CN105097992B - 一种光敏电容器的制备方法 - Google Patents

一种光敏电容器的制备方法 Download PDF

Info

Publication number
CN105097992B
CN105097992B CN201510465303.5A CN201510465303A CN105097992B CN 105097992 B CN105097992 B CN 105097992B CN 201510465303 A CN201510465303 A CN 201510465303A CN 105097992 B CN105097992 B CN 105097992B
Authority
CN
China
Prior art keywords
electro
dielectric materials
materials layer
capacitor device
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510465303.5A
Other languages
English (en)
Other versions
CN105097992A (zh
Inventor
王志晓
李国岭
周锋子
李立本
臧国忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Science and Technology
Original Assignee
Henan University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Science and Technology filed Critical Henan University of Science and Technology
Priority to CN201510465303.5A priority Critical patent/CN105097992B/zh
Publication of CN105097992A publication Critical patent/CN105097992A/zh
Application granted granted Critical
Publication of CN105097992B publication Critical patent/CN105097992B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

一种光敏电容器的制备方法,先将具有小极化子效应的光敏材料压制成片状后烧制成陶瓷,并制成介电材料层;然后在介电材料层的两侧设置导电银浆镀层;取两片导电玻璃并置于介电材料层两侧,使导电玻璃上的导电膜与导电银浆镀层接触,所述导电玻璃和导电银浆镀层均由透光材料制成,以便使光线能够透过导电玻璃和导电银浆镀层照射在介电材料层上,从而改变其介电常数;将介电材料层和导电玻璃固定好后置于热处理设备中升温至250—350℃进行热处理,热处理结束后降至室温即制得光敏电容器。该方法制备的光敏电容器的电容大小可以通过外部照射光线的强度来调节,可用作各类电子器件的调频部件,或者用来制作光电探测器。

