WO2001096449A1 - Procede de production d'une dispersion aqueuse de polyester biodegradable - Google Patents

Procede de production d'une dispersion aqueuse de polyester biodegradable Download PDF

Info

Publication number
WO2001096449A1
WO2001096449A1 PCT/JP2001/005140 JP0105140W WO0196449A1 WO 2001096449 A1 WO2001096449 A1 WO 2001096449A1 JP 0105140 W JP0105140 W JP 0105140W WO 0196449 A1 WO0196449 A1 WO 0196449A1
Authority
WO
WIPO (PCT)
Prior art keywords
biodegradable polyester
aqueous dispersion
producing
viscosity
emulsifier
Prior art date
Application number
PCT/JP2001/005140
Other languages
English (en)
French (fr)
Inventor
Yukio Doi
Ryoji Ishioka
Yoshiro Okino
Mitsuhiro Imaizumi
Original Assignee
Showa Highpolymer Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Highpolymer Co., Ltd. filed Critical Showa Highpolymer Co., Ltd.
Priority to KR1020027017098A priority Critical patent/KR20030016294A/ko
Priority to DE60122732T priority patent/DE60122732T2/de
Priority to EP01938700A priority patent/EP1302502B1/en
Priority to US10/311,070 priority patent/US6716911B2/en
Priority to AU2001264299A priority patent/AU2001264299A1/en
Publication of WO2001096449A1 publication Critical patent/WO2001096449A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers

Definitions

  • the present invention relates to a method for producing an aqueous dispersion of a biodegradable polyester.
  • Aqueous dispersions of resins are widely used because they have many advantages over solvent solutions of resins in terms of not only the convenience of handling but also the safety of workers and the working environment. Apart from that, almost all are non-biodegradable and have a problem in that they place a considerable burden on the earth for disposal.
  • emulsions The very few aqueous dispersions of biodegradable resins (referred to as emulsions) found in patent applications and academic reports are mostly aliphatic polyesters or starch derivatives, but have high solids concentrations or high concentrations that are important in practice. The fact is that viscosity is not considered as shown below.
  • the solid concentration hereinafter referred to as the solid concentration
  • 2.5% by weight hereinafter simply referred to as "percent" of polyhydroxyalkanoate emulsion (WO 97/04036), 18 to 28.2% Starch derivative emulsion (Japanese Patent Application Laid-Open No.
  • the emulsion of biodegradable resin in the above-mentioned literature is made by dissolving a solid resin in a solvent to form a solution, and mixing and stirring an aqueous solution of an emulsifier (referred to as a solution phase inversion emulsification method).
  • An object of the present invention is to provide a method for producing an aqueous dispersion of a biodegradable polyester having a high solid content and a high viscosity, which is very advantageous in practice.
  • the present invention relates to a biodegradable polyester in a molten state, an aqueous solution of an emulsifier having a surface tension of a 1.0 weight percent aqueous solution at 20 ° C of 63 mN / m or less, if necessary.
  • a biodegradable polyester characterized by being mixed and kneaded with other additives to have a solid content concentration of 40% by weight or more and a viscosity at 20 ° C of not less than 1,000 OmPas. It is intended to provide a method for producing an aqueous dispersion.
  • the present invention reduces the viscosity of the biodegradable polyester in the molten state. If the viscosity of the emulsifier aqueous solution is 7? W , T ?.
  • the present invention provides a method for producing an aqueous dispersion of a biodegradable polyester as described in (1) wherein T / w is set to not more than 150.
  • the present invention also provides the method for producing an aqueous dispersion of a biodegradable polyester as described in (1) or (2), wherein the biodegradable polyester has the following repeating unit.
  • Oyobi 11 2 is alicyclic hydrocarbon group having 5 or 6 carbon alkylene group or a carbon of a carbon number of 2 to 1 0
  • the biodegradable polyester comprises at least the following units:
  • R 3 is a diisocyanate residue
  • the biodegradable polyester comprises at least the following units:
  • R 4 is an alkylene group having 2 to 6 carbon atoms
  • An object of the present invention is to provide a method for producing an aqueous dispersion of a degradable polyester.
  • the present invention also provides the method for producing an aqueous dispersion of a biodegradable polyester as described in the above item 1 or 2, wherein the biodegradable polyester has the following repeating unit.
  • R 5 is hydrogen, an alkyl group having 1 to 19 carbon atoms or an alkenyl group having 1 to 19 carbon atoms, and n is a value of 1 to about 4)
  • the biodegradable polyester comprises at least the following units:
  • R 3 is a diisocyanate residue
  • the biodegradable polyester comprises at least the following units:
  • R 4 is an alkylene group having 2 to 6 carbon atoms
  • the present invention also provides a method for producing an aqueous dispersion of a biodegradable polyester according to any one of the above items 1 to 3, wherein the emulsifier is a nonionic surfactant having a polyvinyl alcohol or a polyoxyethylene chain. is there.
  • the present invention provides the process for producing an aqueous dispersion of a biodegradable polyester according to any one of 1 to 9, wherein the peak particle size (the particle size of the peak of the particle size distribution curve) is 3 ⁇ m or less. Things.
  • the present invention also provides the production method as described above, wherein the mixing and kneading are performed by a screw extruder.
  • the present invention also provides the production method according to the above, wherein the screw extruder is a twin-screw co-extruder or a mortar extruder.
  • the present invention also provides the production method according to (1) or (2), wherein the aqueous solution of the emulsifier is dividedly added from two or more places of the screw extruder.
  • Japanese Patent Application Laid-Open No. 56-21949 discloses a method of melting a resin and mixing it with an aqueous emulsifier solution (referred to as a melt emulsification method).
  • a melt emulsification method There are proposed methods for mixing water with a melt of a resin and an emulsifier, but these are all aimed at obtaining a polyolefin-based resin emulsion, and are based on aqueous biodegradable polyesters which are the object of the present invention.
  • biodegradable as used in the present invention means a property that microorganisms in soil or water are eventually decomposed into carbon dioxide and water in a natural environment.
  • biodegradable polyester used in the present invention a polyester having a repeating unit represented by the above chemical formula (1);
  • a polyester containing a repeating unit of both the above chemical formulas (1) and (7) examples thereof include tere and polyester obtained by further bonding one or more units of the chemical formulas (2) to (6) to the polyester. Further, these random and / or block copolymers and blends are also useful.
  • polybutylene succinate, polybutylene succinate adipate, polyethylene succinate, polyethylene succinate adipate, or the above polyester is treated with hexamethylene diisocyanate, y-aminopropyl trimethoxysilane, or the like.
  • the bonded reaction product is exemplified as a biodegradable polyester having the units of the chemical formulas (1) to (6).
  • polyhydroxyalkanoates such as polyhydroxyprolactone, polylactic acid, polyglycolic acid, and polyhydroxybutyric acid / polyhydric oxyvaleric acid copolymers produced by microorganisms, and the like having a repeating unit represented by the above chemical formula (7). It is exemplified as an acidic polyester.
  • biodegradable polyester is allowed to bind to a structure other than the above as long as the biodegradability is not inhibited.
  • a polybutylene succinate copolymer or terephthalate copolymer obtained by introducing a reaction product obtained by dehydration condensation of ethylene glycol and terephthalic acid into a repeating unit within a range of 25% or less.
  • the emulsifier used in the present invention has a surface tension of a 1% aqueous solution at 20 ° C. of 63 mN / m or less, preferably 60 mN / m or less, more preferably 55 mN / m or less. If it exceeds 63 mN / m, fine particles are insufficiently formed, and as a result, coarse particles as large as several millimeters are formed, or the solid phase and the aqueous phase are separated, so that a stable emulsion cannot be obtained.
  • emulsifiers include surfactants, for example, sodium lauryl sulfate, anionic surfactants containing fatty acid salts having 4 to 18 carbon atoms such as sodium oleate, and cationic surfactants such as lauryl trimethyl ammonium chloride.
  • the surfactant include a surfactant, a zwitterionic surfactant such as N-laurylglycine, and a nonionic surfactant such as nonylphenyl polyethylene oxide.
  • non-ionic surfactants include glycerin fatty acid esters and sucrose fatty acid esters used as food additives. Sorbitan fatty acid esters, propylene glycol fatty acid esters, lecithin, etc., or ethylene oxide adducts thereof.
  • the following water-soluble polymer substances can be used.
  • alginic acid alginate, mouth-cast bean gum, guar gum, arabia gum, xanthan gum, agar, carrageenan, crystals used as thickeners as food additives
  • Natural macromolecules such as natural cellulose and pectin
  • semi-synthetic macromolecules such as hydroxyxethyl cellulose, methylcellulose, carboxymethylcellulose, propylene glycol alginate, and cationic modified starch
  • Polymerized or modified Vinyl monomers such as acrylic acid esters, methacrylic acid esters or styrene and acidic monomers such as acrylic acid, methacrylic acid or maleic anhydride, or vinyl pyridines, dimethylaminoethyl methyl methacrylate, etc.
  • Basic monomers, copolymers with hydroxy group-containing monomers such as hydroxyhexyl acrylate and hydroxyhexyl methacrylate, and biodegradable polyesters are also used as succinic anhydride, maleic anhydride, polyethylene oxide. Synthetic high-molecular substances including those modified with xide and the like are included.
  • bioseparation angle of the resulting aqueous dispersion of biodegradable polyester As long as the property is not impaired, a surfactant other than the above range may be supplementarily added and used.
  • Preferred emulsifiers include partially degraded polyvinyl alcohol containing acetic acid groups, partially degraded polyvinyl alcohol containing sulfonic acid groups, carboxyl groups, amino groups, etc.
  • Biodegradable polyesters which have been made water-soluble by addition of a group-containing partially modified polyvinyl alcohol or a carboxyl group or a polyoxyethylene residue. Among them, polyvinyl alcohols or nonionic surfactants having a polyoxetylene chain are preferred. What is the viscosity of the biodegradable polyester in the molten state? ? . [However, viscosity here.
  • T ?. / T7 w is preferably 150 or less, preferably 100 or less, and more preferably 60 or less. Outside this range, a large number of coarse particles are generated, or the solid phase and the aqueous phase are separated, and the desired product such as W / 0 type, for example, solid at room temperature cannot be obtained in many cases.
  • a plasticizer is added to the biodegradable polyester side.
  • a thickener can be added to the emulsifier aqueous solution.
  • the amount of the emulsifier used is preferably more than 5% by weight, for example, 6 to 25% by weight based on the biodegradable polyester.
  • the biodegradable polyester is heated and melted above its melting point. Melting is usually performed at a temperature higher than the melting point by 10 ° C or more. Drums, emulsifiers and extruders are used for melting. Therefore, it is desirable that the volatile content in the melt be 0.3% or less. If it exceeds 0.3%, foaming occurs due to mixing with the aqueous emulsifier solution, and sufficient shear-milling is not performed, resulting in coarse particles.
  • a biodegradable polyester in a molten state a biodegradable polyester melt
  • an aqueous solution of a milking agent a so-called WZO-type dispersion system
  • the biodegradable polyester melt was used as the continuous phase
  • the aqueous emulsifier solution was used as the dispersed phase.
  • the dispersed phase is considered to be a 0 / W type dispersion system of a biodegradable polyester melt, and it has been recognized that fine particles are obtained as the viscosity increases sharply immediately before phase inversion.
  • the homogenizer, homogenizer, colloid mill, and various types of dispersing means to generate the large shearing force required for this micronization A high-viscosity liquid stirrer with a modified helical blade.
  • a high-performance disperser (hereafter referred to as a high-performance disperser) consisting of local mixing by a high-speed disperser and rotation or revolution of a blade for uniformly stirring the whole, a twin-screw co-extruder, or a mill-type extruder
  • a screw extruder such as
  • the mixing and dispersion is started by adding an aqueous solution of the emulsifier to the biodegradable polyester melt while stirring or by charging both at once and stirring.
  • the former can be carried out in the case of an extruder, and the former and the latter can be carried out in the case of the above-mentioned high-performance disperser.
  • biodegradable polyester is continuously supplied from the hopper of the above extruder, and an aqueous emulsifier is separately added to the extruder at any time other than the resin melting point.
  • an aqueous emulsifier is separately added to the extruder at any time other than the resin melting point.
  • an aqueous dispersion of a biodegradable polyester is continuously produced by injecting water at a temperature of 100 ° C. or less and mixing and kneading.
  • a biodegradable polyester is charged into the dispersing machine, heated and melted, and an emulsifier aqueous solution is added thereto all at once or dropwise under stirring, whereby an aqueous system of the desired biodegradable polyester is obtained. A dispersion is obtained.
  • a biodegradable polyester having a melting point of 100 ° C. or more the above-mentioned procedure is carried out by lowering the melting point by adding a plasticizer, or otherwise, by forming the entire apparatus into a pressure-resistant structure.
  • the aqueous dispersion of the biodegradable polyester obtained by the melt emulsification method has a solid content of 40 to 65% by weight, preferably 50 to 65% by weight, more preferably 55 to 65% by weight, 2 0 ° viscosity 1 0 3 mP a ⁇ s ⁇ in C; a L 0 4 mP a ⁇ s, good Mashiku is 1 5 0 0 mP a 's ⁇ l 0 4 mP a ⁇ s, more preferably 2 0 is 0 0 m P a ⁇ s ⁇ l 0 4 m P a ⁇ s.
