重量部であること が望ましい。 架橋微粒子 (C4) の配合量が上記範囲の下限未満では、 得られる 硬化膜の熱衝撃性が低下し、 上記範囲の上限を越えると解像性や得られる硬化 膜の耐熱性が低下したり、 あるいは他成分との相溶性、 分散性が低下すること がある。 感光性誘導体形成用組成物が架橋微粒子を含有すると、 得られる硬化 膜の熱衝撃性が向上する。 (D) 溶剤:
第一の感光性誘電体形成用組成物に用いられる溶剤 (D) は、 感光性絶縁樹 脂組成物の取り扱い性を向上させたり、 粘度や保存安定性を調節するために添 加される。 このような溶剤 (D) の種類は、 特に制限されるものではないが、 たとえば、 エチレングリコールモノメチルエーテルアセテート、 エチレングリ コーノレモノェチノレエーテルァセテ一ト等のエチレングリコーノレモノアノレキノレエ ーテ /レアセテート類;
プロピレンダリコールモノメチノレエーテノレ、 プロピレンダリコーノレモノェチ ノレエーテル、 プロピレングリコーノレモノプロピルエーテル、 プロピレングリコ 一ノレモノブチノレエーテル等のプロピレンダリコーノレモノアルキノレエーテノレ'類; プロピレンダリコールジメチノレエーテノレ、 プロピレンダリコールジェチノレエ 一テル、 プロピレンダリコーノレジプロピノレエーテノレ、 プロピレンダリコールジ ブチルエーテル等のプロピレングリコールジアルキルエーテル類;
プロピレンダリコーノレモノメチ /レエーテノレアセテート、 プロピレンダリコー ルモノェチルエーテルァセテ一ト プロピレンダリコールモノプロピルエーテ ルアセテート、 プロピレングリコールモノブチルエーテノレアセテート等のプロ ピレンダリコールモノアルキルエーテルァセテ一ト類;
ェチルセ口ソルブ、 プチルセ口ソノレブ等のセ口ソノレブ類、
プチルカルビトール等のカルビトール類;
乳酸メチル、 乳酸ェチル、 乳酸 n—プロピル、 乳酸イソプロピル等の乳酸ェ ステル類;
酢酸ェチル、 酢酸 n—プロピル、 酢酸ィソプロピル、 酢酸 n—プチル、 酢酸 ィソブチル、 酢酸 n—ァミル、 酢酸ィソァミル、 プロピオン酸ィソプロピル、 プロピオン酸 n—プチル、 プロピオン酸ィソブチル等の脂肪族カルボン酸エス テル類;
3—メ トキシプロピオン酸メチル、 3—メ トキシプロピオン酸ェチル、 3—ェ トキシプロピオン酸メチル、 3—エトキシプロピオン酸ェチル、 ピルビン酸メ チル、 ピルビン酸ェチル等の他のエステル類;
トルエン、 キシレン等の芳香族炭化水素類;
2一へプタノン、 3一へプタノン、 4一へプタノン、 シクロへキサノン等のケ トン類;
N—ジメチルホルムアミ ド、 N—メチルァセトアミ ド、 Ν,Ν—ジメチルァセ トアミ ド、 Ν—メチルピロリ ドン等のアミド類;
γ—ブチロラクン等のラタ トン類などを挙げることができる。
これらの溶剤 (D) は、 1種単独あるいは 2種以上を混合して使用すること もできる。
(Ε) その他の添加剤:
第一の感光性誘電体形成用組成物には、 その他の添加剤 (Ε) としてェポキ シ化合物、 密着助剤およびレべリング剤などを含有することができる。 また、 エポキシ化合物としてはたとえば、 ノボラック型エポキシ樹脂、 ビスフエノー ル型エポキシ樹脂、 脂環式エポキシ樹脂、 脂肪族エポキシ樹脂などが挙げられ る。 これらのその他の添加剤 (Ε) は得られる感光性絶縁樹脂組成物の特性を 損なわない程度に含有することができる。
<第二の感光性誘電体形成用組成物 > 本発明に係る第二の感光性誘電体形成用組成物は、平均粒子径が 0.05 m未 満の無機超微粒子 (A— I) および平均粒子径が 0.05 ;u m以上の無機微粒子 (A -II) からなる無機粒子 (A) と、 アルカリ現像可能な樹脂 (B) と、添加剤 (C) として感光性酸生成化合物 (C5) と、 必要に応じて溶剤 (D) およびその他の 2
23 添加剤 (E) を、 ロール混練機、 ミキサー、 ホモミキサー、 ボールミル、 ビー ズミルなどの混練機を用いて混練することにより調製することができる。
上記のようにして調製される第二の感光性誘電体形成用組成物は、 塗布に適 した流動性を有するペースト状の組成物であり、その粘度は、通常 10〜100,000 mPa' s、 好ましくは 50〜10,000 mPa' sであることが望ましい。 また、 第二の 感光性誘電体形成用組成物は、 500°C以下の加熱で、誘電率が 20以上、 誘電正 接が 0.1以下の誘電体を形成することができる感光性誘電体形成用組成物であ ることが好ましい。
以下、第二の感光性誘電体形成用組成物を構成する各成分について説明する。 (A) 無機粒子:
第二の感光性誘電体形成用組成物において使用する無機粒子 (A) は、 平均 粒子径が 0.05 m未満の無機超微粒子 (A— I) および平均粒子径が 0.05〃 m 以上の無機微粒子 (A— II) とからなるものであれば、 第一の感光性誘電体形 成用組成物において用いられる無機粒子を使用することができる。
また、 水性媒体への分散性を向上させるため、 前記無機粒子 (A) の表面を シリカ、 アルミナ等で変性した粒子も好適に用いることができる。
第二の感光性誘電体形成用組成物において、 無機粒子 (A) の量を 100質量 部とした場合に、 無機超微粒子 (A— I) の量は 1〜30質量部、 好ましくは 5〜 20質量部が望ましく、 無機微粒子 (A-II) の量は 99〜70質量部、 好ましく は 95〜80質量部が望ましい。 このような無機粒子を用いると、 無機粒子のパ ッキングが良くなり高い誘電率を有する誘電体を得ることができる。
このような無機超微粒子 (A— I) と無機微粒子 (A— II) を合わせた無機粒 子全体の平均粒子径は、好ましくは 0.005〜2.0 m、 さらに好ましくは 0.02〜 1.0 μ in より好ましくは 0.02〜0.8 ^ m、特に好ましくは 0.02〜0.3 mである ことが望ましい。 また、 このとき重量平均粒子径 (Dw) と数平均粒子径 (Dn) の比からなる DwZDnは、好ましくは 1.05以上、さらに好ましくは 1.1以上、 より好ましくは 1.2以上、 特に好ましくは 1.25以上であることが望ましい。 Dw/Dnが 1.05以下では、 膜厚を薄くした場合に誘電体粒子のパッキングが 悪くリーク電流が大きくなり好ましくない。
第二の感光性誘電体形成用組成物における無機粒子 (A) の量 (無機超微粒 子 (A— I) と無機微粒子 (Α—Π) との合計量) は、 (A) 無機粒子 + (B) ァ ルカリ現像可能な樹脂 + (C5) 感光性酸生成化合物を 100質量%としたとき、 20-95質量%、 好ましくは 40〜90質量。 /0、 さらに好ましくは 60〜85質量% であることが望ましい。
(B) アル力リ現像可能な樹脂:
第二の感光性誘電体形成用組成物に使用される (B) アルカリ現像可能な樹 脂としては、 種々の樹脂を用いることができる。 ここで、 「アルカリ現像可能」 とは、 アルカリ性の現像液によって溶解する性質をいい、 具体的には、 目的と する現像処理が遂行される程度に溶解性を有していればよい。
アルカリ現像可能な樹脂 (B) の具体例としては、 たとえば、 (メタ) アタリ ル系樹脂、 ヒ ドロキシスチレン樹脂、 ノポラック樹脂、 ポリエステル樹脂、 ポ リイミド樹脂、 ナイロン樹脂、 ポリエーテルイミド樹脂などを挙げることがで さる。
このようなアルカリ現像可能な樹脂 (B) のうち、 (メタ) アクリル系樹脂が 好ましく、 特に好ましいものとしては、 たとえば、
カルボキシル基含有モノマー類 (b2) (以下 「モノマー (b2)」 ともいう) と その他の共重合可能なモノマー類 (b4) (以下 「モノマー (b4)」 ともいう) と の共重合体、 または モノマー (b2) とエポキシ基含有モノマー類 (b3) (以下 「モノマー (b3)」 ともいう) とモノマー (b4) との共重合体などを拳げることができる。
上記モノマー 0>2) (カルボキシル基含有モノマー類) としては、 たとえば、 アタリル酸、 メタタリル酸、マレイン酸、 フマル酸、 クロ トン酸、イタコン酸、 シトラコン酸、 メサコン酸、 ケィ皮酸、 コハク酸モノ (2— (メタ) ァクリロ イロキシェチル)、 ω—力ルポキシーポリ力プロラタトンモノ (メタ) アタリレ ートなどが挙げられる。
上記モノマー (b3) (エポキシ基含有モノマー類) としては、 たとえば、 アタリル酸グリシジル、 メタクリル酸グリシジル、 α—ェチルァクリル酸グリ シジル、 α— η—プロピルァクリル酸グリシジル、 a— n—プチルァクリル酸 グリシジル、 アクリル酸一 3,4—エポキシプチル、 メタクリル酸一 3,4—ェポキ シブチル、 アタリル酸ー 6,7—エポキシへプチル、 メタタリル酸ー 6,7—ェポキ シヘプチル、 ひ一ェチルアクリル酸一 6,7—エポキシへプチル、 N— [4- (2,3 一エポキシプロポキシ) 一3,5—ジメチルベンジル] アクリルアミ ド、 N— [4 一 (2,3_エポキシプロポキシ) 一 3,5—ジメチルフエニルプロピル] アクリル アミ ドなどが挙げられる。
その他の共重合可能なモノマー類である上記モノマー (b4) としては、 たと えば、 (メタ) アクリル酸メチル、 (メタ) アクリル酸ェチル、 (メタ) アタリノレ 酸 n—プチル、 (メタ) アクリル酸 n—ラウリル、 (メタ) アクリル酸ベンジル、 ジシクロペンタニノレ (メタ) アタリレートなどのモノマー;
モノマー (b3) を含む場合は、 モノマー (b2) および 0»3) 以外の (メタ) ァクリル酸エステル類;
スチレン、 α—メチルスチレンなどの芳香族ビニル系モノマー類; ブタジエン、 イソプレンなどの共役ジェン類; ポリスチレン、 ポリ (メタ) アクリル酸メチル、 ポリ (メタ) アクリル酸ェ チル、 ポリ (メタ) アクリル酸ベンジル等のポリマー鎖の一方の末端に (メタ) アタリロイル基などの重合性不飽和基を有するマクロモノマー類などが挙げら れる。
上記モノマー (b2) とモノマー (b4) との共重合体や、 モノマー (b2) とモ ノマー (b3) とモノマー (b4) との共重合体は、 モノマー (b2) および Zまた はモノマー (b3) のカルボキシル基またはフエノール性水酸基含有モノマーに 由来する共重合成分の存在により、 アルカリ可溶性を有するものとなる。 なか でもモノマー (b2) とモノマー (b3) とモノマー (b4) との共重合体は、 無機 粒子 (A) の分散安定性や後述するアルカリ現像液への溶解性の観点から特に 好ましい。 この共重合体におけるモノマー (b2) に由来する共重合成分単位の 含有率は、 好ましくは 1 50質量%、 特に好ましくは 5 30質量%であり モ ノマー(b3)に由来する共重合成分単位の含有率は、好ましくは 1 50質量。 /0、 特に好ましくは 5 30質量%であり、 モノマー (b4) に由来する共重合成分単 位の含有率は、 好ましくは 1 98質量%、 特に好ましくは 40 90質量%であ る。
第二の感光性誘電体形成用組成物を構成するアルカリ可溶性樹脂 (B) の分 子量は、 GPCによるポリスチレン換算の質量平均分子量 (以下、 単に 「質量平 均分子量 (Mw)」 ともいう) で、 好ましくは 5,000 5,000,000、 さらに好まし くは 10,000 300,000であることが望ましい。
第二の感光性誘電体形成用組成物におけるアルカリ現像可能な樹脂 (B) の 含有量は、 無機粒子 (A) 100質量部に対して、 通常 1 500質量部、 好ましく は 10 500質量部、 好ましくは 10 200質量部であることが望ましい。
また、 第二の感光性誘電体形成用組成物におけるアルカリ現像可能な樹脂 (B) の量は、 (A) 無機粒子 + (B) アルカリ現像可能な樹脂 + (C5) 感光性 酸生成化合物を 100質量%としたとき、 1〜60質量%、好ましくは 2〜40質量%、 さらに好ましくは 5〜30質量%であることが望ましい。
なお、 第二の感光性誘電体形成用組成物中に、 たとえば、 ビスマレイミ ド樹 脂、エポキシ樹脂などのアルカリ現像可能な樹脂以外の樹脂を含有してもよレ、。
(C5) 感光性酸生成化合物:
感光性酸生成化合物 (C5) は放射線光の照射によって酸を生成する化合物で ある。 たとえば、 1,2—べンゾキノンジアジドスルホン酸エステル、 1,2—ナフ トキノンジアジドスノレホン酸エステ/レ、 1,2—べンゾキノンジアジドスノレホン酸 アミド、 1,2—ナフトキノンジアジドスルホン酸アミド等を挙げることができる。 具体的には J.Kosar著 "Light-Sensitive Systems" , 339〜352 (1965)、 John Wiley & Sons社(New York)や W.S.De Forest著 "Photoresist", 50 (1975)、 McGrawHillJnc. (New York) に記載されている 1,2—キノンジアジド化合物 を挙げることができる。
これらの中で、放射線光を照射した後の 400〜800nmの可視光線領域におけ る透明性が良好な化合物、 たとえば 2,3,4—トリヒドロキシベンゾフヱノン、 2,3,4,4'ーテトラヒ ドロキシベンゾフエノン、 3'—メ トキシ一 2,3,4,4'—テトラヒ ドロキシベンゾフエノン、 2,2',5,5'—テトラメチノレー 2',4,4'一トリヒ ドロキシト リフエニルメタン、 4,4'一 [1- [4- (1一 (4ーヒ ドロキシフエニル) 一 1ーメ チルェチル) フヱニル] ェチリデン] ジフヱノールおよび 2,4,4—トリメチルー 2',4',7—トリ ヒ ドロキシ一 2—フエニルフラバン等と、 1,2—ベンゾキノンジァ ジド一 4ースルホン酸、 1,2—ナフトキノンジアジドー 4ースルホン酸または 1,2 一ナフトキノンジアジドー 5—スルホン酸とのエステル化合物を好ましいもの として挙げることができる。 感光性酸生成化合物 (C5) の含有量は、 アルカリ現像可能な樹脂 (B) 100 質量部に対して、 好ましくは 5〜100質量部であり、 特に好ましくは 10〜50 質量部である。 上記範囲の下限未満であると、 放射線光を吸収して生成する酸 の量が少なくなるので、 放射線照射前後のアルカリ水溶液に対する溶解度に差 をつけることができず、 パターエングが困難となり、 組成物から得られるパタ ーンの耐熱性に不具合が生じる恐れがある。また、上記範囲の上限を超えると、 短時間の放射線光の照射では添加した感光性酸生成化合物の大半が未だそのま まの形で残存するため、 アル力リ水溶液への不溶化効果が高過ぎて現像するこ とが困難となる場合がある。
また、 第二の感光性誘電体形成用組成物における感光性酸生成化合物 (C5) の量は、 A) 無機粒子 + (B) アルカリ現像可能な樹脂 + (C5) 感光性酸生成 化合物を 100質量%としたとき、 0.1〜30質量%、好ましくは 0.5〜20質量%、 さらに好ましくは 1〜10質量%であることが望ましい。
(D) 溶剤:
第二の感光性誘電体形成用組成物には、 必要に応じて溶剤 (D) を含有させ ることができる。 溶剤 (D) としては、無機超微粒子 (A-I) や無機微粒子 (A 一 II) との親和性、 ならびにアルカリ現像可能な樹脂 (B)、 感光性酸生成化合 物 (C5)、 および必要に応じて含有される後述のその他の添加剤 (E) との溶解 性が良好で、該感光性誘電体形成用組成物に適度な粘性を付与することができ、 乾燥させることによって容易に蒸発除去できるものであることが好ましい。 このような溶剤 (D) の具体例としては、
ジェチルケトン、 メチルプチルケトン、 ジプロピルケトン、 シク口へキサノ ンなどのケトン類;
n—ペンタノ一ノレ、 4一メチル _2—ペンタノ一ノレ、 シクロへキサノーノレ、 ジ ァセトンアルコールなどのアルコール類;
エチレングリコーノレモノメチノレエーテノレ、 エチレングリコーノレモノエチノレエ 一テル、 エチレングリコーノレモノブチノレエーテル、 プロピレングリコーノレモノ メチノレエーテノレ、 プロピレングリコーノレモノエチノレエーテノレなどのエーテノレ系 アルコール類;
酢酸一 n—ブチル、 酢酸ァミルなどの飽和脂肪族モノカルボン酸アルキルェ ステル類;
乳酸ェチル、 乳酸一 n—プチルなどの乳酸エステル類;
