WO2002070780A1 - Procede servant a plaquer un materiau de moulage polymere, element constituant un circuit et procede servant a fabriquer cet element - Google Patents

Procede servant a plaquer un materiau de moulage polymere, element constituant un circuit et procede servant a fabriquer cet element Download PDF

Info

Publication number
WO2002070780A1
WO2002070780A1 PCT/JP2001/001637 JP0101637W WO02070780A1 WO 2002070780 A1 WO2002070780 A1 WO 2002070780A1 JP 0101637 W JP0101637 W JP 0101637W WO 02070780 A1 WO02070780 A1 WO 02070780A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
laser
insulating layer
forming
plating
Prior art date
Application number
PCT/JP2001/001637
Other languages
English (en)
French (fr)
Inventor
Hirokazu Tanaka
Satoshi Hirono
Original Assignee
Omron Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000035521A priority Critical patent/JP3399434B2/ja
Application filed by Omron Corporation filed Critical Omron Corporation
Priority to EP01908264A priority patent/EP1371754B1/en
Priority to US10/467,338 priority patent/US7288287B2/en
Priority to PCT/JP2001/001637 priority patent/WO2002070780A1/ja
Priority to CN018229689A priority patent/CN1217030C/zh
Priority to DE60137081T priority patent/DE60137081D1/de
Publication of WO2002070780A1 publication Critical patent/WO2002070780A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4661Adding a circuit layer by direct wet plating, e.g. electroless plating; insulating materials adapted therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1608Process or apparatus coating on selected surface areas by direct patterning from pretreatment step, i.e. selective pre-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2026Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by radiant energy
    • C23C18/204Radiation, e.g. UV, laser
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/188Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by direct electroplating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/032Materials
    • H05K2201/0323Carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0756Uses of liquids, e.g. rinsing, coating, dissolving
    • H05K2203/0759Forming a polymer layer by liquid coating, e.g. a non-metallic protective coating or an organic bonding layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/10Using electric, magnetic and electromagnetic fields; Using laser light
    • H05K2203/107Using laser light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1136Conversion of insulating material into conductive material, e.g. by pyrolysis
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • H05K3/0032Etching of the substrate by chemical or physical means by laser ablation of organic insulating material
    • H05K3/0035Etching of the substrate by chemical or physical means by laser ablation of organic insulating material of blind holes, i.e. having a metal layer at the bottom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • Y10T29/49165Manufacturing circuit on or in base by forming conductive walled aperture in base

