WO2002034369A1 - Procede et appareil de recuperation d'amine et systeme d'elimination de dioxyde de carbone comprenant l'appareil - Google Patents

Procede et appareil de recuperation d'amine et systeme d'elimination de dioxyde de carbone comprenant l'appareil Download PDF

Info

Publication number
WO2002034369A1
WO2002034369A1 PCT/JP2001/009310 JP0109310W WO0234369A1 WO 2002034369 A1 WO2002034369 A1 WO 2002034369A1 JP 0109310 W JP0109310 W JP 0109310W WO 0234369 A1 WO0234369 A1 WO 0234369A1
Authority
WO
WIPO (PCT)
Prior art keywords
washing
water
section
amine
exhaust gas
Prior art date
Application number
PCT/JP2001/009310
Other languages
English (en)
French (fr)
Inventor
Tomio Mimura
Takashi Nojo
Kazuo Ishida
Hiroshi Nakashoji
Hiroshi Tanaka
Takuya Hirata
Original Assignee
The Kansai Electric Power Co., Inc.
Mitsubishi Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Kansai Electric Power Co., Inc., Mitsubishi Heavy Industries, Ltd. filed Critical The Kansai Electric Power Co., Inc.
Priority to AU10924/02A priority Critical patent/AU772954B2/en
Priority to CA002393626A priority patent/CA2393626C/en
Priority to DE60141913T priority patent/DE60141913D1/de
Priority to EP01978863A priority patent/EP1334759B1/en
Priority to US10/168,975 priority patent/US6784320B2/en
Priority to DK01978863.7T priority patent/DK1334759T3/da
Publication of WO2002034369A1 publication Critical patent/WO2002034369A1/ja
Priority to NO20023053A priority patent/NO332555B1/no
Priority to US10/700,504 priority patent/US7316737B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a method and an apparatus for recovering an amine and a decarbonation apparatus provided with the same.
  • the present invention relates to a method and an apparatus for recovering an amine and a decarbonation apparatus provided with the same.
  • thermal power generation facilities and boiler facilities have used a large amount of coal, heavy oil or ultra-heavy oil as fuel, and from the viewpoint of preventing air pollution and purifying the global environment, sulfur oxides and nitrogen oxides, mainly sulfur dioxide, Quantitative and concentration control of carbon dioxide and other emissions has become an issue.
  • carbon dioxide and methane gas have been studied to reduce their emission from the perspective of global warming. For this reason, for example, methods of removing carbon dioxide such as PSA (pressure swing), membrane separation, and reaction absorption by a basic compound are being studied.
  • examples of the method of removing carbon dioxide by using a basic compound include an amine compound (hereinafter, referred to as Japanese Patent Application Laid-Open No. 5-184686 (US Pat. No. 5,318,758)).
  • amine is used as a carbon dioxide absorbing solution to perform decarboxylation.
  • the reaction between the carbon dioxide and the amine compound is an exothermic reaction, the temperature of the absorbing solution in the carbon dioxide absorbing section rises, and the vapor pressure of the amine increases. That is, since a large amount of the amine-containing absorption liquid evaporates due to the temperature rise, the amount of the amine compound accompanying the decarbonation gas increases. For this reason, a water washing section was provided in the absorption tower, and the amine compound accompanying the decarbonated gas was recovered in the liquid phase by bringing the decarbonated gas and the washing water into gas-liquid contact in the water washing section.
  • 1 is an absorption tower
  • 2 is a carbon dioxide absorption section
  • 3 is a washing section
  • 4 is an exhaust gas.
  • 6 is an absorption liquid supply port
  • 6 is a nozzle
  • 7 is a nozzle
  • 8 is a liquid storage section in the washing section
  • 9 is a circulation pump
  • 10 is a cooler
  • 11 is a nozzle
  • 12 is an absorption liquid outlet
  • 13 Is a blower
  • 14 is an exhaust gas supply port
  • 15 is an exhaust gas cooler
  • 16 is a circulation pump
  • 17 is a cooler
  • 18 is a nozzle
  • 19 is a discharge line.
  • the combustion exhaust gas supplied from the exhaust gas supply port 14 is supplied to the absorption tower 1 after being cooled in the cooling tower 15, and is supplied to the carbon dioxide absorption section 2 of the absorption tower 1.
  • the absorption liquid supplied from the absorption liquid supply port 6 through the nozzle 7 is brought into countercurrent contact with the absorption liquid.
  • carbon dioxide in the combustion exhaust gas is absorbed and removed by the absorbent.
  • the load absorbing solution that has absorbed the carbon dioxide is sent from the absorbing solution outlet 12 to a regeneration tower (not shown), where it is regenerated and supplied again from the absorbing solution supply port 16 to the absorption tower 1.
  • the combustion exhaust gas (decarbonated exhaust gas) decarbonated in the carbon dioxide absorption unit 2 generates a large amount of amine vapor due to the temperature rise due to the exothermic reaction between the carbon dioxide and the amine compound in the carbon dioxide absorption unit 2. Ascends and rises to the water washing section 3 through the liquid holding section 8. Then, in the rinsing section 3, the retained water in the liquid retaining section 8 is transported by the circulation pump 9, cooled and cooled by the P unit 10, and then supplied to the rinsing section 3 from the nozzle 11 as the rinsing water.
  • FIG. 3 features that the amine recovery capacity was improved by using the reflux water in the regeneration tower.
  • 21 is an absorption tower
  • 22 is a carbon dioxide absorption section
  • 23 is a washing section
  • 24 is an exhaust gas supply port
  • 25 is an exhaust gas discharge port
  • 26 is an absorption liquid supply port
  • 27 is an absorption liquid supply port.
  • Nozzle, 28 is a recycle tower reflux extraction water supply port, 29 is a nozzle, 30 is a cooler, 31 is a nozzle, 32 is a charging section, 33 is a circulation pump, 34 is a makeup water supply line, 3 5 is an absorption liquid discharge pump, 3 6 is a heat exchanger, 3 7 is a cooler, 3 8 is a regeneration tower, 3 9 is a nozzle, 40 is a lower charging section, 4 1 is a reboiler, 4 2 is an upper charging.
  • 4 3 is a reflux water pump
  • 4 4 is a carbon dioxide separator
  • 4 5 is a carbon dioxide discharge line
  • 4 6 is a cooler
  • 4 7 is a nozzle
  • 4 8 is a reflux water supply line
  • 4 9 is a combustion gas Supply Blower.
  • the combustion exhaust gas supplied by the combustion gas supply blower 49 is powerful.
  • the gas was supplied to the absorption tower 21 after being cooled by the cooling tower 30, and was supplied from the absorption liquid supply port 26 through the nozzle 27 in the carbon dioxide absorption section 22 of the absorption tower 21. It is brought into countercurrent contact with the absorbing liquid.
  • carbon dioxide in the flue gas is absorbed and removed by the absorbent.
  • the load absorbing solution that has absorbed the carbon dioxide is sent from the absorbing solution outlet 12 to the regenerating tower 38 by the absorbing solution discharge pump 35, where it is regenerated and re-absorbed. Supplied to 1.
  • the combustion exhaust gas (decarbonated exhaust gas) decarbonated in the carbon dioxide absorption unit 22 generates a large amount of amine vapor due to the temperature rise due to the exothermic reaction between the carbon dioxide and the amine compound in the carbon dioxide absorption unit 22. Ascends and rises to the washing section 23.
  • a part of the recycle tower reflux water extracted as the wash water is supplied to the rinsing section 23 from the recycle tower reflux extraction water supply port 28 through the nozzle 29.
  • the washing water and the decarbonated exhaust gas come into countercurrent contact with each other in the water washing section 23, whereby the amine compound in the decarbonated exhaust gas is recovered in the liquid phase.
  • the present invention efficiently removes amine compounds entrained in decarbonated exhaust gas in a decarboxylation process for removing carbon dioxide from a gas containing carbon dioxide using an absorption solution containing an amine compound. It is an object of the present invention to provide a method and an apparatus for recovering amine which can be recovered at a low temperature, and a decarbonation apparatus provided with the same. Disclosure of the invention
  • the method for recovering amine according to the first invention of the first invention is a method for washing decarbonated exhaust gas, in which carbon dioxide is absorbed and removed by gas-liquid contact with an absorbing solution containing an amine compound in a carbon dioxide absorbing section, with water washing.
  • the amine recovery method for recovering the amine compound accompanying the decarbonated exhaust gas by bringing the cleaning water into gas-liquid contact in the section The water washing section has a plurality of stages, and the plurality of water washing sections sequentially perform a process of collecting an amine compound accompanying the decarbonated exhaust gas.
  • the water washing section is configured in a plurality of stages, and the plurality of water washing sections sequentially perform the process of recovering the amine compound accompanying the decarbonated exhaust gas.
  • a second aspect of the present invention provides the eamine recovery method according to the first aspect, wherein reflux water of the regeneration tower is supplied to the washing section as washing water.
  • the concentration of amine contained in the washing water of the washing section is reduced, and the ability to recover amine is further improved.
  • the method for recovering an amine of the third invention is the method for recovering an amine of the first or second invention, wherein
  • washing water is extracted from the subsequent washing section and supplied to the preceding washing section.
  • the amine concentration contained in the washing water of the preceding washing section is reduced, and the amine collecting ability in the preceding washing section is improved.
  • the amine concentration in the washing water of the washing section is further reduced, and the amine recovery ability is further improved as a whole.
  • the method for recovering an amine of the fourth invention is the method for recovering an amine of the first, second or third invention, wherein:
  • a demister is provided at the outlet of the carbon dioxide absorption section and the washing section at each stage, and the mist and the absorption liquid mist accompanying the decarbonated exhaust gas are removed by these demisters.
  • a part of the absorbent mist supplied to the carbon dioxide absorbing part and a part of the washing water mist supplied to the water rinsing part of each stage are removed together with the decarbonized exhaust gas. It is possible to prevent the water-diamine compound from being released outside the system and from being sucked out.
  • the amide recovery device of the fifth invention is a decarbonated exhaust gas in which carbon dioxide is absorbed and removed by gas-liquid contact with an absorption solution containing an amide compound in the carbon dioxide absorption section.
  • the water washing section has a plurality of stages, It is characterized in that, in the water washing section, the amine compound accompanying the decarbonated exhaust gas is sequentially recovered.
  • the water washing section has a plurality of stages, and in these water washing sections of the plurality of stages, the process of recovering the amine compound accompanying the decarbonated exhaust gas is sequentially performed.
  • the amine recovery apparatus of a sixth invention is characterized in that, in the amine recovery apparatus of the fifth invention, the reflux water of the regeneration tower is supplied to the water washing section as washing water.
  • the concentration of amine contained in the washing water in the washing section is reduced, and the ability to recover amine is further improved.
  • the amine recovery apparatus according to the seventh invention is the amine recovery apparatus according to the fifth or sixth invention.
  • washing water is extracted from the subsequent washing section and supplied to the preceding washing section.
  • the amine recovery apparatus of the seventh invention the amine concentration contained in the washing water in the preceding washing section is reduced, and the amine collecting ability in the preceding washing section is improved. As a result, the concentration of amine contained in the washing water in the washing section is further reduced, and the amine recovery ability is further improved as a whole.
  • the amine recovery apparatus according to the eighth invention is the amine recovery apparatus according to the fifth, sixth or seventh invention.
  • a demister is provided at the outlet of the carbon dioxide absorbing section and the washing section of each stage, and the mist is used to remove absorbent mist and washing water mist accompanying the decarbonated exhaust gas.
  • a part of the absorbent mist supplied to the carbon dioxide absorbing part and a part of the washing water mist supplied to the water washing part of each stage are decarbonized. It is possible to prevent the loss of the moisture amine compound which is released outside the system together with the acid exhaust gas.
  • a ninth aspect of the present invention provides a decarbonation gas apparatus comprising the amine recovery apparatus according to the fifth, sixth, seventh or eighth aspect provided in an absorption tower.
  • the decarbonation gas device of the ninth invention has a high amine compound recovery capability and a low operating cost by providing the amine recovery device of the fifteenth, sixth, seventh or eighth invention in the absorption tower. It becomes an inexpensive device.
  • FIG. 1 is a configuration diagram showing a main part of a decarbonation apparatus according to an embodiment of the present invention.
  • FIG. 2 is a configuration diagram showing a main part of a conventional decarbonation apparatus.
  • FIG. 3 is a configuration diagram showing a main part of a conventional decarbonation apparatus. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a configuration diagram showing a main part of a decarbonation apparatus according to an embodiment of the present invention.
  • the decarbonation apparatus of the present embodiment includes an absorption tower 61, a regeneration tower 62, and a cooling tower 63.
  • the washing section of the absorption tower 61 has a two-stage structure including a one-stage washing section 64 and a two-stage washing section 65. 6 Withdrawing the washing water from 5 and supplying it to the first-stage washing section 64, supplying the reflux water from the regeneration tower to the second-stage washing section as washing water, carbon dioxide absorbing section 73, first-stage washing section 64, and second-stage
  • the demisters 83, 84, 85 are installed at the exit of the washing section 65.
  • the combustion exhaust gas generated in the thermal power generation facility ⁇ the boiler facility and the like is supplied to the cooling tower 63 via the exhaust gas supply line 66. Water is held at the bottom 67 of the cooling tower 63, which is pumped up by the circulation pump 68 and cooled by the heat exchanger 69, and then supplied from the nozzle 70 to the charging unit 71. Is done. as a result, In the charging section 71, the combustion exhaust gas is cooled in countercurrent contact with the cooling water radiated from the nozzle 70. Thereafter, the combustion exhaust gas is supplied to a carbon dioxide absorption section 73 provided at a lower portion of the absorption tower 61 via an exhaust gas supply line 72.
  • the combustion exhaust gas supplied to the absorption tower 61 rises in the absorption tower as shown by a dotted arrow in the figure.
  • the regenerated absorbent aqueous solution of the amine compound retained at the bottom 76 of the regenerating tower 62 is transported by the absorbent supply pump 77 provided in the absorbent supply line 74, and is transferred to the heat exchanger 7.
  • the carbon dioxide absorbing portion 73 After being cooled in the heat exchanger 8 and the heat exchanger 79, it is supplied to the carbon dioxide absorbing portion 73 from a nozzle 75 provided at the outlet of the carbon dioxide absorbing portion 73.
  • the flue gas and the absorbing liquid come into gas-liquid contact (countercurrent contact), so that the carbon dioxide contained in the flue gas is absorbed by the absorbing liquid and removed.
  • the amine compounds contained in the absorbing solution include monoethanolamine, primary amines containing an alcoholic hydroxyl group such as 2-amino-2-methyl-1-propanol, diethanolamine, and 2-methylaminoamine.
  • Alcohol-containing secondary amines such as ethanol, triethanolamine, alcoholic hydroxyl-containing tertiary amines such as N-methyljetanolamine, ethylenediamine, triethylenediamine and diethylenetriamine.
  • Cyclic amines such as polyethylene polyamines, piperazines, piperidines, and piperidines, polyamines such as xylylene diamine, and amino acids such as methylamino carboxylic acid, etc. And mixtures thereof.
  • amines are usually used as a 10 to 70% by weight aqueous solution.
  • a carbon dioxide absorption promoter or a corrosion inhibitor and further, methanol, polyethylene glycol, sulfolane or the like can be added to the absorbing solution.