メチノレセロソノレブアセテート、 ェチノレセロソ /レブアセテート、 プロピレング リコーノレモノメチルエーテノレアセテート、 ェチルー 3—エトキシプロピオネー トなどのエーテル系エステル類などを例示することができる。
これらは、 単独で、 または 2種以上を組み合わせて使用することができる。 第二の感光性誘電体形成用組成物における溶剤 (D) の含有量は、 良好な流 動性が得られる範囲内において適宜選択することができるが、 通常、 無機粒子 (A) 100質量部に対して、 1〜10,000質量部であり、 好ましくは 10〜1,000 質量部であることが望ましい。
(E) その他の添加剤:
第二の感光性誘電体形成用組成物には、 上記成分 (A)、 (B) および (C5) のほかに、 必要に応じて、 可塑剤、 接着助剤、 分散剤、 充填剤、 保存安定剤、 消泡剤、 酸化防止剤、 紫外線吸収剤、 レべリング剤、 現像促進剤などのその他 の添加剤 (E) を含有していてもよい。
(i) 接着助剤:
接着助剤としては、 シラン系カップリング剤、 アルミニウム系カップリング 剤、 チタネート系カツプリング剤、 およびジルコネ一ト系カップリング剤から 選択された少なくとも 1つのカップリング剤を使用することができる。 これら の力ップリング剤のうち、 比較的少量で優れた密着性が得られる下記式 (6) で表される化合物などのシランカップリング剤 [飽和アルキル基含有 (アルキ ノレ) アルコキシシラン] が好適に用いられる。
Figure imgf000032_0001
(式 (6) において、 pは 3〜20の整数、 mは 1〜3の整数、 nは 1〜3の整数、 aは 1〜3の整数である。)
上記式 (6) において、 飽和アルキル基の炭素数を示す pは 3〜20の整数と され、 好ましくは 4〜16の整数とされる。
上記式 (6) で表されるシランカップリング剤の具体例としては、 n—プロピ ルジメチルメ トキシシラン、 n—プチルジメチルメ トキシシラン、 n—デシルジ メチルメ トキシシラン、 n—へキサデシルジメチ^^メ トキシシラン、 N—^ コサ ンジメチルメ トキシシランなどの飽和アルキルジメチルメ トキシシラン類 (a =1, m= l, n=l) ;
n—プロピルジェチルメ トキシシラン、 n—プチルジェチルメ トキシシラン、 n—デシルジェチルメ トキシシラン、 n—へキサデシルジェチルメ トキシシラン、 n—ィコサンジェチルメ トキシシランなどの飽和アルキルジェチルメ トキシシ ラン類 (a= l, m=l, n=2) ;
n—プチルジプロピルメ トキシシラン、 n—デシルジプロピルメ トキシシラン、 n—へキサデシルジプロピルメ トキシシラン、 n—ィコサンジプロピルメ トキシ シランなどの飽和アルキルジプロピルメ トキシシラン類(a=l, m= l, n=3) ; n—プロピルジメチルェトキシシラン、 n—プチ/レジメチルェトキシシラン、 n—デシルジメチルェトキシシラン、 n—へキサデシルジメチルェトキシシラン、 n_ィコサンジメチルェトキシシランなどの飽和アルキルジメチルェトキシシ ラン類 (a=l, m=2, n= l) ;
n—プロピルジェチノレエトキシシラン、 n—ブチルジェチルェトキシシラン、 n—デシルジェチルェトキシシラン、 n—へキサデシルジェチルェトキシシラン、 n—ィコサンジェチルェトキシシランなどの飽和アルキルジェチルェトキシシ ラン類 (a=l, m=2, n=2) ;
n—ブチルジプロピルェトキシシラン、 n—デシルジプロピルェトキシシラン、 n_へキサデシルジプロピルェトキシシラン、 n—ィコサンジプロピルェトキシ シランなどの飽和アルキルジプロピルエトキシシラン類(a= l, m=2, n=3); n—プロピルジメチルプロポキシシラン、 n—プチルジメチルプロポキシシラ ン、 n—デシルジメチルプロポキシシラン、 n_へキサデシルジメチルプロポキ シシラン、 n—ィコサンジメチルプロポキシシランなどの飽和アルキルジメチ ノレプロポキシシラン類 (a= l, m=3, n=l) ;
n—プロピルジェチルプロポキシシラン、 n—プチルジェチルプロポキシシラ ン、 n—デシルジェチルプロポキシシラン、 n—へキサデシルジェチルプロポキ シシラン、 n—ィコサンジェチルプロポキシシランなどの飽和アルキルジェチ ノレプロポキシシラン類 (a= l, m=3, n=2) ;
n—プチルジプロピルプロポキシシラン、 n—デシルジプロピルプロポキシシ ラン、 n—へキサデシルジプロピルプロポキシシラン、 n—ィコサンジプロピル プロポキシシランなどの飽和アルキルジプロピルプロポキシシラン類 (a= l, m=3, n=3) ;
n—プロピルメチルジメ トキシシラン、 n—ブチルメチルジメ トキシシラン、 n- トキシシラン、 n—へキサデシルメチルジメ トキシシラン、 n—ィコサンメチルジメ トキシシランなどの飽和アルキルメチルジメ トキシシ ラン類 (a= 2, m= l, n= l) ;
n—プロピノレエチルジメ トキシシラン、 n—プチルェチルジメ トキシシラン、 n—デシルェチルジメ トキシシラン、 n—へキサデシルェチルジメ トキシシラン、 n—ィコサンェチルジメ トキシシランなどの飽和アルキルェチルジメ トキシシ ラン類 (a= 2, m= l, n=2) ;
n—ブチルプロピルジメ トキシシラン、 n—デシルプロピルジメ トキシシラン、 n—へキサデシルプロピルジメ トキシシラン、 n—ィコサンプロピルジメ トキシ シランなどの飽和アルキルプ口ピルジメ トキシシラン類(a== 2, m= 1 , η= 3); η—プロピルメチルジェトキシシラン、 η—ブチルメチルジェトキシシラン、 η—デシルメチルジェトキシシラン、 η—へキサデシルメチルジェトキシシラン、 η—ィコサンメチルジェトキシシランなどの飽和アルキルメチルジェトキシシ ラン類 (a= 2, m=2, n= l) ;
n—プロピノレエチルジェトキシシラン、 n—プチルェチノレジェトキシシラン、 n—デシルェチルジェトキシシラン、 n—へキサデシルェチルジェトキシシラン、 n一^ コサンェチルジェトキシシランなどの飽和アルキルェチルジェトキシシ ラン類 (a=2, m= 2, n=2) ;
n—ブチルプロピルジェトキシシラン、 n—デシルプロピルジェトキシシラン、 n—へキサデシルプロピルジェトキシシラン、 n—ィコサンプロピルジェトキシ シランなどの飽和アルキルプ口ピルジェトキシシラン類(a=2, m=2, n= 3); n—プロピノレメチノレジプロポキシシラン、 n—ブチノレメチノレジプロポキシシラ ン、 n—デシルメチルジプロポキシシラン、 n—へキサデシルメチルジプロポキ シシラン、 n—ィコサンメチノレジプロポキシシランなどの飽和アルキル'メチノレ ジプロボキシシラン類 (a=2, m= 3, n= l) ; n—プロピノレエチノレジプロポキシシラン、 n—ブチルェチルジプロボキシシラ ン、 n—デシルェチルジプロポキシシラン、 n_へキサデシルェチルジプロポキ シシラン、 n—ィコサンェチルジプロポキシシランなどの飽和アルキルェチル ジプロボキシシラン類 (a=2, m=3, n=2) ;
n—プチノレプロピノレジプロポキシシラン、 n—デシノレプロピルジプロボキシシ ラン、 n_へキサデシルプロピルジプロポキシシラン、 n—ィコサンプロピルジ プロポキシシランなどの飽和アルキルプ口ピルジプロボキシシラン類 (a=2, m=3, n=3) ;
n—プロビルトリメ トキシシラン、 n—プチルトリメ トキシシラン、 n—デシ ルトリメ トキシシラン、 n—へキサデシルトリメ トキシシラン、 n—ィコサント リメ トキシシランなどの飽和アルキルトリメ トキシシラン類 (a=3, m= l) ; n—プロピルトリエトキシシラン、 n—ブチルトリエトキシシラン、 n—デシ ルトリエトキシシラン、 n—へキサデシルトリエトキシシラン、 n—ィコサント リエトキシシランなどの飽和ア^/キルトリエトキシシラン類 (a=3, m=2) ; n—プロピルトリプロポキシシラン、 n—ブチルトリプロポキシシラン、 n— デシルトリプロポキシシラン、 n—へキサデシルトリプロポキシシラン、 n—ィ コサントリプロポキシシランなどの飽和アルキルトリプロポキシシラン類 (a =3, m=3) などを挙げることができる。
これらは、 単独で、 または 2種以上を組み合わせて使用することができる。 これらのうち、 n—プチルトリメ トキシシラン、 n—デシルトリメ トキシシラ ン、 n—へキサデシルトリメ トキシシラン、 n—デシルジメチルメ トキシシラン、 n—へキサデシルジメチルメ トキシシラン、 n_ブチルトリエトキシシラン、 n 一デシルトリエトキシシラン、 n—へキサデシルトリェトキシシラン、 n—デシ ルェチルジェトキシシラン、 n—へキサデシルェチルジェトキシシラン、 n—ブ チルトリプロポキシシラン、 n—デシルトリプロポキシシラン、 n—へキサデシ ルトリプロポキシシランなどが特に好ましい。
第二の感光性誘電体形成用組成物における接着助剤の含有量は、 無機粒子 (A) 100質量部に対して、 0.001〜10質量部、 さらに好ましくは 0.001〜5質 量部であることが望ましい。
(ii) 分散剤:
無機粒子 (A) の分散剤としては、 脂肪酸が好ましく用いられ、 特に、 炭素 数 4〜30、 好ましくは 4〜20の脂肪酸が好ましい。 上記脂肪酸の好ましい具体 例としては、 フマル酸、 フタル酸、 マロン酸、 ィタコン酸、 シトラコン酸、 ォ クタン酸、 ゥンデシル酸、 ラウリン酸、 ミリスチン酸、 パルミチン酸、 ペンタ デカン酸、 ステアリン酸、 ァラキン酸等の飽和脂肪酸;エライジン酸、 ォレイ ン酸、 リノール酸、 リノレン酸、 ァラキドン酸などの不飽和脂肪酸を挙げるこ とができ、 これらは、 単独でまたは 2種以上を組み合わせて使用することがで きる。
第二の感光性誘電体形成用組成物における分散剤の含有量は、 無機粒子 (A) 100質量部に対して、 0.001〜10質量部、 好ましくは 0.01〜5質量部であるこ とが望ましい。
(iii) 充填剤:
充填剤として、 誘電率を向上させることができるものが挙げられる。 たとえ ば、 カーボン微粉 (例:アセチレンブラック、 ケツチエンプラックなど)、 黒鉛 微粉、 高次フラーレンなどの導電性微粒子、 炭化ケィ素微粉などの半導体性の 微粒子などが挙げられる。
これらの誘電率向上用の充填剤を添加する場合には、 無機粒子 (A) 100 質 量部に対して、 充填剤は 0〜10質量部、 さらに好ましくは 0.05〜3質量部、 特 に好ましくは 0.1〜1質量部の量を使用することが望ましい。
く第三の感光性誘電体形成用組成物 > 本発明に係る第三の感光性誘電体形成用組成物は、平均粒子径が 0.05 ^ m未 満の無機超微粒子 (A— I) および平均粒子径が 0.05 μ πι以上の無機微粒子 (Α -II) からなる無機粒子 (Α) と、 アルカリ現像可能な樹脂 (Β) としてアル力 リ可溶性樹脂(Β2) と、添加剤 (C)としてエチレン性不飽和基含有ィ匕合物(C6) と光重合開始剤 (C7) と、必要に応じて溶剤 (D)、 およびその他の添加剤 (E) を、 ロール混練機、 ミキサー、 ホモミキサー、 ポールミル、 ビーズミノレなどの 混練機を用いて混練することにより調製することができる。
上記のようにして調製される感光性誘電体形成用組成物は、 塗布に適した流 動性を有するペースト状の組成物であり、その粘度は、通常 10〜100,000 mPa' s、好ましくは 50〜10,000 mPa'sであることが望ましレ、。 また、第三の感光性 誘電体形成用組成物は、 500°C以下の加熱で、 誘電率が 20以上、 誘電正接が 0.1以下の誘電体を形成することができる感光性誘電体形成用組成物であるこ とが好ましい。
以下、第三の感光性誘電体形成用組成物を構成する各成分について説明する。 (A) 無機粒子:
第三の感光性誘電体形成用組成物において使用する無機粒子 (A) は、 平均 粒子径が 0.05 i m未満の無機超微粒子 (A—I) および平均粒子径が 0.05 以上の無機微粒子 (A— II) とからなるものであれば、 第二の感光性誘電体形 成用組成物において用いられる無機粒子を使用することができる。
第三の感光性誘電体形成用組成物において、 無機粒子 (A) の量を 100質量 部とした場合に、 無機超微粒子 (A-I) の量は 1〜30質量部、 好ましくは 5〜 20質量部が望ましく、 無機微粒子 (A-II) の量は 99〜70質量部、 好ましく は 95〜80質量部が望ましい。 このような無機粒子を用いると、 無機粒子のパ ッキングが良くなり高い誘電率を有する誘電体を得ることができる。
このような無機超微粒子 (A— I) と無機微粒子 (Α—Π) を合わせた無機粒 子全体の平均粒子径は、好ましくは 0.005〜2.0 m、 さらに好ましくは 0.02〜 Ι.Ο μ χα, より好ましくは 0.02〜0.8 μ m、特に好ましくは 0.02〜0.3 μ mである ことが望ましい。 また、 このとき重量平均粒子径 (Dw) と数平均粒子径 (Dn) の比からなる Dw/Dnは、好ましくは 1.05以上、さらに好ましくは 1.1以上、 より好ましくは 1.2以上、 特に好ましくは 1.25以上であることが望ましい。 Dw/Dnが 1.05以下では、 膜厚を薄くした場合に誘電体粒子のパッキングが 悪くリーク電流が大きくなり好ましくない。
第三の感光性誘電体形成用組成物における無機粒子 (A) の量 (無機超微粒 子 (A— I) と無機微粒子 (A-II) との合計量) は、 (A) 無機粒子 + (B2) ァ ルカリ可溶性樹脂 + (C6) エチレン性不飽和基含有化合物 + (C7) 光重合開 始剤を 100質量%としたとき、 20〜95質量%、好ましくは 45〜90質量%、 さ らに好ましくは 55〜85質量%であることが望ましい。
(B2) アル力リ可溶性樹脂:
第三の感光性誘電体形成用組成物に使用される (B2) アルカリ可溶性樹脂と しては、 種々の樹脂を用いることができる。 ここに、 「アルカリ可溶性」 とは、 アルカリ性の現像液によって溶解する性質をいい、 具体的には、 目的とする現 像処理が遂行される程度に溶解性を有していればよレ、。
アルカリ可溶性樹脂 (B2) の具体例としては、 たとえば、 (メタ) アクリル 系樹月旨、 ヒドロキシスチレン樹月旨、 ノボラック樹 S旨、 ポリエステノレ樹月旨などを 挙げることができる。
このようなアルカリ可溶性樹脂 (B2) のうち、 (メタ) アクリル系樹脂が好 ましく、 特に好ましいものとしては、 たとえば、
カルボキシル基含有モノマー類 (b2) (以下 「モノマー (b2)」 ともいう) と その他の共重合可能なモノマー類 (b4) (以下 「モノマー (b4)」 ともいう) と の共重合体、 または
モノマー (b2) と OH基含有モノマー類 (b5) (以下 「モノマー (b5)」 とも レヽう) とモノマー 0>4) との共重合体などを挙げることができる。
上記モノマー (b2) (カルボキシル基含有モノマー類) としては、 第二の感 光性誘電体形成用組成物に記載のカルボキシル基含有モノマー類 (b2) が挙げ られる。
上記モノマー (b5) (OH基含有モノマー類) としては、 たとえば、
(メタ) アクリル酸 2—ヒドロキシェチル、 (メタ) アクリル酸 2—ヒ ドロキシ プロピル、 (メタ) アクリル酸 3—ヒ ドロキシプロピルなどの水酸基含有モノマ 一類;
o—ヒ ドロキシスチレン、 m-ヒ ドロキシスチレン、 p—ヒ ドロキシスチレン などのフエノール性水酸基含有モノマー類などが挙げられる。
これらのうち、 (メタ) ァクリル酸 2—ヒ ドロキシェチル、 (メタ) アクリル 酸 2—ヒ ドロキシプロピル、 (メタ) アクリル酸 3—ヒドロキシプロピルなどの 水酸基含有モノマー類が好ましい。
その他の共重合可能なモノマー類である上記モノマー (b4) としては、 第二 の感光性誘電体形成用組成物に記載のその他の共重合可能なモノマー類 (b4) が挙げられる。
