WO2021117795A1 - ポリアリーレンスルフィド、その精製方法および製造方法 - Google Patents

ポリアリーレンスルフィド、その精製方法および製造方法 Download PDF

Info

Publication number
WO2021117795A1
WO2021117795A1 PCT/JP2020/045955 JP2020045955W WO2021117795A1 WO 2021117795 A1 WO2021117795 A1 WO 2021117795A1 JP 2020045955 W JP2020045955 W JP 2020045955W WO 2021117795 A1 WO2021117795 A1 WO 2021117795A1
Authority
WO
WIPO (PCT)
Prior art keywords
pas
polyarylene sulfide
carbon atoms
crude
porous particles
Prior art date
Application number
PCT/JP2020/045955
Other languages
English (en)
French (fr)
Inventor
拓 茨木
井上 敏
渡邉 英樹
高志 古沢
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to KR1020227018881A priority Critical patent/KR20220098752A/ko
Priority to CN202080079189.1A priority patent/CN114729123A/zh
Priority to US17/776,113 priority patent/US20220389167A1/en
Priority to JP2021550007A priority patent/JP7031797B2/ja
Publication of WO2021117795A1 publication Critical patent/WO2021117795A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/025Preparatory processes
    • C08G75/0259Preparatory processes metal hydrogensulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0277Post-polymerisation treatment
    • C08G75/0281Recovery or purification

Definitions

  • the present invention relates to a method for purifying polyarylene sulfide (hereinafter, may be abbreviated as PAS) and a method for producing it. More specifically, it is possible to reduce the corrosiveness to the manufacturing equipment and the mold at the time of molding as compared with the conventional purification method using various strong acids (hydrochloric acid, sulfuric acid, etc.), and to improve the quality of PAS. Regarding possible purification methods and manufacturing methods. Another object of the present invention is to provide PAS suitable as a material for a wide range of applications such as various molding materials, films, fibers, electric / electronic parts, automobile parts, and paints.
  • PAS polyarylene sulfide
  • Typical polyphenylene sulfides among PAS are usually N-methyl-2-pyrrolidone, N, N-dimethylacetamide, as described in Patent Document 1 and the like.
  • Alkali metal sulfide typified by sodium sulfide, or alkali metal sulfide typified by sodium hydroxide and water typified by sodium hydroxide in a relatively highly polar organic solvent such as N-methyl- ⁇ -caprolactam. It can be obtained by a method of reacting an alkali metal oxide with a polyhalo aromatic compound typified by p-dichlorobenzene or the like (see Patent Document 1).
  • the polymerization reaction is usually carried out under high temperature pressurization and alkaline conditions, and as the polymerization reaction progresses, sodium chloride is produced, and the so-called crude reaction products after the polymerization reaction include at least PAS and alkali metal halides.
  • Ar is an aryl group having a halogen atom
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms or a cyclohexyl group
  • R 2 represents an alkylene group having 3 to 5 carbon atoms
  • X represents a hydrogen atom or an alkali metal atom.
  • a compound represented by a -NR 1 R 2 COOX group may be referred to as a carboxyalkylamino group (hereinafter, may be referred to as a carboxyalkylamino group-containing compound).
  • By-products typified by such as are contained.
  • X represents a hydrogen atom or an alkali metal atom.
  • This compound is abbreviated as “CP-MABA", and particularly when X is a hydrogen atom, "CP-MABA (" Hydrogen type) ”, the case of alkali metal atom may be abbreviated as“ CP-MABA (alkali metal salt type) ”, and in particular, when X is a sodium atom, it may be abbreviated as“ CP-MABA (Na salt type) ”).
  • the crude reaction product after the polymerization reaction is taken out into a suitable container, and the solvent contained therein is suitable by a suitable means (vacuum distillation method, centrifugation method, screw decanter method, vacuum filtration method, pressure filtration method, etc.). Depending on the method (selectable method), it can be separated and recovered (here, this operation is referred to as "desolvation") and reused, or if necessary, further purified and reused.
  • a suitable means vacuum distillation method, centrifugation method, screw decanter method, vacuum filtration method, pressure filtration method, etc.
  • the mixture containing PAS (hereinafter referred to as crude PAS) contained in the crude reaction product is generally repeatedly washed with water and filtered, and mainly salt or salt or the like.
  • PAS can be obtained by removing impurities such as alkaline substances and then drying.
  • PAS thus obtained is used in fibers, films, paints, compounds for injection molding materials, fiber-reinforced composite materials, etc. because of its excellent chemical resistance, electrical properties, and mechanical properties.
  • PAS having excellent reactivity with epoxy silane and functional group-containing elastomer (hereinafter, simply referred to as "reactivity") by increasing the amount of carboxy group at the end of the polymer chain is desired.
  • the problems to be solved by the present invention are a method for purifying PAS having excellent reactivity and a slow crystallization rate, and a method for producing PAS having excellent reactivity and a slow crystallization rate including the step. , And to provide PAS which is excellent in reactivity and has a slow crystallization rate.
  • the inventors of the present application made the mixture containing the crude PAS porous by contacting with a specific organic solvent and water, and then the porous crude PAS, water and carbon dioxide.
  • the residual by-products typified by the carboxyalkylamino group-containing compound to a specific content by a purification method in which gas or carbonated water is brought into contact
  • PAS having excellent reactivity and a slow crystallization rate is obtained.
  • the present invention is a step of obtaining a mixture containing crude PAS by desolving a crude reaction product containing PAS obtained by reacting a polyhalo aromatic compound with a sulfide agent in an organic polar solvent.
  • It has a step (3) of contacting with water, and has
  • the step (2) includes a step of contacting with an oxygen atom-containing solvent having 1 to 3 carbon atoms (2Ss) and a step of contacting with water (2Sw) at least once.
  • the proportion of the compound (1) represented by the following structural formula (1) contained in the porous particles after the step (3) is in the range of more than 1000 [ppm] to 3000 [ppm] or less. PAS purification method.
  • Ar is an aryl group having a halogen atom
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms or a cyclohexyl group
  • R 2 represents an alkylene group having 3 to 5 carbon atoms
  • X represents a hydrogen atom or an alkali metal atom
  • the present invention also relates to a method for producing PAS, which comprises a step of purifying PAS by the purification method described above.
  • the present invention is a porous particle having a specific surface area of 10 [m 2 / g] or more.
  • PAS characterized in that the ratio of the content of the compound (1) represented by the following structural formula (1) is in the range of more than 1000 [ppm] to 3000 [ppm] or less.
  • Ar is an aryl group having a halogen atom
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms or a cyclohexyl group
  • R 2 represents an alkylene group having 3 to 5 carbon atoms
  • X represents a hydrogen atom or an alkali metal atom
  • a method for purifying PAS having excellent reactivity and a slow crystallization rate a method for producing PAS having excellent reactivity and a slow crystallization rate including the step, and reactivity. It is possible to provide PAS which is excellent in quality and has a slow crystallization rate.
  • the purification method of the present invention is a step of obtaining a mixture containing crude PAS by desolving a crude reaction product containing PAS obtained by reacting a polyhalo aromatic compound with a sulfidizing agent in an organic polar solvent. It has (1).
  • PAS is usually obtained by reacting at least one polyhaloaromatic compound with at least one sulfidizing agent under appropriate polymerization conditions in an organic polar solvent typified by N-methyl-2-pyrrolidone or the like. It is synthesized.
  • the polyhaloaromatic compound used in the present invention is, for example, a halogenated aromatic compound having two or more halogen atoms directly bonded to an aromatic ring, and specifically, p-dichlorobenzene, o-.
  • Dihalo-aromatic compounds such as dibrom benzophenone, dichlorodiphenyl ether, dibrom diphenyl ether, dichlorodiphenyl sulfide, dibrom diphenyl sulfide, dichlorobiphenyl, dibrombiphenyl and
  • a polyhaloaromatic compound having three or more halogen substituents in one molecule may be used as a branching agent, if desired.
  • polyhalo aromatic compounds include 1,2,4-trichlorobenzene, 1,3,5-trichlorobenzene, 1,4,6-trichloronaphthalene and the like.
  • polyhaloaromatic compounds having a functional group having an active hydrogen such as an amino group, a thiol group and a hydroxyl group
  • a functional group having an active hydrogen such as an amino group, a thiol group and a hydroxyl group
  • 2,6-dichloroaniline and 2,5-dichloroaniline 2,6-dichloroaniline and 2,5-dichloroaniline.
  • 2,4-Dichloroaniline, 2,3-dichloroaniline and other dihaloanilines 2,3,4-trichloroaniline, 2,3,5-trichloroaniline, 2,4,6-trichloroaniline, 3, Trihaloanilines such as 4,5-trichloroaniline; dihaloaminodiphenyl ethers such as 2,2'-diamino-4,4'-dichlorodiphenyl ether, 2,4'-diamino-2', 4-dichlorodiphenyl ether And compounds in which the amino group is replaced with a thiol group or a hydroxyl group in a mixture thereof and the like are exemplified.
  • active hydrogen-containing polyhalo in which the hydrogen atom bonded to the carbon atom forming the aromatic ring in these active hydrogen-containing polyhaloaromatic compounds is replaced with another inactive group, for example, a hydrocarbon group such as an alkyl group.
  • Aromatic compounds can also be used.
  • the active hydrogen-containing dihaloaromatic compound is preferable, and dichloroaniline is particularly preferable.
  • Examples of the polyhaloaromatic compound having a nitro group include mono- or dihalonitrobenzenes such as 2,4-dinitrochlorobenzene and 2,5-dichloronitrobenzene; 2-nitro-4,4'-dichlorodiphenyl ether and the like.
  • the alkali metal sulfide used in the present invention includes lithium sulfide, sodium sulfide, rubidium sulfide, cesium sulfide, and mixtures thereof.
  • Such alkali metal sulfides can be used as hydrates, aqueous mixtures or anhydrides.
  • the alkali metal sulfide can also be derived by the reaction between the alkali metal hydroxide and the alkali metal hydroxide.
  • alkali metal hydroxide may be added in order to react with the alkali metal hydrosulfide and the alkali metal thiosulfate which are usually present in a trace amount in the alkali metal sulfide.
  • organic polar solvent used in the present invention examples include N-methyl-2-pyrrolidone, formamide, acetamide, N-methylformamide, N, N-dimethylacetamide, 2-pyrrolidone, N-methyl- ⁇ -caprolactam and ⁇ -caprolactam.
  • Nitriles; ketones such as methylphenylketone and mixtures thereof can be mentioned.
  • the polymerization conditions of the above-mentioned sulfidizing agent and the polyhalo aromatic compound are generally a temperature of 200 to 330 ° C., and the pressure is substantially the same as that of the polymerization solvent and the polyhalo aromatic compound which is a polymerization monomer.
  • the range should be such that it is retained in the liquid layer, and is generally selected from the range of 0.1 to 20 MPa, preferably 0.1 to 2 MPa.
  • the reaction time varies depending on the temperature and pressure, but is generally in the range of 10 minutes to 72 hours, preferably 1 hour to 48 hours.
  • the present invention also includes a form obtained by reacting the crude reaction product in the presence of a sulfidizing agent and an organic polar solvent while continuously or intermittently adding a polyhalo aromatic compound and an organic polar solvent. To do.
  • the crude reaction product containing PAS obtained by the polymerization reaction is used by an appropriate means (vacuum distillation method, centrifugation method, screw decanter method, vacuum filtration method, pressure filtration method, etc.). Can be selected) to "desolvent" to separate and remove the organic protic solvent, after which a mixture containing crude PAS can be obtained.
  • the degree of separation and removal of the organic polar solvent is not particularly limited, but the ratio of solid content (solid content concentration) in the mixture is preferably 40 parts by mass or more, more preferably 50 parts by mass with respect to 100 parts by mass of the mixture. More than parts, more preferably 55 parts by mass or more.
  • the upper limit is not limited, but is preferably 100 parts by mass or less, more preferably less than 100 parts by mass, and further preferably 99 parts by mass or less.
  • the purification method of the present invention subsequently comprises the step (2) of purifying the mixture containing the crude PAS into porous particles having a specific surface area of 30 [m 2 / g] or more.
  • the step (2) includes a step of contacting with an oxygen atom-containing solvent having 1 to 3 carbon atoms (2Ss) and a step of contacting with water (2Sw) at least once.
  • the step (2Ss) is a step of using an oxygen atom-containing solvent having 1 to 3 carbon atoms to bring it into contact with a mixture containing crude PAS for cleaning.
  • the temperature at which the oxygen atom-containing solvent having 1 to 3 carbon atoms is added is not particularly limited, but is preferably 10 ° C. or higher, more preferably 20 ° C. or higher, preferably 90 ° C. or lower, and more preferably 70 ° C. or lower.
  • the amount of the solvent used for one washing is not particularly limited, but is preferably 20 parts by mass or more, more preferably 50 parts by mass or more, and further preferably 100 parts by mass or more with respect to 100 parts by mass of PAS. Therefore, it is preferably 5000 parts by mass or less, more preferably 1800 parts by mass or less, and further preferably 600 parts by mass or less.
  • the step (2Sw) is a step of adding an appropriate amount of water to the mixture obtained in the previous step (1) and containing at least crude PAS, contacting the mixture, and washing the mixture.
  • the temperature at which water is added is not particularly limited, but is preferably in the range of 10 ° C. or higher, more preferably 20 ° C. or higher, preferably 120 ° C. or lower, more preferably 100 ° C. or lower, still more preferably 80 ° C. or lower. .. After washing, it is preferably solid-liquid separated by filtration or the like to form a cake-like product.
  • the amount of water used for one washing is not particularly limited, but is preferably from 20 parts by mass or more, more preferably 50 parts by mass or more, and further preferably 100 parts by mass or more with respect to 100 parts by mass of PAS. It is preferably 10000 parts by mass or less, more preferably 5000 parts by mass or less, and further preferably 2000 parts by mass or less.
  • the order of the steps (2Ss) and the step (2Sw) is not particularly limited, and the step (2Sw) of contacting the mixture containing the crude PAS with water to wash the mixture is performed. Then, the mixture containing the crude PAS may be washed by contacting it with an oxygen atom-containing solvent having 1 to 3 carbon atoms (2Ss), or after performing the step (2Ss), the step (2Ss) may be performed. 2Sw) may be performed. Each step can also be carried out collectively or alternately, any one or more times. After performing the step (2Ss) or the step (2Sw) and before performing the next step, the water used for washing or the oxygen atom-containing solvent having 1 to 3 carbon atoms should be removed by solid-liquid separation. Is preferable.
  • examples of the oxygen atom-containing solvent having 1 to 3 carbon atoms to be brought into contact with the mixture containing crude PAS include at least one selected from the group consisting of alcohol-based solvents and ketone-based solvents.
  • alcohol-based solvents also referred to as alcohol solvents
  • examples of alcohol-based solvents include methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, t-butyl alcohol, ethylene glycol, propylene glycol, trimethylolpropane, and benzyl.
  • Alcohols with 10 or less carbon atoms such as alcohols; 2-methoxyethyl alcohol, 2-ethoxyethyl alcohol, 1-methoxy-2-propyl alcohol, 1-ethoxy-2-propyl alcohol, 3-methoxy-1-butyl alcohol , 2-Isopropoxyethyl alcohols and other alcohols with 10 or less carbon atoms containing ether bonds; 3-hydroxy-2-butanone and other alcohols with 10 or less carbon atoms; methyl hydroxyisobutyrate and the like
  • An example is an alcohol containing such an ester group and having 10 or less carbon atoms.
  • ketone solvent also referred to as a ketone solvent
  • examples of the ketone solvent include acetone, methyl ethyl ketone, cyclohexanone, ⁇ -butyl lactone and N-methylpyrrolidinone.
  • a monohydric alcohol having 10 or less carbon atoms because the residual carboxyalkylamino group-containing compound can be efficiently removed, and further, a monohydric alcohol having 3 or less carbon atoms is preferable. preferable.
  • the step (2Ss) may be carried out after preparing an aqueous solution obtained by adding water to an oxygen atom-containing solvent having 1 to 3 carbon atoms and lowering the concentration.
  • the concentration of the oxygen atom-containing solvent having 1 to 3 carbon atoms in the aqueous solution is not particularly limited, but is preferably in the range of 90 parts by mass or less with respect to 100 parts by mass of the aqueous solution. It is more preferably in the range of 85 parts by mass or less, preferably in the range of 25 parts by mass or more, and more preferably in the range of 45 parts by mass or more.
  • the step of contacting the crude PAS with an oxygen atom-containing solvent having 1 to 3 carbon atoms (2Ss) and the step of contacting the crude PAS with water (2Sw) are repeated once or a plurality of times, respectively.
  • the crude PAS has a specific surface area of 30 [m 2 / g] or more, preferably 43 [m 2 / g] or more, more preferably 60 [m 2 / g] or more, and preferably 200 [m 2 / g] or less. , More preferably, porous particles in the range of 120 [m 2 / g] or less.
  • the crude PAS is a porous particle having such a range of specific surface area because the carboxyalkylamino group-containing compound in the crude PAS can be easily reduced to a desired range.
  • the purification method of the present invention subsequently includes a step (3) of bringing the obtained porous particles into contact with carbonated water.
  • the conditions for bringing the porous particles obtained in the previous step (2) into contact with carbonated water are preferably 10 ° C. or higher, more preferably 20 ° C. or higher, preferably 100 ° C. or lower, more preferably. Is in the range up to 80 ° C. and the pressure (gauge pressure) is smaller than 0.1 MPa, preferably in the range of 0.05 MPa or less, and more preferably under atmospheric pressure.
  • the amount of carbonated water used for contact with the porous particles is also not particularly limited, but the porous particles can be brought into good contact with the carbonated water, and the purification efficiency becomes more preferable. Therefore, the porous particles With respect to 100 parts by mass, preferably 50 parts by mass or more, more preferably 100 parts by mass or more, further preferably 200 parts by mass or more, preferably 2000 parts by mass or less, more preferably 1000 parts by mass or less, still more preferably 800 parts by mass. It is in the range of parts by mass or less.
  • one of the advantages of the present invention is that when the purification method using carbonated water of the present invention is used, there is almost no corrosion on metals under normal purification temperature conditions (100 ° C. or lower), and the current apparatus can be used.
  • a relatively inexpensive material having SUS304 level corrosion resistance can withstand corrosion, so there is only an advantage in equipment cost due to the material aspect of the equipment compared to other acids.
  • one of the advantages of the present invention is that when other acids remain in the PAS (particularly chlorine ions and sulfate ions tend to remain in the polymer), mold corrosion during molding and deterioration of the physical properties of the molded product are deteriorated.
  • the purification method using carbonated water of the present invention it is easy to remove even in the washing step which is a later step, and it decomposes and scatters from the PAS even in the drying step, so that it is like other acids. Mold corrosion and deterioration of the physical properties of molded products are unlikely to occur.
  • one of the advantages of the present invention is that when a strong acid other than carbonated water is used, a large amount of water and a large number of washings are required after washing with the strong acid in order to remove the acid remaining in the PAS.
  • the amount of water used after washing with carbonated water is small and the number of washings can be reduced. It can be said that it is a suitable method not only in terms of process capacity but also in terms of environmental measures.
  • carbon dioxide gas is blown into a closed container or device, and the PAS is contacted in an aqueous solution in which the solubility of carbonic acid is controlled by controlling the pressure and temperature in the system for an appropriate time or longer (for example, 5 minutes or longer).
  • It is a purification method characterized by converting a molecular end from a basic type end (SNa type end) to an acidic type end (SH type end), and the SNa group existing at the molecular chain end of PAS is converted into an SH group. , Affinity with other resins increases.
  • the concentration of carbon dioxide (derived carbonate ion) in carbonated water depends on the solubility of carbon dioxide in water, and more specifically follows Henry's law at its temperature and pressure.
  • carbon dioxide gas may be bubbled or press-fitted into water in an open container, a closed container, or a pipe, or continuously using a hollow fiber membrane module or the like. Carbon dioxide gas may be dissolved in water.
  • the solid content concentration in the system when the carbonated water of the present invention is brought into contact with the porous particles for purification is preferably a ratio of 1 to 50% by weight.
  • the PAS particles are in good contact with the carbonated water, and the purification efficiency is preferable, which is more preferable.
  • the amount of carbonated water required for purification is also not particularly limited, but may be preferably 50 parts by mass or more, more preferably 100 parts by mass or more, still more preferably 200 parts by mass or more, based on 100 parts by mass of PAS. It may be preferably in the range of 10000 parts by mass or less, more preferably 5000 parts by mass or less, and further preferably 2000 parts by mass or less. If the amount of carbonated water is within this range, the PAS particles are in good contact with the carbonated water, and the purification efficiency is preferable, which is more preferable.
  • the contact between the carbonated water and the porous particles of PAS can be performed in an open container having a stirring blade inside the container and a filter for filtration at the bottom. It is not necessary to carry out in a container having a closed type or a container having a mixing function that can be closed, but of course, it can be carried out in such a container.
  • a crude reaction product containing PAS obtained by reacting a polyhaloaromatic compound with a sulfide agent in an organic polar solvent is desolved, and then the organic solvent is used.
  • the present invention relates to a method for purifying PAS, which comprises contacting PAS with a specific surface area of 30 [m 2 / g] or more, and bringing the obtained porous particles into contact with carbonated water. is there.
  • one of the other aspects of the present invention relates to a method for producing PAS, which comprises a step of purifying PAS by the purification method. That is, in the invention relating to the method for producing the PAS, the crude PAS is prepared by desolving the crude reaction product containing the PAS obtained by reacting the polyhalo aromatic compound with the sulfide agent in an organic polar solvent. A step of obtaining a mixture containing the crude PAS, a step of purifying the mixture containing the crude PAS to form the crude PAS into porous particles having a specific surface area of 30 [m 2 / g] or more, the obtained porous particles and carbonated water.
  • the step (3) of contacting includes a step of contacting with an oxygen atom-containing solvent having 1 to 3 carbon atoms (2Ss) and a step of contacting with water (2Sw) at least once.
  • the proportion of the compound (1) represented by the structural formula (1) contained in the porous particles after the step (3) is in the range of more than 1000 [ppm] to 3000 [ppm] or less in the PAS. It is characterized by being.
  • the PAS obtained through the purification method or the production method of the present invention may be dried as it is, or may be further washed with water or an organic solvent as appropriate, then solid-liquid separated and dried.
  • Drying is performed by heating to a temperature at which a solvent such as water evaporates. Drying may be carried out under vacuum, in air or in an inert atmosphere such as nitrogen.
  • the PAS obtained through the above-mentioned purification method or production method of the present invention (sometimes simply referred to as "purified PAS") has the following characteristics. That is, The purified PAS of the present invention has a specific surface area of 10 [m 2 / g] or more, preferably 15 [m 2 / g] or more, more preferably 20 [m 2 / g] or more, and preferably 180. Porous particles in the range of [m 2 / g] or less, more preferably 150 [m 2 / g] or less, still more preferably 100 [m 2 / g] or less, and particularly preferably 50 [m 2 / g] or less. Is.
  • the ratio of the content of the compound (1) represented by the structural formula (1) is more than 1000 [ppm], preferably 1100 [ppm] to 3000 in the PAS on a mass basis. It is in the range of [ppm] or less, preferably 2000 [ppm] or less.
  • the purified PAS of the present invention tends to have a slow crystallization rate.
  • the crystallization rate is not particularly limited, but the isothermal crystallization rate is preferably 4 [minutes] or more, more preferably 5 [minutes] or more, 9 [minutes] or less, preferably 8 [minutes] or less.
  • the range is up to.
  • the isothermal crystallization temperature is the temperature at which the sample is melted at 350 ° C./3 minutes using a differential scanning calorimetry device and then rapidly cooled from 350 ° C. to 240 ° C. (210 ° C./min). It is a measured value when it was held at 240 ° C.) for 15 minutes.
  • the PAS obtained through the purification method or production method of the present invention can be used as it is for various molding materials as in the conventional case, but can be thickened by heat treatment in air or oxygen-enriched air or under reduced pressure. Therefore, after performing such a thickening operation as necessary, it may be used for various molding materials and the like.
  • This heat treatment temperature varies depending on the treatment time and the atmosphere to be treated, and therefore cannot be unconditionally specified, but it is usually preferably performed at 180 ° C. or higher. If the heat treatment temperature is less than 180 ° C., the thickening rate is very slow and the productivity is poor, which is not preferable.
  • the heat treatment may be carried out in a molten state at a temperature equal to or higher than the melting point of the polymer using an extruder or the like. However, it is preferable to carry out the process at a melting point of 100 ° C. or lower because of the possibility of deterioration of the polymer or workability.
  • the PAS obtained by the present invention can be mixed with a filler or other resin, melt-kneaded, directly or once molded into pellets, and then various types such as injection molding, extrusion molding, compression molding, and blow molding, as in the conventional case.
  • a filler or other resin melt-kneaded, directly or once molded into pellets, and then various types such as injection molding, extrusion molding, compression molding, and blow molding, as in the conventional case.
  • the melt processing method it is possible to obtain a molded product having excellent heat resistance, molding processability, dimensional stability and the like.
  • the filler include a fibrous filler and an inorganic filler.
  • a ring agent can be contained.
  • the following synthetic resin and elastomer can be mixed and used. Examples of these synthetic resins include polyester, polyamide, polyimide, polyetherimide, polycarbonate, polyphenylene ether, polysulphon, polyethersulphon, polyetheretherketone, polyetherketone, polyarylene, polyethylene, polypropylene, polytetrafluorinated ethylene, and the like.
  • Examples thereof include polydifluorinated ethylene, polystyrene, ABS resin, epoxy resin, silicone resin, phenol resin, urethane resin, liquid crystal polymer and the like, and examples of the elastomer include polyolefin rubber, fluororubber, silicone rubber and the like.
  • the molded product obtained by melt-molding the PAS of the present invention or the resin composition containing the same is excellent in heat resistance, dimensional stability, etc. like the PPS obtained by the conventional method.
  • Injection molding of electrical and electronic parts such as goods, automobile parts such as lamp reflectors and various electrical parts, interior materials such as various buildings, aircraft and automobiles, and precision parts such as OA equipment parts, camera parts and clock parts.
  • -It can be widely used as a compression molded product or an extrusion molded / drawn molded product such as fiber, film, sheet, pipe, etc.
  • the crystallization rate is slower than the PPS obtained by the conventional method, it is possible to delay the solidification of the gate portion and apply pressure to the thick portion at the time of injection molding, thereby eliminating the conventional filling shortage. , It is possible to prevent a decrease in strength. From this, it is particularly suitable for a large-sized or thick-walled molded product, preferably an injection-molded product.
  • a large-sized or thick-walled molded product preferably an injection-molded product.
  • sample preparation CP-MABA in the filtrate was prepared and measured by adding the mobile phase as it was.
  • Dilute hydrochloric acid was added to the aqueous solution to adjust the pH of the aqueous solution to 1 or less.
  • CP-MABA became a hydrochloride and remained in the aqueous solution, so chloroform was added to the aqueous solution to extract p-chlorophenol as a by-product.
  • the chloroform phase in which p-chlorophenol was dissolved was discarded.
  • the degree of increase in viscosity was calculated as a magnification from the ratio of the melt viscosity V6 after the addition / the melt viscosity V6 before the addition. The larger the degree of increase in viscosity, the higher the reactivity and the better.
  • the resin component discharge amount is 30 kg / hr
  • the screw rotation speed is 220 rpm
  • the set resin temperature is set to 320 ° C.
  • melt-kneading is performed, and the strand-shaped material discharged from the discharge port is cut.
  • PPS compound pellets were obtained.
  • the pellets were supplied to an injection molding machine (SE75D-HP) manufactured by Sumitomo Heavy Industries, which was set to a cylinder temperature of 310 ° C., and injection molding was performed under the following conditions. That is, using a washer mold having 40 cavities, the minimum molding conditions were set as long as the cavity (C1) at the position closest to the primary sprue was completely filled.
  • AA From 100% by mass or less to 90% by mass or more
  • B From less than 80% by mass to 70% by mass or more
  • C From less than 70% by mass Range of 60% by mass or more
  • D Range of less than 60% by mass
  • the DCB distilled by azeotrope during dehydration was separated by a decanter and returned to the kettle at any time, and the anhydrous sodium sulfide composition was dispersed in the kettle after the dehydration was completed. Further, the internal temperature was cooled to 160 ° C., NMP 47.492 kg (479 mol) was charged, and the temperature was raised to 185 ° C. When the pressure reached 0.00 MPa, the valve connected to the rectification column was opened, and the temperature was raised to an internal temperature of 200 ° C. over 1 hour. At this time, cooling and valve opening were controlled so that the rectification tower outlet temperature was 110 ° C. or lower.
  • the distilled steam of DCB and water was condensed by a condenser, separated by a decanter, and the DCB was returned to the kettle.
  • the amount of distilled water was 179 g.
  • the internal temperature was raised from 200 ° C. to 230 ° C. over 3 hours, stirred for 1 hour, then raised to 250 ° C. and stirred for 1 hour, and after the reaction was completed, the internal temperature of the autoclave was raised from 250 ° C. to 235 ° C.
  • the mixture was cooled to room temperature and sampled to obtain a crude PPS mixture of NV 55%.
  • Example 1 400 g of the crude PPS mixture obtained in Synthesis Example 1 and 422 g of an aqueous methanol solution (“Reagent Special Grade” manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) are placed in a flask, stirred and mixed at 40 ° C. for 30 minutes, and the slurry is filtered under reduced pressure with a Kiriyama funnel. Then, it was compacted from the top, and 422 g of an 80 wt% aqueous methanol solution (80 parts by mass of "Reagent Special Grade” manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. plus 20 parts by mass of water) was poured and filtered in several times. ..
  • an aqueous methanol solution (“Reagent Special Grade” manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
  • the cake prepared by filtration was transferred to a beaker, crushed into powder with a spatula, 422 g of water at 20 ° C. was poured therein, and the cake was stirred and mixed for 30 minutes.
  • the slurry was filtered under reduced pressure with a Kiriyama funnel, compacted from above, and 422 g of water at 20 ° C. was poured from above in several portions and filtered.
  • the cake was transferred to a beaker, 634 g of carbonated water was poured therein, and the mixture was stirred and mixed for 1 hour.
  • the slurry was filtered under reduced pressure with a Kiriyama funnel, compacted from above, and 442 g of carbonated water was poured from above in several portions and filtered.
  • the filtered cake was transferred to a vat, crushed into powder with a spatula, and dried at 120 ° C. for 4 hours to obtain purified PPS.
  • the obtained purified PPS was measured. The results are shown in Table 1.
  • Example 2 400 g of the crude PPS mixture obtained in Synthesis Example 1 and 422 g of an aqueous methanol solution (“Reagent Special Grade” manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) are placed in a flask, stirred and mixed at 40 ° C. for 30 minutes, and the slurry is filtered under reduced pressure with a Kiriyama funnel. Then, it was compacted from the top, and 422 g of a 50 wt% aqueous methanol solution (50 parts by mass of "Reagent Special Grade” manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. plus 50 parts by mass of water) was poured and filtered in several times. ..
  • an aqueous methanol solution (“Reagent Special Grade” manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
  • the cake prepared by filtration was transferred to a beaker, crushed into powder with a spatula, 442 g of water at 20 ° C. was poured therein, and the cake was stirred and mixed for 30 minutes.
  • the slurry was filtered under reduced pressure with a Kiriyama funnel, compacted from above, and 422 g of water at 20 ° C. was poured from above in several portions and filtered.
  • the cake was transferred to a beaker, 634 g of carbonated water was poured therein, and the mixture was stirred and mixed for 1 hour.
  • the slurry was filtered under reduced pressure with a Kiriyama funnel, compacted from above, and 442 g of carbonated water was poured from above in several portions and filtered.
  • the filtered cake was transferred to a vat, crushed into powder with a spatula, and dried at 120 ° C. for 4 hours to obtain purified PPS.
  • the obtained purified PPS was measured. The results are shown in Table 1.
  • Example 3 400 g of the crude PPS mixture obtained in Synthesis Example 1 and 422 g of an aqueous methanol solution (“Reagent Special Grade” manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) are placed in a flask, stirred and mixed at 40 ° C. for 30 minutes, and the slurry is filtered under reduced pressure with a Kiriyama funnel. Then, it was compacted from the top, and 422 g of a 30 wt% aqueous methanol solution (30 parts by mass of "Reagent Special Grade” manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. plus 70 parts by mass of water) was poured and filtered in several times. ..
  • an aqueous methanol solution (“Reagent Special Grade” manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
  • the cake prepared by filtration was transferred to a beaker, crushed into powder with a spatula, 442 g of water at 20 ° C. was poured therein, and the cake was stirred and mixed for 30 minutes.
  • the slurry was filtered under reduced pressure with a Kiriyama funnel, compacted from above, and 422 g of water at 20 ° C. was poured from above in several portions and filtered.
  • the cake was transferred to a beaker, 643 g of carbonated water was poured into the beaker, and the cake was stirred and mixed for 1 hour.
  • the slurry was filtered under reduced pressure with a Kiriyama funnel, compacted from above, and 442 g of carbonated water was poured from above in several portions and filtered.
  • the cake prepared by filtration was transferred to a vat, crushed into powder with a spatula, and dried at 120 ° C. for 4 hours to obtain purified PPS.
  • the obtained purified PPS was measured. The results are shown

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

強酸を使用せず、ポリアリーレンスルフィド(PAS)中のカルボキシアルキルアミノ基含有化合物を、より低圧下で処理して、PAS中のカルボキシアルキルアミノ基含有化合物を効率よく低減可能なPASの精製方法、及びPAS中のカルボキシアルキルアミノ基含有化合物の低いPASの製造方法を提供する。詳しくは、有機極性溶媒中、ポリハロ芳香族化合物とスルフィド化剤を反応して得られるPASを含有する粗反応生成物を脱溶媒させ、粗PAS含有混合物を得る工程、粗PAS混合物を、水及び酸素原子含有溶媒と接触させて前記粗PASを比表面積30m/g以上の多孔質粒子とする工程、得られた多孔質粒子と炭酸水を接触させる工程を有する、前記多孔質粒子中に含まれるカルボキシアルキルアミノ基含有化合物の含有量が1000〔ppm〕超から、3000〔ppm〕以下の範囲であるPASの精製方法、当該工程を有するPASの製造方法を提供する。

Description

ポリアリーレンスルフィド、その精製方法および製造方法
 本発明は、ポリアリーレンスルフィド(以下、PASと略称することがある)の精製方法および製造方法に関する。更に詳しくは、従来の各種の強酸(塩酸、硫酸など)を用いた精製方法と較べて製造設備や成形時の金型に対する腐食性を低減することができ、且つ、PASの品質を向上させることが可能な精製方法および製造方法に関する。また、本発明の目的の一つは、各種成形材料やフィルム、繊維、電気・電子部品、自動車用部品、塗料等の幅広い用途材料として好適なPASを提供することでもある。
 PASの中でも代表的なポリフェニレンスルフィド(以下、PPSと略称することがある)は、通常、特許文献1などに記載されているように、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N-メチル-ε-カプロラクタム等の比較的極性の高い有機溶媒中で、硫化ナトリウムに代表される硫化アルカリ金属、あるいは水硫化ナトリウムに代表される水硫化アルカリ金属と水酸化ナトリウムに代表される水酸化アルカリ金属と、p-ジクロルベンゼンに代表されるポリハロ芳香族化合物とを反応させる方法などによって得られる(特許文献1参照)。
 重合反応は、通常、高温加圧、アルカリ条件下で行われ、重合反応の進行に伴い食塩が生成し、重合反応後のいわゆる粗反応生成物には、少なくとも、PAS及びアルカリ金属ハロゲン化物や、そのほかに、未反応の原料や、環状ないし線状オリゴマー、さらには、下記構造式(1)
Figure JPOXMLDOC01-appb-C000004
(式中、Arはハロゲン原子を有するアリール基であり、Rは水素原子又は炭素原子数1~3のアルキル基又はシクロヘキシル基を表し、Rは炭素原子数3~5のアルキレン基を、Xは水素原子又はアルカリ金属原子を表す。また、-NRCOOX基をカルボキシアルキルアミノ基ということがある)で表される化合物(以下、カルボキシアルキルアミノ基含有化合物ということがある。)などに代表される副生成物が含有される。
 さらに、PASの製造時に、PASの製造原料として、例えば、アミド系溶媒がN-メチル-2-ピロリドン、ポリハロ芳香族化合物がp-ジクロロベンゼンである場合には前記カルボキシアルキルアミノ基含有化合物として、下記一般式(2)
Figure JPOXMLDOC01-appb-C000005
(式中、Xは水素原子又はアルカリ金属原子を表す。)で表されるものが得られる(この化合物を“CP-MABA”と略記し、特にXが水素原子の場合を“CP-MABA(水素型)”、アルカリ金属原子の場合を“CP-MABA(アルカリ金属塩型)”、特にXがナトリウム原子の場合は“CP-MABA(Na塩型)”と略記することがある)。
 重合反応後の粗反応生成物は適当な容器に取り出され、それに含有される溶媒は適当な手段(減圧留去法、遠心分離法、スクリューデカンター法、減圧濾過法、加圧濾過法など適当な方法が選択可能である)により、分離回収されて(ここではこの操作を「脱溶媒」という)再利用されたり、必要に応じて更に精製されて再利用される。
 一方、脱溶媒させて、有機極性溶媒を分離除去した後、粗反応生成物に含まれていたPAS(以下、粗PAS)を含む混合物に、一般には水洗と濾過を繰り返し行い、主に食塩やアルカリ性物質等の不純物を除去した後に乾燥することでPASが得られる。
 このようにして得られたPASはその優れた耐薬品性、電気的特性、機械的特性のために、繊維、フィルム、塗料、射出成形材料用コンパウンド及び繊維強化複合材料などに使用されているが、靭性改善のために、ポリマー鎖末端のカルボキシ基量を高めることにより、エポキシシランや官能基含有エラストマーとの反応性(以下、単に「反応性」という)に優れるPASが切望されている。
 このため、粗PASを含む混合物の精製工程で、粗PASを酸と接触させてポリマー鎖末端のカルボキシ基量を向上させる方法(特許文献2参照)が提案されているが、強酸を使用する方法が多く、装置や設備に対する腐食性の面で重大な問題を有していると共に、得られたPASの色調の悪化や製品の特性の低下を招く原因になっていた。
 そこで、NMPで洗浄した後、炭酸ガスまたは炭酸水を系内に導入して炭酸ガスまたは炭酸水と該粗PASとを接触させる方法が提案されている(特許文献3、4参照)。しかし、この方法で得られたPASは反応性に優れるものの結晶化速度が速いという特徴があった。このような結晶化速度の速いPASを使用して成形品を製造する際、近年、金属部品代替目的から需要が多くなってきている、大型化成形品や肉厚化成形品に適用とすると、成形不良を起こすことがあった。
特公昭52-12240号公報 特開平6-192421号公報 特開2005-264030号公報 特開2002-187949号公報
 そこで本発明が解決しようとする課題は、反応性に優れつつ、かつ、結晶化速度の遅いPASの精製方法、当該工程を含む反応性に優れつつ、かつ、結晶化速度の遅いPASの製造方法、および、反応性に優れつつ、かつ、結晶化速度の遅いPASを提供することにある。
 本願発明者らは種々の検討を行った結果、粗PASを含む混合物を、特定有機溶媒と接触、および、水と接触させて多孔質化した後、多孔質化した粗PASと、水および炭酸ガスまたは炭酸水とを接触させる精製方法により、残存するカルボキシアルキルアミノ基含有化合物に代表される副生成物を特定含有量に調整した結果、反応性に優れ、かつ、結晶化速度の遅いPASが得られることを見出し、本発明を完成するに至った。
 すなわち、本発明は、有機極性溶媒中、ポリハロ芳香族化合物とスルフィド化剤とを反応させて得られるPASを含有する粗反応生成物を脱溶媒させることにより、粗PASを含む混合物を得る工程(1)と、粗PASを含む混合物を、精製して前記粗PASを比表面積30〔m/g〕以上の範囲の多孔質粒子とする工程(2)と、得られた多孔質粒子と炭酸水とを接触させる工程(3)とを有し、
前記工程(2)が、炭素原子数1~3の酸素原子含有溶媒と接触させる工程(2Ss)と、水と接触させる工程(2Sw)とをそれぞれ少なくとも1回ずつ行う工程を有し、
工程(3)後の多孔質粒子中に含まれる下記構造式(1)で表される化合物(1)の割合が、1000〔ppm〕超から、3000〔ppm〕以下の範囲であることを特徴とするPASの精製方法。
Figure JPOXMLDOC01-appb-C000006
(式中、Arはハロゲン原子を有するアリール基であり、Rは水素原子又は炭素原子数1~3のアルキル基又はシクロヘキシル基を表し、Rは炭素原子数3~5のアルキレン基を、Xは水素原子又はアルカリ金属原子を表す。)に関する。
 また、本発明は、前記記載の精製方法によりPASを精製する工程を有することを特徴とするPASの製造方法に関する。
 また、本発明は、比表面積10〔m/g〕以上の範囲の多孔質粒子であり、
 下記構造式(1)で表される化合物(1)の含有量の割合が、1000〔ppm〕超から、3000〔ppm〕以下の範囲であることを特徴とするPAS
Figure JPOXMLDOC01-appb-C000007
(式中、Arはハロゲン原子を有するアリール基であり、Rは水素原子又は炭素原子数1~3のアルキル基又はシクロヘキシル基を表し、Rは炭素原子数3~5のアルキレン基を、Xは水素原子又はアルカリ金属原子を表す。)、に関する。
 本発明によれば、反応性に優れつつ、かつ、結晶化速度の遅いPASの精製方法、当該工程を含む反応性に優れつつ、かつ、結晶化速度の遅いPASの製造方法、および、反応性に優れつつ、かつ、結晶化速度の遅いPASを提供することができる。
 本発明の精製方法は、有機極性溶媒中、ポリハロ芳香族化合物とスルフィド化剤とを反応させて得られるPASを含有する粗反応生成物を脱溶媒させることにより、粗PASを含む混合物を得る工程(1)を有する。
 PASは、通常、N-メチル-2-ピロリドンなどを代表とする有機極性溶媒中で、少なくとも1種のポリハロ芳香族化合物と少なくとも1種のスルフィド化剤とを適当な重合条件下で反応させて合成される。
 本発明で用いられるポリハロ芳香族化合物とは、例えば、芳香族環に直接結合した2個以上のハロゲン原子を有するハロゲン化芳香族化合物であり、具体的には、p-ジクロルベンゼン、o-ジクロルベンゼン、m-ジクロルベンゼン、トリクロルベンゼン、テトラクロルベンゼン、ジブロムベンゼン、ジヨードベンゼン、トリブロムベンゼン、ジブロムナフタレン、トリヨードベンゼン、ジクロルジフェニルベンゼン、ジブロムジフェニルベンゼン、ジクロルベンゾフェノン、ジブロムベンゾフェノン、ジクロルジフェニルエーテル、ジブロムジフェニルエーテル、ジクロルジフェニルスルフィド、ジブロムジフェニルスルフィド、ジクロルビフェニル、ジブロムビフェニル等のジハロ芳香族化合物及びこれらの混合物が挙げられ、これらの化合物をブロック共重合してもよい。これらの中でも好ましいのはジハロゲン化ベンゼン類であり、特に好ましいのはp-ジクロルベンゼンを80モル%以上含むものである。
 また、枝分かれ構造とすることによってPASの粘度増大を図る目的で、1分子中に3個以上のハロゲン置換基を有するポリハロ芳香族化合物を分岐剤として所望に応じて用いてもよい。このようなポリハロ芳香族化合物としては、例えば、1,2,4-トリクロルベンゼン、1,3,5-トリクロルベンゼン、1,4,6-トリクロルナフタレン等が挙げられる。
 更に、アミノ基、チオール基、ヒドロキシル基等の活性水素を持つ官能基を有するポリハロ芳香族化合物を挙げることが出来、具体的には、2,6-ジクロルアニリン、2,5-ジクロルアニリン、2,4-ジクロルアニリン、2,3-ジクロルアニリン等のジハロアニリン類;2,3,4-トリクロルアニリン、2,3,5-トリクロルアニリン、2,4,6-トリクロルアニリン、3,4,5-トリクロルアニリン等のトリハロアニリン類;2,2’-ジアミノ-4,4’-ジクロルジフェニルエーテル、2,4’-ジアミノ-2’,4-ジクロルジフェニルエーテル等のジハロアミノジフェニルエーテル類およびこれらの混合物においてアミノ基がチオール基やヒドロキシル基に置き換えられた化合物などが例示される。
 また、これらの活性水素含有ポリハロ芳香族化合物中の芳香族環を形成する炭素原子に結合した水素原子が他の不活性基、例えばアルキル基などの炭化水素基に置換している活性水素含有ポリハロ芳香族化合物も使用出来る。
 これらの各種活性水素含有ポリハロ芳香族化合物の中でも、好ましいのは活性水素含有ジハロ芳香族化合物であり、特に好ましいのはジクロルアニリンである。
 ニトロ基を有するポリハロ芳香族化合物としては、例えば、2,4-ジニトロクロルベンゼン、2,5-ジクロルニトロベンゼン等のモノまたはジハロニトロベンゼン類;2-ニトロ-4,4’-ジクロルジフェニルエーテル等のジハロニトロジフェニルエーテル類;3,3’-ジニトロ-4,4’-ジクロルジフェニルスルホン等のジハロニトロジフェニルスルホン類;2,5-ジクロル-3-ニトロピリジン、2-クロル-3,5-ジニトロピリジン等のモノまたはジハロニトロピリジン類;あるいは各種ジハロニトロナフタレン類などが挙げられる。
 本発明で用いられる硫化アルカリ金属としては、硫化リチウム、硫化ナトリウム、硫化ルビジウム、硫化セシウム及びこれらの混合物が含まれる。かかる硫化アルカリ金属は、水和物あるいは水性混合物あるいは無水物として使用することが出来る。また、硫化アルカリ金属は水硫化アルカリ金属と水酸化アルカリ金属との反応によっても導くことが出来る。
 尚、通常、硫化アルカリ金属中に微量存在する水硫化アルカリ金属、チオ硫酸アルカリ金属と反応させるために、少量の水酸化アルカリ金属を加えても差し支えない。
 本発明で用いられる有機極性溶媒としては、N-メチル-2-ピロリドン、ホルムアミド、アセトアミド、N-メチルホルムアミド、N,N-ジメチルアセトアミド、2-ピロリドン、N-メチル-ε-カプロラクタム、ε-カプロラクタム、ヘキサメチルホスホルアミド、テトラメチル尿素、N-ジメチルプロピレン尿素、1,3-ジメチル-2-イミダゾリジノン酸のアミド尿素、及びラクタム類;スルホラン、ジメチルスルホラン等のスルホラン類;ベンゾニトリル等のニトリル類;メチルフェニルケトン等のケトン類及びこれらの混合物を挙げることが出来る。
 これらの有機極性溶媒の存在下、上記のスルフィド化剤とポリハロ芳香族化合物との重合条件は一般に、温度200~330℃であり、圧力は重合溶媒及び重合モノマーであるポリハロ芳香族化合物を実質的に液層に保持するような範囲であるべきであり、一般には0.1~20MPa、好ましくは0.1~2MPaの範囲より選択される。反応時間は温度と圧力により異なるが、一般に10分乃至72時間の範囲であり、望ましくは1時間乃至48時間の範囲である。
 本発明においては、粗反応生成物がスルフィド化剤及び有機極性溶媒の存在下に、ポリハロ芳香族化合物及び有機極性溶媒を連続的、乃至、断続的に加えながら反応させることにより得られる形態も包含する。
 本発明においては、重合反応にて得られたPASを含有する粗反応生成物を適当な手段(減圧留去法、遠心分離法、スクリューデカンター法、減圧濾過法、加圧濾過法など適当な方法が選択可能である)により「脱溶媒」させて、有機極性溶媒を分離除去した後、粗PASを含む混合物を得ることができる。有機極性溶媒の分離除去の程度は特に限定されないが、該混合物中の固形分の割合(固形分濃度)が、該混合物100質量部に対して、好ましくは40質量部以上、より好ましくは50質量部以上、更に好ましくは55質量部以上である。上限値は限定されないが、好ましくは100質量部以下であり、より好ましくは100質量部未満、さらに好ましくは99質量部以下である。
 本発明の精製方法は、続いて、粗PASを含む混合物を、精製して前記粗PASを比表面積30〔m/g〕以上の範囲の多孔質粒子とする工程(2)を有する。前記工程(2)は、炭素原子数1~3の酸素原子含有溶媒と接触させる工程(2Ss)と、水と接触させる工程(2Sw)とをそれぞれ少なくとも1回ずつ行う工程を有する。
 本発明において工程(2Ss)は、炭素原子数1~3の酸素原子含有溶剤を用いて、粗PASを含む混合物と接触させ、洗浄する工程である。炭素原子数1~3の酸素原子含有溶媒を加える際の温度としては特に限定されないが、好ましくは10℃以上、より好ましくは20℃以上から、好ましくは90℃以下、より好ましくは70℃以下の範囲である。一回の洗浄に使用する該溶剤の量には特に制限は無いが、好ましくはPAS100質量部に対して、好ましくは20質量部以上、より好ましくは50質量部以上、さらに好ましくは100質量部以上から、好ましくは5000質量部以下、より好ましくは1800質量部以下、さらに好ましくは600質量部以下である。
 本発明において工程(2Sw)は、前工程(1)で得られた、少なくとも、粗PASを含む混合物に適量の水を加えて接触させ、洗浄する工程である。水を加える際の温度としては特に限定されないが、好ましくは10℃以上、より好ましくは20℃以上から、好ましくは120℃以下、より好ましくは100℃以下、さらに好ましくは80℃以下の範囲である。洗浄した後、濾過等により固液分離して、ケーキ状物とすることが好ましい。一回の洗浄に使用する水の量には特に制限は無いが、好ましくはPAS100質量部に対して、好ましくは20質量部以上、より好ましくは50質量部以上、さらに好ましくは100質量部以上から、好ましくは10000質量部以下、より好ましくは5000質量部以下、さらに好ましくは2000質量部以下である。
 粗PASを含む混合物を精製する工程(2)において、工程(2Ss)と工程(2Sw)の順番は特に問わず、粗PASを含む混合物を、水と接触させて洗浄する工程(2Sw)を行ってから、粗PASを含む混合物を、炭素原子数1~3の酸素原子含有溶媒と接触させて洗浄する工程(2Ss)を行ってもよいし、または、工程(2Ss)を行ってから工程(2Sw)を行ってもよい。それぞれの工程は、まとめて、または交互に、任意の一又は複数回、実施することもできる。工程(2Ss)または工程(2Sw)を行ってから、次の工程を行う前に、固液分離により、洗浄に用いた水または炭素原子数1~3の酸素原子含有溶媒を除去しておくことが好ましい。
 ここで粗PASを含む混合物と接触させる炭素原子数1~3の酸素原子含有溶媒としては、例えば、アルコール系溶媒およびケトン系溶媒からなる群から選ばれる少なくとも一つが挙げられる。アルコール系溶媒(アルコール溶媒ともいう)としては、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、t-ブチルアルコール、エチレングリコール、プロピレングリコール、トリメチロールプロパン、ベンジルアルコール等の炭素原子数が10以下のアルコール;2-メトキシエチルアルコール、2-エトキシエチルアルコール、1-メトキシ-2-プロピルアルコール、1-エトキシ-2-プロピルアルコール、3-メトキシ-1-ブチルアルコール、2-イソプロポキシエチルアルコール等のエーテル結合を含む炭素原子数が10以下のアルコール;3-ヒドロキシ-2-ブタノン等のケトン基を含む炭素原子数が10以下のアルコール;ヒドロキシイソ酪酸メチル等のようなエステル基を含む炭素原子数が10以下のアルコールが例示される。また、ケトン系溶媒(ケトン溶媒ともいう)としては、アセトン、メチルエチルケトン、シクロヘキサノン、γ-ブチルラクトン又はN-メチルピロリジノンが例示される。本発明において、炭素原子数10以下の一価アルコールを用いることが、残留する前記カルボキシアルキルアミノ基含有化合物を効率的に除去可能なことから好ましく、さらに、炭素原子数3以下の一価アルコールが好ましい。また、炭素原子数1~3の酸素原子含有溶媒に水を加えた水溶液とし、濃度を低くした上で工程(2Ss)を実施してもよい。その際、水溶液中の炭素原子数1~3の酸素原子含有溶媒の濃度は特に限定されないが、水溶液100質量部に対して、好ましくは90質量部以下の範囲である。より好ましくは85質量部以下の範囲から、好ましくは25質量部以上、より好ましくは45質量部以上の範囲である。
 本発明は、粗PASを、炭素原子数1~3の酸素原子含有溶媒と接触させる工程(2Ss)と、水と接触させる工程(2Sw)とをそれぞれ一回または複数回繰り返して行うことにより、粗PASを比表面積30〔m/g〕以上、好ましくは43〔m/g〕以上、より好ましくは60〔m/g〕以上の範囲から、好ましくは200〔m/g〕以下、より好ましくは120〔m/g〕以下の範囲の多孔質粒子とする。
 粗PASを、このような比表面積の範囲を有する多孔質粒子とすることは、粗PAS中のカルボキシアルキルアミノ基含有化合物を所望の範囲まで容易に低減することが可能となり好ましい。
 本発明の精製方法は、続いて、得られた多孔質粒子と炭酸水とを接触させる工程(3)を有する。
 本発明において、前工程(2)で得られた多孔質粒子を、炭酸水と接触させる際の条件は、好ましくは10℃以上、より好ましくは20℃以上から、好ましくは100℃以下、より好ましくは80℃以下までの範囲であり、かつ、圧力(ゲージ圧)が0.1MPaより小さく、好ましくは0.05MPa以下の範囲、さらに好ましくは大気圧下である。
 前記多孔質粒子と接触させる際に用いる炭酸水の量についても特に制限は無いが、多孔質粒子と炭酸水との接触が良好に行われ、精製効率がさらに好適となることから、多孔質粒子100質量部に対して、好ましくは50質量部以上、より好ましくは100質量部以上、さらに好ましくは200質量部以上から、好ましくは2000質量部以下、より好ましくは1000質量部以下、さらに好ましくは800質量部以下の範囲である。
 また、本発明の利点の一つは、本発明の炭酸水による精製方法を用いた場合、通常の精製温度条件(100℃以下)では金属への腐食が殆どなく、現行の装置で対応可能であることに加えて、SUS304レベルの耐食性を有する比較的安価な材質であれば腐食に耐えることが出来るため、他の酸類と比較して装置の材質面からくる設備コスト的メリットが挙げられるだけでなく、さらに、耐圧容器である必要性もないことから、設備コスト的メリットだけでなく、メンテナンス性や安全性に優れるため好ましい。
 また、本発明の利点の一つは、他の酸類がPAS内に残存した場合(特に塩素イオンや硫酸イオン等はポリマー中に残存しやすい)、成形時の金型腐食や成型品の物性低下の大きな原因になるが、本発明の炭酸水を用いた精製方法の場合では、後の工程である水洗工程でも除去し易く、乾燥工程でもPAS中より分解飛散するために、他の酸類のような金型腐食や成型品の物性低下は起こり難い。
 更に、本発明の利点の一つは、炭酸水以外の強酸を用いた場合にはPAS中に残存する酸を除去するために、強酸を用いた洗浄の後に大量の水と洗浄回数を要して残存する酸を除去する必要があるのに対して、本発明の炭酸水を用いた精製方法の場合には、炭酸水による洗浄の後に使用する水の量も少なく洗浄回数も削減出来るため、工程能力においても非常にメリットがある上に、環境対策の面からも適した方法と言える。
 本発明は密閉容器または装置内に炭酸ガスを吹き込みその系内圧力と温度を制御することで炭酸の溶解度をコントロールした水溶液中で適切な時間以上(例えば、5分以上)接触させることでPASの分子末端を塩基性型末端(SNa型末端)から酸性型末端(SH型末端)に変換させることを特徴とする精製方法であり、PASの分子鎖末端に存在するSNa基がSH基に変換され、他の樹脂との親和性が増大する。
 炭酸水中の炭酸ガス(由来の炭酸イオン)の濃度は、炭酸ガスの水への溶解度に依存し、より詳しくはその温度と圧力におけるヘンリーの法則に従う。炭酸水の作製法としては、開放容器もしくは密閉容器や配管の中にある水に炭酸ガスをバブリングしても良いし、圧入しても良く、また中空糸膜モジュールなどを利用して連続的に炭酸ガスを水に溶解させても良い。
 本発明の炭酸水と前記多孔質粒子とを接触させて精製する際の系内の固形分濃度は、1~50重量%となる割合であることが好ましい。該固形分濃度がこの範囲内にあればPAS粒子と炭酸水との接触が良好に行われ精製効率が好適でありより好ましい。精製に要する炭酸水の量についても特に制限は無いが、PAS100質量部に対して、好ましくは50質量部以上、より好ましくは100質量部以上、さらに好ましくは200質量部以上であってよく、そして、好ましくは10000質量部以下、より好ましくは5000質量部以下、さらに好ましくは2000質量部以下の範囲であってよい。炭酸水の量がこの範囲内にあればPAS粒子と炭酸水との接触が良好に行われ精製効率が好適でありより好ましい。
 本発明は炭酸水とPASの多孔質粒子との接触を、容器内部に撹拌翼を有し、且つ、底部に濾過用フィルターが配設された開放型容器内で行うことができる。密閉型あるいは密閉可能な混合機能を有す容器内で行う必要性はないが、当然、このような容器内で行うこともできる。
 尚、本発明の態様は、上述するように、有機極性溶媒中、ポリハロ芳香族化合物とスルフィド化剤とを反応させて得られるPASを含有する粗反応生成物を脱溶媒させた後、有機溶媒と接触させてPASを比表面積30〔m/g〕以上の範囲の多孔質粒子とし、得られた多孔質粒子と炭酸水とを接触させることを特徴とするPASの精製方法に係るものである。
 そして、本発明の他の態様の一つとしては、当該精製方法によりPASを精製する工程を有する、PASの製造方法にかかるものである。すなわち、当該PASの製造方法に係る発明は、有機極性溶媒中、ポリハロ芳香族化合物とスルフィド化剤とを反応して得られるPASを含有する粗反応生成物を脱溶媒させることにより、粗PASを含む混合物を得る工程、粗PASを含む混合物を、精製して前記粗PASを比表面積30〔m/g〕以上の範囲の多孔質粒子とする工程、得られた多孔質粒子と炭酸水とを接触させる工程(3)とを有し、
 前記工程(2)が、炭素原子数1~3の酸素原子含有溶媒と接触させる工程(2Ss)と、水と接触させる工程(2Sw)とをそれぞれ少なくとも1回ずつ行う工程を有し、
 工程(3)後の前記多孔質粒子中に含まれる前記構造式(1)で表される化合物(1)の割合が、該PAS中に1000〔ppm〕超から、3000〔ppm〕以下の範囲であることを特徴とする。
 本発明の精製方法ないし製造方法を経て得られたPASは、そのまま乾燥しても良いし、更に水洗や有機溶剤洗を適宜行った後、固液分離し、乾燥を行っても良い。
 乾燥は実質的に水等の溶媒が蒸発する温度に加熱して行う。乾燥は真空下で行っても良いし、空気中あるいは窒素のような不活性雰囲気下で行っても良い。
 上述した本発明の精製方法ないし製造方法を経て得られたPAS(単に、「精製PAS」ということがある)は以下の特徴を有する。すなわち、
 本発明の精製PASは、比表面積が、10〔m/g〕以上、好ましくは15〔m/g〕以上、より好ましくは20〔m/g〕以上であり、そして、好ましくは180〔m/g〕以下、より好ましくは150〔m/g〕以下、さらに好ましくは100〔m/g〕以下、特に好ましくは50〔m/g〕以下までの範囲の多孔質粒子である。
 また、本発明の精製PASは、構造式(1)で表される化合物(1)の含有量の割合が質量基準で該PAS中に1000〔ppm〕超、好ましくは1100〔ppm〕から、3000〔ppm〕以下、好ましくは2000〔ppm〕以下の範囲である。
 さらに、本発明の精製PASは、結晶化速度が遅い傾向を有する。結晶化速度について特に限定されるものではないが、等温結晶化速度が、好ましくは4〔分〕以上、より好ましくは5〔分〕以上から、9〔分〕以下、好ましくは8〔分〕以下までの範囲である。ただし、等温結晶化温度は、試料を、示差走査熱量測定装置を用いて、350℃/3分溶融させた後、350℃から240℃に急冷却(210℃/分)し、冷却した温度(240℃)で15分間保持した際の測定値である。
 本発明の精製方法ないし製造方法を経て得られたPASは従来と同様、そのまま各種成形材料等に利用できるが、空気あるいは酸素富化空気中あるいは減圧下で熱処理することにより増粘することが可能であり、必要に応じてこのような増粘操作を行った後、各種成形材料等に利用しても良い。この熱処理温度は処理時間によっても異なるし処理する雰囲気によっても異なるので一概に規定できないが、通常は180℃以上で行うことが好ましい。熱処理温度が180℃未満では増粘速度が非常に遅く生産性が悪く好ましくない。熱処理は押出機等を用いて重合体の融点以上で、溶融状態で行っても良い。但し、重合体の劣化の可能性あるいは作業性等から、融点プラス100℃以下で行うことが好ましい。
 本発明により得られたPASは、従来と同様、充填剤や他の樹脂と配合して溶融混練後、直接または一旦ペレットに成形した後、射出成形、押出成形、圧縮成形、ブロー成形のごとき各種溶融加工法により、耐熱性、成形加工性、寸法安定性等に優れた成形物にすることができる。しかしながら強度、耐熱性、寸法安定性等の性能をさらに改善するために、本発明の目的を損なわない範囲で各種充填材と組み合わせて使用することも可能である。充填材としては、繊維状充填材、無機充填材等が挙げられる。また、成形加工の際に添加剤として本発明の目的を逸脱しない範囲で少量の、離型剤、着色剤、耐熱安定剤、紫外線安定剤、発泡剤、防錆剤、難燃剤、滑剤、カップリング剤を含有せしめることができる。更に、同様に下記のごとき合成樹脂及びエラストマーを混合して使用できる。これら合成樹脂としては、ポリエステル、ポリアミド、ポリイミド、ポリエーテルイミド、ポリカーボネート、ポリフェニレンエーテル、ポリスルフォン、ポリエーテルスルフォン、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリアリーレン、ポリエチレン、ポリプロピレン、ポリ四弗化エチレン、ポリ二弗化エチレン、ポリスチレン、ABS樹脂、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、ウレタン樹脂、液晶ポリマー等が挙げられ、エラストマーとしては、ポリオレフィン系ゴム、弗素ゴム、シリコーンゴム等が挙げられる。
 本発明のPASまたはそれを含む樹脂組成物を溶融成形してなる成形品は、従来の方法で得られるPPS同様耐熱性、寸法安定性等が優れるので、例えば、コネクタ・プリント基板・封止成形品などの電気・電子部品、ランプリフレクター・各種電装部品などの自動車部品、各種建築物や航空機・自動車などの内装用材料、あるいはOA機器部品・カメラ部品・時計部品などの精密部品等の射出成形・圧縮成形品、あるいは繊維・フィルム・シート・パイプなどの押出成形・引抜成形品等として幅広く利用可能である。さらに、結晶化速度が従来の方法で得られるPPSよりも遅いことから、射出成型時にゲート部の固化を遅め肉厚部まで圧力を加えることができ、これによりこれまでの充填不足を解消し、強度低下を防止することができる。このことから、特に、大型ないし肉厚の成形品、好ましくは射出成形品に適しており、例えば、4mm以上の肉厚部を有する射出成形品、一辺が200mm以上の大型の射出成形品成型品として特に好ましく利用可能である。
 以下に実施例を挙げて本発明を具体的に説明する。これら例は例示的なものであって限定的なものではない。
(測定法1)PPS樹脂中のCP-MABA濃度の定量
(1)PPS中のCP-MABAの抽出:NaOH0.05%水溶液をPPSに対して、20倍を入れて、200℃に昇温して30分加熱し、固液分離することで、PPS樹脂中のCP-MABAをろ液に抽出した。
(2)〔CP-MABAの測定方法〕
 得られたろ液中のCP-MABA濃度は、(1)で作製したろ液サンプルのHPLC測定を行い、下記の方法で作製した標準サンプルと同じ保持時間のピーク面積と検量線とから液中の濃度を求め、算出した。
(サンプル調製)
 ろ液中のCP-MABAは、そのまま移動相を加えて調製し測定した。
(標準サンプル:CP-MABAの合成)
 48%NaOH水溶液83.4g(1.0モル)とN-メチル-2-ピロリドン297.4g(3.0モル)を、撹拌機付き耐圧容器に仕込み、230℃で3時間撹拌した。この撹拌が終了した後、温度230℃のままバルブを開き、放圧し、N-メチル-2-ピロリドンの蒸気圧程度である230℃において0.1MPaまで圧力を低下させ、水を留去した。その後、再び密閉し200℃程度まで温度を低下させた。
 p-ジクロロベンゼン147.0g(1.0モル)を60℃以上の温度条件下で加熱溶解して反応混合物中に投入し、250℃まで昇温後4時間撹拌した。この撹拌が終了した後、室温まで冷却した。p-ジクロロベンゼンの反応率は31モル%であった。冷却後、内容物を取り出し、水を加えて撹拌後、未反応のp-ジクロロベンゼンが不溶物となって残ったものをろ過によって取り除いた。
 次いで、ろ液である水溶液に塩酸を加えて該水溶液のpHを4に調整した。このとき水溶液中に褐色オイル状のCP-MABA(水素型)が生じた。そこにクロロホルムを加えて褐色オイル状物質を抽出した。このときの水相には、N-メチル-2-ピロリドン及びその開環物である4-メチルアミノ酪酸(以下「MABA」と略記する。)が含まれるため水相は廃棄した。クロロホルム相は水洗を2回繰り返した。
 クロロホルム相に水を加えてスラリー化した状態で48%NaOH水溶液を加え、該スラリーのpHを13に調整した。このときCP-MABAはナトリウム塩となって水相に移り、クロロホルム相には副生成物であるp-クロロ-N-メチルアニリン及びN-メチルアニリンが溶解しているためクロロホルム相は廃棄した。水相はクロロホルム洗浄を2回繰り返した。
 水溶液に希塩酸を加えて該水溶液のpHを1以下に調整した。このときCP-MABAは塩酸塩となって水溶液中にとどまるので、水溶液にクロロホルムを加えて、副生成物であるp-クロロフェノールを抽出した。p-クロロフェノールが溶解したクロロホルム相は廃棄した。
 残った水溶液に48%NaOH水溶液を加え、該水溶液のpHを4に調整した。これにより、CP-MABAの塩酸塩が中和され、褐色オイル状のCP-MABA(水素型)が水溶液から析出した。CP-MABA(水素型)をクロロホルムで抽出し、クロロホルムを減圧除去することによってCP-MABA(水素型)を得た。
(HPLCの測定)
 よく攪拌した溶液から、1mlをサンプリングし、そこにHPLCの移動相を9ml加え、ろ液を測定サンプルとした。測定サンプルのHPLC測定を行い、下記の方法で作成した標準サンプルと同じ保持時間のピーク面積と検量線とから液中の濃度を求めた。HPLC測定条件は以下の通り。
装置名:株式会社 島津製作所製「高速液体クロマトグラム Prominence」
カラム:株式会社 島津ジーエルシー製
「Phenomenex Luna 5u C18(2) 100A」
検出器:DAD (Diode Array Detector)
データ処理:株式会社 島津製作所製「LCsolution」
測定条件:カラム温度40℃
移動相:メタノール/酢酸水溶液1vol%=6/4(vol比)
流速 :1.0ml/分
(測定法2) 比表面積(BET比表面積)の分析方法
 比表面積の測定には株式会社 島津製作所製トライスターII3020を使用した。得られたPPSの多孔質粒子(試料)をセルに入れた後、脱気した後ヘリウム置換、冷却し、窒素置換させることによって比表面積を測定した。
(測定法3) PPSの等温結晶化速度の測定
 サンプル4mgを示差走査熱量測定装置(パーキンエルマー製「Diamond DSC」)を用いて、350℃/3分溶融させた後、350℃から240℃に急冷却(210℃/分)し、冷却した温度(240℃)で15分間保持した時の等温結晶化速度を測定した。得られた等温結晶化速度を「Tmax@240℃」と表示した。
(測定例4)反応性評価方法
 得られたPPSの多孔質粒子を小型粉砕機で粉砕した後、日本工業規格Z8801の目開き0.5mmの試験用篩いを用いて篩った。篩いを通過したPPS樹脂100質量部に対し、3-グリシドキシプロピルトリメトキシシラン0.5質量部を配合し、均一に混合した後に溶融粘度V6(島津製作所製フローテスター、CFT-500Dを用い、300℃、荷重:1.96×10Pa、L/D=10(mm)/1(mm)にて、6分間保持した後に測定した値)を測定した。添加後の溶融粘度V6/添加前の溶融粘度V6の比から粘度上昇度を倍率として算出した。粘度上昇度が大きいほど反応性が高く、優れていることを示す。
(測定例5)キャビティーバランス
 実施例1~4ないし比較例1、2で得られた精製PPS65質量部、住友化学株式会社製オレフィン系熱可塑性エラストマー「ボンドファースト-E」5質量部をタンブラーで均一に混合した。その後、ベント付き2軸押出機(日本製鋼所、TEX30α)の投入口(トップフィーダ)に前記配合材料を投入し、サイドフィーダから、ガラス繊維(チョップドストランド、繊維径10μm、繊維長3mm、エポキシ樹脂集束剤)30質量部を投入して、樹脂成分吐出量30kg/hr、スクリュー回転数220rpm、設定樹脂温度を320℃に設定して溶融混練し、吐出口より吐出したストランド状物をカットしてPPSコンパウンドのペレットを得た。
 続いて、上記のペレットをシリンダー温度310℃に設定した住友重機製射出成形機(SE75D-HP)に供給し、次の条件下で射出成形した。すなわち、40個分のキャビティーを有するワッシャー金型を用いて、一次スプルーに最も近い位置のキャビティー(C1)が完全に充填される限りで最低の成形条件とした。他の成形条件は75トン成形機、シリンダー温度320℃、金型温度140℃、保圧無しとした。
 成型後の、キャビティー(C1)と同じランナーにある一次スプルーから最も遠いキャビティー(C10)の充填度を比較した。充填度(質量%)は、キャビティー(C1)の成形品に対する、キャビティー(C10)の成形品の質量比から求めた。キャビティー(C10)の充填度が高いほど、キャビティーバランスが優れていると言える。充填度に基づいて、各組成物のキャビティーバランスを以下の基準で判定した。
AA:100質量%以下から、90質量%以上の範囲
A:90質量%未満から、80質量%以上の範囲
B:80質量%未満から、70質量%以上の範囲
C:70質量%未満から、60質量%以上の範囲
D:60質量%未満以下の範囲
〔合成例1〕 PPSの重合工程
 圧力計、温度計、コンデンサー、デカンター、精留塔を付けた撹拌翼付き150Lオートクレーブにp-ジクロロベンゼン(以下、DCBと略す)33.222kg(226mol)、NMP2.280kg(23mol)、47.23質量%水硫化ソーダ27.300kg(230mol)、及び49.21質量%苛性ソーダ18.533kg(228mol)を仕込み、撹拌しながら窒素雰囲気下で173℃まで5時間掛けて昇温して、水27.3kgを留出させた後、釜を密閉した。脱水時に共沸により留出したDCBはデカンターで分離して随時釜内に戻し、脱水終了後の釜内は無水硫化ナトリウム組成物がDCB中に分散した状態であった。更に、内温を160℃に冷却し、NMP47.492kg(479mol)を仕込み、185℃まで昇温した。圧力が0.00MPaに到達した時点で、精留塔を連結したバルブを開放し、内温200℃まで1時間掛けて昇温した。この際、精留塔出口温度が110℃以下になる様に冷却とバルブ開度で制御した。留出したDCBと水の混合蒸気はコンデンサーで凝縮し、デカンターで分離して、DCBは釜へ戻した。留出水量は179gであった。次に、内温200℃から230℃まで3時間かけて昇温し、1時間撹拌した後、250℃まで昇温し1時間撹拌して反応終了後、オートクレーブの内温を250℃から235℃に冷却し、到達後にオートクレープの底弁を開いて減圧状態のまま撹拌翼付き150リットル真空撹拌乾燥機(脱溶媒機ジャケット温度120度)にフラッシュさせてN-メチル-2-ピロリドンを抜き取り、室温まで冷却し、サンプリングした結果、N.V.55%の粗PPS混合物を得た。
(実施例1)
 合成例1で得た粗PPS混合物400gとメタノール水溶液(富士フイルム和光純薬株式会社製「試薬特級」)422gをフラスコに入れ、40℃で30分間撹拌混合し、そのスラリーを桐山ロートで減圧濾過し、上から押し固め、さらに上から80wt%メタノール水溶液(富士フイルム和光純薬株式会社製「試薬特級」80質量部に水20質量部を加えたもの)422gを数回に分けて注ぎろ過した。更に、そのろ過して作製したケーキをビーカーに移して薬さじで粉末状に砕き、そこに20℃の水を422g注ぎ、30分間攪拌混合した。そのスラリーを桐山ロートで減圧ろ過し、上から押し固め、更に上から20℃の水422gを数回に分けて注ぎろ過した。
 上記ケーキをビーカーに移して、そこに634gの炭酸水を注ぎ、1時間攪拌混合した。そのスラリーを桐山ロートで減圧ろ過し、上から押し固め、更に上から炭酸水442gを数回に分けて注ぎろ過した。
 そのろ過して作製したケーキをバットに移して薬さじで粉末状に砕き、120℃×4時間で乾燥し、精製PPSを得た。得られた精製PPSについて測定を行った。その結果を表1に示す。
(実施例2)
 合成例1で得た粗PPS混合物400gとメタノール水溶液(富士フイルム和光純薬株式会社製「試薬特級」)422gをフラスコに入れ、40℃で30分間撹拌混合し、そのスラリーを桐山ロートで減圧濾過し、上から押し固め、さらに上から50wt%メタノール水溶液(富士フイルム和光純薬株式会社製「試薬特級」50質量部に水50質量部を加えたもの)422gを数回に分けて注ぎろ過した。更に、そのろ過して作製したケーキをビーカーに移して薬さじで粉末状に砕き、そこに20℃の水を442g注ぎ、30分間攪拌混合した。そのスラリーを桐山ロートで減圧ろ過し、上から押し固め、更に上から20℃の水422gを数回に分けて注ぎろ過した。
 上記ケーキをビーカーに移して、そこに634gの炭酸水を注ぎ、1時間攪拌混合した。そのスラリーを桐山ロートで減圧ろ過し、上から押し固め、更に上から炭酸水442gを数回に分けて注ぎろ過した。
 そのろ過して作製したケーキをバットに移して薬さじで粉末状に砕き、120℃×4時間で乾燥し、精製PPSを得た。得られた精製PPSについて測定を行った。その結果を表1に示す。
(実施例3)
 合成例1で得た粗PPS混合物400gとメタノール水溶液(富士フイルム和光純薬株式会社製「試薬特級」)422gをフラスコに入れ、40℃で30分間撹拌混合し、そのスラリーを桐山ロートで減圧濾過し、上から押し固め、さらに上から30wt%メタノール水溶液(富士フイルム和光純薬株式会社製「試薬特級」30質量部に水70質量部を加えたもの)422gを数回に分けて注ぎろ過した。更に、そのろ過して作製したケーキをビーカーに移して薬さじで粉末状に砕き、そこに20℃の水を442g注ぎ、30分間攪拌混合した。そのスラリーを桐山ロートで減圧ろ過し、上から押し固め、更に上から20℃の水422gを数回に分けて注ぎろ過した。
 上記ケーキをビーカーに移して、そこに643gの炭酸水を注ぎ、1時間攪拌混合した。そのスラリーを桐山ロートで減圧ろ過し、上から押し固め、更に上から炭酸水442gを数回に分けて注ぎろ過した。
 そのろ過して作製したケーキをバットに移して薬さじで粉末状に砕き、120℃×4時間で乾燥し精製PPSを得た。得られた精製PPSについて測定を行った。その結果を表1に示す。
(比較例1) 
 合成例1で得た粗PPS混合物400gとNMP422gをフラスコに入れ、40℃で30分間撹拌混合し、そのスラリーを桐山ロートで減圧濾過し、上から押し固め、さらに上からNMP422gを数回に分けて注ぎろ過した。更に、そのろ過して作製したケーキをビーカーに移して薬さじで粉末状に砕き、そこに70℃の水を442g注ぎ、30分間攪拌混合した。そのスラリーをそのスラリーを桐山ロートで減圧ろ過し、上から押し固め、更に上から70℃の水442gを数回に分けて注ぎろ過した。そのろ過して作製したケーキと炭酸水634gをオートクレーブに仕込み、160℃で1時間攪拌混合した。そのスラリーを桐山ロートで減圧ろ過し、上から押し固め、更に上から25℃の炭酸水422gを数回に分けて注ぎろ過した。そのろ過して作製したケーキをバットに移して薬さじで粉末状に砕き、120℃×4時間で乾燥し、精製PPSを得た。得られた精製PPSについて測定を行った。その結果を表1に示す。
(比較例2)
 合成例1で得た粗PPS混合物400gとNMP422gをフラスコに入れ、40℃で30分間撹拌混合し、そのスラリーを桐山ロートで減圧濾過し、上から押し固め、さらに上からNMP422gを数回に分けて注ぎろ過した。更に、そのろ過して作製したケーキをビーカーに移して薬さじで粉末状に砕き、そこに70℃の水を442g注ぎ、30分間攪拌混合した。そのスラリーをそのスラリーを桐山ロートで減圧ろ過し、上から押し固め、更に上から70℃の水442gを数回に分けて注ぎろ過した。そのろ過して作製したケーキと炭酸水634gをフラスコに入れ、25℃で1時間攪拌混合した。そのスラリーを桐山ロートで減圧ろ過し、上から押し固め、更に上から25℃の炭酸水422gを数回に分けて注ぎろ過した。そのろ過して作製したケーキをバットに移して薬さじで粉末状に砕き、120℃×4時間で乾燥し、精製PPSを得た。得られた精製PPSについて測定を行った。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000008

 比較例1、2と実施例1~3とを対比すると、いずれのPPSも反応性には優れる一方で、実施例1~3のPPSは、キャビティーバランスが大幅に向上したことが明らかとなった。

Claims (11)

  1. 有機極性溶媒中、ポリハロ芳香族化合物とスルフィド化剤とを反応させて得られるポリアリーレンスルフィドを含有する粗反応生成物を脱溶媒させることにより、粗ポリアリーレンスルフィドを含む混合物を得る工程(1)と、粗ポリアリーレンスルフィドを含む混合物を精製して、前記粗ポリアリーレンスルフィドを比表面積30〔m/g〕以上の範囲の多孔質粒子とする工程(2)と、得られた多孔質粒子と炭酸水とを接触させる工程(3)とを有し、
    前記工程(2)が、炭素原子数1~3の酸素原子含有溶媒と接触させる工程(2Ss)と、水と接触させる工程(2Sw)とをそれぞれ少なくとも1回ずつ行う工程を有し、
    工程(3)後の多孔質粒子中に含まれる下記構造式(1)で表される化合物(1)の割合が、1000〔ppm〕超から、3000〔ppm〕以下の範囲であることを特徴とするポリアリーレンスルフィドの精製方法。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Arはハロゲン原子を有するアリール基であり、Rは水素原子又は炭素原子数1~3のアルキル基又はシクロヘキシル基を表し、Rは炭素原子数3~5のアルキレン基を、Xは水素原子又はアルカリ金属原子を表す。)
  2. 前記工程(2)において、前記炭素原子数1~3の酸素原子含有溶媒が水溶液である、請求項1記載の精製方法。
  3. 前記水溶液中の炭素原子数1~3の酸素原子含有溶媒の濃度が水溶液100質量部に対して、90質量部以下の範囲である、請求項2記載の精製方法。
  4. 前記工程(3)において、ポリアリーレンスルフィドの多孔質粒子と炭酸水とを0.1MPaより小さい圧力下で接触させる、請求項1~3のいずれか一項記載の精製方法。
  5. 前記工程(3)において、ポリアリーレンスルフィドの多孔質粒子と炭酸水とを60℃以下の温度で接触させる、請求項1~4のいずれか一項記載の精製方法。
  6. 請求項1~5の何れか一項に記載の精製方法によりポリアリーレンスルフィドを精製する工程を有することを特徴とするポリアリーレンスルフィドの製造方法。
  7. 精製されたポリアリーレンスルフィドは、比表面積10〔m/g〕以上の範囲の多孔質粒子である、請求項6記載のポリアリーレンスルフィドの製造方法。
  8. 精製されたポリアリーレンスルフィドは、下記構造式(1)で表される化合物(1)の含有量の割合が、1000〔ppm〕超から、3000〔ppm〕以下の範囲である、請求項6記載のポリアリーレンスルフィドの製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Arはハロゲン原子を有するアリール基であり、Rは水素原子又は炭素原子数1~3のアルキル基又はシクロヘキシル基を表し、Rは炭素原子数3~5のアルキレン基を、Xは水素原子又はアルカリ金属原子を表す。)
  9. 精製されたポリアリーレンスルフィドは、等温結晶加速度が4分以上から、9分以下の範囲(ただし、示差走査熱量測定装置を用いて、350℃/3分溶融させた後、350℃から240℃に急冷却(210℃/分)し、冷却した温度(240℃)で15分間保持した際の測定値である)である請求項6記載のポリアリーレンスルフィドの製造方法。
  10. 比表面積10〔m/g〕以上の範囲の多孔質粒子であり、
     下記構造式(1)で表される化合物(1)の含有量の割合が、1000〔ppm〕超から、3000〔ppm〕以下の範囲であることを特徴とするポリアリーレンスルフィド。
    Figure JPOXMLDOC01-appb-C000003
    (式中、Arはハロゲン原子を有するアリール基であり、Rは水素原子又は炭素原子数1~3のアルキル基又はシクロヘキシル基を表し、Rは炭素原子数3~5のアルキレン基を、Xは水素原子又はアルカリ金属原子を表す。)
  11. 等温結晶加速度が4分以上から、9分以下の範囲(ただし、示差走査熱量測定装置を用いて、350℃/3分溶融させた後、350℃から240℃に急冷却(210℃/分)し、冷却した温度(240℃)で15分間保持した際の測定値である)である請求項10記載のポリアリーレンスルフィド。
PCT/JP2020/045955 2019-12-11 2020-12-10 ポリアリーレンスルフィド、その精製方法および製造方法 WO2021117795A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227018881A KR20220098752A (ko) 2019-12-11 2020-12-10 폴리아릴렌설파이드, 그 정제 방법 및 제조 방법
CN202080079189.1A CN114729123A (zh) 2019-12-11 2020-12-10 聚芳硫醚、其纯化方法和制造方法
US17/776,113 US20220389167A1 (en) 2019-12-11 2020-12-10 Polyarylene sulfide, and purification method and production method therefor
JP2021550007A JP7031797B2 (ja) 2019-12-11 2020-12-10 ポリアリーレンスルフィド、その精製方法および製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-223662 2019-12-11
JP2019223662 2019-12-11

Publications (1)

Publication Number Publication Date
WO2021117795A1 true WO2021117795A1 (ja) 2021-06-17

Family

ID=76329892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045955 WO2021117795A1 (ja) 2019-12-11 2020-12-10 ポリアリーレンスルフィド、その精製方法および製造方法

Country Status (5)

Country Link
US (1) US20220389167A1 (ja)
JP (1) JP7031797B2 (ja)
KR (1) KR20220098752A (ja)
CN (1) CN114729123A (ja)
WO (1) WO2021117795A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7318843B1 (ja) * 2022-05-10 2023-08-01 Dic株式会社 ポリアリーレンスルフィドの精製方法及び製造方法
WO2023218735A1 (ja) * 2022-05-10 2023-11-16 Dic株式会社 ポリアリーレンスルフィドの精製方法及び製造方法
JP7419831B2 (ja) 2020-01-20 2024-01-23 東ソー株式会社 ポリアリーレンスルフィドの製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192421A (ja) * 1992-10-23 1994-07-12 Phillips Petroleum Co ポリ(アリーレンスルフィド)ポリマーの製造法
WO2003048231A1 (fr) * 2001-12-03 2003-06-12 Kureha Chemical Industry Company, Limited Procede de purification continue de sulfure de polyarylene
JP2005264030A (ja) * 2004-03-19 2005-09-29 Dainippon Ink & Chem Inc ポリアリーレンスルフィドの精製方法
WO2006027985A1 (ja) * 2004-09-06 2006-03-16 Kureha Corporation ポリアリーレンスルフィドの製造方法
JP2008247955A (ja) * 2007-03-29 2008-10-16 Dic Corp ポリアリーレンスルフィド樹脂組成物
JP2010037518A (ja) * 2008-08-08 2010-02-18 Dic Corp カルボキシルキ含有ポリアリーレンスルフィド樹脂の製造方法
WO2012070335A1 (ja) * 2010-11-26 2012-05-31 株式会社クレハ ポリアリーレンスルフィドの製造方法、及びポリアリーレンスルフィド
WO2015166838A1 (ja) * 2014-04-30 2015-11-05 株式会社クレハ ポリアリーレンスルフィドの製造方法、及び、ポリアリーレンスルフィドの製造装置
JP2017071752A (ja) * 2015-10-05 2017-04-13 Dic株式会社 ポリアリーレンスルフィド樹脂の製造方法
WO2020032171A1 (ja) * 2018-08-10 2020-02-13 Dic株式会社 ポリアリーレンスルフィドの精製方法および製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212240A (en) 1975-07-18 1977-01-29 Matsushita Electric Ind Co Ltd Process for preparing transparent coating compounds
JP4929527B2 (ja) * 2000-12-20 2012-05-09 Dic株式会社 ポリアリーレンスルフィドの精製方法
JP4639665B2 (ja) * 2004-07-05 2011-02-23 Dic株式会社 ポリアリーレンスルフィド樹脂の製造方法
JP2007227126A (ja) * 2006-02-23 2007-09-06 Nissan Motor Co Ltd 燃料電池システム、燃料電池の触媒層の製造方法、家電機器、携帯機器及び輸送用機器
US8426552B2 (en) * 2006-08-17 2013-04-23 Dic Corporation Method for producing acid group-containing polyarylene sulfide
CN101402731A (zh) * 2008-11-17 2009-04-08 德阳科吉高新材料有限责任公司 含芳杂环的聚苯硫醚共聚物及其制备方法、用途和制品
CN106349478B (zh) * 2008-11-21 2019-03-01 Dic株式会社 聚芳硫醚树脂的制造方法
KR101287729B1 (ko) * 2009-05-18 2013-07-19 가부시끼가이샤 구레하 폴리아릴렌술피드 및 그의 제조 방법
JP6136292B2 (ja) * 2013-01-25 2017-05-31 Dic株式会社 ポリアリーレンスルフィドの製造方法
JP6390079B2 (ja) * 2013-08-23 2018-09-19 Dic株式会社 分岐型ポリアリーレンスルフィド樹脂の製造方法
JP6528678B2 (ja) * 2013-12-25 2019-06-12 東レ株式会社 ポリアリーレンスルフィド樹脂組成物およびそれからなる成形品

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192421A (ja) * 1992-10-23 1994-07-12 Phillips Petroleum Co ポリ(アリーレンスルフィド)ポリマーの製造法
WO2003048231A1 (fr) * 2001-12-03 2003-06-12 Kureha Chemical Industry Company, Limited Procede de purification continue de sulfure de polyarylene
JP2005264030A (ja) * 2004-03-19 2005-09-29 Dainippon Ink & Chem Inc ポリアリーレンスルフィドの精製方法
WO2006027985A1 (ja) * 2004-09-06 2006-03-16 Kureha Corporation ポリアリーレンスルフィドの製造方法
JP2008247955A (ja) * 2007-03-29 2008-10-16 Dic Corp ポリアリーレンスルフィド樹脂組成物
JP2010037518A (ja) * 2008-08-08 2010-02-18 Dic Corp カルボキシルキ含有ポリアリーレンスルフィド樹脂の製造方法
WO2012070335A1 (ja) * 2010-11-26 2012-05-31 株式会社クレハ ポリアリーレンスルフィドの製造方法、及びポリアリーレンスルフィド
WO2015166838A1 (ja) * 2014-04-30 2015-11-05 株式会社クレハ ポリアリーレンスルフィドの製造方法、及び、ポリアリーレンスルフィドの製造装置
JP2017071752A (ja) * 2015-10-05 2017-04-13 Dic株式会社 ポリアリーレンスルフィド樹脂の製造方法
WO2020032171A1 (ja) * 2018-08-10 2020-02-13 Dic株式会社 ポリアリーレンスルフィドの精製方法および製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7419831B2 (ja) 2020-01-20 2024-01-23 東ソー株式会社 ポリアリーレンスルフィドの製造方法
JP7318843B1 (ja) * 2022-05-10 2023-08-01 Dic株式会社 ポリアリーレンスルフィドの精製方法及び製造方法
WO2023218735A1 (ja) * 2022-05-10 2023-11-16 Dic株式会社 ポリアリーレンスルフィドの精製方法及び製造方法

Also Published As

Publication number Publication date
KR20220098752A (ko) 2022-07-12
JPWO2021117795A1 (ja) 2021-12-09
JP7031797B2 (ja) 2022-03-08
CN114729123A (zh) 2022-07-08
US20220389167A1 (en) 2022-12-08

Similar Documents

Publication Publication Date Title
JP7031797B2 (ja) ポリアリーレンスルフィド、その精製方法および製造方法
JP5794468B2 (ja) ポリアリーレンスルフィド樹脂の製造方法
JP6402971B2 (ja) スルフィド化剤およびポリアリーレンスルフィド樹脂の製造方法
JP5888118B2 (ja) オリゴアリーレンスルフィドおよびカルボキシアルキルアミノ基含有化合物の製造方法
JPWO2020032171A1 (ja) ポリアリーレンスルフィドの精製方法および製造方法
JP6003345B2 (ja) ポリアリーレンスルフィド樹脂の製造方法
JP4929527B2 (ja) ポリアリーレンスルフィドの精製方法
JP2021084952A (ja) スルフィド化剤およびポリアリーレンスルフィド樹脂の製造方法
JP6003346B2 (ja) ポリアリーレンスルフィド樹脂の製造方法
JP6003347B2 (ja) ポリアリーレンスルフィド樹脂の製造方法
JP2021098815A (ja) ポリアリーレンスルフィド、その精製方法および製造方法
JP7214998B2 (ja) カルボキシアルキルアミノ基含有化合物の製造方法、および環式ポリアリーレンスルフィドの製造方法
JP7214997B2 (ja) カルボキシアルキルアミノ基含有化合物の製造方法、および環式ポリアリーレンスルフィドの製造方法
JP5888142B2 (ja) カルボキシアルキルアミノ基含有化合物および非プロトン性極性溶媒を含む溶液の製造方法ならびにアルカリ金属含有無機塩および非プロトン性極性溶媒を含む組成物の製造方法
JP6256734B2 (ja) ポリアリーレンスルフィドの製造方法
JP7318843B1 (ja) ポリアリーレンスルフィドの精製方法及び製造方法
JP6390079B2 (ja) 分岐型ポリアリーレンスルフィド樹脂の製造方法
JP6390083B2 (ja) ポリアリーレンスルフィドの製造方法
JP2024022460A (ja) ポリアリーレンスルフィド樹脂の製造方法
JP2022161191A (ja) スルフィド化剤およびポリアリーレンスルフィド樹脂の製造方法
JP5888143B2 (ja) アルカリ金属含有無機塩を含む水溶液の製造方法ならびにカルボキシアルキルアミノ基含有化合物およびポリハロ芳香族化合物を含む組成物の製造方法
JP7214996B2 (ja) カルボキシアルキルアミノ基含有化合物の製造方法、および環式ポリアリーレンスルフィドの製造方法
JP6194566B2 (ja) アルカリ金属含有無機塩を含む水溶液の製造方法およびカルボキシアルキルアミノ基含有化合物と非水溶性溶液を含む溶液の製造方法
WO2023218735A1 (ja) ポリアリーレンスルフィドの精製方法及び製造方法
JP2024021683A (ja) ポリアリーレンスルフィド樹脂の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897754

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021550007

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227018881

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20897754

Country of ref document: EP

Kind code of ref document: A1