  • the solid content concentration and viscosity may be appropriately determined depending on the application, and may be diluted as necessary.
  • Biodegradable polyester exists as micron to submicron particles.
  • the peak particle diameter is 10 ⁇ m or less, preferably 5 / in or less, more preferably 3 / m or less, depending on the purpose of use. Troubles such as sedimentation of the emulsion particles or floating of water due to standing It is prevented by adjusting the viscosity as devised.
  • the pH is often between 3 and 7. When the acidity is less than 3 or the alkalinity is more than 7, it is necessary to pay attention to the storage conditions (temperature and time) in consideration of hydrolysis.
  • the aqueous dispersion of the biodegradable polyester obtained according to the present invention is added with a plasticizer, a tackifier, a filler, a pigment, a dispersion stabilizer, and further, an agent such as an insect repellent, a medicine, a pesticide, etc., as necessary. It can be a composition.
  • additives may be added to the biodegradable polyester in advance using a pellet depending on the form, properties, amount of the rooster, etc., or may be added to either or both of the molten phase and the aqueous phase in any step of the melt emulsification method. It is compounded by various methods depending on the purpose of use, such as post addition to the extruded product.
  • the fields expected to be put to practical use are classified by function, for example, adhesion, coating, sustained release, and shaping.
  • biodegradable polyester which is emulsion particles ⁇
  • the bonding function is not limited to bonding in the narrow sense of bonding wood, board, cloth, glass, etc., but also organic materials such as wood pulp, staple fibers, wood chips, shavings, synthetic fibers, tubing, etc. or rock wool, Bonding inorganic materials such as cement, fluorite, asbestos, asbestos, clay, porcelain clay, metal and metal oxide powders to form reinforced paper, pulp mold, non-woven fabric, artificial leather, inorganic fiberboard, inorganic building board, etc.
  • the properties used as an adhesive in a broader sense such as to make, and even to provide book covers, glued sheets and papers by strengthening and strengthening the dipped paper, cloth, etc. Say.
  • the processed product is biodegradable, easily decomposed in the natural environment after disposal, and does not cause environmental pollution caused by waste.
  • an aqueous dispersion of a biodegradable polyester when used as a heat sealant for papers, it has blocking resistance to withstand high temperature and high humidity due to the crystallinity of the polyester, a short adhesive time, and an aqueous dispersion. The effect is expected to be a recyclable heat sealant that does not cause environmental pollution such as water decomposability.
  • Biodegradable polyester obtained according to the present invention even when coating function is required
  • the aqueous dispersion of the above can be used.
  • the coating is used for protection and aesthetics, including the provision of resistance to toughness, water resistance, light resistance, chemical resistance, aging resistance, etc., as well as for the controlled release of fertilizers and chemicals. Done. Many types of resins have been used for these, but most of them remain without being separated, causing environmental pollution.
  • materials that decompose in the natural environment such as paper, wood, and leather, or fertilizers, agricultural chemicals, and pharmaceuticals (a medicinal product that exerts its effect by flowing to the target site in the required minimum amount at a predetermined speed)
  • the final products are in the form of paints, inks and other coatings, and the objects to which they are applied are paper, cloth, Wide range of wood, plastics, cement products, concrete, metals, pesticides, pesticides, pharmaceuticals, fertilizers, etc. Coating or gluing and impregnating
  • the resulting product for example felt, is placed in a mold and shaped by applying heat and pressure, for example, to make hats, naps, lining boxes for containers, or to make disposable resin gloves by drying and heat treatment. These are also expected from the crystallinity of the biodegradable polyester.
  • an existing device suitable for the application such as brushing, spraying, and various kinds of coating
  • the coating is achieved by heating above the melting point of the biodegradable polyester.
  • woodwork painting, architectural painting, antifouling painting, ship painting, road marking painting, magnetic recording medium painting, etc. which are generally considered as paints, various recording papers, printing coated papers, art papers, etc.
  • the above-described reinforced paper is used as a top sheet, a sheet in which a cotton-based cloth is coated with an aqueous dispersion of the biodegradable polyester of the present invention is used as a back sheet, and an absorbent body made of wood, rirep, and an absorbent is interposed therebetween.
  • These three layers were used as raw materials obtained by the present invention. It is possible to manufacture diapers and sanitary napkins that can be composted by bonding with an aqueous dispersion of degradable polyester.
  • the drug When using sustained release, the drug is included in the aqueous dispersion of the biodegradable polyester, but the drug is premixed with the biodegradable polyester, and added to the melt or aqueous emulsifier. Or added after preparation of the aqueous dispersion.
  • the aqueous dispersion of the drug-containing biodegradable polyester thus obtained can be used as it is or by being applied to a biodegradable substrate such as paper, cloth, wood, bark, or biodegradable plastics .
  • Sustained-release pesticides, sustained-release fertilizers, and termiticides that have a longer life due to sustained-release are applied to the soil as they are.
  • a pest control agent such as hemolon or an anti-inflammatory analgesic for neuropathic pain
  • it can be applied to paper, cloth, or even a biodegradable plastic film for practical use.
  • % is a weight percentage
  • Biodegradability test Unless otherwise specified, the biodegradability test was performed by the following method.
  • test soil was set at a water content of 50% of the maximum water capacity, and the aqueous dispersion was applied to fine paper (7 O / m 2 ) using a # 36 bar coder and then at 130 ° C for 3 minutes.
  • a sample (3 cm x 5 cm) obtained by drying was embedded, and the biodegradability was measured at a rate of weight loss under 25 ° C.
  • the test soil used was SDS Minori Farm (volcanic ash soil) from Yugi Hatori Minori Town, Higashiibaraki-gun, Ibaraki Prefecture.
  • the weight ratio between the sample and the test soil was 1: 400.
  • the solid content of the reaction product was a viscous solution having a number average molecular weight of 15,000 and a solid content of 20.1%, and the surface tension of the 1% aqueous solution at 20 ° C was 45.3 mN / m. .
  • Solids concentration The emulsion residue (%) when the emulsion was dried at 105 ° C for 2 hours was taken as the solids concentration.
  • -Viscosity of biodegradable polyester melt The relationship between shear rate and viscosity (graph) was determined using a capillary viscometer, CAPIROGRAPH, Model 1B (Toyo Seiki Seisaku-sho, Ltd.), and the shear rate was 103s- 1 from the graph. The viscosity in (emulsification conditions in examples)? 7. And Temperatures are described in the examples.
  • Viscosity of emulsifier aqueous solution and emulsion Measure the measured value at 10 rpm of a B-type viscometer (Tokyo Keiki Co., Ltd., trade name: BH type or BM type) or the relationship between rotation speed and viscosity (graph), and obtain 10 Finding the viscosity at r pm? ? Used as w .
  • B-type viscometer Tokyo Keiki Co., Ltd., trade name: BH type or BM type
  • graph the relationship between rotation speed and viscosity
  • Melt flow rate Measured at MELT FLOW INDEX TEST ER (Yasuda Seiki Seisakusho), load 2.16 kg s at 190 ° C (preheating 6 minutes).
  • Peak particle size The particle size distribution curve was determined by a dynamic light scattering method (Leeds and Northrup Company, trade name: Microtrac Analyzer FRA), and the particle size corresponding to the maximum frequency was defined as the peak particle size.
  • OmN / m was maintained at 80 ° C, and was injected continuously with a plunger pump at a flow rate of 14 kg / h.
  • Cylinder set temperature resin pellet supply section 50 ° C; resin melting section 155 ° C; 100 from the emulsifier aqueous solution addition to the outlet.
  • the viscosity of the resin pellet melt (??.) Is 13,000 mPa ⁇ s / 145 ° C, while the viscosity of the emulsifier aqueous solution (?? w ) is 1,80 OmPa ⁇ s / 80 ° C. What is the ratio? ? . / ??:?.
  • the resulting extrudate was viscous and milky white, indicating that it was an emulsion in which the aqueous phase was a continuous phase when a direct current was applied.
  • the emulsion had a peak particle size of 1.79 zm, a solid content of 57.8%, and a viscosity of 183, 20 OmPa-s (20 ° C), and had good shelf stability.
  • the degradation rate was 70% (35 days).
  • the extrudate formed was an emulsion with good storage stability with a peak particle size of 1.64 zm, a solid content of 56.3%, and a viscosity of 6,85 OmPas (20 ° C). In the biodegradability test, the degradation rate was 95% (35 days).
  • Biodegradation obtained by subjecting sebacic acid and 4-methyl-1,7-heptanediol to a dehydration reaction and a deglycol reaction at a molar ratio of 1.00: 1.05, followed by deglycolation, and then adding hexamethylenediamine to extend the chain.
  • high-performance disperser Special Kika Kogyo Co., Ltd., trade name: 1. K. Hibis Disperse
  • the emulsion had a viscosity of 12, 30 OmPa-s (20 ° C) and good storage stability. In the biodegradability test, the degradation rate was 80% (35 days).
  • Example 8 An emulsion was prepared using a high-performance disperser in the same manner as in Example 1 except that the biodegradable polyester and the emulsifier were changed, and the results shown in Table 1 were obtained.
  • polycaprolactone Daicel Chemical Industry Co., Ltd., trade name Placcel H-7, 129
  • Example 9 except that succinic acid, 1,4-butanediol and d1-lactic acid were equimolarly mixed and 0.05% by weight of the catalyst tetrapropoxythiamine was used as the Z monomer.
  • the one prepared under the same conditions as the polylactic acid synthesis of Example 6 was used.
  • the degradation rate of Example 8 was 95% (35 days), and the degradation rate of Example 9 was 70% (35 days).
  • Example 3 The emulsion obtained in Example 3 was applied to high quality paper at 4 mil apricot overnight. Dried at 110 ° C for 3 minutes. A base paper was superimposed on the coated paper thus obtained, and was subjected to hot pressure bonding at 70 ° C. for 2 seconds at 0.1 MPa. When the adhesive surface was peeled off after cooling to room temperature, the paper was completely broken and the adhesive was sufficiently adhered. In the biodegradability test, the degradation rate was 95% (35 days).
  • Example 3 Five pieces of the above-mentioned adhesive paper pieces (5 cm ⁇ 5 cm) were immersed in 500 g of tap water for 24 hours, and then stirred for 5 minutes with a household juice mixer (however, the blades were sanded and rounded).
  • the obtained liquid was added to a water column made in a 1-liter measuring cylinder with a spot, the paper was disintegrated into pulp monofilament, and the adhesive was re-dispersed to make the aqueous phase cloudy, and No lump was found. From the above, it was shown that the emulsion obtained in Example 3 was an adhesive suitable for recycling paper as a base material.
  • Adeiki Saizer RS-107 (adipate diester, Asahi Denka Kagaku) 0.2 g was added and stirring was continued for another 30 minutes to obtain a magnetic iron oxide slurry.
  • a high quality paper for PPC, 70.4 g / m 2
  • a 3 mil applicate all over dry at 110 ° C for 3 minutes
  • orient the magnetic film with a magnetic aligner and oxidize magnetically Iron coated paper was obtained.
  • the coated paper was tough without any change in the cellophane tape peeling test, the nail pulling test and the wet friction test (rubbing with the lower finger on water supply 50 times).
  • Emulsions with a concentration of 40% or more or a viscosity of 1, OO OmPa ⁇ s (20 ° C) or more were prepared, and then the following experiment was conducted to examine the thermal adhesion.
  • the amount of emulsifier Kurarepoval 220 EG based on 100 parts by weight of resin cell green PH-4 to be emulsified was 40.5 parts by weight in the emulsion of Reference Example 2 used in Comparative Example 6, whereas Example 10 was used. In the emulsion of Example 3 used in Example 3, the amount is 6.75 parts by weight.
  • Solution phase inversion emulsification was carried out in the same manner as in Reference Example 2, except that the concentration of Kuraray Poval 220 EG was changed to 2.5% to match the ratio, and no dilution water was used because it was unnecessary. .
  • the product contains a large amount of aggregates, and when left standing, they float and separate into two phases, and the aqueous phase (lower layer) becomes about 1/3 of the total volume Was.
  • the emulsion obtained by distilling toluene from the aqueous phase under reduced pressure has a solid concentration
  • the manufacturing method of the aqueous dispersion liquid of the living keratotic polyester which has high solid content concentration and high viscosity which is very advantageous practically is provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Polyamides (AREA)