上記モノマー (b2) とモノマ一 (b4) との共重合体や、 モノマー (b2) とモ ノマー 0>4) とモノマー (b5) との共重合体は、 モノマー (b2) および/また はモノマー (b5) のカルボキシル基またはフエノール生水酸基含有モノマーに 由来する共重合成分の存在により、 アルカリ可溶性を有するものとなる。 なか でもモノマー (b2) とモノマー (b4) とモノマー (b5) との共重合体は、 無機 粒子 (A) の分散安定性や後述するアルカリ現像液への溶解性の観点から特に 好ましい。 この共重合体におけるモノマー 0»2) に由来する共重合成分単位の 含有率は、 好ましくは 1〜50質量%、特に好ましくは 5〜30質量。んであり、 モ ノマー(b5)に由来する共重合成分単位の含有率は、好ましくは 1〜50質量%、 特に好ましくは 5〜30質量%であり、 モノマー (b4) に由来する共重合成分単 位の含有率は、 好ましくは 1〜98質量%、 特に好ましくは 40〜90質量。 /0であ る。
第三の感光性誘電体形成用組成物を構成するアルカリ可溶性樹脂 (B2) の分 子量は、 GPCによるポリスチレン換算の質量平均分子量 (以下、 単に 「質量平 均分子量 (Mw)」 ともいう) で、 好ましくは 5,000〜5,000,000、 さらに好まし くは 10,000〜300,000であることが望ましレ、。
第三の感光性誘電体形成用組成物におけるアルカリ可溶性樹脂(B2) の含有 量は、 無機粒子 (A) 100質量部に対して、 通常 1〜500質量部、 好ましくは 10〜500質量部、 好ましくは 10〜200質量部であることが望ましい。
また、 第三の感光性誘電体形成用組成物におけるアルカリ可溶性樹脂 (B2) の量は、 (A) 無機粒子 + (B2) アルカリ可溶性樹脂 + (C6) エチレン性不飽 和基含有化合物 + (C7)光重合開始剤を 100質量%としたとき 1〜60質量%、 好ましくは 2〜30質量%、さらに好ましくは 5〜30質量%であることが望まし レ、。
なお、 第三の感光性誘電体形成用組成物中に、 たとえば、 ポリイミド樹脂、 ビスマレンイミド樹脂、 エポキシ樹脂などのアルカリ可溶性樹脂以外の樹脂を 含有してもよい。 (C6) エチレン性不飽和基含有化合物:
第三の感光性誘電体形成用組成物を構成するエチレン性不飽和基含有化合物 (C6) は、 エチレン性不飽和基を含有し、 後述する光重合開始剤 (C7) によ り、 ラジカル重合反応し得る化合物である限り特に限定はされないが、 通常、 (メタ) アタリレート化合物が用いられる。
このような (メタ) アタリレート化合物の具体例としては、
エチレングリコーノレ、 プロピレンダリコーノレなどのァノレキレングリコーノレの ジ (メタ) ァクリレート類;
ポリエチレングリコール、 ポリプロピレンダリコールなどのポリアルキレン グリコールのジ (メタ) アタリレート類;
両末端ヒ ドロキシポリブタジエン、 両末端ヒドロキシポリイソプレン、 両末 端ヒ ドロキシポリ力プロラタトンなどの両末端ヒ ドロキシル化重合体のジ (メ タ) ァクリレート類;
グリセリン、 1,2,4—ブタントリオール、 トリメチロールアルカン、 テトラメ チロールアルカン、 ペンタエリスリ トール、 ジペンタエリスリ トーノレなどの 3 価以上の多価アルコールのポリ (メタ) ァクリレート類;
3価以上の多価アルコールのポリアルキレングリコール付加物のポリ (メタ) ァクリレート類;
1,4ーシクロへキサンジオール、 1,4一ベンゼンジオール類などの環式ポリオ ールのポリ (メタ) アタリ レート類;
ポリエステル (メタ) アタリレート、 エポキシ (メタ) アタリレート、 ウレ タン (メタ) アタリレート、 アルキド樹脂 (メタ) アタリレート、 シリコーン 樹月旨 (メタ) アタリレート、 スピラン樹 S旨 (メタ) ァクリ レート等の才リゴ(メ タ) ァクリ レート類などを挙げることができる。 なお、 (メタ) アタリレート化合物としては、 上記した化合物以外に、 前述し たアルカリ可溶性樹脂 (B2) を構成するモノマー (b2)、 (b4) および (b5) に示された化合物を使用してもよレ、。
これらの (メタ) アタリレート化合物を含むエチレン性不飽和基含有化合物 (C6) は、 単独でまたは 2種以上を組み合わせて使用することができ、 通常、 前述のアル力リ可溶性樹脂 (B2) 100質量部に対して 20〜500質量部、好まし くは、 20〜480質量部、 より好ましくは 40〜250質量部の量で用いられる。 また、 第三の感光性誘電体形成用組成物におけるェチレン性不飽和基含有化 合物 (C) の量は、 (A) 無機粒子 + (B2) アルカリ可溶性樹脂 + (C6) ェチ レン性不飽和基含有化合物 + (C7)光重合開始剤を 100質量%としたとき、 0.1 〜30質量%、 好ましくは 2〜20質量%、 さらに好ましくは 5〜15質量%であ ることが望ましい。
(C7) 光重合開始剤:
第三の感光性誘電体形成用組成物を構成する光重合開始剤 (C7) としては、 後述する露光工程においてラジカルを発生し、 前述したエチレン性不飽和基含 有化合物 (C6) の重合反応を開始せしめる化合物である限り特に限定はされな レ、。
このような光重合開始剤 (C6) の具体例としては、
ベンジノレ、 ベンゾイン、 ベンゾフエノン、 ミヒラーケトン、 4, 4 '—ビスジェ チノレアミノべンゾフエノン、 カンファーキノン、 2—ヒ ドロキシ一 2—メチノレー 1—フエエルプロノくン一 1一オン、 1ーヒ ドロキシシクロへキシルフ工ニルケト ン、 2,2—ジメ トキシー 2—フエニルァセトフエノン、 2—メチルー [4'— (メチ ノレチォ) フエ二ノレ] —2—モノレフオリノー 1—プロパノン、 2—べンジノレ一 2—ジ メチノレアミノ一 1一 (4一モノレフオリノフエニル) 一ブタン一 1—オン、 2,4—ジ ェチルチオキサントン、ィソプロピルチオキサントンなどのカルボニル化合物; ビス (2,6—ジメ トキシベンゾィル) 一2,4,4—トリメチルペンチルホスフィ ンオキサイド、 ビス (2,4,6—トリメチルベンゾィル) 一フエ-ルホスフィンォ キサイドなどのホスフィンォキサイド化合物;
ァゾイソプチロニトリル、 4—ァジドべンズアルデヒ ドなどのァゾ化合物あ るいはアジド化合物;
メルカブタンジスルフィドなどの有機硫黄化合物;
ベンゾィルパーォキシド、 ジ一 tert—ブチルパーォキシド、 tert—プチノレハイ ドロパーォキシド、 クメンハイド口パーォキシド、 パラメタンハイド口パーォ キシドなどの有機パーォキシド;
2,4—ビス (トリクロロメチノレ) 一 6— (2'—ク口口フエ二ノレ) 一 1,3,5—トリ ァジン、 2— [2— (2—フラニル) ェチレニル] 一 4,6—ビス (トリクロロメチ ノレ) -1,3,5- ト リ ァジンなどのト リハロメタン類;
2,2 '—ビス (2—クロロフヱニル) ー4,5,4',5'—テトラフヱニル 1,2'—ビイミ ダゾールなどのィミダゾールニ量体などを挙げることができる。
これらは単独でまたは 2種以上を組み合わせて使用することができる。また、 このような光重合開始剤 (C7) とともに、 増感剤、 增感助剤、 水素供与体、 連 鎖移動剤等を併用してもよい。
光重合開始剤 (C7) の含有量は、 アルカリ可溶性樹脂 (B2) とエチレン性 不飽和基含有化合物 (C6) との合計量 100質量部に対して、 通常、 0.1〜200 質量部、 好ましくは 1〜50質量部であることが望ましい。
また、第三の感光性誘電体形成用組成物における光重合開始剤 (C7)の量は、 A) 無機粒子 + (B2) アルカリ可溶性樹脂 + (C6) エチレン性不飽和基含有化 合物 + (C7) 光重合開始剤を 100質量%としたとき、 0.1〜20質量%、 好まし くは 0.2〜5質量%、 さらに好ましくは 0.3〜3質量%であることが望ましい。
(D) 溶剤:
第三の感光性誘電体形成用組成物には、 必要に応じて溶剤 (D) を含有させ ることができる。 溶剤 (D) としては、無機超微粒子 (A— I) や無機微粒子 (A -II) との親和性、 ならびにアルカリ可溶性樹脂 (B2)、 エチレン性不飽和基 含有化合物 (C6)、 光重合開始剤 (C7)、 および必要に応じて含有される後述 のその他の添加剤 (E) との溶解性が良好で、 該感光性誘電体形成用組成物に 適度な粘性を付与することができ、 乾燥させることによって容易に蒸発除去で きるものであることが好ましい。
このような溶剤 (D) の具体例としては、 第二の感光性誘電体形成用組成物 に記載の溶剤 (D) を挙げることができ、 単独でまたは 2種以上を組み合わせ て使用することができる。
第三の感光性誘電体形成用組成物における溶剤 (D) の含有量は、 良好な流 動性が得られる範囲内において適宜選択することができるが、 通常、 無機粒子 (A) 100質量部に対して、 1〜10,000質量部であり、 好ましくは 10〜1,000 質量部であることが望ましい。
(E) その他の添加剤:
第三の感光性誘電体形成用組成物には、 上記成分 (A)、 (B) および (C5) のほかに、 必要に応じて、 可塑剤、 接着助剤、 分散剤、 充填剤、 保存安定剤、 消泡剤、 酸化防止剤、 紫外線吸収剤、 レべリング剤、 現像促進剤などのその他 の添加剤 (E) を含有していてもよい。
(i) 接着助剤:
第三の.感光性誘電体形成用組成物に用いられる接着助剤としては、 第二の感 光性誘電体形成用組成物に記載の接着助剤が挙げられる。 第三の感光性誘電体 形成用組成物における接着助剤の含有量は、 無機粒子 (A) 100質量部に対し て、 0.001〜10質量部、 さらに好ましくは 0.001〜5質量部であることが望まし い。
(ii) 分散剤:
第三の感光性誘電体形成用組成物に用いられる無機粒子 (A) の分散剤とし ては、 第二の感光性誘電体形成用組成物に記載の分散剤が挙げられる。 第三の 感光性誘電体形成用組成物における分散剤の含有量は、 無機粒子 (A) 100質 量部に対して、 0.001〜10質量部、 好ましくは 0.01〜5質量部であることが望 ましい。
(iii) 充填剤:
第三の感光性誘電体形成用組成物に用いられる充填剤として、 第二の感光性 誘電体形成用組成物に記載の充填剤が挙げられる。 第三の感光性誘電体形成用 組成物において充填剤を添加する場合には、 無機粒子 (A) 100質量部に対し て、 充填剤は 0〜10質量部、 さらに好ましくは 0.05〜3質量部、 特に好ましく は 0.1〜1質量部の量を使用することが望ましい。
<感光性転写フィルム〉
本発明に係る感光性転写フィルムは、 第二の感光性誘電体形成組成物を支持 フィルム上に塗布して、 支持フィルム上に感光性転写層を設けることにより得 ることができ、 さらにこの感光性転写層の表面に保護フィルムが設けられてい てもよレヽ。
(支持フィルムおよび保護フィルム)
本発明に係る感光性転写フィルムを構成する支持フィルムは、 耐熱性および 耐溶剤性を有すると共に可撓性を有する樹脂フィルムあるいは導電性箔である ことが好ましい。 支持フィルムが可撓性を有することにより、 ロールコータに よってペースト状組成物を塗布することによつて感光性転写層を形成すること ができ、 感光性転写層をロール状に巻回した状態で保存し、 供給することがで きる。 支持フィルムが導電性箔である場合には、 誘電体層を別の基板上にラミ ネートした後に導電 1~生箔を別のドライフィルムフォトレジスト (DFR) を用い てパターニングした後に、 これを露光マスクとして誘電体層を露光現像した後 に誘電体層の上部電極としてこれを用いることができる。
支持フィルムに用いる樹脂としては、たとえばポリエチレンテレフタレート、 ポリエステル、 ポリエチレン、 ポリプロピレン、 ポリスチレン、 ポリイミ ド、 ポリビニルアルコール、含フッ素樹脂(たとえば、ポリフルォロエチレンなど)、 ナイロン、 セルロースなどを挙げることができる。 支持フィルムの厚さは、 た とえば 20〜100 μ πι、 強度等の観点から 25〜50 /z mであることが好ましい。 樹脂製の支持フィルムの表面には離型処理が施されていることが好まし!/、。 離 型処理がされていると、 後述のパターンの形成工程において、 支持フィルムの 剥離操作を容易に行うことができるからである。離型処理としては、たとえば、 シリコン系離型剤、 フッ素系離型剤、 シリコン一フッ素系離型剤を塗布する処 理が好適に用いられる。
支持フィルムに用いる導電性箔は、 たとえば銅、 金、 銀、 白金、 ニッケル、 ステンレス、 アルミニウム、 鉄おょぴ各種合金からなる箔を挙げることができ る。 これらの箔のなかで耐酸化性、 導電性と柔軟性の観点から銅、 金、 銀、 白 金、 エッケル、 アルミニウムが特に好ましい。 また、 必要に応じて複数の導電 性箔の積層体や、 樹脂基板ゃ不織布樹脂含浸基板の上に積層された基板であつ ても良い。 このような導電性箔の厚さは特に制限されるものではなレ、が、 通常 5〜75 μ ηι、 好ましくは 8〜50 ^ πι、 特に好ましくは 10〜25 μ mの範囲にある ものが望ましい。 なお、 保護フィルムについても、 支持フィルムと同様のものを用いることが できる。 また、 保護フィルムの表面には通常、 離型処理が施され、 保護フィル ム Z感光性転写層間の剥離強度が、 支持フィルム Z感光性転写層間の剥離強度 よりも小さいことが必要である。
(感光性転写層)
本発明の感光性転写フィルムを構成する感光性転写層は、 上記の感光性誘電 体形成用組成物を支持フィルム上に塗布し、 塗膜を乾燥して溶剤の一部または 全部を除去することにより形成することができる。
感光性誘電体形成用組成物を支持フィルム上に塗布し、 感光性転写層を得る 方法としては、 膜厚の均一性に優れた膜厚の大きい (たとえば 以上) 塗 膜を効率よく形成することができるものであることが好ましく、 具体的には、 ロールコーターによる塗布方法、 ブレードコーターによる塗布方法、 スリット コーターによる塗布方法、 カーテンコーターによる塗布方法、 ワイヤーコータ 一による塗布方法などを好ましいものとして挙げることができる。
塗膜の乾燥条件は、 50〜150°Cで、 0.5〜30分間程度であり、 乾燥後におけ る溶剤の残存割合 (感光性転写層中の含有率) は、 通常、 2質量%以下、 好ま しくは 1質量%以下であることが望ましい。
上記のようにして支持フィルムの少なくとも片面に形成される感光性転写層 の膜厚は、 1〜10θ ί ΐη、 好ましくは 3〜70μ πι、 さらに好ましくは 5〜50μ m であることが望ましい。
また、 感光性転写層中の無機粒子 (A) の含有量としては、 転写フィルムに おける感光性転写層全体に対して、 30〜90質量%、好ましくは 40〜80質量% であることが望ましい。 このような感光性転写層を有することにより., 基板へ の密着性に優れ、 かつ寸法精度の高いパターンを形成することができろ感光性 転写フィルムを得ることができる。
<誘電体 >
本発明に係る感光性誘電体形成用組成物を用いることにより、 500°C以下の 加熱で、 誘電率が 5以上、 誘電正接が 0.1以下の誘電体を形成することができ る。 特に、 第一の感光性誘電体形成用組成物を用いることにより、 500°C以下 の加熱で、 誘電率が 5以上、 好ましくは 10以上、 誘電正接が 0.1以下、 静電 容量 5nFZcm2以上の誘電体を形成することができる。 また、 本発明の第二ま たは第三の感光性誘電体形成用組成物あるいは本発明の感光性転写フィルムを 用いることにより、 500°C以下の加熱で、 誘電率が 20以上、 誘電正接が 0.1以 下の誘電体を形成することができる。
以下に、 本発明の誘電体の形成方法および誘電体の物性について説明する。
<第一の感光性誘電体形成用組成物を用いて形成される誘電体 > (誘電体層パターンの形成方法)
第一の感光性誘電体形成用組成物を用いた誘電体層パターンの形成方法は、 (1) 感光性誘電体形成用組成物の塗布工程、 (2) 誘電体層の露光工程、 (3) 誘電体層の現像工程、 (4) 誘電体層パターンの硬化工程の各工程を有する。
(1) 感光 '性誘電体形成用組成物の塗布工程:
