CN107819044A - 一种硫化锑基光电探测器的制备方法 - Google Patents

一种硫化锑基光电探测器的制备方法 Download PDF

Info

Publication number
CN107819044A
CN107819044A CN201711002158.2A CN201711002158A CN107819044A CN 107819044 A CN107819044 A CN 107819044A CN 201711002158 A CN201711002158 A CN 201711002158A CN 107819044 A CN107819044 A CN 107819044A
Authority
CN
China
Prior art keywords
film
preparation
deposition
antimony trisulfide
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711002158.2A
Other languages
English (en)
Other versions
CN107819044B (zh
Inventor
谭新玉
肖业权
朱宏伟
李昌黎
张礼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Three Gorges University CTGU
Original Assignee
China Three Gorges University CTGU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Three Gorges University CTGU filed Critical China Three Gorges University CTGU
Priority to CN201711002158.2A priority Critical patent/CN107819044B/zh
Publication of CN107819044A publication Critical patent/CN107819044A/zh
Application granted granted Critical
Publication of CN107819044B publication Critical patent/CN107819044B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • H01L31/1085Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type the devices being of the Metal-Semiconductor-Metal [MSM] Schottky barrier type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

本发明涉及了一种硫化锑基可见光光电探测器的制备方法,属于无机非金属材料器件制造工艺领域,首先采用溶胶‑凝胶法在FTO上制备一层致密的二氧化钛薄膜;二氧化钛薄膜经过退火后使用热蒸镀沉积硫化锑(Sb2S3)薄膜;然后使用硫代乙酰胺对硫化锑薄膜进行表面硫化同时进行退火处理;最后将化学气相沉积(CVD)法生长的石墨烯薄膜(Gr)转移到硫化锑薄膜上,形成TiO2/Sb2S3/Gr薄膜结构的可见光探测器,为制作高性能的可见光探测器提供了新的方法。该光电探测器可以在可见光有很高的响应且对不同波长的可见光具有不同的响应电流,同时随入射光强的增加响应电流线性增加。