Description

明 細 書 生分解性ポリエステルの水系分散液の製造方法 技術分野
本発明は、生分解性ポリエステルの水系分散液の製造方法に関するものである。 背景技術
樹脂の水系分散液は取扱いの至便さだけでなく作業者および作業環境の安全性 の上で樹脂の溶剤溶液に比べて時流に叶った多くの利点を持ち広く用いられてい るが、 ゴムラテックスを除けばほとんど全て非生分解性であり、 廃棄処理上地球 に相応の負担を与える点で問題を有している。
特許出願および学術報告に見られる極めて数少な 、生分解性樹脂の水系分散液 (ェマルジヨンという) は、 そのほとんどが脂肪族ポリエステルあるいは澱粉誘 導体であるが、 実用上重要である高固形分濃度あるいは高粘度に関しては次に例 示するように考慮されていないのが実状である。 すなわち固形分重量濃度 (以下 固形分濃度という) に関しては 2. 5重量パ一セント (以下単にパーセントとい う) のポリヒドロキシアルカノエートェマルジヨン (WO 97/04036)、 18〜28. 2%の澱粉誘導体ェマルジヨン (特閧平 9— 77910号公報)、 14. 5〜22. 1%のポリ力プロラクトンェマルジヨン (特開平 8— 8163 4号公報)、 19. 3〜32. 0%の脂肪族ポリエステルェマルジヨン (特開平 11— 92712号公報) などであり、 粘度については何ら記載がない。
上述の文献における生分解性樹脂のェマルジヨンは、 固体樹脂を溶剤に溶かし て溶液とし、 乳化剤の水溶液を混合撹拌することにより造られる (溶液転相乳化 法という)。
本発明の目的は、 実用上非常に有利である高固形分濃度かつ高粘度である生分 解性ポリエステルの水系分散液の製造方法を提供することにある。 発明の概要
① 本発明は、 溶融状態の生分解性ポリエステルと、 1 . 0重量パ一セント水 溶液の 2 0 °Cにおける表面張力が 6 3 mN/m以下である乳化剤の水溶液と、 必 要に応じてその他の添加剤とを混合混練し、 固形分濃度 4 0重量パーセント以上 でありかつ 2 0 °Cにおける粘度が 1 , 0 0 O mP a . s以上にすることを特徴と する生分解性ポリエステルの水系分散液の製造方法を提供するものである。
② また本発明は、 溶融状態の生分解性ポリエステルの粘度を ?。、 乳化剤水 溶液の粘度を 7? wとした場合、 T?。/ T?w¾ 1 5 0以下とした①に記載の生分解性 ポリエステルの水系分散液の製造方法を提供するものである。
③ また本発明は、 生分解性ポリエステルが、 下記繰り返し単位を有すること を特徴とする①または②に記載の生分解性ポリエステルの水系分散液の製造方法 を提供するものである。
化学式 ( 1 )
Figure imgf000004_0001
(式中、 1^ぉょび11 2は炭素数2〜1 0のアルキレン基または炭素数 5または 6の脂環式炭化水素基である)
④ また本発明は、 生分解性ポリエステルが、 少なくとも下記単位
化学式 ( 2 )
Figure imgf000004_0002
(式中、 R 3はジイソシァネート残基である)
および/または
下記単位 r 0— C—〇一
化学式 ( 3 )
0
を介して③に記載の繰り返し単位が結合した構造を有する①または②に記載の生 分解性ポリエステルの水系分散液の製造方法を提供するものである。
⑤ また本発明は、 生分解性ポリエステルが、 少なくとも下記単位
化学式( 4 )
Figure imgf000005_0001
および/または
下記単位
0
r C H— R ひ
化学式 ( 5 )
C H ,— 0 H 0 ノ
および/または
下記単位
化学式 ( 6 ) ノ
Figure imgf000005_0002
(式中、 R 4は炭素数 2〜6のアルキレン基である)
を介して③に記載の繰り返し単位が結合した構造を有する①または②に記載の生 分解性ポリエステルの水系分散液の製造方法を提供するものである。
⑥ また本発明は、 生分解性ポリエステルが、 下記繰り返し単位を有すること を特徴とする①または②に記載の生分解性ポリエステルの水系分散液の製造方法 を提供するものである。
0— CH— (CH2)n— O 化学式 (7)
Figure imgf000006_0001
0ノ
(式中、 R5は水素、 炭素数 1〜19のアルキル基または炭素数 1〜19のアル ケニル基であり、 nは 1〜約 4の値である)
⑦ また本発明は、 生分解性ポリエステルが、 少なくとも下記単位
Figure imgf000006_0002
(式中、 R3はジイソシァネート残基である)
および/または
下記単位 0— C— 0-
0 ノ
を介して⑥に記載の繰り返し単位が結合した構造を有する①または②に記載の生 分解性ポリエステルの水系分散液の製造方法を提供するものである。 ⑧ また本発明は、 生分解性ポリエステルが、 少なくとも下記単位
0
C H 2-C H-R 4— S ヽ
-〇
Figure imgf000007_0001
O H 0
ン および または
下記単位
Figure imgf000007_0002
および /または
下記単位
Figure imgf000007_0003
(式中、 R 4は炭素数 2〜6のアルキレン基である)
を介して⑥に記載の繰り返し単位が結合した構造を有する①または②に記載の生 分解性ポリエステルの水系分散液の製造方法を提供するものである。
⑨ また本発明は、 乳化剤がポリビニルアルコール類またはポリオキシェチレ ン鎖をもつ非イオン性界面活性剤である①ないし⑧のいずれかに記載の生分解性 ポリエステルの水系分散液の製造方法を提供するものである。
⑩ また本発明は、 ピーク粒子径 (粒子径分布曲線のピークの粒子径) が 3〃 m以下である①ないし⑨のいずれかに記載の生分解性ポリエステルの水系分散液 の製造方法を提供するものである。 ⑪ また本発明は、 前記混合混練が、 スクリュー押出機によりなされる⑩に記 載の製造方法を提供するものである。
⑫ また本発明は、 スクリユー押出機が、 二軸同方向押出機または臼型押出機 である⑪に記載の製造方法を提供するものである。
⑬ また本発明は、 乳化剤の水溶液をスクリユー押出機の 2ケ所以上から分割 添加する⑪または⑫に記載の製造方法を提供するものである。
なお、 特開昭 5 6 - 2 1 4 9号公報には、 樹脂を溶融しこれに乳化剤水溶液を 混合する方法 (溶融乳化法という) が、 特開平 4— 2 0 5 3 2号公報には、 樹脂 と乳化剤との溶融体に水を混和する方法が閧示されているが、 これらはいずれも ポリオレフイン系樹脂ェマルジヨンを得ることを目的としており、 本発明の対象 である生分解性ポリエステルの水系分散液とは関係のない技術である。すなわち、 生分角军性ポリエステルは、 ポリオレフイン系樹脂に比べて物性的、 特に乳化に重 要な水に対する界面化学的性質が異なり、 さらに一般的に加水分解を受けやすい からである。 また、 溶融乳化法を生分解性ポリエステルに適用した報告は見られ ない。 発明の開示
以下、 本発明をさらに詳細に説明する。 なお本発明に言う生分解性とは、 土中 や水中の微生物により自然環境下で最終的に炭酸ガスと水等に分解される性質を 意味する。
本発明に使用される生分解性ポリエステルとしては上記化学式 (1 ) で示され る繰り返し単位を有するポリエステル;
さらに上記化学式 (2 ) で示される単位および Zまたは化学式 (3 ) で示され る単位および/または化学式 (4 ) で示される単位および/または化学式 (5 ) で示される単位および/または化学式 (6 ) で示される単位を介して上記化学式 ( 1 ) の繰返し単位が結合した生分解性ポリエステル;
さらにまた上記化学式 (7 ) で示される繰り返し単位を有するポリエステル; 等が挙げられる。
さらに上記の化学式 (1 ) と化学式 (7 ) の両方の繰返し単位を含むポリエス テルや、 該ポリエステルにさらに化学式 (2 ) から化学式 (6 ) の一つ以上の単 位を結合させたポリエステルなども例示される。 さらに、 これらのランダムおよ び/またはブロック共重合体、 ブレンド物も有用である。
より具体的にはポリブチレンサクシネート、 ポリブチレンサクシネートアジぺ ート、 ポリエチレンサクシネート、 ポリエチレンサクシネートアジペート、 ある いは前記ポリエステルをへキサメチレンジイソシァネートや y—ァミノプロピル トリメトキシシラン等で結合させた反応生成物が化学式 (1 ) から化学式 (6 ) の単位を有する生分解性ポリエステルとして例示される。
また、 ポリ力プロラクトン、 ポリ乳酸、 ポリグリコール酸、 さらには微生物の 産生するポリヒドロキシ酪酸 ·ポリヒド口キシ吉草酸共重合体などポリヒドロキ シアルカノエートなどが上記化学式 (7 ) の繰り返し単位を有するの生分解性ポ リエステルとして例示される。
さらに上述の生分解性ポリエステルには、 その生分解性が阻害されない範囲に おいて上述以外の構造の結合が許容される。 エチレングリコ一ルとテレフ夕一ル 酸との脱水縮合により得られる反応生成物を 2 5 %以下の範囲で繰返し単位に導 入して得られるポリプチレンサクシネート共重合物あるいはテレフ夕レート繰り 返し単位が 4 O m o 1 %以下のポリプチレンサクシネートテレフタレ一トゃポリ エチレンサクシネートテレフ夕レートなどはその一例である。
本発明に使用される乳化剤は、 その 1 %水溶液の 2 0 °Cにおける表面張力が 6 3 mN/m以下、 好ましくは 6 0 mN/m以下、 さらに好ましくは 5 5 mN/m 以下である。 6 3 mN/mを超えると微粒子化が不充分であり結果として数ミリ メーターにもおよぶ粗大粒子が形成されたり、 あるいは固相と水相とが分離して 安定なェマルジヨンが得られない。
乳化剤としては、 界面活性剤、 例えばラウリル硫酸ソーダ、 さらにはォレイン 酸ソーダ等炭素数 4〜1 8の脂肪酸塩を含む陰イオン性界面活性剤、 ラウリルト リメチルアンモニゥムクロライ ド等の陽ィォン性界面活性剤、 N—ラウリルグリ シン等の両性イオン性界面活性剤、 ノニールフエニールポリエチレンォキサイ ド 等の非イオン性界面活性剤等が挙げられる。 また、 非イオン性界面活性剤には食 品添加物として用いられているグリセリン脂肪酸エステル、 しよ糖脂肪酸エステ ル、 ソルビタン脂肪酸エステル、 プロピレングリコール脂肪酸エステル、 レシチ ン等、 あるいはそれらへのエチレンォキサイ ド付加物も含まれる。
さらに乳化剤としては、 以下に挙げるような水溶性高分子物質等も使用可能で ある。 例えば、 澱粉、 カゼイン、 ゼラチン等の他、 食品添加物として増粘に使わ れているアルギン酸、 アルギン酸塩、 口一カストビーンガム、 グァ一ガム、 ァラ ビアガム、 キサンタンガム、 寒天、 カラギ一ナン、 結晶性セルローズ、 ぺクチン といった天然高分子物質、ハイ ドロォキシェチルセル口一ズ、メチルセルローズ、. カルボキシメチルセルローズ、 アルギン酸プロピレングリコールエステル、 陽ィ ォン性変性澱粉等の半合成高分子物質、 またポリビニルアルコール、 ポリアクリ ルアマイド、 ポリビニルビ口リ ドン、 ポリアクリル酸、 ポリビニルビリジン、 ポ リエチレンイミン等、 さらにはそれらが陰イオン性あるいは陽イオン性、 またさ らに疎水性の構造単位を持つように共重合ないしは変性されたもの、 さらにまた ァクリル酸エステル、 メ夕クリル酸エステルあるいはスチレン等のビニル単量体 とァクリル酸、 メタクリル酸ぁるいは無水マレィン酸等の酸性単量体あるいはビ 二ルビリジン、 メ夕クリル酸ジメチルアミノエチルエステル等の塩基性単量体、 さらにはアクリル酸ハイ ドロォキシェチル、 メ夕クリル酸ハイ ドロォキシェチル 等の水酸基含有単量体との共重合体、 さらにまた生分解性ポリエステルを無水コ ハク酸、 無水マレイン酸、 ポリエチレンォキサイ ド等で変性したものを含む合成 高分子物質等が挙げられる。
ただし得られる生分解性ポリエステルの水系分散液の生分角?性が阻害されぬ範 囲において上記範囲以外の界面活性物質を補助的に添加して用いることは差支え ない。
乳化剤の好ましいものとしては、 生分解性の点も考慮すると、 酢酸基密集型を 含む部分鹼ィ匕ポリビニルアルコール、 スルホン酸基、 カルボキシル基、 アミノ基 などを含有する部分鹼化ポリビニルアルコール、 末端疎水基含有部分鹼化ポリビ ニルアルコール、 あるいはカルボキシル基、 ポリオキシエチレン残基などの付加 で水溶性とされた生分解性ポリエステルが挙げられる。 中でも好ましくはポリビ ニルアルコール類またはポリォキシェチレン鎖をもつ非ィォン性界面活性剤がよ い。 なお、 溶融状態の生分解性ポリエステルの粘度を??。 [ただし、 ここでいう粘 度 。とは (生分解性ポリエステルの溶融開始温度 (T m) + 3 0 °C) の温度下 における粘度を意味する]、 乳化剤水溶液の粘度を?? w [ただし、 ここでいう粘 度?? wとは 8 0 °Cの温度下における粘度を意味する] とした場合、 T?。/ T7 wが 1 5 0以下、 望ましくは 1 0 0以下、 さらに望ましくは 6 0以下であるのがよい。 この範囲を外れると粗大粒子を多く生成したり、 あるいは固相と水相とが分離し たり、 さらには W/0型、 例えば常温固形など目的物の得られない場合が多い。 なお上述粘度範囲達成のために生分解性ポリエステル側へ可塑剤を添加する、 あ る L、は乳化剤水溶液に増粘剤を加えることも可能である。
