WO2001092925A1 - Materiau optique et element optique contenant un compose de sulfure aromatique et compose de sulfure aromatique - Google Patents

Materiau optique et element optique contenant un compose de sulfure aromatique et compose de sulfure aromatique Download PDF

Info

Publication number
WO2001092925A1
WO2001092925A1 PCT/JP2001/004491 JP0104491W WO0192925A1 WO 2001092925 A1 WO2001092925 A1 WO 2001092925A1 JP 0104491 W JP0104491 W JP 0104491W WO 0192925 A1 WO0192925 A1 WO 0192925A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
optionally substituted
ring
substituent
general formula
Prior art date
Application number
PCT/JP2001/004491
Other languages
English (en)
French (fr)
Inventor
Takahiro Fujiyama
Hideo Hama
Atsuo Otsuji
Keisuke Takuma
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Priority to KR1020027001388A priority Critical patent/KR20020044134A/ko
Priority to EP01934387A priority patent/EP1291679A1/en
Publication of WO2001092925A1 publication Critical patent/WO2001092925A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C321/00Thiols, sulfides, hydropolysulfides or polysulfides
    • C07C321/24Thiols, sulfides, hydropolysulfides, or polysulfides having thio groups bound to carbon atoms of six-membered aromatic rings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02033Core or cladding made from organic material, e.g. polymeric material
    • G02B6/02038Core or cladding made from organic material, e.g. polymeric material with core or cladding having graded refractive index
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • C08K5/375Thiols containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • C08K5/378Thiols containing heterocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate

Definitions

  • the present invention relates to an optical material and an optical component using an aromatic sulfide compound and an aromatic sulfide compound, and particularly to a polymer optical fiber.
  • Optical materials used to be glass but in recent years transparent polymer materials have begun to spread. In particular, they are used in the fields of optical lenses, optical disks, optical fibers, rod lenses, optical waveguides, optical switches, optical pickup lenses, and the like.
  • Optical polymer materials have evolved in pursuit of higher functionality such as transparency, higher refractive index, lower dispersion, higher refractive index, and higher heat resistance.
  • polymer optical fiber (POF) is becoming increasingly important in next-generation iSf starting concepts such as LAN (local area network) and ISDN (integrated service digital network).
  • the POF is composed of polymers in the core and cladding, and is easier to process and handle than quartz optical fins, and the cost of the material is low. It is often used as a short-haul transport route for ⁇
  • Step index type (31 type), in which the refractive index distribution changes stepwise, has already been put into practical use for short-distance transmission of about 50 m, but because of its small transmission capacity, it is used for optical communication. Not suitable for On the other hand, a graded index (GI) POF, whose refractive index distribution changes in the radial direction, has a larger transmission capacity than the SI type and is suitable for optical communication applications, and this refractive index distribution is smooth. The transmission capacity of the fiber increases as the number becomes higher.
  • GI graded index
  • GI POF fabrication methods There are two types of GI POF fabrication methods. One is a dopant type as disclosed in, for example, W093 / 08488, in which a polymer for a matrix is added with a low molecular weight compound having no reactivity to the polymer, and Minute The refractive index distribution is obtained by forming a concentration gradient by the diffusion of the condensate ⁇ ].
  • the other is, for example, a copolymerization type disclosed in JP-A-5-173025-JP-A-5-173026, which utilizes the difference in the reactivity ratio of both monomers when copolymerizing two types of monomers. Thus, a refractive index distribution is obtained by forming a concentration gradient.
  • the dopant type ⁇ has extremely high transparency with respect to wavelength because the dopant size is on the order of several A, but has a problem with heat resistance.
  • the distribution of dopants fluctuates and the refractive index distribution is liable to change, and the refractive index distribution has poor resistance.
  • the reason for this is that the glass transition point of the core material decreases due to the plasticizing effect of the dopant.
  • the glass transition point of PMMA used for conventional POF is 105 ° Cim, but the addition of dopant lowers the glass transition point to around room temperature.
  • benzyl benzoate, n-butyl benzyl phthalate, benzyl salicylate, bromobenzene, benzyl phenyl ether, diphenyl phthalate, diphenyl methane, diphenyl ether, diphenyl, diphenyl sulfide, phenyl benzoate, phosphate Refenyl and tricresyl phosphate are known as GI-type POF dopants.
  • diphenyl sulfide is disclosed in Japanese Patent Application Laid-Open No. 11-142,657 as a dopant which achieves both the ⁇ M effect and a high refractive index.
  • the heat resistance cannot be sufficiently satisfied. Disclosure of the invention
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an aromatic sulfide compound useful for an optical material. More specifically, it is intended to share a dopant type GI type P 0 F with improved heat resistance.
  • the present inventors have been keen to solve the above-mentioned problem and have a specific structure.
  • an aromatic sulfide compound as a dopant for an optical material, it is possible to suppress a decrease in the glass transition point of the core material, to improve heat resistance, and to be used in an atmosphere higher than a certain temperature.
  • the present invention was completed, and the present invention was completed.
  • n represents an integer of 2 to 12
  • k represents an integer of 1 to n.
  • A represents an n-valent carbocyclic aromatic ring or heterocyclic aromatic ring which may have a substituent
  • B 1 to B n each independently represent a carbocyclic aromatic group or a heterocyclic aromatic group which may have a substituent.
  • n is an integer of 2 to 4
  • A is a heterocyclic heterocyclic ring which may have a substituent.
  • B 1 to B n each independently have a phenyl group which may have a substituent, a pyrimidyl group which may have a substituent, and a substituent.
  • Optionally substituted naphthyl group, optionally substituted phenyl group, optionally substituted benzothiazolyl group, optionally substituted benzoxazolyl group, substituted benzothiazolyl group The optical material according to [2], which is a thiadiazolyl group which may be substituted, or a thiazolyl group which may have a substituent.
  • A represents a thiophene ring which may have a substituent, a 1,1-dioxide ring which may have a substituent, or a substituent.
  • B′B each independently represents a phenyl group which may have a substituent, a pyrimidyl group which may have a substituent, hand Optionally substituted naphthyl group, optionally substituted phenyl group, optionally substituted benzothiazolyl group, optionally substituted benzothiazolyl group, optionally substituted benzothiazolyl group, optionally substituted benzothiazolyl group,
  • the optical material according to [4] which is any one of a thiadiazolyl group which may be substituted, and a thiazolyl group which may have a substituent.
  • A is a substituted phenyl ring which may have a substituent, a triazine ring which may have a substituent, and a pyrimidine which may have a substituent.
  • B 1 to B n each independently represent a phenyl group which may have a substituent, a pyrimidyl group which may have a substituent, or a substituent.
  • the optical material according to [6] which is any one of a thiadiazolyl group which may be substituted, and a thiazolyl group which may have a substituent.
  • A represents any one of a thiene phen ring which may have a substituent and a cheno [3,2-b] thiophen ring which may have a substituent.
  • B 1 to B n each independently represent a phenyl group which may have a substituent, a pyrimidyl group which may have a substituent, or a substituent.
  • each of B 1 to B n independently represents a phenyl group which may have a substituent, or a pyrimidyl group which may have a substituent.
