WO2002056357A1 - Dispositif de traitement a feuilles - Google Patents

Dispositif de traitement a feuilles Download PDF

Info

Publication number
WO2002056357A1
WO2002056357A1 PCT/JP2002/000041 JP0200041W WO02056357A1 WO 2002056357 A1 WO2002056357 A1 WO 2002056357A1 JP 0200041 W JP0200041 W JP 0200041W WO 02056357 A1 WO02056357 A1 WO 02056357A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust pipe
processing apparatus
mounting table
pipe
line
Prior art date
Application number
PCT/JP2002/000041
Other languages
English (en)
French (fr)
Inventor
Hachishiro Iizuka
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to KR1020037009120A priority Critical patent/KR100837885B1/ko
Priority to EP02729523A priority patent/EP1357583B1/en
Priority to US10/250,907 priority patent/US7232502B2/en
Priority to DE60231375T priority patent/DE60231375D1/de
Publication of WO2002056357A1 publication Critical patent/WO2002056357A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma

Definitions

  • the present invention relates to a single-wafer processing apparatus capable of performing processing such as etching and film formation on semiconductor wafers and the like one by one. Background technology
  • a processing gas required in accordance with the type of the process for example, a film forming gas in the case of a film forming process, an ozone gas in the case of an anneal reforming process, etching (plasma).
  • a film forming gas in the case of a film forming process
  • an ozone gas in the case of an anneal reforming process
  • etching plasma
  • an etching gas or the like is introduced into the processing container.
  • the atmosphere in the processing container is evacuated so as to maintain a preferable constant pressure corresponding to the type of the processing.
  • the gas to be evacuated is required to flow evenly over the surface of the semiconductor wafer in order to maintain high in-plane uniformity of processing.
  • FIG. 7 is a schematic configuration diagram showing a conventional general single-wafer processing apparatus
  • FIG. 8 is a plan view showing a mounting table in FIG.
  • the processing apparatus using plasma has a processing container 2 made of, for example, a cylindrical aluminum. Inside the processing container 2, to the extended hollow wide tip of the support arm member 4 was from the container sidewall, on the mounting table 6 c of the mounting table 6 is installed, the semiconductor wafer W is placed It is supposed to be.
  • a large number of gas holes 7 are provided along the circumferential direction for introducing a plasma gas including a processing gas such as Ar gas or H 2 gas into the processing container 2. Have been.
  • the ceiling of the processing container 2 is open. On this ceiling, a column-shaped ceiling dome 8 with a ceiling is provided in an airtight manner.
  • the ceiling dome 8 is made of, for example, quartz or the like.
  • An inductive coupling coil 10 is wound around the outer wall of the ceiling dome 8.
  • a high frequency of, for example, 450 kHz is applied to the inductive coupling coil 10 from a high frequency power supply 12 for inductive coupling plasma.
  • the mounting table 6 is made of, for example, a ceramic such as aluminum nitride (A1N).
  • a resistance heating heater 14 and a bias electrode 16 are embedded in the mounting table 6.
  • the resistance heating heater 14 is connected to a heater power supply, and the bias electrode 16 is connected to a high frequency power supply 16 for bias generating a high frequency of 13.56 MHz, for example.
  • a large-diameter exhaust pipe 18 is connected to the center of the bottom of the processing vessel 2.
  • the exhaust pipe 18 extends downward and linearly by a predetermined length.
  • a flow control valve 20 and a vacuum pump 22 are sequentially provided in the exhaust pipe 18 in order to evacuate the processing vessel 2.
  • the vacuum pump 22 is, for example, a turbo molecular pump.
  • the flange of the outlet of the vacuum pump 22 is connected to the exhaust duct 24. This allows the exhaust gas to flow to a final treatment system (not shown). Summary of the invention
  • the processing gas (plasma gas) is supplied to the processing space in the processing container 2 from the many gas holes 7 provided in the upper side wall of the processing container 2 substantially uniformly. Then, the processing gas is turned into plasma by inductive coupling. The plasma gas flows down the periphery of the mounting table 6 and passes through the exhaust pipe 18 (evacuated) while etching the wafer surface.
  • the support arm member 4 reduces the flow of the atmosphere in the processing container 2 to be evacuated. It was disturbed, and this had been deflected. That is, the flow of the exhaust gas (atmosphere in the container) is not uniform on the wafer surface. As a result, the process process, here the etching process, is not uniform in the wafer surface, and the in-plane uniformity is degraded.
  • the present invention has been devised in view of the above problems and effectively solving them.
  • the object of the present invention is to improve the in-plane uniformity of various processes on the surface of a processing object mounted on a mounting table by evacuating the atmosphere of the processing space from the periphery of the mounting table substantially uniformly.
  • the object of the present invention is to provide a single-wafer processing apparatus capable of performing the above-described processing.
  • the present invention provides a processing container capable of being evacuated, a mounting table installed in the processing container, on which an object to be processed can be mounted, and connected to the bottom of the processing container, and extending substantially linearly downward.
  • a single-wafer processing apparatus comprising: According to the present invention, it is possible to evacuate and evacuate the processing container from the peripheral portion of the mounting table substantially uniformly without deviating the atmosphere in the processing container. Therefore, the gas flow on the surface of the object to be processed can be made uniform within the surface. As a result, in-plane uniformity of the process can be improved.
  • the mounting table support column is supported by the exhaust pipe by a mounting plate extending in a direction of the exhaust pipe.
  • the mounting plate may be formed of a thin plate member that does not impede the flow of exhaust gas.
  • a plurality of the mounting plates are radially arranged from the mounting table support column.
  • the mounting table support column may include a hollow pipe member extending in a direction of the exhaust pipe.
  • a power supply line may be provided inside the hollow pipe member.
  • the lower part of the hollow pipe member may be connected to a line outlet pipe extending through the exhaust pipe side wall.
  • the mounting table support column is supported by the exhaust tube by the line extraction tube.
  • the mounting table support column is also supported by the exhaust pipe by a mounting plate extending in the direction of the exhaust pipe.
  • the exhaust pipe has a circular cross section, and the line take-out pipe extends in a diameter direction of the exhaust pipe from a lower portion of the hollow pipe member and faces in a diameter direction of the exhaust pipe. It extends through the side walls of two places.
  • the exhaust pipe has a circular cross section, and the line outlet pipe extends in a radial direction of the exhaust pipe from a lower portion of the hollow pipe member, and penetrates a side wall of the exhaust pipe at one point. And extending.
  • the line extraction pipe extends from a lower portion of the hollow pipe member so as to penetrate two side walls of the exhaust pipe, and the power supply line includes a first line penetrating one of the side walls. And a second line penetrating the other side wall.
  • the first line is a power supply line through which a high-frequency current flows
  • the second line is a power supply line through which no high-frequency current flows.
  • a refrigerant circulation path may be formed in parallel with the first or second line.
  • a flow path adjusting valve for controlling a flow path area of the exhaust pipe is provided on an upstream side of the vacuum pump.
