WO2003059816A1 - HIGHLY PURE ULTRA-FINE SiOX POWDER AND METHOD FOR PRODUCTION THEREOF - Google Patents

HIGHLY PURE ULTRA-FINE SiOX POWDER AND METHOD FOR PRODUCTION THEREOF Download PDF

Info

Publication number
WO2003059816A1
WO2003059816A1 PCT/JP2003/000158 JP0300158W WO03059816A1 WO 2003059816 A1 WO2003059816 A1 WO 2003059816A1 JP 0300158 W JP0300158 W JP 0300158W WO 03059816 A1 WO03059816 A1 WO 03059816A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
powder
oxidizing gas
monosilane
amount
Prior art date
Application number
PCT/JP2003/000158
Other languages
English (en)
French (fr)
Inventor
Yasuo Imamura
Ryozo Nonogaki
Original Assignee
Denki Kagaku Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo Kabushiki Kaisha filed Critical Denki Kagaku Kogyo Kabushiki Kaisha
Priority to AU2003201860A priority Critical patent/AU2003201860A1/en
Priority to EP03700523.8A priority patent/EP1464621A4/en
Priority to US10/500,737 priority patent/US7585480B2/en
Publication of WO2003059816A1 publication Critical patent/WO2003059816A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/724Halogenide content