Description

一种硫化锑基光电探测器的制备方法
技术领域
本发明涉及一种硫化锑基光电探测器及其制备方法,属于无机非金属材料器件制造工艺领域。
技术背景
可见光探测器在军事和国民经济的各个领域有广泛用途。在可见光探测器基本上使整个近红外波带上的垂直入射光反射,并且基本上使整个可见光波长范围内的垂直入射光透射。在可见光或近红外波段主要用于射线测量和探测、工业自动控制、光度计量等。
硫化锑(Sb2S3)是一种性质稳定的Ⅴ-Ⅵ族直接带隙半导体材料,地壳中含量丰富、安全无毒。由于Sb2S3具有较高的光吸收系数(α >5×104 cm-1),并且带隙宽度适中、易于调控(1.5~2.2 eV),覆盖了大部分可见光光谱。在过去十年里Sb2S3作为光电探测器主要集中于电阻型光电探测器。由于墨烯具有优异的导电性、超高的本征载流子迁移率、对可见光及红外光高的透明性,本专利采用石墨烯作为空穴传输层以及透明导电电极与硫化锑薄膜构成光伏型光电探测器。相较普通的电阻型光电探测器具有更高的响应电流与更快的响应速度。同时,由于石墨烯的功函数与硫化锑的能带结构能有较好的匹配,可获得较大开路光电压使得器件吸光产生的电子与空穴能够在无外电压的情况下快速分离,从而形成自供电光电探测器。
发明内容
本发明的目的是以硫化锑作为吸光材料,吸收光能产生电子-空穴,电子经n-TiO2传输到外电路,而空穴经石墨烯薄膜传输到外电路。其中石墨烯薄膜作为空穴传输层及透明导电电极。本发明所提供了一种硫化锑基光电探测器及其制备方法。
一种硫化锑基光电探测器及其制备方法,其特征在于具有以下的工艺过程和步骤:
(1)衬底预处理:掺杂氟的SnO2透明导电玻璃(FTO)(~7 Ω·sq)作为衬底,用去离子水、乙醇和丙酮分别超声清洗5-15 分钟,洗去表面的杂质与有机物,随后用去离子水冲洗干净并氩气吹干后备用;
(2)TiO2薄膜的制备:首先配置0.5mol/L 的四异丙醇钛乙醇溶液2.5mL,其中四异丙醇钛的纯度为99.8%;同时配置2.5mL 0.04-0.06mol/L 的盐酸乙醇溶液;然后将两种溶液混合均匀后,旋涂到洗净的FTO 上,旋涂前用高温胶带粘住FTO 边缘0.2cm 作为器件的背电极;最后将带有二氧化钛前驱体的FTO 放入管式电阻炉中,在400-600oC 下空气中退火30-50min;
(3)Sb2S3薄膜的制备:采用热蒸镀法在FTO/TiO2沉积硫化锑薄膜,在沉积前将装置真空室的压强抽至低于10-4 Pa;通过调节加热电流来控制样品沉积速度,沉积速度控制在10~30 nm/s,硫化锑薄膜的沉积厚度为200~500nm(通过振晶片控制);在沉积的硫化锑薄膜表面旋涂0.001g/mL~0.1g/mL的硫代乙酰胺(TA)DMF溶液,然后在氩气氛围中退火30~60min,退火温度为200~400 ℃;
(4)石墨烯的生长:使用化学气相沉积法(CVD)生长石墨烯薄膜,将铜箔在氩气气氛中从室温加热到900-1200℃,在900-1200℃条件下通入氢气,退火30~40 min分钟后,再通入氩气(200~400 mL/min)、氢气(30~50 mL/min)、甲烷(10~20 mL/min)的混合气体,反应10~30 min,再在氩气保护下,降温至室温,将生长了石墨烯的铜箔用硝酸铁溶液刻蚀后用去离子水清洗,得到石墨烯备用;
(5)光电探测器的组装:将(4)中生长的石墨烯薄膜转移到(3)中制备的硫化锑薄膜上,然后用银胶、银线做为电极,得到TiO2/Sb2S3/Gr光电探测器。
附图说明:
图1:本发明的TiO2/Sb2S3/Gr光电探测器的结构示意图。
图2:本发明的TiO2/Sb2S3/Gr光电探测器在零偏压,入射光强为200 μW/cm2,不同可见光波长的I-t 曲线。
图3:本发明的TiO2/Sb2S3/Gr光电探测器在零偏压,入射光波长为600 nm,不同光强的I-t 曲线。
图4:本发明的TiO2/Sb2S3/Gr光电探测器在零偏压,入射光波长为600 nm,入射光强为200 μW/cm2 的电流上升时间与恢复时间。
具体实施方式:
现将本发明的具体实施例叙述于后。
实施例1
本实施例的制备过程和步骤如下:
(1)衬底预处理:掺杂氟的SnO2透明导电玻璃(FTO)(~7 Ω·sq)作为衬底,用去离子水、乙醇和丙酮分别超声清洗5-15 分钟,洗去表面的杂质与有机物,随后用去离子水冲洗干净并氩气吹干后备用;
(2)TiO2薄膜的制备:首先配置0.5mol/L 的四异丙醇钛乙醇溶液2.5mL,其中四异丙醇钛的纯度为99.8%;同时配置2.5mL 0.04mol/L 的盐酸乙醇溶液;然后将两种溶液混合均匀后,旋涂到洗净的FTO 上,旋涂前用高温胶带粘住FTO 边缘0.2cm 作为电池背电极;最后将带有二氧化钛前驱体的FTO 放入管式电阻炉中,在500oC 下空气中退火60min;
(3)Sb2S3薄膜的制备:采用热蒸镀法在FTO/TiO2沉积硫化锑薄膜,在沉积前将装置真空室的压强抽至5x10-4 Pa以下;通过调节加热电流来控制样品沉积速度,沉积速度控制在20nm/s,硫化锑薄膜沉积的厚度为300 nm(通过振晶片控制);在沉积的硫化锑薄膜表面旋涂0.01g/mL的硫代乙酰胺(TA)DMF溶液,然后在氩气氛围中退火45 min,退火温度为325 ℃;
(4)石墨烯的生长:使用化学气相沉积法(CVD)生长石墨烯薄膜,将铜箔在氩气气氛中从室温加热到1000 ℃,在1000 ℃条件下通入氢气,退火30~40 min分钟后,再通入氩气(300 mL/min)、氢气(30 mL/min)、甲烷(20 mL/min)的混合气体,反应30 min,再在氩气保护下,降温至室温,将生长了石墨烯的铜箔用硝酸铁溶液刻蚀后用去离子水清洗,得到石墨烯备用;
(5)光电探测器的组装:将(4)中生长的石墨烯薄膜转移到(3)中制备的硫化锑薄膜上,然后用银胶、银线做为电极,得到TiO2/Sb2S3/Gr光电探测器。

Claims (4)