本発明に係る第一の感光性誘電体形成用組成物を配線パタ一ン等が施された シリコンウェハーなどの基板上に塗工し、 乾燥して溶剤などを揮発させて塗膜 を形成する。 塗工方法としては、 たとえば、 デイ ツビング法、 スプレー法、 ノ 一コート法、 ロールコート法、 スピンコート法、 カーテンコート法、 スクリー ン印刷法などの塗布方法を用いることができ、 塗布の厚さは、 塗布手段、 感光 性誘電体形成用組成物の固形分濃度や粘度を調節することにより、 適宜制御す ることができる。 上記基板としては、 特に限定されないが、 たとえばプリント配線基板、 銅張 積層板 (CCL)、 SUS基板、 銅箔付きポリイミ ド基板、 セラミクス基板、 シリ コンウェハー (W—CSP など)、 アルミナ基板などからなる板状部材が挙げら れる。
(2) 誘電体層の露光工程:
上記塗布工程で形成した誘電体層の表面に、 所望のマスクパターンを介して 放射線を選択的に照射 (露光) し、 誘電体層にパターンの潜像を形成する。 露光に用いられる放射線としては、 たとえば、 低圧水銀灯、 高圧水銀灯、 メ タルハライドランプ、 g線ステッパー、 i線ステッパーなどの紫外線や電子線、 レーザー光線などが挙げられ、 露光量としては使用する光源や誘電体層の膜厚 などによつて適宜選定されるが、 例えば高圧水銀灯からの紫外線照射の場合、 誘電体層の膜厚 0.5〜50 mでは、 1,000〜20,000 J/m2程度である。
(3) 誘電体層の現像工程:
露光された誘電体層をアル力リ性現像液により現像して、 露光部を溶解、 除 去することにより所望のパターンが形成された塗膜を得ることができる。
誘電体層に含有される無機粒子 (A) は、 フエノール樹脂 (B1) により均一 に分散されているため、 バインダーであるフエノール樹脂 (B1) を溶解させ、 洗浄することにより、 フエノール樹脂 (B1) が溶解した部分に存在する無機粒 子(A) も同時に除去される。 この場合の現像方法としては、 シャワー現像法、 スプレー現像法、 浸漬現像法、 パドル現像法などを挙げることができる。 現像 条件としては通常、 20〜40°Cで 1〜10分程度である。
前記アル力リ性現像液としては、 たとえば、 水酸化ナトリウム、 水酸化力リ ゥム、 アンモニア水、 テトラメチルアンモニゥムヒドロキシド、 コリンなどの アル力リ性化合物を濃度が 0.1〜10質量%程度になるように水に溶解したアル 力リ性水溶液を挙げることができる。 前記アルカリ性水溶液には、 たとえば、 メタノール、 ェタノールなどの水溶性の有機溶剤や界面活性剤などを適量添カロ することもできる。 なお、 アルカリ性現像液で現像した後は、 水で洗浄し、 乾 燥する。
(4) 誘電体層パターンの硬化工程:
コンデンサ特性を発現させるために、 現像後に加熱処理を行うことにより、 硬化膜を得ることができる。 この際、酸発生剤 (C3)が分解し、酸を発生する。 この酸の触媒作用によって硬化剤 (C2) とフエノール樹脂 (B1) との硬化反 応が促進される。 このような硬化条件は特に制限されるものではないが、 硬化 物の用途に応じて、 100〜250°Cの温度で、 30分〜 10時間程度加熱し、 塗膜を 硬化させることができる。 また、 硬化を十分に進行させたり、 得られたパター ン形状の変形を防止するために二段階で加熱することもでき、 例えば、 第一段 目では、 50〜100°Cの温度で、 10分〜 2時間程度加熱し、 さらに第二段目では 100〜250°Cの温度で、 20分〜 8時間程度加熱して硬化させることもできる。 このような硬化条件であれば、 力 D熱設備として一般的なォープンゃ、 赤外線炉 などを使用することができる。
(誘電体の物性)
本発明に係る第一の感光性誘電体形成用組成物から得られる誘電体は、 誘電 率が 5以上、好ましくは 10以上、 さらに好ましくは 15以上であることが望ま しレ、。誘電率の上限は特に限定されないが、たとえば 200程度であってもよい。 また、第一の感光性誘電体形成用組成物から得られる誘電体は、誘電正接が 0.1 以下、 好ましくは 0.08以下、 さらに好ましくは 0.06以下であることが望まし い。 誘電正接の下限は特に限定されないが、 たとえば 0.001程度であってもよ レ、。 第一の感光性誘電体形成用組成物から得られる誘電体は、 静電容量が静電 容量 5nFZcm2以上、 好ましくは lOnFZcm2以上、 さらに好ましくは 15nF/ cm2以上であることが望ましい。 静電容量の上限は特に限定されないが、 たと えば 50nFZcm2以上程度であってもよい。
なお、 本明細書において、誘電率、誘電正接、 静電容量は、 JIS K6481 (周 波数 1MHz) に記載の方法により測定した値である。
また、 このような誘電体をコンデンサとして使用する場合のリーク電流は好 ましくは 10_8AZcm2以下、 より好ましくは 10_9AZcm2以下、 更に好ましく は lO—iQAZcm2以下であることが望ましい。
なお、 この誘電体の厚さは、 好ましくは 50 μ m以下、 より好ましくは 20 μ m以下、 さらに好ましくは 以下であることが望ましい。 フイノレム厚さの 下限は特に限定されないが、 通常は 0.5 μ πι以上である。
<第二または第三の感光性誘電体形成用組成物を用レ、て形成される誘電体 > (誘電体層パターンの形成方法)
第二または第三の感光性誘電体形成用組成物を用いた誘電体層パターンの形 成方法は、 (1— 1) 感光性誘電体形成用組成物の塗布工程または (1一 2) 感光 性転写層の転写工程、 (2)誘電体層の露光工程、 (3)誘電体層の現像工程、 (4) 誘電体層パターンの硬化工程の各工程を有する。
(1- 1) 感光性誘電体形成用組成物の塗布工程:
基板上に、 たとえば塗布機などを用いて、 第二または第三の感光性誘電体形 成用組成物を塗布し、誘電体層を形成する。ここで、好ましい塗布機としては、 スピナ一、 スクリーン印刷機、 グラビアコート機、 ロールコート機、 バーコ一 ター、 ダイコーター等が挙げられる。
第二の感光性誘電体形成用組成物を塗布する基板としては、 特に限定されな いが、 たとえばプリント配線基板、 銅張積層板 (CCL SUS基板、 銅箔付き ポリイミド基板、 セラミクス基板、 シリコンウェハー (W—CSP など)、 アル ミナ基板などからなる板状部材が挙げられる。 また、 第三の感光性誘電体形成 用組成物を塗布する基板としては、 特に限定されないが、 たとえばプリント基 板、 シリコンウェハー (W— CSP など)、 ガラス、 アルミナなどからなる板状 部材が挙げられる。
具体的には、 たとえば、 第二または第三の感光性誘電体形成用組成物を、 ス クリーン印刷機などによりプリント配線基板等上に印刷し、 オーブン等を用い て該感光性誘電体形成用組成物を乾燥させ、誘電体層を形成することができる。 (1-2) 感光性転写層の転写工程:
本発明の感光性転写フィルムから構成される感光性転写層を基板上に転写す る。
基板としては、 上記第二の感光性誘電体形成用組成物を塗布する基板からな る板状部材が挙げられる。 この板状部材の表面に、 予め所望のパターンを形成 したものを用いても差し支えない。 基板表面に対しては、 必要に応じて、 シラ ンカップリング剤などによる薬品処理、 プラズマ処理、 イオンプレーティング 法、 スパッタリング法、 気相反応法、 真空蒸着法などによる薄膜形成処理のよ うな前処理を適宜施していてもよレ、。
転写工程の一例を示せば以下のとおりである。 必要に応じて使用される感光 性転写フィルムの保護フィルムを剥離した後、 基板上に、 感光性転写層の表面 が当接されるように感光性転写フィルムを重ね合わせ、 この感光性転写フィル ムを加熱ローラなどにより熱圧着する。 これにより、 基板上に感光性転写層が 転写されて密着した状態となる。 ここで、 転写条件としては、 たとえば、 加熱 ローラの表面温度が 20〜140°C、 加熱ローラによるロール圧が l〜5kgZcm2、 加熱ローラの移動速度が 0.1〜10.0mZ分であるような条件を示すことができ る。また、基板は予熱されていてもよく、予熱温度としてはたとえば 40〜 100°C とすることができる。
(2) 誘電体層の露光工程:
上記のようにして形成した誘電体層の表面に、 露光用マスクを介して、 放射 線を選択的に照射 (露光) して、 誘電体層にパターンの潜像を形成する。 第二の感光性誘電体形成用組成物を用いて形成した誘電体層については、 上 記の工程 (1一 1) でさらにドライフィルムレジスト付き導電性箔をラミネート し、 あるいは工程 (1—2) で支持フィルムに導電性箔を使用して導電性箔付き 誘電体層を形成し、 導電性箔をパターン化した後にケミカルェツチングして、 導電性箔を露光用マスクとすることも可能である。
露光工程において選択的に照射 (露光) される放射線としては、 たとえば可 視光線、 紫外線、 遠紫外線、 電子線あるいは X線等が挙げられ、 好ましくは可 視光線、 紫外線および遠紫外線が、 さらに好ましくは紫外線が用いられる。 露光用マスクの露光パターンは目的によっても異なるが、 たとえば、 10〜 1000/z m角のドットパターンが用いられる。
放射線照射装置としては、 たとえばフォトリソグラフィ一法で使用されてい る紫外線照射装置、 半導体および液晶表示装置を製造する際に使用されている 露光装置などが挙げられるが、 特にこれらに限定されるものではない。
(3) 誘電体層の現像工程:
露光された誘電体層を現像処理することにより、誘電体層のパターン(潜像) を顕在化させる。
現像工程で使用される現像液としては、 アル力リ現像液を使用することがで きる。 これにより、 誘電体層に含有されるアルカリ現像可能な樹脂 (B) を容 易に溶解除去することができる。 なお、 誘電体層に含有される無機超微粒子 (A— I) および無機微粒子 (A— II) は、 アルカリ現像可能な樹脂 (B) により均一に分散されているため、 バ インダーであるアルカリ現像可能な樹脂 (B) を溶解させ、 洗浄することによ り、 アルカリ現像可能な樹脂 (B) が溶解した部分に存在する無機超微粒子 (A -I) およぴ無機微粒子 (A— Π) も同時に除去される。
このようなアル力リ現像液の有効成分としては、 たとえば
水酸化リチウム、 水酸化ナトリゥム、 水酸化力リゥム、 リン酸水素ナトリウ ム、 リン酸水素二アンモ-ゥム、 リン酸水素二カリウム、 リン酸水素ニナトリ ゥム、 リン酸二水素アンモニゥム、 リン酸二水素カリウム、 リン酸二水素ナト リウム、ケィ酸リチウム、ケィ酸ナトリウム、ケィ酸カリゥム、炭酸リチウム、 炭酸ナトリウム、 炭酸カリウム、 ホウ酸リチウム、 ホウ酸ナトリウム、 ホウ酸 カリウム、 アンモニアなどの無機アルカリ性化合物;
テトラメチノレアンモニゥムヒ ドロキシド、 トリメチルヒ ドロキシェチノレアン モニゥムヒ ドロキシド、 モノメチルァミン、 ジメチルァミン、 トリメチルアミ ン、 モノェチルァミン、 ジェチルァミン、 トリェチルァミン、 モノイソプロピ ルァミン、 ジィソプロピルァミン、 ェタノールァミンなどの有機アル力リ性化 合物などを挙げることができる。
現像工程で使用されるアル力リ現像液は、 前記アル力リ性化合物の 1種また は 2種以上を水などの溶媒に溶解させることにより調製することができる。 了 ルカリ性現像液におけるアル力リ性ィ匕合物の濃度は、 通常 0.001〜10質量%で あり、 好ましくは 0.01〜5質量%である。 アルカリ現像液には、 ノニオン系界 面活性剤または有機溶剤などの添加剤が含有されていてもよい。
なお、 アルカリ現像液による現像処理がなされた後は、 通常、 水洗処理が施 される。 また、 必要に応じて現像処理後に感光性転写層パターン側面おょぴ基 板露出部に残存する不要分を擦り取る工程を含んでもよい。
現像処理条件としては、 現像液の種類 ·組成 ·濃度、 現像時間、 現像温度、 現像方法 (たとえば浸漬法、 揺動法、 シャワー法、 スプレー法、 パドル法)、 現 像装置などを目的に応じて適宜選択することができる。
この現像工程により、 誘電体層残留部と、 誘電体層除去部とから構成される 誘電体層パターン (露光用マスクに対応するパターン) が形成される。
(4) 誘電体層パターンの硬化工程:
誘電体層パターンを熱硬化処理して、 パターンを形成する。 このような熱硬 化処理は、 500°C以下の温度で加熱することにより行うことができ、 好ましく は 100〜500°C、 さらに好ましくは 150〜300°Cの温度で行うことが望ましい。 加熱時間は、好ましくは 1分〜 24時間、 さらに好ましくは 10分〜 12時間の範 囲で行うことが望ましい。
第二または第三の感光性誘電体形成用組成物を加熱して硬化させる場合の加 熱方法としては、 たとえば、 オーブン、 赤外線ランプ、 ホットプレート等によ り加熱する方法が挙げられる。
(誘電体の物性)
本発明に係る第二または第三の感光性誘電体形成用組成物あるいは感光性転 写フィルムから得られる誘電体は、誘電率が 20以上、 好ましくは 23以上、 さ らに好ましくは 25以上、 特に好ましくは 30以上であることが望ましレ、。誘電 率の上限は特に限定されないが、 たとえば 200程度であってもよい。 また、 第 二または第三の感光性誘電体形成用組成物あるいは感光性転写フィルムから得 られる誘電体は、誘電正接が 0.1以下、好ましくは 0.08以下、 さらに好ましく は 0.06以下であることが望ましい。誘電正接の下限は特に限定されないが、た とえば 0.001程度であってもよい。 なお、本明細書において、誘電率、誘電正接は、 JIS K6481 (周波数 1MHz) に記載の方法により測定した値である。
また、 このような誘電体をコンデンサとして使用する場合のリーク電流は好 ましくは 10一9 AZcm2以下、 より好ましくは 10_ioAZcm2以下、 さらに好まし くは 10一11 AZcm2以下であることが望ましい。
なお、 この誘電体の厚さは、 好ましくは 20 iz m以下、 より好ましくは 10 m以下であることが望ましい。 厚さの下限は特に限定されないが、 通常は 1 μ m以上である。
く電子部品 >
本発明の第一の感光性誘電体形成用組成物を用いて形成される誘電体が、 500°C以下という低い温度で加熱焼成して得ることができ、 誘電率が 5以上で あり、 かつ誘電正接が 0.1以下であり、 かつ静電容量 4nF/cm2であることか ら、 あるいは本発明の第二もしくは第三の感光性誘電体形成用組成物または本 発明の感光性転写フィルムを用いて形成される誘電体は、 500°C以下という低 い温度で加熱焼成して得ることができ、 誘電率が 20以上かつ誘電正接が 0.1 以下であること力 ら、 薄膜で静電容量の大きなコンデンサ等の電子部品を形成 することができる。 また、 この誘電体を備えたプリント回路基板、 半導体パッ ケージ、 コンデンサ、 高周波用アンテナ等の電子部品は、 小型でかつ高密度の ものとすることができる。 産業上の利用可能性
本発明に係る感光性誘電体形成用組成物を用いると、 500°C以下という低い 加熱温度で、 誘電率が 5以上、 誘電正接が 0.1以下の誘電体を形成することが できる。 本発明に係る第一の感光性誘電体形成用組成物を用いると、 前述のよ うに 500°C以下という低い加熱温度で、しかも 0.1以下という誘電正接かつ 5nF /cm2以上という高い静電容量の誘電体を形成することができる。 また、 本発 明に係る第二または第三の感光性誘電体形成用組成物あるレ、は本発明の感光性 転写フィルムを用いると、 前述のように 500°C以下という低い加熱温度で、 し かも 0.1以下という低い誘電正接かつ 20以上という高い誘電率の誘電体を形成 することができる。
本発明に係る誘電体は、 薄 B莫で高誘電率であるので、 プリント回路基板、 半 導体パッケージ、 コンデンサ、 高周波用アンテナ等の電子部品等において好適 に利用される。
本発明に係る電子部品は、 前記誘電体を備えることから、 小型化、 薄膜化す ることができる。 実施例
以下、 実施例に基づいて本発明をさらに具体的に説明するが、 本発明はこれ らの実施例に限定されるものではない。 なお、 以下において 「部」 は 「質量部」 を、 「%」 は 「質量%」 を示す。
また、 質量平均分子量 (Mw) は、 東ソー株式会社製ゲルパーミイエーショ ンクロマトグラフィー (GPC) (商品名 HLC— 802A) により測定したポリス チレン換算の平均分子量である。
なお、 誘電体パターンのパターニング特性および誘電体特性については以下 のようにして評価した。
<パターユング特性 >