  • the loaded absorption liquid that has absorbed the carbon dioxide flows down and is retained at the bottom 80 of the absorption tower, and then discharged by the absorption liquid discharge pump 87 provided in the absorption liquid discharge line 86, where it is discharged by the heat exchanger 78. After being heated by exchanging heat with the regenerating absorption liquid, it is released from the nozzle 89 provided at the outlet of the lower charging section 88 of the regenerating tower 62, flows down the lower charging section 88, and flows to the bottom of the regenerating tower. 7 Reserved for 6.
  • the load absorption liquid retained at the bottom of the regeneration tower 76 is supplied to the reboiler 90 for supply stealing. For example, it is heated to about 120 ° C. by the system. As a result, carbon dioxide in the loaded absorbent is released and the absorbent is regenerated. This regenerated absorbent is retained at the bottom 76 of the regenerator, and is supplied again to the carbon dioxide absorber 73 of the absorber 61. In other words, the absorbent is circulated and does not need to be drained or supplied externally unless there is a mouth. On the other hand, the released carbon dioxide rises as indicated by the dotted arrow in the figure, passes through the lower packing section 88 and the upper packing section 91, and the carbon dioxide discharge line 93 at the top of the regeneration tower 11 From the regeneration tower.
  • the water contained in the carbon dioxide is condensed by cooling in a condenser (cooler) 94 provided in the carbon dioxide discharge line 93, and this condensed water is condensed.
  • Water and carbon dioxide are separated by a carbon dioxide separator 95.
  • the high-purity carbon dioxide separated from the condensed water is released out of the decarbonation process system (hereinafter simply referred to as “outside the system”) from the carbon dioxide release line 96, and is used or disposed of in subsequent processes.
  • the condensed water is transported by the circulation pump 96, and a part of the condensed water is extracted to the regeneration tower reflux water supply line 97 side.
  • the recycle tower reflux extraction water is cooled by a heat exchanger 98, and then supplied as washing water from a nozzle 99 provided at the outlet of the two-stage washing unit 65 to the top of the two-stage washing unit 65. You.
  • the water discharged from the regeneration tower is very low in amine concentration.
  • the remainder of the condensed water is returned to the regeneration tower 62. That is, it is supplied from the nozzle 92 to the section of the upper filling section 91 via the reflux line 100, flows down, and is held at the bottom 76 of the regeneration tower.
  • the combustion exhaust gas (decarbonated exhaust gas) from which the carbon dioxide has been removed in the carbon dioxide absorption section 73 of the absorption tower 61 passes through a demi-shut 83 provided at the exit of the carbon dioxide absorption section 73, and is then washed once.
  • a large amount of amine vapor is entrained in the decarbonated exhaust gas. That is, since the temperature rises due to the exothermic reaction between carbon dioxide and the amine compound in the carbon dioxide absorption section 73, many of the absorbing liquid evaporates and rises together with the decarbonated exhaust gas.
  • the water accompanying the decarbonated exhaust gas at this time becomes a supply source of washing water in a washing section described later.
  • the temperature of the decarbonated exhaust gas flowing into the first-stage washing section 64 is, for example, about 50 to 80 ° C.
  • the demister 83 removes the absorbent mist accompanying the decarbonated exhaust gas.
  • the force at which the absorbing liquid is dissipated from the nozzle 75 as a mist ⁇ The part rises with the decarbonated exhaust gas. Therefore, if the absorption liquid mist is discharged out of the absorption tower together with the decarbonated exhaust gas, amine compounds will be lost. Therefore, a demister 83 is provided at the outlet of the carbon dioxide absorption unit to remove the absorbent mist accompanying the decarbonated exhaust gas.
  • the water (absorbent) removed by the demister 83 flows down and is retained at the bottom 88 of the absorption tower.
  • the retained water of the liquid holding section 81 in the first-stage washing section 64 is transported by the circulation pump 1 G2 provided in the circulation line 101, and the heat exchanger 1 After being cooled at 03, washing water is supplied to the top of the first-stage washing section 64 from a nozzle i04 provided at the outlet of the first-stage washing section 64.
  • the washing water and the decarbonated exhaust gas come into countercurrent contact with each other in the staged water washing section 64, so that the temperature of the decarbonated exhaust gas is lowered, and the steam accompanying the decarbonated exhaust gas is condensed and the decarbonated exhaust gas is condensed.
  • the amine compound entrained in the gas is recovered.
  • the condensed water and the washed water discharged at this time flow down and are retained in the liquid retaining section 81.
  • the retained water in the liquid retaining section 81 is maintained at a constant water level. That is, when the amount of retained water in the liquid retaining section 81 increases and exceeds a certain level, the liquid overflows to the bottom 80 of the absorption tower via the retained water discharge line 105.
  • the water retained in the liquid storage section 81 may be transported to the absorption tower bottom section 80 by a pump.
  • the power to recover most of the amine compounds accompanying the decarbonated exhaust gas At this time, the amine concentration in the holding water (washing water) in the liquid holding section 81 increases. For this reason, the vapor pressure of the amine increases due to the relationship between vapor and liquid, and the amine concentration in the decarbonated exhaust gas cannot be reduced any more.
  • the washing section has a two-stage structure including a one-stage washing section 64 and a two-stage washing section 65.
  • the decarbonated exhaust gas that has undergone amine recovery in the first-stage rinsing section 64 flows to the second-stage rinsing section 65 through a demister 84 provided at the outlet of the first-stage rinsing section 64.
  • the demister 84 removes cleaning water mist accompanying the decarbonated exhaust gas. That is, the washing water is scattered from the nozzle 104 as a mist, but a part of the washing water mist rises with the decarbonated exhaust gas. Therefore, if the washing water mist is discharged out of the absorption tower together with the decarbonated exhaust gas as it is, loss of amine compounds will occur. turn into. Therefore, a demister 84 is provided at the exit of the first-stage washing section to remove washing water mist accompanying the decarbonated exhaust gas. The water (washing water) removed by the demister 83 flows down and is retained in the liquid retaining section 81.
  • the retained water in the liquid retaining section 82 in the second-stage flushing section 65 is transported by the circulation pump 107 provided in the circulation line 106, and is transferred to the heat exchanger 98. After being cooled, it is supplied as washing water to the top of the two-stage washing unit 65 from a nozzle 99 provided at the outlet of the two-stage washing unit 65.
  • the recycle tower reflux extraction water supplied from the regenerator is also combined with the washing water. As a result, the washing water and the decarbonated exhaust gas come into countercurrent contact with each other in the two-stage washing section 65, whereby the amine compound entrained in the decarbonated exhaust gas is recovered.
  • the amine concentration of the liquid holding section 82 that is, in the washing water supplied from the nozzle 99, The contained amine concentration is kept very low.
  • the amine concentration in the decarbonated exhaust gas is sufficiently reduced due to the relationship between vapor and liquid. That is, in the two-stage washing section 65, the amine compound can be further recovered from the decarbonated exhaust gas discharged from the first-stage washing section 64, and the amine concentration in the decarbonated exhaust gas can be sufficiently reduced.
  • the washing water in the second-stage washing section 65 is extracted and supplied to the first-stage washing section 64.
  • a part of the retained water (washing water) of the liquid storage section 82 is extracted and supplied to the liquid storage section 81 of the first-stage water washing section 64.
  • the liquid holding section 82 is also maintained at a constant water level, and when the amount of water retained in the liquid holding section 82 increases and exceeds a certain level, the liquid is retained via the retained water discharge line 108.
  • the buff is sent to the storage section 8 1.
  • the present invention is not limited to this, and the pump may supply the retained water (wash water) of the liquid storage unit 82 to the liquid storage unit 81.
  • the decarbonated exhaust gas recovered from the amine in the second-stage washing section 65 passes through the demister 85 provided at the outlet of the second-stage washing section 65 to the gas discharge line 110 at the top of the absorption tower 109 via the demister 85 to the outside. Released.
  • the amine concentration in the decarbonated exhaust gas released out of this system is very small.
  • the demister 85 removes the washing water mist accompanying the decarbonated exhaust gas. That is, the washing water is scattered from the nozzle 99 as a mist, but a part of the washing water mist rises with the decarbonated exhaust gas. Therefore, if the washing water mist is discharged to the outside of the absorption tower together with the decarbonated exhaust gas, the amine compound will be lost. Therefore, a demister 85 is also provided at the outlet of the second-stage washing section to remove the washing water mist accompanying the decarbonated exhaust gas. The water removed by the demister 85 flows down and is retained in the liquid retaining section 82.
  • the water balance is maintained by equalizing the amount of water brought into the absorption tower together with the combustion exhaust gas from the exhaust gas supply line 72 and the amount of water taken out of the absorption tower together with the decarbonated exhaust gas from the gas discharge line 110.
  • the cooling capacity of the heat exchanger 98 is adjusted so that drainage to the outside and water supply from the outside are not required unless there is a mouth.
  • the cooling capacity of the heat exchanger 98 is adjusted so that the temperature of the decarbonated exhaust gas discharged from the gas discharge line 110 is the same as the temperature of the inlet side of the two-stage washing section 65.
  • the inlet and outlet temperatures of the two-stage washing section 65 are the same, there is no condensation of water vapor in the decarbonated exhaust gas in the second-stage washing section 65, and the regeneration tower in the liquid holding section 82 Only the amount of the return discharge water overflows and is supplied to the liquid holding section 81 of the first-stage washing section 64.
  • the present invention is not necessarily limited to this.
  • the outlet temperature of the two-stage washing section 65 is adjusted so as to be lower than the inlet temperature, and water condensation in the decarbonated exhaust gas also occurs in the second-stage washing section 65. In this way, the amount of condensed water may overflow in the liquid storage section 82 and be supplied to the liquid storage section 81 of the first-stage washing section 64.
  • the water washing section has a two-stage structure including a single-stage water washing section 64 and a two-stage water washing section 65, so that the single-stage water washing with respect to the decarbonated exhaust gas.
  • the amine recovery treatment is also performed in the two-stage water washing part 65, so that the amine compound entrained in the decarbonated exhaust gas can be recovered very efficiently. Operation costs can be reduced.
  • the washing water in the second-stage washing section 65 is extracted and supplied to the first-stage washing section ⁇ 4.
  • the amine recovery capacity in the first-stage washing section 64 is improved, and the amine concentration in the washing water in the second-stage washing section 65 is further reduced. The ability is further improved.
  • the amine concentration contained in the washing water of the second-stage washing section 65 is further reduced by supplying the reflux water of the regeneration tower as the washing water to the second-stage washing section 65.
  • the ability to recover amine in the second-stage washing section 65 is further improved.
  • the washing water in the two-stage washing section 65 is extracted and supplied to the first-stage washing section 64, the amine concentration of the washing water in the first-stage washing section 64 is also reduced.
  • the amine recovery capacity in part 64 is also improved.
  • the reflux water in the regeneration tower be supplied to the second-stage washing section 65, and the washing water in the second-stage washing section 65 be extracted and supplied to the first-stage washing section 64.
  • the present invention is not necessarily limited to this, and the regeneration tower reflux water may be simultaneously supplied to the two-stage washing section 65 and the first-stage washing section 64.
  • the demisters 83, 84, and 85 are installed at the outlets of the carbon dioxide absorbing section 0.73, the first-stage flushing section 64 and the second-stage flushing section 65, so that carbon dioxide can be reduced.
  • Part of the absorbing liquid mist supplied to the absorbing section 73 and part of the cleaning water mist supplied to the first-stage washing section 64 and the second-stage washing section 65 are discharged out of the absorption tower together with the decarbonated exhaust gas. The loss of the water-amine compound can be prevented.
  • the decarbonation gas device provided with the above-described amine recovery device has a high capability of recovering the amine compound and is an inexpensive device with low operating costs.
  • first-stage flushing section 64 and the second-stage flushing section 65 may be provided in a packed tower or in a tray tower.
  • the water washing unit has a two-stage structure, but is not necessarily limited to this.
  • the water washing unit may have a three-stage or more multi-stage structure.
  • the pre-stage upstream stage of the de-carbonated exhaust gas stream
  • the amine recovery treatment is also performed in the subsequent water washing section (downstream of the decarbonated exhaust gas flow). That is, in a plurality of washing sections, a process of recovering an amine compound accompanying the decarbonated exhaust gas is sequentially performed.
  • the recycle tower reflux extraction water is supplied to the rearmost washing section of the multiple-stage washing section, and from the rearmost washing section to the preceding washing section.
  • the washing water may be sequentially extracted and supplied to the washing section at the preceding stage.
  • the present invention is not limited to this.
  • a process gas such as a fuel gas may be used, and various other gases may be used.
  • the pressure of the carbon dioxide-containing gas to be subjected to the decarboxylation treatment may be pressurized or normal pressure, and the temperature may be low or high, and is not particularly limited. .
  • it is a normal pressure combustion exhaust gas.
  • the experiment was performed in the same manner as in the above experimental example, except that the washing section in the above experimental example was made one stage, and the recycle tower reflux extraction water was supplied to the one-stage water washing section.
  • the amine concentration in the decarbonated exhaust gas discharged from the absorption tower 61 to the outside of the system was 25 pm, which was higher than that in the above example.
  • the drained liquid (washing water) in the second-stage washing section was not supplied to the first-stage washing section 64, and the other steps were performed in the same manner as the above-mentioned experimental example.
  • the concentration of amide in the decarbonated exhaust gas discharged out of the system from the absorption tower was 11 ppm. This value was sufficiently low as compared with Comparative Example 1, but was high as compared with Experimental Example. From this, the effectiveness of extracting the washing water from the second-stage washing section 65 and supplying it to the first-stage washing section 64 was confirmed.
  • Liquid gas ratio in the second washing section (1 / Nm 3 ) 2.2.
  • the present invention relates to an amine recovery method and apparatus, and a decarbonation gas apparatus provided with the same, and in a decarbonation process for removing carbon dioxide from gas containing carbon dioxide using an amine compound-containing absorbing solution, It is useful when applied to recover amine compounds that accompany decarbonated exhaust gas.