  • a high frequency coil connected to a high frequency power supply for inductively coupled plasma is provided on a ceiling of the processing container, and the mounting table has a bias electrode connected to a high frequency power supply for biasing. Is provided. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a configuration diagram showing an embodiment of a single-wafer processing apparatus of the present invention.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 3 is a cross-sectional view taken along line BB in FIG.
  • FIG. 4 is a partial sectional view showing a part of another embodiment of the processing apparatus of the present invention.
  • FIG. 5 is a cross-sectional view taken along line CC in FIG.
  • FIG. 6 is a configuration diagram showing another embodiment of the processing apparatus of the present invention.
  • FIG. 7 is a schematic configuration diagram showing a conventional general single-wafer processing apparatus.
  • FIG. 8 is a plan view showing a portion of the mounting table in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a configuration diagram showing an embodiment of a single-wafer processing apparatus of the present invention
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. 1
  • FIG. 3 is a cross-sectional view taken along line BB in FIG.
  • the processing apparatus is configured as a processing apparatus for etching a natural oxide film using inductively coupled plasma (ICP: Indactiv e11 yCoupledP1as sma).
  • ICP inductively coupled plasma
  • the processing apparatus 26 has, for example, a cylindrical aluminum processing container 28 having an open ceiling. At the center of the processing container 28, a disk-shaped mounting table 30 on which a semiconductor wafer W to be processed is mounted is provided on the upper surface thereof.
  • the mounting table 30 is made of, for example, a ceramic such as aluminum nitride (A 1 N).
  • a resistance heating heater 32 as a heating means and a bias electrode 34 for applying a high-frequency voltage are embedded in the mounting table 30 as necessary.
  • a plurality of, for example, three, pin holes 36 are formed in the mounting table 30 so as to penetrate the mounting table 30 in the vertical direction.
  • a push-up pin 40 the lower end of which is commonly connected by a connection ring 38, is accommodated in each pin hole 36 in a loosely fitted state.
  • the push-up pins 40 are, for example, ceramics.
  • the connection ring 38 is supported so as to be able to be pushed up by a vertically movable lifting / lowering opening 42 penetrating the bottom of the processing container 28.
  • the wafer W can be lifted or lowered by moving the connection ring 38, that is, the push-up pin 40 up and down.
  • a bellows 44 made of a metal bellows is provided in a penetrating portion of the lifting port 42 at the bottom of the container. This allows the up-and-down opening door 42 to move up and down while maintaining the airtightness of the processing container 28.
  • a shadow ring is provided above the peripheral edge of the mounting table 30 to protect the peripheral edge of the wafer and the mounting table from etching during etching. It can be provided so as to be movable downward.
  • a ceiling dome 46 having a short cylindrical ceiling is hermetically provided via a sealing member 48 such as an O-ring.
  • the ceiling dome 46 is made of, for example, quartz or the like.
  • a high frequency coil 50 for inductively coupled plasma is wound about ten and several turns.
  • the high-frequency coil 50 is connected to a high-frequency power supply 54 for inductively coupled plasma of, for example, 450 kHz through a matching circuit 52.
  • a gate valve 56 that is opened and closed when loading / unloading the wafer W is provided on the upper side wall of the processing container 28. Further, a large number, for example, about 20 gas injection holes 58 are formed as gas supply means along the circumferential direction of the upper side wall of the processing container 28. Through these gas injection holes 58, a processing gas such as a plasma gas whose flow rate is controlled is supplied into the processing container 28.
  • a large diameter of approximately 210 mm is set, while the inner diameter of the processing container 28 is approximately 362 mm.
  • B 62 is formed.
  • An exhaust pipe 64 also having a large diameter is air-tightly connected to the opening 62 through a sealing member 66 such as an O-ring so as to extend substantially linearly downward (vertically). Have been. As a result, the exhaust conductance is as large as possible.
  • the exhaust pipe 64 includes an upper pipe 64 A connected to the bottom portion 60, a lower small pipe 66 C below, and a lower pipe 6 A from the lower end of the upper pipe 64 A. And a pipe diameter adjusting pipe 64 B whose diameter is gradually reduced in order to adjust the pipe diameter toward the upper end of 4C. Seal members 65 and 68 such as O-rings are interposed at the joints of the pipes 64 A to 64 C to maintain airtightness.
  • a vacuum pump 98 is connected to the lower end of the lower pipe 64C.
  • An exhaust pipe 72 is connected to an exhaust flange 99 provided on the side of the vacuum pump 98 via a sealing member 70 such as an O-ring.
  • a mounting table support column 74 for supporting the mounting table 30 is coaxially provided substantially at the substantially central portion of the upper pipe 64 A of the exhaust pipe 64.
  • the mounting support column 74 is made of, for example, aluminum.
  • the mounting table support column 7 4 is an upper hollow pipe member 74A, and a lower hollow pipe member 74B which is hermetically joined to a lower end of the upper hollow pipe member 74A via a sealing member 76 such as a 0 ring.
  • a sealing member 76 such as a 0 ring.
  • the lower hollow pipe member 74B and the upper pipe 64A form a kind of double pipe structure. Exhaust gas flows down a donut-shaped space 77 between these two members (see FIG. 2).
  • a plurality of, in the illustrated example, four, radial mounting plates 78 are provided at substantially equal intervals in the circumferential direction.
  • the mounting plate 78 supports the load of the mounting table 30 and the mounting table support column 74. In this case, the space 77 is divided into four partial spaces by the mounting plate 78.
  • These mounting plates 78 are provided along the flow direction of the exhaust gas, that is, along the vertical direction. Thereby, exhaust resistance can be suppressed as much as possible.
  • the number of the mounting plates 78 is not limited to four. In order to further suppress the exhaust resistance, the number of the mounting plates 78 may be reduced to two or three.
  • a hollow line that penetrates the upper pipe 64 A in the transverse direction and traverses the space 77 so as to be orthogonal to the gas flow is taken out.
  • the tubes 80 are joined so as to communicate with each other.
  • the line take-out tube 80 also receives the load of the mounting table 30 and the mounting table support column 74.
  • the lower end of the mounting plate 78 is joined to the upper end of the outer peripheral wall of the line outlet pipe 80. If the strength of the line outlet pipe 80 is set high enough to receive the above-described load, the mounting of the mounting plate 78 can be omitted.
  • a seal member 82 such as an O-ring is interposed in a penetrating portion of the upper pipe 64 A formed by the line outlet pipe 80.
  • the inside of the line outlet pipe 80 and the inside of the mounting table support column 74 are at atmospheric pressure in communication with outside air.
  • a power supply line is connected to the heating line 84 connected to the resistance heating heater 32 and the bias electrode 34.
  • the high frequency line 86 is passed through.
  • the other end of the high-frequency line 84 is connected to a power supply (not shown), and the other end of the high-frequency line 86 is connected via a matching circuit 88 to a bias of, for example, 13.56 MHz. Is connected to a high frequency power supply 90 for bias, which outputs a high frequency.
  • a cooling jacket 9 is provided at the joint between the upper hollow pipe member 74 A and the lower hollow pipe member 74 B of the mounting table support column 4 in order to prevent thermal damage to the sealing member 76 interposed here. Two are provided.