Definitions

  • the present invention relates to a high-purity ultra-fine S i Ox powder used for an interlayer insulating film of a semiconductor, a gas barrier film, a protective film of an optical component, and the like. It relates to the manufacturing method. Background art
  • S i Ox powder is used as a deposition material for forming a deposition film of a S i O x film on food packaging films and optical components.
  • it is used as a raw material for forming a gas barrier film composed of a SiOx film on a food packaging film in order to prevent the permeation of water vapor and oxygen gas to prevent food deterioration.
  • a mixed raw material containing silica, metallic silicon, and / or carbon is subjected to high temperature treatment in a non-nitriding atmosphere of at least 8 ⁇ 10 4 Pa or more, and the SiO 2 containing gas is treated. to produce a method for cooling it 1000 / sec in the following cooling rate (JP 2001- 158613 JP), by heating the S i 0 2 powder in incomplete combustion flame to generate S i steam, A method of sub-oxidizing it (Japanese Patent Application Laid-Open No. 5-213606) and the like are known.
  • oxidizing gas monosilane gas is oxygen, air, N0 2, A process according to C_ ⁇ 2 or H 2 0 (4) or (5).
  • FIG 1 Schematic diagram of the reactor used in the examples of the present invention
  • the use of monosilane gas as a raw material enables a low-temperature reaction, so that the contamination of impurities from furnace materials as in the conventional method can be reduced to the utmost. As a result, high purity and ultra-fine pulverization of the resulting SiO x powder can be achieved.
  • a commercially available product can be used as the monosilane (SiH 4 ) gas.
  • Monosilane gas is superior to silane-based gas such as trichlorosilane in that it does not contain chlorine.
  • monosilane oxidizing gas hereinafter, simply referred to as. "Oxidizing gas" as an oxygen gas, in addition to the air, for example, N 0 2 with oxidizing respect monosilane, C 0 2, H 2 0 Etc. can be used.
  • These oxidizing gases preferably have impurities removed to the utmost.
  • the reaction between the monosilane gas and the oxidizing gas is performed at a temperature of 500 to 100 ° C. in a non-oxidizing gas atmosphere at a pressure of 10 to 100 kPa. If the pressure is less than 10 kPa, the generated Si ⁇ x film adheres to and grows on the wall of the reaction vessel, blocking the discharge part, making long-term operation difficult. On the other hand, when the pressure exceeds 100 kPa, large-scale equipment is required to increase the pressure resistance of the reaction apparatus, and impurities tend to increase.
  • the preferred pressure is between 50 and 300 kPa.
  • reaction temperatures are from 550 to 950, particularly preferably from 650 to 850C.
  • the reaction time is preferably from 0.2 to 1 second.
  • the reaction between the monosilane gas and the oxidizing gas is performed in the presence of a non-oxidizing gas.
  • a non-oxidizing gas an inert gas such as argon or helium is optimal, but H 2 , N 2 , NH 3 , CO, etc. may be used as long as the reaction is not hindered.
  • air the air contains a N 2 and 0 2, will be used both oxidizing gas and non-oxidizing gas.
  • the amount of the non-oxidizing gas is preferably larger than the total amount of the monosilane gas and the amount of oxygen that contributes to the oxidation reaction of the oxidizing gas, and the molar ratio is 2 times or more, especially 10 times or more. It is preferred that Here, the amount of oxygen participates in the oxidation reaction of the oxidizing gas was example if it the air is the amount of oxygen contained therein, N0 2 and in the case of C0 2, its oxygen atom liberated from this an oxygen amount of one minute, in the case of H 2 0 Further, it is the oxygen content of the oxygen atoms fraction to configure.
  • reaction vessel made of a high-purity material such as quartz glass.
  • the shape may be a cup shape with a bottom, but a tubular shape is preferred, and the orientation may be either vertical installation or horizontal installation.
  • heating method of the reaction vessel means such as a resistance heating heating element, high frequency heating, infrared radiation heating and the like can be used.
  • the SiO x powder generated in the reaction vessel is discharged out of the system together with the non-oxidizing gas and by-product gas, and is recovered from a powder recovery device such as a bag filter.
  • Siox powders having different X values in Siox are produced. If the X value of the SiO x powder of the present invention is out of the range of 0.6 to 1.8, the deposition rate is lowered, and it is necessary to increase the deposition temperature, which is not desirable. Preferred X values are 0.9 to 1.6.
  • the X value is obtained by measuring the molar amount of Si in the SiO 2 powder in accordance with JIS-R 6124 (chemical analysis of silicon carbide abrasives), and measuring the molar amount of oxygen with an OZN simultaneous analyzer (for example, LECO "TC-136")) and can be calculated from their molar ratios.
  • the specific surface area of the high-purity ultra-fine S i Ox powder of the present invention is 10 m 2 Zg or more. If the specific surface area is less than 10 m 2 Zg, the deposition start temperature will be low.
  • the preferred specific surface area is at least 50 m 2 Zg, particularly preferably 55 to: L 00 m 2 / g.
  • the total content of Na, Fe, A 1 and C 1 in the S i OX powder is 10 ppm or less. If the total content of Na, Fe, A1 and C1 exceeds 10 ppm, it causes insulation failure and corrosion when used as an interlayer insulating film or a negative electrode active material of a lithium ion battery.
  • the total content is preferably 5 ppm or less, particularly preferably 3 ppm or less. These impurities can be measured by an emission spectrometry such as ICP.
  • the Siox powder preferably has a weight average particle size of preferably 1 to 300 nm, particularly preferably 1 to 50 nm.
  • the high-purity ultra-fine powder S i Ox powder of the present invention is used for interlayer insulating films of semiconductor devices, These are vapor deposition materials for forming gas barrier films for batteries, gas barrier films for food packaging films, and protective films for optical components.
  • the reaction vessel 1 is heated so as to maintain a predetermined reaction temperature (see Table 1) by energizing a nichrome wire heater 2 having its outer periphery wound.
  • the temperature was adjusted by measuring the temperature with a thermocouple installed at the center of the center of the reaction vessel and controlling the power of the nichrome wire heater.
  • the pressure in the reaction vessel was set at 100 ⁇ 10 kPa, which was almost equal to that under the atmospheric pressure.
  • the pressure reduction below the atmospheric pressure in the reaction vessel was performed by adjusting the opening of the valve while reducing the pressure with a vacuum pump provided on the discharge side.
  • Pressurization exceeding atmospheric pressure was performed in a double structure by covering a stainless steel container on the outside of the reaction container. At this time, a fibrous heat insulating material is embedded between the nichrome wire heater and the stainless steel, and argon gas is introduced between the reaction vessel and the stainless steel vessel so that the pressure inside the reaction vessel becomes equal to that of the reaction vessel.
  • the gas pressure inside and outside was balanced.
  • the generated SiO x powder was discharged from the discharge pipe 5 together with the by-product gas and the argon gas, and recovered by a bag filter provided on the way.
  • the X value, specific surface area, and impurities of the SiO x powder were measured. Table 1 shows the results.
  • Comparative Example 3 In Comparative Example 3 in which the pressure in the reaction vessel was 5 kPa, only a small amount of the product could be recovered, and most of the product adhered to the outlet of the reaction vessel. Further, the color tone of the recovered product was white compared to the light brown or brown color obtained in the examples. On the other hand, in Comparative Example 4 in which the pressure in the reaction vessel was increased to 1200 kPa, the desired specific surface area and purity could not be obtained.
  • Non-oxidizing gas ratio (argon gas amount) / (monosilane gas amount + oxygen gas amount)
  • the high-purity ultra-fine Siox powder of the present invention can be used as a vapor deposition material for producing interlayer insulating films for semiconductors, plastic liquid crystal panels, gas barrier films for amorphous solar cells, gas barrier films for food packaging films, and the like. It can be used as a negative electrode active material of an ion battery. According to the production method of the present invention, the high-purity ultra-fine S i Ox powder can be easily produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Silicon Compounds (AREA)