Description

一种光敏电容器的制备方法
技术领域
本发明涉及一种电容器,具体的说是一种光敏电容器的制备方法。
背景技术
光电技术在国民经济、军事安全、科学研究等领域有着广泛应用。光电技术的物理基础是各种光电效应。通常,光电效应分为外光电效应和内光电效应。外光电效应指在光的照射下,金属或半导体内的电子逸出表面向外发射的现象,主要应用有光电管和光电倍增管等。内光电效应指在光的照射下,半导体内部产生电子-空穴对所引发的电效应。内光电效应比较复杂,常见的有光电导效应、光伏效应等。光电导效应的主要应用有光敏电阻、光电导摄像管等;光伏效应的主要应用有光伏电池、光(电)敏二极管、光(电)敏三极管等。
光电容效应是一种内光电效应,指在光的照射下,半导体/绝缘体的介电常数或电容常数发生变化的现象。通常条件下,多数半导体/绝缘体的光电容效应不显著。但在较强辐射条件下(如航空航天)或者某些特殊材料 (如ZnS-CdS、SrTiO3、有机聚合物)里,光电容效应非常显著[H.Kallman, B. Kramer, and A. Perlmutter, Phys. Rev. 89, 700(1953);S.Kronenberg and C.A.Accardo,Phys.Rev.101,989(1956);T.Hasegawa,S.Mouri,Y.Yamada,and K.Tanaka,J.Phys. Soc.Jpn 72,41 (2003)]。在精密电子仪器设计中,有必要考虑光电容效应的影响。例如,航空/航天仪器中的电容元件在太阳光照射下可能发生电容数值的较大改变,进而影响甚至破坏仪器的正常工作状态,因此需要对其电容元件做必要的避光防护。在太阳能光电转换领域,光电容效应也有着重要潜在应用[R.W.Glazebrook and A.Thomas, J. Chem. Soc.Faraday Trans.II78, 2053 (1982)]。
在某些特殊的氧化物半导体中,如金红石相TiO2、MnO2、WO3、BaTiO3、SrTiO3等,存在小极化子类型的载流子。所谓小极化子指半导体中电子/空穴与其周边小范围的晶格发生强烈耦合而形成的一种准粒子。在强烈的电子-声子耦合作用下,小极化子类型半导体能带边的光生电子/空穴将衰变为位于带隙中的小极化子[G.L. Li, W.X. Li, and C. Li,Phys. Rev. B 82, 235109 (2010)]。与普通半导体比较,小极化子类型半导体具有一些特殊的光电效应,如光伏效应[李国岭、李立本、王丹丹、曹京晓、王赵武,一种基于界面极化子效应的半导体太阳能电池及其制备方法,ZL201210028953.X,2014.06]。
发明内容
本发明所要解决的技术问题是提供一种光敏电容器的制备方法。
本发明为解决上述技术问题所采用的技术方案是:一种光敏电容器的制备方法,先将具有小极化子效应的光敏材料压制成片状后烧制成陶瓷,并制成介电材料层;然后在介电材料层的两侧设置导电银浆镀层;取两片导电玻璃并置于介电材料层两侧,使导电玻璃上的导电膜与导电银浆镀层接触,所述导电玻璃和导电银浆镀层均由透光材料制成,以便使光线能够透过导电玻璃和导电银浆镀层照射在介电材料层上,从而改变其介电常数;将介电材料层和导电玻璃固定好后置于热处理设备中升温至250—350℃进行热处理,热处理结束后降至室温即制得光敏电容器。
所述的具有小极化子效应的光敏材料为金红石相二氧化钛、钛酸钡或钛酸锶。
热处理时的升温速率为1—2℃/分钟。
热处理过程中升温结束后的保温时间为45—80分钟。
经研究发现,常用的介电材料如TiO2、BaTiO3 、SrTiO3等,属于小极化子类型半导体。在光照条件下,该类介电材料里的光生小极化子将显著增强其介电常数。由该类介电材料组成的电容器可作为光敏电容器,具有重要的工业应用和学术研究价值。
当入射光的能量大于半导体带隙时,半导体价带电子将被激发到导带。处于导带中的电子在声子协助下,将在10-12 s时间尺度内衰减到导带底,成为光生载流子。对于普通半导体,光生电子/空穴的寿命为10-9 s量级。对于小极化子类型的半导体,导带中的电子将停留在能量更低的小极化子能级上而非导带底。处于小极化子能级的载流子其寿命相对较长(10-3 s甚至s量级)。
介电测量的频率范围通常为102—106 Hz,对应的介电响应时间为10-6—10-2 s。因此普通半导体中光生载流子的寿命相对上述特征时间太短,如果不考虑空间电荷极化效应,光生载流子对介电常数的贡献可以忽略。但对于小极化子类型的半导体而言,其光生载流子即小极化子的寿命相对该特征时间足够长。另外,小极化子之间或者小极化子与晶格中的离子之间会形成电偶极子。在外电场作用下,这些电偶极子可以发生定向排列。因此,在小极化子类型的半导体中,光照可以提高半导体内的电偶极子浓度,进而增大介电常数。
本发明的有益效果是:提供了一种光敏电容器的制备方法,该方法制备的光敏电容器的电容大小可以通过外部照射光线的强度来调节。从而可以通过外接电路激发合适的LED光源,用LED光源产生的光来控制电容器电容的大小,可用作各类电子器件的调频部件,或者用来制作光电探测器。将介电材料层和导电玻璃复合固定后进行热处理,能够使其接触面在一定程度上软化,能够提高两者接触的紧密性,从而提高电容器的工作性能。
附图说明
图1是光敏电容器的结构示意图。
图中标记:111和121为封装层,112和122为导电层,211为介电材料层,311表示入射光方向,411为正极引线,412为负极引线。
具体实施方式
以下结合附图具体说明本发明的实施方式。
本发明所要制备的光敏电容器具有一介电材料层211,介电材料层采用具有小极化子效应的光敏材料(例如研磨纯度99.9%的多晶小极化子氧化物原料金红石相二氧化钛、钛酸钡、钛酸锶等)制成。在介电材料层211的两侧均依次设有导电层和封装层,导电层与介电材料层紧密贴合,用于连接电极和电路。封装层用于保护其中的导电层和介电材料层,并起到支撑固定的作用。为了使介电材料层能够随外界照射光强度的变化而改变介电常数,所述介电材料层一侧或两侧的导电层及封装层应该由能够透过光线的透光材料构成。例如仅一侧封装层121和导电层122为透过材料,而另一侧的封装层111和导电层112不透光,或者两侧的导电层112、122及封装层111、121均为透光材料。其具体材料可以采用导电玻璃,其中的玻璃板基体作为封装层。导电层则有导电玻璃上的导电膜和镀在介电材料层表面的导电银浆共同构成。导电银浆应选用透明型银浆,而导电玻璃上的导电膜可以是ITO、ZnO薄膜或AZO薄膜。为便于连接外部电路,在介电材料层两侧的导电层还分别连接有正极引线和负极引线。
其具体制作步骤为:(1)、先将具有小极化子效应的光敏材料加溶剂研磨后压成片状, 然后经烧制制成片状陶瓷,烧制时的技术参数可以参照现有的烧制工艺,该烧制成的片状陶瓷即为介电材料层;(2)、通过涂抹、喷涂或丝网印刷的方法在介电材料层的两侧设置导电银浆镀层;(3)、取两片导电玻璃并置于介电材料层两侧,使导电玻璃上的导电膜与导电银浆镀层接触;(4)、将介电材料层和导电玻璃固定好后置于热处理设备中升温至250—350℃进行热处理,热处理结束后降至室温即制得光敏电容器。
在上述制备方法中,由于烧制成的介电材料层表面难免会凹凸不平,通过设置导电银浆镀层能够形成平整的表面,利于导电玻璃与其紧密接触。而采用热处理的方法能够使其接触面在一定程度上软化,能够进一步提高两者接触的紧密性,从而提高电传导的可靠性及电容器的工作性能。热处理过程中,升温速率可以为1—2℃/分钟,升温结束后的保温45—80分钟即可停火并自然冷却至室温。正极引线和负极引线可以在导电玻璃与介电材料层复合之前或复合后连接在导电膜或导电银浆上。