Definitions

  • the present invention relates to a method for plating a polymer molding material, a circuit forming part, and a method for manufacturing the circuit forming part
  • the present invention relates to a method for forming a polymer molding material by forming an insulating layer on a polymer molding material, irradiating the insulating layer with a laser, and then performing electroless and electrolytic plating.
  • the present invention relates to a circuit forming component using a lug forming method and a method for manufacturing the same. Background art
  • a method of applying plating to a polymer material is to roughen the surface of a molded article made of the polymer material with a chemical agent, adsorb a tin-palladium compound, temporarily reduce palladium, and finally electroless plating. Is generally performed.
  • an exposure method using a photoresist is used to apply a partial feature such as a circuit pattern.
  • a multilayer substrate widely used in electronic equipment is also manufactured by repeating these two steps.
  • the insulating layer 61 is applied to the substrate 60, preliminarily dried, exposed (negative) treated 64, and developed. Completely dry.
  • the insulating layer 61 is etched (roughened), and then subjected to a catalyzing step and an accelerating step.
  • the patterning step as shown in (10) to (15) of FIG. 5, the pretreated insulating layer 61 is subjected to electroless plating or electroless plating after electroless plating, and the resist 62 is applied. After coating, exposure (positive) treatment 65, and development, Cu etching is performed to remove the resist 62, thereby obtaining a circuit pattern 63 composed of a plating layer.
  • a first object of the present invention is to dilute and coat a polymer material filled with an inorganic filler on a resin coating substrate with a solvent and dry the resin material.
  • a resin coating substrate By forming an insulating layer on the substrate, it is possible to form a circuit by laser surface treatment.
  • this structure By using this structure as a circuit, it is possible to easily and reliably construct a circuit-forming component (multilayer substrate).
  • a second object of the present invention is to form a circuit having an arbitrary circuit shape and a multilayer circuit having more than three layers, and having a small size, light weight, high density, and excellent EMC characteristics. To provide parts.
  • a third object of the present invention is to manufacture a circuit forming part having an arbitrary circuit shape and having a three-dimensional multilayer circuit having more than three layers at a low manufacturing cost and easily. It is an object of the present invention to provide a method for manufacturing a circuit forming component that can be used. Disclosure of the invention
  • the method for forming a pattern of a polymer molded material according to the present invention comprises: coating a polymer material filled with an inorganic filler on a resin coating substrate with a solvent by diluting and drying; After forming an insulating layer, the surface of the insulating layer is irradiated with a laser to generate a positive potential at the laser-irradiated portion, and then a catalyst of electroless plating is precipitated at the laser-irradiated portion. Then, the base material for resin coating is immersed in an electroless plating solution to form an electroless plating layer on the laser-irradiated portion.
  • the method for forming a mold of a polymer molded material according to the present invention includes the steps of: The polymer material filled with the filler is diluted and coated with a solvent and dried to form an insulating layer. Then, the surface of the insulating layer is irradiated with a laser, and after the laser irradiated portion is made conductive, the electrolytic plating is performed. By doing so, an electrolytic plating layer is formed on the laser irradiation part.
  • the inorganic filler is 0.1 to 10 particulate glass or granular ceramic, the added amount of the polymer material is 10 to 50% by weight, and the laser has a wavelength of 6 to 50% by weight. It is preferable that the laser has a wavelength of 100 nm or less and the total input energy of the laser is 10 to 500 J / cm 2 . It is preferable to use polyimide or epoxy resin for the polymer material.
  • a polymer material filled with an inorganic filler is diluted with a solvent and dried on a resin coating substrate to form an insulating layer, so that electroless plating or electrolytic plating by laser surface treatment is possible.
  • electroless plating or electrolytic plating as a circuit pattern, a multilayer substrate or a circuit forming component can be easily and at low cost.
  • the circuit forming component according to the present invention is characterized in that a polymer material filled with an inorganic filler is diluted and coated with a solvent on a resin coating substrate and dried. A circuit formed portion and a via hole formed by laser treatment on the insulating layer, and a circuit formed by plating the circuit formed portion and the via hole.
  • the polymer molded article has a concave portion, and a polymer material filled with an inorganic filler is diluted and applied with a solvent on the surface of the concave portion and dried to form an insulating layer.
  • a circuit forming portion and a via hole are formed on the insulating layer by laser processing, a circuit is formed by applying a plating to the circuit forming portion and the via hole, and a multi-layer circuit is formed in the concave portion by repeating this procedure a plurality of times. It is formed.
  • the laser irradiates the insulating layer with a laser to generate a positive surface potential at the laser-irradiated portion, and then deposits an electroless plating catalyst at the laser-irradiated portion.
  • An electroless plating performed by immersing the insulating layer in a laser, irradiating the insulating layer with a laser, imparting conductivity to the laser-irradiated portion, and then immersing in an electrolytic plating solution. is there.
  • the inorganic filler is particulate glass or granular ceramic having a particle size of 0.1 to 10 ⁇ m.
  • the amount of the inorganic filler added to the polymer material is 10 to 50% by weight.
  • the laser has a wavelength of 600 nm or less, and the total input energy of the laser is 10 to 500 JZ cm 2 .
  • the material of the polymer molded article is a liquid crystal polymer, polyether sulfone, polyethylene terephthalate, polycarbonate, polyphenylene ether, polyphenylene oxide, polyacetal, polyethylene terephthalate, polyamide, acrylonitrile. Linole-Putagene-styrene (ABS), polyphenylene sulfide, polyetherimide, polyetheretherketone, polysulfone, polyimide, epoxy resin, or a composite resin of these.
  • ABS Linole-Putagene-styrene
  • a multilayer circuit having an arbitrary circuit shape and having more than three layers can be obtained, and a circuit-forming component having a small size, light weight, high density, and excellent EMC characteristics can be obtained.
  • the method for producing a circuit-forming component according to the present invention is characterized in that a polymer material filled with an inorganic filler is diluted and coated with a solvent on a polymer molding material and dried.
  • the circuit forming component is a multilayer substrate.
  • a laser irradiates the insulating layer with a laser to generate a positive surface potential at the laser-irradiated portion, and then deposits an electroless plating catalyst at the laser-irradiated portion. Electroless plating is performed by immersion, and the plating is performed by irradiating the insulating layer with a laser and imparting conductivity to the laser-irradiated portion, and then immersing in an electrolytic plating solution. It is.
  • the inorganic filler is 0.1 to 10 ⁇ m of particulate glass or granular ceramics, and the amount added to the polymer material is 10 to 50% by weight.
  • the laser has a wavelength of 600 nm or less, and preferably has a total input energy of 10 to 500 JZcm 2 .
  • the material of the polymer molded article is a liquid crystal polymer, polyether sulfone, polyethylene terephthalate, polycarbonate, polyphenylene ether, polyphenylene oxide, polyacetal, polyethylene terephthalate, polyamide, acrylonitrile.
  • Lil butadiene styrene (ABS) polyphenylene sulfide, polyether imide, polyether ether ketone, polysulfone, polyimide, epoxy resin, or a composite resin of these.
  • circuit forming component having an arbitrary circuit shape and having a three-dimensional multilayer circuit having more than three layers can be easily manufactured at low manufacturing cost.
  • FIGS. 1 (1) to (3) are process explanatory views of a method for forming a pattern of a polymer molded material according to the present invention, and (4) are steps using electrolytic plating in the method for forming a pattern of a polymer molded material according to the present invention.
  • FIG. 1 (1) to (3) are process explanatory views of a method for forming a pattern of a polymer molded material according to the present invention, and (4) are steps using electrolytic plating in the method for forming a pattern of a polymer molded material according to the present invention.
  • 2 (1) to 2 (4) are process explanatory diagrams of a method for manufacturing a circuit forming component (multilayer substrate) according to the present invention.
  • FIG. 3 is an explanatory diagram of a configuration of a circuit forming component according to the present invention.
  • FIG. 4 is a configuration explanatory view of another embodiment of the circuit forming component according to the present invention.
  • FIGS. 5 (1) to (15) are process explanatory views of a conventional method for manufacturing a multilayer substrate.
  • the resin forming substrate 20 was filled with 10 to 50% by weight of an inorganic filler as shown in FIG.
  • a high molecular material for example, polyimide
  • a solvent for example, xylene
  • the resin coating substrate 20 is washed with a noble metal aqueous solution (for example, an anionic Pd compound or P d aqueous solution containing colloid) to precipitate only the electroless plating catalyst (for example, Pd) in the laser irradiation section 22 and then immerse the resin coating substrate 20 in the electroless plating liquid.
  • a noble metal aqueous solution for example, an anionic Pd compound or P d aqueous solution containing colloid
  • the electroless plating catalyst for example, Pd
  • the method for forming a pattern on a polymer molding material according to the present invention is a method for preparing a resin-coated base material 20 by filling 10 to 50% by weight of an inorganic filler.
  • An insulating material 21 is formed by diluting a semiconductor material (for example, polyimide) with a solvent (for example, xylene) and drying, and then applying a laser R having a wavelength of 600 nm or less to the surface of the insulating layer 21. Irradiation is performed to make the laser irradiating section 22 conductive, and then electroplating is performed, thereby forming an electroplating plating layer 23 ′ on the laser irradiating section 22.
  • a semiconductor material for example, polyimide
  • a solvent for example, xylene
  • Examples of the inorganic filler include a glass filler and a ceramic particle.
  • the shape is ⁇ :! to 20 wm, a shape of a fiber having a length of 10 m or more, or a particle of ⁇ 0.5 to 20 to 20 m.
  • the addition amount to the polymer material is 10 to 50% by weight, it is possible to further suppress the scattering of debris.
  • the laser irradiation conditions are as follows: fluence (energy per unit area per unit pulse: J / cm 2 Zl pulse) and the number of times of irradiation, the charged state suitable for precipitating the noble metal. It is good to set so that. As a result, in the laser irradiation area, the debris generated by the abrasion has a good charge state, the noble metal can be appropriately deposited, and the electroless plating can be applied to the entire surface of the laser irradiation area.
  • the insulating layer 21 is immersed in an anionic noble metal aqueous solution.
  • PdClQ powder can be dissolved in ion-exchanged water, or Na. Or by dissolving the P d C l 4 powder in deionized water, P d and C 1 0 powder and N a C 1 powder Barajiumu aqueous solution obtained by dissolving in deionized water, Parajiumu chloride, sodium chloride, polyethylene Da recall ' Mono-P-nonylphenol, palladium colloid aqueous solution mixed with sodium borofluoride, and the like.
  • a noble metal is deposited only on the laser irradiation region of the insulating layer 21 and then electroless plating is performed, so that the electroless plating layer 23 is formed only in this region.
  • a polymer material filled with an inorganic filler is diluted and coated with a solvent on a resin coating substrate 20 and dried to form an insulating layer 21.
  • This enables electroless plating or electroplating by laser surface treatment, and a substrate can be formed by forming the electroless plating or electroplating into a circuit (conductive pattern).
  • the multilayer substrate is composed of an insulating layer 21 formed by diluting a polymer material filled with an inorganic filler with a solvent on a resin coating base material 20 and drying the resin material, and drying the insulating layer 21 with a laser.
  • a circuit forming portion (not shown) formed by the processing and a via hole 25; and a circuit 23-1 (23'-1) formed by plating the circuit forming portion and the via hole 25. It is a thing.
  • the plating is the electroless plating or the electrolytic plating described in the method for forming a plating of a polymer molded material according to the present invention.
  • the resin coating substrate 20 is filled with 10 to 50% by weight of an inorganic filler.
  • a polymer material for example, polyimide