  • a coolant circulation path 94 for flowing the coolant through the cooling jacket 92 is also passed through the mounting table support column 74 and the line extraction pipe 80.
  • the lower pipe 64 C of the exhaust pipe 64 is provided with a flow path adjusting valve 96 composed of a three-position gate valve.
  • the flow path adjusting valve 96 can adjust the flow area in three stages from the fully open state to the fully closed state of the exhaust pipe 64. It should be noted that, as the flow path adjusting valve 96, a throttle valve or the like capable of arbitrarily adjusting the flow path area may be used instead of the gate valve.
  • a vacuum pump 98 composed of, for example, a turbo-molecular pump or the like is directly connected to the lower pipe 64C directly below the flow path regulating valve 96.
  • the suction port 98 A of the vacuum pump 98 is disposed so as to be orthogonal to the flow of the exhaust gas. This minimizes exhaust resistance as much as possible.
  • the length H 1 of the upper hollow pipe member 74 A is set to, for example, about 159 mm so as to obtain a sufficient temperature gradient so that the sealing member 76 under cooling does not deteriorate due to heat. I have.
  • each member of the upper pipe 64A, the pipe diameter adjusting pipe 64B, the mounting plate 78, the line take-out pipe 80, and the lower hollow pipe member 74B is separately provided.
  • These members may be integrally formed by, for example, cutting out from an aluminum block body. According to this, it is possible to improve the reliability of the seal performance and the mechanical strength.
  • an unprocessed semiconductor wafer W held by a transfer arm (not shown) is carried into the processing container 28 via the gate valve 56 that has been opened.
  • This wafer W Is passed to the push-up pin 40.
  • the wafer W is mounted and held on the mounting table 30 by lowering the push-up pins 40.
  • the mounting table 30 is preheated to a predetermined temperature in advance. Then, after the wafer W is mounted on the mounting table 30, the power supplied to the resistance heating heater 32 is increased to raise the wafer W to a predetermined process temperature, for example, 600 ° C. Raise the temperature and maintain the process temperature.
  • a processing gas whose flow rate is controlled for example, Ar gas or H 2 gas as a plasma gas
  • a processing gas whose flow rate is controlled for example, Ar gas or H 2 gas as a plasma gas
  • the inside of the processing container 28 is evacuated by the vacuum pump 98, and the inside of the processing container 28 is set to a predetermined pressure, for example, 5 mT orr (0.7 Pa) to 5 T orr (6 It is maintained at about 6 5 Pa).
  • high-frequency power for bias of 13.56 MHz is applied to the bias electrode 34 embedded in the mounting table 30, while the high-frequency coil 5 wound around the ceiling dome 46 is applied.
  • High frequency power of 45 OKHz is applied to 0.
  • inductive coupling is generated, and plasma is excited in the processing space S. That is, active species of argon gas or hydrogen are generated, and a natural oxide film or the like on the wafer surface on the mounting table 30 is etched.
  • processing is performed from each gas injection hole 58.
  • the processing gas introduced into the container 28 is turned into plasma, becomes active species, is evacuated, flows down the outside of the mounting table 30, and flows in the exhaust pipe 64 in the vertical direction.
  • the mounting table 30 is supported by a mounting table support column 74 that extends in the exhaust pipe 64 in the coaxial state in the vertical direction.
  • mounting plate 78 for fixing the mounting table support column 74 to the exhaust pipe 64 is very thin and is arranged along the flow direction of the exhaust gas, there is almost no exhaust resistance. . That is, high exhaust conductance can be maintained.
  • Mounting plate 7 8 Is made of aluminum, for example.
  • the vacuum pump 98 is directly attached to the lower pipe 64 C of the exhaust pipe 64 extending linearly in a substantially vertical direction from the bottom of the processing vessel 28, the processing vessel The atmosphere in 28 can be evacuated smoothly. Therefore, it is possible to maintain a higher exhaust conductance.
  • the mounting position of the line take-out pipe 80 traversing the exhaust pipe 64 is located considerably below the bottom 60 of the processing vessel 28. Therefore, there is almost no possibility that the line outlet pipe 80 disturbs the flow of the atmosphere in the processing container 28, and furthermore, there is no such a large exhaust resistance.
  • the length of the mounting table support column 74 that supports the mounting table 30 is set to be sufficiently long, and the temperature gradient of the mounting table support column 74 does not adversely affect the temperature distribution of the mounting table 30. It's getting small enough. Therefore, there is no adverse effect on the wafer temperature distribution.
  • the line extraction pipe 80 for extracting the power supply lines such as the heat line 84 and the high-frequency line 86 to the outside crosses the cross-sectional diameter direction of the upper pipe 64 A as the flow path.
  • the present invention is not limited to this, and the line extraction pipe 80 may be provided only at the radial portion. .
  • FIG. 4 is a partial cross-sectional view showing a part of the embodiment of the device of the present invention
  • FIG. 5 is a cross-sectional view taken along line C-C in FIG.
  • the line take-out pipe 8 OA is connected to the lower end of the lower hollow pipe member 74 A of the mounting table support column 74 and the exhaust pipe It is provided in the radial direction so as to penetrate one side wall of the road 64.
  • the mounting table support column 74 is in a state of being cantilevered.
  • the line outlet tube in the radial direction opposite to the line outlet tube 8 OA is used. Since the installation is omitted, the exhaust resistance is reduced, and the exhaust gas can be discharged more smoothly.
  • a high-frequency power system (high-frequency line 86) and another power system (hi-ray line 84) can be formed separately.
  • the refrigerant circuit 94 can be formed in any electric power system.
  • an inductively coupled plasma type etching apparatus has been described as an example.
  • the present invention is not limited to this, and the present invention is applicable to any type of etching apparatus.
  • the present invention is also applicable to a parallel plate type processing apparatus and the like.
  • the present invention is not limited to an etching processing apparatus, but can be applied to a CVD film forming apparatus, an oxide diffusion apparatus, an assuring apparatus, a reforming apparatus, and the like.
  • the heating means is not limited to the resistance heating heater, but may be a heating lamp.
  • FIG. 6 is a schematic configuration diagram of a processing apparatus for thermal CVD film formation as another embodiment of the apparatus of the present invention.
  • the same parts as those in the configuration shown in FIG. 1 are denoted by the same reference numerals and description thereof is omitted. .
  • a shower head 102 having a large number of gas injection holes 100 is provided on the ceiling of the processing container 28, instead of the ceiling dome 46 and the high-frequency coil 50.
  • thermal CVD processing is performed. Therefore, in the present embodiment, the installation of the gas injection holes 58, the bias electrodes 34, the high-frequency electrodes 90 for bias, and the like shown in FIG. 1 are omitted.
  • the flow of gas on the wafer surface can be made uniform without causing deviation. This makes it possible to make the processing uniform, that is, to improve the in-plane uniformity of the film thickness.
  • a semiconductor wafer has been described as an example of an object to be processed, but the present invention is not limited to this, and it is needless to say that the present invention can be applied to an LCD substrate, a glass substrate, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Plasma Technology (AREA)