Description

明 細 書 高純度 ·超微粉 S i Ox粉及びその製造方法 技術分野 . 本発明は、 半導体の層間絶縁膜、 ガスバリア膜、 光学部品の保護膜等に用いる 高純度 ·超微粉 S i Ox粉及びその製造方法に関する。 背景技術
S i Ox粉はその高い蒸気圧を利用し、 食品包装用フィルムや光学部品に S i Ox膜の蒸着膜を形成させるための蒸着原料として用いられている。 たとえば、 水蒸気、 酸素ガスの透過を防止して食品の劣化を防ぐため、 食品包装用フィルム に S i Ox膜からなるガスバリア膜を形成する原料に用いられている。
従来、 S i Ox粉の製造方法としては、 シリカと金属シリコン及び 又は炭素 とを含む混合原料を、 少なくとも 8 X 104 P a以上の非窒化性雰囲気下で高温 処理して S i O含有ガスを生成させ、 それを 1000 /秒以下の冷却速度で冷 却する方法 (特開 2001— 158613号公報) 、 S i 02粉末を不完全燃焼 炎中で加熱して S i蒸気を発生させ、 それを亜酸化する方法 (特開平 5— 213 606号公報) 等、 が知られている。
このような従来法で S i Ox粉の高純度化を行うには、 原料の調製から製品の 捕集までの間に不純物が混入しないようなにしなければならない。 しかしながら 、 原料の高純度化には精製等の特殊処理が必要となる問題がある。 また、 原料を 加熱して S i O蒸気又は S i蒸気を発生させるには、 1500〜 2000°C程度 での高温操作が必要となる。 この場合、 たとえ、 高純度原料を用いても、 炉材等 から Na, A 1 , Mg, C a, Fe等の不純物が混入し、 高純度 S i〇x粉を製 造することが困難である。 発明の開示
本発明は、 上記状況に鑑み、 高純度 ·超微粉 S i Ox粉を提供することを目的 とする。 該目的は、 以下の要旨を有する本発明によって達成することができる。 (1) 式、 S i Ox (x=0. 6〜: L. 8) で表わされ、 比表面積が 10 m2 g以上であり、 かつ Na、 Fe、 A 1および C 1の合計の含有量が 10 p p m以 下であることを特徴とする高純度 ·超微粉状の S i Ox粉。
(2) 式、 S i Ox (x = 0. 9〜: L. 6) で表わされる (1) に記載の S i O X粉。
(3) 比表面積が 50m2Zg以上であり、 かつ Na、 Fe、 A 1および C 1の 合計含有量が 5 p pm以下である (1) または (2) に記載の S i Ox粉。
(4) モノシランガスとモノシランガスの酸化性ガスとを、圧力 10〜1000 kP aの非酸化性ガス雰囲気下で、 温度 500〜1000°Cで反応させることを 特徴とする (1) 〜 (3) のいずれかに記載の高純度 ·超微粉状の S i Ox粉の 製造方法。
(5) 非酸化性ガスの量が、 モノシランガス量とモノシランガスの酸化性ガスの 酸化反応に与る酸素量との合計量よりも、 モル比で 2倍以上である (4) に記載 の製造方法。
(6) モノシランガスの酸化性ガスが酸素、 空気、 N02、 C〇2または H20で ある (4) または (5) に記載の製造方法。
(7) 非酸化性ガスが、 アルゴンまたはヘリウムである (4)、 (5) または(6) に記載の製造方法。
( 8 ) 圧力 50〜300 kP aの非酸化ガス雰囲気下で、 かつ温度 500〜 10 00°Cで反応させる (4) 〜 (7) のいずれかに記載の製造方法。
(9) 上記 (1) 〜 (3) のいずれかに記載の S i Ox粉から形成された半導体 装置の層間絶縁膜、 太陽電池のガスパリア膜、 食品包装用フィルムのガスバリア 膜または光学部品の保護膜。 ' 図面の簡単な説明
図 1 : 本発明の実施例に用いた反応装置の概略図
符号の説明
1 反応容器
2 ニクロム線ヒーター
3 酸化性ガス導入管
4 モノシランガス導入管
5 排出管 発明を実施するための形態 '
以下、 更に詳しく本発明を説明すると、 本発明は、 原料にモノシランガスを用 いることによって、 低温反応が可能となるので、 従来法におけるような炉材等か らの不純物混入を極限まで低下させることができ、 その結果、 生成する S i O x 粉の高純度化と超微粉化が可能となるものである。