1.一种硫化锑基光电探测器的制备方法,其特征在于,具有以下的工艺过程和步骤:
(1)衬底预处理:掺杂氟的SnO2透明导电玻璃作为衬底,用去离子水、乙醇和丙酮分别超声清洗5-15 分钟,随后用去离子水冲洗干净并氩气吹干后备用;
(2)TiO2薄膜的制备:将四异丙醇钛乙醇溶液与盐酸乙醇溶液混合均匀后,旋涂到洗净的FTO 上,最后将带有二氧化钛前驱体的FTO 放入管式电阻炉中,在400-600oC下空气中退火30-50min;
(3)Sb2S3薄膜的制备:采用热蒸镀法在FTO/TiO2沉积硫化锑薄膜,再在沉积的硫化锑薄膜表面旋涂硫代乙酰胺DMF溶液,然后在氩气氛围中退火30~60 min,退火温度为200~400℃;
(4)石墨烯的生长:使用化学气相沉积法(CVD)生长石墨烯薄膜,将铜箔在氩气气氛中从室温加热到900-1200 ℃,在900-1200 ℃条件下通入氢气,退火30~40 min分钟后,再通入氩气、氢气、甲烷的混合气体,反应10~30 min,再在氩气保护下,降温至室温,将生长了石墨烯的铜箔用硝酸铁溶液刻蚀后用去离子水清洗,得到石墨烯备用;
(5)光电探测器的组装:将(4)中生长的石墨烯薄膜转移到(3)中制备的硫化锑薄膜上,然后用银胶、银线做为电极,得到TiO2/Sb2S3/Gr光电探测器。
2.权利要求1所述的硫化锑基光电探测器的制备方法,其特征在于,所述的步骤(3)中,采用热蒸镀法在FTO/TiO2沉积硫化锑薄膜,在沉积前将装置真空室的压强抽至5x10-4 Pa以下;通过调节加热电流来控制样品沉积速度,沉积速度控制在10~30 nm/s,硫化锑薄膜沉积的厚度为200~500nm。
3.权利要求1所述的硫化锑基光电探测器的制备方法,其特征在于,硫代乙酰胺DMF溶液的浓度为0.001g/mL~0.1g/mL。
4.权利要求1所述的硫化锑基光电探测器的制备方法,其特征在于,步骤(4)中,通入氩气、氢气、甲烷的混合气体中,氩气的通入速度为300 mL/min、氢气的通入速度为30~50mL/min、甲烷的通入速度为10~20 mL/min。
CN201711002158.2A 2017-10-24 2017-10-24 一种硫化锑基光电探测器的制备方法 Active CN107819044B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711002158.2A CN107819044B (zh) 2017-10-24 2017-10-24 一种硫化锑基光电探测器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711002158.2A CN107819044B (zh) 2017-10-24 2017-10-24 一种硫化锑基光电探测器的制备方法

Publications (2)

Publication Number Publication Date
CN107819044A true CN107819044A (zh) 2018-03-20
CN107819044B CN107819044B (zh) 2019-08-23

Family

ID=61608450

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711002158.2A Active CN107819044B (zh) 2017-10-24 2017-10-24 一种硫化锑基光电探测器的制备方法

Country Status (1)

Country Link
CN (1) CN107819044B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110137272A (zh) * 2019-05-14 2019-08-16 西北工业大学深圳研究院 一种醇蒸汽后退火处理硫化锑基薄膜的太阳能电池的制备方法
CN110379874A (zh) * 2019-07-25 2019-10-25 中国科学技术大学 一种太阳能薄膜电池及其制备方法
CN114156363A (zh) * 2021-09-28 2022-03-08 福州大学 一种硫化锑光电晶体管及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120100051A (ko) * 2011-03-02 2012-09-12 한국화학연구원 무기 반도체 감응형 광전소자
WO2012156723A1 (en) * 2011-05-16 2012-11-22 Isis Innovation Limited Optoelectronic device
CN103367512A (zh) * 2013-06-27 2013-10-23 中国科学院等离子体物理研究所 一种基于无机体异质结的太阳电池及其制备方法
CN105289657A (zh) * 2015-11-30 2016-02-03 湘潭大学 石墨烯-硫化锑纳米棒复合可见光催化剂的制备方法
CN105789444A (zh) * 2016-01-29 2016-07-20 杭州众能光电科技有限公司 一种基于真空蒸发镀膜法的钙钛矿太阳能电池及其制备方法
CN107093641A (zh) * 2017-04-26 2017-08-25 中国科学院合肥物质科学研究院 一种基于无机平板异质结的薄膜太阳电池及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120100051A (ko) * 2011-03-02 2012-09-12 한국화학연구원 무기 반도체 감응형 광전소자
WO2012156723A1 (en) * 2011-05-16 2012-11-22 Isis Innovation Limited Optoelectronic device
CN103367512A (zh) * 2013-06-27 2013-10-23 中国科学院等离子体物理研究所 一种基于无机体异质结的太阳电池及其制备方法
CN105289657A (zh) * 2015-11-30 2016-02-03 湘潭大学 石墨烯-硫化锑纳米棒复合可见光催化剂的制备方法
CN105789444A (zh) * 2016-01-29 2016-07-20 杭州众能光电科技有限公司 一种基于真空蒸发镀膜法的钙钛矿太阳能电池及其制备方法
CN107093641A (zh) * 2017-04-26 2017-08-25 中国科学院合肥物质科学研究院 一种基于无机平板异质结的薄膜太阳电池及其制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHOI, YC ET AL.: "Highly Improved Sb2S3 Sensitized-Inorganic-Organic Heterojunction Solar Cells and Quantification of Traps by Deep-Level Transient Spectroscopy", 《DVANCED FUNCTIONAL MATERIALS》 *
HUI DENG ET AL.: "Efficient and stable TiO2/Sb2S3 planar solar cells from absorber crystallization and Se-atmosphere annealing", 《MATERIALS TODAY ENERGY》 *
LI, XM ET AL.: "Graphene-On-Silicon Schottky Junction Solar Cells", 《ADVANCED MATERIALS》 *
MAYON, YO ET AL.: "Evaporated and solution deposited planar Sb2S3 solar cells: A comparison and its significance", 《PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE》 *
ZIMMERMANN, E ET AL.: "Toward High-Efficiency Solution-Processed Planar Heterojunction Sb2S3 Solar Cells", 《ADVANCED SCIENCE》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110137272A (zh) * 2019-05-14 2019-08-16 西北工业大学深圳研究院 一种醇蒸汽后退火处理硫化锑基薄膜的太阳能电池的制备方法
CN110137272B (zh) * 2019-05-14 2020-10-27 西北工业大学深圳研究院 一种醇蒸汽后退火处理硫化锑基薄膜的太阳能电池的制备方法
CN110379874A (zh) * 2019-07-25 2019-10-25 中国科学技术大学 一种太阳能薄膜电池及其制备方法
CN114156363A (zh) * 2021-09-28 2022-03-08 福州大学 一种硫化锑光电晶体管及其制备方法
CN114156363B (zh) * 2021-09-28 2024-04-30 福州大学 一种硫化锑光电晶体管及其制备方法