乳化剤の使用量は、 生分解性ポリエステルに対し 5重量%超、 例えば 6〜2 5 重量%が好ましい。
次に本発明を実施するに当っては先ず生分解性ポリエステルの溶融および乳化 剤水溶液の調製が必要である。 後者は通常の溶解で充分である故、 前者につき説 明する。
生分解性ポリエステルはその融点以上に加熱され溶融される。 溶融は通常、 融 点より 1 0 °C以上の高温で行われる。 溶融にはドラム、 乳化機、 押出機などが用 いられる。 しかして溶融物中の揮発分は 0 . 3 %以下にすることが望ましい。 0 . 3 %を越えると乳化剤水溶液との混和により発泡し充分な剪断磨砕が行われず粒 子が粗大化する。
次に溶融状態の生分解性ポリエステル (生分解性ポリエステル溶融体) と乳ィ匕 剤の水溶液との混合、 詳しくは前者の後者中への分散につき述べる。 その分散を 詳しくみると、 初期には生分解性ポリエステル溶融体を連続相、 乳化剤水溶液を 分散相とするいわゆる WZO型分散系が生成し、 次いで混練継続により相の転換 が起り連続相は乳化剤水溶液、 分散相は生分解性ポリエステル溶融体なる 0/W 型分散系になると考えられ、 転相直前に粘度が急峻的に増加する程微粒子が得ら れることが認められている。 上述粘度増加を急峻的にかつ大きくするには転相前 W/0分散系における水相成分を微粒子化することが有効であり、 そのためには 大きな剪断力が要求される。 この微粒子化に必要な大きな剪断力を生じせしめる ための分散手段としてはホモミキサー、 ホモジナイザー、 コロイドミル、 各種押 出機、 二—ダール—ダ—、 変形ヘリカル翼をもつ高粘度液用撹拌機などが挙げら れる。 中でも高速分散機による局所混合と全体を万遍なく撹拌するブレードを自 転、 公転させることよりなる高性能分散機 (以下高性能分散機という)、 二軸同 方向押出機、 または臼式押出機のようなスクリュー押出機が好適である。
何れの分散装置を用いる場合でも生分解性ポリエステル溶融体に撹拌下に乳化 剤水溶液を添加するか、 両者を一度に仕込んでから撹拌するかして混合分散は開 始される。押出機の場合は前者、 上述高性能分散機の場合は前者、 後者何れでも 行い得る。
二軸同方向押出機や臼式押出機の場合には例えば生分解性ポリエステルを上記 押出機のホッパー部分より連続的に供給し、 別に乳化剤水溶液を上記押出機の樹 脂溶融時点以外の任意の位置に設置した供給口より連続的に圧入し、 この際必要 に応じて供給口を 2ケ所以上の複数箇所とし、 生分解性ポリエステルの溶融、 乳 化剤水溶液との混合、 混練を行うことにより、 あるいはさらに 1 0 0 °C以下の水 を注入して混合、 混練を行うことにより生分解性ポリエステルの水系分散液が連 続的に製造される。
高性能分散機の場合には例えば同分散機に生分解性ポリエステルを仕込み、 加 熱溶融せしめ、 撹拌下にこれに乳化剤水溶液を一度にあるいは滴々添加すること によって目的の生分解性ポリエステルの水系分散液が得られる。 融点が 1 0 0 °C 以上の生分解性ポリエステルの場合には可塑剤の添加で融点を下げるか、 さもな くば装置全体を耐圧構造化することにより上同様に実施される。
以上の如く溶融乳化法で得られる生分解性ポリエステルの水系分散液は固形分 濃度 4 0〜6 5重量%、 好ましくは 5 0 ~ 6 5重量%、 さらに好ましくは 5 5〜 6 5重量%、 2 0 °Cにおける粘度 1 0 3 mP a · s〜; L 04mP a · sであり、 好 ましくは 1 5 0 0 mP a ' s〜l 04mP a · s、 さらに好ましくは 2 0 0 0 m P a · s〜l 04m P a · sである。 固形分濃度および粘度は用途により適宜決 定すればよく、 必要に応じて希釈してもよい。 生分解性ポリエステルはミクロン からサブミクロンの微粒子として存在している。 ピーク粒子径は 1 0〃m以下、 使用目的によるが好ましくは 5 /in以下、さらに好ましくは 3 /m以下と言える。 放置によるェマルジョン粒子の沈降あるいは水浮きなどのトラブルは粒子径を勘 案した粘度の調整で防止される。 p Hは多く 3 ~ 7の間にある。 3未満の酸性あ るいは 7を越えるアルカリ性では加水分解を考慮し放置条件 (温度、 時間) に留 意する必要がある。
本発明により得られた生分解性ポリエステルの水系分散液は必要に応じて可塑 剤、 粘着付与剤、 フィラー、 顔料、 分散安定剤、 さらには防虫剤、 医薬、 農薬な どの薬剤などを添加された組成物とすることが出来る。 これら添加物は、 形態、 性質、酉己合量などにより生分解性ポリエステルに予め添加したペレツトを用いる、 あるいは溶融乳化方法の任意の工程で溶融相、 水相の何れかまたは両者へ添加す る、 さらには押出生成物へ後添加するなど使用目的に応じて様々な方法で配合さ れる。
実用化の期待される分野を機能別に挙げると例えば接着、 被覆、 徐放、 賦形な どとなる。 実用に際しェマルジョン粒子となっている生分解性ポリエステルを融 着させることが^;、要な場合にはそのための手段、 例えば加熱、 加圧、 溶剤や可塑 剤の添加などが必要となるが、 水分の蒸散で粒子が融合する例えば粘着用の場合 にはその必要はない。
接着の機能は、 木、 板、 布、 ガラス等を貼り合わせる狭義の接着に限らず、 木 材パルプ、 ステープルファイバ一、 木片、 皮屑、 合成繊維、 同ゥヱッブ等の有機 質材料あるいはロックウール、 セメント、 寒水石、 石綿、 粘土、 陶土、 金属およ び金属酸化物の粉末等の無機質材料を接着させて強化紙、 パルプモールド、 不織 布、 人造皮革、 無機質繊維板、 無機質建材ボード等を造ることに、 さらには浸漬 される紙、 布などを強化強靭化させてブックカバー、 糊付されたシーツ、 ヮイシ ャヅを提供することなどに、 広い意味での接着剤として使用される性質をいう。 これらの用途に使用される場合の特徴の一つは、 加工物が生分解性を持ち、 廃棄 後の自然環境下で容易に分解し、 廃棄物に由来する環境汚染を起さないことであ る。 例えば紙類のヒートシール剤として生分解性ポリエステルの水系分散液を用 いる場合、 同ポリエステルの結晶性に由来する高温高湿に耐えるプロッキング抵 抗性、 短い接着時間、 さらに水系分散液であるための水解性など環境汚染を起さ ないリサイクル型ヒ一トシール剤という好ましい効果が期待される。
被覆の機能を要求される場合にも本発明により得られた生分解性ポリエステル の水系分散液を用いることが出来る。被覆は強靭性、 耐水性、 耐光性、耐薬品性、 耐老化性などへの抵抗性付与を内容とする保護や美観を目標としてなされるほか、 肥料、 薬品などの徐放化のためにもなされる。 これらには従来から多種類の樹脂 が使用されているが、ほとんどが分角军せずに残り、環境汚染の原因となっている。 そうした点から紙、 木、 革のように自身自然環境中で分解する材料、 あるいは肥 料、 農薬、 医薬のよう (こ目的部位へ必要最小量、 所定速度で流出することにより 効果を発揮する薬用材料への被覆、 さらには船舶、 海洋や河川などにある構築物 などへのィガイやフジヅボなど水中生物の付着を解決する為にする、 水中で使用 される金属、 コンクリートへの被覆などは生分解性ポリエステルの水系分散液に とって最適の用途の一つと考えられる。 最終生成物としては、 塗料、 インキ、 そ の他の被覆剤という形となり、 それらが塗布される対象物は、 紙、 布、 木材、 プ ラスチックス、 セメント製品、 コンクリート、 金属、 農薬、 殺虫剤、 医薬、 肥料 等、 広範囲にわたる。 コーティングあるいは接着、 さらにまた含浸させて得た加 ェ品、 例えばフェルトを型に入れ、 熱圧を与えて賦形し、 例えば帽子、 ナ一スキ ヤップ、 収容器の内張り用ボックスを作る、 あるいは乾燥 '熱処理で使い捨て樹 脂手袋を作るなども生分解性ポリエステルの結晶性から期待される。
本発明により得られた生分解性ポリエステルの水系分散液を必要個所に塗布す るには、 刷毛塗り、 スプレー、 各種コ一夕一等その用途に見合う既存の装置が使 用され、 必要に応じて塗布後生分解性ポリエステルの融点以上に加熱することに より、 被覆が達成される。具体的には、 例えば、 木工塗装、 建築塗装、 防汚塗装、 船舶塗装、 道路標示塗装、 磁気記録媒体塗装など一般に塗料と考えられる用途、 また各種記録紙、 印刷用コート紙、 同アート紙、 防湿紙、 耐水紙、 撥水紙、 剥離 紙やラベル用紙の下塗り、 本の表丁用の紙、 不織布、 織布等の被覆、 買い物袋、 紙袋、 紙夕オル、 ティッシュペーパー、 さらには被覆による徐放性肥料、 同農薬、 同殺虫剤等への被覆がそれである。
上記に記載した接着と被覆を同時に適用して実用に供することも、 もちろん可 能である。 例えば、 前述の強化紙をトップシートとし、 綿布に本発明の生分解性 ポリエステルの水系分散液を被覆したシートをバックシートとして、 この間に木 材ノ、リレプと吸収剤からなる吸収体を挟み、 これら 3層を本発明により得られた生 分解性ポリエステルの水系分散液により接着し、 コンポスト化 (堆肥化) 可能な おむつ、 生理用ナプキン等を製造することが出来る。
徐放を利用する場合には薬剤を生分解性ポリエステルの水系分散液に含有せし めるわけであるが、 薬剤は生分解性ポリエステルに予め混合される、 溶融体また は乳化剤水溶液に添加混合される、 あるいは水系分散液作製後に添加される。 か くして得られた薬剤含有生分解性ポリエステルの水系分散液はそのまま、 あるい は紙、 布、 木、 皮あるいは生分解性プラスチックスなど生分解性基材に塗布され ることにより使用され得る。徐放性農薬、 徐放性肥料、 徐放により長寿命化され た防蟻剤などはそのまま土壌に散布される。 へモロンなど害虫防除剤あるいは神 経痛などへの消炎鎮痛剤を含有する場合には紙、 布、 さらには生分解性プラスチ ックスフイルムへ塗布されて後実用に供し得る。 実施例
以下、 実施例により本発明をさらに詳細に説明する。 ただし、 それらは例示で あって、 本発明を限定するものではない。 なお、 特記しない限り、 %は重量百分 率である。
生分解性試験:特記しない限り、 生分解性試験は下記の方法によった。
試験土壌を最大容水量の 5 0 %含水比として、その中に水系分散液を上質紙( 7 O /m2 ) に # 3 6バ一コーダ一で塗布し、 1 3 0 °Cで 3分間乾燥して得た試 料(3 c m x 5 c m)を埋め込み、 2 5 °C下の重量減少率で生分解性を測定した。 試験土壌には茨城県東茨城郡羽鳥美野里町由木の S D Sみのり農場の土壌 (火山 灰灰土) を用いた。 試料と試験土壌との重量比は 1 : 4 0 0とした。
(参考例 1 ) 乳化剤の製造
撹拌機、 温度計、 滴下ロート、 枝付き還留器、 コンデンサ一、 窒素ガス導入口 を備えた容量 1 0 Lのステンレス製円筒形セパラプル反応機にトルエン 5 k g、 生分解性ポリエステル(ポリブチレンサクシネート、数平均分子量 1 0 , 0 0 0、 水酸基価 5 . 6 ) 1 k gを仕込み、 窒素気流中にて撹拌しながらフラスコ内を 1 1 0 °Cに至らしめ還流下に水分を反応系外へ移す。 3 0分後水分移行が見られな くなつてから冷却してフラスコ内を 80°Cにしてからへキサメチレンジィソシァ ネート 320 gを滴下ロートから一度に加え撹拌を続けた。 2時間後にジブチル 錫ジラウレート 6 gを加えさらに 3時間撹拌を続けた。 次にフラスコ内を減圧に し未反応のへキサメチレンジイソシァネートを除去した。 次に分子量 2, 200 のポリェチレンォキサイ ド 440 gを固形のまま加え、 上同様 80 °Cに保ち 5時 間撹拌を続けた。 しかる後減圧下にトルエンの留去を行った。 続いてイオン交換 水 6. 4 kgを加え全体が均一に溶解してから室温にまで冷却した。 反応生成物 の固形分は数平均分子量 15, 000、 固形分濃度 20. 1 %の粘稠な溶液であ り、 その 1%水溶液の 20°Cにおける表面張力は 45. 3mN/mであった。
(参考例 2)溶液転相法によるェマルジヨンの調製
1Lのセパラブルフラスコ (蓋を除く) にポリ力プロラクトン (セルグリーン PH— 4、 ダイセル化学工業株式会社) のトルエン溶液 (20%) 250 gを、 続いてポリビニルアルコール (クラレポパール 220EG、 クラレ株式会社) の 15%水溶液 135 gを仕込んだ。 高速ホモミキサー (Τ· K. ホモミキサ一 H U— M、 特殊機化工業株式会社) をその中へ設置し 5, OOOrpmで 15分間 撹拌した。 しかる後流動性をよくするためにイオン交換水 (希釈水) 288 gを 5分間かけて添加し、 さらに 10分間撹拌してトルエン含有乳化物を得た。 生成 物からトルエンを減圧留出させエマルジョンを得た。ピーク粒子径 1. 16 m、 固形分濃度 16. 9%、 粘度 65mPa · sであった。