  • a solvent for example, xylene
  • the surface of the insulating layer 21 has a wavelength of 600 nm.
  • the resin coating substrate 20 is treated with a noble metal aqueous solution (for example, an anionic Pd compound or Pd colloid).
  • the multi-layer substrate is manufactured by a process of forming an insulating layer by diluting a polymer material filled with an inorganic filler with a solvent on a polymer molding material and drying it, and forming an insulating layer; and forming an insulating layer. Forming a circuit forming portion and a via hole by laser processing on the insulating layer formed in step (a), and forming a circuit by forming a plating layer on the circuit forming portion and the via hole formed in the circuit forming portion forming step. The circuit forming step is repeated a plurality of times in this order.
  • a polymer material (a polymer material filled with 10 to 50% of an inorganic filler) is applied to the resin coating substrate 20 and dried.
  • An electroless plating layer 23 is formed on the surface of the insulating layer 21, and only the laser irradiation area of the polymer molding material is made conductive as described above. This shows a state in which a circuit 23 ′ made of an electrolytic plating layer is formed.
  • the surface of the insulating layer 21 is again coated with a polymer material filled with an inorganic filler of 10 to 50% by diluting with a solvent, and then dried.
  • Form layer 2 4 1.
  • the surface of the first insulating layer 24-1 is irradiated with a laser having a wavelength of 600 nm or less to generate a positive potential at the laser-irradiated portion, and the first insulating layer 24-1 is irradiated with the laser.
  • a laser having a wavelength of 600 nm or less to generate a positive potential at the laser-irradiated portion
  • the first insulating layer 24-1 is irradiated with the laser.
  • it is immersed in an aqueous solution containing an anionic Pd compound or Pd colloid, and as shown in Fig. 2 (3), the Pd is used as a nucleus in the laser irradiation part (circuit formation part) and via hole 25.
  • a circuit 23-1 consisting of the electroless plating layer 1 and a land 26 connecting the circuit 23 consisting of the electroless plating layer and the circuit 23-1 consisting of the first electroless plating layer are formed. I do. Further, in the case of electrolytic plating, as described above, after the laser irradiation part (circuit forming part) of the polymer molding material and the peripheral surface of the via hole 25 are made conductive, the electrolytic plating is performed to perform the first electrolytic plating. A circuit 23 3 ′-1 composed of a plating layer and a land 26 ′ connecting the circuit 23 ′ composed of the electrolytic plating layer and the circuit 23 ′-1 composed of the first electroless plating layer are formed.
  • the first insulating layer 24-1 on which the circuit 23-1 (23'-1) and the land 26 are formed as described above, is again applied to the first insulating layer 24-1.
  • a second insulating layer 242 is formed by diluting and drying a polymer material filled with 0 to 50% of an inorganic filler with a solvent and drying.
  • the surface of the second insulating layer 24-2 is irradiated with a laser having a wavelength of 600 nm or less to generate a positive potential at the laser-irradiated portion, and the second insulating layer is irradiated with the laser.
  • a via hole 25 is formed in 24-2, and a positive potential is generated on the peripheral surface of the via hole 25.
  • the laser irradiation part (circuit formation part) and the via hole 25 consist of a second electroless plating layer with Pd as a nucleus.
  • a circuit 23-2 and a land 26 connecting the circuit 23-1 comprising the first electroless plating layer and the circuit 23-2 comprising the second electroless plating layer are formed.
  • the electroplating is performed after the laser irradiation part (circuit forming part) of the polymer molding material 21 and the peripheral surface of the via hole 25 are made conductive as described above.
  • Circuit 2 3 ′-1 composed of second electrolytic plating layer
  • circuit 2 3 ′-1 composed of first electrolytic plating layer
  • circuit 2 3 ′-2 composed of second electroless plating layer
  • a circuit composed of multiple electroless plating layers (three layers in FIG. 2 (4)) 23-1, 23-2, 23-3, or a circuit composed of electrolytic plating layers 2 3 ′ —1, 2 3 ′ —2, 2 3 ′ —3 are formed to manufacture a multilayer substrate. Therefore, a multilayer circuit having an arbitrary circuit shape and having more than three layers can be obtained, and a multilayer substrate having small size, light weight, high density, and excellent EMC characteristics can be obtained. Further, according to the method for manufacturing a multilayer substrate, a three-dimensional multilayer substrate having an arbitrary circuit shape and having more than three layers can be easily manufactured at low manufacturing cost. Next, components shown in FIG.
  • the polymer molded article 30 has a concave portion 39, and a polymer material filled with an inorganic filler is diluted and applied with a solvent on the surface of the concave portion 39 and dried to form an insulating layer 34. -1 is formed, a circuit forming portion and a via hole 35 are formed on the insulating layer 34-1 by laser processing, and the circuit forming portion and the via hole 35 are plated to form a circuit 36-1 (36'-1).
  • a multilayer circuit is formed in the recess 39, and a land 33 (33 ') is formed from the multilayer circuit to the outside of the polymer molded article.
  • the plating is the electroless plating or the electrolytic plating described in the method for forming a plating of a polymer molded material according to the present invention.
  • a polymer material eg, polyimide
  • a solvent eg, xylene or the like
  • the surface of the insulating layer 34-1 is irradiated with a laser R having a wavelength of 600 nm or less, and a positive potential is generated in the laser irradiated portion.
  • aqueous solution for example, an aqueous solution containing an anionic Pd compound or Pd colloid
  • electroless plating catalyst for example, Pd
  • wavelength on the surface of the insulating layer 34 -1 irradiates the laser R of 600 nm or less, an electrolytic plating to perform the laser irradiation unit after conductive.
  • the polymer material of the polymer molded article 30 includes a liquid crystal polymer (LCP: Li Q cry crysta 1 P ol ym er), polyether sulfone, polyethylene terephthalate, polycarbonate, and polyphenylene ether.
  • LCP Li Q cry crysta 1 P ol ym er
  • polyether sulfone polyethylene terephthalate
  • polycarbonate polycarbonate
  • polyphenylene ether Polyhueni Lenoxide, polyacetal, polyethylene terephthalate, polyamide, acrylonitrile, butadiene, styrene (ABS), polyphenylene sulfide, polyether imide, polyether ether ketone, polysulfone, polyimid, epoxy resin, or These composite resins can be used.
  • the circuit forming component is manufactured as follows.
  • a circuit 36 composed of an electroless plating layer (or a circuit 36 ′ composed of an electrolytic plating layer) is formed on the inner peripheral surface 30a and the bottom surface 30c of the concave portion 39 of the polymer molded article 30. ) Is formed.
  • the inner peripheral surface 30a and the bottom surface 30c of the concave portion 39 of the polymer molded product 30 are irradiated with a laser having a wavelength of 600 nm or less to generate a positive potential in the irradiated portion. Thereafter, it is immersed in an aqueous solution containing an anionic Pd compound or Pd colloid, and a circuit 36 composed of an electroless plating layer with Pd as a nucleus is formed in the irradiated portion.
  • the surface of the inner peripheral surface 30a and the bottom surface 30c of the concave portion 39 of the polymer molded product 30 is irradiated with laser to make it conductive, and then the electrolytic plating is performed.
  • a circuit 36 'including an electrolytic plating layer is formed in this region.
  • a polymer material filled with 10 to 50% of an inorganic filler is diluted with a solvent and applied to the bottom surface of the concave portion 39 of the polymer molded product 30 with a solvent, followed by drying.
  • Form layer 34-1 is described above.
  • the surface of the insulating layer 34-1 is irradiated with a laser having a wavelength of 600 nm or less to generate a positive potential at the laser-irradiated portion, and the laser is used to form the first insulating layer 34-1. Then, a via hole 35 is formed, and a positive potential is generated on the peripheral surface of the via hole 35.
  • a circuit 36-1 consisting of the first electroless plating layer with Pd as a nucleus, is formed in the laser irradiation part and via hole 35.
  • a land 37 connecting the circuit 36 composed of the electroless plating layer and the circuit 36-1 composed of the first electroless plating layer is formed.
  • electroplating after the laser irradiation part and the peripheral surface of the via hole 35 are made conductive as described above, electroplating is performed, whereby the circuit 36 ′ comprising the first electroplated layer is formed. 1 and a circuit consisting of an electrolytic plating layer 36 'and a circuit consisting of the first electrolytic plating layer 36'-1 A land 3 7 ′ is formed.
  • the insulating layer 34-1 in which the circuit 36-1 (or the circuit 36'-1) and the land 37 (or the land 37 ') are formed, is again put into a 10-50
  • the second insulating layer 341-2 is formed by diluting and drying a polymer material filled with a% inorganic filler with a solvent and drying.
  • the surface of the second insulating layer 34-2 is irradiated with a laser having a wavelength of 600 nm or less to generate a positive potential at the laser-irradiated portion, and the second insulating layer is irradiated with the laser.
  • a via hole 35 is formed at 34 1 and 2, and a positive potential is generated on the peripheral surface of the via hole 35.
  • a circuit 36-2 consisting of a second electroless plating layer with Pd as a nucleus is formed in the laser irradiation part and via hole 35.
  • a land 37 connecting the circuit 34-1 comprising the first electroless plating layer and the circuit 36-2 comprising the second electroless plating layer is formed.
  • electrolytic plating after the laser irradiation part and the peripheral surface of the via hole 35 are made conductive as described above, electrolytic plating is performed, whereby a circuit 36 ′ comprising the second electrolytic plating layer is formed. 2 and a land 3 7 ′ connecting the circuit 36 ′-1 composed of the first electrolytic plating layer and the circuit 36 ′ ⁇ 2 composed of the second electrolytic plating layer.
  • the circuit 36-1, 36-2, 36-3 which is composed of multiple electroless plating layers, or the electrolytic plating layer is formed in the concave portion 39 of the polymer molded product 30.
  • the circuit 36 3 ′-1, 36 '2, 3 6 ′-3 is formed to manufacture a multilayer circuit component 38.
  • the land 33 composed of an electroless plating layer (or the land composed of an electrolytic plating layer) is formed on the upper surface 30 e, the outer peripheral portion 30 b, and the outer portion 30 d of the bottom surface of the polymer molded product 30. Then, the land 33 (33 ') is connected to the multilayer circuit component 38 via the circuit 36 (36').
  • a polymer material filled with an inorganic filler is diluted and applied with a solvent on the surface of the polymer molded product 30, which is a polymer molded material, and dried to form an insulating layer 34-1.
  • a circuit forming part and a via hole 35 are formed on the layer 34-1 by laser processing, and a circuit 36 -1 (36 ′-1) is formed by applying a plating to the circuit forming part and the via hole 35.
  • a multilayer circuit component 38 is formed on the surface of the polymer molded article 30, so that it has an arbitrary circuit shape and has more than three layers and is three-dimensional. Circuit component 38 can be obtained, and a circuit-formed part having a small size, light weight, high density, and excellent EMC characteristics can be obtained.
  • a polymer material filled with an inorganic filler is diluted and coated with a solvent on a polymer molded product 30 and dried to form an insulating layer 34-1.
  • a circuit 36-1 (36 ′-1) comprising an electroless plating or an electrolytic plating by laser surface treatment, and to manufacture a circuit component having an arbitrary circuit shape.
  • a polymer molded product (a molded product obtained by filling a polymer material with an inorganic filler and performing injection molding) 40 has two recessed portions 41, 4 2 are formed, and multilayer circuit components 43, 44 are formed inside these recesses 41, 42.
  • the multilayer circuit components 43 and 44 have the same configuration as the multilayer circuit component 38 described above, and have the same manufacturing (forming) method.
  • a land 45 connected to the multilayered circuit components 43 and 44 formed in the recesses 41 and 42 is formed on the upper surface 40a of the polymer molded product 40.
  • a polymer material filled with an inorganic filler is diluted and coated with a solvent on a resin coating substrate and dried to form an insulating layer.
  • a multilayer substrate or a circuit forming component can be formed by forming the electroless plating or the electroplating into a circuit pattern. .
  • circuit forming component according to the present invention, a multilayer circuit configuration having an arbitrary circuit shape and having more than three layers can be obtained.
  • a substrate can be obtained.
  • a circuit-forming component having an arbitrary circuit shape and having a three-dimensional multilayer circuit having more than three layers can be manufactured at a low manufacturing cost. And can be easily manufactured