本発明において、 モノシラン(S i H4 )ガスは市販品を用いることができる。 モノシランガスは、 塩素を構成成分としていない点でトリクロルシラン等のシラ ン系ガスよりも優れている。 また、 モノシランの酸化性ガス (以下、 単に 「酸化 性ガス」 という。 ) としては、 酸素ガス、 空気の他に、 モノシランに対して酸化 性を有する例えば N 02、 C 02、 H20等のガスを用いることができる。 これら の酸化性ガスには、 不純物が極限まで除去されていることが好ましい。
モノシランガスと酸化性ガスの反応は、 圧力 1 0〜1 0 0 0 k P aの非酸化性 ガス雰囲気下、 温度 5 0 0〜1 0 0 0 °Cで行わせる。 圧力が 1 0 k P a未満であ ると、 生成した S i〇x膜が反応容器壁面に付着成長し、 排出部を閉塞するので 長期操業が容易でなくなる。 また、 1 0 0 0 k P aをこえると、 反応装置の耐圧 を高めるのに大がかりな設備が必要となるうえ、 不純物が増加する傾向となる。 好ましい圧力は、 5 0〜3 0 0 k P aである。
一方、 反応場の温度が 5 0 0 °C未満であると S i 02が主として生成し、 また 1 0 0 0 °Cをこえると S iが生成すると共に、 炉材等からの不純物がより多く混 入する恐れが高くなり、 いずれの場合も高純度 ·超微粉 S i O x粉の製造が困難 となる。好ましい反応温度は 5 5 0〜9 5 0で、特に好ましくは 6 5 0〜8 5 0 °C である。 反応時間 (モノシランガスと酸化性ガスの両ガスの反応容器内での滞留 時間) は、 0 . 2〜1秒であることが好ましい。
本発明において、 モノシランガスと酸化性ガスの反応は、 非酸化性ガスの存在 下で行われる。 これによつて、 生成した S i O x粉の容器壁への付着がより少な くなる。 非酸化性ガスとしては、 アルゴン、 ヘリウムのような不活性ガスが最適 であるが、 反応を妨げない範囲で、 H2、 N2、 NH3、 C O等を用いることもでき る。 酸化性ガスとして空気を用いた場合には、 空気が N2と 02とを含むので、 非 酸化性ガスと酸化性ガスの両方を用いることになる。
非酸化性ガスの量は、 モノシランガス量と酸化性ガスの酸化反応に与る酸素量 との合計量よりも多くすることが好ましく、 モル比で 2倍以上、 特に 1 0倍以上 であることが好ましい。 ここで、 酸化性ガスの酸化反応に与る酸素量とは、 たと えば空気の場合には、 それに含まれる酸素量であり、 N02と C02の場合は、 そ こから遊離される酸素原子一個分の酸素量であり、 また H20の場合は、 それを構 成する酸素原子分の酸素量である。
反応容器としては、 石英ガラス等の高純度材料で製作されたものの使用が好ま しい。 その形状は、 底付きのコップ形状とすることもできるが、 管状が好ましく その向きは縦型設置、 横型設置のいずれであっても良い。 反応容器の加熱方式に ついては、 抵抗加熱発熱体、 高周波加熱、 赤外輻射加熱等の手段を用いることが できる。
反応容器内で生成した S i Ox粉は、 非酸化性ガス及び副生ガスと共に系外に 排出され、 バッグフィルタ一等の粉末回収装置から回収される。
本発明の製造方法においては、 モノシランガスと酸化性ガスの比率を変えるこ とによって、 S i Oxにおける X値の異なる S i Ox粉が製造される。 本発明の S i Ox粉の X値が 0. 6〜1. 8の範囲外であると、 蒸着速度が低下するので 蒸着温度をあげる必要があり、 望ましくはない。 好ましい X値は 0. 9〜1. 6 である。 X値は、 S i Ox粉中の S iモル量を J I S— R 6124 (炭化けい素 質研削材の化学分析)に準じて測定し、また酸素モル量を OZN同時分析装置(例 えば LECO社 「TC— 136」 ) を用いて測定し、 それらのモル比から算出す ることができる。