Description

明 細 書 ァミン回収方法及び装置並びにこれを備えた脱炭酸ガス装置 技術分野
本発明はァミン回収方法及び装置並びにこれを備えた脱炭酸ガス装置に関する
背景技術
近年、 火力発電設備ゃボイラ設備では多量の石炭、 重油或いは超重質油を燃料 に用いており、 大気汚染防止及び地球環境清浄化の見地から、 二酸化硫黄を主と する硫黄酸化物、 窒素酸化物、 二酸化炭素等の放出に関する量的、 濃度的抑制が 問題となっている。 なかでも、 最近、 二酸化炭素については、 フロンガスやメタ ンガスとともに地球温暖化の見地から、 その排出の抑制が検討されている。 この ため、 例えば、 P S A (圧力スウィング) 法、 膜分離法及び塩基性化合物による 反応吸収などの二酸化炭素除去方法が検討されている。
これらのうち、 塩基性化合物による二酸化炭素の除去方法の例としては、 特開 5 - 1 8 4 8 6 6号公報 (関連米国特許 5 3 1 8 7 5 8号) にアミン化合物 (以 下、 単にァミンとも称する) の水溶液を二酸化炭素の吸収液として用いることに より、 脱炭酸を行うという方法が提案されている。 この方法においては、 二酸化 炭素とアミン化合物との反応が発熱反応であるため、 二酸化炭素吸収部における 吸収液温度が上昇してァミンの蒸気圧が高くなる。 即ち、 温度上昇によって多く のアミン含有吸収液が蒸発することから、 脱炭酸ガスに同伴するアミン化合物の 量が増加する。 このため、 吸収塔に水洗部を設け、 この水洗部において脱炭酸ガ スと洗浄水とを気液接触させることにより、 脱炭酸ガスに同伴するアミン化合物 を液相に回収していた。
具体的には、 上記特開 5— 1 8 4 8 6 6号公報では第 2図及び第 3図に示すよ うな脱炭酸ガス装置を開示している。
第 2図において、 1は吸収塔、 2は二酸化炭素吸収部、 3は水洗部、 4は排ガ ス供給部、 6は吸収液供給口、 7はノズル、 8は水洗部における液保留部、 9は 循環ポンプ、 1 0は冷却器、 1 1はノズル、 1 2は吸収液排出口、 1 3はブロア 、 1 4は排ガス供給口、 1 5は排ガス冷却器、 1 6は循環ポンプ、 1 7は冷却器 、 1 8はノズル、 1 9は排出ラインである。
詳細な説明は省略するが、 排ガス供給口 1 4から供給された燃焼排ガスは、 冷 却塔 1 5で冷却された後に吸収塔 1に供給され、 この吸収塔 1の二酸化炭素吸収 部 2において、 吸収液供給口 6からノズル 7を介して供給された吸収液と向流接 角虫させられる。 その結果、 嫘焼排ガス中の二酸化炭素が吸収液により吸収除去さ れる。 二酸化炭素を吸収した負荷吸収液は、 吸収液排出口 1 2から図示しない再 生塔へ送られ、 ここで再生されて再び吸収液供給口 1 6から吸収塔 1へと供給さ れ o
一方、 二酸化炭素吸収部 2で脱炭酸された燃焼排ガス (脱炭酸排ガス) は、.二 酸化炭素吸収部 2における二酸化炭素とアミン化合物との発熱反応による温度上 昇のため、 多くのァミン蒸気を同伴した状態で上昇し、 液保留部 8を通って水洗 部 3へと向かう。 そして、 水洗部 3では、 液保留部 8の保留水が循環ポンプ 9に よって輸送され、 冷ま P器 1 0で冷却された後にノズル 1 1から洗浄水として水洗 部 3に供給される。 その結果、 この洗浄水と脱炭酸排ガスとが水洗部 3において 向流接触することにより、 脱炭酸排ガス中のアミン化合物が液相に回収される。 第 3図は再生塔還流水を利用することによってアミン回収能力を向上させたこ とを特徵とするものである。 第 3図において、 2 1は吸収塔、 2 2は二酸化炭素 吸収部、 2 3は水洗部、 2 4は排ガス供給口、 2 5は排ガス排出口、 2 6は吸収 液供給口、 2 7はノズル、 2 8は再生塔還流抜き出し水供給口、 2 9はノズル、 3 0は冷却器、 3 1はノズル、 3 2は充塡部、 3 3は循環ポンプ、 3 4は補給水 供給ライン、 3 5は吸収液排出ポンプ、 3 6は熱交換器、 3 7は冷却器、 3 8は 再生塔、 3 9はノズル、 4 0は下部充塡部、 4 1はリボイラ、 4 2は上部充塡部 、 4 3は還流水ポンプ、 4 4は二酸化炭素分離器、 4 5は二酸化炭素排出ライン 、 4 6は冷却器、 4 7はノズル、 4 8は還流水供給ライン、 4 9は燃焼ガス供給 ブロアである。
詳細な説明は省略する力く、 燃焼ガス供給ブロア 4 9によって供給された燃焼排 ガスは、 冷却塔 3 0で冷却された後に吸収塔 2 1に供給され、 この吸収塔 2 1の 二酸化炭素吸収部 2 2において、 吸収液供給口 2 6からノズル 2 7を介して供給 された吸収液と向流接触させられる。 その結果、 燃焼排ガス中の二酸化炭素が吸 収液により吸収除去される。 二酸化炭素を吸収した負荷吸収液は、 吸収液排出口 1 2から吸収液排出ポンプ 3 5によって再生塔 3 8へ送られ、 ここで再生されて 再び吸収液供給口 2 6力、ら吸収塔 2 1へと供給される。
一方、 二酸化炭素吸収部 2 2で脱炭酸された燃焼排ガス (脱炭酸排ガス) は、 二酸化炭素吸収部 2 2における二酸化炭素とアミン化合物との発熱反応による温 度上昇のため、 多くのアミン蒸気を同伴した状態で上昇し、 水洗部 2 3へと向か う。 そして、 水洗部 2 3では、 洗浄水として抜き出された再生塔還流水の一部が 、 再生塔還流抜き出し水供給口 2 8からノズル 2 9を介して水洗部 2 3に供給さ れる。 その結果、 この洗浄水と脱炭酸排ガスとが水洗部 2 3において向流接触す ることにより、 脱炭酸排ガス中のァミン化合物が液相に回収される。
しかしながら、 特に第 2図に示す上記従来の脱炭酸ガス装置では、 水洗部が一 段であるが故に洗浄水によって回収されたアミンの濃度が高くなるため、 ァミン の回収が不充分となり、 アミンが脱炭酸排ガスに同伴されて脱炭酸プロセス系外 に放出される。 このため、 ァミンが無駄になり、 運転コストの増大等を引き起こ す恐れがあつた。
従って、 本発明は上記の問題点に鑑み、 ァミン化合物含有吸収液により、 二酸 化炭素を含むガスから二酸化炭素を除去する脱炭酸プロセスにおいて、 脱炭酸排 ガスに同伴されるアミン化合物を効率的に回収することができるアミン回収方法 及び装置並びにこれを備えた脱炭酸ガス装置を提供することを課題とする。 発明の開示
上記課題を解決する第 1発明の第 1発明のァミン回収方法は、 二酸化炭素吸収 部においてァミン化合物を含有する吸収液との気液接触により二酸化炭素が吸収 除去された脱炭酸排ガスに対し、 水洗部において洗浄水と気液接触させることよ り、 前記脱炭酸排ガスに同伴するアミン化合物を回収するアミン回収方法におい て、 前記水洗部を複数段構成とし、 これら複数段の水洗部において、 順次、 前記脱 炭酸排ガスに同伴するァミン化合物の回収処理を行うことを特徴とする。
従って、 この第 1発明のァミ ン回収方法によれば、 水洗部を複数段構成とし、 これら複数段の水洗部において、 順次、 前記脱炭酸排ガスに同伴するァミン化合 物の回収処理を行うことにより、 脱炭酸排ガスに同伴されるァミン化合物を非常 に効率良く回収することができ、 運転コストの低減が可能となる。
また、 第 2発明のァミ ン回収方法は、 第 1発明のァミ ン回収方法において、 再生塔還流水を洗浄水として前記水洗部に供給することを特徴とする。
従って、 この第 2発明のァミ ン回収方法によれば、 水洗部の洗浄水に含まれる ァミン濃度が低減されてァミン回収能力が更に向上する。
また、 第 3発明のァミン回収方法は、 第 1又は第 2発明のァミン回収方法にお いて、
後段の水洗部から洗浄水を抜き出して前段の水洗部へ供給することを特徵とす る。
従って、 この第 3発明のァミン回収方法によれば、 前段の水洗部の洗浄水に含 まれるアミン濃度が低減されて前段の水洗部におけるアミン回収能力が向上し、 また、 これに伴って後段の水洗部の洗浄水に含まれるアミン濃度も更に低減する ことにもなり、 全体としてアミン回収能力が更に向上する。
また、 第 4発明のァミ ン回収方法は、 第 1, 第 2又は第 3発明のァミ ン回収方 法において、
二酸化炭素吸収部及び各段の水洗部の出口にデミスタを設け、 これらのデミス 夕によって脱炭酸排ガスに同伴する吸収液ミストゃ洗浄水ミストを除去すること を特徴とする。
従って、 この第 4発明のァミン回収方法によれば、 二酸化炭素吸収部に供給さ れる吸収液ミストの一部や各段の水洗部に供給される洗浄水ミストの一部が脱炭 酸排ガスとともに系外へ放出されて水分ゃァミン化合物が口スするのを防止する ことができる。
また、 第 5発明のァミ ン回収装置は、 二酸化炭素吸収部においてァミ ン化合物 を含有する吸収液との気液接触により二酸化炭素が吸収除去された脱炭酸排ガス に対し、 水洗部において洗浄水と気液接触させることより、 前記脱炭酸排ガスに 同伴するァミン化合物を回収するように構成したアミン回収装置において、 前記水洗部を複数段構成とし、 これら複数段の水洗部において、 順次、 前記脱 炭酸排ガスに同伴するアミン化合物の回収処理を行うようにしたことを特徵とす る。
従って、 この第 5発明のァミン回収装置によれば、 水洗部を複数段構成とし、 これら複数段の水洗部において、 順次、 前記脱炭酸排ガスに同伴するァミン化合 物の回収処理を行うようにしたことにより、 脱炭酸排ガスに同伴されるアミン化 合物を非常に効率良く回収することができ、 運転コストの低減が可能となる。 また、 第 6発明のァミン回収装置は、 第 5発明のァミン回収装置において、 再生塔還流水を洗浄水として前記水洗部に供給するように構成したことを特徴 とする。
従って、 この第 6発明のァミン回収装置によれば、 水洗部の洗浄水に含まれる 了ミン濃度が低減されてァミン回収能力が更に向上する。
また、 第 7発明のァミン回収装置は、 第 5又は第 6発明のァミン回収装置にお いて、
後段の水洗部から洗浄水を抜き出して前段の水洗部へ供給するように構成した ことを特徴とする。
従って、 この第 7発明のァミン回収装置によれば、 前段の水洗部の洗浄水に含 まれるアミン濃度が低減されて前段の水洗部におけるアミン回収能力が向上し、 また、 これに伴つて後段の水洗部の洗浄水に含まれるァミン濃度も更に低減する ことにもなり、 全体としてアミン回収能力が更に向上する。
また、 第 8発明のァミン回収装置は、 第 5, 第 6又は第 7発明のァミン回収装 置において、
二酸化炭素吸収部及び各段の水洗部の出口にデミスタを設け、 これらのデミス タによつて脱炭酸排ガスに同伴する吸収液ミストや洗浄水ミストを除去するよう に構成したことを特徴とする。