Description

明 細 書 枚葉式の処理装置 技 術 分 野
本発明は、 半導体ウェハ等に対して、 1枚ずつ、 エッチングや成膜ゃァニール 等の処理を施すことができる枚葉式の処理装置に関する。 背 景 技 術
一般に、 所望の半導体集積回路を製造するには、 半導体ウェハ等の基板に、 成 膜処理、 エッチング処理、 酸化拡散処理、 ァニール改質処理等の各種の処理が繰 り返し行なわれる。 上記した各種の処理が行なわれる場合には、 その処理の種類 に対応して必要な処理ガス、 例えば成膜処理の場合には成膜ガス、 ァニール改質 処理の場合にはオゾンガス、 エッチング (プラズマエッチングも含む) 処理の場 合にはエッチングガス等、 が処理容器内へ導入される。
この場合、 処理容器内の雰囲気は、 その処理の種類に対応した好ましい一定圧 力を維持するように、 真空引きされている。 真空引きされるガスは、 処理の面内 均一性を高く維持すべく、 半導体ウェハの表面に対して均等に流れることが要請 れ 。
ここで、 半導体ウェハの表面に付着した自然酸化膜 ( S i O 2 ) 等をプラズマ を用いて除去するための従来の一般的な処理装置 (例えば特表 2 0 0 0 - 5 1 1 7 0 0号公報等) について説明する。 図 7は、 従来の一般的な枚葉式の処理装置 を示す概略構成図であり、 図 8は、 図 7中の載置台の部分を示す平面図である。 図 7に示すように、 プラズマを用いる処理装置は、 例えば円筒形状のアルミ二 ゥム製の処理容器 2を有している。 この処理容器 2の内部では、 容器側壁より延 在させた中空状の幅広の支持アーム部材 4の先端に、 載置台 6が設置されている c この載置台 6上に、 半導体ウェハ Wが載置されるようになっている。 処理容器 2 の上部側壁には、 処理容器 2の中に処理ガスとして例えば A rガスや H 2ガス等 を含むプラズマ用のガスを導入するガス孔 7が、 その周方向に沿って多数設けら れている。
また、 処理容器 2の天井部は開放されている。 この天井部に、 有天井の円柱状 の天井ドーム 8が気密に設けられる。 天井ドーム 8は、 例えば石英等よりなる。 天井ドーム 8の外側壁には、 誘導結合コイル 1 0が巻回されている。誘導結合コ ィル 1 0には、 誘導結合プラズマ用の高周波電源 1 2から例えば 4 5 0 K H zの 高周波が印加されるようになっている。
載置台 6は、 例えば窒化アルミ (A 1 N) 等のセラミックよりなる。 載置台 6 の内部には、 抵抗加熱ヒー夕 1 4及びバイアス電極 1 6が埋め込まれている。 抵 抗加熱ヒ一夕 1 4は、 ヒ一夕電源に接続され、 バイアス電極 1 6は、 例えば 1 3 . 5 6 MH zの高周波を発生するバイァス用の高周波電源 1 6に接続されている。 処理容器 2の底部の中央部には、 大口径の排気管路 1 8が接続されている。 排 気管路 1 8は、 下方に直線的に所定の長さだけ延びている。 排気管路 1 8には、 処理容器 2内を真空引きするために、 流路調整弁 2 0及び真空ポンプ 2 2が順次 介設されている。 真空ポンプ 2 2は、 例えばターボ分子ポンプよりなる。 そして、 真空ポンプ 2 2の排出口のフランジが、 排気ダクト 2 4に接続されている。 これ により、 排気ガスが最終的な処理系 (図示せず) へ流れるようになつている。 発 明 の 要 旨
上記した従来装置の場合、 処理容器 2の上部側壁に設けられた多数のガス孔 7 から処理容器 2内の処理空間 に、 略均等に処理ガス (プラズマ用ガス) が供給 される。 そして、 この処理ガスは、 誘導結合によってプラズマ化される。 プラズ マ化されたガスは、 ウェハ表面をエッチングしつつ、 載置台 6の周辺部を下方へ 流下して排気管路 1 8内を通過していく (真空引きされて行く) 。
しかしながら、 この装置の場合、 載置台 6を支持するための幅広の支持アーム 部材 4が容器側壁に取り付けられているため、 当該支持アーム部材 4が真空引き される処理容器 2内の雰囲気の流れを阻害し、 これを偏流させてしまっていた。 すなわち、 排気ガス (容器内雰囲気) の流れがウェハ表面上において不均一であ る。 このため、 プロセス処理、 ここではエッチング処理、 がウェハ面内において 不均一になっていて、 面内均一性が劣化している。 本発明は、 以上のような問題点に着目し、 これを有効に解決すべく創案された ものである。 本発明の目的は、 処理空間の雰囲気を載置台の周辺部から略均等に 真空引きして、 載置台上に載置された被処理体の表面における各種プロセスの面 内均一性を向上させることが可能な枚葉式の処理装置を提供することにある。 本発明は、 真空引き可能な処理容器と、 前記処理容器内に設置され、 被処理体 が載置され得る載置台と、 前記処理容器の底部に接続され、 実質的に下方に直線 状に延びる排気管と、 前記排気管に直接的に接続された真空ポンプと、 前記排気 管の略中心部を当該排気管の方向に延びるように設けられた、 前記載置台を支持 する載置台支持支柱と、 を備えたことを特徴とする枚葉式の処理装置である。 本発明によれば、 処理容器内の雰囲気を偏流させることなく載置台の周辺部か ら略均等に真空引きして排気することができる。 従って、 被処理体の表面上にお けるガスの流れを面内において均一化させることができる。 この結果、 プロセス 処理の面内均一性を向上させることが可能となる。
好ましくは、 前記載置台支持支柱は、 前記排気管の方向に延びる取付板によつ て、 前記排気管に支持されている。
前記取付板は、 排気の流れを阻害しない程度の薄い板部材によって形成され得 る。
好ましくは、 前記取付板は、 前記載置台支持支柱から放射状に複数が配置され る o
また、 前記載置台支持支柱は、 前記排気管の方向に延びる中空パイプ部材を有 し得る。
前記中空パイプ部材の内部には、 電力供給ラインが配設され得る。
前記中空パイプ部材の下方部は、 前記排気管側壁を貫通して延びるライン取り 出し管に接続され得る。
好ましくは、 前記載置台支持支柱は、 前記ライン取り出し管によって、 前記排 気管に支持される。 この場合、 より好ましくは、 前記載置台支持支柱は、 前記排 気管の方向に延びる取付板によっても、 前記排気管に支持される。 更に好ましく は、 前記排気管の少なくとも一部と、 前記中空パイプ部材の少なくとも一部と、 前記取付板と、 前記ライン取り出し管とは、 一体に構成される。 また、 例えば、 前記排気管は、 円形断面を有しており、 前記ライン取り出し管 は、 前記中空パイプ部材の下方部から前記排気管の直径方向に延びて、 前記排気 管の直径方向に対向する 2力所の側壁を貫通して延びている。
あるいは、 前記排気管は、 円形断面を有しており、 前記ライン取り出し管は、 前記中空パイプ部材の下方部から前記排気管の半径方向に延びて、 前記排気管の 1力所の側壁を貫通して延びている。
あるいは、 前記ライン取り出し管は、 前記中空パイプ部材の下方部から前記排 気管の 2力所の側壁を貫通するように延びており、 前記電力供給ラインは、 一方 の側壁を貫通する第 1ラインと、 他方の側壁を貫通する第 2ラインと、 に分離し て設けられている。
この場合、 例えば、 前記第 1ラインは、 高周波電流が流れる電力供給ラインで あり、 前記第 2ラインは、 高周波電流が流れない電力供給ラインである。
好ましくは、 前記第 1または第 2ラインと平行して、 冷媒循環路が形成され得 る。
また、 好ましくは、 前記真空ポンプの上流側には、 前記排気管の流路面積を制 御するための流路調整弁が設けられている。
また、 好ましくは、 前記処理容器の天井部には、 誘導結合プラズマ用の高周波 電源に接続された高周波コイルが設けられ、 前記載置台には、 バイアス用の高周 波電源に接続されたバイアス電極が設けられている。 図面の簡単な説明
図 1は、 本発明の枚葉式の処理装置の一実施の形態を示す構成図である。 図 2は、 図 1中の A— A線矢視断面図である。
図 3は、 図 1中の B— B線矢視断面図である。
図 4は、 本発明の処理装置の他の実施の形態の一部を示す部分断面図である。 図 5は、 図 4中の C— C線矢視断面図である。
図 6は、 本発明の処理装置の他の実施の形態を示す構成図である。
図 7は、 従来の一般的な枚葉式の処理装置を示す概略構成図である。