各実施例おょぴ比較例において、 得られた誘電体パターンについて、 走査型 電子顕微鏡 (SEM) を用いて、 当該誘電体パターンの幅おょぴ髙さの測定を行 い、 幅の精度について、 500 μ ιη± 10 μ πι の範囲にあるものを 「ΑΑ」、 それ以 外のものを 「ΒΒ」 として評価した。 また、パターンの欠落についての観察を行 レ、、 欠落のないものについて 「ΑΑ」、 欠落のあるものについて 「: ΒΒ」 として評 価した。
<誘電率、 誘電正接およびリーク電流〉
電極調製:実施例 1〜10および比較例 1〜6において、 得られた誘電体パター ンの上面にアルミ蒸着法により上面電極 (厚み: 0.5 m) を形成した。 実施例 11〜13および比較例 Ίにおいて、得られた銅箔付き誘電体パターンの上面の銅 箔を上面電極として使用した。実施例 14〜17および参考例 1〜2において、得 られた誘電体パターンの上面にアルミ蒸着法によりガイドリング付きの電極 (面積: l cm2、 厚み O.l Ai m) を形成した。
誘電率測定および誘電正接測定:プリント配線基板またはシリコンウェハー基 板の銅箔側と上面電極の間で LCRメーター (HP4284A、 ヒューレットパッカ ード社製) により 1MHzでの誘電率、 誘電正接を 10点測定してその平均値を 求めた。
リーク電流測定:銅箔側と電極の間でのリーク電流を絶縁抵抗計 (ァドパンテ スト製) で 10点測定してその平均値を求めた。
ぐ耐湿熱性 (HAST試験) 〉
硬化フィルムについて、 121°C、 湿度 100%、 2気圧の条件下で、 72時間耐 湿熱性試験を行って、 試験の前後で赤外線分光測定を実施し、 その変化の程度 により、 耐湿熱性を下記基準で評価した。
AA:変化がなく耐性が認められる
BB:変化が大きく耐性が認められない
<第一の感光性誘電体形成用組成物〉 以下に、 実施例 1〜5および比較例 1〜5において用いた各成分を示す。 無機粒子 (A) :
A-1:チタン酸バリウム粒子 (商品名 「BT— 01」、 堺化学工業社製、 平均粒子 径 0.1 μ m)
A-2:チタン酸バリウム粒子 (商品名 「; BT—02」、 堺化学工業社製、 平均粒子 径 0.2 μ m)
フユノール樹脂 (B1) :
B1-1: m—クレゾールノ p—クレゾール =60ノ 40 (モノレ比) からなるクレゾー ルノボラック樹脂 (ポリスチレン換算質量平均分子量 =8,700)
B1-2: m—クレゾール Zp—クレゾール =50 50 (モル比) からなるクレゾー ルノボラック樹脂 (ポリスチレン換算質量平均分子量 =7,500)
B1-3:ポリヒドロキシスチレン (丸善石油化学 (株) 製、 商品名:マル力リン カー S— 2P)
フユノール化合物 (bl) :
bl-l : l,l—ビス (4—ヒ ドロキシフエニル) 一 1一 [4一 {1一 (4—ヒ ドロキシ フエ二ノレ) 一 1ーメチノレエチノレ} フエ二ノレ] ェタン
キノンジアジド化合物 (C1) :
Cl-l : l,l—ビス (4ーヒ ドロキシフエニル) 一1— [4一 [1- (4—ヒ ドロキシ フエ二ノレ) 一1—メチノレエチノレ] フェニ^"] ェタンと 1,2—ナフトキノン ジアジドー 5—スルホン酸との平均 2.0モル縮合物
Cl-2 : 1,1一ビス (4ーヒ ドロキシフエニル) 一 1一フエニルェタンと 1,2_ナフ トキノンジアジドー 5—スルホン酸との平均 1.5モル縮合物
硬化剤 (C2) :
C2-1 :へキサメ トキシメチル化メラミン (三井サイテック (株) 製、 商品名 : サイメル 300)
C2-2:テトラメ トキシメチルダルコールゥリノレ (三井サイテック (株) 製、 商 品名 :サイメル 1174)
酸発生剤 (C3) :
C3-1:ベンジノレ (4ーヒドロキシフエ二ノレ) メチルスノレホニゥムへキサフノレ才 口アンチモネ一ト
C3-2:ベンジル (4ーヒ ドロキシフエニル) メチルスルホニゥムへキサフルォ 口ホスフエ一ト
架橋微粒子 (C4) :
C4-1:ブタジェン Zヒドロキシブチルメタクリレート/メタクリル酸 Zジビニ ルべンゼン = 60/32/6/2 (重量0/。)、 平均粒径 =65nm
溶剤 (D) :
D-1:乳酸ェチル
D-2: 2—へプタノン
<実施例 1〜5>
(1) 感光性誘電体形成用組成物の調製
表 1に示す配合割合で、 無機粒子 (A)、 フエノール樹脂 (Bl)、 フエノール 化合物(bl)、キノンジアジド化合物(C1)、硬化剤 (C2)およぴ酸発生剤(C3)、 架橋微粒子 (C4) を溶剤 (D) に溶解し、 ビーズミルで混練りした後、 ステン レスメッシュ (500メッシュ) およぴ孔径 l^ mのフィルターで濾過すること により、 感光性誘電体形成用組成物を調製した。
(2) 感光性誘電体形成用組成物の塗布工程
感光生誘電体形成用組成物を Cuスパッタ付きシリコンゥェハー上にスピン ナーを用いて塗布し、 塗膜を 100°Cで 5分間乾燥して溶剤を完全に除去し、 厚 P 画 2/13662
59 さ 1 w mの感光性誘電体層を形成した。
(3) 誘電体層の露光工程 ·現像工程
感光性誘電体層に対して、 露光用マスク (500 ίί πι角のドットパターン) を 介して、 超高圧水銀灯により、 i線 (波長 365mnの紫外線) を照射した。 照射 量は 500mJ/cm2とした。
露光工程の終了後、 露光処理された感光性誘電体層に対して、 2.38質量%の テトラメチルアンモニゥムヒドロキシド水溶液 (25°C) を現像液とするシャヮ 一法による現像処理を 2分かけて行った。次いで超純水による水洗処理を行い、 これにより、 紫外線が照射されて可溶ィ匕された感光性誘電体層を除去し、 パタ ーンを形成した。
(4) 誘電体層パターンの硬化工程
感光性誘電体層パターンが形成されたシリ コンウェハーをオーブン内で 200°Cの温度雰囲気下で 60分間にわたり硬化処理を行った。 これにより、 シリ コンゥェハー基板の表面に誘電体パタ一ンが得られた。
得られた誘電体パターンのパターニング特性および誘電体特性を、 前記評価 方法に従って測定した。 結果を表 1に示す。
く比較例 1〜5〉
表 2に示す配合割合で、 実施例と同様の方法により各組成物を調製し、 実施 例と同様に物性を測定した。 結果を表 2に示す。 実施例 1 実施例 2 実施例 3 実施例 4 実施例 5 咸 成分 種類 重量部 種類 重量部 種類 重量部 種類 重量部 種類 重量部 光 (A)無機粒子 A-1 150 A-1 350 A-2 150 A-1 150 A-1 150
1土
(B1)フエノール樹脂 B1-1 100 B1-1 100 B1-1 90 B1-2 100 B1-1/B1-2 90/10
(bl)フエノールイヒ合物 b-1 10
体 (C1)キノンジアジド化合物 C1-1 15 C1-1 15 C1-1 15 C1-2 15 C1-1 15 形
成 (C2)硬化剤 C2-1 23 C2-1 23 C2-2 23 C2-1 23 C2-1 23 用 (C3)酸発生剤 C3-1 2 C3-1 2 C3-1 2 C3-2 2 C3-2 2 組 (C4)架橋微粒子 C4-1 10 C4-1 10 C4-1 10 C4-1 10 成
物 (D)溶剤 D-1 900 D-1 900 D-2 900 D-2 900 D-2 900 パターユング特性
パターン精度 AA AA AA AA AA パターン欠落 AA AA AA AA AA 誘電体特性
膜厚 m) 1 1 1 0.7 2 誘電率 10 20 13 10 10 誘電正接 0.05 0.07 0.05 0.04 0.04 静電容量 (nF/cm2) 10 20 13 14 5 耐湿熱性 AA AA AA AA AA リーク電流 (A/cm2) 10— 10 10 - 1G 10 - 10 10 - 10 10一 10
表 2
比較例 1 比較例 2 比較例 3 比較例 4 比較例 5 感 成分 種類 重量部 種類 重量部 種類 重量部 種類 重量部 種類 重量部 光 (A)無機粒子 A-1 150 A-1 150 A-2 150 A-1 150 A-1 150
'[ .
(B1)フエノール樹脂 B1-1 100 B1-1 90 B1-1 100 B1-1/B1-2 90/10
(bl)フエノールイ匕合物 b-1 10
体 (C1)キノンジアジド化合物 C1-1 15 C1-1 15 C1-1 15 C1-1 15 形
成 (C2)硬化剤 C2-1 23 C2-2 23 C2-1 23
用 (C3)酸発生剤 C3-2 2 C3-2 2 C3-2 2 組 (C4)架橋微粒子 C4-1 10 C4-1 10 C4-1 10 C4-1 5 C4-1 10 成
物 (D)溶剤 D-1 900 D-1 900 D-2 900 D-2 900 D-2 900 パターニング特性
パターン精度 BB BB BB BB AA パターン欠落 BB BB AA 誘電体特性
膜厚 (μ m) 1 1 1 1 1 口乃 1¾牛 4 8 13 12 6
0.15 0.07 0.05 0.04 0.04 静電容量 (nF/cm2) 4 8 13 12 6 耐湿熱性 BB BB AA AA BB リーク電流 (A/cm2) 10—7 10一8 10-10 10—8 10—8
<第二の感光性誘電体形成用組成物 >
以下に、 実施例 6〜: 13および比較例 6〜7において用いた各成分およびァノレ カリ現像可能な樹脂 (B) の合成方法を示す。
無機粒子 (A) :
A-1:チタン酸バリウム粒子 (商品名 ΓΒΤ— 01」、 堺化学工業社製、 平均粒子 径 0.1 m、 誘電率 500)
A-2:チタン酸バリウム粒子 (商品名 「; BT— 02」、 堺化学工業社製、 平均粒子 径 0.2 111、 誘電率 500)
A-3:チタン酸パリゥム ·ナノ粒子 (日清エンジニアリング、 平均粒子径 0.03 μ πι、 誘電率 400)
Α-4:チタン酸バリウム粒子 (東邦チタニウム製、 平均粒子径 0.: m、 誘電率 400)
A-5 :チタユア-ナノ粒子(商品名 「; RTIPBC」、 シーアィ化成、平均粒子径 0.02 μ ιη、 誘電率 100)
感光性酸生成化合物 (C5) :
C5-1: 4,4'- [1— [4一 (1- (4ーヒ ドロキシフエニル) 一 1ーメチルェチル) フエニル] ェチリデン] ジフエノールと 1,2—ナフトキノンジアジドー 5 ースルホン酸とのエステルイヒ合物 (平均エステル化率 66.7モル0 /0) 溶剤 (D) :
D-1:乳酸ェチル
D-3: プロピレングリコー^/モノメチノレエーテ /レ
アル力リ現像可能な樹脂 (Β) :
(合成例 1)
フラスコ内を窒素置換した後、 2,2'—ァゾビスィゾプチロニトリル 9.0gを溶 解したジエチレングリコールジメチルエーテル溶液 459.0g を仕込んだ。 引き 続きスチレン 22.5g、 メタクリノレ酸 45.0g、ジシク口ペンタニルメタクリレート 67.5gおよぴメタクリル酸グリシジル 90.0gを仕込んだ後、 ゆるやかに攪拌を 始めた。 溶液の温度を 80°Cに上昇させ、 この温度を 5時間保持した後、 90°C で 1時間加熱して重合を終結させた。
その後、 反応生成溶液を多量の水に滴下し反応物を凝固させた。 この凝固物 を水洗後、 テトラヒドロフラン 200gに再溶解し、 多量の水で再度、 凝固させ た。 この再溶解一凝固操作を計 3回行った後、 得られた凝固物を 60°Cで 48時 間真空乾燥し、 共重合体 (I) を得た。
(合成例 2)
フラスコ内を窒素置換した後、 2,2'—ァゾビスィソプチロニトリル 9.0gを溶 解した 3—メ トキシプロピオン酸メチル溶液 459.0gを仕込んだ。 引き続き、 メ タクリル酸 56.25g、 メチルメタクリレート 90.0gおよびメタタリル酸ー 3,4一 エポキシブチル 78.75gを仕込んだ後、 ゆるやかに攪拌を始めた。 80°Cで重合 を開始し、 この温度を 5時間保持した後、 90°Cで 1時間加熱して重合を終結さ せた。 その後、 合成例 1と同様にして共重合体 (II) を得た。
(合成例 3)
テトラカルボン酸二無水物として 3,3,,4,4'ージフエニルスルホンテトラ力ノレ ボン酸二無水物 32.29g (90ミリモル)および l,3,3a,4,5,9A—へキサヒドロー 5 (テトラヒ ドロ一 2,5—ジォキソ一3—フラニル) 一ナフト [1,2— c] —フラン 一 1,3—ジオン 3.00g (10ミリモル)、 ジァミン化合物として 2,2—ビス [4— (4 一アミノフエノキシ) フエニル] プロパン 28.74g (70ミリモル)、 オルガノシ ロキサン LP7100 (商品名、 信越化学 (株) 製) 2.49g (10 ミリモル)、 3,5— ジァミノ安息香酸 3.04g (20ミリモル)を、 N—メチルー 2—ピロリ ドン(NMP) 450gに溶解して、 室温で 12時間反応させた。 その後、 この反応溶液に、 ピリ ジン 32gおよび無水酢酸 71gを添加し、 100°Cで 3時間脱水閉環反応を行つた。 次いで、 反応溶液を減圧留去して精製し、 固形分濃度 20%のポリイミド NMP 溶液を得た。
く実施例 6〉
(1) 感光性誘電体形成用組成物の調製
表 3に示す配合割合で、 無機超微粒子 (A— 1)、 無機微粒子 (A— 11)、 アル カリ現像可能な樹脂 (B)、 感光性酸生成化合物 (C5) および溶剤 (D) を、 ビ ーズミルで混練りした後、 ステンレスメッシュ (500メッシュ) および孔径 1 mのフィルタ一で濾過することにより、感光性誘電体形成用組成物を調製し た。
(2) 感光性誘電体形成用組成物の塗布工程
感光性誘電体形成用組成物をプリント配線基板上にスピナ一を用いて塗布し、 塗膜を 100°Cで 5分間乾燥して溶剤を完全に除去し、 厚さ 7 μ mの感光性誘電 体層を形成した。
(3) 誘電体層の露光工程 ·現像工程
感光性誘電体層に対して、 露光用マスク (500 111角のドットパターン) を 介して、 超高圧水銀灯により、 i線 (波長 365nmの紫外線) を照射した。 照射 量は lOOmJZcm2とした。
露光工程の終了後、 露光処理された感光性誘電体層に対して、 0.12質量%の テトラメチルァンモ-ゥムヒドロキシド水溶液 (25°C) を現像液とするシャヮ 一法による現 ^像処理を 2分かけて行つた。次いで超純水による水洗処理を行い、 これにより、 紫外線が照射されて可溶ィ匕された感光性誘電体層を除去し、 パタ ーンを形成した。 (4) 誘電体層パターンの硬化工程
感光性誘電体層パターンが形成されたプリント配線基板をオーブン内で 200°Cの温度雰囲気下で 60分間にわたり硬化処理を行った。 これにより、 プリ ント配線基板の表面に誘電体パタ一ンが得られた。
得られた誘電体パターンのパターニング特性および誘電体特性を、 前記評価 方法に従って測定した。 結果を表 3に示す。
<実施例 Ί >
表 3に示す配合割合で、 実施例 6と同様にして、 感光性誘電体形成用 成物 を調製した。 該感光性誘電体形成用組成物を用いたことを除いて、 実施例 6と 同様にして、 厚さ 7 μ πχの感光性誘電体層を形成後、 露光工程 ·現像工程、 硬 化工程を行い、 誘電体パターンを作製した。 得られた誘電体パターンのパター ニング特性および誘電体特性の評価結果を表 3に示す。 ぐ実施例 8 >
表 3に示す配合割合で、 実施例 6と同様にして、 感光性誘電体形成用組成物 を調製した。 該感光性誘電体形成用組成物を用いたことを除いて、 実施例 6と 同様にして、 厚さ 5 μ ηιの感光性誘電体層を形成後、 露光工程 ·現像工程、 硬 化工程を行い、 誘電体パターンを作製した。 得られた誘電体パターンのパター ユング特性おょぴ誘電体特性の評価結果を表 3に示す。
く実施例 9〉
表 3に示す配合割合で、 実施例 6と同様にして、 感光性誘電体形成用組成物 を調製した。 ここで、 アルカリ現像可能な樹脂 (Β) および溶剤 (D) は、 合成 例 3のポリイミ ド ΝΜΡ溶液 (固形分:溶剤 (重量比) =20: 80) を用いた。 該感光性誘電体形成用組成物を用いたこと、 および硬化工程において 230°Cの 温度雰囲気下で硬化処理を行ったことを除いて、 実施例 6と同様にして、 厚さ 3 μ πι の感光性誘電体層を形成後、 露光工程 ·現像工程、 硬化工程を行い、 誘 電体パターンを作製した。 得られた誘電体パターンのパターニング特性および 誘電体特性の評価結果を表 3に示す。