従って、 この第 8発明のァミン回収装置によれば、 二酸化炭素吸収部に供給さ れる吸収液ミストの一部や各段の水洗部に供給される洗浄水ミストの一部が脱炭 酸排ガスとともに系外へ放出されて水分ゃァミン化合物がロスするのを防止する ことができる。
また、 第 9発明の脱炭酸ガス装置は、 第 5, 第 6, 第 7又は第 8発明のァミン 回収装置を吸収塔に備えたことを特徴とする。
従って、 この第 9発明の脱炭酸ガス装置は、 第 1 5 , 第 6, 第 7又は第 8発明 のアミン回収装置を吸収塔に備えたことにより、 アミン化合物の回収能力が高く て運転コストの安価な装置となる。 図面の簡単な説明
第 1図は本発明の実施の形態に係る脱炭酸ガス装置の主要部を示す構成図であ るである。
第 2図は従来の脱炭酸ガス装置の主要部を示す構成図である。
第 3図は従来の脱炭酸ガス装置の主要部を示す構成図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態を図面に基づき詳細に説明する。
第 1図は本発明の実施の形態に係る脱炭酸ガス装置の主要部を示す構成図であ る。 第 1図に示すように、 本実施の形態の脱炭酸ガス装置では、 吸収塔 6 1と、 再生塔 6 2と、 冷却塔 6 3とを備えている。
そして、 詳細は後述するが、 本実施の形態の脱炭酸ガス装置では吸収塔 6 1の 水洗部を一段水洗部 6 4と二段水洗部 6 5の二段構成としたこと、 二段水洗部 6 5の洗浄水を抜き出して一段水洗部 6 4に供給すること、 再生塔還流水を洗浄水 として二段水洗部に供給すること、 二酸化炭素吸収部 7 3、 一段水洗部 6 4及び 二段水洗部 6 5の出口にデミスタ 8 3, 8 4, 8 5を設置したことなどを特徴と している。
詳述すると、 火力発電設備ゃボイラ設備などにおいて発生した燃焼排ガスは、 排ガス供給ライン 6 6を介して冷却塔 6 3に供給される。 冷却塔 6 3の底部 6 7 には水が保留されており、 この水が循環ポンプ 6 8によって汲み上げられ、 熱交 換器 6 9で冷却された後にノズル 7 0から充塡部 7 1へ供給される。 その結果、 充塡部 7 1において、 燃焼排ガスが、 ノズル 7 0から放散された冷却水と向流接 触して冷却される。 その後、 燃焼排ガスは排ガス供給ライン 7 2を介して吸収塔 6 1の下部に設けられた二酸化炭素吸収部 7 3に供給される。
吸収塔 6 1に供給された燃焼排ガスは図中に点線の矢印で示すように吸収塔内 を上昇していく。 一方、 再生塔 6 2の底部 7 6に保留されている再生吸収液 (ァ ミン化合物の水溶液) 、 吸収液供給ライン 7 4に設けられた吸収液供給ポンプ 7 7により輸送され、 熱交換器 7 8及び熱交換器 7 9において冷却された後、 二 酸化炭素吸収部 7 3の出口に設けられたノズル 7 5から二酸化炭素吸収部 7 3へ と供給される。 その結果、 二酸化炭素吸収部 7 3において、 燃焼排ガスと吸収液 とが気液接触 (向流接触) するため、 燃焼排ガス中に含まれる二酸化炭素が吸収 液中に吸収されて除去される。
なお、 吸収液に含まれるァミン化合物としては、 モノエタノールァミン、 2— アミノー 2—メチル— 1—プロパノールのようなアルコール性水酸基含有 1級ァ ミ ン類、 ジエタノールァミ ン、 2—メチルアミノエ夕ノールのようなアルコール 性水酸基含有 2級ァミン類、 トリエタノールァミン、 N—メチルジェタノールァ ミ ンのようなアルコ一ル性水酸基含有 3級ァミン類、 エチレンジァミン、 トリエ チレンジァミ ン、 ジエチレントリァミンのようなポリエチレンポリアミ ン類、 ピ ペラジン類、 ピぺリジン類、 ピ口リジン類のような環状ァミ ン類、 キシリ レンジ アミ ンのようなポリアミ ン類、 メチルアミノカルボン酸のようなアミノ酸類等及 びこれらの混合物が挙げられる。 これらのアミン類は通常 1 0〜7 0重量%の水 溶液として使用される。 また、 吸収液には二酸化炭素吸収促進剤或いは腐食防止 剤、 更には、 その他の媒体としてメタノール、 ポリエチレングリコール、 スルフ オラン等を加えることができる。
二酸化炭素を吸収した負荷吸収液は、 流下して吸収塔底部 8 0に保留された後 、 吸収液排出ライン 8 6に設けられた吸収液排出ポンプ 8 7により排出され、 熱 交換器 7 8において再生吸収液と熱交換して加熱された後、 再生塔 6 2の下部充 塡部 8 8の出口に設けられたノズル 8 9から放散され、 下部充塡部 8 8を流下し て再生塔底部 7 6に保留される。
再生塔底部 7 6に保留された負荷吸収液はリボイラ 9 0において供給スティー ムにより例えば 1 2 0 °C程度に加熱される。 その結果、 負荷吸収液中の二酸化炭 素が放出されて吸収液が再生される。 この再生吸収液は再生塔底部 7 6に保留さ れ、 再び、 吸収塔 6 1の二酸化炭素吸収部 7 3へと供給される。 つまり、 吸収液 は循環使用されており、 口スが無いかぎり外部へ排出したり外部から供給したり する必要はない。 一方、 放出された二酸化炭素は図中に点線の矢印で示すように 上昇し、 下部充塡部 8 8及び上部充塡部 9 1を経て再生塔頂部 1 1 1の二酸化炭 素排出ライン 9 3から再生塔外へと排出される。
このとき二酸化炭素には水分が含まれているため、 二酸化炭素排出ライン 9 3 に設けられたコンデンサ (冷却器) 9 4において冷却することにより、 二酸化炭 素に含まれる水分を凝縮し、 この凝縮水と二酸化炭素とを二酸化炭素分離器 9 5 によつて分離する。 凝縮水と分離された高純度の二酸化炭素は二酸化炭素放出ラ イン 9 6から脱炭酸プロセス系外 (以下、 単に系外という) へと放出され、 後の 工程において利用又処分される。 凝縮水は循環ポンプ 9 6によって輸送され、 そ の一部は再生塔還流水供給ライン 9 7側へと抜き出される。 この再生塔還流抜き 出し水は熱交換器 9 8で冷却された後、 二段水洗部 6 5の出口に設けられたノズ ル 9 9から二段水洗部 6 5の頂部へ洗浄水として供給される。 この再生塔還流抜 き出し水はアミン濃度が非常に低い。 前記凝縮水の残りは再生塔 6 2に還流され る。 即ち、 還流ライン 1 0 0を介してノズル 9 2から上部充塡部 9 1の項部へと 供給され、 流下して再生塔底部 7 6に保留される。
一方、 吸収塔 6 1の二酸化炭素吸収部 7 3において二酸化炭素が除去された燃 焼排ガス (脱炭酸排ガス) は、 二酸化炭素吸収部 7 3の出口に設けられたデミス 夕 8 3を経て一段水洗部 6 4へと流人する。 このとき脱炭酸排ガスには多くのァ ミン蒸気が同伴されている。 つまり、 二酸化炭素吸収部 7 3での二酸化炭素とァ ミン化合物との発熱反応によって温度が上昇するため、 多くの吸収液が蒸発して 脱炭酸排ガスとともに上昇していく。 なお、 このときの脱炭酸排ガスに同伴する 水分は後述する水洗部での洗浄水の供耠源となる。 一段水洗部 6 4に流入する脱 炭酸排ガスの温度は例えば約 5 0〜8 0 °Cとなる。
デミスタ 8 3では脱炭酸排ガスに同伴する吸収液ミストを除去する。 つまり、 ノズル 7 5からは吸収液がミストとなつて放散される力^ この吸収液ミストの一 部が脱炭酸排ガスに同伴して上昇してしまう。 従って、 このまま吸収液ミストが 脱炭酸排ガスとともに吸収塔外に放出されてしまうと、 アミン化合物のロスにな つてしまう。 そこで、 二酸化炭素吸収部出口にデミスタ 8 3を設けて脱炭酸排ガ スに同伴する吸収液ミストを除去するようにしている。 デミスタ 8 3で除去した 水分 (吸収液) は流下して吸収塔底部 8 8に保留される。
そして、 一段水洗部 6 4では、 この一段水洗部 6 4における液保留部 8 1の保 留水が、 循環ライン 1 0 1に設けられた循環ポンプ 1 G 2により輸送され、 熱交 換器 1 0 3で冷却された後、 一段水洗部 6 4の出口に設けられたノズル i 0 4か ら一段水洗部 6 4の頂部へ洗浄水として供給される。 その結果、 この洗浄水と脱 炭酸排ガスとがー段水洗部 6 4において向流接触することにより、 脱炭酸排ガス の温度が低下して脱炭酸排ガスに同伴する水蒸気が凝縮するとともに同脱炭酸排 ガスに同伴するアミン化合物が回収される。 このときの凝縮水及び放散された洗 浄水は流下して液保留部 8 1に保留される。
液保留部 8 1の保留水は一定水位に維持されるようになっている。 即ち、 液保 留部 8 1の保留水が増加して一定水位以上になると、 保留水排出ライン 1 0 5を 介して吸収塔底部 8 0へとオーバフロ一されるようになつている。 なお、 ポンプ よって液保留部 8 1の保留水を吸収塔底部 8 0へ輸送するようにしてもよい。 一段水洗部 6 4では脱炭酸排ガスに同伴するアミン化合物の大部分が回収され る力 このとき液保留部 8 1の保留水 (洗浄水) 中のアミン濃度は高くなる。 こ のため、 気液平衡の関係からァミン蒸気圧が高くなり、 これ以上は脱炭酸排ガス 中のアミン濃度を低減させることができない。 即ち、 水洗部が一段だけでは脱炭 酸排ガス中のアミン濃度を充分に低減させることができない。 そこで、 本実施の 形態では水洗部を一段水洗部 6 4と二段水洗部 6 5の二段構成としている。 一段 水洗部 6 4においてアミン回収された脱炭酸排ガスは、 一段水洗部 6 4の出口に 設けられたデミスタ 8 4を経て二段水洗部 6 5へと流れる。
デミスタ 8 4では脱炭酸排ガスに同伴する洗浄水ミストを除去する。 つまり、 ノズル 1 0 4からは洗浄水がミストとなつて放散されるが、 この洗浄水ミストの 一部が脱炭酸排ガスに同伴して上昇してしまう。 従って、 このまま洗浄水ミスト が脱炭酸排ガスとともに吸収塔外に放出されてしまうと、 アミン化合物のロスに なってしまう。 そこで、 一段水洗部出口にもデミスタ 8 4を設けて脱炭酸排ガス に同伴する洗浄水ミストを除去するようにしている。 デミスタ 8 3で除去した水 分 (洗浄水) は流下して液保留部 8 1に保留される。
二段水洗部 6 5では、 この二段水洗部 6 5における液保留部 8 2の保留水が、 循環ライン 1 0 6に設けられた循環ポンプ 1 0 7により輸送され、 熱交換器 9 8 で冷却された後、 二段水洗部 6 5の出口に設けられたノズル 9 9から二段水洗部 6 5の頂部へ洗浄水として供給される。 なお、 この洗浄水には再生塔側から供給 されてきた再生塔還流抜き出し水も合流する。 その結果、 これらの洗浄水と脱炭 酸排ガスとが二段水洗部 6 5において向流接触することにより、 脱炭酸排ガスに 同伴されてきたァミン化合物が回収される。