図 8は、 図 7中の載置台の部分を示す平面図である。 発明を実施するための最良の形態
以下に、 本発明に係る枚葉式の処理装置の一実施の形態を、 添付図面に基づい て詳述する。
図 1は、 本発明の枚葉式の処理装置の一実施の形態を示す構成図であり、 図 2 は、 図 1中の A— A線矢視断面図であり、 図 3は、 図 1中の B— B線矢視断面図 である。
本実施の形態の処理装置は、 誘導結合プラズマ (I C P : I n d u c t i v e 1 1 y C o u p l e d P 1 a s m a ) を用いて自然酸化膜をエッチングする ための処理装置として構成されている。
図 1乃至図 3に示すように、 この処理装置 2 6は、 例えば天井部が開口された 円筒体状のアルミニウム製の処理容器 2 8を有している。 この処理容器 2 8の中 心部には、 その上面に被処理体である半導体ウェハ Wが載置される円板状の載置 台 3 0が設置されている。 載置台 3 0は、 例えば窒化アルミ (A 1 N) 等のセラ ミックよりなる。 載置台 3 0内には、 必要に応じて、 加熱手段としての抵抗加熱 ヒー夕 3 2や高周波電圧を印加するためのバイアス電極 3 4が予め埋め込まれて いる。
載置台 3 0には、 これを上下方向に貫通した複数、 例えば 3つ、 のピン孔 3 6 (図 1中では 2つのみ記す) が形成されている。 各ピン孔 3 6には、 下端が連結 リング 3 8により共通に連結された押し上げピン 4 0が遊嵌状態で収容されてい る。 押し上げピン 4 0は、 例えばセラミックスである。連結リング 3 8は、 処理 容器 2 8の底部を貫通する上下動可能の昇降口ッド 4 2により、 押し上げ可能に 支持されている。 連結リング 3 8すなわち押し上げピン 4 0を上下動することに より、 ウェハ Wを持ち上げたり、 或いは、 持ち下げたりすることが可能である。 また、 容器底部の昇降口ヅド 4 2の貫通部には、 金属製の蛇腹状のベローズ 4 4が設けられている。 これにより、 上記処理容器 2 8内の気密性が維持されつつ 昇降口ッド 4 2の上下動が許容されている。
尚、 図示されていないが、 載置台 3 0の周縁部の上方には、 エッチング時にゥ ェハ周縁部や載置台周縁部をェッチングから保護するためのシャドウリングが上 下動可能に設けられ得る。
また、 処理容器 2 8の天井開口部には、 短い円筒体の有天井の天井ドーム 4 6 が 0リング等のシ一ル部材 4 8を介して気密に設けられている。 天井ドーム 4 6 は、 例えば石英等よりなる。 天井ドーム 4 6の周囲には、 誘導結合プラズマ用の 高周波コイル 5 0が十数ターン程度卷回されている。 この高周波コイル 5 0は、 マッチング回路 5 2を介して、 例えば 4 5 0 K H zの誘導結合プラズマ用の高周 波電源 5 4に接続されている。
処理容器 2 8の上部側壁には、 ウェハ Wの搬入 ·搬出時に開閉されるゲートバ ルブ 5 6が設けられている。 また、 処理容器 2 8の上部側壁の周方向に沿って、 ガス供給手段としての多数、 例えば 2 0個程度、 のガス噴射孔 5 8が形成されて いる。 これらのガス噴射孔 5 8を介して、 流量制御されたプラズマガス等の処理 ガスが処理容器 2 8内へ供給されるようになっている。
そして、 処理容器 2 8の底部 6 0の略中央部には、 処理容器 2 8の内径が略 3 6 2 mm程度であるのに対して、 直径が略 2 1 0 mm程度の大口径の閧ロ 6 2が 形成されている。 そして、 この開口 6 2に、 同じく大口径の排気管路 6 4が、 下 方 (鉛直方向) へ実質的に直線的に延びるように、 0リング等のシール部材 6 6 を介して気密に接続されている。 これにより、 排気コンダクタンスが可能な限り 大きくなっている。
より具体的には、 排気管路 6 4は、 上記底部 6 0に接続される上部管 6 4 Aと、 下方の小径の下部管 6 6 Cと、 上部管 6 4 Aの下端から下部管 6 4 Cの上端に向 けて管径を調整するために直径が徐々に縮小された管径調整管 6 4 Bと、 により 主に構成されている。 各管 6 4 A乃至 6 4 Cの接合部には、 それそれ、 0リング 等のシール部材 6 5、 6 8が介設されて気密性を保持している。 そして、 下部管 6 4 Cの下端には、 真空ポンプ 9 8が接続されている。 この真空ポンプ 9 8の側 部に設けられた排気フランジ 9 9に、 0リング等のシール部材 7 0を介して排気 管 7 2が接続されている。
そして、 排気管路 6 4の上部管 6 4 A内の実質的な略中央部には、 上記載置台 3 0を支持するための載置台支持支柱 7 4が、 同軸状に設けられている。 載置台 支持支柱 7 4は、 例えばアルミニウム製である。 具体的には、 載置台支持支柱 7 4は、 上部中空パイプ部材 7 4 Aと、 当該上部中空パイプ部材 7 4 Aの下端部に 0リング等のシール部材 7 6を介して気密に接合された下部中空パイプ部材 7 4 Bと、 からなる。 上部中空パイプ部材 7 4 Aの上端が、 上記載置台 3 0の下面と 気密に接合され、 当該載置台 3 0を支持するようになっている。
下部中空パイプ部材 7 4 Bと上部管 6 4 Aとは、 一種の 2重管構造を形成して いる。 そして、 これら両部材間のドーナツ状の空間 7 7 (図 2参照) を排気ガス が流下するようになっている。 そして、 下部中空パイプ部材 7 4 Bの外周壁と上 部管 6 4 Aの内周壁との間を接続するために、 複数の、 図示例では 4つの、 放射 状取付板 7 8 (図 2参照) が周方向略等間隔に設けられている。 当該取付板 7 8 が、 載置台 3 0及び載置台支持支柱 7 4の荷重を支えるようになつている。 尚、 この場合、 空間 7 7は、 上記取付板 7 8により 4つの部分空間に分割された状態 となっている。
また、 これらの取付板 7 8は、 排気ガスの流れ方向すなわち鉛直方向に沿って 設けられている。 これにより、 排気抵抗ができるだけ抑制され得る。 尚、 取付板 7 8の数は 4つに限定されない。 排気抵抗を更に抑制するために、 取付板 7 8の 数を 2つ或いは 3つに減少させてもよい。
載置台支持支柱 7 4の下部中空パイプ部材 7 4 Bの下端には、 上記上部管 6 4 Aを横方向に貫通すると共にガス流れに直交するように前記空間 7 7を横断する 中空のライン取り出し管 8 0が、 互いに連通するように接合されている。 このラ イン取り出し管 8 0も、 上記載置台 3 0及び載置台支持支柱 7 4の荷重を受ける ようになつている。 そして、 上記取付板 7 8の下端が、 上記ライン取り出し管 8 0の外周壁の上端部分に接合されている。 尚、 ライン取り出し管 8 0の強度が上 記荷重を受け得る程に十分高く設定されていれば、 上記取付板 7 8の取り付けを 省略することも可能である。
ライン取り出し管 8 0による上部管 6 4 Aの貫通部には、 0リング等のシール 部材 8 2が介在されている。 これにより、 排気管路 6 4内の気密性が保持されて いる。 一方、 ライン取り出し管 8 0内及び載置台支持支柱 7 4内は、 外気と連通 して大気圧となっている。 ライン取り出し管 8 0内には、 電力供給ラインとして、 抵抗加熱ヒー夕 3 2に接続されるヒ一夕線 8 4やバイアス電極 3 4に接続される 高周波線 8 6が揷通されている。 また、 ヒー夕線 8 4の他端はヒ一夕電源 (図示 せず) に接続され、 高周波線 8 6の他端はマッチング回路 8 8を介して例えば 1 3 . 5 6 M H zのバイアス用の高周波を出力するバイアス用の高周波電源 9 0に 接続されている。
また、 載置台支持支柱 Ί 4の上部中空パイプ部材 7 4 Aと下部中空パイプ部材 7 4 Bとの接合部には、 ここに介在するシール部材 7 6の熱損傷を防止するため、 冷却ジャケット 9 2が設けられている。 この冷却ジャケット 9 2に冷媒を流すた めの冷媒循環路 9 4も、 載置台支持支柱 7 4内及びライン取り出し管 8 0内に揷 通されている。