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Chemically Coating (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Description

明 細 書
高分子成形材のメッキ形成方法と回路形成部品とこの回路形成部品の製造方法 技術分野
本発明は、 高分子成形材に絶縁層を形成し、 この絶縁層にレーザ照射した後、 無電解及び電解メ ツキを施す高分子成形材のメ ツキ形成方法と、 この高分子成形 材のメ ツキ形成方法を用いた回路形成部品及びその製造方法に関するものである。 背景技術
従来、 高分子材料にメツキを施す方法は、 高分子材料からなる成形品の表面を 化学薬品によって粗面化した後、 錫パラジウム化合物を吸着させ、 一旦パラジゥ ムを還元し、 最後に無電解メツキを行う方法が一般的である。 また、 回路パター ン等の部分メ ツキを施すためには、 フォ トレジストによる露光法が用いられてい る
また、 電子機器に広く用いられている多層基板においても、 この 2つの工程を 繰り返し行うことによりその製造が行われている。
すなわち、 ビア形成工程では、 図 5の (1 ) 〜 (6 ) に示すように基板 6 0に 絶縁層 6 1を塗布した後に予備乾燥させ、 露光 (ネガ) 処理 6 4して、 現像した 後に本乾燥させる。 次に、 前処理工程では、 図 5の (7 ) 〜 (9 ) に示すように 絶縁層 6 1をエッチング (粗面化) し、 キヤタリスティ ング工程、 ァクセラレー ティ ング工程を経る。 次に、 パターニング工程では、 図 5の (1 0 ) 〜 (1 5 ) に示すように、 前処理された絶縁層 6 1に無電解メツキもしくは無電解メツキ後 電解メツキを施し、 レジスト 6 2を塗布し、 露光 (ポジ) 処理 6 5して、 現像し た後に C uのエッチングを行い、 レジスト 6 2を除去し、 メツキ層からなる回路 パターン 6 3を得る。
また、 射出成形回路部品 (M I D ) においても部分メツキ製法は同様であるが、 立体部品のための適切なレジスト材ゃ塗布方法が無いことや、 立体露光が技術的 •生産的に困難であることから、 露光法による射出成形回路部品の多層化は実現 されていない。 また、 射出成形回路部品の多層化の別手段として、 2回成形と最外層面部への 露光法とを組み合わせたものが提唱されているが 3層までしか対応できず、 回路 形成も極めて制限されるものである。
しかしながら、 上記した従来の高分子材料にメツキを施す方法及ぴフォ トレジ ストによる露光法を用いての多層基板の製造では多くの製造工程を要し、 簡単に 多層基板を製造することができなかったし、 また、 射出成形回路部品の多層化で は 3層までしか対応できず、 回路形成も極めて制限される上、 製造コストが高い という問題点があった。
本発明は、 上記した問題点を解決するものであって、 その第 1の目的とすると ころは、 樹脂塗布用基材に、 無機フィラーを充填した高分子材料を溶剤で希釈塗 布して乾燥させて絶縁層を形成することで、 レーザ表面処理によるメツキが可能 になり、 このメツキを回路にすることで簡単に且つ確実に回路形成部品 (多層基 板) を構成することができる高分子成形材のメツキ形成方法を提供することにあ る
また、 本発明の第 2の目的とするところは、 任意回路形状を有し且つ 3層を超 える多層の回路を得ることができ、 小型軽量化、 高密度化、 E M C特性に優れた 回路形成部品を提供することにある。
また、 本発明の第 3の目的とするところは、 任意回路形状を有し、 しかも 3層 を超える立体的な多層の回路を有する回路形成部品を低い製造コス卜で、 且つ容 易に製造することができる回路形成部品の製造方法を提供することにある。 発明の開示
上記の第 1の目的を達成するために、 本発明に係る高分子成形材のメツキ形成 方法は、 樹脂塗布用基材に、 無機フィラーを充填した高分子材料を溶剤で希釈塗 布して乾燥させて絶縁層を形成した後、 絶縁層の表面にレーザを照射し、 当該レ 一ザ照射部に正の電位を生じさせた後、 レーザ照射部に無電解メ ツキの触媒を析 出させ、 その後、 樹脂塗布用基材を無電解メツキ液に浸漬し、 レーザ照射部に無 電解メツキ層を形成するようにしたものである。
また、 本発明に係る高分子成形材のメツキ形成方法は、 樹脂塗布用基材に、 無 機フィラーを充填した高分子材料を溶剤で希釈塗布して乾燥させて絶縁層を形成 した後、 前記絶縁層の表面にレーザを照射し、'当該レーザ照射部を導電化した後 に、 電解メツキを行うことで、 レーザ照射部に電解メツキ層を形成するようにし たものである。
そして、 無機フィ ラーは 0 0 . 1〜 1 0 の粒子状ガラス又は粒状セラミ ッ クスであり、 その高分子材料に対する添加量は 1 0〜 5 0重量%であり、 また、 レーザは波長が 6 0 0 n m以下のレーザであり、 レーザの全投入エネルギが 1 0 〜5 0 0 J / c m 2 であることが好ましい。 また、 高分子材料に、 ポリイミ ドま たはエポキシ樹脂を用いることが好ましい。
したがって、 樹脂塗布用基材に、 無機フィラ—を充填した高分子材料を溶剤で 希釈塗布して乾燥させて絶縁層を形成することで、 レーザ表面処理による無電解 メツキ又は電解メ ツキが可能'になり、 この無電解メツキ又は電解メツキを回路パ ターンにすることで、 容易に且つ低コストで多層基板又は回路形成部品を構成す ることができる。
また、 上記の第 2の目的を達成するために、 本発明に係る回路形成部品は、 樹 脂塗布用基材上に、 無機フィラーを充填した高分子材料を溶剤で希釈塗布して乾 燥させて形成された絶縁層と、 この絶縁層にレーザ処理により形成された回路形 成部及びビアホールと、 回路形成部及びビアホールにメツキを施して形成された 回路とを備えたものである。
また、 回路形成部品は、 高分子成形品が凹陥部を有し、 凹陥部の表面上に、 無 機フィラーを充填した高分子材料を溶剤で希釈塗布して乾燥させて絶縁層を形成 し、 この絶縁層にレーザ処理により回路形成部とビアホールとを形成し、 回路形 成部及びビアホールにメ ツキを施して回路を形成し、 この手順を複数回繰り返す ことにより、 凹陥部に多層の回路を形成したものである。
そして、 メ ツキが、 絶縁層にレーザを照射し、 このレーザ照射部に正の表面電 位を生じさせた後、 レーザ照射部に無電解メツキの触媒を析出させ、 その後、 無 電解メ ツキ液に浸漬して行われる無電解メツキであり、 また、 メ ツキが、 絶縁層 にレーザを照射し、 このレーザ照射部に導電性を付与した後、 電解メツキ液に浸 潰して行われる電解メツキである。 そして、 無機フィラーは 0 0 . 1〜 1 0〃mの粒子状ガラス又は粒状セラミ ッ クスであり、 その高分子材料に対する添加量は 1 0〜 5 0重量%であり、 また、 レーザは波長が 6 0 0 n m以下のレーザであり、 レーザの全投入エネルギが 1 0 〜5 0 0 J Z c m 2 であることが好ましい。
また、 高分子成形品の材料は、 液晶ポリマ、 ポリエーテルスルホン、 ポリプチ レンテレフタ レー ト、 ポリカーボネー ト、 ポリフヱニレンエーテル、 ポリフヱニ レンォキサイ ド、 ポリァセタール、 ポリェチレンテレフタレート、 ポリアミ ド、 ァク リロ二ト リノレ · プタジェン · スチレン (A B S ) 、 ポリフエ二レンサルファ イ ド、 ポリエーテルイ ミ ド、 ポリエーテルエ一テルケ トン、 ポリスルホン、 ポリ イミ ド、 エポキシ樹脂、 またはこれらの複合樹脂である。
かかる構成により、 任意回路形状を有し且つ 3層を超える多層の回路を得るこ とができ、 小型軽量化、 高密度化、 E M C特性に優れた回路形成部品を得ること ができる。
また、 上記の第 3の目的を達成するために、 本発明に係る回路形成部品の製造 方法は、 高分子成形材上に、 無機フィラーを充填した高分子材料を溶剤で希釈塗 布して乾燥させて絶縁層を形成する絶縁層形成工程と、 この絶縁層形成工程で形 成された絶縁層にレ一ザ処理により回路形成部とビアホールとを形成する回路形 成部形成工程と、 この回路形成部形成工程で形成された回路形成部及びビアホー ルにメツキを施して回路を形成する回路形成工程とを備え、 絶縁層形成工程と回 路形成部形成工程と回路形成工程とを、 この順序に複数回繰り返すことにより多 層の回路を有する回路形成部品を製造するようにしたものである。
そして、 回路形成部品が多層基板であることが好ましい。 また、 メツキが、 絶 縁層にレーザを照射し、 このレーザ照射部に正の表面電位を生じさせた後、 レー ザ照射部に無電解メツキの触媒を析出させ、 その後、 無電解メツキ液に浸漬して 行われる無電解メ ツキであり、 また、 メツキが、 絶縁層にレーザを照射し、 この レーザ照射部に導電性を付与した後、 電解メツキ液に浸潰して行われる電解メ ッ キである。
そして、 無機フィ ラーは 0 0 . 1〜 1 0 〃mの粒子状ガラス又は粒状セラ ミ ッ タスであり、 その高分子材料に対する添加量は 1 0〜 5 0重量%であり、 また、 レ一ザは波長が 6 00 nm以下のレ一ザであり、 レーザの全投入エネルギが 1 0 〜500 JZcm2 であることが好ましい。
また、 高分子成形品の材料は、 液晶ポリマ、 ポリエーテルスルホン、 ポリプチ レンテレフタレー ト、 ポリカーボネー ト、 ポリフエ二レンエーテル、 ポリフエ二 レンォキサイ ド、 ポリァセタール、 ポリェチレンテレフタレ一 ト、 ポリアミ ド、 アク リロニト リル · ブタジエン · スチレン (A B S) 、 ポリフヱニレンサルファ イ ド、 ポリエーテルイ ミ ド、 ポリエーテルエーテルケ トン、 ポリスルホン、 ポリ イミ ド、 エポキシ樹脂、 またはこれらの複合樹脂である。
したがって、 任意回路形状を有し、 しかも 3層を超える立体的な多層の回路を 有する回路形成部品を低い製造コス 卜で、 且つ容易に製造することができる。 図面の簡単な ΐ¾明
図 1 (1) 〜 (3) は本発明に係る高分子成形材のメツキ形成方法の工程説明図、 (4) は本発明に係る高分子成形材のメツキ形成方法において電解メツキを用い た工程説明図である。
図 2 (1) 〜 (4) は本発明に係る回路形成部品 (多層基板) の製造方法の工程 説明図である。