一段水洗部 6 4において脱炭酸排ガスに同伴するァミン化合物の大部分が回収 されるため、 二段水洗部 6 5では液保留部 8 2のアミン濃度、 即ち、 ノズル 9 9 から供給する洗浄水中に含まれるアミン濃度が非常に低い状態で維持される。 こ のため、 二段水洗部 6 5では気液平衡の関係から脱炭酸排ガス中のアミン濃度が 充分に低減される。 即ち、 二段水洗部 6 5では、 一段水洗部 6 4から放出された 脱炭酸排ガスから更にアミン化合物を回収することができ、 脱炭酸排ガス中のァ ミン濃度を充分に低減させることができる。
しかも、 二段水洗部 6 5の洗浄水が抜き出されて一段水洗部 6 4に供給される ようになつている。 具体的には、 液保留部 8 2の保留水 (洗浄水) の一部が抜き 出されて、 一段水洗部 6 4の液保留部 8 1へ供給されるようになつている。 つま り、 液保留部 8 2でも一定水位に維持されるようになっており、 液保留部 8 2の 保留水が増加して一定水位以上になると、 保留水排出ライン 1 0 8を介して液保 留部 8 1へとォ一バフ口一される。 なお、 これに限定するものではなく、 ポンプ よって液保留部 8 2の保留水 (洗浄水) を液保留部 8 1へ供給するようにしても. よい。
二段水洗部 6 5においてアミン回収された脱炭酸排ガスは、 二段水洗部 6 5 © 出口に設けられたデミスタ 8 5を経て吸収塔頂部 1 0 9のガス放出ライン 1 1 0 から系外に放出される。 この系外に放出される脱炭酸排ガス中に含まれるアミン 濃度は、 非常に小さな値となる。 デミスタ 8 5では脱炭酸排ガスに同伴する洗浄水ミストを除去する。 つまり、 ノズル 9 9からは洗浄水がミストとなつて放散されるが、 この洗浄水ミストの一 部が脱炭酸排ガスに同伴して上昇してしまう。 従って、 このまま洗浄水ミストが 脱炭酸排ガスとともに吸収塔外に放出されてしまうと、 ァミン化合物のロスにな つてしまう。 そこで、 二段水洗部出口にもデミスタ 8 5を設けて脱炭酸排ガスに 同伴する洗浄水ミストを除去するようにしている。 デミスタ 8 5で除去した水分 は流下して液保留部 8 2に保留される。
なお、 排ガス供給ライン 7 2から燃焼排ガスとともに吸収塔内に持ち込まれる 水分量と、 ガス放出ライン 1 1 0から脱炭酸排ガスとともに吸収塔外に持ち出さ れる水分量とを等しく して水バランスが維持されるように熱交換器 9 8の冷却能 力などを調整して、 口スが無いかぎり外部への排水や外部からの給水が不要とな るようにしている。
また、 ガス放出ライン 1 1 0から放出される脱炭酸排ガスの温度は二段水洗部 6 5の入口側と同じになるように熱交換器 9 8の冷却能力などを調整している。 つまり、 この場合には、 二段水洗部 6 5の出入口温度が同じであるため、 二段水 洗部 6 5での脱炭酸排ガス中の水蒸気の凝縮はなく、 液保留部 8 2では再生塔還 流抜き出し水の水量分だけが溢れて、 一段水洗部 6 4の液保留部 8 1に供給され ることになる。 な 、 必ずしもこれに限定するものではなく、 二段水洗部 6 5の 出口温度が入口温度よりも低くなるように調整して、 二段水洗部 6 5でも脱炭酸 排ガス中の水分の凝縮が生じるようにし、 この凝縮水の水量分が液保留部 8 2で 溢れて一段水洗部 6 4の液保留部 8 1に供給されるようにしてもよい。
以上、 詳細に説明したように、 本実施の形態によれば、 水洗部を一段水洗部 6 4と二段水洗部 6 5の二段構成とすることにより、 脱炭酸排ガスに対して、 一段 水洗部 6 4でアミン回収処理をした後、 更に、 二段水洗部 6 5でもアミン回収処 理をするようにしたため、 脱炭酸排ガスに同伴されるアミン化合物を非常に効率 良く回収することができ、 運転コス卜の低減が可能となる。
付言すると、 水洗部を一段構成としたまま高さだけを高く しても、 アミン化合 物の回収性能は向上する力^ 水洗部における洗浄水中のアミン濃度が高くなるた め、 どうしても、 気液平衡上、 脱炭酸排ガス中のァミン濃度を充分に低くするこ とはできない。 このことからも、 水洗部を二段構成とすることが非常に有効な手 段であることが分かる。
また、 本実施の形態によれば、 二段水洗部 6 5の洗浄水を抜き出して一段水洗 部 δ 4に供給するようにしたことにより、 一段水洗部 6 4の洗浄水に含まれるァ ミン濃度が低減されて一段水洗部 6 4におけるアミン回収能力が向上し、 また、 これに伴って二段水洗部 6 5の洗浄水に含まれるアミン濃度も更に低減すること にもなり、 全体としてアミン回収能力が更に向上する。
また、 本実施の形態によれば、 再生塔還流水を洗浄水として二段水洗部 6 5に 供給することにより、 二段水洗部 6 5の洗浄水に含まれるアミン濃度が更に低減 されるため、 二段水洗部 6 5におけるァミン回収能力が更に向上する。 更には、 この二段水洗部 6 5の洗浄水が抜き出されて一段水洗部 6 4に供給されることに より、 一段水洗部 6 4の洗浄水のアミン濃度も低減されるため、 一段水洗部 6 4 におけるアミン回収能力も向上する。
なお、 上記のように再生塔還流水は二段水洗部 6 5に供給し、 この二段水洗部 6 5の洗浄水を抜き出して一段水洗部 6 4に供給するようにすることが望ましい が、 必ずしもこれに限定するものではなく、 再生塔還流水を二段水洗部 6 5と一 段水洗部 6 4とに同時に供給するようにしてもよい。
また、 本実施の形態によれば、 二酸化炭素吸収部.7 3、 一段水洗部 6 4及び二 段水洗部 6 5の出口にデミスタ 8 3, 8 4 , 8 5を設置したことにより、 二酸化 炭素吸収部 7 3に供給される吸収液ミス卜の一部や一段水洗部 6 4及び二段水洗 部 6 5に供給される洗浄水ミストの一部が脱炭酸排ガスとともに吸収塔外へ放出 されて水分ゃァミン化合物がロスするのを防止することができる。
そして、 上記のようなァミン回収装置を備えた脱炭酸ガス装置は、 ァミン化合 物の回収能力が高くて運転コス卜の安価な装置となる。
なお、 一段水洗部 6 4及び二段水洗部 6 5は充填塔にあっても、 棚段塔であつ てもよい。
また、 上記実施の形態では水洗部を二段構成としているが、 必ずしもこれに限 定するものではなく、 水洗部を三段以上の複数段構成としてもよい。 この場合に も、 ァミン化合物を含む脱炭酸排ガスに対して、 前段 (脱炭酸排ガス流の上流段 ) の水洗部でアミン回収処理をした後、 更に、 後段 (脱炭酸排ガス流の下流段) の水洗部でもアミン回収処理を行う。 即ち、 複数段の水洗部において、 順次、 脱 炭酸排ガスに同伴するァミン化合物の回収処理を行う。 また、 この場合には、 複 数段の水洗部のうちの最も後段の水洗部に再生塔還流抜き出し水を供給するとと もに、 この最も後段の水洗部から、 その前段の水洗部へ、 更に、 その前段の水洗 部へと、 順次、 洗浄水を抜き出して供給するようにすればよい。
また、 上記実施の形態では燃料の燃焼排ガスに含まれる二酸化炭素を吸収する 場合を例に挙げて説明したが、 これに限定するものではなく、 脱炭酸処理の対象 となる二酸化炭素含有ガスとしては、 燃料用ガスなどのプロセスガスであっても よく、 その他様々なガスが適用できる。 また、 脱炭酸処理の対象となる二酸化炭 素含有ガスの圧力は加圧であっても、 常圧であってもよく、 温度は低温であって も、 高温であつもよく、 特に制限はない。 好ましくは、 常圧の燃焼排ガスである
[具体的な実験例の説明]
ここで、 実験例により本発明を具体的に説明するが、 本発明はこれらに限定さ れるものではない。
く実験例〉
本発明の方法として次のような実験を行った。 即ち、 二酸化炭素 1 0 %を含む 燃焼排ガス 3 0 NmVh を吸収塔 6 1の二酸化炭素吸収部 7 3に供給し、 アルコ一 ル性水酸基含有 2級ァミンの水溶液 (吸収液) と向流接触させて二酸化炭素を吸 収した。 残りの脱炭酸排ガスを二酸化炭素吸収部出口のデミスタ 8 3に供給後、 一段水洗部 6 4にて洗浄水と液/ガス比 2. 21/Nm3で向流接触させ、 一段水洗部出 口のデミスタ 8 4を通過させた。 更に、 二段水洗部 6 5にて脱炭酸排ガスを洗浄 水と液ノガス比 2. 21/Nm3で向流接触させ、 二段水洗部出口のデミスタ 8 5を通過 させた後に系外へ放出した。 この際、 一段水洗部出口ガス温度及び二段水洗部出 口ガス温度が共に 4 6 °Cとなるように運転するとともに、 二段水洗部 6 5には再 生塔還流抜き出し水を 1. 11/hで供給し、 二段水洗部 6 5の洗浄水を抜き出して一 段水洗部 6 4に供給した。 その結果、 吸収塔 6 1から系外に放出された脱炭酸排 ガス中のァミン濃度は 8 ppmであった。 <比較例 1 >
従来法として、 上記実験例において水洗部を一段とし、 再生塔還流抜き出し水 を一段水洗部に供給する他は、 上記実験例と同様に実施した。 その結果、 吸収塔 6 1から系外に放出された脱炭酸排ガス中のアミン濃度は 2 5 pm と上記実施例 に比較して高かった。
く比較例 2〉 '
上記実験例において、 二段水洗部抜き出し液 (洗浄水) を一段水洗部 6 4に供 給せず、 その他は上記実験例と同様に実施した。 その結果、 吸収塔から系外に放 出された脱炭酸排ガス中のァミン濃度は 1 1 ppm であった。 この値は上記比較例 1と比較すると充分に低い値であるが、 上記実験例と比較すると高い値であった 。 このことから、 二段水洗部 6 5の洗浄水を抜き出して一段水洗部 6 4に供給す ることの有効性が確認できた。
上記実験例と上記比較例 ί, 2の結果をまとめると、 [表 1 ] のとおりである 。 水洗部を二段構成にすることにより、 系外に放出されるアミン濃度を充分に低 く抑えることができ、 また、 二段水洗部 6 5の洗浄水を抜き出して一段水洗部 6 4に供給すれば更に系外に放出されるァミン濃度を低く抑えることができる。
[表 1 ] 比較例 1 比較例 2
—段水洗部液ガス比(1/Nm3) 2. 2 2. 2 2. 2
一段水洗部出口ガス温度 (°C) 46 46 46
二段水洗部液ガス比( 1/Nm3 ) 2. 2 2. 2
二段水洗部出口ガス温度 (°C) 46 46
再生塔還流抜き出し水流量 ( 1 /h) 1. 1 1. 1 1. 1
二段水洗部抜き出し液の
一段水洗部への供耠 有
ニ酸ィヒ炭素吸収塔出口ガス中の
ァミン濃度 ( p p m) 8 25 11 産業上の利用可能性
以上のように本発明はァミン回収方法及び装置並びにこれを備えた脱炭酸ガス 装置に関するものであり、 ァミン化合物含有吸収液により、 二酸化炭素を含むガ スから二酸化炭素を除去する脱炭酸プロセスにおいて、 脱炭酸排ガスに同伴する アミン化合物を回収する場合に適用して有用なものである。