Claims (4)

1.一种光敏电容器的制备方法,其特征在于:所述光敏电容器的电容大小可以通过外部照射光线的强度来调节,先将具有小极化子效应的光敏材料压制成片状后烧制成陶瓷,并制成介电材料层;然后在介电材料层的两侧设置导电银浆镀层;取两片导电玻璃并置于介电材料层两侧,使导电玻璃上的导电膜与导电银浆镀层接触,所述导电玻璃和导电银浆镀层均由透光材料制成,以便使光线能够透过导电玻璃和导电银浆镀层照射在介电材料层上,从而改变其介电常数;将介电材料层和导电玻璃固定好后置于热处理设备中升温至250—350℃进行热处理,热处理结束后降至室温即制得光敏电容器。
2.如权利要求1所述的一种光敏电容器的制备方法,其特征在于:所述的具有小极化子效应的光敏材料为金红石相二氧化钛、钛酸钡或钛酸锶。
3.如权利要求1所述的一种光敏电容器的制备方法,其特征在于:热处理时的升温速率为1—2℃/分钟。
4.如权利要求1所述的一种光敏电容器的制备方法,其特征在于:热处理过程中升温结束后的保温时间为45—80分钟。
CN201510465303.5A 2015-08-03 2015-08-03 一种光敏电容器的制备方法 Expired - Fee Related CN105097992B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510465303.5A CN105097992B (zh) 2015-08-03 2015-08-03 一种光敏电容器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510465303.5A CN105097992B (zh) 2015-08-03 2015-08-03 一种光敏电容器的制备方法

Publications (2)

Publication Number Publication Date
CN105097992A CN105097992A (zh) 2015-11-25
CN105097992B true CN105097992B (zh) 2017-06-16

Family

ID=54578011

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510465303.5A Expired - Fee Related CN105097992B (zh) 2015-08-03 2015-08-03 一种光敏电容器的制备方法