図 3は本発明に係る回路形成部品の構成説明図である。
図 4は本発明に係る回路形成部品の他の実施の形態の構成説明図である。
図 5 (1) 〜 (1 5) は従来の多層基板の製造方法の工程説明図である。 発明を実施するための最良の形態
本発明に係る高分子成形材のメ ツキ形成方法を説明する。
本発明に係る高分子成形材のメ ツキ形成方法は、 図 1の (1) 〜 (3) に示す ように、 樹脂塗布用基材 20に、 1 0〜50重量%の無機フィラーを充填した高 分子材料 (例えば、 ポリイミ ド等) を溶剤 (例えば、 キシレン等) で希釈塗布し て乾燥させて絶縁層 2 1を形成した後、 この絶縁層 2 1の表面に波長が 600 η m以下のレーザ Rを照射し、 当該レーザ照射部 22に正の電位を生じさせた後、 樹脂塗布用基材 2 0を貴金属水溶液 (例えば、 陰イオン性の P d化合物または P dコロイ ドを含む水溶液) に浸漬して、 レーザ照射部 22に無電解メツキの触媒 (例えば P d) のみを析出させた後、 樹脂塗布用基材 20を無電解メツキ液に浸 潰して行うことで、 レーザ照射部 22に無電解メツキ層 23を形成するようにし たものである。
また、 本発明に係る高分子成形材のメツキ形成方法は、 図 1の (4) に示すよ うに、 樹脂塗布用基材 20に、 1 0〜 50重量%の無機フィ ラーを充填した高分 子材料 (例えば、 ポリイミ ド等) を溶剤 (例えば、 キシレン等) で希釈塗布して 乾燥させて絶縁層 2 1を形成した後、 この絶縁層 21の表面に波長が 600 nm 以下のレーザ Rを照射し、 当該レーザ照射部 22を導電化した後に、 電解メツキ を行うことで、 レーザ照射部 22に電解メツキ層 23 'を形成するようにしたも のである。
無機フィラーとしては、 ガラスフィラー、 セラミ ツクス粒子等が挙げられ、 形 状を ø:!〜 2 0 wm、 長さ 10 m以上のフアイパー状、 または、 φ 0 · 5〜2 0 mの粒子状で、 その高分子材料に対する添加量を 10〜50重量%とすると、 より一層デブリ一の飛散を抑制することが可能になる。
また、 レーザとしては、 エキシマレーザ (波長 λ = 19 3、 248、 308、 3 51 nm) 、 Y AG第 2高調波 (波長; I = 5 3 2 n m) 、 Y A G第 3高調波 (波長; I = 355 nm) 等の波長が 6 00 n m以下のものであれば使用できる。 また、 レーザによる全投入エネルギの総計を 10〜500 J/cm" とすると、 無電解メツキの場合は、 レーザの照射領域の帯電状態を貴金属を析出させるのに 適した状態にすることができるし、 電解メツキの場合は、 レーザの照射領域の導 電性を電解メ ツキ層の形成に適した状態にすることができる。
無電解メツキの場合は、 レーザの照射条件を、 フル一エンス (単位パルスの単 位面積当たりのエネルギ: J /c m2 Zlパルス) 及び照射回数が、 貴金属を析 出させるのに適した帯電状態となるように設定するのがよい。 これにより、 レー ザ照射領域で、 アブレ—シヨンにより発生するデブリ一の帯電状態が良好となり、 貴金属の析出を適切に行わせ、 無電解メッキをレーザ照射領域の全面に施すこと が可能となる。
また、 電解メ ツキの場合は、 レーザの照射条件を、 フルーエンス (単位パルス の単位面積当たりのエネルギ: J Z c m 2 Z 1パルス) 及び照射回数が、 レーザ の照射領域で電解メ ツキに適した導電性となるように設定するのがよい。
また、 無電解メ ツキの場合は、 絶縁層 2 1を陰イオン性の貴金属水溶液に浸漬 する。 この場合、 使用可能な貴金属水溶液としては、 P d C l Q 粉末をイオン 交換水に溶解したり、 N a。 P d C l 4 粉末をイオン交換水に溶解したり、 P d C 1 0 粉末と N a C 1粉末をイオン交換水に溶解してなるバラジゥム水溶液 や、 塩化パラジゥム、 塩化ナトリウム、 ポリエチレンダリコール 'モノ · P ·ノ ニルフエ二ルェ一テル、 ホゥ素化フッ化ナトリウムを混合したパラジウムコロイ ド水溶液等が挙げられる。
このような前処理方法により、 絶縁層 2 1のレーザ照射領域にのみ貴金属を析 出させ、 その後に無電解メツキを行うことで、 この領域のみに無電解メ ツキ層 2 3を形成する。
また、 電解メツキの場合は、 上記したように絶縁層 2 1のレーザ照射領域のみ を導電化した後に、 電解メ ツキを行うことで、 この領域のみに電解メツキ層 2 3 'を形成する。
したがって、 上記した高分子成形材のメツキ形成方法によれば、 樹脂塗布用基 材 2 0に、 無機フィラーを充填した高分子材料を溶剤で希釈塗布して乾燥させて 絶縁層 2 1を形成することで、 レーザ表面処理による無電解メ ツキまたは電解メ ツキが可能になり、 この無電解メ ツキまたは電解メツキを回路 (導電パターン) にすることで基板を構成することができる。
次に、 本発明に係る回路形成部品としての多層基板とその製造方法を説明する。 多層基板は、 樹脂塗布用基材 2 0上に、 無機フィラーを充填した高分子材料を 溶剤で希釈塗布して乾燥させて形成された絶縁層 2 1と、 この絶縁層 2 1にレ一 ザ処理により形成された回路形成部 (図示せず) 及びビアホール 2 5と、 回路形 成部及びビアホール 2 5にメツキを施して形成された回路 2 3 - 1 ( 2 3 ' - 1 ) とを備えたものである。
そして、 メツキは、 上記した本発明に係る高分子成形材のメツキ形成方法で述 ベた無電解メ ツキまたは電解メツキである。
すなわち、 樹脂塗布用基材 2 0に、 1 0〜5 0重量%の無機フィ ラーを充填し た高分子材料 (例えば、 ポリイミ ド等) を溶剤 (例えば、 キシレン等) で希釈塗 布して乾燥させて絶縁層 2 1を形成した後、 この絶縁層 2 1の表面に波長が 6 0 0 n m以下のレーザ Rを照射し、 当該レーザ照射部 2 2に正の電位を生じさせた 後、 樹脂塗布用基材 2 0を貴金属水溶液 (例えば、 陰イオン性の P d化合物また は P dコロイ ドを含む水溶液) に浸漬して、 レーザ照射部 2 2に無電解メツキの 触媒 (例えば P d ) のみを析出させた後、 樹脂塗布用基材 2 0を無電解メツキ液 に浸漬して行う無電解メツキであり、 また、 樹脂塗布用基材 2 0に、 1 0〜 5 0 重量%の無機フィ ラーを充填した高分子材料 (例えば、 ポリイ ミ ド等) を溶剤 (例えば、 キシレン等) で希釈塗布して乾燥させて絶縁層 2 1を形成した後、 こ の絶縁層 2 1の表面に波長が 6 0 0 n m以下のレーザ Rを照射し、 当該レーザ照 射部 2 2を導電化した後に行う電解メ ツキである。
そして、 多層基板の製造は、 高分子成形材上に、 無機フィラーを充填した高分 子材料を溶剤で希釈塗布して乾燥させて絶縁層を形成する絶縁層形成工程と、 絶 縁層形成工程で形成された絶縁層にレーザ処理により回路形成部とビアホールと を形成する回路形成部形成工程と、 回路形成部形成工程で形成された回路形成部 及びビアホールにメツキ層を形成して回路を形成する回路形成工程とを、 この順 序に複数回繰り返すことにより行われる。
図 2の (1 ) では、 上記したように樹脂塗布用基材 2 0に高分子材料 (1 0〜 5 0 %の無機フィラーを充填した高分子材料) が塗布され且つ乾燥されて形成さ れた絶縁層 2 1の表面に無電解メツキ層 2 3を形成し、 また、 上記したように高 分子成形材のレーザ照射領域のみを導電化した後に、 電解メツキを行うことで、 この領域のみに電解メ ツキ層からなる回路 2 3 'を形成した状態を示す。
次に、 図 2の (2 ) に示すように絶縁層 2 1の表面に再び 1 0〜 5 0 %の無機 フィラーを充填した高分子材料を溶剤で希釈塗布し乾燥させることで第 1の絶縁 層 2 4— 1を形成する。
次に、 第 1の絶縁層 2 4 - 1の表面に波長が 6 0 0 n m以下のレーザを照射し、 このレーザ照射部に正の電位を生じさせると共に、 レーザで第 1の絶縁層 2 4— 1にビアホール 2 5を形成し、 このビアホール 2 5の周面部に正の電位を生じさ せる。 その後、 陰イオン性の P d化合物または P dコロイ ドを含む水溶液に浸漬し、 図 2の (3 ) に示すようにレーザ照射部 (回路形成部) 及びビアホール 2 5に P dを核として第 1の無電解メ ツキ層からなる回路 2 3— 1と、 無電解メツキ層か らなる回路 2 3と第 1の無電解メツキ層からなる回路 2 3 - 1とを連ねるランド 2 6とを形成する。 また、 電解メツキの場合には、 上記したように高分子成形材 のレーザ照射部 (回路形成部) 及びビアホール 2 5の周面部を導電化した後に、 電解メツキを行うことで、 第 1の電解メツキ層からなる回路 2 3 '— 1と、 電解 メツキ層からなる回路 2 3 ' と第 1の無電解メツキ層からなる回路 2 3 '— 1と を連ねるランド 2 6 ' とを形成する。
次に、 図 2の (4 ) に示すように、 上記したように回路 2 3 - 1 ( 2 3 ' - 1 ) とラン ド 2 6を形成した第 1の絶縁層 2 4 - 1に再び 1 0〜5 0 %の無機フィ ラ —を充填した高分子材料を溶剤で希釈塗布し乾燥させることで第 2の絶縁層 2 4 一 2を形成する。
次に、 この第 2の絶縁層 2 4— 2の表面に波長が 6 0 0 n m以下のレーザを照 射し、 このレーザ照射部に正の電位を生じさせると共に、 レーザで第 2の絶縁層 2 4— 2にビアホール 2 5を形成し、 このビアホール 2 5の周面部に正の電位を 生じさせる。
その後、 陰イオン性の P d化合物または P dコロイ ドを含む水溶液に浸漬し、 レーザ照射部 (回路形成部) 及びビアホール 2 5に P dを核として第 2の無電解 メ ッキ層からなる回路 2 3— 2と、 第 1の無電解メッキ層からなる回路 2 3 - 1 と第 2の無電解メ ツキ層からなる回路 2 3 - 2とを連ねるランド 2 6とを形成す る。 また、 電解メ ツキの場合には、 上記したように高分子成形材 2 1のレーザ照 射部 (回路形成部) 及びビアホール 2 5の周面部を導電化した後に、 電解メツキ を行うことで、 第 2の電解メ ツキ層からなる回路 2 3 '一 2と、 第 1の電解メ ッ キ層からなる回路 2 3 ' - 1と第 2の無電解メ ツキ層からなる回路 2 3 '— 2と を連ねるランド 2 6 ' とを形成する。