Claims

請求の範囲
1 . 二酸化炭素吸収部においてァミン化合物を含有する吸収液との気液接触 により二酸化炭素が吸収除去された脱炭酸排ガスに対し、 水洗部において洗浄水 と気液接触させることより、 前記脱炭酸排ガスに同伴するアミン化合物を回収す るアミン回収方法において、
前記水洗部を複数段構成とし、 これら複数段の水洗部において、 順次、 前記脱 炭酸排ガスに同伴するァミン化合物の回収処理を行うことを特徵とするアミン回 収方法。
2 . 請求の範囲第 1項に記載するァミン回収方法において、
再生塔還流水を洗浄水として前記水洗部に供給することを特徴とするアミン回 収方法。
3 . 請求の範囲第 1項又は第 2項に記載するアミン回収方法において、 後段の水洗部から洗浄水を抜き出して前段の水洗部へ供給することを特徴とす るアミン回収方法。
4 . 請求の範囲第 1項, 第 2項又は第 3項に記載するァミン回収方法におい て、
二酸化炭素吸収部及び各段の水洗部の出口にデミスタを設け、 これらのデミス 夕によって脱炭酸排ガスに同伴する吸収液ミストゃ洗浄水ミストを除去すること を特徴とするアミン回収方法。
5 . 二酸化炭素吸収部においてァミン化合物を含有する吸収液との気液接触 により二酸化炭素が吸収除去された脱炭酸排ガスに対し、 水洗部において洗浄水 と気液接触させることより、 前記脱炭酸排ガスに同伴するァミン化合物を回収す るように構成したアミン回収装置において、
前記水洗部を複数段構成とし、 これら複数段の水洗部において、 順次、 前記脱 炭酸排ガスに同伴するアミン化合物の回収処理を行うようにしたことを特徵とす るアミ ン回収装置。
6 . 請求の範囲第 5項に記載するアミン回収装置において、
再生塔還流水を洗浄水として前記水洗部に供給するように構成したことを特徴 とするアミン回収装置。
7 . 請求の範囲第 5項又は第 6項に記載するアミン回収装置において、 後段の水洗部から洗浄水を抜き出して前段の水洗部へ供給するように構成した ことを特徴とするアミン回収装置。
8 . 請求の範囲第 5項, 第 6項又は第 7項に記載するアミン回収装置におい て、
二酸化炭素吸収部及び各段の水洗部の出口にデミスタを設け、 これらのデミス 夕によって脱炭酸排ガスに同伴する吸収液ミストや洗浄水ミストを除去するよう に構成したことを特徵とするァミン回収装置。
9 . 請求の範囲第 5項, 第 6項, 第 7項又は第 8項に記載するァミン回収装 置を吸収塔に備えたことを特徵とする脱炭酸ガス装置。
PCT/JP2001/009310 2000-10-25 2001-10-24 Procede et appareil de recuperation d'amine et systeme d'elimination de dioxyde de carbone comprenant l'appareil WO2002034369A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU10924/02A AU772954B2 (en) 2000-10-25 2001-10-24 Method and apparatus for recovering amine and system for removing carbon dioxide comprising the apparatus
CA002393626A CA2393626C (en) 2000-10-25 2001-10-24 Amine recovery method and apparatus and decarbonation apparatus having same
DE60141913T DE60141913D1 (de) 2000-10-25 2001-10-24 Verfahren und vorrichtung zur wiedergewinnung von aminen und anlage zur entfernung von kohlendioxid mit der vorrichtung
EP01978863A EP1334759B1 (en) 2000-10-25 2001-10-24 Method and apparatus for recovering amine and system for removing carbon dioxide comprising the apparatus
US10/168,975 US6784320B2 (en) 2000-10-25 2001-10-24 Amine recovery method and apparatus and decarbonation apparatus having same
DK01978863.7T DK1334759T3 (da) 2000-10-25 2001-10-24 Fremgangsmåde og apparat til genvinding af aminer og anlæg til fjernelse af carbondioxid med apparatet
NO20023053A NO332555B1 (no) 2000-10-25 2002-06-24 Fremgangsmate og apparatur for gjenvinning av amin og fjerning av karbondioksid
US10/700,504 US7316737B2 (en) 2000-10-25 2003-11-05 Amine recovery apparatus and decarbonation apparatus having same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000324965A JP3969949B2 (ja) 2000-10-25 2000-10-25 アミン回収方法及び装置並びにこれを備えた脱炭酸ガス装置
JP2000-324965 2000-10-25

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US10168975 A-371-Of-International 2001-10-24
US10/168,975 A-371-Of-International US6784320B2 (en) 2000-10-25 2001-10-24 Amine recovery method and apparatus and decarbonation apparatus having same
US10/700,504 Division US7316737B2 (en) 2000-10-25 2003-11-05 Amine recovery apparatus and decarbonation apparatus having same

Publications (1)

Publication Number Publication Date
WO2002034369A1 true WO2002034369A1 (fr) 2002-05-02

Family

ID=18802413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/009310 WO2002034369A1 (fr) 2000-10-25 2001-10-24 Procede et appareil de recuperation d'amine et systeme d'elimination de dioxyde de carbone comprenant l'appareil

Country Status (10)

Country Link
US (2) US6784320B2 (ja)
EP (1) EP1334759B1 (ja)
JP (1) JP3969949B2 (ja)
AU (1) AU772954B2 (ja)
CA (1) CA2393626C (ja)
DE (1) DE60141913D1 (ja)
DK (1) DK1334759T3 (ja)
NO (1) NO332555B1 (ja)
RU (1) RU2230599C2 (ja)
WO (1) WO2002034369A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9914088B2 (en) 2012-08-08 2018-03-13 Mitsubishi Heavy Industries, Ltd. CO2 recovery unit and CO2 recovery method
US11273407B2 (en) 2017-10-31 2022-03-15 Mitsubishi Heavy Industries Engineering, Ltd. Acid gas removal device and acid gas removal method