本発明の高純度 ·超微粉 S i Ox粉の比表面積が 10m2Zg以上である。 比 表面積が 10m2Zg未満であると蒸着開始温度が低くなる。 好ましい比表面積 は 50m2Zg以上、 特に好ましくは 55〜: L 00m2/gである。 また、 S i O X粉中の Na、 Fe、 A 1および C 1の合計含有量は 10 p p m以下である。 N a、 Fe、 A 1および C 1の合計含有量が 10 p pmをこえると、 層間絶縁膜や リチウムイオン電池の負極活物質等に用いた場合に絶縁不良、腐食の原因となる。 上記合計の含有量は、 好ましくは 5 p pm以下、 特に好ましくは 3 p pm以下で ある。これらの不純物は、 I CP等の発光分析法によって測定することができる。 また、 S i Ox粉は、 重量平均粒子径として、 好ましくは 1〜300 nm、 特に 好ましくは 1〜50 nmであるのが好適である。
本発明の高純度 ·超微粉 S i Ox粉の用途は、 半導体装置の層間絶縁膜、 太陽 電池のガスバリア膜、 食品包装用フィルムのガスバリア膜、 光学部品の保護膜を 形成させるための蒸着原料等である。
実施例
以下、 実施例、 比較例をあげて更に具体的に本発明を説明する。
実施例 1〜 1 3 比較例 1〜 4
モノシランガス、 アルゴンガス、 酸素ガス (いずれも、 純度≥9 9 . 9 9 9質 量%) を用意し、 それぞれのガスを質量流量計を通じて石英ガラス製反応容器 ( 内径 4 O mm X長さ 8 0 0 mm) に導入した。 モノシランガスは、 アルゴンガス と混合し、 石英ガラス製のモノシランガス導入管 4 (内径 5 mm) を通して反応 容器 1の低温部に吹き出すようにし供給した。 また酸素ガスは石英ガラス製の酸 化性ガス導入管 3 (内径 5 mm)を通して反応容器中央部付近の高温部に供給し、 反応容器中央部で反応させるようにした (図 1参照) 。
反応容器 1は、 その外周を巻回させたニクロム線ヒーター 2に通電を行い、 所 定の反応温度 (表 1参照) に保たれるように加熱されている。 温度調整は、 反応 容器の中央部中心に設置された熱電対で測温し、 ニクロム線ヒーターの電力を制 御して行った。
反応容器内の圧力は、 多くの実験では大気圧下とほぼ同等の 1 0 0 ± 1 0 k P aで実施した。 反応容器内の大気圧未満の減圧は、 排出側に設けた真空ポンプで 減圧しつつバルブの開度を調節することによって行った。 また、 大気圧をこえる 加圧は、 反応容器の外側にステンレス製容器をかぶせ 2重構造にして行った。 こ の際、ニクロム線ヒーターとステンレスの間には繊維質断熱材を埋め込むと共に、 反応容器とステンレス容器の間には、 反応容器内の圧力と同等になるようにアル ゴンガスを導入し、 反応容器の内外でのガス圧を均衡させた。
生成した S i O x粉は、 副生ガス、 アルゴンガスと共に、 排出管 5から排出さ れ、 途中に設けられたバグフィルターで回収された。 回収粉末について、 S i O X粉の X値、 比表面積、 不純物を測定した。 それらの結果を表 1に示す。
反応容器内の圧力を 5 k P aとした比較例 3では、 少量の生成物しか回収でき ず、 大部分が反応容器の排出部に付着していた。 また、 回収物の色調も実施例で 得られた薄茶色ないしは茶褐色に対し白いものであった。 一方、 反応容器内の圧 力を 1 2 0 0 k P aに高めた比較例 4では、 比表面積、 純度ともに目的とするも のが得られなかった。
Figure imgf000008_0001
* 1 :非酸化性ガス比 = (アルゴンガス量)/ (モノシランガス量 +酸素ガス量)
表 1から、 本発明の製造方法によって初めて本発明の高純度 ·超微粉 S i Ox (x=0. 6〜1. 8) が製造されることが分かる。 産業上の利用可能性
本発明によれば、 比表面積が 10m2/g以上、 Na、 F e、 A 1および C 1 の合計含有量が 1 0 p pm以下の高純度 ·超微粉 S i Ox (x=0. 6〜1. 8) 粉が提供される。 本発明の高純度 ·超微粉 S i Ox粉は、 半導体の層間絶縁膜、 プラスチック液晶パネル、 アモルファス太陽電池のガスバリア膜、 食品包装用フ ィルムのガスバリァ膜等を製造する際の蒸着材料や、 リチウムイオン電池の負極 活物質として用いることができる。 本発明の製造方法によれば、 上記高純度 .超 微粉 S i Ox粉を容易に製造することができる。

Claims

請求の範囲
1. 式、 S i Ox (x=0. 6〜1. 8) で表わされ、 比表面積が 10 m2 /g 以上であり、 かつ Na、 Fe、 A 1および C 1の合計の含有量が 10 p p m以下 であることを特徴とする高純度 ·超微粉状の S i Ox粉。
2. 式、 S i Ox (x=0. 9〜1. 6) で表わされる請求項 1に記載の S i O
3. 比表面積が 50m2 /g以上であり、 かつ Na、 Fe、 A 1および C 1の合 計含有量が 5 p pm以下である請求項 1または 2に記載の S i Ox粉。
4. モノシランガスとモノシランガスの酸化性ガスとを、圧力 10〜 1000 k P aの非酸化性ガス雰囲気下で、 温度 500〜1000°Cで反応させることを特 徴とする請求項 1〜3のいずれかに記載の高純度 ·超微粉状の S i Ox粉の製造 方法。
5. 非酸化性ガスの量が、 モノシランガス量とモノシランガスの酸化性ガスの酸 化反応に与る酸素量との合計量よりも、 モル比で 2倍以上である請求項 4に記載 の製造方法。
6. モノシランガスの酸化性ガスが酸素、 空気、 N02、 C02または H20であ る請求項 4または 5に記載の製造方法。
7. 非酸化性ガスが、 アルゴンまたはヘリウムである請求項 4、 5または 6に記 載の製造方法。
8. 圧力 50〜300 kP aの非酸化ガス雰囲気下で、 かつ温度 500〜 100 0 °Cで反応させる請求項 4〜 7のいずれかに記載の製造方法。
9. 請求項 1〜3のいずれかに記載の S i Ox粉から形成された半導体装置の層 間絶縁膜、 太陽電池のガスバリア膜、 食品包装用フィルムのガスパリア膜または 光学部品の保護膜。
PCT/JP2003/000158 2002-01-10 2003-01-10 HIGHLY PURE ULTRA-FINE SiOX POWDER AND METHOD FOR PRODUCTION THEREOF WO2003059816A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2003201860A AU2003201860A1 (en) 2002-01-10 2003-01-10 HIGHLY PURE ULTRA-FINE SiOX POWDER AND METHOD FOR PRODUCTION THEREOF
EP03700523.8A EP1464621A4 (en) 2002-01-10 2003-01-10 ULTRA-FINE SB X / SB HIGH PURITY SIO POWDER AND PROCESS FOR PRODUCING THE SAME
US10/500,737 US7585480B2 (en) 2002-01-10 2003-01-10 Highly pure ultra-fine SiOx powder and method for production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-3226 2002-01-10
JP2002003226A JP4044762B2 (ja) 2002-01-10 2002-01-10 高純度・超微粉SiOx粉及びその製造方法