く実施例 10 >
表 3に示す配合割合で、 実施例 6と同様にして、 感光性誘電体形成用組成物 を調製した。 該感光性誘電体形成用組成物を用いたことを除いて、 実施例 6と 同様にして、 厚さ 3 mの感光性誘電体層を形成後、 露光工程 ·現像工程、 硬 化工程を行い、 誘電体パターンを作製した。 得られた誘電体パターンのパター ニング特性および誘電体特性の評価結果を表 3に示す。
<比較例 6〉
表 3に示す配合割合で、 実施例 6と同様にして、 感光性誘電体形成用糸且成物 を調製した。 該感光性誘電体形成用組成物を用いたことを除いて、 実施例 6と 同様にして、 厚さ 3 μ πιの感光性誘電体層を形成後、 露光工程 ·現像工程、 硬 化工程を行い、 誘電体パターンを作製した。 得られた誘電体パターンのパター ニング特性および誘電体特性の評価結果を表 3に示す。
表 3
実施例 6 実施例 7 実施例 8 実施例 9 実施 1列 10 比較例 6 成分 部 部 部 部 部 種類 部 咸
(A— I)無機超微粒子 A-5 15 A-5 15 A-3 10 A-3 10 A-5 10
材質 チタニア チタニア チタン酸/、"リウム チタン酸ハ"リウム チタニア
平均粒子径 (μ ηι) 0.02 0.02 0.03 0.03 0.02
(Α— II)無機微粒子 A-1 85 A-1 85 A-1 90 A-4 90 A-4 90 A-2 100 電
材質 チタン酸ハ"リウム チタン酸ハ Ίゥム チタン酸ハ"リウム チタン酸ハ "リウム チタン酸ハ "リウム チタン酸ハ"リウム 体
平均粒子径 m) 0.1 0.1 0.1 0.1 0.1 0.2 形
(B)アルカリ現像可能な樹脂 共重合体 (I) 共重合体 (II) 共重合体 (I) ポリイミ ド 共重合体 (I) 共重合体 (I) 成
質量平均分子量 (Mw) 50,000 100,000 50,000 80,000 50,000 50,000 用
組 30 25 30 30 30 30 成 (C5)感光性酸生成化合物 C5-1 2 C5-1 2 C5-1 2 C5-1 2 C5-1 2 C5-1 2 物 (D)溶剤 D-1 50 D-1 50 D-1 50 D-1 50 1 50
NMP 120
D-3 50 D-3 50 D-3 50 D-3 50 D-3 50 パターユング特性
パターン精度 AA AA AA AA AA AA パターン欠落 AA AA AA AA AA AA 誘電体特性
膜厚 in) 7 7 5 3 3 7
B¾ 率 23 25 30 28 25 15
0.05 0.04 0.05 0.04 0.04 0.03 耐湿熱性 AA AA AA AA AA AA リーク電流 (A/cm2) 10一 " 10— u 10一11 10— 11 10— u 10—3
<実施例 11〉
(1) 感光性誘電体形成用組成物の調製
表 4に示す配合割合で、 実施例 6と同様にして、 感光性誘電体形成用組成物 を調製した。
(2) 感光性転写フィルムの作製
上記で得られた感光性誘電体形成用組成物を銅箔からなる支持フィルム (幅 300mm,長さ 500mm、 13 // m厚) 上にダイコーターを用いて塗布し、 塗膜を 100°Cで 5分間乾燥して溶剤を除去し、厚さ 10 μ πιの感光性誘電体形成層を支 持フィルム上に形成し、 感光性転写フィルムを作製した。
(3) 感光性転写層の転写工程
プリント配線基板の表面に、 感光性転写層の表面が当接されるように感光性 転写フィルムを重ね合わせ、 この感光性転写フィルムを加熱ローラにより熱圧 着した。 ここで、 圧着条件としては、 加熱ローラの表面温度を 120°C、 ロール 圧を 4kgZcm2、 加熱ローラの移動速度を 0.5mZ分とした。 これにより、 プリ ント配線基板の表面に銅箔付き感光性誘電体形成層が転写されて密着した状態 となった基板を得た。この感光性誘電体形成層について膜厚を測定したところ、 10 m土: mの範囲にあった。
(4) 誘電体層の露光工程 ·現像工程
上記のようにして得られた基板の上に、 ポジ用 DFRをラミネートして、 露 光用マスク (500 Π1角のドットパターン) を介して、 超高圧水銀灯により、 i 線 (波長 365mnの紫外線) を照射してパターニングした。 これを定法により 現像した後、 開口部に対し塩化第二銅溶液を用レ、てケミカルエッチングして、 パターニングされた銅箔付き感光性誘電体形成層が得られた。 さらに、 このパ ターニングされた銅箔を露光用マスクにして、 超高圧水銀灯により露光した。 照射量は 400mJ/cm2とした。
露光工程の終了後、 露光処理された感光性誘電体形成層に対して、 0.12 質 量%のテトラメチルアンモニゥムヒドロキシド水溶液 (30°C) を現像液とする シャワー法による現像処理を 2分かけて行った。 次いで超純水による水洗処理 を行い、 これにより、 紫外線が照射されて可溶化された感光性誘電体層を除去 し、 パターンを形成した。
(5) 誘電体層パターンの硬化工程
銅箔付き感光性誘電体形成層パターンが形成されたプリント配線基板をォー ブン内で 200°Cの温度雰囲気下で 30分間にわたり硬化処理を行った。 これに より、 プリント配線基板の表面に銅箔付き誘電体パターンが得られた。
得られた誘電体パターンのパターニング特性および誘電体特性を、 前記評価 方法に従つて測定した。 結果を表 4に示す。
<実施例 12 >
表 4に示す配合割合で、 実施例 6と同様にして、 感光性誘電体形成用組成物 を調製した。 該感光性誘電体形成用組成物を用いたことを除いて、 実施例 11 と同様にして、 厚さ 10 Ai mの感光性誘電体層を形成後、 露光工程 ·現像工程、 硬化工程を行い、 誘電体パターンを作製した。 得られた誘電体パターンのパタ 一二ング特性および誘電体特性の評価結果を表 4に示す。
く実施例 13〉
表 4に示す配合割合で、 実施例 6と同様にして、 感光性誘電体形成用組成物 を調製した。 ここで、 アルカリ現像可能な樹脂 (B) および溶剤 (D) は、 合成 例 3のポリイミド NMP溶液 (固形分:溶剤 (重量比) =20: 80) を用いた。 該感光性誘電体形成用組成物を用いたこと、 およぴ硬化工程におレ、て 230°Cの 温度雰囲気下で硬化処理を行ったことを除いて、 実施例 11 と同様にして、 厚 さ 10 mの感光性誘電体層を形成後、 露光工程 ·現像工程、 硬化工程を行い、 誘電体パターンを作製した。 得られた誘電体パターンのパターニング特性およ び誘電体特性の評価結果を表 4に示す。
<比較例 7 >
表 4に示す配合割合で、 実施例 6と同様にして、 感光性誘電体形成用組成物 を調製した。 該感光性誘電体形成用組成物を用いたことを除いて、 実施例 11 と同様にして、 厚さ 10 mの感光性誘電体層を形成後、 露光工程 ·現像工程、 硬化工程を行い、 誘電体パターンを作製した。 得られた誘電体パターンのパタ 一ユング特性および誘電体特性の評価結果を表 4に示す。
表 4
実施 1列 11 実施 1列 12 実施 1列 13 比較例 Ί 成分 部 部 部 種類 部 咸
(A— I)無機超微粒子 A-5 15 A-3 10 A-3 10
材質 チタニア チタン酸ハ "リウム チタン酸ハ'、リウム
平均粒子怪 m) 0.02 0.03 0.03
(A_II)無機微粒子 A-1 85 A-1 90 A-4 90 A-2 100 材質 チタン酸ハ' ゥム チタン酸ハ"リウム チタン酸ハ"リウム チタン酸ハ "リウム 体
平均粒子径 (μ ιη) 0.1 0.1 0.1 0.2 形
(Β)アルカリ現像可能な樹脂 せ曾ノ 本 (I) 共重合体 (I) ポリイミ ド 共重合体 (I) 成
質量平均分子量 (Mw) 50, 000 50,000 80,000 50,000 用
組 重量部 3 5 35 40 35 成 (C5)感光性酸生成化合物 C5-1 2 C5-1 2 C5-1 2 C5-1 2 物 (D)溶剤 D-1 75 D-1 75 D-1 75
NMP 160
D-3 75 D-3 75 D-3 75 パターニング特性
パターン精度 AA AA AA AA パターン欠落 AA AA AA AA 誘電体特性
膜厚 m) 10 10 10 10 誘電率 20 20 20 13
0.04 0.04 0.04 0.03 耐湿熱性 AA AA AA AA リーク電流 (A/cm2) 10 - 12 10一12 10— 12 10一12
く第三の感光性誘電体形成用組成物 >
以下に、 実施例 14〜17および参考例 1〜2において用いた各成分を示す。 無機粒子 (A) :
A-1:チタン酸バリウム粒子 (商品名 「: BT— 01」、 堺化学工業社製、 平均粒子 径 Ο.ΐ μ πκ 誘電率 500)
Α-3:チタン酸バリゥム ·ナノ粒子 (日清エンジニアリング、 平均粒子径 0.03 μ ΐΆ, 誘電率 400)
Α-4:チタン酸バリウム粒子 (東邦チタニウム製、 平均粒子径 0.1 /ζ πι、 誘電率 400)
Α-5:チタニア ·ナノ粒子(商品名 「RTIPBC」、 シーアィ化成、平均粒子径 0.02 ja m、 誘電率 100)
アル力リ可溶性樹脂 (B2) :
B2-1: メタクリル酸 n—ブチル /メタクリル酸 3—ヒ ドロキシプロピル Zメタ クリル酸 =60ノ 20Z20 (質量%) 共重合体 (Mw=50,000)
B2-2: メタタリル酸 n—プチル/メタクリル酸 3—ヒ ドロキシプロピル/メタ クリル酸 =60ノ 20Z20 (質量%) 共重合体 (Mw=100,000)
エチレン性不飽和基含有化合物 (C6) :
C6-1: トリメチロールプロパントリアタリレート
光重合開始剤 (C7) :
C7-1 : 2—ベンジルー 2—ジメチルアミノー 1— (4—モルフォリノフエ二ル) 一 ブタン一 1一才ン
溶剤 (D) :
D-3: プロピレングリコーノレモノメチノレエーテノレ
分散剤 (E1) : El-1:ォレイン酸
充填剤 (E2) :
E2-1:アセチレンブラック
<実施例 14〉
(1) 感光性誘電体形成用組成物の調製
表 5に示す配合割合で、 無機超微粒子 (A— 1)、 無機微粒子 (A— 11)、 アル カリ可溶性樹脂 (B2)、 エチレン性不飽和基含有化合物 (C6)、 光重合開始剤
(C7)、 溶剤 (D)、 分散剤 (E) および充填剤 (F) を、 ビーズミルで混練りし た後、ステンレスメッシュ(500メッシュ)でフィルタリングすることにより、 感光性誘電体形成用組成物を調製した。
(2) 感光性誘電体形成用組成物の塗布工程
感光性誘電体形成用組成物をプリント配線基板上にスピナ一を用いて塗布し、 塗膜を 100°Cで 5分間乾燥して溶剤を完全に除去し、 厚さ 7 μ πιの感光性誘電 体層を形成した。
(3) 誘電体層の露光工程 ·現像工程
感光性誘電体層に対して、 露光用マスク (500μ πι角のドットパターン) を 介して、 超高圧水銀灯により、 i線 (波長 365nmの紫外線) を照射した。 ここ に、 照射量は 400mJ/cm2とした。
露光工程の終了後、 露光処理された感光性誘電体層に対して、 0.5質量%の 炭酸ナトリウム水溶液 (30°C) を現像液とするシャヮ一法による現像処理を 1 分かけて行った。 次いで超純水による水洗処理を行い、 これにより、 紫外線が 照射されていな!/、未硬化の感光性誘電体層を除去し、 パターンを形成した。
(4) 誘電体層パターンの硬化工程
感光性誘電体層パターンが形成されたプリント配線基板をオーブン内で 02 13662
74
200°Cの温度雰囲気下で 30分間にわたり硬化処理を行った。 これにより、 プリ ント配線基板の表面に誘電体パターンが得られた。
得られた誘電体パターンのパターニング特性および誘電体特性を、 前記評価 方法に従って測定した。 結果を表 5に示す。
く実施例 15〉
表 5に示す配合割合で、 実施例 14と同様にして、 感光性誘電体形成用組成 物を調製した。該感光性誘電体形成用組成物を用いたことを除いて、実施例 14 と同様にして、 厚さ 7 μ πιの感光性誘電体層を形成後、 露光工程 ·現像工程、 硬化工程を行い、 誘電体パターンを作製した。 得られた誘電体パターンのパタ 一二ング特性およぴ誘電体特性の評価結果を表 5に示す。
<実施例 16〉
表 5に示す配合割合で、 実施例 14と同様にして、 感光性誘電体形成用組成 物を調製した。該感光性誘電体形成用組成物を用いたことを除いて、実施例 14 と同様にして、 厚さ 5 μ πιの感光性誘電体層を形成後、 露光工程 ·現像工程、 硬化工程を行い、 誘電体パターンを作製した。 得られた誘電体パターンのパタ 一ニング特性および誘電体特性の評価結果を表 5に示す。
<実施例 17〉
表 5に示す配合割合で、 実施例 14と同様にして、 感光性誘電体形成用,組成 物を調製した。該感光性誘電体形成用組成物を用いたことを除いて、実施例 14 と同様にして、 厚さ 3 μ mの感光性誘電体層を形成後、 露光工程 ·現像工程、 硬化工程を行い、 誘電体パターンを作製した。 得られた誘電体パターンのパタ 一ニング特性および誘電体特性の評価結果を表 5に示す。
ぐ参考例 1 >
表 5に示す配合割合で、 実施例 14と同様にして、 感光性誘電体形成用糸且成 2/13662
75 物を調製した。該感光性誘電体形成用糸且成物を用いたことを除いて、実施例 14 と同様にして、 厚さ 7 μ ιηの感光性誘電体層を形成後、 露光工程 ·現像工程、 硬化工程を行い、 誘電体パターンを作製した。 得られた誘電体パターンのパタ 一二ング特性および誘電体特性の評価結果を表 5に示す。
く参考例 2〉
表 5に示す配合割合で、 実施例 14と同様にして、 感光性誘電体形成用組成 物を調製した。該感光性誘電体形成用組成物を用いたことを除いて、実施例 14 と同様にして、 厚さ 5 / mの感光性誘電体層を形成後、 露光工程'現像工程、 硬化工程を行い、 誘電体パターンを作製した。 得られた誘電体パターンのパタ 一ユング特性おょぴ誘電体特性の評価結果を表 5に示す。
表 5
実施 1列 14 実施 1列 15 実施列 16 実施 1列 17 参考例 1 参考例 2 咸 成分 部 種類 部 種類 部 種類 部 種類 部 部 光 (A— I)無機超微粒子 A-5 15 A-5 15 A-3 10 A-3 10 A-5 15 A-5 15 性 材質 チタニア チタユア チタン酸ハ"リウム チタン酸ハ"リウム チタユア チタニア 平均粒子径 (μ πι) 0.02 0.02 0.03 0.03 0.02 0.02
(Α— Π)無機微粒子 A-1 85 A-1 85 A-1 90 A-4 90 A-1 85 A-1 85 材質 チタン酸 /、"リウム チタン酸ハ"リウム チタン酸ハ"リウム チタン酸ハ"リウム チタン酸ハ"リウム チタン酸ハ"リウム 平均粒子径 (μ ιη) 0.1 0.1 0.1 0.1 0.1 0.1 体 (Β2)アルカリ可溶性樹脂 B2-1 B2-2 B2-1 B2-1 B2-1 B2-1 形 質量平均分子量 (Mw) 50,000 100,000 50,000 50,000 50,000 50,000 成 重量部 20 20 20 20 20 20 用 (C6)エチレン性不飽和基含
C6-1 10 C6-1 10 C6-1 10 C6-1 10 C6-1 1 C6-1 50 組 有化合物
成 (C7)光重合開始剤 C7-1 1 C7-1 1 C7-1 1 C7-1 1 C7-1 1 C7-1 1 物 (D)溶剤 D-3 100 D-3 100 D-3 100 D-3 100 D-3 100 D-3 100
(E1)分散剤 E1-1 1 E1-1 1 E1-1 1 E1-1 1 E1-1 1 E1-1 1
CE2)充填剤 E2-1 0.5 E2-1 0.5 E2-1 0.5 E2-1 0.5 E2-1 0.5 E2-1 0.5 パターエング特性
パターン精度 AA AA AA AA BB BB パターン欠落 AA AA AA AA BB AA 誘電体特性
膜厚(μ πι) 7 7 5 3 7 5
20 22 30 28 25 18 誘電正接 0.05 0.04 0.04 0.04 0.2 0.05 耐湿熱性 AA AA AA AA BB AA リーク電流 (A/cm2) 10一11 10—" lO—u 10— 11 10一8 10一11