排気管路 6 4の下部管 6 4 Cには、 3位置ゲートバルブよりなる流路調整弁 9 6が設けられている。 流路調整弁 9 6は、 排気管路 6 4の全開状態から全閉状態 まで 3段階に流路面積を調整できるようになつている。 尚、 流路調整弁 9 6とし ては、 上記ゲートバルブに代えて、 任意に流路面積を調整できるスロットルバル ブ等を用いてもよい。
下部管 6 4 Cには、 流路調整弁 9 6の真下において、 例えばターボ分子ポンプ 等よりなる真空ポンプ 9 8が直接的に接続されている。 この場合、 真空ポンプ 9 8の吸入口 9 8 Aは、 排気ガスの流れに対して直交するように配置されている。 これにより、 排気抵抗ができるだけ少なくされている。
ここで、 上部中空パイプ部材 7 4 Aの長さ H 1は、 冷却下のシール部材 7 6が 熱劣化しないような十分な温度勾配を得られるように、 例えば 1 5 9 mm程度に 設定されている。
尚、 上記実施の形態では、 上部管 6 4 A、 管径調整管 6 4 B、 取付板 7 8、 ラ イン取り出し管 8 0及び下部中空パイプ部材 7 4 Bの各部材は、 それそれ別体で 設けられているが、 これらの各部材は、 例えばアルミニウムのブロック体から切 り出し加工等することによって、 一体的に成形されてもよい。 これによれば、 シ ール性能の確実性及び機械強度を向上させることが可能となる。
次に、 以上のように構成された本実施の形態の動作について説明する。
まず、 図示しない搬送アームに保持された未処理の半導体ウェハ Wが、 開状態 となったゲートバルブ 5 6を介して処理容器 2 8内へ搬入される。 このウェハ W は、 押し上げピン 4 0に受け渡される。 その後、 押し上げピン 4 0を降下させる ことにより、 ウェハ Wが載置台 3 0上に載置保持される。
載置台 3 0は、 予め所定の温度に予備加熱される。 そして、 ウェハ Wが載置台 3 0に載置された後に、 抵抗加熱ヒー夕 3 2への供給電力を増加させて、 このゥ ェハ Wを所定のプロセス温度、 例えば 6 0 0 °C、 まで昇温すると共に当該プロセ ス温度を維持させる。
そして、 処理容器 2 8の上部側壁に設けられた各ガス噴射孔 5 8から、 その流 量を制御された処理ガス、 例えばブラズマガスとしての A rガスや H 2ガス等、 が処理容器 2 8内へ供給される。 これと平行して、 真空ポンプ 9 8により処理容 器 2 8内が真空引きされ、 処理容器 2 8内が所定の圧力、 例えば 5 m T o r r ( 0 . 7 P a ) 〜5 T o r r ( 6 6 5 P a ) 程度、 に維持される。 更にこれと同 時に、 載置台 3 0に埋め込まれたバイアス電極 3 4に 1 3 . 5 6 MH zのバイァ ス用の高周波電力が印加され、 一方、 天井ドーム 4 6に卷回した高周波コイル 5 0に 4 5 O K H zの高周波電力が印加される。 これにより、 誘導結合が発生され て処理空間 Sにプラズマが励起させられる。 すなわち、 アルゴンガスや水素の活 性種等が生じて、 載置台 3 0上のウェハ表面の自然酸化膜等がエッチングされる c 本実施の形態にあっては、 各ガス噴射孔 5 8から処理容器 2 8内へ導入された 処理ガスがプラズマ化され、 活性種となり、 真空引きされて載置台 3 0の外側部 を流下して排気管路 6 4内を鉛直方向に流れて行く。 ここで、 載置台 3 0は、 図 7に示す従来装置とは異なり、 排気管路 6 4内を同軸状態で鉛直方向に延びる載 置台支持支柱 7 4によって支持されている。 このため、 処理容器 2 8内には、 排 気ガスの流れを阻害する部材は実質的に存在せず、 従って、 この排気ガスは偏流 することなく載置台 3 0の周辺部から略均等に真空引きされ得る。 この結果、 ゥ ェハ面上でのガスの流れを均一化させることができ、 プラズマ密度を面内におい て均一化させて、 プラズマ処理の面内均一性を大幅に向上させることが可能とな ο
また、 載置台支持支柱 7 4を排気管路 6 4に固定する取付板 7 8は、 非常に薄 くて、 しかも排気ガスの流れ方向に沿って配列しているので、 ほとんど排気抵抗 にはならない。 すなわち、 高い排気コンダクタンスが維持され得る。 取付板 7 8 は、 例えばアルミニウム製である。
また、 同様に、 処理容器 2 8の底部から略鉛直方向に直線状に延びる排気管路 6 4の下部管 6 4 Cに、 直接的に真空ポンプ 9 8が取り付けられているので、 処 理容器 2 8内の雰囲気を円滑に真空引きできる。 従って、 更に高い排気コンダク 夕ンスを維持することが可能となっている。
排気管路 6 4内を横断するライン取り出し管 8 0の取り付け位置は、 上記処理 容器 2 8の底部 6 0よりもかなり下方に位置している。 従って、 ライン取り出し 管 8 0が処理容器 2 8内の雰囲気の流れを乱す恐れはほとんどなく、 しかも、 そ れ程大きな排気抵抗となることもない。
また、 載置台 3 0を支持する載置台支持支柱 7 4の長さは、 十分に長く設定さ れて、 載置台支持支柱 7 4の温度勾配は載置台 3 0の温度分布に悪影響を与えな いように十分に小さくなつている。 従って、 ウェハ温度分布に悪影響を与えるこ ともない。
尚、 上記実施例では、 ヒー夕線 8 4や高周波線 8 6等の電力供給ラインを外部 へ取り出すためのライン取り出し管 8 0が、 流路である上部管 6 4 Aの断面直径 方向を横断するように設けられているが、 これに限定されず、 ライン取り出し管 8 0は半径部分のみに設けられ得る。 .
図 4は、 このような本発明装置の実施の形態の一部を示す部分断面図であり、 図 5は、 図 4中の C一 C線矢視断面図である。 本実施の形態において、 図 4に図 示されない他の部分ほ、 図 1に示す構造と同一である。 図 4及び図 5に示すよう に、 この実施の形態にあっては、 ライン取り出し管 8 O Aは、 載置台支持支柱 7 4の下部中空パイプ部材 7 4 Aの下端に接続されると共に、 排気管路 6 4の一側 壁を貫通するように半径方向に設けられている。 これにより、 載置台支持支柱 7 4は片持ち支持される状態となっている。
図 1に示すライン取り出し管 8 0の構造と比較して、 図 4及び図 5に示すライ ン取り出し管 8 O Aの場合、 ライン取り出し管 8 O Aと反対側の半径方向におけ るライン取り出し管の設置が省略された分だけ、 排気抵抗が少なくなり、 より円 滑に排気ガスを排出させることが可能となる。
もっとも、 図 1に示すライン取り出し管 8 0のようにアクセスが 2系統とれる 場合には、 例えば高周波電力系統 (高周波線 8 6 ) とその他の電力系統 (ヒ一夕 線 8 4 ) とを分離して形成することもできる。 冷媒循環路 9 4は、 いずれの電力 系統にも形成され得る。
なお、 上記各実施例では、 誘導結合プラズマ型のエッチング処理装置を例にと つて説明したが、 これに限定されず、 本発明はどのような形式のエッチング処理 装置にも適用可能である。 例えば、 本発明は平行平板型の処理装置等にも適用可 能である。
更に、 本発明は、 エッチング処理装置に限定されず、 C VD成膜装置、 酸化拡 散装置、 アツシング装置、 改質装置等にも適用することができる。 また、 加熱手 段も抵抗加熱ヒー夕に限定されず、 加熱ランプであり得る。
例えば、 図 6は、 本発明装置の他の実施の形態としての熱 C V D成膜用の処理 装置の構成概略図である。 尚、 図 1に示す構成と同一の部分については、 同一符 号を付して説明を省略する。.
本実施の形態では、 処理容器 2 8の天井部に、 天井ドーム 4 6及び高周波コィ ル 5 0に代えて、 ガス供給手段として多数のガス噴射孔 1 0 0を有するシャワー ヘッド 1 0 2が設けられている。 これにより、 熱 C V D処理が行われるようにな つている。従って、 本実施の形態では、 図 1中に記載されたガス噴射孔 5 8、 バ ィァス電極 3 4及びバイアス用の高周波電極 9 0等の設置は省略されている。 本実施の形態によれば、 ウェハ表面上のガスの流れを、 偏りが生ずることなく 均一にすることができる。 これにより、 処理の均一化、 すなわち、 膜厚の面内均 一性の向上が可能となる。
また、 本実施例では、 被処理体として半導体ウェハを例にとって説明したが、 これに限定されず、 L C D基板、 ガラス基板等にも適用できるのは勿論である。