固形分濃度:ェマルジヨンを 105°C;、 2時間乾燥させた時の蒸発残分 (%) を固形分濃度とした。 - 生分解性ポリエステル溶融物の粘度:毛細管式粘度計 CAPIROGRAPH, 1B型 (株式会社東洋精機製作所) により剪断速度と粘度との関係 (グラフ) を 求め、 そのグラフ上から剪断速度 103s— 1 (実施例における乳化条件) におけ る粘度を求めて?7。とした。 温度は実施例に記した。
乳化剤水溶液およびェマルジヨンの粘度: B型粘度計 (株式会社東京計器、 商 品名 BH型または BM型) の 10 rpmにおける測定値あるいは回転数と粘度と の関係 (グラフ) を求め、 そのグラフ上から 10 r pmにおける粘度を求めて?? wとして用いた。
メルトフローレート (MFR) : MELT FLOW INDEX TEST ER (株式会社安田精機製作所)、 荷重 2. 16kgs 190°C (予熱 6分) で 測定した。
ピーク粒子径:動的光散乱法 (リーズアンドノースラップ社、 商品名マイクロ トラック分析計 FRA) により粒子径分布曲線を求め、 最大度数に対応する粒子 径をピ一ク粒子径とした。
(実施例 1 )
二軸同方向混練押出機 (株式会社日本製鋼所、 商品名スーパ一テックス 44ひ II、 シリンダ一径 47mm、 深溝夕イブ、 L/D = 52. 5) のホッパーからポ リブチレンサクシネート (昭和高分子株式会社、 商品名ピオノーレ 1040の未 増粘品、 Tm=115°C、 MFR = 46. 5 ) のペレットを 10 k g/hの割合 で連続的に供給し、 投入部から 4プロック目のシリンダ一部に設けた乳化剤水溶 液投入口より部分鹼化ポリビニルアルコール (クラレ株式会社、 商品名クラレポ パール 220 E G、 平均分子量二 98, 080、 1 %水溶液の 20°Cにおける表 面張力 =52. OmN/m) の 15%水溶液を 80°Cに保持し、 14kg/hの 流量でプランジャーポンプにより圧入し連続的に押出した。 シリンダー設定温度 は樹脂ペレツト供給部 50°C;、 樹脂溶融部 155°C、 乳化剤水溶液添加以降出口 部分まで 100。Cであった。 樹脂ペレット溶融物の粘度 (??。) は 13, 000 mP a · s/145°C、 一方乳化剤水溶液の粘度 (??w) は 1, 80 OmP a · s/80°Cであり両者の比は??。/?? :?. 2であった。 生成押出物は粘稠、 乳白色であり、 直流通電により水相を連続相としたェマルジヨンであることを示 した。 室温に冷却した所、 ピーク粒子径 1. 79 zm、 固形分濃度 57. 8 %、 粘度 183, 20 OmP a - s (20°C) の放置安定性も良好なェマルジョンで あった。 また生分解性試験では分解率 70% (35日間) であった。
(実施例 2)
二軸同方向押出機 (株式会社日本製鋼所、 スーパ一テックス XCT、 シリンダ 一径 69mm、 L/D = 42) のホッパーからポリプチレンサクシネートアジぺ —ト (昭和高分子株式会社、 商品名ビオノ一レ #3050、 Tm=95°C、 MF R = 80) ペレットを 40 k g/hの割合で連続的に供給し、 投入部から 4プロ ヅク目のシリンダー部に設けた投入口より部分鹼化ポリビニルアルコール (クラ レポパール 220 EG、 実施例 1に同じ) の 15%水溶液を 80°Cに保持しつつ 18 kg/hの流量でプランジャーポンプにより圧入し、 さらに 8ブロック目の シリンダー部に設けた投入口より 80°Cに保持した水を 22kg/hの流量でプ ランジャ一ポンプにより圧入し連続的に押出乳化した。 シリンダ一温度はホヅパ —部 50°Cs 樹脂溶融部 140°C、 乳化剤水溶液添加部以降 1 00°Cとした。樹 脂ペレットの溶融粘度 ??。= 50, 00 OmPa-s/1 25°C 乳化剤水溶液 粘度 7?w= l, 800mP a'sであり、 =2 Ί . 8であった。 生成押 出物はピーク粒子径 1. 64 zm、 固形分濃度 56. 3 %、 粘度 6 , 85 OmP a-s (20°C) の放置安定性良好なェマルジヨンであった。 また生分解性試験 では分解率 95% (35日間) であった。
(実施例 3〜5)
生分解性ポリエステル、 および/または乳化剤を変更する以外は実施例 2と同 様にして押出生成物を得た。 詳細は表 1の通りである。
(実施例 6)
生分解性ポリエステルをポリ乳酸に変更する以外は実施例 2と同様にして表 1 に示す性状の安定な押出生成物を得た。 ポリ乳酸は市販の L一乳酸 (90%ζΚ溶 液) を次に示すプログラム (特閧昭 59 - 96123号公報の実施例 2記載と同 一条件) で脱水縮合して得られたもので、 Tm= 160°C、 MFRは流下が速す ぎて測定不可であった。 生分解性試験は、 58°Cの堆肥中で行い、 分解率 85% (35曰間) であった。
180°C 4h 180°C― 2h 260° _ 8
常圧 2660Pa 266Pa ^終 J (実施例 7)
セバシン酸と 4ーメチルー 1 , 7—ヘプ夕ンジオールとをモル比 1. 00 : 1. 05で脱水反応、 次いで脱グリコール反応させ、 さらにこれにへキサメチレンジ アミンを加えて鎖延長して得られる生分解性ポリエステル (数平均分子量 =46, 300、 Tm=32° M F Rは流下が速すぎて測定不可) 2 kgを高性能分散 機(特殊機化工業株式会社、 商品名!1. K. ハイビスディスパ一ミヅクス 305) に仕込み加温して内温を 80°Cとした。 これにポリエチレンォキサイド系界面活 性剤ノィゲン D S— 60 1 (ポリオキシエチレンジステアレート、 第一工業製薬 株式会社) の 50 %水溶液 ( 1 %水溶液の 20 °Cにおける表面張力 56. 4mN /m) を 80°Cとし撹拌下に滴々加えた。 860 g添加した所で転相が起った。 この間高速分散機はブレード 140 r pm、 ディスパ一 10, 000 r pmで運 転した。 次いでイオン交換水を 1, 600 g加え冷却して生成物を得た。 粘度比 は T?。/T7w= 57. 0 (τ?。=4, 680mP a ' sヽ ?7w=82mP a ' s) であり、 生成物はピーク粒子径 0. 8 m、 固形分濃度 54. 5%、 粘度 12, 30 OmPa - s (20°C)、 放置安定性良好のェマルジヨンであった。 また生 分解性試験では分解率 80 % ( 35日間) であった。
(実施例 8, 9)
生分解性ポリエステルおよび乳化剤を変更する以外は実施例 Ίと同様にして高 性能分散機によるェマルジヨン調製を行い、 表 1に示す結果を得た。 但し実施例 8ではポリ力プロラクトン (ダイセル化学工業株式会社、 商品名プラクセル H— 7、
Figure imgf000019_0001
129) を、 また実施例 9ではコハク酸、 1, 4一 プ夕ンジオール、 d 1一乳酸を等モル配合とし触媒テトラプロボキシチ夕ン 0. 05重量パ一セント Z単量体とした以外は実施例 6のポリ乳酸合成と同一条件で 調製したものを用いた。生分解性試験は、実施例 8の分解率が 95 % ( 35日間)、 実施例 9の分解率が 70 % ( 35日間) であった。
(実施例 10 ) (応用性能評価その 1 )
実施例 3で得られたェマルジヨンを 4ミルのアプリケ一夕一で上質紙に塗布し 110°C、 3分間乾燥した。 得られた塗工紙に原紙を重ね 70°C、 2秒、 0. 1 MP aで熱圧接着させた。 室温に冷却後接着面を剥離すると全面的に紙破し充分 に接着されていた。 生分解性試験は、 分解率 95% (35日間) であった。
次いで上記接着紙片 (5 cmx 5 cm) 5枚を 500 gの水道水に 24時間浸 漬後、 家庭用ジュースミキサー (ただし刃をやすりで削って丸くした) で 5分間 撹拌した。 得られた液をスポィトで 1Lのメスシリンダーに作った水柱へ添加し たところ紙はパルプ単繊維状にまで離解されており、 また接着剤は再分散され水 相を白濁化し、 樹 β旨の塊は認められなかった。 以上より実施例 3で得られたエマ ルジョンは、 基材としての紙をリサイクル使用するのに適した接着剤であること が示された。
(実施例 11 ) (応用性能評価その 2 )
磁性酸化鉄 (TAROX BF— 2700) 30 g、 へキサメ夕リン酸ソ一ダ 10 %水溶液 1 g、 クラレポバール S— 2217の 10 %水溶液 10 g、 水 59 g、 ガラスビーズ 150 gを 500mlフラスコへ入れ、 ディスパ一 (T. K. オートホモミキサー M、 特殊機化工業株式会社) を挿入し 2, OOOrpmで 3 0分間撹拌した。 次いでポリブチレンサクシネートアジペートェマルジヨン (実 施例 2の生成物) 20 gを添加し 200 r p mで 10分間撹拌し、 最後に可塑剤 としてアデ力サイザ一 RS— 107 (アジピン酸ジエステル、 旭電化株式会社) 0. 2 gを加え撹拌をさらに 30分間続けて磁性酸化鉄スラリ一を得た。 上質紙 (PPC用、 70. 4 g/m2) 上に 3ミルのアプリケ一夕一で上のスラリーを 塗布、 110°C、 3分間乾燥し、 磁気配向器で磁性膜を配向させ磁性酸化鉄塗工 紙を得た。 該塗工紙はセロテープ剥離テスト、 爪による引搔きテストおよび湿潤 摩擦テスト(給水下指による摩擦 50回)では何らの変化も示さず強靭であった。
(比較例 1〜 5 )
生分解性ポリエステルおよび乳化剤として表 1記載分を用いた他は実施例 2と 同様にして押出を行ったが、 表 1生成物欄に示したように安定なェマルジヨンを 得ることが出来なかった。 (比較例 6) (応用性能評価その 1)
実施例 3と同じポリ力プロラクトンを、 これまた同じ乳化剤 (クラレポバール S-2217) を用いて作られた参考例 2のェマルジヨンを用いる他は実施例 1 0と同様にして紙の熱圧接着を行った。 室温冷却後接着面を剥離したところ簡単 に樹脂層と紙面とは離れ紙破は全く起らなかった。
C
Figure imgf000022_0001
NG' ;バケ "ン DS-601 - PBSL (ホ'リフ"チレ:^ンネ-トラクテ -ト)
(比較例 7) (応用性能評価その 2)
比較例 6が実施例 10に比べて熱圧接着性に劣った原因の一つを低固形分濃度 および低粘度から起る樹脂の紙への滲透し過ぎ、 換言すれば接着剤層の厚み不足 と考え、 比較例 6のェマルジヨンの濃縮を試みた。 内容積 1 Lの球形フラスコへ 比較例 6のェマルジヨンを 300 g注ぎこれをバキュームエバポレー夕一に取付 け減圧濃縮を式みた。 外浴を 70°C;〜 75°Cに保ちフラスコ内の蒸気圧を徐々に 下げ水の留出を図ったが、 激しく発泡し発泡部分が受器へ暴走する恐れがあった ので蒸気圧を 0. 02MPa以下に下げることは断念した。 水の留出は極めて遅 く、 かつ留出に伴ってェマルジヨンの粘度が上がるためか泡は一層消え難くなつ た。 合計 24時間上の操作を続けて得られた生成物ェマルジヨンは固形分濃度は 20. 3%、 粘度 625mP a · s (20°C)、 水留出量 49. 8 であった。 これを用いる他は実施例 10と同様に熱圧接着試験を行った。 接着面を剥離した ところ簡単に離れ紙破は見られなかった。
(比較例 8) (応用性能評価その 3)
比較例 7での濃縮実験での発泡トラブル、 それから来る濃縮不充分な生成物ェ マルジヨンを用いた熱圧着接着での不具合、 これらの原因の一つとして乳化剤ク ラレポバール 220 EGの使用分率の多さが考えられる。 そこで実施例 3と同じ レベルにまで乳化剤クラレポバール 220 EGの使用比率を下げて溶液転相乳化 を行い、 生成物からのトルエン留去、 さらに続けて水留去を行い本発明に言う固 形分濃度 40%以上、 あるいは粘度 1, O O OmPa . s (20°C) 以上のエマ ルジョンを作製し、 しかる後その熱接着性を検討しようと以下の実験を行った。 乳化される樹脂セルグリーン PH— 4、 100重量部に対する乳化剤クラレポバ —ル 220 EGの量は比較例 6で用いた参考例 2のェマルジヨンでは 40. 5重 量部であるのに対し、 実施例 10で用いられた実施例 3のェマルジヨンでは 6. 75重量部である。その比率に合うようにクラレポバ一ル 220 EGの濃度を 2. 5 %に変更したこと、 および不要なため希釈水を用いなかったこと以外は参考例 2と同様にして溶液転相乳化を行った。 生成物は凝集物を多く含み、 静置すると それらは浮上して 2相に分離し水相部分 (下層部分) は全体積の約 1/3となつ た。 水相部分からトルエンを減圧留出させて得られたェマルジヨンは固形分濃度
4. 8%、 粘度46. 5mPa · s (20°C) となった。 これをェマルジヨンと して用いる以外、実施例 10と同様にして熱圧接着試験を行ったところ比較例 6、 および同 7と同様に接着性はみられなかった。 産業上の利用の可能性
本発明によれば、 実用上非常に有利である高固形分濃度かつ高粘度である生分 角牟性ポリエステルの水系分散液の製造方法が提供される。