以下、 この工程を繰り返すことにより多層 (図 2の (4 ) では 3層) の無電解 メ ツキ層からなる回路 2 3— 1、 2 3— 2、 2 3— 3又は電解メツキ層からなる 回路 2 3 '— 1、 2 3 '— 2、 2 3 '— 3を形成して多層基板を製造する。 したがって、 任意回路形状を有し且つ 3層を超える多層の回路を得ることがで き、 小型軽量化、 高密度化、 EMC特性に優れた多層基板を得ることができる。 また、 この多層基板の製造方法によれば、 任意回路形状を有し、 しかも 3層を 超える立体的な多層基板を低い製造コス卜で、 且つ容易に製造することができる。 次に、 本発明に係る回路形成部品として図 3に示す部品について説明する。 この回路形成部品は、 高分子成形品 30が凹陥部 39を有し、 凹陥部 39の表 面上に、 無機フィラーを充填した高分子材料を溶剤で希釈塗布して乾燥させて絶 縁層 34—1を形成し、 この絶縁層 34 - 1にレーザ処理により回路形成部とビ ァホール 35とを形成し、 回路形成部及びビアホール 35にメツキを施して回路 36 - 1 (36 ' - 1) を形成し、 この手順を複数回繰り返すことにより、 凹陥 部 39に多層の回路を形成し、 多層の回路から高分子成形品の外側にかけてラン ド 33 (33 ' ) を形成したものである。
そして、 メツキは、 上記した本発明に係る高分子成形材のメツキ形成方法で 述べた無電解メツキまたは電解メツキである。
すなわち、 高分子成形品 30の凹陥部 39の表面に、 10〜50重量%の無機 フィラーを充填した高分子材料 (例えば、 ポリイミ ド等) を溶剤 (例えば、 キシ レン等) で希釈塗布して乾燥させて絶縁層 34— 1を形成した後、 この絶縁層 3 4- 1の表面に波長が 600 nm以下のレーザ Rを照射し、 当該レーザ照射部に 正の電位を生じさせた後、 貴金属水溶液 (例えば、 陰イオン性の P d化合物また は P dコロイ ドを含む水溶液) に浸漬して、 レーザ照射部に無電解メツキの触媒 (例えば P d) のみを析出させた後、 無電解メ ツキ液に浸漬して行う無電解メッ キであり、 また、 凹陥部 39の表面に、 10 ~ 50重量%の無機フイラ一を充填 した高分子材料 (例えば、 ポリイミ ド等) を溶剤 (例えば、 キシレン等) で希釈 塗布して乾燥させて絶縁層 34- 1を形成した後、 この絶縁層 34 -1の表面に 波長が 600 nm以下のレーザ Rを照射し、 当該レーザ照射部を導電化した後に 行う電解メッキである。
この場合、 高分子成形品 30の高分子材料には、 液晶ポリマ (L CP : L i Q u i d C r y s t a 1 P o l ym e r) 、 ポリエーテルスルホン、 ポリプチ レンテレフタレー ト、 ポリカーボネー ト、 ポリフエ二レンエーテル、 ポリフエ二 レンォキサイ ド、 ポリァセタール、 ポリェチレンテレフタレート、 ポリアミ ド、 アク リロニト リル, ブタジエン, スチレン (A B S ) 、 ポリフエ二レンサルファ イ ド、 ポリエーテルイ ミ ド、 ポリエーテルエーテルケ トン、 ポリスルホン、 ポリ イミ ド、 エポキシ樹脂、 又は、 これらの複合樹脂等が使用可能である。
そして、 回路形成部品は次のように製造される。
すなわち、 まず、 高分子成形品 3 0の凹陥部 3 9の内周面部 3 0 a及び底面部 3 0 cに、 無電解メツキ層からなる回路 3 6 (又は電解メツキ層からなる回路 3 6 ' ) を形成する。
すなわち、 高分子成形品 3 0の凹陥部 3 9の内周面部 3 0 a及び底面部 3 0 c に波長が 6 0 0 n m以下のレーザを照射し、 この照射部に正の電位を生じさせた 後、 陰イオン性の P d化合物または P dコロイ ドを含む水溶液に浸潰し、 照射部 に P dを核として無電解メツキ層からなる回路 3 6を形成する。
また、 電解メツキの場合は、 上記したように高分子成形品 3 0の凹陥部 3 9の 内周面部 3 0 a及び底面部 3 0 cの表面にレーザを照射して導電化した後に電解 メ ツキを行うことで、 この領域に電解メツキ層からなる回路 3 6 'を形成する。 次に、 高分子成形品 3 0の凹陥部 3 9の底部の表面に、 1 0〜5 0 %の無機フ ィラーを充填した高分子材料を溶剤で希釈塗布し乾燥させることで第 1の絶縁層 3 4 - 1を形成する。
次に、 この絶縁層 3 4— 1の表面に波長が 6 0 0 n m以下のレーザを照射し、 このレーザ照射部に正の電位を生じさせると共に、 レーザで第 1の絶縁層 3 4— 1にビアホール 3 5を形成し、 このビアホール 3 5の周面部に正の電位を生じさ せる。
その後、 陰イオン性の P d化合物または P dコロイ ドを含む水溶液に浸潰し、 レーザ照射部及びビアホール 3 5に P dを核として第 1の無電解メツキ層からな る回路 3 6— 1と、 無電解メ ツキ層からなる回路 3 6と第 1の無電解メツキ層か らなる回路 3 6— 1とを連ねるランド 3 7とを形成する。 また、 電解メツキの場 合には、 上記したようにレーザ照射部及びビアホール 3 5の周面部を導電化した 後に、 電解メツキを行うことで、 第 1の電解メツキ層からなる回路 3 6 '— 1と、 電解メツキ層からなる回路 3 6 ' と第 1の電解メ ツキ層からなる回路 3 6 ' - 1 とを連ねるランド 3 7 ' とを形成する。
次に、 上記したように回路 3 6 - 1 (又は回路 3 6 ' - 1 ) とランド 3 7 (又 はランド 3 7 ' ) を形成した絶縁層 3 4— 1に、 再び 1 0〜5 0 %の無機フィラ —を充填した高分子材料を溶剤で希釈塗布し乾燥させることで第 2の絶縁層 3 4 一 2を形成する。
次に、 この第 2の絶縁層 3 4— 2の表面に波長が 6 0 0 n m以下のレーザを照 射し、 このレーザ照射部に正の電位を生じさせると共に、 レーザで第 2の絶縁層 3 4一 2にビアホール 3 5を形成し、 このビアホール 3 5の周面部に正の電位を 生じさせる。
その後、 陰イオン性の P d化合物または P dコロイ ドを含む水溶液に浸潰し、 レーザ照射部及びビアホール 3 5に P dを核として第 2の無電解メツキ層からな る回路 3 6— 2と、 第 1の無電解メ ツキ層からなる回路 3 4 - 1と第 2の無電解 メツキ層からなる回路 3 6 - 2とを連ねるランド 3 7とを形成する。 また、 電解 メッキの場合には、 上記したようにレーザ照射部及びビアホール 3 5の周面部を 導電化した後に、 電解メツキを行うことで、 第 2の電解メ ツキ層からなる回路 3 6 '— 2と、 第 1の電解メツキ層からなる回路 3 6 ' - 1と第 2の電解メ ツキ層 からなる回路 3 6 '— 2とを連ねるランド 3 7 ' とを形成する。
以下、 この工程を繰り返すことにより、 高分子成形品 3 0の凹陥部 3 9に多層 の無電解メツキ層からなる回路 3 6— 1、 3 6— 2、 3 6— 3又は電解メ ツキ層 からなる回路 3 6 '— 1、 3 6一一 2、 3 6 '― 3を形成して多層の回路構成部 3 8を製造する。
次に、 高分子成形品 3 0の上面部 3 0 e、 外周部 3 0 b及び底面部の外側部分 3 0 dに無電解メ ツキ層からなるランド 3 3 (又は、 電解メツキ層からなるラン ド 3 3 ' ) を形成して、 このラン ド 3 3 ( 3 3 ' ) を回路 3 6 ( 3 6 ' ) を介し て多層の回路構成部 3 8に接続する。
このように、 高分子成形材である高分子成形品 3 0の表面上に、 無機フィラー を充填した高分子材料を溶剤で希釈塗布して乾燥させて絶縁層 3 4— 1を形成し、 絶縁層 3 4 - 1にレ一ザ処理により回路形成部とビアホール 3 5とを形成し、 回 路形成部及びビアホール 3 5にメツキを施して回路 3 6— 1 ( 3 6 '— 1 ) を形 成し、 この手順を複数回繰り返すことにより、 高分子成形品 3 0の表面上に多層 の回路構成部 3 8を形成したことにより、 任意回路形状を有し且つ 3層を超える 多層で立体的な回路構成部 3 8を得ることができ、 小型軽量化、 高密度化、 E M C特性に優れた回路形成部品を得ることができる。
また、 回路形成部品の製造方法によれば、 高分子成形品 3 0に、 無機フィラー を充填した高分子材料を溶剤で希釈塗布して乾燥させて絶縁層 3 4 - 1を形成す ることで、 レーザ表面処理による無電解メツキ又は電解メツキからなる回路 3 6 - 1 ( 3 6 ' - 1 ) を形成することが可能になり、 任意回路形状を有する回路形 成部品を製造することができる。
また、 図 4に示す回路形成部品にあっては、 高分子成形品 (高分子材料に無機 フィラーを充填し射出成形することで得られた成形品) 4 0に 2つの凹陥部 4 1、 4 2が形成してあり、 これらの凹陥部 4 1、 4 2の内部に多層の回路構成部 4 3、 4 4を形成するようにしたものである。 そして、 多層の回路構成部 4 3、 4 4は、 上記した多層の回路構成部 3 8と同構成であり、 その製造 (形成) 方法に同じで あな
そして、 高分子成形品 4 0の上面部 4 0 aには、 凹陥部 4 1、 4 2に形成した 多層の回路構成部 4 3、 4 4に接続されるランド 4 5が形成してある。 産業上の利用可能性
以上説明したように、 本発明に係る高分子成形材のメッキ形成方法によれば、 樹脂塗布用基材に、 無機フィラーを充填した高分子材料を溶剤で希釈塗布して乾 燥させて絶縁層を形成することで、 レーザ表面処理による無電解メ ツキ又は電解 メ ツキが可能になり、 この無電解メツキ又は電解メツキを回路パターンにするこ とで多層基板又は回路形成部品を構成することができる。
また、 本発明に係る回路形成部品によれば、 任意回路形状を有し且つ 3層を超 える多層の回路構成を得ることができ、 小型軽量化、 高密度化、 E M C特性に優 れた多層基板を得ることができる。
また、 本発明に係る回路形成部品の製造方法によれば、 任意回路形状を有し、 しかも 3層を超える立体的な多層の回路を有する回路形成部品を低い製造コス ト で、 且つ容易に製造することができる

Claims

請求の範囲
1 . 樹脂塗布用基材に、 無機フィラーを充填した高分子材料を溶剤で希釈塗布し て乾燥させて絶縁層を形成した後、 前記絶縁層の表面にレーザを照射し、 当該レ 一ザ照射部に正の電位を生じさせた後、 前記レーザ照射部に無電解メツキの触媒 を析出させ、 その後、 前記樹脂塗布用基材を無電解メツキ液に浸漬し、 前記レー ザ照射部に無電解メ ツキ層を形成するようにしたことを特徴とする高分子成形材 のメ ッキ形成方法。
2 . 樹脂塗布用基材に、 無機フィラーを充填した高分子材料を溶剤で希釈塗布し て乾燥させて絶縁層を形成した後、 前記絶縁層の表面にレーザを照射し、 当該レ 一ザ照射部を導電化した後に、 電解メ ツキを行うことで、 前記レ一ザ照射部に電 解メ ツキ層を形成するようにしたことを特徴とする高分子成形材のメツキ形成方 法。
3 . 前記無機フイラ一は 0 0 . 1〜1 0 /z mの粒子状ガラス又は粒状セラミ ック スであり、 その高分子材料に対する添加量は 1 0〜5 0重量%であり、 前記レー ザは波長が 6 0 0 n m以下のレーザであり、 前記レーザの全投入エネルギが 1 0 〜5 0 0 J / c m 2 である請求項 1又は請求項 2に記載の高分子成形材のメツキ 形成方法。
4 . 前記高分子材料に、 ポリイ ミ ドまたはエポキシ樹脂を用いるようにした請 求項 1乃至請求項 3に記載の高分子成形材のメ ツキ形成方法。
5 . 樹脂塗布用基材上に、 無機フイラ—を充填した高分子材料を溶剤で希釈塗 布して乾燥させて形成された絶縁層と、
前記絶縁層にレーザ処理により形成された回路形成部及びビアホールと、 前記回路形成部及び前記ビアホールにメツキを施して形成された回路とを備え たことを特徴とする回路形成部品。
6 . 高分子成形品が凹陥部を有し、 前記凹陥部の表面上に、 無機フィラーを充填 した高分子材料を溶剤で希釈塗布して乾燥させて絶縁層を形成し、 前記絶縁層に レーザ処理により回路形成部とビアホールとを形成し、 前記回路形成部及び前記 ビアホールにメツキを施して回路を形成し、 この手順を複数回繰り返すことによ り、 前記凹陥部に多層の回路を形成したことを特徴とする回路形成部品。
7 . 前記メツキが、 前記絶縁層に前記レーザを照射し、 前記レーザ照射部に正の 表面電位を生じさせた後、 前記レーザ照射部に無電解メ ツキの触媒を析出させ、 その後、 無電解メ ツキ液に浸潰して行われる無電解メ ツキである請求項 5又は請 求項 6に記載の回路形成部品。
8 . 前記メツキが、 前記絶縁層に前記レーザを照射し、 前記レーザ照射部に導電 性を付与した後、 電解メツキ液に浸潰して行われる電解メ ツキである請求項 5又 は請求項 6に記載の回路形成部品。
9 . 前記無機フイラ一は 0 0 . 1〜1 0 の粒子状ガラス又は粒状セラミ ック スであり、 その高分子材料に対する添加量は 1 0〜5 0重量%であり、 前記レー ザは波長が 6 0 0 n m以下のレーザであり、 前記レーザの全投入エネルギが 1 0 〜5 0 0 J / c m2 である請求項 5乃至請求項 8に記載の回路形成部品。
1 0 . 前記高分子成形品の高分子材料は、 液晶ポリマ、 ポリエーテルスルホン、 ポリプチレンテレフタレ一 ト、 ポリカーボネー ト、 ポリフエ二レンエーテル、 ポ リフヱ二レンオキサイ ド、 ポリアセタール、 ポリエチレンテレフタレー ト、 ポリ アミ ド、 アク リロニト リル · ブタジエン · スチレン ( A B S ) ポリフエ二レン サルファイ ド、 ポリエーテルイ ミ ド、 ポリエ一テルエ一テルケ トン、 ポリスルホ ン、 ポリイミ ド、 エポキシ樹脂、 またはこれらの複合樹脂である請求項 6乃至請 求項 9に記載の回路形成部品。
1 1 . 高分子成形材上に、 無機フィラーを充填した高分子材料を溶剤で希釈塗布 して乾燥させて絶縁層を形成する絶縁層形成工程と、
前記絶縁層形成工程で形成された前記絶縁層にレーザ処理により回路形成部と ビアホールとを形成する回路形成部形成工程と、
前記回路形成部形成工程で形成された前記回路形成部及び前記ビアホールにメ ツキを施して回路を形成する回路形成工程とを備え、
前記絶縁層形成工程と前記回路形成部形成工程と前記回路形成工程とを、 この 順序に複数回繰り返すことにより回路形成部品を製造するようにしたことを特徴 とする回路形成部品の製造方法。
1 2 . 前記回路形成部品が多層基板である回路形成部品の製造方法。
1 3. 前記メツキが、 前記絶縁層に前記レーザを照射し、 前記レーザ照射部に正 の表面電位を生じさせた後、 前記レーザ照射部に無電解メツキの触媒を析出させ、 その後、 無電解メ ツキ液に浸漬して行われる無電解メ ツキである請求項 1 1又は 請求項 12に記載の回路形成部品の製造方法。
14. 前記メツキが、 前記絶縁層に前記レーザを照射し、 前記レーザ照射部に 導電性を付与した後、 電解メツキ液に浸漬して行われる電解メツキである請求項 1 1又は請求項 1 2に記載の回路形成部品の製造方法。
1 5. 前記無機フイラ一は 0. 1〜10 の粒子状ガラス又は粒状セラミ ツ クスであり、 その高分子材料に対する添加量は 1 0〜50重量%であり、 前記レ 一ザは波長が 60 0 nm以下のレーザであり、 前記レーザの全投入エネルギが 1 0〜500 J/c m2 である請求項 1 1乃至請求項 14に記載の回路形成部品の 製造方法。
16. 前記高分子成形品の高分子材料は、 液晶ポリマ、 ポリエーテルスルホン、 ポリプチレンテレフタレー ト、 ポリカーボネー ト、 ポリフエ二レンエーテル、 ポ リフヱ二レンオキサイ ド、 ポリアセタール、 ポリエチレンテレフタレー ト、 ポリ アミ ド、 アタ リロニト リノレ · ブタジエン · スチレン ( A B S ) 、 ポリフエ二レン サルファイ ド、 ポリエーテルイ ミ ド、 ポリエーテルエーテルケトン、 ポリスルホ ン、 ポリイミ ド、 エポキシ樹脂、 またはこれらの複合樹脂である請求項 1 1乃至 請求項 1 5に記載の回路形成部品の製造方法。
PCT/JP2001/001637 2001-03-02 2001-03-02 Procede servant a plaquer un materiau de moulage polymere, element constituant un circuit et procede servant a fabriquer cet element WO2002070780A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000035521A JP3399434B2 (ja) 2001-03-02 2000-02-14 高分子成形材のメッキ形成方法と回路形成部品とこの回路形成部品の製造方法
EP01908264A EP1371754B1 (en) 2001-03-02 2001-03-02 Method for plating polymer molding material, circuit forming component and method for producing circuit forming component
US10/467,338 US7288287B2 (en) 2001-03-02 2001-03-02 Circuit formation part and manufacturing method for this circuit formation part
PCT/JP2001/001637 WO2002070780A1 (fr) 2001-03-02 2001-03-02 Procede servant a plaquer un materiau de moulage polymere, element constituant un circuit et procede servant a fabriquer cet element
CN018229689A CN1217030C (zh) 2001-03-02 2001-03-02 电路形成部件及该电路形成部件的制造方法
DE60137081T DE60137081D1 (de) 2001-03-02 2001-03-02 Verfahren zum plattieren von polymerformmassen, schaltungsbildende komponente und verfahren zur herstellung der schaltungsbildenden komponente

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/001637 WO2002070780A1 (fr) 2001-03-02 2001-03-02 Procede servant a plaquer un materiau de moulage polymere, element constituant un circuit et procede servant a fabriquer cet element

Publications (1)

Publication Number Publication Date
WO2002070780A1 true WO2002070780A1 (fr) 2002-09-12

Family

ID=29561068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/001637 WO2002070780A1 (fr) 2001-03-02 2001-03-02 Procede servant a plaquer un materiau de moulage polymere, element constituant un circuit et procede servant a fabriquer cet element

Country Status (6)

Country Link
US (1) US7288287B2 (ja)
EP (1) EP1371754B1 (ja)
JP (1) JP3399434B2 (ja)
CN (1) CN1217030C (ja)
DE (1) DE60137081D1 (ja)
WO (1) WO2002070780A1 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4649557B2 (ja) * 2003-10-10 2011-03-09 財団法人21あおもり産業総合支援センター 配線製造方法
JP2005347424A (ja) * 2004-06-01 2005-12-15 Fuji Photo Film Co Ltd 多層配線板及びその製造方法
WO2007058975A2 (en) * 2005-11-10 2007-05-24 Second Sight Medical Products, Inc. Polymer layer comprising silicone and at least one metal trace and a process of manufacturing the same
JP4903479B2 (ja) * 2006-04-18 2012-03-28 富士フイルム株式会社 金属パターン形成方法、金属パターン、及びプリント配線板
JP2007324236A (ja) * 2006-05-30 2007-12-13 Nof Corp プリント配線板用フィルムに用いる樹脂組成物及びその用途
US7750076B2 (en) 2006-06-07 2010-07-06 Second Sight Medical Products, Inc. Polymer comprising silicone and at least one metal trace
TWI482550B (zh) * 2007-11-22 2015-04-21 Ajinomoto Kk 多層印刷配線板之製造方法及多層印刷配線板
TWI394506B (zh) * 2008-10-13 2013-04-21 Unimicron Technology Corp 多層立體線路的結構及其製作方法
US8278214B2 (en) * 2009-12-23 2012-10-02 Intel Corporation Through mold via polymer block package
JP2012241149A (ja) 2011-05-23 2012-12-10 Panasonic Corp 樹脂組成物及び回路基板の製造方法
US9842665B2 (en) 2013-02-21 2017-12-12 Nlight, Inc. Optimization of high resolution digitally encoded laser scanners for fine feature marking
US10464172B2 (en) 2013-02-21 2019-11-05 Nlight, Inc. Patterning conductive films using variable focal plane to control feature size
CN105122387B (zh) * 2013-02-21 2019-01-11 恩耐公司 非烧蚀性激光图案化
WO2014130895A1 (en) 2013-02-21 2014-08-28 Nlight Photonics Corporation Laser patterning multi-layer structures
FR3014012A1 (fr) * 2013-12-04 2015-06-05 Valeo Vision Materiau composite a base de polymere(s) et d'un metal
US10069271B2 (en) 2014-06-02 2018-09-04 Nlight, Inc. Scalable high power fiber laser
US10618131B2 (en) 2014-06-05 2020-04-14 Nlight, Inc. Laser patterning skew correction
US10310201B2 (en) 2014-08-01 2019-06-04 Nlight, Inc. Back-reflection protection and monitoring in fiber and fiber-delivered lasers
US9837783B2 (en) 2015-01-26 2017-12-05 Nlight, Inc. High-power, single-mode fiber sources
US10050404B2 (en) 2015-03-26 2018-08-14 Nlight, Inc. Fiber source with cascaded gain stages and/or multimode delivery fiber with low splice loss
US10520671B2 (en) 2015-07-08 2019-12-31 Nlight, Inc. Fiber with depressed central index for increased beam parameter product
JP6785858B2 (ja) 2015-11-23 2020-11-18 エヌライト,インコーポレーテッド レーザ加工のための微細スケールでの時間的制御
WO2017091606A1 (en) 2015-11-23 2017-06-01 Nlight, Inc. Predictive modification of laser diode drive current waveform in high power laser systems
US11179807B2 (en) 2015-11-23 2021-11-23 Nlight, Inc. Fine-scale temporal control for laser material processing
US10295820B2 (en) 2016-01-19 2019-05-21 Nlight, Inc. Method of processing calibration data in 3D laser scanner systems
US10730785B2 (en) 2016-09-29 2020-08-04 Nlight, Inc. Optical fiber bending mechanisms
WO2018063452A1 (en) 2016-09-29 2018-04-05 Nlight, Inc. Adjustable beam characteristics
US10732439B2 (en) 2016-09-29 2020-08-04 Nlight, Inc. Fiber-coupled device for varying beam characteristics
EP3607389B1 (en) 2017-04-04 2023-06-07 Nlight, Inc. Optical fiducial generation for galvanometric scanner calibration

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4615907A (en) * 1984-11-23 1986-10-07 Phillips Petroleum Company Plating poly(arylene sulfide) surfaces
EP0260514A1 (en) 1986-09-15 1988-03-23 General Electric Company Photoselective metal deposition process
JPS63186877A (ja) * 1987-01-28 1988-08-02 Nitto Electric Ind Co Ltd レ−ザ−メツキ法
JPH04183873A (ja) * 1990-11-19 1992-06-30 Agency Of Ind Science & Technol 紫外レーザーを用いた高分子成形品への無電解めっき方法
JPH08264957A (ja) * 1995-03-23 1996-10-11 Nec Corp 多層印刷配線板の製造方法
JPH0936522A (ja) * 1995-07-14 1997-02-07 Fuji Kiko Denshi Kk プリント配線板における回路形成方法
JP2000212756A (ja) * 1999-01-20 2000-08-02 Agency Of Ind Science & Technol 無電解めっきの前処理方法
JP2000212755A (ja) * 1999-01-20 2000-08-02 Agency Of Ind Science & Technol 無電解めっきの前処理方法
JP2000212793A (ja) * 1999-01-20 2000-08-02 Agency Of Ind Science & Technol 電解めっきの前処理方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4080513A (en) * 1975-11-03 1978-03-21 Metropolitan Circuits Incorporated Of California Molded circuit board substrate
JP2559717B2 (ja) * 1986-11-28 1996-12-04 呉羽化学工業株式会社 選択的化学メツキ法
JP2769833B2 (ja) * 1989-02-06 1998-06-25 富士写真フイルム株式会社 金属材料パターンの形成方法
US4981715A (en) * 1989-08-10 1991-01-01 Microelectronics And Computer Technology Corporation Method of patterning electroless plated metal on a polymer substrate
US4959119A (en) * 1989-11-29 1990-09-25 E. I. Du Pont De Nemours And Company Method for forming through holes in a polyimide substrate
JPH0480374A (ja) * 1990-07-23 1992-03-13 Nippondenso Co Ltd プリント配線板の製造方法
US5509557A (en) * 1994-01-24 1996-04-23 International Business Machines Corporation Depositing a conductive metal onto a substrate
JPH07240568A (ja) * 1994-02-28 1995-09-12 Mitsubishi Electric Corp 回路基板およびその製造方法
JP3206310B2 (ja) * 1994-07-01 2001-09-10 ダイキン工業株式会社 表面改質されたフッ素樹脂成形品
JP3311899B2 (ja) * 1995-01-20 2002-08-05 松下電器産業株式会社 回路基板及びその製造方法
JPH0964544A (ja) * 1995-08-24 1997-03-07 Dainippon Printing Co Ltd 多層プリント配線板およびその製造方法
JPH093653A (ja) * 1996-06-03 1997-01-07 Fuji Photo Film Co Ltd 導電材料の製造方法
JP3161407B2 (ja) * 1997-02-26 2001-04-25 株式会社村田製作所 無電解めっきのための活性化触媒液、および無電解めっき方法
JP3598317B2 (ja) * 1999-01-20 2004-12-08 独立行政法人産業技術総合研究所 無電解めっきの前処理方法
JP2001192847A (ja) * 2000-01-13 2001-07-17 Omron Corp 高分子成形材のメッキ形成方法
JP2001200370A (ja) * 2000-01-19 2001-07-24 Omron Corp 高分子成形材のメッキ形成方法
US6518514B2 (en) * 2000-08-21 2003-02-11 Matsushita Electric Industrial Co., Ltd. Circuit board and production of the same
US6730857B2 (en) * 2001-03-13 2004-05-04 International Business Machines Corporation Structure having laser ablated features and method of fabricating
US6797345B2 (en) * 2001-04-27 2004-09-28 Sumitomo Chemical Company, Limited Aromatic liquid-crystalline polyester metal laminate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4615907A (en) * 1984-11-23 1986-10-07 Phillips Petroleum Company Plating poly(arylene sulfide) surfaces
EP0260514A1 (en) 1986-09-15 1988-03-23 General Electric Company Photoselective metal deposition process
JPS63186877A (ja) * 1987-01-28 1988-08-02 Nitto Electric Ind Co Ltd レ−ザ−メツキ法
JPH04183873A (ja) * 1990-11-19 1992-06-30 Agency Of Ind Science & Technol 紫外レーザーを用いた高分子成形品への無電解めっき方法
JPH08264957A (ja) * 1995-03-23 1996-10-11 Nec Corp 多層印刷配線板の製造方法
JPH0936522A (ja) * 1995-07-14 1997-02-07 Fuji Kiko Denshi Kk プリント配線板における回路形成方法
JP2000212756A (ja) * 1999-01-20 2000-08-02 Agency Of Ind Science & Technol 無電解めっきの前処理方法
JP2000212755A (ja) * 1999-01-20 2000-08-02 Agency Of Ind Science & Technol 無電解めっきの前処理方法
JP2000212793A (ja) * 1999-01-20 2000-08-02 Agency Of Ind Science & Technol 電解めっきの前処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1371754A4 *

Also Published As

Publication number Publication date
EP1371754A4 (en) 2007-07-11
EP1371754A1 (en) 2003-12-17
EP1371754B1 (en) 2008-12-17
US7288287B2 (en) 2007-10-30
DE60137081D1 (de) 2009-01-29
US20040112634A1 (en) 2004-06-17
CN1492944A (zh) 2004-04-28
CN1217030C (zh) 2005-08-31
JP2001226777A (ja) 2001-08-21
JP3399434B2 (ja) 2003-04-21

Similar Documents

Publication Publication Date Title
WO2002070780A1 (fr) Procede servant a plaquer un materiau de moulage polymere, element constituant un circuit et procede servant a fabriquer cet element
KR101038351B1 (ko) 회로 기판 및 그 제조 방법
JP3881338B2 (ja) コンダクタートラック構造物およびその製造方法
TWI362239B (en) Method of producing circuit board by additive method, and circuit board and multilayer circuit board obtained by the method
JP5216078B2 (ja) 多層プリント配線板、及び、多層プリント配線板の製造方法
WO2010022641A1 (zh) 塑料组合物及其表面选择性金属化方法
KR19990088121A (ko) 제조비용이저렴하고충분한접착강도가수득될수있는수지구조물및이의제조방법
JPH07240568A (ja) 回路基板およびその製造方法
KR20100024449A (ko) 배선 기판의 제조 방법
JP3486864B2 (ja) 基板上の銅配線形成方法及び銅配線の形成された基板
JP2007180089A (ja) 回路導体パターンを有する樹脂成形部品の製造方法
JP2009509048A (ja) 生成物を部分的に金属化する方法
JP2012160767A (ja) 高密度相互接続(hdi)基材材料上の誘電コーティングを貫く固体ブラインドビアを形成する方法
US11406024B2 (en) Multi-layer circuit board with traces thicker than a circuit board
CN104661441B (zh) 一种加成法制作线路板的激光活化技术方法
AU596116B2 (en) Process for the manufacture of substrates to interconnect electronic components and articles made by said process
KR100861616B1 (ko) 인쇄회로기판 및 그 제조방법
JP2000073170A (ja) 金属化されたサブストレ―ト材料の製造方法
JP4826020B2 (ja) 多層配線基板の製造方法
JP4240243B2 (ja) ビルドアップ多層配線板の製造方法
JP5083005B2 (ja) 表層に貴金属を固定させた樹脂基板、その製造方法、回路基板、及びその製造方法
JP2001053444A (ja) 導体充填ビアの形成方法と多層配線板の製造方法
Vieten et al. Integration of Mechatronic Functions on Additively Manufactured Components via Laser‐Assisted Selective Metal Deposition
JPH0783182B2 (ja) 高密度多層プリント配線板の製造方法
JP2007077439A (ja) ポリイミド樹脂材の表面金属化方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT NL

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001908264

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 018229689

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10467338

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001908264

Country of ref document: EP