Country Status (1)

Country Link
CN (1) CN105097992B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110828177B (zh) * 2019-10-28 2021-10-01 宁波大学 一种基于卤化物钙钛矿的光敏电容器及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2985757A (en) * 1956-10-05 1961-05-23 Columbia Broadcasting Syst Inc Photosensitive capacitor device and method of producing the same
CN1505820A (zh) * 2002-01-28 2004-06-16 捷时雅株式会社 形成光敏电介体的组合物,以及利用该组合物的贴花薄膜、电介体和电子元件
CN101777423A (zh) * 2010-03-16 2010-07-14 彩虹集团公司 一种环保型陶瓷电容器用电极银浆的浆制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2985757A (en) * 1956-10-05 1961-05-23 Columbia Broadcasting Syst Inc Photosensitive capacitor device and method of producing the same
CN1505820A (zh) * 2002-01-28 2004-06-16 捷时雅株式会社 形成光敏电介体的组合物,以及利用该组合物的贴花薄膜、电介体和电子元件
CN101777423A (zh) * 2010-03-16 2010-07-14 彩虹集团公司 一种环保型陶瓷电容器用电极银浆的浆制备方法

Also Published As

Publication number Publication date
CN105097992A (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
Sun et al. Ultrahigh‐performance self‐powered flexible double‐twisted fibrous broadband perovskite photodetector
Li et al. Near-infrared and ultraviolet to visible photon conversion for full spectrum response perovskite solar cells
Miyasaka Perovskite photovoltaics: rare functions of organo lead halide in solar cells and optoelectronic devices
Yang et al. High efficiency flexible perovskite solar cells using superior low temperature TiO 2
Cao et al. Stability enhancement of lead‐free CsSnI3 perovskite photodetector with reductive ascorbic acid additive
Cao et al. High-performance UV–vis photodetectors based on electrospun ZnO nanofiber-solution processed perovskite hybrid structures
Casaluci et al. A simple approach for the fabrication of perovskite solar cells in air
Xu et al. Tuning the Fermi level of TiO2 electron transport layer through europium doping for highly efficient perovskite solar cells
KR101359663B1 (ko) 극단파 백색광 조사법을 이용한 반도체 산화물의 광소결 방법
CN104465994A (zh) 一种基于全涂布工艺的钙钛矿太阳能电池的制备方法
US11094884B2 (en) Rapid metal oxide layer-specific photonic treatment using UV LED for fabrication of flexible perovskite structures
Gujar et al. Highly Reproducible and Efficient Perovskite Solar Cells with Extraordinary Stability from Robust CH3NH3PbI3: Towards Large‐Area Devices
CN105576134A (zh) 一种双介孔层钙钛矿太阳能电池及其制备方法
De Rossi et al. An interlaboratory study on the stability of all‐printable hole transport material–free perovskite solar cells
EP2716855A1 (en) Glass sheet for window
Hooper et al. Near infrared radiation as a rapid heating technique for TiO 2 films on glass mounted dye-sensitized solar cells
CN105870360A (zh) 一种钙钛矿太阳能电池及其制备方法
Tao et al. Efficiency enhancement of perovskite solar cells by forming a tighter interface contact of C/CH3NH3PbI3
Onwona-Agyeman et al. Preparation and characterization of sputtered aluminum and gallium co-doped ZnO films as conductive substrates in dye-sensitized solar cells
CN105097992B (zh) 一种光敏电容器的制备方法
JP2012146706A (ja) 紫外線センサー素子
Ahmad et al. Encapsulation protocol for flexible perovskite solar cells enabling stability in accelerated aging tests
CN105070778B (zh) 一种基于小极化子效应的光敏电容器
Abdalla et al. TiCl4 surface-treated SnO2 photoanodes for self-powered UV photodetectors and dye-sensitized solar cells
CN105047412B (zh) 一种光控可变电容器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170616

Termination date: 20180803

CF01 Termination of patent right due to non-payment of annual fee