Claims

請 求 の 範 囲
1. 溶融状態の生分解性ポリエステルと、 1.0重量パ一セント水溶液の 20°C における表面張力が 63 mN/m以下である乳化剤の水溶液と、 必要に応じてそ の他の添加剤とを混合混練し、 固形分濃度 40重量パーセント以上でありかつ 2 0°Cにおける粘度が 1, 00 OmP a' s以上にすることを特徴とする生分解性 ポリエステルの水系分散液の製造方法。
2. 溶融状態の生分解性ポリエステルの粘度を 。、 乳化剤水溶液の粘度を 7?wとした場合、 7?。/7?wを 150以下とした請求の範囲第 1項に記載の生分解 性ポリエステルの水系分散液の製造方法。
3. 生分解性ポリエステルが、 下記繰り返し単位を有することを特徴とする請 求の範囲第 1項または第 2項に記載の生分解性ポリエステルの水系分散液の製造 方法。 r 0— C— R 1— C一 0— R
0 0
Figure imgf000025_0001
(式中、 ; R1および R2は炭素数 2〜10のアルキレン基または炭素数 5または 6の脂環式炭化水素基である)
4. 生分解性ポリエステルが、 少なくとも下記単位
Figure imgf000025_0002
(式中、 R 3はジイソシァネート残基である)
および/または
下記単位
Figure imgf000026_0001
を介して請求の範囲第 3項に記載の繰り返し単位が結合した構造を有する請求の 範囲第 1項または第 2項に記載の生分解性ポリエステルの水系分散液の製造方法 c
5 . 生分解性ポリエステルが、 少なくとも下記単位 .
Figure imgf000026_0002
および/または
下記単位
Figure imgf000026_0003
および/または
下記単位 ノ
Figure imgf000027_0001
(式中、 R 4は炭素数 2〜 6のアルキレン基である)
を介して請求の範囲第 3項に記載の繰り返し単位が結合した構造を有する請求の 範囲第 1項または第 2項に記載の车分解性ポリエステルの水系分散液の製造方法 c
6 . 生分解性ポリエステルが、 下記繰り返し単位を有することを特徴とする請 求の範囲第 1項または第 2項に記載の生分解性ポリエステルの水系分散液の製造 方法。
Figure imgf000027_0002
(式中、 R 5は水素、 炭素数 1 ~ 1 9のアルキル基または炭素数 1〜1 9のアル ケニル基であり、 ηは 1〜約 4の値である)
7 . 生分解性ポリエステルが、 少なくとも下記単位
r C一 N— R 3— N— C-
0 H H 0 ノ
(式中、 R 3はジイソシァネート残基である)
および/または
下記単位 、
0— C— 0 -
0
を介して請求の範囲第 6項に記載の繰り返し単位が結合した構造を有する請求の 範囲第 1項または第 2項に記載の生分解性ポリエステルの水系分散液の製造方法 c
8. 生分解性ポリエステルが、 少なくとも下記単位
0
r CH9— CH— R4— S i— 0 、
OH 〇
ノ および/または
下記単位
0
- CH— R4- S i一 0-ヽ
CH 一〇H 0 ン
および/または
下記単位
Figure imgf000028_0001
(式中、 R 4は炭素数 2〜 6のアルキレン基である)
を介して請求の範囲第 6項に記載の繰り返し単位が結合した構造を有する請求の 範囲第 1項または第 2項に記載の生分解性ポリエステルの水系分散液の製造方法 c
9 . 乳化剤がポリビニルアルコール類またはポリォキシェチレン鎖をもっ非ィ オン性界面活性剤である請求の範囲第 1項ないし第 8項のいずれか 1項に記載の 生分解性ポリエステルの水系分散液の製造方法。
1 0 . ピーク粒子径 (粒子径分布曲線のピークの粒子径) が 3 m以下である 請求の範囲第 1項ないし第 9項のいずれか 1項に記載の生分解性ポリエステルの 水系分散液の製造方法。
1 1 . 前記混合混練が、 スクリュー押出機によりなされる請求の範囲第 1項な いし第 1 0項のいずれか 1項に記載の製造方法。
1 2 . スクリュー押出機が、 二軸同方向押出機または曰型押出機である請求の 範囲第 1 1項に記載の製造方法。
1 3 . 乳化剤の水溶液をスクリユー押出機の 2ケ所以上から分割添加する請求 の範囲第 1 1項または第 1 2項に記載の製造方法。
PCT/JP2001/005140 2000-06-16 2001-06-15 Procede de production d'une dispersion aqueuse de polyester biodegradable WO2001096449A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020027017098A KR20030016294A (ko) 2000-06-16 2001-06-15 생분해성 폴리에스테르의 수성 분산액의 제조방법
DE60122732T DE60122732T2 (de) 2000-06-16 2001-06-15 Verfahren zur herstellung einer wässrigen dispersion eines bioabbaubaren polyesters
EP01938700A EP1302502B1 (en) 2000-06-16 2001-06-15 Process for producing aqueous dispersion of biodegradable polyester
US10/311,070 US6716911B2 (en) 2000-06-16 2001-06-15 Method for producing aqueous biodegradable polyester dispersion
AU2001264299A AU2001264299A1 (en) 2000-06-16 2001-06-15 Process for producing aqueous dispersion of biodegradable polyester

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000181574A JP2001354841A (ja) 2000-06-16 2000-06-16 生分解性ポリエステルの水系分散液
JP2000-181574 2000-06-16

Publications (1)

Publication Number Publication Date
WO2001096449A1 true WO2001096449A1 (fr) 2001-12-20

Family

ID=18682482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005140 WO2001096449A1 (fr) 2000-06-16 2001-06-15 Procede de production d'une dispersion aqueuse de polyester biodegradable

Country Status (8)

Country Link
US (1) US6716911B2 (ja)
EP (1) EP1302502B1 (ja)
JP (1) JP2001354841A (ja)
KR (1) KR20030016294A (ja)
CN (1) CN1239579C (ja)
AU (1) AU2001264299A1 (ja)
DE (1) DE60122732T2 (ja)
WO (1) WO2001096449A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024181408A1 (ja) * 2023-03-02 2024-09-06 株式会社日本触媒 ポリエステルアミド樹脂、およびその製造方法