Claims

請 求 の 範 囲 (A) 無機粒子と、 (B) アルカリ現像可能な樹脂と、 (C) 添加剤とを含有す る感光性誘電体形成用組成物であって、 アルカリ現像可能な樹脂 (B) がフエノール性水酸基を有するアルカリ可溶 性樹脂 (B1) を含有し、 添加剤 (C) が、 (C1) キノンジアジド基を有する化合物と、 (C2)分子中に少なくとも 2つ以上のアルキルエーテルィヒされたアミノ基を有 する化合物と、 (C3) 熱感応性酸発生剤とを含有する ことを特徴とする感光性誘電体形成用組成物。 2 . (A) 無機粒子と、 (B) アルカリ現像可能な樹脂と、 (C) 添加剤とを含有す る感光性誘電体形成用組成物であって、 アル力リ現像可能な樹脂 (B) がフ ノール性水酸基を有するアル力リ可溶 性樹脂 (B1) を含有し、 添加剤 (C) 、
(C1) キノンジアジド基を有する化合物と、
(C2)分子中に少なくとも 2つ以上のアルキルエーテルィ匕されたアミノ基を有 する化合物と、 .
(C3) 熱感応性酸発生剤と、 (C4) 架橋微粒子とを含有する
ことを特徴とする感光性誘電体形成用組成物。
3 .
前記架橋微粒子 (C4) の平均粒径が 30〜500ηπιである請求の範囲第 2項に 記載の感光性誘電体形成用組成物。
4 .
(Α) 無機粒子と、 (Β) アルカリ現像可能な樹脂と、 (C) 添加剤とを含有す る感光性誘電体形成用組成物であって、
無機粒子 (Α) が、
(Α-Ι) 平均粒子径が 0.05 μ m未満の無機超微粒子と、
(A— II) 平均粒子径が 0.05 μ m以上の無機微粒子とを含有し、
添加剤 (C) が (C5) 感光性酸生成化合物を含有する
ことを特徴とする感光性誘電体形成用組成物。
5 .
前記無機粒子 (A) の量を 100質量部としたとき、 無機超微粒子 (A— I) の 量が 1〜30質量部であり、無機微粒子 (A-II) が 99〜70質量部である請求の 範囲第 4項に記載の感光性誘電体形成用組成物。
6 .
前記無機粒子 (A) の量が 20〜95質量%、
前記アルカリ現像可能な樹脂 (B) の量が 1〜60質量%、 前記感光性酸生成化合物 (C5) の量が 0.1〜30質量%
である請求の範囲第 4項に記載の感光性誘電体形成用組成物。
7 .
500°C以下の加熱で、 誘電率が 20以上、 誘電正接が 0.1以下の誘電体を形成 することが可能であることを特徴とする請求の範囲第 4項〜第 6項のいずれか に記載の感光性誘電体形成用組成物。
8 .
前記無機粒子 (A) 、 チタン系金属酸ィ匕物からなることを特徴とする請求 の範囲第 4項〜第 7項のいずれかに記載の感光性誘電体形成用組成物。
9 .
前記アルカリ現像可能な樹脂 (B) 、 (メタ) アクリル系樹脂、 ヒドロキシ スチレン樹月旨、 ノボラック樹旨、 ポリエステノレ榭月旨、 ポリイ ミド樹月旨、 ナイ口 ン樹脂、 ポリエーテルイミ ド樹脂からなる群から選択される少なくとも 1種の 樹脂であることを特徴とする請求の範囲第 4項〜第 8項のいずれかに記載の感 光性誘電体形成用組成物。
1 0 .
(A) 無機粒子と、 (B) アルカリ現像可能な樹脂と、 (C) 添加剤とを含有す る感光性誘電体形成用組成物であって、
無機粒子 (A) が、
(A— I) 平均粒子径が 0.05 μ m未満の無機超微粒子と、 (A— II) 平均粒子径が 0.05 μ m以上の無機微粒子とを含有し、
アルカリ現像可能な樹脂 (B) 力 S (B2) アルカリ可溶性樹脂を含有し、 添加剤 (C) が、
(C6) エチレン性不飽和基含有化合物と、
(C7) 光重合開始剤とを含有する
二とを特徴とする感光性誘電体形成用組成物。
前記無機粒子 (A) の量を 100質量部としたとき、 無機超微粒子 (A_I) の 量が:!〜 30質量部であり、無機微粒子 (A—II) が 99〜70質量部である請求の 範囲第 1 0項に記載の感光性誘電体形成用組成物。
1 2 .
前記無機粒子 (A) の量が 20〜95質量%、
前記アルカリ可溶性樹脂 (B2) の量が:!〜 60質量%、
前記エチレン性不飽和基含有化合物 (C6) の量が 0.1〜30質量%、 前記光重合開始剤 (C7) の量が 0.1〜20質量%
である請求の範囲第 1 0項に記載の感光性誘電体形成用組成物。 1 3 .
500°C以下の加熱で、 誘電率が 20以上、誘電正接が 0.1以下の誘電体を形成 することが可能であることを特徴とする請求の範囲第 1 0項〜第 1 2項のいず れかに記載の感光性誘電体形成用組成物。
1 4 .
前記無機粒子 (A) 、 チタン系金属酸化物からなることを特徴とする請求 の範囲第 1 0項〜第 1 3項のいずれかに記載の感光性誘電体形成用組成物。 1 5 .
前記アルカリ可溶性樹脂 (B2) 力 (メタ) アクリル系樹脂、 ヒ ドロキシス チレン樹脂、 ノボラック樹脂またはポリエステル樹脂のいずれかであることを 特徴とする請求の範囲第 1 0項〜第 1 4項のいずれかに記載の感光性誘電体形 成用組成物。
1 6 .
前記エチレン性不飽和基含有化合物 (C6) 、 (メタ) アタリレート化合物 であることを特徴とする請求の範囲第 1 0項〜第 1 5項のいずれかに記載の感 光性誘電体形成用組成物。
1 7 .
前記エチレン性不飽和基含有化合物 (C6) が、 アルカリ可溶性樹脂 (B2) 100質量部に対して 20〜500質量部の範囲で含まれていることを特徴とする請 求の範囲第 1 0項〜第 1 6項のいずれかに記載の感光性誘電体形成用組成物。
1 8 .
(A) 無機粒子と、 (B) アルカリ現像可能な樹脂と、 (C) 添加剤とを含有す る感光性誘電体形成用組成物が膜厚:!〜 lOO^ m で支持フィルム上に設けられ ている感光性転写フィルムであって、 無機粒子 (A) 、
(A— I) 平均粒子径が 0.05 μ m未満の無機超微粒子と、
(A-II) 平均粒子径が 0.05 m以上の無機微粒子とを含有し、
添加剤 (C) が感光性酸生成化合物 (C5) を含有する
ことを特徴とする感光性転写フィルム。
1 9 .
500°C以下の加熱で、 誘電率が 20以上、 誘電正接が 0.1以下の誘電体を形成 することが可能であることを特徴とする請求の範囲第 1 8項に記載の感光性転 写フィルム。
2 0 .
前記無機粒子 (A) がチタン系金属酸化物であることを特徴とする請求の範 囲第 1 8項または第 1 9項に記載の感光性転写フィルム。
2 1 .
前記アルカリ現像可能な樹月旨 (B) 、 (メタ) アクリル系樹脂、 ヒ ドロキシ スチレン樹脂、 ノボラック榭月旨、 ポリエステ/レ樹月旨、 ポリイミド樹脂、 ナイ口 ン樹脂、 ポリエーテルイミ ド樹脂のいずれかであることを特徴とする請求の範 囲第 1 8項〜第 2 0項のいずれかに記載の感光性転写フィルム。
2 2 .
請求の範囲第 1項〜第 1 7項のいずれかに記載の感光性誘電体形成用組成物 を用レ、て形成される誘電体。
2 3 .
請求の範囲第 4項〜第 1 7項のいずれかに記載の感光性誘電体形成用組成物 を 500°C以下で加熱して硬化させることにより形成される、誘電率が 20以上、 誘電正接が 0.1以下であることを特徴とする誘電体。
2 4 .
請求の範囲第 1 8項〜第 2 1項のいずれかに記載の感光性転写フィルムを用 いて形成される誘電体。
2 5 .
請求の範囲第 4項〜第 9項のいずれかに記載の感光性誘電体形成用組成物ま たは請求の範囲第 1 8項〜第 2 1項のいずれかに記載の感光性転写フィルムを 用いて形成される誘電体が導電性箔上に形成されていることを特徴とする導電 性箔付き誘電体。
2 6 .
請求の範囲第 2 2項〜第 2 5項に記載の誘電体を含むことを特徴とする電子 部品。
PCT/JP2002/013662 2002-01-28 2002-12-26 Composition pour former une matiere dielectrique photosensible, et film de transfert, matiere dielectrique et elements electroniques utilisant celle-ci WO2003065384A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020037012684A KR100913879B1 (ko) 2002-01-28 2002-12-26 감광성 유전체 형성용 조성물, 및 그것을 이용한 전사필름, 유전체 및 전자 부품
EP02790898A EP1471540A4 (en) 2002-01-28 2002-12-26 COMPOSITION FOR FORMING A LIGHT-SENSITIVE DIELECTRIC MATERIAL, TRANSFER FILM, DIELECTRIC MATERIAL AND ELECTRONIC PARTS THEREWITH
US10/472,940 US7015256B2 (en) 2002-01-28 2002-12-26 Composition for forming photosensitive dielectric material, and transfer film, dielectric material and electronic parts using the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2002018389 2002-01-28
JP2002-18389 2002-01-28
JP2002018388 2002-01-28
JP2002-18388 2002-01-28
JP2002-166087 2002-06-06
JP2002166087A JP4106972B2 (ja) 2002-06-06 2002-06-06 感光性誘電体形成用組成物、誘電体および電子部品