Also Published As

Publication number Publication date
CN107819044B (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
CN103346199B (zh) 基于单层石墨烯/氧化锌纳米棒阵列肖特基结的紫外光电探测器及其制备方法
Cao et al. High-performance UV–vis photodetectors based on electrospun ZnO nanofiber-solution processed perovskite hybrid structures
CN103280484B (zh) p-型石墨烯薄膜/n-型Ge肖特基结近红外光电探测器及其制备方法
CN105742394B (zh) 一种基于黑磷/石墨烯异质结构的紫外探测器及其制备方法
CN106449985B (zh) 一种具有石墨烯阻挡层的钙钛矿电池及制备方法
Cao et al. Novel perovskite/TiO 2/Si trilayer heterojunctions for high-performance self-powered ultraviolet-visible-near infrared (UV-Vis-NIR) photodetectors
CN107819044B (zh) 一种硫化锑基光电探测器的制备方法
CN107369763A (zh) 基于Ga2O3/钙钛矿异质结的光电探测器及其制备方法
Liu et al. Polycrystalline perovskite CH3NH3PbCl3/amorphous Ga2O3 hybrid structure for high-speed, low-dark current and self-powered UVA photodetector
CN107195787A (zh) 基于石墨烯电极和钙钛矿吸光层的自驱动光电探测器及其制备方法
CN103956402B (zh) 一种自驱动高速肖特基结近红外光电探测器及其制备方法
CN105280749A (zh) 基于石墨烯薄膜的光电探测器及其制备方法
CN108615784A (zh) 一种玻璃纤维基自供电柔性氧化锡/氧化镓异质结薄膜紫外探测器及其制备方法
CN109755342A (zh) 一种直接型x射线探测器及其制备方法
CN108039412A (zh) 一种硫化复合电子传输层结构的钙钛矿太阳能电池
CN107968135B (zh) 非制冷型红外光探测器及其制备方法
Bazargan et al. High-performance transparent ultraviolet photodetector based on thermally reduced graphene oxide and ZnO thin films
CN106601858A (zh) 一种基于纳米ZnO‑rGO复合材料的光电导型紫外探测器及其制备方法
CN107863401B (zh) 一种硫化锑基全无机薄膜太阳能电池的制备方法
CN107768522A (zh) 一种以石墨烯作为导电材料的钙钛矿薄膜太阳能电池及其制备方法
CN111883668B (zh) 一种基于电荷窄化吸收效应的光电探测器及其制备方法
CN109713050B (zh) 一种石墨烯-ZnO复合材料及其制备方法和紫外探测器
CN108428753A (zh) 半透明薄膜太阳电池及其制备方法
CN107403847A (zh) 一种二维层状二硫化钼薄膜的光探测器及制备方法
CN207572402U (zh) 一种以石墨烯作为导电材料的钙钛矿薄膜太阳能电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant