WO2003048231A1 - Procede de purification continue de sulfure de polyarylene - Google Patents

Procede de purification continue de sulfure de polyarylene Download PDF

Info

Publication number
WO2003048231A1
WO2003048231A1 PCT/JP2002/012513 JP0212513W WO03048231A1 WO 2003048231 A1 WO2003048231 A1 WO 2003048231A1 JP 0212513 W JP0212513 W JP 0212513W WO 03048231 A1 WO03048231 A1 WO 03048231A1
Authority
WO
WIPO (PCT)
Prior art keywords
washing
polyarylene sulfide
particles
organic solvent
slurry
Prior art date
Application number
PCT/JP2002/012513
Other languages
English (en)
French (fr)
Inventor
Michihisa Miyahara
Norio Saitou
Mitsuhiro Matsuzaki
Original Assignee
Kureha Chemical Industry Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Chemical Industry Company, Limited filed Critical Kureha Chemical Industry Company, Limited
Priority to EP02785981A priority Critical patent/EP1452555B1/en
Priority to JP2003549416A priority patent/JP4919581B2/ja
Priority to AU2002354130A priority patent/AU2002354130A1/en
Priority to AT02785981T priority patent/ATE433472T1/de
Priority to US10/497,525 priority patent/US7094867B2/en
Priority to DE60232602T priority patent/DE60232602D1/de
Publication of WO2003048231A1 publication Critical patent/WO2003048231A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0277Post-polymerisation treatment
    • C08G75/0281Recovery or purification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0209Polyarylenethioethers derived from monomers containing one aromatic ring
    • C08G75/0213Polyarylenethioethers derived from monomers containing one aromatic ring containing elements other than carbon, hydrogen or sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/025Preparatory processes
    • C08G75/0254Preparatory processes using metal sulfides

Definitions

  • the present invention relates to a method for treating a slurry containing at least two types of solid particles, particularly from a polymerization slurry containing a poly (alkylene sulfide) particle obtained by reacting an alkali sulfide source and a dihalogen aromatic compound in a polar organic solvent.
  • the present invention relates to a method for effectively washing and recovering polyarylene sulfide particles or an effective method for treating the polymerization slurry.
  • Polyarylene sulfide (PAS) resin typified by polyphenylene sulfide (PPS) is an engineering plastic with excellent heat resistance, chemical resistance, flame retardancy, electrical properties and mechanical properties.
  • This resin can be obtained, for example, by reacting a dihalogenated aromatic compound with an alkali metal sulfide in an organic polar solvent such as N-methylpyrrolidone (NMP). And so on.
  • NMP N-methylpyrrolidone
  • the polymerization system in a high temperature state is flushed out to a container under normal pressure or reduced pressure, and then the resin is recovered through solvent recovery, washing and drying, so that the final particle size is several microns. This gives 50 micron powdery resin.
  • This powdery resin easily becomes dusty and scatters when dried, and has a low bulk density and is difficult to handle.
  • productivity is inferior because the discharge amount during melt extrusion is reduced.
  • melt viscosity required for processing is obtained by so-called thermal crosslinking in the process after drying, and there is a drawback that the mechanical properties are inferior to linear polymers.
  • Japanese Patent Application Laid-Open No. 59-49232 describes a method for obtaining a particulate PPS, but in this example, the polymerization product was opened in water and precipitated beads were formed. Polymers are collected and washed repeatedly.
  • Japanese Patent Application Laid-Open No. 61-255,933 discloses a method for treating a polymerization slurry containing particulate PAS obtained in the polymerization step.
  • this treatment method (1) polyarylene sulfide particles, by-product crystals and dissolved aluminum chloride
  • 3 the polyarylene sulfide particles in acetone It describes a process of washing with an organic solvent such as water and the like, and a process of distilling and recovering an organic solvent from an organic solvent washing solution.
  • Japanese Patent Application Laid-Open No. 4-139215 discloses that a polyarylene sulfide particle recovered from a polymerization slurry by sieving is a solvent such as acetone having a boiling point lower than that of water and a polar organic solvent in the polymerization slurry. And a method for washing polyarylene sulfide, which is characterized by washing with water and an organic solvent compatible with water, followed by washing with water. There is an inherent problem in the method of washing and recovering the polymer particles, which is the main step of separating and recovering polyarylene sulfide particles from the polymerized slurry by sieving or filtering.
  • the polymer slurry containing PAS particles obtained by reacting a source of aluminum sulfide and a dihalogen aromatic compound in a polar organic solvent, which is a target is a main object of recovery.
  • a polar organic solvent for example, in addition to PAS particles having an average particle size of about 200 to 200 m, a polar organic solvent, by-product alkali metal salt fine particles having an average particle size of about 5 to 100 / zm, and dissolved alkali metal salts And the amount of these components is a source of difficulties in the separation and recovery of product PAS particles, but sieving or filtration is an essential process. There are many problems with the separation and recovery method.
  • a main object of the present invention is to provide a method for efficiently recovering PAS particles from the above-mentioned polymerization slurry without including an industrially problematic sieving step as an essential step.
  • Another object of the present invention is to provide a method for treating a PAS polymerization slurry with a view to effectively recovering a polar organic solvent, which is an expensive reaction solvent, and efficiently separating and removing by-product alkali metal salts. To provide.
  • Another object of the present invention is to provide an effective method for cleaning PAS particles with a reduced amount of cleaning solution used.
  • the continuous washing method of the polyarylene sulfide of the present invention comprises: a polyarylene sulfide particle obtained by reacting an alkali sulfide source with a dihalogen aromatic compound in a polar organic solvent; a by-product alkali metal salt; and a polar organic solvent.
  • a washing step in which a polymerization slurry containing the above is continuously and countercurrently contacted with a washing liquid.
  • the PAS polymerization slurry treatment method including countercurrent contact with the cleaning liquid is not only industrially superior, but also capable of continuous treatment of the polymerization slurry. It has been found that the loss of fine particulate PAS during separation and recovery from water can be reduced. Further, according to a preferred embodiment of the continuous washing method for polyarylene sulfide of the present invention, efficient recovery of an expensive polar organic solvent and efficient separation and removal of a by-product alkali metal salt can be performed.
  • a slurry obtained by dispersing at least two types of solid particles in a dispersion medium is first prepared without dissolving any of the solids and A first step of countercurrently contacting and washing the first washing liquid compatible with the dispersion medium, and washing the at least two types of solid particles with one of the two types of solid particles;
  • a method for treating a slurry comprising a second cleaning step of selectively dissolving and contacting with a second cleaning liquid that is compatible with the first cleaning liquid. This enables efficient washing of preferably one type of solid particles and efficient treatment of washing waste liquid.
  • FIG. 1 is a schematic view of an example of a cleaning apparatus suitable for carrying out the method of the present invention.
  • FIG. 2 is an explanatory diagram of distribution of main inflow and outflow components according to a preferred embodiment of the method of the present invention, in which the three devices of FIG. 1 are arranged in series.
  • FIG. 3 is a schematic view of another example of a cleaning apparatus suitable for carrying out the method of the present invention.
  • FIG. 1 is a schematic view of an example of a cleaning apparatus suitable for carrying out the continuous cleaning method for polyarylene sulfide of the present invention.
  • the apparatus mainly includes a downward pipe section I and an upward pipe according to the flow of PAS particles. Consists of Part II.
  • the downward pipe section I and the upward pipe section II each consist of hollow tubular bodies 1 and 2, and a stirrer 4 driven by a motor 3 in the downward pipe 1 and an upward pipe 2 Inside, there is a screw 6 driven by a motor 5 for picking up PAS particles.
  • a supply or discharge section is provided at positions A to H.
  • A is the supply port for the object to be cleaned
  • F is the main cleaning liquid supply port
  • G is the cleaned PAS particle discharge port
  • B is the cleaning waste liquid discharge port
  • C, D, and E are auxiliary cleaning liquids provided as necessary.
  • the supply port and H are temporary discharge ports provided as needed.
  • the auxiliary cleaning liquid supply can also be added between the PAS particle discharge port G and the main cleaning liquid supply port F or in the downcomer pipe I.
  • FIG. 1 shows an example in which the downward pipe 1 is vertical and the upward pipe 2 is inclined, both of them can take both vertical and inclined forms.
  • the downcomer tube 1 due to the specific gravity difference between the PAS particles and the by-produced alkali metal salt particles and the washing liquid, sedimentation of the particles and countercurrent contact or sedimentation by rising of the washing liquid are performed. It is preferable to perform gentle stirring by the stirrer 4 in order to prevent the rising drift or channeling of the cleaning liquid during this process. If the effect of stirring is not expected, the stirrer 4 may be omitted.
  • the upward tube 2 particles such as PAS particles are washed by the cleaning liquid while being lifted up by the screw 6.
  • the angle of inclination of the upward pipe 2 with respect to the horizontal plane is generally 1 to 90 °, preferably 5 to 60 °, and more preferably 5 to 45 °. Is appropriately selected from the range.
  • the downcomer pipe 1 is also inclined with respect to the horizontal plane to reduce the sedimentation separation speed, improve the washing efficiency, and make the equipment more compact in consideration of the upcomer pipe 2.
  • the angle /? Can be appropriately set in the range of 1 to 90 °, preferably 5 to 90 °.
  • the apparatus shown in FIG. 1 is usually used in an open atmospheric pressure system, it can be used under pressure or under reduced pressure as appropriate.
  • the PAS polymerization slurry to be treated in the present invention includes PAS particles obtained by reacting an alkali sulfide source with a dihalogen aromatic compound in a polar organic solvent, by-product alkali metal salt and a polar organic solvent. It is a polymerization slurry containing:
  • Examples of the polar organic solvent include organic amide compounds, lactam compounds, urea compounds, and cyclic organic phosphorus compounds. Specifically, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-getylacetamide, N, N-dipropylacetamide, N, N —Dimethylbenzoic acid amide, caprolactam, N-methylcaprolactam, N-ethylcaprolactam, N-isopropylcaprolactam, N-isobutylcaprolactam, N-normal propyl caprolactam, N-normal butylcaprolactam, N-cyclohexylcaprolactone, N-methyl-2-pyrrolidone, N-ethyl-12-pyrrolidone, N-isopropyl-12-pyrrolidone, N-isobutyl-2-pyrrolidone, N-normal propyl-12- Pyrrolidone, N-Normal pt
  • polar organic solvents may be used alone or in combination of two or more.
  • N-alkyllactam and N-alkylpyrrolidone are preferable, and N-methyl-2-pyrrolidone (NMP) is particularly preferable.
  • the alkali sulfide source is a source of sulfur in the product PAS, and includes alkali hydrosulfide in addition to alkali sulfide.
  • alkali sulfide examples include lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, and cesium sulfide. Among these, sodium sulfide and lithium sulfide are preferred, and sodium sulfide is particularly preferred.
  • Examples of the alkali hydrosulfide include lithium hydrosulfide, sodium hydrosulfide, rhodium hydrosulfide, rubidium hydrosulfide, calcium hydrosulfide, and cesium hydrosulfide. Of these, sodium hydrogen sulfide and lithium hydrogen sulfide are preferable, and sodium hydrogen sulfide is particularly preferable. When using alkali hydrogen sulfide, it is preferable to use together with aluminum hydroxide.
  • dihalogen aromatic compound as a raw material monomer examples include dihalobenzenes such as m-dihalobenzene and p-dihalobenzene; 2,3-dihalotoluene; 2,5-dihalotoluene; 2,6-dihalotoluene; —Dihalotoluene, 2,5-dihaloxylene, 1-ethyl-2,5-dihachibenzene, 1,2,4,5-tetramethyl-3,6-dihalobenzene, 1-normalhexyl-1,2,5-dihalobenzene, 1— Alkyl-substituted dihalobenzenes such as cyclohexyl-1,2,5-dihalobenzene or cycloalkyl-substituted dihalobenzenes; 1-phenyl-1,2,5-dihalobenzene, 1-benzyl-2,5-dihachibenzene
  • the two halogen elements in these dihalogen aromatic compounds are each fluorine, chlorine, bromine or iodine, which may be the same or different from each other.
  • dihalogen aromatic compounds preferred are dihalobenzenes, In particular, it is mainly composed of paradichlorobenzene.
  • any of those known as a method for producing PAS is optionally used, and it is desirable to obtain PAS particles having an average particle size of 100 / m or more.
  • the method described in 1-7332 is used. In this method, an aluminum sulfide and a dihalogen aromatic compound are polymerized in two steps in a polar organic solvent.First, 0.2 to 5 liters of the polar organic solvent is added per 1 mol of the charged amount of the alkali sulfide source. , And water in a medium of 0.5 to 2.4 mol at 180 to 235 ° C at a conversion of 50 to 95 mol% of the dihaloaromatic compound.
  • a polymerization slurry containing almost no PAS with a diameter of less than 100 // m and containing most of the by-produced alkali metal salts as microcrystals (average particle size of about 5 to 100 m) is obtained.
  • Na 2 S or Na SH (+ NaOH) is used as the alkali sulfide source
  • paradichlorobenzene is used as the dihalogen aromatic compound
  • NMP is used as the polar organic solvent.
  • NMP contains crystalline NaCl, dissolved NaCl, phenylene sulfide oligomers, and paradichlorobenzene, in addition to the PPS particles to be used as products.
  • the polymerization slurry is supplied from the supply port A, water is supplied from the main cleaning liquid supply port F as a cleaning liquid, and the discharge port G is supplied.
  • the aqueous cleaning waste liquid containing NMP, dissolved NaCl and arylene sulfide oligomer is discharged from outlet B.
  • the solid matter mainly composed of PAS particles and crystalline NaC 1 in the PAS polymerization slurry is supplied from the supply port A;
  • the water supplied from the supply port F in the process of flowing down or settling, reaching the bottom of the pipe 1, and being pumped up from there by the screw 16 rotating in the upward pipe 2
  • the product is countercurrently contacted, and the entrained crystalline alkali metal salt is washed off, drained from the ascending process, discharged from outlet G, and then dried to obtain product PAS particles.
  • the water as the washing liquid supplied from the supply port F dissolves the crystalline metal salt entrained in the PAS particles while entraining and extracts the polar organic solvent absorbed in the PAS particles, and further polymerizes. It is discharged from the outlet B together with the polar organic solvent and arylene sulfide oligomer in the slurry as washing waste liquid.
  • the washing waste liquid is separated into components according to a conventional method such as distillation.
  • This embodiment exclusively utilizes the efficient cleaning effect of the countercurrent cleaning device shown in FIG. 1.
  • PAS particles discharged from the discharge port G receive a sufficient cleaning effect.
  • the distillation makes the distillation difficult due to the presence of the dissolved alkali metal salt such as NaC1.
  • two washing apparatuses shown in FIG. 1 are arranged in series, and the polymerization slurry is subjected to a two-stage washing treatment.
  • the polymerization slurry is supplied from the supply port A in the same manner as in the above embodiment, and water and a polar organic solvent (hereinafter, typically referred to as NMP) are supplied from the supply port F as a cleaning liquid.
  • An organic solvent eg, acetone, methanol, etc .; hereinafter, typically referred to as acetone
  • PPS particulate PAS
  • the PPS particles in the form of a wet cake which are accompanied by crystalline alkali metal salts (hereinafter, typically referred to as NaC1) and are wetted with acetone, are discharged from the outlet G.
  • a cleaning waste liquid containing acetone, water and NMP as main components is discharged.
  • the wet cake-like PPS particles accompanied by the crystal Na C 1 discharged from the discharge port G of the first cleaning device are: Water is supplied as a cleaning liquid from the supply port A and water is introduced from the supply port F, and the accompanying crystal Na C 1 is dissolved and removed from the PPS particles mainly in the process of traveling through the upward pipe 2 and absorbed. The acetone thus obtained is extracted and removed with water, and a wet cake-like PPS particle that is essentially wetted with only water is obtained from the outlet G, and then the product PPS particles are obtained by drying.
  • the outlet From B water, recovered acetone and washing waste liquid containing dissolved NaC1 as main components are discharged. When this washing waste liquid is subjected to distillation, acetone is recovered from the top of the column and NaC1 water is discharged from the bottom of the column, which is directly discharged out of the apparatus without solid-liquid separation. It is also possible.
  • the washing waste liquid discharged from the outlet B of the first cleaning device is mainly composed of acetone, water, and NMP, and the amount of dissolved NaC1 is extremely small.
  • the distillation column water, acetone and NMP are respectively distilled out from the top of the column, and a small amount of NMP including high-boiling substances is withdrawn from the bottom of the column as a bottom residue at appropriate times.
  • a third cleaning device having a substantially similar configuration as shown in FIG. 1 is used, and the gate cake discharged from the outlet G of the second cleaning device in the second embodiment described above.
  • the PPS particles are further subjected to an acid treatment.
  • This acid treatment can be carried out, for example, as described in JP-A-62-48727 and JP-B-81-118389, the preferred crystallization temperature and the preferred crystallization temperature of product PPS particles. It is effective for increasing the crystallization rate.
  • the wet cake-like PPS particles discharged from the discharge port G of the second cleaning device are supplied to the supply port of the third cleaning device.
  • A is supplied from A, while water is supplied from supply port C to an acid (for example, an inorganic acid such as hydrochloric acid, sulfuric acid, or phosphoric acid, or a salt of a strong acid and a weak base such as ammonium chloride, or an organic acid such as acetic acid or formic acid).
  • an acid for example, an inorganic acid such as hydrochloric acid, sulfuric acid, or phosphoric acid, or a salt of a strong acid and a weak base such as ammonium chloride, or an organic acid such as acetic acid or formic acid.
  • a solution in a mixed solution of water and a water-miscible solvent such as alcohol is supplied, and water is supplied from the supply port F as a washing liquid.
  • the PPS particles introduced from the supply port A flow down in the downcomer pipe 1 and are treated by the acid introduced from the supply port C in a section up to the supply port C of the upcomer pipe 2. And then washed by the water introduced from the supply port F while ascending in the upward pipe 2, and further ascending and being drained, discharged as a wet cake from the discharge port G, and then dried. Recovered as acid-treated PPS particle products. Since the cleaning solution from the outlet B is diluted acid, it can be introduced into the acid recovery process as needed, and can be discharged out of the equipment as it is almost harmless.
  • FIG. 2 schematically shows the inflow and outflow of the main components of this embodiment.
  • the arrangement of each cleaning device is reversed from that shown in Fig. 1, but of course this is not an essential difference.
  • the reason why the top of the downward pipe of each cleaning device is expanded like a hopper in the device shown in FIG. 2 is to facilitate the charging of the raw material and the separation of the raw material from the cleaning waste liquid. Applicable to the apparatus shown in FIG.
  • the cleaning treatment method for PAS (typically PPS) according to the third embodiment can be essentially carried out only with the cleaning apparatus shown in FIG. 1 if the length of the upward pipe 2 is increased. That is, according to this embodiment, referring again to FIG. 1, the polymerization slurry is introduced from the supply port A, and the PPS particles are successively introduced from the supply port C, acetone, water introduced from the D, Is washed sequentially with acid introduced from F and water introduced from F, drained, discharged from outlet G as a wet cake containing essentially only water, and then dried to be acid-treated.
  • PAS typically PPS
  • the cleaning waste liquid containing dissolved NaC1 and NMP is discharged from the discharge port B. Therefore, difficulties remain in the recovery of NMP and acetone from the cleaning effluent.
  • substantially the same cleaning and recovery effect of the cleaning waste liquid as in the third embodiment is obtained by essentially using two first and second cleaning devices having the configuration shown in FIG. 1 instead of three.
  • This is also achievable. That is, in this embodiment, in the first cleaning device, acetone is supplied from the main cleaning liquid supply port F, and the function and operation of the first cleaning device are the same as those of the first cleaning device in the third embodiment. It is exactly the same.
  • the washed PAS particles accompanying the NaC1 discharged from the discharge port G of the first cleaning device are sequentially supplied from the supply ports C, D (or E) and F in the second cleaning device. Washed sequentially with water, acid and water, and discharged from outlet G. Thereafter, it is dried to obtain an acid-treated P A S particle product.
  • washing wastewater containing water, acid and acetone is discharged from the outlet B of the second washing device, and this washing wastewater is subjected to distillation to recover acetone from the top of the column, It can be easily separated by discharging acidic water from the bottom of the tower.
  • FIG. 3 shows a modified device in which the device of FIG. 1 is compactly combined in volume. Parts similar to those in FIG. 1 are indicated by the same symbols.
  • the apparatus can be formed as a compact as a whole.
  • Agitator 4 and screw 6 are connected to pulley 7 and And 8 are driven by a common motor 3 through each other, but it is of course possible to drive them by separate motors.
  • the raw material slurry is introduced into the cleaning device from the supply port A.
  • the raw material slurry can be introduced from the supply ports C, D or H.
  • a cleaning solution for example, a part of acetone can also be mixed in advance into the PAS polymerization slurry as a raw material.
  • the surface of the particles in the supply slurry becomes a washing liquid, for example, an acetone atmosphere, so that the difference in specific gravity between the solid and the liquid increases, and the viscosity of the liquid decreases. Therefore, after the polymerization slurry is injected into the supply port of the washing device shown in Fig. 1, the initial speed of particle sedimentation is higher when the acetone is mixed with the polymerization slurry than when it is not mixed. The total sedimentation speed until the sedimentation of the particles is completed after injection into the tube is faster when the acetone is mixed with the polymerization slurry.
  • the raw material PAS polymerization slurry Prior to introducing the raw material PAS polymerization slurry into the supply port A of the washing apparatus shown in FIG. 1, it can be subjected to solid-liquid separation.
  • a raw material slurry is introduced into the supply port A of the apparatus having the structure shown in FIG. 1, and a polymerization slurry in which the amount of the polar organic solvent is reduced is obtained from the discharge port G without particularly introducing the cleaning liquid. This can be achieved by introducing this into the supply port A of the cleaning device in Fig. 1 again.
  • the solid-liquid separator other common means such as sieving or centrifugation can be applied.
  • the ratio of the polar organic solvent in the slurry is reduced, so that the difference in specific gravity of solid-liquid in the downcomer tube is increased and the sedimentation speed of the particles is increased as compared with the first to eighth embodiments.
  • Mukabe Diameter can be reduced.
  • the amount of cleaning liquid, for example, acetone, used is reduced. Since cleaning solvents such as acetone are relatively expensive, they are recovered by distillation or other methods, but their costs can be reduced.
  • a 200-liter autoclave (reactor) was charged with 60 kg of NMP and 38 kg of sodium sulfide pentahydrate containing 46.30% by weight of sodium sulfide (Na 2 S), and replaced with nitrogen gas. Over a period of time, the temperature was gradually increased to 200 ° C with stirring to distill 16.5 kg of water and 11 kg of NMP. At this time, 5.0 mol of H 2 S volatilized. Therefore, the effective Na 2 S in the can after the dehydration step was 220.4 mol. The amount of H 2 S volatilized off corresponded to 2.22 mol% of the charged N a 2 S.
  • the mixture was reacted at 220 ° C for 4.5 hours with stirring, and then 4.17 kg of water as a phase separator was injected while stirring was continued.
  • the total polymerization time at this time was 6.5 hours.
  • the heater was turned off and cooled to room temperature to obtain a polymerization slurry containing PPS particles having an average particle size of about 400 m.
  • the polymerization slurry obtained above was processed continuously in essentially the apparatus of FIG.
  • the downward pipe 1 was a vertical hollow pipe having a diameter of about 70 mm and a total length of about 1 m, and the stirrer 4 was rotated at 8 rpm.
  • the upward pipe 2 is a hollow pipe with an inclination angle ⁇ of about 30 °, an inner diameter of 70 mm and a length of 2 m, and the screw 6 has a length of 2 m, an outer diameter of 65 mm, a shaft diameter of 24 mm, and a pitch of 60 mm and spun at 8 rpm.
  • the above polymerization slurry is continuously supplied at 510 g / min from the supply port A, and acetone is supplied from the supply port F located at about 50 Omm from the upper end of the upward pipe 2.
  • acetone is supplied from the supply port F located at about 50 Omm from the upper end of the upward pipe 2.
  • 100 kg of the polymerization slurry PPS 16.4 kg, NaCl 17.8 kg, NMP 56.9 kg
  • approximately 100 kg from the upper end of the upward pipe 2 was washed.
  • From the outlet G at the position of 100 mm 15 and 8 kg of PPS and 17.3 kg of NaC1 were recovered in the form of a gate cake (recovery of PPS of 96%, NaC 1 recovery rate 9 7%).
  • the amount of acetone used for this cleaning was 2.7 times the weight of PPS.
  • PPS was 34.7% by weight, NaC 138.0% by weight, NMP 0.15% by weight, p-DCB 0.06% by weight, and the remaining main component was acetone. Met.
  • no PPS particles of 150 m or more were present in the washing waste liquid discharged from the outlet: B provided at a position of about 900 mm from the upper end of the downward pipe 1.
  • the weight of the by-product crystalline alkali metal salt was 0.3 kg, and that of syrup 3 was 0.5 kg.
  • the water slurry was continuously supplied at a flow rate of 540 g / min from the supply port A and 250 g / min from the supply port F, respectively.
  • 100 kg of water slurry (15 kg of PP S, 16.4 kg of NaCl) was washed under these conditions, 14.9 kg of PPS was recovered in a wet cake state from outlet G. (PPS recovery rate: 99%).
  • PPS recovery rate 99%.
  • the amount of water used is 3.1 times that of the polymer, and when combined with 3.8 times of water used for reslurry, the total amount of water used for one weight of polymer is 6.9 times. .
  • the wet cake obtained in the above Example 1-1 after washing with water was successively shown in FIG. 1 and had the same dimensions as that of the above-mentioned Example 1, but was further cut from the lower end of the upward pipe 2 by 500. mm and a screw 6 at 10 rpm Processed with rotation.
  • the feed cake is supplied from the supply port A at a flow rate of 26 g / min (polymer 81 g / min), the water is supplied from the supply port F at 200 g / min, and the washing water is supplied from the supply port C.
  • Acetic acid having a concentration of 80% by weight was continuously supplied at a flow rate of 0.75 g / min so that the ratio was 0.3% by weight.
  • the amount of water used was 2.5 times that of the polymer, and the amount of acetic acid used was 0.74 g with respect to 100 g of the polymer.
  • the obtained wet cake was dried in an oven at 105 ° C for 13 hours, and as a result, the crystallization temperature was 248 ° C.
  • the wet cake was washed 5 times with water in the same manner as in the above-mentioned acetone washing. (The total amount of water used was 10,000 g and 22.6 times the weight of the polymer). Thereafter, the wet cake obtained by draining was dried in an oven at 105 ° C for 13 hours. As a result, 400 g of PPS was obtained (PPS recovery rate: 90%), the NMP concentration in the dried particles was 220 ppm, Na + was 1700 ppm, and the cooling crystallization temperature of the polymer was obtained. Became 185 ° C.
  • the filtrate in acetone washing was separated into solid and liquid using 5A filter paper instead of screen and 330 g. Was obtained.
  • the weight of the by-product crystalline alkali metal salt was 220 g and the weight of PPS was 40 g.
  • To the mixture was added 1,000 g of acetone, and the mixture was stirred, and then again drained.
  • the NMP adhering to the solid obtained after dehydration and drying was 5000 p.
  • the total amount of acetone used here is about 17.5 times the polymer. Water is 25 times.
  • Comparative Example 1-1 2000 s of water was added to the pet cake (400 g of PPS) obtained after 5 washes with water, and the acetic acid concentration in the added wash water was 0.3%.
  • the polymer was washed by adding 6 g of acetic acid and stirring. After washing, the mixture was drained with a 150-m mesh, and the remaining cake was again washed with stirring by adding 2000 g of water and drained. After repeating this washing operation again, the obtained wet cake was dried in an oven at 105 ° C for 13 hours. As a result, the temperature of the dried polymer dropped to 248 ° C.
  • the water used in this washing was 15 times the polymer, and the acetic acid used was 1.5 g per 100 g of the polymer.
  • Comparative Example 11 2000 g of water was added to the water cake (PPS 400 g) obtained after washing with water 5 times in 11 and 2.96 g of acetic acid was further added, followed by stirring to wash the polymer. did. After the washing, the solution was drained with a 150-m mesh, and the remaining wet cake was again added with 2000 g of water, washed with stirring, and drained. After repeating this washing operation again, the remaining cake was dried in an oven at 105 ° C for 13 hours, and as a result, the temperature-down crystallization temperature of the dried polymer was 194 ° C. The water used in this washing was 15 times the amount of the polymer, and the acetic acid used was 0.74 g per 100 g of the polymer.
  • Example 11 The same polymerization slurry used in Example 1 was continuously treated in the apparatus shown in FIG.
  • the downward pipe 1 was a vertical hollow pipe having only a straight pipe portion without a stirrer and having an inner diameter of 70 mm and a total length of 1 m.
  • the screw 6 has a length of 3 m, an outer diameter of 65 mm, a shaft diameter of 24 mm, and a pitch of 60 mm. Yes, and rotated at 5 rpm.
  • the polymerization slurry was supplied directly to an upward pipe (position H in Fig. 1) having a scraping screw inside.
  • the supply amount of the polymerization slurry was 250 gZ, and the acetone was introduced and supplied at a rate of 200 g / min from the position of F (about 1,000 mm from the upper end of the upward pipe 2) in FIG.
  • PPS 16.4 k, NaC 1 17.8 kg, NMP 56.9 kg 100 kg of polymerization slurry
  • about 100 mm from the upper end of the upward pipe 2 528.8 kg of wet cake was obtained from outlet G at the position.
  • the PPS recovery was 96% and the NaCl recovery was 97%.
  • the amount of acetone used for cleaning was It was 4.9 times.
  • the washing wastewater discharged from outlet B contained 0.7 kg of PP S and 0.5 kg of NaCl.
  • Example 2 100 kg of the same polymerization slurry used in Example 2 (PPS 16.4 kg N a C 1 17.8 kg, NMP 56.9 kg) was premixed with 40 kg of acetone as a cleaning solvent, The gas was continuously supplied at 350 g / min from the top A of the downcomer 1 of the apparatus shown in FIG. Acetone was supplied at 100 g / min from supply port F in FIG. Other conditions were the same as in Example 2.
  • the same polymerization slurry was mixed in advance with a part of acetone, which was a washing solvent, and was continuously treated by the apparatus shown in FIG. At this time, the apparatus was used as a solid-liquid separation apparatus without using acetone supplied countercurrently as a washing solvent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Description

明 細 書 ポリアリーレンスルフィ ドの連続洗浄方法 [技術分野]
本発明は、 少なくとも 2種類の固体粒子を含むスラリーの処理方法、 特に極性 有機溶媒中で硫化アルカリ源とジハロゲン芳香族化合物とを反応させて得たポリ ァリ一レンスルフィ ド粒子を含む重合スラリーからポリアリ一レンスルフィ ド粒 子を効果的に洗浄回収する方法、 あるいは上記重合スラリーの効果的な処理方法 に関する。
[背景技術]
ポリフエ二レンスルフィ ド ( P P S ) に代表されるポリァリーレンスルフィ ド ( P A S ) 樹脂は、 耐熱性、 耐薬品性、 難燃性、 電気的性質並びに機械的性質の 優れたエンジニアリングプラスチックであり、 繊維 . フィルム '射出成型用およ び押出し成型用に幅広く利用されている。 この樹脂は、 例えば N—メチルピロリ ドン (N M P ) 等の有機極性溶媒中でジハロゲン化芳香族化合物とアルカリ金属 硫化物との反応で得られることが、 特公昭 5 2 - 1 2 2 4 0号公報などに記載さ れている。 この方法によれば、 一般的に高温状態の重合系を常圧あるいは減圧下 の容器にフラッシュ取出しした後、 溶媒回収、 洗浄および乾燥を経て樹脂を回収 するため、 最終的な粒子径が数ミクロンから 5 0ミクロ の粉末状の樹脂が得ら れる。 この粉末状の樹脂は乾燥時にほこりとなって飛散しやすく、 かさ密度が小 さく取り扱いづらい。
特に溶融押出し時の吐出量が低下するので生産性に劣る。 また乾燥後の工程で いわゆる熱架橋によって加工に必要な溶融粘度を得ており、 直鎖型ポリマーに比 ベ機械物性に劣る欠点がある。
また、 特開昭 5 9 - 4 9 2 3 2号公報には粒子状の: P P Sを得る方法が記載さ れているが、 この実施例では、 重合生成物を水中に開け、 沈殿したビーズ状ポリ マーを採取して湯洗を繰り返し処理している。
また、 同様の樹脂において特閧昭 6 1 - 2 5 5 9 3 3号公報には重合工程で得 られた粒子状 P A Sを含む重合スラリーの処理方法が記述されている。 この処理 方法では、 ①ポリアリーレンスルフィ ド粒子、 副生した結晶および溶解塩化アル 力リ並びにァリーレンスルフィ ドオリゴマーを含み液成分が主として N—メチル ピロリ ドンである重合スラリーを篩別によつてボリァリ一レンスルフィ ド粒子と 結晶塩化アル力リ含有スラリーとに分離する工程、 ②該結晶塩化アル力リ含有ス ラリーを固液分離に付して、 結晶塩化アル力リを得るとともに液成分を蒸留して N—メチルピロリ ドンを回収する工程、 ③該ポリアリ一レンスルフィ ド粒子をァ セトン等の有機溶剤および水で洗浄する工程、 およぴ④有機溶剤洗浄液より有機 溶媒を蒸留回収する工程が記述されている。
特開平 4— 1 3 9 2 1 5号公報には、 篩別により重合スラリーより回収したポ リアリーレンスルフイ ド粒子を、 アセトン等の、 水より低沸点であり、 且つ重合 スラリー中の極性有機溶媒および水と相溶性を有する有機溶媒で洗浄した後、 水 洗することを特徴とするポリァリーレンスルフィ ドの洗浄方法が記載されている 上記した、 従来方法による重合スラリーからの製品ポリアリ一レンスルフィ ド 粒子の洗浄回収方法には、 篩別あるいは濾別による重合スラリーからのポリアリ 一レンスルフィ ド粒子の分離回収を主たる工程とすることに伴う本質的な問題が 内在している。
すなわち、 上記いずれの方法においても対象とする、 極性有機溶媒中での硫化 アル力リ源とジハロゲン芳香族化合物とを反応させて得た P A S粒子を含む重合 スラリーには、 主たる回収目的物である例えば平均粒径が 2 0 0〜2 0 0 0 m 程度の P A S粒子に加えて、 極性有機溶媒、 平均粒径が 5〜 1 0 0 /z m程度の副 生アルカリ金属塩微粒子、 溶解アルカリ金属塩、 およびァリ一レンスルフィ ドォ リゴマ一が含まれており、 これらの成分の多さが、 製品 P A S粒子の分離回収に おける困難性の根源にあるが、 特に篩別ないし濾別を本質的な工程とする分離回 収法には多くの問題がある。
例えば、 上記特開昭 6 1 - 2 5 5 9 3 3号公報および特開平 4一 1 3 9 2 1 5 号公報に記載の方法では、 いずれも、 重合スラリーの篩別に際し、 例えば目開き が 1 0 5 m程度の篩上に P A S粒子を回収し、 副生アルカリ金属塩微粒子を濾 液側に移行させる工程をとるが、 上記篩の目開きを通過する大きさの P A S粒子 のロスは避けられず、 このロスを低減するために目鬨きを小さくすると、 P A S 粒子とアル力リ金属塩微粒子の分離が困難になり、 また濾別に時間がかかり過ぎ て工業的に成立しなくなる。 また、 副生アルカリ金属塩微粒子を含む濾液から、 高価な反応溶媒である極性有機溶媒を回収する上でも多くの困難が伴う。 [発明の開示]
本発明の主要な目的は、 上記した重合スラリーから、 工業的に問題のある篩別 工程を本質的な工程として含むことなく、 P A S粒子を効率的に回収する方法を 提供することにある。
本発明の別の目的は、 高価な反応溶媒である極性有機溶媒の効果的な回収およ び副生アル力リ金属塩の効率的分離除去をも視野に入れた P A S重合スラリーの 処理方法を提供することにある。
本発明の別の目的は、 洗浄液の使用量を低減した P A S粒子の効果的な洗浄方 法を提供することにある。
本発明の更なる目的は、 P A S重合スラリーのように、 少なくとも 2種類の固 体粒子を含むスラリーを効率的に処理する方法を提供することにある。
本発明者らの研究によれば、 上述の目的の達成のためには、 重合スラリーから の P A S粒子の回収に洗浄液との連続向流接触を採用することが極めて効果的で あることが判明した。
従って、 本発明のポリアリーレンスルフィ ドの連続洗浄方法は、 極性有機溶媒 中で硫化アルカリ源とジハロゲン芳香族化合物とを反応させて得たポリアリーレ ンスルフィ ド粒子、 副生アルカリ金属塩および極性有機溶媒を含む重合スラリー を、 洗浄液と連続的に向流接触させる洗浄工程を特徴とするものである。
すなわち、 洗浄液との向流接触を含む P A S重合スラリーの処理方法は、 重合 スラリーの連続処理を可能にするという意味で、 工業的に優れるだけでなく、 篩 別による副生アル力リ金属塩微粒子との分離回収に際しての微粒状 P A Sのロス も少なくできることが見出されている。 また本発明のポリアリ一レンスルフィ ド の連続洗浄方法の好ましい態様によれば、 高価な極性有機溶媒の効率的な回収な らびに副生アル力リ金属塩の効率的な分離除去も可能になる。
また、 本発明の別の観点によれば、 P A S重合スラリーのように、 少なくとも 2種類の固体粒子を分散液媒中に分散させてなるスラリーを、 まず、 いずれの固 体をも溶解せず且つ分散液媒と相溶性のある第 1の洗诤液と向流接触させて洗浄 する第 1の工程と、 洗浄された前記少なくとも 2種類の固体粒子を、 該 2種類の 固体粒子のいずれかを選択的に溶解し且つ第 1の洗浄液とも相溶性のある第 2の 洗浄液と接触させる第 2の洗浄工程を有することを特徴とするスラリーの処理方 法が提供される。 これにより、 好ましくは一種類の固体粒子の効率的な洗浄と、 洗浄廃液の効率的な処理が、 可能になる。 [図面の簡単な説明]
第 1図は、 本発明法の実施に適した洗浄装置の一例の模式図である。
第 2図は、 上記第 1図の装置 3基を直列に配置して行う、 本発明法の好ましい 態様に従う、 主要な流入、 排出成分の分布説明図である。
第 3図は、 本発明法の実施に適した洗浄装置の別の一例の模式図である。
[究明を実施するための最良の形態]
本発明の好ましい実施態様を、 図面を参照しつつ以下に説明する。
第 1図は、 本発明のポリアリーレンスルフィ ドの連続洗浄方法を実施するのに 適した洗浄装置の一例の模式図であり、 P A S粒子の流れに従って、 主として下 向管部 Iおよび上向管部 I Iからなる。 下向管部 Iおよび上向管部 I Iは、 いず れも中空管状体 1および 2からなり、 下向管 1中にはモー夕 3により駆動される 撹拌機 4が、 また上向管 2中には、 モー夕 5により駆動される P A S粒子接き上 げ用のスクリュ一 6が設けられている。 また任意に、 A〜Hの位置に、 供給ある いは排出部を有する。 より詳しくは、 Aが被洗浄物供給口、 Fが主洗浄液供給口、 Gが洗浄済 P A S粒子排出口、 Bが洗浄廃液排出口、 C , Dおよび Eが必要に応 じて設けられる補助洗浄液供給口、 Hが必要に応じて設けられる臨時排出口であ る。 また補助洗浄液供給は、 P A S粒子排出口 Gと主洗浄液供給口 Fの間や下向 管部 Iにも追加することができる。
なお、 第 1図には、 下向管 1が垂直、 上向管 2が傾斜している例が挙げられて いるが、 両者はいずれも垂直あるいは傾斜の両方の態様を採り得る。 下向管 1中 では、 P A S粒子および副生アルカリ金属塩粒子と、 洗浄液との比重差により、 粒子の沈降と洗浄液の上昇による向流接触あるいは沈降分離が行われる。 この過 程での上昇する洗浄液の偏流あるいはチヤネリングを防止するために撹拌機 4に よるゆるい攪拌を行うことが好ましい。 特に攪拌の効果を期待しない場合は、 撹 拌機 4はなくてもよい。 他方、 上向管 2中では、 P A S粒子等の粒子がスクリュ — 6により搔き上げられつつ洗浄液による洗浄が行われる。 搔き上げによる搬送 性と洗浄効果を調和させるベく、 上向管 2の水平面に対する傾斜角ひは、 一般に 1〜 9 0 ° 、 好ましくは 5〜 6 0 ° 、 更に好ましくは 5〜4 5 ° の範囲から適宜 選択される。 また下向管 1においても、 沈降分離速度の緩和、 洗浄効率の改善、 上向管 2との兼ね合いでの装置のコンパク ト化等の目的で、 水平面に対する傾斜 角/?を 1〜9 0 ° 、 好ましくは 5 ~ 9 0 ° の範囲で適宜設定することができる。 また第 1図の装置は、 通常開放大気圧系において使用されるが、 適宜、 加圧あ るいは減圧下に使用することもできる。
まず供給口 Aから供給される P A S重合スラリーについて説明する。
本発明で処理の対象とする P A S重合スラリ一は、 極性有機溶媒中で硫化アル 力リ源とジハロゲン芳香族化合物とを反応させて得た P A S粒子、 副生アル力リ 金属塩および極性有機溶媒を含む重合スラリーである。
(ィ) 極性有機溶媒
極性有機溶媒としては、 たとえば有機アミ ド化合物、 ラクタム化合物、 尿素化 合物、 環式有機リン化合物などがある。 具体的には、 N, N—ジメチルホルムァ ミ ド、 N, N—ジメチルァセトアミ ド、 N, N—ジェチルァセトアミ ド、 N, N —ジプロピルァセトアミ ド、 N, N—ジメチル安息香酸アミ ド、 力プロラクタム、 N—メチルカプロラク夕ム、 N—ェチルカプロラク夕ム、 N—イソプロピルカプ ロラク夕ム、 N—イソブチルカプロラクタム、 N—ノルマルプロピル力プロラク タム、 N—ノルマルブチルカプロラクタム、 N—シクロへキシルカプロラク夕ム、 N—メチルー 2—ピロ リ ドン、 N—ェチル一 2—ピロリ ドン、 N—イソプロピル 一 2—ピロリ ドン、 N—イソブチルー 2—ピロリ ドン、 N—ノルマルプロピル一 2—ピロリ ドン、 N—ノルマルプチルー 2—ピロリ ドン、 N—シク口へキシルー 2—ピロリ ドン、 N—メチルー 3 —メチル一 2 —ピロリ ドン、 N—シクロへキシ ルー 2 —ピロリ ドン、 N—ェチルー 3 —メチル一 2 —ピロ リ ドン、 N—メチルー 3, 4 , 5 — ト リメチル _ 2—ピロリ ドン、 N—メチル一 2 —ピペリ ドン、 N— イソプロピル一 2—ピぺリ ドン、 N—メチル一 2—ピペリ ドン、 N—ェチルー 2 ーピペリ ドン、 N—イソプロピル一 2—ピペリ ドン、 N—メチルー 6—メチルー 2 —ピペリ ドン、 N—メチル一 3—ェチルー 2—ビペリ ドン、 テトラメチル尿素、 N , N ' —ジメチルエチレン尿素、 N, N ' —ジメチルプロピレン尿素、 1—メ チルー 1 —ォキソスルホラン、 1 一ェチル一 1 —ォキソスルホラン、 1—フエ二 ルー 1ーォキソスルホラン、 1 —メチル一 1 —ォキソスルホラン、 1 一ノルマル プロピル一 1 一ォキソホスホラン、 及び 1—フエ二ルー 1 一ォキソホスホランな どが挙げられる。
これらの極性有機溶媒はそれそれ単独で用いてもよいし、 2種以上を混合して 用いてもよい。
前記各種の極性溶媒の中でも、 非プロトン性の有機アミ ドもしくはラクタム類 が好ましく、 これらの中でも N—アルキルラクタム、 N—アルキルピロリ ドンが 好ましく、 特に N—メチルー 2—ピロリ ドン (N M P ) が好適である。
(口) 硫化アル力リ源
硫化アルカリ源は、 製品 P A Sの硫黄源となるものであり、 硫化アルカリに加 えて、 水硫化アルカリが含まれる。 硫化アルカリとしては、 たとえば、 硫化リチ ゥム、 硫化ナト リウム、 硫化カリウム、 硫化ルビジウム及び硫化セシウムなどを 挙げることができる。 これらの中でも、 硫化ナトリウム、 及び硫化リチウムが好 ましく、 特に硫化ナト リウムが好ましい。 また水硫化アルカリ としては、 水硫化 リチウム、 水硫化ナト リウム、 水硫化力リゥム、 水硫化ルビジウム、 水硫化カル シゥム及び水硫化セシウム等が用いられる。 なかでも水硫化ナト リウム及び水硫 ィ匕リチウムが好ましく、 特に水硫化ナト リウムが好ましい。 水硫化アルカリを用 いるときには、 水酸化アル力リを併用することが好ましい。
(ハ) ジハロゲン芳香族化合物
原料モノマーであるジハロゲン芳香族化合物としては、 たとえば、 m—ジハロ ベンゼン、 p—ジハロベンゼン等のジハロベンゼン類 ; 2 , 3—ジハロ トルエン、 2 , 5—ジハロ トルエン、 2 , 6—ジハロ トルエン、 3 , 4—ジハロ トルエン、 2 , 5—ジハロキシレン、 1—ェチルー 2 , 5—ジハ口ベンゼン、 1 , 2 , 4, 5—テトラメチルー 3 , 6—ジハロベンゼン、 1一ノルマルへキシル一 2 , 5— ジハロベンゼン、 1—シクロへキシル一 2 , 5—ジハロベンゼンなどのアルキル 置換ジハロベンゼン類またはシクロアルキル置換ジハロベンゼン類 ; 1一フエ二 ル一 2 , 5—ジハロベンゼン、 1—ベンジルー 2 , 5—ジハ口ベンゼン、 l—p — トルイルー 2, 5—ジハロベンゼン等のァリール置換ジハロベンゼン類 ; 4 , 4 ' —ジハロビフエニル等のジハロビフエニル類 ; 1 , 4一ジハロナフ夕レン、 1 , 6一ジハロナフ夕レン、 2 , 6—ジハロナフタレン等のジハロナフタレン類、 3, 5—ジハロ安息香酸、 4, 4 r ージハロジフエ二ルェ一テル、 4 , 4 ' —ジ ハロジフエ二ルェ一テル、 4 , 4 ' —ジハロジフエ二ルケトン、 4, 4 ' —ジハ ロジフエニルスルフイ ド、 4, 4 ' ージハロジフエニルスルフォキシ ドなどが挙 げられる。
これらのジハロゲン芳香族化合物における 2個のハロゲン元素は、 それそれフ ヅ素、 塩素、 臭素またはヨウ素であり、 それらは同一であってもよいし、 互いに 異なっていてもよい。 - 前記ジハロゲン芳香族化合物の中でも、 好ましいのはジハロベンゼン類であり、 特にパラジクロロベンゼンを主成分とするものである。
(二) 反応
上記各成分を用いて行う反応は、 P A Sの製造方法として知られているものが 任意に用いられるが、 平均粒径が 100 /m以上の P A S粒子を得ることが望ま しく、 例えば特開昭 6 1— 7332号公報に記載の方法が用いられる。 この方法 は、 硫化アル力リとジハロゲン芳香族化合物とを極性有機溶媒中で二段階に重合 させる方法であって、 先ず仕込量硫化アルカリ源 1モル当り、 極性有機溶媒 0. 2 ~ 5リッ トル、 および水 0. 5〜2. 4モルの媒体中で、 1 80〜 2 35 °Cで、 ジハロ芳香族化合物の転化率 50〜9 5モル%まで反応させ、 続いて仕込量硫化 アルカリ源 1モル当り 2. 5〜7. 0モルの水が存在する状態となるよう水を添 加するとともに 245~290 °Cで反応させて粒子状の PASを得る方法である c この方法によれば粒径 1 00 //m未満の P A Sをほとんど含まず、 副生するアル カリ金属塩の大半が微結晶 (平均粒径が 5〜 1 00 m程度) として析出してい る重合スラリーが得られる。
特に好ましい態様によれば、 硫化アルカリ源として N a 2 Sまたは N a S H ( + Na OH) が、 ジハロゲン芳香族化合物としてパラジクロロベンゼンが、 極 性有機溶媒として NMPが用いられ、 P A S重合スラリー中には、 溶媒 NMPお よび水とともに、 製品となるべき PP S粒子の他に、 結晶 Na C l、 溶解した N a C 1およびフエ二レンスルフィ ドオリゴマー、 パラジクロロベンゼンが含まれ る。
次いで、 上記のような PAS重合スラ リ一を第 1図の洗浄装置を用いて処理す る各種態様について述べる。
(第 1の態様)
最も基本的な態様としては、 開放大気圧系に置かれた第 1図の装置において、 供給口 Aから重合スラリーを供給し、 主洗浄液供給口 Fから水を洗浄液として供 給し、 排出口 Gから洗浄された PAS粒子を排出するとともに、 排出口 Bからは、 NMP、 溶解 N a C 1およびァリーレンスルフィ ドオリゴマーを含む水性洗浄廃 液を排出するものである。
より詳しくは、 供給口 Aから供給された; PAS重合スラリ一中の PAS粒子や 結晶 Na C 1などを主体とする固形物は、 好ましくは撹拌翼 4によるゆるい撹拌 下に下向管 1中を流下ないし沈降して、 管 1の底部に至り、 そこから上向管 2中 を回転するスクリュ一 6により搔き上げられる過程で供給口 Fから供給された水 と向流接触し、 同伴された結晶アルカリ金属塩を洗い落されて、 更に上昇する過 程で水切りされつつ、 排出口 Gから排出され、 その後乾燥されることにより製品 P A S粒子が得られる。 他方、 供給口 Fから供給された洗浄液としての水は、 P A S粒子に同伴された結晶アル力リ金属塩を溶解しつつ同伴するとともに P A S 粒子に吸収されていた極性有機溶媒を抽出し、 更に重合スラリー中の極性有機溶 媒およびァリーレンスルフィ ドオリゴマーとともに洗浄廃液として排出口 Bから 排出される。 洗浄廃液は、 蒸留等の常法に従い、 各成分に分離される。
この態様は、 第 1図の向流洗浄装置の効率的洗浄効果を専ら利用するものであ り、 排出口 Gから排出される P A S粒子は充分な洗浄効果を受けるが、 洗浄廃液 中の各成分を分離するに際して溶解した N a C 1等のアル力リ金属塩の存在が蒸 留を困難化する難点がある。 特に蒸留塔底から抜き出される水よりも高沸点の、 アル力リ金属塩やァリ一レンスルフィ ドオリゴマ一を含んだ極性有機溶媒から、 極性有機溶媒を経済的に分離 ·回収することは非常に困難である。
(第 2の態様)
本発明のより好ましい態様によれば、 第 1図に示す洗浄装置を 2基、 直列に配 置し、 重合スラリーを 2段階の洗浄処理に付す。
すなわち、 第 1の洗浄装置においては、 上記態様と同様に供給口 Aから重合ス ラリーを供給するとともに、 供給口 Fからは、 洗浄液として水および極性有機溶 媒 (以下、 代表的に N M Pという) に対し相溶性を有し、 且つ水よりも低沸点の 有機溶媒 (例えばアセトン、 メタノール等。 以下代表的にアセトンという) を供 給して、 粒子状の P A S (以下、 代表的に P P Sという) から主として N M Pを 抽出洗浄することにより、 排出口 Gからは結晶アルカリ金属塩 (以下、 代表的に N a C 1という) を同伴し且つァセトンで湿潤されたゥエツトケーキ状の P P S 粒子を排出する。 他方、 排出口 Bからは、 アセトン、 水および N M Pを主成分と する洗浄廃液が排出される。
また、 ほぼ同様に第 1図に示す構成の第 2の洗浄装置においては、 第 1の洗浄 装置の排出口 Gより排出された結晶 N a C 1を同伴するゥヱットケ一キ状の P P S粒子が、 供給口 Aから供給され、 供給口 Fからは、 洗浄液として水が導入され、 主として上向管 2を進行する過程で P P S粒子からは同伴された結晶 N a C 1が 溶解除去されるとともに、 吸収されたアセトンが水により抽出除去され、 排出口 Gからは、 本質的に水のみにより湿潤されたゥェットケーキ状の P P S粒子が得 られ、 その後、 乾燥されることにより製品 P P S粒子が得られる。 他方、 排出口 Bからは、 水、 回収アセトンおよび溶解 N a C 1を主成分とする洗浄廃液が排出 される。 この洗浄廃液を蒸留に付すと、 塔頂からはアセトンが回収されるととも に塔底からは N a C 1水が排出され、 これは、 固液分離することなく、 そのまま 装置外に排出することも可能となる。
他方、 第 1の洗浄装置の排出口 Bから排出される洗浄廃液は、 アセトン、 水、 N M Pを主成分とし、 溶解 N a C 1量は極めてわずかであるので、 効率を殆んど 下することなく蒸留に付される。 すなわち、 蒸留塔においては、 塔頂から水、 ァ セトン及び N M Pがそれそれ留出し、 高沸点物を含む少量の N M Pが塔底から適 時缶残液として抜き出される。
(第 3の態様)
本発明の更に好ましい態様によれば、 ほぼ同様な第 1図に示す構成の第 3の洗 浄装置を用い、 上記第 2の態様において第 2の洗浄装置の排出口 Gから排出され たゥェヅ トケーキ状の P P S粒子を、 更に酸処理に付す。 この酸処理は、 例えば 特開昭 6 2 - 4 8 7 2 8号および特鬨平 7 - 1 1 8 3 8 9号各公報に記載される ように、 製品 P P S粒子の、 好ましい結晶化温度ならびに結晶化速度を向上させ るのに効果的である。
すなわち、 この態様によれば再び第 1図を参照して、 第 2の洗浄装置の排出口 Gから排出された水で湿潤されたゥエツ トケーキ状の P P S粒子は、 第 3の洗浄 装置の供給口 Aから供給され、 他方、 供給口 Cからは酸 (例えば塩酸、 硫酸、 リ ン酸等の無機酸、 または塩化アンモニゥム等の強酸と弱塩基の塩、 あるいは酢酸、 蟻酸等の有機酸) の水あるいは水を主体とするアルコール等の水混和性溶媒との 混合液中溶液を、 また供給口 Fからは水を、 それそれ洗浄液として供給する。 こ れにより、 供給口 Aから導入された P P S粒子は、 下向管 1中を流下し、 且つ上 向管 2の供給口 Cに至るまでの区間において、 供給口 Cから導入された酸による 処理を受け、 更に上向管 2中を上昇する間に供給口 Fから導入された水により洗 浄され、 更に上昇して水切りを受けた後、 排出口 Gからウエットケーキとして排 出され、 その後乾燥された酸処理済 P P S粒子製品として回収される。 排出口 B からの洗浄液は希釈された酸であるので、 必要に応じて酸回収工程に導入される ほか、 ほとんど無害なのでそのまま装置外に排出することもできる。
本態様の主たる成分の流入 .排出状況を略示すれば第 2図のようになる。 各洗 浄装置の配置は、 第 1図に示すものとは左右逆になつているが、 もちろん、 これ は本質的な相違ではない。 なお、 第 2図の装置で各洗浄装置の下向管の頂部をホッパ一状に拡げてあるの は、 原料の投入と、 原料と洗浄廃液との分離と、 を容易ならしめるためで、 第 1 図の装置にも適宜適用可能である。
(第 4の態様)
上記第 3の態様に従う P A S (代表的に P P S ) の洗浄処理方法は、 上向管 2 の長さを増大すれば、 本質的に第 1図の洗浄装置のみで実施することもできる。 すなわち、 この態様によれば、 再び第 1図を参照して、 供給口 Aから重合スラ リーが導入され、 P P S粒子は、 逐次供給口 Cから導入されるアセトン、 Dから 導入される水、 Eから導入される酸および Fから導入される水により順次洗浄さ れ、 水切り後、 排出口 Gから本質的に水のみを含むウエットケーキとして排出さ れ、 その後、 乾燥されることにより、 酸処理済 P P S粒子製品として回収される < 但し、 この態様によれば、 排出口 Bからは、 水、 アセ トン、 酸を含む洗浄液に 加えて、 溶解 N a C 1および N M Pを含む洗浄廃液が排出されるので、 洗浄廃液 からの N M Pおよびァセトンの回収という点では難点が残る。
(第 5の態様)
但し、 第 3の態様とほぼ同様の洗浄ならびに洗浄廃液の回収効果は、 本質的に 第 1図にも示す構成の第 1および第 2の洗浄装置を 3基でなく、 2基直列に用い ることによつても達成可能である。 すなわち、 この態様においては、 第 1の洗浄 装置において、 主洗浄液供給口 Fからはアセトンを供給し、 第 1の洗浄装置の機 能 ·作用は、 上記第 3の態様における第 1の洗浄装置のそれと全く同じである。 そして第 1の洗浄装置の排出口 Gから排出された N a C 1を同伴する洗浄された P A S粒子は、 第 2の洗浄装置において、 供給口 C、 D (または E ) および Fか ら順次供給された水、 酸および水により順次洗浄されて、 排出口 Gから排出され る。 その後乾燥されて酸処理済 P A S粒子製品となる。 他方、 第 2の洗浄装置の 排出口 Bからは、 水、 酸およびアセ トンを含む洗浄廃液が排出されるが、 この洗 浄廃液は、 蒸留に付して、 塔頂からアセトンを回収し、 塔底から酸性水を排出す ることにより、 容易に分離可能である。
(第 6の態様)
第 3図は、 第 1図の装置を容積的にコンパク トにまとめた改変装置である。 第 1図と類似の部分は同記号で示してある。
本態様では、 下向管 1が傾斜して、 上向管 2に隣接しているので装置が全体と してコンパク 卜に形成できる。 撹拌機 4およびスクリユー 6は、 プーリ一 7およ び 8をそれそれ介して、 共通のモー夕 3により駆動される形式となっているが、 別個のモ一夕により駆動することはもちろん可能である。
第 3図の装置による P A Sの洗浄は、 第 1図の装置とほぼ同様に達成し得るこ とは、 容易に理解できょう。
(第 7の態様)
上記の態様においては、 いずれも原料スラリーを、 供給口 Aから洗浄装置中に 導入するものとした。 しかし、 原料スラリーは、 供給口 C , Dまたは Hから導入 することもできる。 このように上向管 2の下部に原料スラリーを導入することに より、 供給口 Aから導入する場合に比べて幾つかの効果が得られる。 すなわち、 ( 1 ) 下向管部 Iにおける粒子が沈降し難い底部に積層した粒子同士が凝集して、 洗浄液が偏流するなどの問題点を解消できる。 (2 ) C , D, Hから投入された スラリーは、 直ちにスクリュー 6による撹拌を受けるため、 洗浄液とスラリーと が短時間で混合され P A S粒子表面を洗浄液で速やかに濡らすことができる。 ( 3 ) 下向管部 Iにおいて、 撹抨機 4を不要とし、 下向管 1を小型化できるなど の簡素化が図れる。
(第 8の態様)
原料である P A S重合スラリーに、 予め洗浄液、 例えばアセ トンの一部を混入 することもできる。 これにより、 供給スラリー中の粒子表面が洗浄液、 例えばァ セトン雰囲気となり、 固液の比重差が拡大し、 且つ液粘度が低下する。 従って、 重合スラリーを第 1図の洗浄装置の供給口に投入後、 粒子沈降の初速は、 重合ス ラリーにァセトンを混ぜた場合の方が混ぜない場合より速くなるので、 重合スラ リーを下向管に投入後粒子の沈降が完了するまでのトータルの沈降速度は、 重合 スラリーにァセトンを混ぜた場合の方が速くなる。
(第 9の態様)
原料 P A S重合スラリ一を第 1図の洗浄装置の供給口 A等に導入するに先立つ て、 固液分離に付すことができる。 この固液分離は、 例えば第 1図に示す構造を 有する装置の供給口 Aに原料スラリーを導入し、 洗浄液を特に導入することなく、 排出口 Gから、 極性有機溶媒を低減した重合スラリーを得、 これを改めて、 第 1 図の洗浄装置の供給口 A等に導入することにより達成される。 固液分離装置とし てはこれ以外にも篩分や遠心分離といった常用手段を適用できる。 これにより、 スラリー中の極性有機溶媒の割合が少なくなるため第 1〜第 8の態様に比べて、 ①下向管での固液の比重差が拡大され粒子の沈降速度が大きくなるので、 下向管 の径を小さくできる。 ②洗浄液、 例えばアセ トンの使用する量が少なくなる。 ァ セトンなどの洗浄溶剤は比較的高価なので、 蒸留などの方法で回収するが、 その コストも低減できる。
[実施例]
以下、 実施例、 比較例により、 本発明を更に具体的に説明する。
<重合スラリーの調製 >
200リヅトルオートクレーブ (反応缶) に、 NMP 60 k gと、 46. 30 重量%の硫化ナトリウム (Na2S) を含む硫化ナトリウム 5水塩 38 k gとを 仕込み、 窒素ガスで置換後、 3. 5時間かけて、 撹拌しながら徐々に 200 °Cま で昇温して、 水 1 6. 5 k gと NMP 1 1 kgを溜出させた。 この際、 5. 0モ ルの H2Sが揮散した。 したがって、 脱水工程後の缶内の有効 N a2 Sは、 22 0. 4モルとなった。 H2 S揮散分は、 仕込み N a 2 Sの 2. 22モル%に相当 した。 上記脱水工程の後、 22 0. 4モルの有効 N a 2 Sを含む反応缶を 1 8 0°Cまで冷却し、 パラジクロロベンゼン (pD CB) 34· 35k [p— DC B/N a 2 S = 1. 06 (モル比) ] 、 NMP— 28. 1 5 k g、 水 1, 83 k g [缶内の合計水量 ZNa2 S= 1. 40 (モル比) ] 、 および缶内の合計 N a OH量が有効 N a a Sに対して 6. 00モル%となるように純度 97 %の N a〇 H 1 33 gを加えた。 撹拌下 220 °Cで 4. 5時間反応させ、 その後、 撹拌を続 けながら相分離剤としての水 4. 1 7 k gを圧入し [缶内の合計水量 ZN a2 S = 2. 45 (モル比) ] 、 2 55°Cに昇温して 2. 0時間反応させた。 なお、 こ の時のトータルの重合時間は、 6. 5時間であった。 重合終了後、 ヒータの電源 を切り、 常温まで冷却して、 平均粒径が約 400 mの PP S粒子を含む重合ス ラリーを得た。
(実施例 1一 1 )
上記で得た重合スラリーを本質的に第 1図の装置で連続的に処理した。 この装 置においては、 下向管 1は、 頂部を拡径した直管部内径が 70 mmで全長約 1 m の垂直中空管とし、 撹拌機 4を 8 r pmで回転させた。 また上向管 2は、 傾斜角 α=約 30° 、 内径 70mm 長さ 2 mの中空管であり、 スクリユー 6は、 長さ 2 m、 外径 65 mm、 シャフ ト径 24 mm、 ピッチ 60 mmであり、 8 r pmで 回転させた。
この装置において、 供給口 Aから上記重合スラリーを 5 1 0 g/分で連続的に 供給し、 上向管 2の上端から約 50 Ommの位置にある供給口 Fからはァセトン を 2 2 0 g/分の速度で導入した。 1 0 0 k gの重合スラリー (PP S 1 6. 4 k g、 N a C l 1 7. 8 k g、 NMP 5 6. 9 k g) をこの条件で洗浄したと ころ、 上向管 2の上端から約 1 0 0 mmの位置にある排出口 Gからは P P S 1 5 , 8 k g, N a C 1 1 7. 3 k gがゥェヅ トケーキ状態で回収された (PP Sの 回収率 9 6 %、 N a C 1の回収率 9 7 %) 。 この洗浄に要したァセトンの使用量 は PP S重量に対して 2. 7倍となった。 ウエットケーキを分析したところ、 P P S 34. 7重量%、 N a C 1 3 8. 0重量%、 NMP 0. 1 5重量%、 p - D CB 0. 0 6重量%で残りの主成分はァセトンであった。 一方、 下向管 1の上 端から約 9 0 0 mmの位置に設けた排出口: Bから排出された洗浄廃液中には、 1 5 0 m以上の P P S粒子は存在しなかった。 5 A濾紙で洗浄廃液を濾過した結 果、 濾紙上には 1 . 2 k gのウエッ トケーキが残った。 このうち、 副生結晶アル カリ金属塩重量は 0. 3 k g、 卩 3は0. 5 k gであった。
上記で排出口 Gから排出されたゥエツトケーキに、 P P S成分が 1 5重量%と なるように PP Sの 3. 8倍量 (6 0 k g) の水を加えて水スラリ一とし (リス ラリー) 、 本質的に上記した同様の寸法ならびに運転条件の第 1図に示す構成の 装置により該水スラリーを処理した。
すなわち、 上記水スラリーを、 供給口 Aから 54 0 g/分、 供給口 Fから水を 2 5 0 g/分の流量で、 それそれ連続的に供給した。 1 0 0 k gの水スラリー (PP S 1 5 k g、 N a C l 1 6. 4 k g) をこの条件で洗浄したところ、 排 出口 Gからは 1 4. 9 k gの P P Sをウエッ トケーキ状態で回収した (P P Sの 回収率 9 9 %) 。 この洗浄条件における水の使用量はポリマーに対して 3. 1倍 になり、 リスラリーに使用した 3. 8倍の水とあわせるとポリマ一重量に対して 使用した水は計 6. 9倍である。 得られたウエットケーキを分析したところ、 P P S成分は 3 1 . 2重量%、 アセトン 0. 5重量%で残りの主成分は水であった c ここで得られたゥェヅ トケーキを 1 0 5°Cのオーブンで 1 3時間乾燥した。 この 乾燥粒子の中に含まれる NMP濃度は 2 0 0 p pm、. N a +は 1 3 0 0 p pm、 ポリマーの降温結晶化温度は 1 8 5°Cとなった。 2回の連続洗浄操作で回収され た PP Sは重合スラリ一中の PP Sの 9 5 %であった。
(実施例 1 — 2 )
上記実施例 1— 1で得られた水洗後のウエッ トケーキを、 引き続いて第 1図に 示され且つ上記実施例 1と同様の寸法であるが、 更に上向管 2の下端部から 5 0 0 mmの位置に供給口 Cを設けた装置を用い、 更にスクリュー 6を 1 0 r pmで 回転させて処理した。 すなわち、 供給口 Aからはゥェヅトケ一キを 26◦ g/分 (ポリマー 81 g/分) の流量で供給し、 供給口 Fからは 200 g/分の水を、 供給口 Cからはこの洗浄水に対して 0. 3重量%の割合となるように濃度 80重 量%の酢酸を 0. 75 g/分の流量で、 それぞれ連続的に供給した。 この結果、 使用した水はボリマ一に対して 2. 5倍、 使用した酢酸はポリマー 1 00 gに対 して 0. 74 gの割合となった。 得られたゥエツ トケ一キを 1 05 °Cのオーブン で 13時間乾燥した結果、 降温結晶化温度は 248 °Cとなった。
(比較例 1— 1 )
上記で得た重合スラリー 2700 g (P P S 443 g, N a C 1 48 1 g、 NMP 1 536 g) をまず 150〃mの目開きのスクリーンで篩分して粒状ポリ マ一を分離 ·回収し、 1 000 gのゥェヅトケ一キを得た。 このゥェヅ トケーキ 中の PP Sは 40重量%であった。 このゥェヅトケーキに 2000 gのアセトン を加え、 常温にて攪拌し同様な操作で篩分した。 篩分後のケーキ中の P P S含有 量は 50%であった。 同様の操作をあと 2回繰り返してポリマーを洗浄した。 使 用したアセトンの総量はポリマ一重量に対し 1 5倍となった。 このアセトン洗浄 後に得られたウエッ トケーキ中の NMPは 0. 2wt%であった。 このウエット ケーキを上記のァセトン洗浄と同様な操作によって、 次に水洗浄を 5回繰り返 b た (使用した水の総量は 1 0000 gでポリマ一重量の 22. 6倍) 。 この後、 脱液して得られたウエットケ一キを 1 05 °Cのオーブンで 1 3時間乾燥した。 こ の結果、 400 gの PP Sが得られ (PP Sの回収率 90 %) 、 この乾燥粒子の 中に含まれる NMP濃度は 220 ppm、 Na +は 1 700 ppm、 ポリマ一の 降温結晶化温度は 1 85 °Cとなった。
また篩分により分離された副生結晶アル力リ金属塩からも同様に NMPを回収 する為に、 ァセトン洗浄での濾液をスクリ一ンの変わりに 5 Aろ紙を用いて固液 分離し 330 gのウエットケーキを得た。 この中の副生結晶アルカリ金属塩重量 は 220 g、 PP Sは 40 gであった。 ここにアセトン 1 000 gを加え攪抨後、 再度脱液した。 脱液後乾燥し得られた固形分に付着していた NMPは 5000 p 才であった。 ここで使用したアセトンの総量はポリマーに対し約 1 7. 5倍で ある。 水は 25倍である。
(比較例 1一 2)
比較例 1― 1において水洗浄 5回後に得られたゥヱツ トケーキ (PP S 400 g) に 2000 sの水を加え、 さらに加えた洗浄水に対する酢酸濃度が 0. 3% になるように 6 gの酢酸を加えてから攪拌してポリマーを洗浄した。 洗浄後、 1 50 mの目開きの網で脱液し、 残ったゥェヅトケーキに再び 2000 gの水を 加えて攪袢洗浄し、 脱液した。 もう一度、 この洗浄操作を繰り返した後、 得られ たゥエツ トケーキを 1 05°Cのオーブンで 1 3時間乾燥した結果、 乾燥したポリ マーの降温結晶化温度は 248 °Cとなった。 この洗浄で使用した水はポリマーに 対して 1 5倍、 使用した酢酸はポリマ一 1 00 gに対して 1. 5 gの割合となつ た。
(比較例 1— 3)
比較例 1一 1において水洗浄 5回後に得られたゥェヅ トケーキ (PP S 400 g) に 2000 gの水を加え、 さらに 2. 9 6 gの酢酸を加えてから攙拌してポ リマーを洗浄した。 洗浄後、 1 50 mの目開きの網で脱液し、 残ったウエット ケーキに再び 2000 gの水を加えて攪拌洗浄し、 脱液した。 もう一度、 この洗 浄操作を繰り返した後、 残ったゥェヅトケーキを 1 05 °Cのオーブンで 1 3時間 乾燥した結果、 乾燥したポリマーの降温結晶化温度は 1 94°Cとなった。 この洗 浄で使用した水はポリマ一に対して 15倍、 使用した酢酸はポリマー 100 gに 対して 0. 74 gの割合である。
(実施例 2 )
実施例 1一 1で使用したのと同じ重合スラリーを第 1図の装置で連続して処理 した。 この装置において、 下向管 1は、 撹拌機を有しない直管部のみで、 その内 径が 70 mmで全長が 1 mの垂直中空管とした。 また、 上向管 2は、 傾斜角ひ == 20度、 内径 70mm、 長さ 3mの中空管であり、 スクリユー 6は、 長さ 3m、 外径 65mm、 シャフ ト径 24mm、 ピヅチ 60 mmであり、 5 rpmで回転さ せた。 また、 重合スラリーの供給を、 かき揚げ用スクリユーを内部に有する上向 管 (第 1図の Hの位置) に直接に供給した。 重合スラリー供給量は 250 gZ分 で、 ァセトンは第 1図の F (上向管 2の上端より約 1 000 mm) の位置より 2 00 g/分の速度で導入供給した。 100 k gの重合スラリー (PP S 1 6. 4 k , N a C 1 1 7. 8 kg, NMP 56. 9 kg) をこの条件で洗浄し たところ、 上向管 2の上端より約 100 mmの位置にある排出口 Gからは、 52 8. 8 k gのウエットケーキが得られた。 これを分析すると PPS 1 5. 7 k g , N a C 1 1 7. 3 k , NMP 0. 076 kg, p D CB 0. 0 1 5'k gで残りの主成分はアセトンであった。 PP S回収率は 9 6%、 Na C l回 収率は 97 %であった。 この時、 洗浄に要したァセトンの使用量は PP S重量に 対して 4. 9倍であった。
一方、 排出口 Bから排出された洗浄廃液中には PP S 0. 7 kgと NaC l 0. 5 k gが含まれていた。
(実施例 3)
実施例 2で使用したのと同じ重合スラリー 1 00 kg (PP S 1 6. 4 kg N a C 1 17. 8kg, NMP 56. 9 k g) に洗浄溶剤であるァセトン 4 0 k gを予め混合し、 第 1図の装置の下向管 1の頂部 Aより 350 g/分で連続 して供給した。 アセトンは 1 00 g/分で第 1図の供給口 Fから供給した。 その 他の条件は実施例 2と同じとした。
このとき、 排出口 Gからは、 51. 5 k gのゥェヅ トケーキが得られた。 これ を分析すると、 PP S 1 5. 8 kg, NaC l 17. 2 k , NMP 0. 1 k g , p D CB 0. 0 1 5kg, 残りがアセトンであった。 PP Sの回収 率は 96%、 N a C 1の回収率は 97%である。 一方、 排出口 Bから排出された 洗浄廃液中には PP S 0. 6 kg、 NaC l 0. 6 k gが含まれていた。
(参考例)
同様の重合スラリーを洗浄溶剤であるァセトンの一部を予め混合し、 第 1図の 装置で連続して処理した。 このとき、 洗浄溶媒として向流で供給するアセトンは 使用せずに、 装置を固液分離装置として使用した。
100 k gの重合スラリ一 (PP S 1 6. 4 kg, NaC l 17. 8 kg: NMP 56. 9 kg) を、 重合スラリー/アセ トン = 250 / 130の重量比 で予め混合して、 その混合物を 380 g/分の速度で第 1図の装置の下向管 1の 頂部 Aに供給した。 排出口 Gからは、 PP S 1 5. 9 k g, NaC l 1 7. 4 k gが回収された (P P S回収率 97%、 Na C l回収率 98%) 。 このとき、 洗浄に要したアセトンの使用量は P P S重量に対して 3. 1倍であった。 このゥ ェヅ トケーキを分析したところ、 PP S 28. 3重量%、 NaC l 23. 0 重量%、 NMP 20. 3重量%、 p D CB 0. 14重量%で残りの主成分 はアセトンであった。
[産業上の利用可能性]
上記実施例および比較例の結果からも明らかなように、 本発明によれば (ィ) 工業的に問題のある篩別工程を本質的工程として含むことなく、 (口) 少ない洗 浄液使用量で P A S粒子を効率的に洗浄し、 且つ高価な反応溶媒である極性有機 溶媒の効率的な回収ならびに副生アル力リ金属塩の効率的除去をも視野に入れた- 工業的に有効なポリァリーレンスルフィ ド連続洗浄方法あるいはポリアリーレン スルフィ ド重合スラリーの処理方法が提供される。

Claims

請 求 の 範 囲
1 . 極性有機溶媒中で硫化アルカリ源とジハロゲン芳香族化合物とを反応させ て得たポリアリーレンスルフィ ド粒子、 副生アルカリ金属塩および極性有機溶媒 を含む重合スラリーを、 洗浄液と連続的に向流接触させる洗浄工程を特徴とする ポリアリーレンスルフィ ドの連続洗浄方法。
2 . 前記洗浄工程が、 ポリアリ一レンスルフイ ド粒子を上向流で移動させて洗 浄液と向流接触させる工程を含む請求の範囲第 1項記載の方法。
3 . 前記洗浄工程が、 ポリアリーレンスルフイ ド粒子を、 まず下向流で移動さ せて洗浄液と向流接触させる前工程と、 上向流で移動させて洗浄液と向流接触さ せる後工程とからなる請求の範囲第 2項記載の方法。
4 . 後工程が搬送スクリユーを設けた傾斜管中で行われる請求の範囲第 3項記 載の方法。
5 . 後工程においてポリアリーレンスルフィ ド粒子の上向流の途中で、 洗浄液 を導入しポリアリーレンスルフィ ド粒子と接触開始させる請求の範囲第 3項また は第 4項記載の方法。
6 . 前記洗浄工程を、 下向管部と、 内側に搬送スクリューを設けた上向管部と を有する概ね V字状の管装置において行い、 該管装置の上向管の概ね最下部近傍 に前記重合スラリーを導入し、 ポリアリーレンスルフィ ド粒子を洗浄液と向流接 触させ、 上向管の頂部近傍から洗浄されたポリアリ一レンスルフイ ド粒子ととも に副生アル力リ金属塩を同伴回収するとともに下向管部の頂部近傍から洗浄液と 極性有機溶媒の混合液を回収する請求の範囲第 2項記載の方法。
7 . 前記洗浄工程において、 前記極性有機溶媒および水と相溶性を有し、 且つ 水よりも低沸点の有機溶媒を洗浄液として用いて、 洗浄されたポリアリ一レンス ルフィ ド粒子とともに副生アルカリ金属塩を同伴回収した後、 更に 0収された副 生アルカリ金属塩を同伴するポリアリ一レンスルフイ ド粒子を水性洗浄液と連続 的に向流接触させて洗浄されたポリアリーレンスルフィ ド粒子を回収する第 2の 洗浄工程を有する請求の範囲第 1項〜第 6項のいずれかに記載の方法。
8 . 洗浄されたポリアリーレンスルフィ ド粒子を、 更に酸性洗浄液および水性 洗浄液と順次向流接触させて洗浄する第 3および第 4の洗浄工程を有する請求の 範囲第 1項に記載の方法。
9 . 前記洗浄工程に先立って、 下向管部と、 内側に搬送スクリユーを設けた上 向管部とを有する概ね V字状の管装置の下向管頂部近傍に前記重合スラリーを導 入し、 上向管の頂部近傍から極性有機溶媒を低減した重合スラリーを回収する予 備 (固液分離) 工程を置き、 該極性有機溶媒を低減した重合スラリーを洗浄工程 に供給する請求の範囲第 1項〜第 8項のいずれかに記載の方法。
1 0 . 洗浄工程に先立って、 重合スラリーに洗浄液の一部を混合する予備工程 を含む請求の範囲第 1項〜第 9項のいずれかに記載の方法。
1 1 . 少なくとも 2種類の固体粒子を分散液媒中に分散させてなるスラリーを、 まず、 いずれの固体をも溶解せず且つ分散液媒と相溶性のある第 1の洗浄液と向 流接触させて洗浄する第 1の工程と、 洗浄された前記少なくとも 2種類の固体粒 子を、 該 2種類の固体粒子のいずれかを選択的に溶解し且つ第 1の洗浄液とも相 溶性のある第 2の洗浄液と接触させる第 2の洗浄工程を有することを特徴とする スラリ一の処理方法。
PCT/JP2002/012513 2001-12-03 2002-11-29 Procede de purification continue de sulfure de polyarylene WO2003048231A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP02785981A EP1452555B1 (en) 2001-12-03 2002-11-29 Method of continuously cleansing polyarylene sulfide
JP2003549416A JP4919581B2 (ja) 2001-12-03 2002-11-29 ポリアリーレンスルフィドの連続洗浄方法
AU2002354130A AU2002354130A1 (en) 2001-12-03 2002-11-29 Method of continuously cleansing polyarylene sulfide
AT02785981T ATE433472T1 (de) 2001-12-03 2002-11-29 Verfahren zur kontinuierlichen reinigung von polyarylensulfid
US10/497,525 US7094867B2 (en) 2001-12-03 2002-11-29 Method of continuously cleansing polyarylene sulfide
DE60232602T DE60232602D1 (de) 2001-12-03 2002-11-29 Verfahren zur kontinuierlichen reinigung von polyarylensulfid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001368579 2001-12-03
JP2001-368579 2001-12-03

Publications (1)

Publication Number Publication Date
WO2003048231A1 true WO2003048231A1 (fr) 2003-06-12

Family

ID=19178152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/012513 WO2003048231A1 (fr) 2001-12-03 2002-11-29 Procede de purification continue de sulfure de polyarylene

Country Status (8)

Country Link
US (1) US7094867B2 (ja)
EP (1) EP1452555B1 (ja)
JP (1) JP4919581B2 (ja)
CN (1) CN1294182C (ja)
AT (1) ATE433472T1 (ja)
AU (1) AU2002354130A1 (ja)
DE (1) DE60232602D1 (ja)
WO (1) WO2003048231A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006027985A1 (ja) * 2004-09-06 2006-03-16 Kureha Corporation ポリアリーレンスルフィドの製造方法
US7632915B2 (en) * 2002-12-27 2009-12-15 Kureha Corporation Production process and washing method of poly(arylene sulfide), and purification process of organic solvent used in washing
WO2012008340A1 (ja) 2010-07-13 2012-01-19 株式会社クレハ ポリアリーレンスルフィドの製造方法及び製造装置
JP2014108921A (ja) * 2012-11-30 2014-06-12 Toray Ind Inc 環式ポリアリーレンスルフィドの回収方法
US9908974B2 (en) 2014-04-30 2018-03-06 Kureha Corporation Polyarylene sulfide production method and polyarylene sulfide production apparatus
WO2020032171A1 (ja) * 2018-08-10 2020-02-13 Dic株式会社 ポリアリーレンスルフィドの精製方法および製造方法
WO2021117795A1 (ja) * 2019-12-11 2021-06-17 Dic株式会社 ポリアリーレンスルフィド、その精製方法および製造方法

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7276625B2 (en) 2002-10-15 2007-10-02 Eastman Chemical Company Process for production of a carboxylic acid/diol mixture suitable for use in polyester production
MXPA05006120A (es) * 2002-12-09 2005-08-16 Eastman Chem Co Proceso para la purificacion oxidativa de acido tereftalico.
US7132566B2 (en) * 2003-09-22 2006-11-07 Eastman Chemical Company Process for the purification of a crude carboxylic acid slurry
US7161027B2 (en) 2002-12-09 2007-01-09 Eastman Chemical Company Process for the oxidative purification of terephthalic acid
US7074954B2 (en) * 2002-12-09 2006-07-11 Eastman Chemical Company Process for the oxidative purification of terephthalic acid
US7193109B2 (en) 2003-03-06 2007-03-20 Eastman Chemical Company Process for production of a carboxylic acid/diol mixture suitable for use in polyester production
US20050059709A1 (en) * 2003-09-15 2005-03-17 Meythaler Jay M. Treatment of a neuropathy with rapid release aminopyridine
US7214760B2 (en) * 2004-01-15 2007-05-08 Eastman Chemical Company Process for production of a carboxylic acid/diol mixture suitable for use in polyester production
CN1896119B (zh) * 2005-07-13 2011-05-11 自贡鸿鹤化工股份有限公司 从合成聚苯硫醚树脂料浆中回收聚苯硫醚树脂的方法
US20070179312A1 (en) * 2006-02-02 2007-08-02 O'meadhra Ruairi Seosamh Process for the purification of a crude carboxylic axid slurry
US8455680B2 (en) 2008-01-15 2013-06-04 Eastman Chemical Company Carboxylic acid production process employing solvent from esterification of lignocellulosic material
US8614350B2 (en) 2008-01-15 2013-12-24 Eastman Chemical Company Carboxylic acid production process employing solvent from esterification of lignocellulosic material
US7960503B2 (en) 2009-05-26 2011-06-14 Solutia, Inc. Continuous washing of poly(vinyl butyral)
WO2015047717A1 (en) * 2013-09-25 2015-04-02 Ticona Llc Method and system for separation of a polymer from multiple compounds
JP6797686B2 (ja) 2013-09-25 2020-12-09 ティコナ・エルエルシー ポリアリーレンスルフィドを形成するための多段階プロセス
JP2016536377A (ja) 2013-09-25 2016-11-24 ティコナ・エルエルシー ポリアリーレンスルフィドを形成するためのスクラビングプロセス
JP2016536376A (ja) 2013-09-25 2016-11-24 ティコナ・エルエルシー 低ハロゲン含量のポリアリーレンスルフィドを形成する方法
JP6684206B2 (ja) 2013-09-25 2020-04-22 ティコナ・エルエルシー ポリアリーレンスルフィドの形成中における塩副生成物の分離
JP6797687B2 (ja) 2013-09-25 2020-12-09 ティコナ・エルエルシー ポリアリーレンスルフィド結晶化方法
WO2016133739A1 (en) 2015-02-19 2016-08-25 Ticona Llc Method for forming a high molecular weight polyarylene sulfide
JP6803844B2 (ja) 2015-02-19 2020-12-23 ティコナ・エルエルシー 低粘度のポリアリーレンスルフィドを形成する方法
WO2016133740A1 (en) 2015-02-19 2016-08-25 Ticona Llc Method of polyarylene sulfide precipitation
JP6783242B2 (ja) 2015-03-25 2020-11-11 ティコナ・エルエルシー 高溶融粘度のポリアリーレンスルフィドを形成する方法
US11407861B2 (en) 2019-06-28 2022-08-09 Ticona Llc Method for forming a polyarylene sulfide
CN110527089B (zh) * 2019-07-31 2022-02-18 长治市霍家工业有限公司 一种生产高纯度聚苯硫醚树脂的纯化方法
CN115279734A (zh) 2019-12-20 2022-11-01 提克纳有限责任公司 形成聚芳硫醚的方法
CN113680128B (zh) * 2021-07-27 2023-06-06 山东明化新材料有限公司 一种聚芳硫醚树脂的连续洗涤净化系统及净化方法
US12018129B2 (en) 2021-09-08 2024-06-25 Ticona Llc Extraction technique for recovering an organic solvent from a polyarylene sulfide waste sludge
CN117916001A (zh) * 2021-09-08 2024-04-19 提克纳有限责任公司 从聚芳硫醚废污泥中回收有机溶剂的反溶剂技术

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02102228A (ja) * 1988-10-11 1990-04-13 Toopuren:Kk 高分子量ポリフェニレンサルファイド樹脂の製造方法
JPH0386287A (ja) * 1989-08-28 1991-04-11 Idemitsu Petrochem Co Ltd 粉粒状樹脂の洗浄方法およびその洗浄装置
JPH04139215A (ja) * 1990-09-28 1992-05-13 Idemitsu Petrochem Co Ltd ポリアリーレンスルフィドの洗浄方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4110401A (en) * 1977-07-11 1978-08-29 Amax Inc. Solid-liquid separation of laterite slurries
US4163837A (en) * 1977-11-16 1979-08-07 Phillips Petroleum Company Multiple loci counter-current washing
JPS5925803A (ja) 1982-08-03 1984-02-09 Mitsui Toatsu Chem Inc 向流洗浄塔および合成樹脂スラリ−の洗浄方法
DE3433978A1 (de) * 1984-09-15 1986-03-27 Bayer Ag, 5090 Leverkusen Verfahren zur isolierung von polyarylensulfiden
US5814210A (en) * 1988-01-27 1998-09-29 Virginia Tech Intellectual Properties, Inc. Apparatus and process for the separation of hydrophobic and hydrophilic particles using microbubble column flotation together with a process and apparatus for generation of microbubbles
US5128068A (en) * 1990-05-25 1992-07-07 Westinghouse Electric Corp. Method and apparatus for cleaning contaminated particulate material
NL9001526A (nl) * 1990-07-05 1992-02-03 Akzo Nv Werkwijze voor de bereiding van polyaryleensulfide met een laag gehalte aan alkalimetaal.
DE4102745A1 (de) 1991-01-30 1992-08-06 Henkel Kgaa Pulverfoermige tensidmischung
DE19915705C2 (de) 1999-04-08 2002-09-12 Ticona Gmbh Verfahren zur Abtrennung von Feststoffen aus Polymerlösungen
US6331608B1 (en) * 1999-09-13 2001-12-18 Phillips Petroleum Company Process for producing poly(arylene sulfide)
JP2001261830A (ja) 2000-03-23 2001-09-26 Idemitsu Petrochem Co Ltd ポリアリーレンスルフィドの精製方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02102228A (ja) * 1988-10-11 1990-04-13 Toopuren:Kk 高分子量ポリフェニレンサルファイド樹脂の製造方法
JPH0386287A (ja) * 1989-08-28 1991-04-11 Idemitsu Petrochem Co Ltd 粉粒状樹脂の洗浄方法およびその洗浄装置
JPH04139215A (ja) * 1990-09-28 1992-05-13 Idemitsu Petrochem Co Ltd ポリアリーレンスルフィドの洗浄方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7632915B2 (en) * 2002-12-27 2009-12-15 Kureha Corporation Production process and washing method of poly(arylene sulfide), and purification process of organic solvent used in washing
JPWO2006027985A1 (ja) * 2004-09-06 2008-05-08 株式会社クレハ ポリアリーレンスルフィドの製造方法
US8211997B2 (en) 2004-09-06 2012-07-03 Kureha Corporation Process for producing polyarylene sulfide
JP5148875B2 (ja) * 2004-09-06 2013-02-20 株式会社クレハ ポリアリーレンスルフィドの製造方法
WO2006027985A1 (ja) * 2004-09-06 2006-03-16 Kureha Corporation ポリアリーレンスルフィドの製造方法
US8981041B2 (en) 2010-07-13 2015-03-17 Kureha Corporation Production process of poly(arylene sulfide) and production apparatus thereof
WO2012008340A1 (ja) 2010-07-13 2012-01-19 株式会社クレハ ポリアリーレンスルフィドの製造方法及び製造装置
KR101468825B1 (ko) * 2010-07-13 2014-12-03 가부시끼가이샤 구레하 폴리아릴렌술피드의 제조 방법 및 제조 장치
JP2014108921A (ja) * 2012-11-30 2014-06-12 Toray Ind Inc 環式ポリアリーレンスルフィドの回収方法
US9908974B2 (en) 2014-04-30 2018-03-06 Kureha Corporation Polyarylene sulfide production method and polyarylene sulfide production apparatus
WO2020032171A1 (ja) * 2018-08-10 2020-02-13 Dic株式会社 ポリアリーレンスルフィドの精製方法および製造方法
JPWO2020032171A1 (ja) * 2018-08-10 2020-09-17 Dic株式会社 ポリアリーレンスルフィドの精製方法および製造方法
WO2021117795A1 (ja) * 2019-12-11 2021-06-17 Dic株式会社 ポリアリーレンスルフィド、その精製方法および製造方法
JPWO2021117795A1 (ja) * 2019-12-11 2021-12-09 Dic株式会社 ポリアリーレンスルフィド、その精製方法および製造方法
JP7031797B2 (ja) 2019-12-11 2022-03-08 Dic株式会社 ポリアリーレンスルフィド、その精製方法および製造方法

Also Published As

Publication number Publication date
CN1294182C (zh) 2007-01-10
ATE433472T1 (de) 2009-06-15
US7094867B2 (en) 2006-08-22
CN1599767A (zh) 2005-03-23
DE60232602D1 (de) 2009-07-23
EP1452555B1 (en) 2009-06-10
EP1452555A1 (en) 2004-09-01
AU2002354130A1 (en) 2003-06-17
JP4919581B2 (ja) 2012-04-18
US20050087215A1 (en) 2005-04-28
EP1452555A4 (en) 2005-04-13
JPWO2003048231A1 (ja) 2005-04-14

Similar Documents

Publication Publication Date Title
WO2003048231A1 (fr) Procede de purification continue de sulfure de polyarylene
JP5148875B2 (ja) ポリアリーレンスルフィドの製造方法
KR101747618B1 (ko) 폴리아릴렌 설파이드의 제조방법 및 폴리아릴렌 설파이드의 제조장치
KR101468825B1 (ko) 폴리아릴렌술피드의 제조 방법 및 제조 장치
EP0259984B1 (en) Process for producing a polyarylene sulfide
JP2543673B2 (ja) ハンドリング性のすぐれたポリアリ―レンスルフィドの製造法
JP6419311B2 (ja) 微粉ポリアリーレンスルフィドを製造する方法及び微粉ポリアリーレンスルフィド
WO2004060973A1 (ja) ポリアリーレンスルフィドの製造方法及び洗浄方法、並びに洗浄に使用した有機溶媒の精製方法
JP4685244B2 (ja) 重合体溶液から固体を分離する方法および装置
JP7150385B2 (ja) ポリアリーレンスルフィドの分離精製方法
JP6889085B2 (ja) ポリアリーレンスルフィドの製造方法
US11597800B2 (en) Separation and recovery method of polyarlene sulfide
JP2024021679A (ja) ポリアリーレンスルフィドオリゴマー混合物の製造方法、及びポリアリーレンスルフィド樹脂の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003549416

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20028240375

Country of ref document: CN

Ref document number: 10497525

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002785981

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002785981

Country of ref document: EP