Claims

請求 の 範 囲
1 . 真空引き可能な処理容器と、
前記処理容器内に設置され、 被処理体が載置され得る載置台と、
前記処理容器の底部に接続され、 実質的に下方に直線状に延びる排気管と、 前記排気管に直接的に接続された真空ポンプと、
前記排気管の略中心部を当該排気管の方向に延びるように設けられた、 前記載 置台を支持する載置台支持支柱と、
を備えたことを特徴とする枚葉式の処理装置。
2 . 前記載置台支持支柱は、 前記排気管の方向に延びる取付板によって、 前 記排気管に支持されている
ことを特徴とする請求項 1に記載の枚葉式の処理装置。
3 . 前記取付板は、 排気の流れを阻害しない程度の薄い板部材によって形成 されている
ことを特徴とする請求項 2に記載の枚葉式の処理装置。
4 . 前記取付板は、 前記載置台支持支柱から放射状に複数が配置されている ことを特徴とする請求項 2または 3に記載の枚葉式の処理装置。
5 . 前記載置台支持支柱は、 前記排気管の方向に延びる中空パイプ部材を有 する
ことを特徴とする請求項 1乃至 4のいずれかに記載の枚葉式の処理装置。
6 . 前記中空パイプ部材の内部には、 電力供給ラインが配設されている ことを特徴とする請求項 5に記載の枚葉式の処理装置。
7 . 前記中空パイプ部材の下方部は、 前記排気管側壁を貫通して延びるライ ン取り出し管に接続されている
ことを特徴とする請求項 5または 6に記載の枚葉式の処理装置。 .
8 . 前記載置台支持支柱は、 前記ライン取り出し管によって、 前記排気管に 支持されている
ことを特徴とする請求項 7に記載の枚葉式の処理装置。
9 . 前記載置台支持支柱は、 前記排気管の方向に延びる取付板によっても、 前記排気管に支持されており、
前記排気管の少なくとも一部と、 前記中空パイプ部材の少なくとも一部と、 前 記取付板と、 前記ライン取り出し管とは、 一体に構成されている
ことを特徴とする請求項 8に記載の枚葉式の処理装置。
1 0 . 前記排気管は、 円形断面を有しており、
前記ライン取り出し管は、 前記中空パイプ部材の下方部から前記排気管の直径 方向に延びて、 前記排気管の直径方向に対向する 2力所の側壁を貫通して延びて いる
ことを特徴とする請求項 7乃至 9のいずれかに記載の枚葉式の処理装置。
1 1 . 前記排気管は、 円形断面を有しており、
前記ライン取り出し管は、 前記中空パイプ部材の下方部から前記排気管の半径 方向に延びて、 前記排気管の 1力所の側壁を貫通して延びている
ことを特徴とする請求項 7乃至 9のいずれかに記載の枚葉式の処理装置。
1 2 . 前記ライン取り出し管は、 前記中空パイプ部材の下方部から前記排気 管の 2力所の側壁を貫通するように延びており、
前記電力供給ラインは、 一方の側壁を貫通する第 1ラインと、 他方の側壁を貫 通する第 2ラインと、 に分離して設けられている
ことを特徴とする請求項 7乃至 9のいずれかに記載の枚葉式の処理装置。
1 3 . 前記第 1ラインは、 高周波電流が流れる電力供給ラインであり、 前記第 2ラインは、 高周波電流が流れない電力供給ラインである
ことを特徴とする請求項 1 2に記載の枚葉式の処理装置。
1 4 . 前記第 1または第 2ラインと平行して、 冷媒循環路が形成されている ことを特徴とする請求項 1 2または 1 3に記載の枚葉式の処理装置。
1 5 . 前記真空ポンプの上流側には、 前記排気管の流路面積を制御するため の流路調整弁が設けられている
ことを特徴とする請求項 1乃至 1 4のいずれかに記載の枚葉式の処理装置。
1 6 . 前記処理容器の天井部には、 誘導結合プラズマ用の高周波電源に接続 された高周波コィルが設けられ、
前記載置台には、 バイァス用の高周波電源に接続されたバイァス電極が設けら れている
ことを特徴とする請求項 1乃至 1 5のいずれかに記載の枚葉式の処理装置。
PCT/JP2002/000041 2001-01-09 2002-01-09 Dispositif de traitement a feuilles WO2002056357A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020037009120A KR100837885B1 (ko) 2001-01-09 2002-01-09 낱장식 처리 장치
EP02729523A EP1357583B1 (en) 2001-01-09 2002-01-09 Sheet-fed treating device
US10/250,907 US7232502B2 (en) 2001-01-09 2002-01-09 Sheet-fed treating device
DE60231375T DE60231375D1 (de) 2001-01-09 2002-01-09 Behandlungseinrichtung mit blatteinzug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001001152A JP4660926B2 (ja) 2001-01-09 2001-01-09 枚葉式の処理装置
JP2001-1152 2001-01-09

Publications (1)

Publication Number Publication Date
WO2002056357A1 true WO2002056357A1 (fr) 2002-07-18

Family

ID=18869821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/000041 WO2002056357A1 (fr) 2001-01-09 2002-01-09 Dispositif de traitement a feuilles

Country Status (6)

Country Link
US (1) US7232502B2 (ja)
EP (1) EP1357583B1 (ja)
JP (1) JP4660926B2 (ja)
KR (1) KR100837885B1 (ja)
DE (1) DE60231375D1 (ja)
WO (1) WO2002056357A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004082007A1 (ja) * 2003-03-12 2004-09-23 Tokyo Electron Limited 半導体処理用の基板保持構造及びプラズマ処理装置