Publications (1)

Publication Number Publication Date
WO2003065384A1 true WO2003065384A1 (fr) 2003-08-07

Family

ID=27670271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/013662 WO2003065384A1 (fr) 2002-01-28 2002-12-26 Composition pour former une matiere dielectrique photosensible, et film de transfert, matiere dielectrique et elements electroniques utilisant celle-ci

Country Status (6)

Country Link
US (1) US7015256B2 (ja)
EP (1) EP1471540A4 (ja)
KR (1) KR100913879B1 (ja)
CN (1) CN100336137C (ja)
TW (1) TW200302401A (ja)
WO (1) WO2003065384A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1724640A1 (en) * 2004-03-12 2006-11-22 Toray Industries, Inc. Positive light-sensitive resin composition, relief pattern using the same, and solid imaging element

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4265048B2 (ja) * 1999-10-06 2009-05-20 Jsr株式会社 電着用水性分散液、高誘電率フィルムおよび電子部品
EP1469346B1 (en) * 2002-01-23 2015-08-05 JSR Corporation Positive photosensitive insulating resin composition and cured object obtained therefrom
JP4217886B2 (ja) * 2003-06-25 2009-02-04 Jsr株式会社 感放射線性屈折率変化性組成物、パターン形成法および光学材料
JP4292985B2 (ja) * 2003-12-25 2009-07-08 Jsr株式会社 感放射線性組成物、マイクロレンズとその形成方法および液晶表示素子
EP1806618B1 (en) * 2004-10-29 2010-06-09 JSR Corporation Positive photosensitive insulating resin composition and cured product thereof
WO2006118105A1 (ja) * 2005-04-28 2006-11-09 Ni Material Co., Ltd. 熱硬化性樹脂組成物
EP1755365B1 (en) * 2005-08-19 2009-05-06 JSR Corporation Positive photosensitive insulating resin composition, cured product thereof, and electronic component
JP4340272B2 (ja) * 2006-05-30 2009-10-07 太陽インキ製造株式会社 光硬化性・熱硬化性ソルダーレジスト組成物およびそれを用いたプリント配線板
JP2008077057A (ja) * 2006-08-21 2008-04-03 Jsr Corp 感光性絶縁樹脂組成物及びその硬化物並びにそれを備える電子部品
US8309295B2 (en) * 2006-08-29 2012-11-13 Jsr Corporation Photosensitive insulating resin composition, hardening product thereof, and circuit board equipped therewith
KR100806755B1 (ko) * 2006-12-22 2008-02-27 요업기술원 감광성 저온 동시소성 세라믹 조성물 및 그 제조방법
EP2221666B1 (en) * 2007-11-12 2013-09-18 Hitachi Chemical Company, Ltd. Positive-type photosensitive resin composition, method for production of resist pattern, and semiconductor device
JP5378420B2 (ja) * 2008-02-25 2013-12-25 ハネウェル・インターナショナル・インコーポレーテッド 加工可能な無機及び有機ポリマー配合物、それらの製造方法及び使用
KR101398754B1 (ko) * 2008-12-26 2014-05-27 히타치가세이가부시끼가이샤 포지티브형 감광성 수지 조성물, 레지스트 패턴의 제조 방법, 반도체 장치 및 전자 디바이스
JP5630374B2 (ja) 2010-06-11 2014-11-26 信越化学工業株式会社 マイクロ構造体の製造方法及び光パターン形成性犠牲膜形成用組成物
TWI481657B (zh) * 2010-09-15 2015-04-21 Asahi Kasei E Materials Corp A phenol resin composition and a hardened embossed pattern, and a method for manufacturing the semiconductor
US8623447B2 (en) 2010-12-01 2014-01-07 Xerox Corporation Method for coating dielectric composition for fabricating thin-film transistors
JP5853844B2 (ja) 2011-05-20 2016-02-09 信越化学工業株式会社 マイクロ構造体の製造方法及び光パターン形成性犠牲膜形成用組成物
JP5831388B2 (ja) * 2011-10-25 2015-12-09 信越化学工業株式会社 変性ノボラック型フェノール樹脂の製造方法
JP5871775B2 (ja) * 2011-11-30 2016-03-01 キヤノン株式会社 電子写真感光体、プロセスカートリッジおよび電子写真装置
CN103728837B (zh) * 2013-12-30 2016-08-31 京东方科技集团股份有限公司 感光树脂组合物及用感光树脂组合物制备量子点图案的方法
KR101959408B1 (ko) * 2014-11-12 2019-03-18 삼성에스디아이 주식회사 표시장치 절연막 및 이를 포함하는 유기 발광 장치
JP6803842B2 (ja) 2015-04-13 2020-12-23 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. オプトエレクトロニクス用途のためのポリシロキサン製剤及びコーティング
US9809720B2 (en) * 2015-07-06 2017-11-07 University Of Massachusetts Ferroelectric nanocomposite based dielectric inks for reconfigurable RF and microwave applications
CN105070778B (zh) * 2015-08-03 2017-05-03 河南科技大学 一种基于小极化子效应的光敏电容器
CN105097992B (zh) * 2015-08-03 2017-06-16 河南科技大学 一种光敏电容器的制备方法
EP3398202B1 (en) * 2015-12-30 2023-08-09 FujiFilm Electronic Materials USA, Inc. Photosensitive stacked structure
CN109071849A (zh) * 2016-05-06 2018-12-21 沙特基础工业全球技术公司 包含在具有增强的剩余极化的聚醚酰亚胺基复合薄膜中的钛酸钡颗粒及其制备方法
TWI648298B (zh) 2018-02-08 2019-01-21 財團法人工業技術研究院 共聚物與樹脂組合物
JP7043306B2 (ja) * 2018-03-23 2022-03-29 株式会社ノリタケカンパニーリミテド 感光性組成物とその利用
CN112789166A (zh) * 2018-10-18 2021-05-11 富士胶片株式会社 转印膜、固化膜的制造方法、层叠体的制造方法、及触摸面板的制造方法
CN110476123B (zh) * 2019-01-23 2022-02-08 律胜科技股份有限公司 感光性聚酰亚胺树脂组合物及其聚酰亚胺膜
US10839992B1 (en) 2019-05-17 2020-11-17 Raytheon Company Thick film resistors having customizable resistances and methods of manufacture
WO2021153213A1 (ja) * 2020-01-30 2021-08-05 株式会社ダイセル 成形体ならびにその前駆体、製造方法および用途

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000007383A (ja) * 1998-06-22 2000-01-11 Jsr Corp 無機粒子含有組成物、転写フィルムおよびそれを用いたプラズマディスプレイパネルの製造方法
JP2000090738A (ja) * 1998-09-14 2000-03-31 Taiyo Ink Mfg Ltd 感光性ガラスペースト組成物及びそれを用いた焼成物パターン形成方法
JP2001206979A (ja) * 2000-01-25 2001-07-31 Jsr Corp 無機粒子含有樹脂組成物、転写フィルムおよびそれを用いたプラズマディスプレイパネルの製造方法
JP2001264966A (ja) * 2000-03-22 2001-09-28 Jsr Corp 無機粒子含有感光性組成物および感光性フィルム
JP2001264967A (ja) * 2000-03-22 2001-09-28 Jsr Corp 無機粒子含有感光性組成物および感光性フィルム
JP2001264973A (ja) * 2000-03-22 2001-09-28 Jsr Corp 無機粒子含有感光性組成物および感光性フィルム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3114166B2 (ja) * 1992-10-22 2000-12-04 ジェイエスアール株式会社 マイクロレンズ用感放射線性樹脂組成物
JPH07228611A (ja) * 1994-02-15 1995-08-29 Japan Synthetic Rubber Co Ltd ポリマーエマルジョン
TW367504B (en) * 1996-05-21 1999-08-21 Du Pont Photosensitive aqueous developable thick film composition employing vinylpyrrolidone polymer
KR100510815B1 (ko) * 1997-05-07 2005-10-24 제이에스알 가부시끼가이샤 무기입자의 수성분산체 및 그의 제조방법
FR2767491B1 (fr) * 1997-08-25 1999-10-01 Commissariat Energie Atomique Procede de separation d'actinides et de lanthanides par transport membranaire au moyen d'un calixarene
KR100572646B1 (ko) * 1998-07-17 2006-04-24 제이에스알 가부시끼가이샤 폴리이미드계 복합체 및 이 복합체를 사용한 전자 부품, 및 폴리이미드계 수성 분산액
WO2000014604A1 (fr) * 1998-09-09 2000-03-16 Toray Industries, Inc. Composition-precurseur de resine photosensible positive et procede de fabrication correspondant
US6146749A (en) * 1999-05-03 2000-11-14 Jsr Corporation Low dielectric composition, insulating material, sealing material, and circuit board
JP2001026416A (ja) * 1999-07-12 2001-01-30 Kansai Research Institute 粒子分散体
JP2002023351A (ja) * 2000-07-05 2002-01-23 Toray Ind Inc 感光性ペーストおよびディスプレイ用部材
US6534235B1 (en) * 2000-10-31 2003-03-18 Kansai Research Institute, Inc. Photosensitive resin composition and process for forming pattern
JP4665333B2 (ja) * 2000-11-27 2011-04-06 東レ株式会社 ポジ型感光性樹脂前駆体組成物
CN1226752C (zh) * 2001-01-29 2005-11-09 捷时雅株式会社 介电体用复合颗粒、超微颗粒复合树脂颗粒、介电体形成用组合物及其用途
DE60219830T2 (de) * 2001-06-11 2008-01-17 Fujifilm Corp. Flachdruckplattenvorläufer, Substrat dafür und hydrophiles Oberflächenmaterial
JP3757886B2 (ja) * 2002-01-25 2006-03-22 株式会社村田製作所 光反応性樹脂組成物、それを用いた回路基板およびセラミック多層基板の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000007383A (ja) * 1998-06-22 2000-01-11 Jsr Corp 無機粒子含有組成物、転写フィルムおよびそれを用いたプラズマディスプレイパネルの製造方法
JP2000090738A (ja) * 1998-09-14 2000-03-31 Taiyo Ink Mfg Ltd 感光性ガラスペースト組成物及びそれを用いた焼成物パターン形成方法
JP2001206979A (ja) * 2000-01-25 2001-07-31 Jsr Corp 無機粒子含有樹脂組成物、転写フィルムおよびそれを用いたプラズマディスプレイパネルの製造方法
JP2001264966A (ja) * 2000-03-22 2001-09-28 Jsr Corp 無機粒子含有感光性組成物および感光性フィルム
JP2001264967A (ja) * 2000-03-22 2001-09-28 Jsr Corp 無機粒子含有感光性組成物および感光性フィルム
JP2001264973A (ja) * 2000-03-22 2001-09-28 Jsr Corp 無機粒子含有感光性組成物および感光性フィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1471540A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1724640A1 (en) * 2004-03-12 2006-11-22 Toray Industries, Inc. Positive light-sensitive resin composition, relief pattern using the same, and solid imaging element
EP1724640A4 (en) * 2004-03-12 2010-04-07 Toray Industries POSITIVE LIGHT-SENSITIVE RESIN COMPOSITION, RELIEF PATTERN THEREFOR, SOLID-BODY IMAGING ELEMENT

Also Published As

Publication number Publication date
KR20040082945A (ko) 2004-09-30
TWI317135B (ja) 2009-11-11
US20040094752A1 (en) 2004-05-20
US7015256B2 (en) 2006-03-21
TW200302401A (en) 2003-08-01
EP1471540A1 (en) 2004-10-27
CN1505820A (zh) 2004-06-16
EP1471540A4 (en) 2009-09-23
CN100336137C (zh) 2007-09-05
KR100913879B1 (ko) 2009-08-26

Similar Documents

Publication Publication Date Title
WO2003065384A1 (fr) Composition pour former une matiere dielectrique photosensible, et film de transfert, matiere dielectrique et elements electroniques utilisant celle-ci
EP1755365B1 (en) Positive photosensitive insulating resin composition, cured product thereof, and electronic component
JP5447384B2 (ja) ポジ型感光性樹脂組成物、レジストパターンの製造方法及び電子部品
EP2221666A1 (en) Positive-type photosensitive resin composition, method for production of resist pattern, semiconductor device, and electronic device
TWI442184B (zh) 正型感光性樹脂組成物、光阻圖案的製造方法及電子零件
KR20110050740A (ko) 포지티브형 감광성 수지 조성물, 레지스트 패턴의 제조 방법, 반도체 장치 및 전자 디바이스
JP5904211B2 (ja) 感光性樹脂組成物、パターン硬化膜の製造方法及び電子部品
JP2012226044A (ja) ポジ型感光性樹脂組成物、レジストパターンの製造方法、半導体装置及び電子デバイス
WO2003062925A1 (fr) Composition de resine isolante photosensible positivement et objet durci obtenu de celle-ci
JP4765951B2 (ja) 絶縁膜を有する大型シリコンウエハおよびその製造方法
JP4853155B2 (ja) ポジ型感光性絶縁樹脂組成物、その硬化物および回路基板
JP4106972B2 (ja) 感光性誘電体形成用組成物、誘電体および電子部品
JP4062087B2 (ja) 感光性誘電体形成用組成物、転写フィルム、誘電体および電子部品
JP2021032916A (ja) 感光性樹脂組成物、感光性樹脂フィルム、多層プリント配線板及び半導体パッケージ、並びに多層プリント配線板の製造方法
TW201001075A (en) Structure having insulating coating film, method for producing the same, positive photosensitive resin composition and electronic device
JP2007052359A (ja) パターン形成方法、その硬化物および回路基板
JP2013152353A (ja) 感光性樹脂組成物、パターン硬化膜の製造方法、半導体装置及び電子デバイス
JP7476899B2 (ja) 感光性樹脂組成物、感光性樹脂フィルム、多層プリント配線板及び半導体パッケージ、並びに多層プリント配線板の製造方法
TW201111911A (en) Photosensitive resin composition, photosensitive resin laminate, and method for forming resist pattern
KR101075271B1 (ko) 포지티브형 감광성 수지 조성물, 레지스트 패턴의 제조방법및 전자부품
JP4565213B2 (ja) 感光性誘電体形成用組成物、転写フィルム、誘電体および電子部品
TW201839509A (zh) 感光性元件、半導體裝置及抗蝕劑圖案的形成方法
JP4565211B2 (ja) 感光性誘電体形成用組成物、誘電体および電子部品
JP2008081534A (ja) 耐熱性樹脂前駆体組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2002790898

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10472940

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020037012684

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 028089073

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002790898

Country of ref document: EP