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003096281A (ja) * 2001-09-26 2003-04-03 Mitsui Chemicals Inc 生分解性ポリエステルの水性分散体、微粒子及び塗膜、並びにそれらの製造方法
JP2003277595A (ja) * 2002-03-25 2003-10-02 Mitsui Chemicals Inc 製膜性及び保存安定性を改良したポリ乳酸水分散体
JP2004277679A (ja) * 2003-03-14 2004-10-07 Toho Chem Ind Co Ltd 改質されたポリ乳酸系樹脂エマルション及びその製造方法
JP2004277681A (ja) * 2003-03-14 2004-10-07 Toho Chem Ind Co Ltd 改質された生分解性樹脂小粒子径エマルション
FR2859729B1 (fr) * 2003-09-12 2006-02-24 Roquette Freres Dispersions aqueuses d'au moins un polymere biodegradable
FR2862310B1 (fr) * 2003-11-17 2008-04-25 Roquette Freres Utilisation d'une dispersion aqueuse d'au moins un polymere biodegradable contenant au moins un agent stabilisant pour la preparation d'une composition filmogene aqueuse
FR2862309B1 (fr) * 2003-11-17 2007-11-16 Roquette Freres Utilisation d'une dispersion aqueuse d'au moins un polymere biodegradable contenant au moins un agent stabilisant pour la preparation d'une composition pigmentaire aqueuse
US6840319B1 (en) * 2004-01-21 2005-01-11 Halliburton Energy Services, Inc. Methods, compositions and biodegradable fluid loss control additives for cementing subterranean zones
WO2008008381A2 (en) 2006-07-14 2008-01-17 Dupont Teijin Films U.S. Limited Partnership Multilayer sealant film
US20080026959A1 (en) * 2006-07-25 2008-01-31 Halliburton Energy Services, Inc. Degradable particulates and associated methods
WO2011024021A1 (en) * 2009-08-31 2011-03-03 Ovc Intellectual Capital, Llc Sizing composition containing a biodegradable polymer
JP2013527263A (ja) 2010-03-24 2013-06-27 ビーエーエスエフ ソシエタス・ヨーロピア 熱可塑性ポリエステルの水性分散液の製造方法
US8604101B2 (en) 2010-03-24 2013-12-10 Basf Se Process for producing aqueous dispersions of thermoplastic polyesters
WO2012140181A1 (de) 2011-04-15 2012-10-18 Basf Se Verfahren zur herstellung wässriger dispersionen aliphatischer polycarbonate
EP2702091B1 (en) 2011-04-29 2019-02-13 CJ CheilJedang Corporation Process for latex production by melt emulsification
US20140228429A1 (en) * 2011-05-27 2014-08-14 Dsm Ip Assets B.V Extrusion process
US20140251563A1 (en) 2011-11-09 2014-09-11 Basf Se Use in paper coatings of a mixture of a secondary polymeric dispersion and of a primary dispersion of an emulsion polymer
JP6111079B2 (ja) * 2012-01-27 2017-04-05 株式会社キクテック 熱溶融塗料組成物
JP2014189989A (ja) * 2013-03-26 2014-10-06 Showa Denko Kk フラクチャリング材料
US9321899B1 (en) * 2014-10-29 2016-04-26 Xerox Corporation Preparing latex using a biosolvent
NL2014860B1 (en) 2015-05-27 2017-01-31 Csk Food Enrichment Bv Cheese coating.
NL2014862B1 (en) 2015-05-27 2017-01-31 Csk Food Enrichment Bv Cheese coating.
KR102643181B1 (ko) * 2016-02-29 2024-03-06 미첼만, 인크. 생분해성 중합체의 가수분해에 안정한 수계 분산물
WO2018070492A1 (ja) 2016-10-13 2018-04-19 株式会社カネカ ポリヒドロキシアルカン酸の製造方法
CN110088400A (zh) * 2016-12-20 2019-08-02 米切尔曼公司 包括可堆肥涂层的涂覆的基底及其生产方法
CN112352002B (zh) 2018-06-19 2022-10-14 3M创新有限公司 包含聚酯颗粒的水分散体、光致聚合型组合物、制品和方法
JP7467459B2 (ja) 2018-08-02 2024-04-15 エッジ マーケティング コーポレイション 熱可塑性エラストマコルク複合材料
EP3656524B1 (en) 2018-11-21 2021-01-06 Biofibre GmbH Method of manufacturing biocomposite materials comprising cellulose
CN110028628A (zh) * 2019-04-02 2019-07-19 苏州海晨塑胶有限公司 一种可降解聚酯材料及其制备方法
EP4153653B1 (de) 2020-05-20 2023-10-18 Wacker Chemie AG Wässrige dispersion biologisch abbaubarer polyester
CN114426761B (zh) * 2020-10-29 2023-09-08 财团法人工业技术研究院 生物可分解聚酯材料及其制造方法
WO2022225024A1 (ja) * 2021-04-22 2022-10-27 三菱ケミカル株式会社 エマルジョン用樹脂組成物及びコーティング剤
JP6966663B1 (ja) * 2021-06-07 2021-11-17 ミヨシ油脂株式会社 生分解性樹脂水系分散体とそれを用いた皮膜形成剤及び皮膜を形成する方法
WO2023190059A1 (ja) * 2022-03-28 2023-10-05 積水化成品工業株式会社 ポリブチレンサクシネートアジペート樹脂粒子水分散体、その製造方法、および、ポリブチレンサクシネートアジペート樹脂粒子
CN115386208A (zh) * 2022-08-11 2022-11-25 长兴电子(苏州)有限公司 可降解微珠及其制备方法与应用
KR102630985B1 (ko) * 2022-12-27 2024-01-30 롯데정밀화학 주식회사 생분해성 고분자 에멀젼의 제조방법 및 이로부터 제조된 생분해성 고분자 에멀젼
WO2024144108A1 (ko) * 2022-12-27 2024-07-04 롯데정밀화학 주식회사 생분해성 고분자 에멀젼의 제조방법, 이로부터 제조된 생분해성 고분자 에멀젼 및 이를 이용한 생분해성 고분자 코팅액
WO2024176844A1 (ja) * 2023-02-24 2024-08-29 綜研化学株式会社 粘着剤用ポリエステル樹脂水性再分散体の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10101911A (ja) * 1996-10-01 1998-04-21 Miyoshi Oil & Fat Co Ltd 生分解性エマルジョン
WO1998029477A1 (en) * 1996-12-31 1998-07-09 Valtion Teknillinen Tutkimuskeskus Process for the preparation of polymer dispersions
JPH1192712A (ja) * 1997-09-24 1999-04-06 Showa Highpolymer Co Ltd O/w型生分解性エマルジョンおよびその組成物
JP2000007789A (ja) * 1998-04-23 2000-01-11 Dainippon Ink & Chem Inc 生分解性ポリエステルからなる自己水分散性粒子及びその製法
JP2001011294A (ja) * 1999-07-02 2001-01-16 Miyoshi Oil & Fat Co Ltd 生分解性樹脂水系分散体及び生分解性複合材料

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1455091A (en) * 1974-02-11 1976-11-10 Toyo Boseki Dispersion of linear polyester resin
DE2903022A1 (de) * 1979-01-26 1980-07-31 Bayer Ag Feinteilige waessrige polyesterdispersionen, verfahren zu ihrer herstellung und ihre verwendung
DE4242781A1 (de) * 1992-12-17 1994-06-23 Wacker Chemie Gmbh Biologisch abbaubare, wäßrige Dispersionen
DE19638686A1 (de) * 1996-09-20 1998-03-26 Basf Ag Wäßrige Dispersion eines biologisch abbaubaren Polyesters sowie deren Verwendung
DE19652813A1 (de) * 1996-12-18 1998-06-25 Basf Coatings Ag Wäßrige Pulverlack-Dispersion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10101911A (ja) * 1996-10-01 1998-04-21 Miyoshi Oil & Fat Co Ltd 生分解性エマルジョン
WO1998029477A1 (en) * 1996-12-31 1998-07-09 Valtion Teknillinen Tutkimuskeskus Process for the preparation of polymer dispersions
JPH1192712A (ja) * 1997-09-24 1999-04-06 Showa Highpolymer Co Ltd O/w型生分解性エマルジョンおよびその組成物
JP2000007789A (ja) * 1998-04-23 2000-01-11 Dainippon Ink & Chem Inc 生分解性ポリエステルからなる自己水分散性粒子及びその製法
JP2001011294A (ja) * 1999-07-02 2001-01-16 Miyoshi Oil & Fat Co Ltd 生分解性樹脂水系分散体及び生分解性複合材料

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024181408A1 (ja) * 2023-03-02 2024-09-06 株式会社日本触媒 ポリエステルアミド樹脂、およびその製造方法

Also Published As

Publication number Publication date
US20030181630A1 (en) 2003-09-25
AU2001264299A1 (en) 2001-12-24
KR20030016294A (ko) 2003-02-26
EP1302502A1 (en) 2003-04-16
JP2001354841A (ja) 2001-12-25
EP1302502B1 (en) 2006-08-30
DE60122732T2 (de) 2006-12-21
EP1302502A4 (en) 2004-10-20
US6716911B2 (en) 2004-04-06
DE60122732D1 (de) 2006-10-12
CN1441823A (zh) 2003-09-10
CN1239579C (zh) 2006-02-01

Similar Documents

Publication Publication Date Title
WO2001096449A1 (fr) Procede de production d'une dispersion aqueuse de polyester biodegradable
EP3559346B1 (en) Coated substrates including compostable coatings and methods for producing the same
Ben Mabrouk et al. Preparation of nanocomposite dispersions based on cellulose whiskers and acrylic copolymer by miniemulsion polymerization: effect of the silane content
JP2004107413A (ja) 可塑剤含有ポリ乳酸系樹脂水分散体
EP2652223B1 (de) Verwendung von dispersionsklebstoff-beschichteten polyvinylchlorid-abdichtungsfolien zum abdichten
JPH0977910A (ja) 生分解性樹脂組成物の水系分散液
JP6946513B2 (ja) 水分散液、コーティング剤、塗工紙及び多層構造体
CN102838837A (zh) 通过界面反应得到的可再分散的环氧树脂粉末
JP5059668B2 (ja) 樹脂組成物およびその製造方法
EP2906657B1 (de) Flächengebilde oder formkörper enthaltend latente wärmespeicher
CN101356048B (zh) 连续制备聚合物分散体的方法和装置
CN102838845B (zh) 可再分散的环氧树脂粉末
JP3616465B2 (ja) 生分解性エマルジョン
US5834545A (en) Solid polymeric products and their use
JP2002371259A (ja) 生分解性水分散系接着剤組成物
WO2022225024A1 (ja) エマルジョン用樹脂組成物及びコーティング剤
JP2002003607A (ja) 生分解性ポリエステルの水系分散液の製造方法
Vähä-Nissi et al. Aqueous dispersions from biodegradable/renewable polymers
JPH1192712A (ja) O/w型生分解性エマルジョンおよびその組成物
JP4822898B2 (ja) 水性分散体および積層体
JP2022167851A (ja) エマルジョン用樹脂組成物及びコーティング剤
JP2004277681A (ja) 改質された生分解性樹脂小粒子径エマルション
DE112021004264T5 (de) Vinylalkoholpolymer und dessen Verwendung
JP3400854B2 (ja) エチレン−グリシジルアクリレート系化合物共重合体水性エマルジョンの製造方法
JP2003201378A (ja) エチレン−グリシジルアクリレート系化合物共重合体水性エマルジョンの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10311070

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020027017098

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 018128483

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2001938700

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027017098

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001938700

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2001938700

Country of ref document: EP