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003060973A1 (fr) * 2002-01-10 2003-07-24 Tokyo Electron Limited Dispositif de traitement
US20040175904A1 (en) * 2003-03-04 2004-09-09 Bor-Jen Wu Method for activating P-type semiconductor layer
JP4606947B2 (ja) * 2005-03-16 2011-01-05 東京エレクトロン株式会社 リークレート測定方法並びにリークレート測定に用いるプログラムおよび記憶媒体
JP5558035B2 (ja) 2009-06-18 2014-07-23 三菱重工業株式会社 プラズマ処理装置及び方法
JP5634037B2 (ja) 2009-06-18 2014-12-03 三菱重工業株式会社 排気構造、プラズマ処理装置及び方法
US8274017B2 (en) * 2009-12-18 2012-09-25 Applied Materials, Inc. Multifunctional heater/chiller pedestal for wide range wafer temperature control
US9157681B2 (en) * 2010-02-04 2015-10-13 National University Corporation Tohoku University Surface treatment method for atomically flattening a silicon wafer and heat treatment apparatus
CN102828167B (zh) * 2011-06-13 2015-02-25 北京北方微电子基地设备工艺研究中心有限责任公司 一种排气方法、装置及基片处理设备
US20150194326A1 (en) * 2014-01-07 2015-07-09 Applied Materials, Inc. Pecvd ceramic heater with wide range of operating temperatures
KR20160118205A (ko) * 2014-02-06 2016-10-11 어플라이드 머티어리얼스, 인코포레이티드 개선된 유동 전도성 및 균일성을 위해 축방향으로 대칭가능한 인라인 dps 챔버 하드웨어 설계
JP5743120B2 (ja) * 2014-04-07 2015-07-01 三菱重工業株式会社 プラズマ処理装置及び方法
JP6660936B2 (ja) * 2014-04-09 2020-03-11 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 改良されたフロー均一性/ガスコンダクタンスを備えた可変処理容積に対処するための対称チャンバ本体設計アーキテクチャ
US10781518B2 (en) 2014-12-11 2020-09-22 Applied Materials, Inc. Gas cooled electrostatic chuck (ESC) having a gas channel formed therein and coupled to a gas box on both ends of the gas channel
US9888528B2 (en) * 2014-12-31 2018-02-06 Applied Materials, Inc. Substrate support with multiple heating zones
US10781533B2 (en) * 2015-07-31 2020-09-22 Applied Materials, Inc. Batch processing chamber
JP6607795B2 (ja) * 2016-01-25 2019-11-20 東京エレクトロン株式会社 基板処理装置
CN107093545B (zh) 2017-06-19 2019-05-31 北京北方华创微电子装备有限公司 反应腔室的下电极机构及反应腔室
US11232966B2 (en) * 2018-02-01 2022-01-25 Lam Research Corporation Electrostatic chucking pedestal with substrate backside purging and thermal sinking
JP2020147772A (ja) * 2019-03-11 2020-09-17 東京エレクトロン株式会社 成膜装置及び成膜方法
US20230020539A1 (en) * 2021-07-13 2023-01-19 Applied Materials, Inc. Symmetric semiconductor processing chamber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0453126A (ja) * 1990-06-18 1992-02-20 Fuji Electric Co Ltd 表面処理装置
JPH05267182A (ja) * 1992-03-17 1993-10-15 Fujitsu Ltd 化学気相成長装置
JPH0773997A (ja) * 1993-06-30 1995-03-17 Kobe Steel Ltd プラズマcvd装置と該装置を用いたcvd処理方法及び該装置内の洗浄方法
JPH09326398A (ja) * 1996-06-04 1997-12-16 Dainippon Screen Mfg Co Ltd ガスフロー形成装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2433922A (en) * 1942-10-15 1948-01-06 American Optical Corp Apparatus for treating surfaces
US4649859A (en) * 1985-02-19 1987-03-17 The United States Of America As Represented By The United States Department Of Energy Reactor design for uniform chemical vapor deposition-grown films without substrate rotation
JPH01272769A (ja) * 1987-12-30 1989-10-31 Texas Instr Japan Ltd プラズマ発生装置
US5156820A (en) * 1989-05-15 1992-10-20 Rapro Technology, Inc. Reaction chamber with controlled radiant energy heating and distributed reactant flow
US5256205A (en) * 1990-05-09 1993-10-26 Jet Process Corporation Microwave plasma assisted supersonic gas jet deposition of thin film materials
JPH05167182A (ja) 1991-12-11 1993-07-02 Sony Corp 半導体レーザー
US5767628A (en) * 1995-12-20 1998-06-16 International Business Machines Corporation Helicon plasma processing tool utilizing a ferromagnetic induction coil with an internal cooling channel
US5948704A (en) * 1996-06-05 1999-09-07 Lam Research Corporation High flow vacuum chamber including equipment modules such as a plasma generating source, vacuum pumping arrangement and/or cantilevered substrate support
US5820723A (en) * 1996-06-05 1998-10-13 Lam Research Corporation Universal vacuum chamber including equipment modules such as a plasma generating source, vacuum pumping arrangement and/or cantilevered substrate support
US5993557A (en) * 1997-02-25 1999-11-30 Shin-Etsu Handotai Co., Ltd. Apparatus for growing single-crystalline semiconductor film
JP3915314B2 (ja) * 1999-04-23 2007-05-16 東京エレクトロン株式会社 枚葉式の処理装置
US6402848B1 (en) * 1999-04-23 2002-06-11 Tokyo Electron Limited Single-substrate-treating apparatus for semiconductor processing system
US6812157B1 (en) 1999-06-24 2004-11-02 Prasad Narhar Gadgil Apparatus for atomic layer chemical vapor deposition
JP2003502878A (ja) * 1999-06-24 2003-01-21 ナーハ ガジル、プラサード 原子層化学気相成長装置
US6812158B1 (en) * 2002-12-31 2004-11-02 Lsi Logic Corporation Modular growth of multiple gate oxides

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0453126A (ja) * 1990-06-18 1992-02-20 Fuji Electric Co Ltd 表面処理装置
JPH05267182A (ja) * 1992-03-17 1993-10-15 Fujitsu Ltd 化学気相成長装置
JPH0773997A (ja) * 1993-06-30 1995-03-17 Kobe Steel Ltd プラズマcvd装置と該装置を用いたcvd処理方法及び該装置内の洗浄方法
JPH09326398A (ja) * 1996-06-04 1997-12-16 Dainippon Screen Mfg Co Ltd ガスフロー形成装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1357583A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004082007A1 (ja) * 2003-03-12 2004-09-23 Tokyo Electron Limited 半導体処理用の基板保持構造及びプラズマ処理装置
CN100388434C (zh) * 2003-03-12 2008-05-14 东京毅力科创株式会社 半导体处理用的基板保持结构和等离子体处理装置
US7837828B2 (en) 2003-03-12 2010-11-23 Tokyo Electron Limited Substrate supporting structure for semiconductor processing, and plasma processing device

Also Published As

Publication number Publication date
EP1357583B1 (en) 2009-03-04
EP1357583A1 (en) 2003-10-29
KR20030083693A (ko) 2003-10-30
US20040035530A1 (en) 2004-02-26
US7232502B2 (en) 2007-06-19
DE60231375D1 (de) 2009-04-16
EP1357583A4 (en) 2005-05-25
JP2002208584A (ja) 2002-07-26
KR100837885B1 (ko) 2008-06-13
JP4660926B2 (ja) 2011-03-30

Similar Documents

Publication Publication Date Title
WO2002056357A1 (fr) Dispositif de traitement a feuilles
US9472424B2 (en) Substrate processing apparatus and a method of manufacturing a semiconductor device
JP3996771B2 (ja) 真空処理装置及び真空処理方法
JPWO2015141521A1 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
JP2002217178A (ja) 処理装置及び処理方法
KR20090013093A (ko) 배치식 플라즈마 처리 장치
WO2003060973A1 (fr) Dispositif de traitement
KR20210121581A (ko) 기판 처리 장치 및 기판 처리 방법
JPH09283498A (ja) 減圧処理装置
JP2008235611A (ja) プラズマ処理装置及びプラズマ処理方法
US20220122820A1 (en) Substrate processing apparatus
JP2024028752A (ja) 基板処理装置および半導体装置の製造方法
JP2002299329A (ja) 熱処理装置、熱処理方法及びクリーニング方法
JPH1027784A (ja) 減圧処理装置
JP3915314B2 (ja) 枚葉式の処理装置
JP3222859B2 (ja) プラズマ処理装置
US9142435B2 (en) Substrate stage of substrate processing apparatus and substrate processing apparatus
JP2006278631A (ja) 半導体製造装置
JP3477573B2 (ja) プラズマ処理装置、プラズマ生成導入部材及びスロット電極
JP3238137B2 (ja) プラズマ処理室のクリーニング方法
JP3807957B2 (ja) プラズマ処理方法
KR101435866B1 (ko) 기판 처리 장치 및 반도체 장치의 제조 방법
JP2003100723A (ja) 誘導結合プラズマ処理装置
JP2001102423A (ja) プロセス装置
JPH09312283A (ja) 処理装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10250907

Country of ref document: US

Ref document number: 1020037009120

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002729523

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002729523

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020037009120

Country of ref document: KR