Publications (1)

Publication Number Publication Date
WO2003059816A1 true WO2003059816A1 (en) 2003-07-24

Family

ID=19190855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/000158 WO2003059816A1 (en) 2002-01-10 2003-01-10 HIGHLY PURE ULTRA-FINE SiOX POWDER AND METHOD FOR PRODUCTION THEREOF

Country Status (6)

Country Link
US (1) US7585480B2 (ja)
EP (1) EP1464621A4 (ja)
JP (1) JP4044762B2 (ja)
CN (1) CN1280190C (ja)
AU (1) AU2003201860A1 (ja)
WO (1) WO2003059816A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4044762B2 (ja) 2002-01-10 2008-02-06 電気化学工業株式会社 高純度・超微粉SiOx粉及びその製造方法
JP5036161B2 (ja) * 2005-10-14 2012-09-26 パナソニック株式会社 リチウムイオン二次電池用負極活物質、その製造方法、およびそれを用いたリチウムイオン二次電池
JP5221075B2 (ja) * 2007-08-09 2013-06-26 国立大学法人電気通信大学 酸化膜形成方法、MOSデバイス製造方法、MOSトランジスタ製造方法、SiOx粉末、及びSiOx粉末製造方法
JP5374705B2 (ja) * 2009-09-02 2013-12-25 株式会社大阪チタニウムテクノロジーズ SiOxの製造方法
JP5618113B2 (ja) * 2010-06-29 2014-11-05 ユミコア 低酸素含量のサブミクロンサイズのシリコン粉末
WO2012109028A1 (en) * 2011-02-10 2012-08-16 Temple University - Of The Commonwealth System Of Higher Education Plastic-based cementitious materials
CN103732536B (zh) * 2011-07-29 2016-08-24 电气化学工业株式会社 球形硅石微粉末以及使用球形硅石微粉末的静电图像显影用调色剂外部添加剂
US10285874B2 (en) 2014-03-06 2019-05-14 The Procter & Gamble Company Multi-component topsheets
WO2015134371A1 (en) 2014-03-06 2015-09-11 The Procter & Gamble Company Multi-component topsheets
EP3113741B1 (en) 2014-03-06 2020-04-22 The Procter and Gamble Company Three-dimensional substrates
JP2015170542A (ja) * 2014-03-10 2015-09-28 三洋電機株式会社 非水電解質二次電池
EP3340954B1 (en) 2015-08-26 2020-03-25 The Procter and Gamble Company Absorbent articles having three-dimensional substrates and indicia
EP3349278B1 (en) 2015-09-10 2022-09-07 Shin-Etsu Chemical Co., Ltd. Method for producing negative electrode active material for nonaqueous electrolyte secondary batteries, method for manufacturing nonaqueous electrolyte secondary battery, method for producing negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP6759369B2 (ja) 2016-07-01 2020-09-23 ザ プロクター アンド ギャンブル カンパニーThe Procter & Gamble Company 改善されたトップシート乾燥度を有する吸収性物品
CN111072038B (zh) 2019-12-27 2021-01-01 江西壹金新能源科技有限公司 一种用于锂离子电池负极的改性一氧化硅材料及其制备方法
GB2605379A (en) * 2021-03-29 2022-10-05 Barton Blakeley Tech Limited Reaction vessel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089125A (ja) * 1999-09-28 2001-04-03 Shinetsu Quartz Prod Co Ltd 多孔質シリカ顆粒、その製造方法及び該多孔質シリカ顆粒を用いた合成石英ガラス粉の製造方法
JP2001199716A (ja) * 2000-01-11 2001-07-24 Denki Kagaku Kogyo Kk 低級酸化ケイ素粉末の製造方法
JP2001226112A (ja) * 2000-02-15 2001-08-21 Shin Etsu Chem Co Ltd 高活性な酸化珪素粉末及び製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2868039B2 (ja) 1992-01-31 1999-03-10 日亜化学工業株式会社 低級金属酸化物の製造方法
US6726990B1 (en) * 1998-05-27 2004-04-27 Nanogram Corporation Silicon oxide particles
JP4087029B2 (ja) 1999-12-02 2008-05-14 電気化学工業株式会社 低級酸化ケイ素粉末及びその製造方法
JP3952118B2 (ja) * 2000-02-04 2007-08-01 信越化学工業株式会社 活性なケイ素を含むケイ素酸化物及びその評価方法
WO2001086707A1 (fr) 2000-05-08 2001-11-15 Denki Kagaku Kogyo Kabushiki Kaisha Film siox de faible permittivite relative, procede de production, dispositif semi-conducteur contenant ledit film
JP2001348656A (ja) * 2000-06-07 2001-12-18 Denki Kagaku Kogyo Kk SiOx多孔質成形体
JP2002260651A (ja) * 2001-02-28 2002-09-13 Shin Etsu Chem Co Ltd 酸化珪素粉末及びその製造方法
US6896968B2 (en) * 2001-04-06 2005-05-24 Honeywell International Inc. Coatings and method for protecting carbon-containing components from oxidation
JP4044762B2 (ja) 2002-01-10 2008-02-06 電気化学工業株式会社 高純度・超微粉SiOx粉及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089125A (ja) * 1999-09-28 2001-04-03 Shinetsu Quartz Prod Co Ltd 多孔質シリカ顆粒、その製造方法及び該多孔質シリカ顆粒を用いた合成石英ガラス粉の製造方法
JP2001199716A (ja) * 2000-01-11 2001-07-24 Denki Kagaku Kogyo Kk 低級酸化ケイ素粉末の製造方法
JP2001226112A (ja) * 2000-02-15 2001-08-21 Shin Etsu Chem Co Ltd 高活性な酸化珪素粉末及び製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1464621A4 *

Also Published As

Publication number Publication date
JP2003206126A (ja) 2003-07-22
EP1464621A1 (en) 2004-10-06
US20050084439A1 (en) 2005-04-21
CN1615271A (zh) 2005-05-11
AU2003201860A1 (en) 2003-07-30
EP1464621A4 (en) 2015-04-08
JP4044762B2 (ja) 2008-02-06
US7585480B2 (en) 2009-09-08
CN1280190C (zh) 2006-10-18

Similar Documents

Publication Publication Date Title
WO2003059816A1 (en) HIGHLY PURE ULTRA-FINE SiOX POWDER AND METHOD FOR PRODUCTION THEREOF
JP4778504B2 (ja) シリコンの製造方法
TW200804633A (en) Plasma deposition apparatus and method for making polycrystalline silicon
JP5143016B2 (ja) 結晶性組成物、デバイスと関連方法
CA2755762C (en) Method for producing polycrystalline silicon rods
WO2010090203A1 (ja) 多結晶シリコンの製造法
KR20040025590A (ko) 컵 반응기에서 기체상 물질의 열분해에 의한 고체의침착방법
JP6328565B2 (ja) 多結晶シリコンロッドおよびその製造方法
JP6046269B2 (ja) 多結晶シリコンを堆積させる方法
US8173094B2 (en) Method for producing polycrystalline silicon
KR20120104214A (ko) 증착물 제거 방법
EP0070440A1 (en) Method for synthesizing amorphous silicon nitride
JPH06168937A (ja) シリコン酸化膜の製造方法
JP2003054933A (ja) シリコン生成用反応装置
GB1570131A (en) Manufacture of silicon
JP3868396B2 (ja) SiOx粉末の製造方法、SiOx粉末からなる膜
JP5217162B2 (ja) 多結晶シリコンの製造方法
WO2007013644A1 (ja) 多結晶シリコンの製造方法
JP2021500305A (ja) クロロシランから不純物を除去するための方法及び装置
JPH01192716A (ja) 高純度シリコンの製造方法
JP4804354B2 (ja) クロロシラン類の反応装置
JP2006290645A (ja) シリコン及びその製造方法
JP4672264B2 (ja) SiOの精製方法及び得られたSiOを用いる高純度シリコンの製造方法
JP2003002627A (ja) シリコンの製造方法
JPS58185426A (ja) 高純度シリコンの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003700523

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10500737

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038021099

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003700523

Country of ref document: EP