Families Citing this family (132)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20023050L (no) * 2002-06-21 2003-12-22 Fleischer & Co Fremgangsmåte samt anlegg for utf degree relse av fremgangsmåten
EP1434414B1 (en) * 2002-12-27 2013-11-20 Koninklijke KPN N.V. System for measuring the effect of an ADSL splitter on an ISDN network
DE10305578A1 (de) * 2003-02-11 2004-08-19 Basf Ag Verfahren und Vorrichtung zur Reduzierung des aerosolbedingten Austrages aus einer Trennkolonne
JP2005008478A (ja) * 2003-06-18 2005-01-13 Toshiba Corp 排ガス中の二酸化炭素回収システムおよび二酸化炭素回収方法
JP2007533431A (ja) * 2003-11-10 2007-11-22 ビーエーエスエフ アクチェンゲゼルシャフト 酸性ガスを流体の流れから除去することによって高い圧力下にある酸性ガス流を取得する方法
US20070163443A1 (en) * 2004-01-30 2007-07-19 Hideshige Moriyama System and method for recovering carbon dioxide in exhaust gas
JP2006035059A (ja) * 2004-07-26 2006-02-09 Toshiba Corp 排ガス中の二酸化炭素の回収システムおよび回収方法
JP5030371B2 (ja) * 2004-04-15 2012-09-19 三菱重工業株式会社 吸収液、吸収液を用いたco2又はh2s又はその双方の除去装置及び方法
JP2006150298A (ja) * 2004-11-30 2006-06-15 Mitsubishi Heavy Ind Ltd 吸収液、吸収液を用いたco2又はh2s除去装置及び方法
JP5039276B2 (ja) * 2004-12-13 2012-10-03 三菱重工業株式会社 吸収液、吸収液を用いたガス中のco2又はh2s除去装置及び方法
JP5021917B2 (ja) * 2005-09-01 2012-09-12 三菱重工業株式会社 Co2回収装置及び方法
US20070148068A1 (en) * 2005-12-23 2007-06-28 Burgers Kenneth L Reclaiming amines in carbon dioxide recovery
CA2647805C (en) 2006-03-30 2011-08-23 Asahi Kasei Chemicals Corporation Mixture for recovery utilization or transfer of carbon dioxide
JP5232361B2 (ja) * 2006-04-13 2013-07-10 三菱重工業株式会社 Co2回収装置及びco2回収方法
US8034166B2 (en) * 2006-05-18 2011-10-11 Basf Se Carbon dioxide absorbent requiring less regeneration energy
JP5230080B2 (ja) 2006-06-06 2013-07-10 三菱重工業株式会社 吸収液、co2の除去装置及び方法
JP4831834B2 (ja) * 2007-03-28 2011-12-07 三菱重工業株式会社 Co2回収装置及びco2吸収液回収方法
JP5215595B2 (ja) * 2007-06-18 2013-06-19 三菱重工業株式会社 吸収液、吸収液を用いたco2又はh2s除去装置及び方法
ITRM20070446A1 (it) 2007-08-20 2009-02-21 Ast Engineering S R L Impianto modulare per l abbattimento degli inquinanti contenuti nei fumi industriale
US8182577B2 (en) * 2007-10-22 2012-05-22 Alstom Technology Ltd Multi-stage CO2 removal system and method for processing a flue gas stream
US7862788B2 (en) * 2007-12-05 2011-01-04 Alstom Technology Ltd Promoter enhanced chilled ammonia based system and method for removal of CO2 from flue gas stream
US8192530B2 (en) 2007-12-13 2012-06-05 Alstom Technology Ltd System and method for regeneration of an absorbent solution
AU2009216164B2 (en) * 2008-02-22 2011-10-13 Mitsubishi Heavy Industries, Ltd. Apparatus for recovering CO2 and method of recovering CO2
US7846240B2 (en) 2008-10-02 2010-12-07 Alstom Technology Ltd Chilled ammonia based CO2 capture system with water wash system
AU2009303733A1 (en) * 2008-10-14 2010-04-22 Exxonmobil Upstream Research Company Removal of acid gases from a gas stream
US8404027B2 (en) 2008-11-04 2013-03-26 Alstom Technology Ltd Reabsorber for ammonia stripper offgas
FR2938454B1 (fr) * 2008-11-20 2014-08-22 Inst Francais Du Petrole Procede de desacidification d'un gaz par une solution absorbante aux amines, avec section de lavage a l'eau
FR2942729B1 (fr) * 2009-03-05 2011-08-19 Inst Francais Du Petrole Procede de desacidification d'un gaz par une solution absorbante, avec section de lavage a l'eau optimisee
JP5751743B2 (ja) 2009-03-09 2015-07-22 三菱重工業株式会社 排ガス処理装置及び排ガス処理方法
NO332812B1 (no) 2009-03-13 2013-01-21 Aker Clean Carbon As Amin utslippskontroll
JP5383339B2 (ja) * 2009-06-17 2014-01-08 三菱重工業株式会社 Co2回収装置に用いるco2吸収液の濃度管理方法
JP2012530597A (ja) * 2009-06-22 2012-12-06 ビーエーエスエフ ソシエタス・ヨーロピア ストリッピング助剤を含有する吸収剤を用いる酸性ガスの除去
JP5350935B2 (ja) * 2009-08-06 2013-11-27 バブコック日立株式会社 Co2回収装置排ガスの処理方法
US8309047B2 (en) 2009-09-15 2012-11-13 Alstom Technology Ltd Method and system for removal of carbon dioxide from a process gas
EP2322265A1 (en) 2009-11-12 2011-05-18 Alstom Technology Ltd Flue gas treatment system
JP5351728B2 (ja) * 2009-12-03 2013-11-27 三菱重工業株式会社 Co2回収装置およびco2回収方法
US20110146489A1 (en) * 2009-12-17 2011-06-23 Alstom Technology Ltd Ammonia removal, following removal of co2, from a gas stream
JP5371734B2 (ja) 2009-12-25 2013-12-18 三菱重工業株式会社 Co2回収装置およびco2回収方法
US9314734B2 (en) * 2010-01-14 2016-04-19 Alstom Technology Ltd Wash water method and system for a carbon dioxide capture process
JP2011189262A (ja) * 2010-03-15 2011-09-29 Babcock Hitachi Kk 二酸化炭素回収装置からの排ガスの処理方法及び装置
JP5665022B2 (ja) * 2010-03-31 2015-02-04 新日鉄住金エンジニアリング株式会社 二酸化炭素ガス回収装置
JP5686987B2 (ja) 2010-04-20 2015-03-18 三菱日立パワーシステムズ株式会社 二酸化炭素化学吸収設備を備えた排ガス処理システム
EP2571599B1 (de) * 2010-05-18 2014-03-12 Basf Se Verfahren zur entfernung von kohlendioxid (co2) aus einem kreisgassystem
US8814989B2 (en) * 2010-05-18 2014-08-26 Basf Se Process for removing carbon dioxide (CO2) from a cycle gas system
FR2961270B1 (fr) * 2010-06-11 2017-07-28 Air Liquide Procede et appareil de sechage et de compression d'un flux riche en co2
US8728209B2 (en) 2010-09-13 2014-05-20 Alstom Technology Ltd Method and system for reducing energy requirements of a CO2 capture system
NO333145B1 (no) * 2010-10-28 2013-03-18 Sargas As Varmeintegrering i et CO2-fangstanlegg
JP5694137B2 (ja) 2011-01-05 2015-04-01 株式会社東芝 二酸化炭素分離回収システム及びその制御方法
EP2481466A1 (de) * 2011-01-31 2012-08-01 Siemens Aktiengesellschaft Vorrichtung und Verfahren zum Aufreinigen eines mit Nitrosamin verunreinigten Produktes einer Prozessanlage
US8329128B2 (en) 2011-02-01 2012-12-11 Alstom Technology Ltd Gas treatment process and system
US9028784B2 (en) 2011-02-15 2015-05-12 Alstom Technology Ltd Process and system for cleaning a gas stream
US9133407B2 (en) 2011-02-25 2015-09-15 Alstom Technology Ltd Systems and processes for removing volatile degradation products produced in gas purification
US8899557B2 (en) 2011-03-16 2014-12-02 Exxonmobil Upstream Research Company In-line device for gas-liquid contacting, and gas processing facility employing co-current contactors
DK2691163T3 (en) * 2011-03-31 2015-08-17 Basf Se DETENTION OF AMINES FOR REMOVAL OF SURE GAS EMISSIONS BY AMIN-absorbents
US8529857B2 (en) 2011-03-31 2013-09-10 Basf Se Retention of amines in the removal of acid gases by means of amine absorption media
JP5875245B2 (ja) * 2011-04-14 2016-03-02 三菱重工業株式会社 Co2回収システム及びco2ガス含有水分の回収方法
JP5627534B2 (ja) * 2011-04-18 2014-11-19 三菱重工業株式会社 吸収液、吸収液を用いたガス中のco2又はh2s除去装置及び方法
JP5703106B2 (ja) * 2011-04-18 2015-04-15 株式会社東芝 アミン回収システム及び二酸化炭素回収システム
JP2012236166A (ja) * 2011-05-12 2012-12-06 Mitsubishi Heavy Ind Ltd Co2回収装置およびco2回収方法
JP5697250B2 (ja) * 2011-06-07 2015-04-08 三菱日立パワーシステムズ株式会社 燃焼排ガス中の二酸化炭素除去装置の制御方法および制御装置
NO20110974A1 (no) 2011-07-05 2013-01-07 Aker Clean Carbon As Utslippskontroll
CA2841453C (en) * 2011-07-13 2015-06-09 Ihi Corporation Method of recovering carbon dioxide and recovery apparatus
CN102389680B (zh) * 2011-08-23 2013-04-24 浙江省环境工程有限公司 百洁布废气的治理方法
JP2013059726A (ja) 2011-09-13 2013-04-04 Mitsubishi Heavy Ind Ltd Co2回収装置およびco2回収方法
JP5738137B2 (ja) 2011-09-13 2015-06-17 三菱重工業株式会社 Co2回収装置およびco2回収方法
FR2980374A1 (fr) * 2011-09-22 2013-03-29 IFP Energies Nouvelles Procede de captage de dioxyde de carbone, avec section de lavage acide optimisee
US8864878B2 (en) 2011-09-23 2014-10-21 Alstom Technology Ltd Heat integration of a cement manufacturing plant with an absorption based carbon dioxide capture process
US9901861B2 (en) * 2011-10-18 2018-02-27 General Electric Technology Gmbh Chilled ammonia based CO2 capture system with wash system and processes of use
JP5703240B2 (ja) * 2011-10-26 2015-04-15 株式会社東芝 アミン回収装置、アミン回収方法、及び二酸化炭素回収システム
US9492786B2 (en) * 2011-11-22 2016-11-15 Fluor Corporation Multi-purpose absorber
US20140322115A1 (en) 2011-11-29 2014-10-30 Sulzer Chemtech Ag Method and an Apparatus for the Absorption of Carbon Dioxide
CN103157362A (zh) * 2011-12-09 2013-06-19 中国科学院广州地球化学研究所 一种用于处理有机废气的微乳吸收液的制备方法
US8911538B2 (en) 2011-12-22 2014-12-16 Alstom Technology Ltd Method and system for treating an effluent stream generated by a carbon capture system
KR101351320B1 (ko) * 2011-12-28 2014-01-15 재단법인 포항산업과학연구원 암모니아수를 이용한 배가스의 이산화탄소 제거 장치 및 방법
US20130175004A1 (en) * 2012-01-06 2013-07-11 Alstom Technology Ltd Gas treatment system with a heat exchanger for reduction of chiller energy consumption
US9162177B2 (en) 2012-01-25 2015-10-20 Alstom Technology Ltd Ammonia capturing by CO2 product liquid in water wash liquid
US9021810B2 (en) 2012-01-27 2015-05-05 The University Of Kentucky Research Foundation Fossil-fuel-fired power plant
US9028654B2 (en) 2012-02-29 2015-05-12 Alstom Technology Ltd Method of treatment of amine waste water and a system for accomplishing the same
ES2605753T3 (es) * 2012-03-15 2017-03-16 Cryostar Sas Aparato de separación de niebla
WO2013148721A1 (en) 2012-03-26 2013-10-03 Fluor Technologies Corporation Emissions reduction for co2 capture
US8864879B2 (en) 2012-03-30 2014-10-21 Jalal Askander System for recovery of ammonia from lean solution in a chilled ammonia process utilizing residual flue gas
EP2644254B1 (en) * 2012-03-30 2016-08-17 General Electric Technology GmbH Scrubber for cleaning a process gas and recovering heat
JP6125160B2 (ja) * 2012-06-15 2017-05-10 三菱重工業株式会社 排ガス処理システム
JP6066605B2 (ja) 2012-07-20 2017-01-25 三菱重工業株式会社 Co2回収システム
JP5972696B2 (ja) 2012-07-20 2016-08-17 三菱重工業株式会社 Co2回収システム
JP6016513B2 (ja) 2012-08-09 2016-10-26 三菱重工業株式会社 Co2回収装置およびco2回収方法
JP5968159B2 (ja) * 2012-08-20 2016-08-10 三菱重工業株式会社 Co2回収装置およびco2回収方法
WO2014037214A1 (de) * 2012-09-05 2014-03-13 Basf Se Verfahren zur abtrennung von sauergasen aus einem wasserhaltigen fluidstrom
US8501130B1 (en) * 2012-09-24 2013-08-06 Mitsubishi Heavy Industries, Ltd. Carbon dioxide recovery system and method
US9101912B2 (en) 2012-11-05 2015-08-11 Alstom Technology Ltd Method for regeneration of solid amine CO2 capture beds
US20140150652A1 (en) * 2012-11-30 2014-06-05 Alstom Technology Ltd. Post absorber scrubbing of so3
US9447996B2 (en) 2013-01-15 2016-09-20 General Electric Technology Gmbh Carbon dioxide removal system using absorption refrigeration
BR112015015744B1 (pt) 2013-01-25 2021-09-21 Exxonmobil Upstream Research Company Contactar uma corrente de gás com uma corrente de líquido
AR096132A1 (es) 2013-05-09 2015-12-09 Exxonmobil Upstream Res Co Separar dióxido de carbono y sulfuro de hidrógeno de un flujo de gas natural con sistemas de co-corriente en contacto
AR096078A1 (es) 2013-05-09 2015-12-02 Exxonmobil Upstream Res Co Separación de impurezas de una corriente de gas usando un sistema de contacto en equicorriente orientado verticalmente
CN103301705B (zh) * 2013-06-06 2015-08-19 江苏新世纪江南环保股份有限公司 一种脱硫烟气细微颗粒物控制装置及方法
CN103736378B (zh) * 2013-12-20 2015-12-02 金川集团股份有限公司 一种含氯废气吸收系统
US8986640B1 (en) 2014-01-07 2015-03-24 Alstom Technology Ltd System and method for recovering ammonia from a chilled ammonia process
JP6162051B2 (ja) 2014-01-31 2017-07-12 三菱重工業株式会社 気液接触装置及びそれを備えたco2回収装置
CN104971594A (zh) * 2014-04-08 2015-10-14 上海三卿环保科技有限公司 气相氧化-液相氧化-吸收三段式干湿法烟气脱硝工艺
JP6581768B2 (ja) 2014-11-04 2019-09-25 三菱重工エンジニアリング株式会社 Co2回収装置およびco2回収方法
SG11201704529RA (en) 2015-01-09 2017-07-28 Exxonmobil Upstream Res Co Separating impurities from a fluid steam using multiple co-current contactors
JP6345127B2 (ja) 2015-01-22 2018-06-20 三菱重工業株式会社 排ガス処理システム及び方法
AU2016220515B2 (en) 2015-02-17 2019-02-28 Exxonmobil Upstream Research Company Inner surface features for co-current contactors
SG11201706589VA (en) 2015-03-13 2017-09-28 Exxonmobil Upstream Res Co Coalescer for co-current contactors
CN104707454B (zh) * 2015-03-27 2016-09-28 山东钢铁股份有限公司 塔式焦炉烟道气余热利用及同时脱硫脱硝系统
US9573816B2 (en) 2015-04-02 2017-02-21 General Electric Technology Gmbh System for low pressure carbon dioxide regeneration in a chilled ammonia process
CN104874273B (zh) * 2015-05-12 2017-09-22 安徽金森源环保工程有限公司 一种新型脱硫塔深度除雾、除飞沫残尘装置
CN105056709A (zh) * 2015-07-30 2015-11-18 江苏金曼科技有限责任公司 一种尾气处理方法
EP3181540B1 (de) * 2015-12-18 2019-07-24 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Verfahren zur trennung von methanol aus gasgemischen
JP6723635B2 (ja) * 2016-01-25 2020-07-15 三菱重工エンジニアリング株式会社 Co2回収装置及びco2回収方法
JP6726039B2 (ja) 2016-06-30 2020-07-22 株式会社東芝 酸性ガス回収装置および酸性ガス回収方法
FR3060405B1 (fr) * 2016-12-19 2021-07-09 Ifp Energies Now Colonne d'echange de matiere et/ou de chaleur entre un gaz et un liquide avec moyens de recirculation du liquide
WO2018190104A1 (ja) 2017-04-12 2018-10-18 株式会社アネモス 燃焼排ガス中の二酸化炭素を回収するための装置及び方法
JP6878152B2 (ja) * 2017-05-31 2021-05-26 三菱パワー株式会社 Co2化学回収装置及びその制御方法
JP6895815B2 (ja) * 2017-06-14 2021-06-30 日鉄エンジニアリング株式会社 ガスの処理装置、二酸化炭素の回収設備、及び二酸化炭素の回収方法
BR112019026289B1 (pt) 2017-06-15 2023-10-10 ExxonMobil Technology and Engineering Company Sistema de fracionamento com o uso de sistemas de contato de cocorrente compactos e método para remover hidrocarbonetos pesados em corrente de gás
CA3067338C (en) 2017-06-15 2023-03-07 Exxonmobil Upstream Research Company Fractionation system using bundled compact co-current contacting systems
BR112019026673A2 (pt) 2017-06-20 2020-06-30 Exxonmobil Upstream Research Company sistemas e métodos de contato compactos para coletar compostos contendo enxofre
EP3437718A1 (en) * 2017-08-01 2019-02-06 Alfa Laval Corporate AB A scrubber for cleaning of a gas
MX2020001415A (es) 2017-08-21 2020-03-09 Exxonmobil Upstream Res Co Integracion de remocion de solvente frio y gas acido.
KR102034860B1 (ko) * 2017-11-24 2019-10-21 한국에너지기술연구원 아민을 포함하는 기체의 고순도화 공정
US11207634B2 (en) 2018-07-02 2021-12-28 University Of Kentucky Research Foundation Apparatus and method for recovering an amine solvent from an acid gas stream
US10773206B2 (en) 2018-10-10 2020-09-15 Mitsubishi Heavy Industries Engineering, Ltd. CO2 recovery device and CO2 recovery method
JP6811759B2 (ja) * 2018-11-09 2021-01-13 三菱重工エンジニアリング株式会社 Co2回収装置およびco2回収方法
JP2020082018A (ja) * 2018-11-29 2020-06-04 株式会社東芝 二酸化炭素回収システムおよびその運転方法
JP2021020193A (ja) * 2019-07-30 2021-02-18 株式会社東芝 二酸化炭素回収システムおよび二酸化炭素回収システムの運転方法
CN110523546A (zh) * 2019-09-26 2019-12-03 广东致远新材料有限公司 动力波洗涤器喷嘴、动力波洗涤器及钽铌氢氧化物中氟离子的清洗方法
JP2022109656A (ja) * 2021-01-15 2022-07-28 株式会社東芝 二酸化炭素回収システムおよび二酸化炭素回収システムの運転方法
JPWO2022176534A1 (ja) * 2021-02-22 2022-08-25
CN113926303B (zh) * 2021-09-10 2022-08-02 中国石油化工股份有限公司 一种低分压二氧化碳捕集吸收塔
FR3122249B1 (fr) * 2021-12-17 2023-03-24 Air Liquide Installation de refroidissement d’un flux gazeux, contenant du CO2 et un procédé mettant en œuvre une telle installation

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2167738A (en) 1984-11-26 1986-06-04 Snam Progetti Process for the selective removal of hydrogen sulphide from gaseous mixtures also containing carbon dioxide
JPH04161225A (ja) * 1990-10-25 1992-06-04 Mitsubishi Heavy Ind Ltd 燃焼排ガスの脱co↓2装置及び方法
JPH05184866A (ja) 1992-01-17 1993-07-27 Kansai Electric Power Co Inc:The 燃焼排ガス中の脱二酸化炭素装置および方法
EP0553643A2 (en) 1992-01-17 1993-08-04 The Kansai Electric Power Co., Inc. Method for treating combustion exhaust gas
US5318758A (en) 1991-03-07 1994-06-07 Mitsubishi Jukogyo Kabushiki Kaisha Apparatus and process for removing carbon dioxide from combustion exhaust gas
JPH0889756A (ja) * 1994-09-28 1996-04-09 Tokyo Electric Power Co Inc:The 被処理ガス中の二酸化炭素の処理方法及び吸収液
EP0798029A2 (en) 1996-03-29 1997-10-01 The Kansai Electric Power Co., Inc. Apparatus and process for recovering basic amine compounds in a process for removing carbon dioxide
JPH10202054A (ja) * 1997-01-27 1998-08-04 Mitsubishi Heavy Ind Ltd 脱炭酸設備の吸収液の制御方法
JPH11137960A (ja) * 1997-11-11 1999-05-25 Kansai Electric Power Co Inc:The 二酸化炭素吸収液の制御方法及びその装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE533403A (ja) * 1953-12-05
US3829521A (en) * 1972-07-03 1974-08-13 Stone & Webster Eng Corp Process for removing acid gases from a gas stream
US3798021A (en) * 1972-08-21 1974-03-19 Foster Wheeler Corp Pollution elimination for fertilizer process
US3824766A (en) * 1973-05-10 1974-07-23 Allied Chem Gas purification
DE3236600A1 (de) * 1982-10-02 1984-04-05 Basf Ag, 6700 Ludwigshafen Verfahren zum entfernen von co(pfeil abwaerts)2(pfeil abwaerts) und gegebenenfalls h(pfeil abwaerts)2(pfeil abwaerts)s aus erdgasen
US4460385A (en) * 1982-11-26 1984-07-17 Exxon Research And Engineering Co. Process for the removal of acid gases from hydrocarbon gases containing the same
DE3738913A1 (de) * 1987-11-17 1989-05-24 Linde Ag Verfahren und vorrichtung zur auswaschung von sauergasen aus gasgemischen
NL8902490A (nl) * 1989-10-06 1991-05-01 Leonardus Mathijs Marie Nevels Werkwijze voor het reinigen van rookgassen.
DK1152815T3 (da) * 1998-11-23 2009-06-08 Fluor Corp Strömningsopspaltningsproces og apparat
US6183540B1 (en) * 1999-08-27 2001-02-06 Kinder Morgan, Inc. Method and apparatus for removing aromatic hydrocarbons from a gas stream prior to an amine-based gas sweetening process

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2167738A (en) 1984-11-26 1986-06-04 Snam Progetti Process for the selective removal of hydrogen sulphide from gaseous mixtures also containing carbon dioxide
JPH04161225A (ja) * 1990-10-25 1992-06-04 Mitsubishi Heavy Ind Ltd 燃焼排ガスの脱co↓2装置及び方法
US5318758A (en) 1991-03-07 1994-06-07 Mitsubishi Jukogyo Kabushiki Kaisha Apparatus and process for removing carbon dioxide from combustion exhaust gas
JPH05184866A (ja) 1992-01-17 1993-07-27 Kansai Electric Power Co Inc:The 燃焼排ガス中の脱二酸化炭素装置および方法
EP0553643A2 (en) 1992-01-17 1993-08-04 The Kansai Electric Power Co., Inc. Method for treating combustion exhaust gas
JPH0889756A (ja) * 1994-09-28 1996-04-09 Tokyo Electric Power Co Inc:The 被処理ガス中の二酸化炭素の処理方法及び吸収液
EP0798029A2 (en) 1996-03-29 1997-10-01 The Kansai Electric Power Co., Inc. Apparatus and process for recovering basic amine compounds in a process for removing carbon dioxide
JPH10202054A (ja) * 1997-01-27 1998-08-04 Mitsubishi Heavy Ind Ltd 脱炭酸設備の吸収液の制御方法
JPH11137960A (ja) * 1997-11-11 1999-05-25 Kansai Electric Power Co Inc:The 二酸化炭素吸収液の制御方法及びその装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1334759A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9914088B2 (en) 2012-08-08 2018-03-13 Mitsubishi Heavy Industries, Ltd. CO2 recovery unit and CO2 recovery method
US11273407B2 (en) 2017-10-31 2022-03-15 Mitsubishi Heavy Industries Engineering, Ltd. Acid gas removal device and acid gas removal method

Also Published As

Publication number Publication date
AU772954B2 (en) 2004-05-13
EP1334759A4 (en) 2004-11-10
JP2002126439A (ja) 2002-05-08
EP1334759A1 (en) 2003-08-13
US20030045756A1 (en) 2003-03-06
US6784320B2 (en) 2004-08-31
EP1334759B1 (en) 2010-04-21
DE60141913D1 (de) 2010-06-02
US20040092774A1 (en) 2004-05-13
NO332555B1 (no) 2012-10-22
AU1092402A (en) 2002-05-06
NO20023053L (no) 2002-08-14
JP3969949B2 (ja) 2007-09-05
NO20023053D0 (no) 2002-06-24
RU2230599C2 (ru) 2004-06-20
RU2002116705A (ru) 2004-01-10
CA2393626A1 (en) 2002-05-02
DK1334759T3 (da) 2010-07-12
US7316737B2 (en) 2008-01-08
CA2393626C (en) 2005-09-13

Similar Documents

Publication Publication Date Title
WO2002034369A1 (fr) Procede et appareil de recuperation d&#39;amine et systeme d&#39;elimination de dioxyde de carbone comprenant l&#39;appareil
JP4625478B2 (ja) アミン回収方法及び装置並びにこれを備えた脱炭酸ガス装置
EP0798029B1 (en) Apparatus and process for recovering basic amine compounds in a process for removing carbon dioxide
JP4690659B2 (ja) Co2回収装置
CA2824740C (en) Combustion exhaust gas treatment system and method of treating combustion exhaust gas
JP5597260B2 (ja) 燃焼排ガス中の二酸化炭素除去装置
JP4216152B2 (ja) 脱硫脱炭酸方法及びその装置
JP2005254212A5 (ja)
WO2010122830A1 (ja) Co2回収装置及びco2回収方法
JP2012236166A (ja) Co2回収装置およびco2回収方法
JP5738137B2 (ja) Co2回収装置およびco2回収方法
AU2012243827B2 (en) Co2 recovery device
JP4838489B2 (ja) 二酸化窒素と二酸化炭素の除去方法及びその装置
JP5185970B2 (ja) アミン回収方法及び装置並びにこれを備えた脱炭酸ガス装置
KR101951047B1 (ko) 화학적 흡수제를 이용한 이산화탄소의 흡수 및 탈거 장치
JP6004821B2 (ja) Co2回収装置およびco2回収方法
JP6811759B2 (ja) Co2回収装置およびco2回収方法
JP2015020079A (ja) 被処理ガス中の二酸化炭素を回収する方法およびそのための装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 10924/02

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2393626

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2001978863

Country of ref document: EP

ENP Entry into the national phase

Ref country code: RU

Ref document number: 2002 2002116705

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 10168975

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2001978863

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 10924/02

Country of ref document: AU