  • a naphthyl group which may have a substituent, a phenyl group which may have a substituent, a benzothiazolyl group which may have a substituent, and a benzoxazolyl group which may have a substituent The optical material according to [10], which is any of a thiadiazolyl group which may have a substituent, and a thiazolyl group which may have a substituent.
  • A is a benzene ring optionally having a substituent, a naphthalene ring optionally having a substituent, a fluorene ring optionally having a substituent,
  • B 1 to B n each independently represent a phenyl group which may have a substituent, a pyrimidyl group which may have a substituent, or a substituent.
  • the optical material according to [12] which is any of a thiadiazolyl group which may have a thiazolyl group which may have a substituent
  • A is a trivalent carbocyclic ring selected from a benzene ring which may have a substituent and a fluorene ring which may have a substituent.
  • B 1 to B n each independently represent a phenyl group which may have a substituent, a pyrimidyl group which may have a substituent, or a substituent.
  • A is a tetravalent carbon ring selected from a benzene ring which may have a substituent and a biphenyl which may have a substituent.
  • B 1 to B n each independently represent a phenyl group which may have a substituent, a pyrimidyl group which may have a substituent, or a substituent.
  • Naphthyl group which may have, phenyl group which may have a substituent, benzothiazolyl group which may have a substituent, benzoxazolyl group which may have a substituent, Which may have a thiadiazolyl group or a substituent The optical material according to [16], which is any of a thiazolyl group,
  • optical material according to any one of [1] to [17], wherein the optical material is a polymer optical fiber;
  • [21] is an aromatic sulfide compound represented by the general formula (1a),
  • k represents an integer of "! -2.”
  • A is a benzene ring which may be substituted, a naphthalene ring which may be substituted, a fluorene ring which may be substituted, a biphenyl which may have a substituent, and which may be substituted 1-year-old phenyl ring, optionally substituted 1-year-old oxide, 1-year-old oxide ring, optionally substituted 1-year-old phenthiadiazole ring, and optionally substituted cheno [ 3, 2—b] divalent carbocyclic aromatic rings selected from thiene phen rings, triazine rings optionally having substituents, pyrimidine rings optionally having substituents, or Represents a heterocyclic aromatic ring,
  • B 1 and B 2 are each independently a phenyl group which may be substituted, a pyrimidyl group which may be substituted, a naphthyl group which may be substituted, a phenyl group which may be substituted, or a substituted phenyl group; Benzothiazolyl group, optionally substituted benzoxazolyl group, optionally substituted thiadiazolyl group, optionally substituted thiazolyl group, a carbocyclic aromatic or heterocyclic aromatic group Represents a group. ]
  • k represents an integer of 1 to 3.
  • A is an optionally substituted benzene ring, an optionally substituted fluorene ring, Represents a trivalent carbocyclic aromatic ring or heterocyclic aromatic ring selected from an optionally substituted thiene ring, an optionally substituted triazine ring, and an optionally substituted pyrimidine ring.
  • B ⁇ BB 3 are each independently, optionally substituted Hue group, may be substituted pyrimidyl group, optionally substituted naphthyl group, an thienyl group which may be substituted, substituted Carbocyclic aromatic or heterocyclic ring selected from an optionally substituted benzothiazolyl group, an optionally substituted benzoxazolyl group, an optionally substituted thiadiazolyl group, and an optionally substituted thiazolyl group Shikiyoshi represents an aromatic group.
  • k represents an integer of 1 to 4.
  • A represents an optionally substituted benzene ring, an optionally substituted biphenyl ring, an optionally substituted thiophene ring, an optionally substituted cheno [3, 2-b] Represents a carbocyclic aromatic ring or a heterocyclic aromatic ⁇ selected from
  • B 1 , B 2 , B 3 and B 4 are each independently a phenyl group which may be substituted, a pyrimidyl group which may be substituted, a naphthyl group which may be substituted, A carbon-type aromatic group selected from a good phenyl group, an optionally substituted benzothiazolyl group, an optionally substituted benzoxazolyl group, an optionally substituted thiaziazolyl group, and an optionally substituted thiazolyl group Or a heterocyclic aromatic group.
  • FIG. 1 is a graph showing a change in the refractive index of the spin coat film due to a change in the dopant concentration measured in Example 8 and Comparative Example 1.
  • FIG. 2 is a graph showing the relationship between the glass transition temperature and the refractive index measured in Example 15 and Comparative Example 2.
  • optical material of the present invention is the optical material of the present invention.
  • the optical material of the present invention is characterized by containing at least one aromatic sulfide compound represented by the general formula (1).
  • A represents an n-valent carbocyclic aromatic ring or heterocyclic aromatic ring which may have a substituent
  • B ⁇ to Bn each independently represent a carbocyclic aromatic group or a heterocyclic aromatic group which may have a substituent.
  • a heterocyclic aromatic ring is an aromatic ring composed of atoms of two or more elements.
  • the atoms of two or more elements include a carbon atom, an oxygen atom, a phosphorus atom, a sulfur atom, and a nitrogen atom.
  • it is composed of atoms of 2 to 5 elements, and more preferably, it is composed of atoms of 2 to 4 elements. Note that atoms other than carbon atoms are referred to as hetero atoms.
  • the heterocyclic aromatic ring is composed of a five-membered ring or a six-membered ring. It is preferably formed by condensing a single ring or 2 to 4 aromatic rings, and more preferably formed by condensing a single ring or 2 to 3 aromatic rings.
  • the number of carbon atoms contained in the heterocyclic aromatic ring is preferably from 4 to 14, more preferably from 4 to 11.
  • a five-membered ring containing one heteroatom represented by the general formula (2) may be mentioned.
  • Z ⁇ a furan ring
  • Z S
  • Examples include the pyrrole ring of NH. Among these, a thiene ring and a furan ring are preferable, and a thiene ring is more preferable.
  • Z is an indole ring of NH
  • Z is a benzofuran ring of 0
  • Z is a benzothiene phen ring.
  • a 5-membered compound represented by the general formula (5a) or ( 5b ) (the general formula (6a) or (6b) in which a benzene ring is condensed.
  • Z 2 0 is a benzoisoxazole ring
  • Five-membered rings containing three or more heteroatoms include n-triazole ring, s-triazolyl ring, 1,2,4-year-old oxadiazol ring, 1,3,5-year-old oxadiazole ring, 2,5—thiaxadiazole ring, 1,2,4-thiadiazole ring, 1,3,5-thiadiazole ring, 1,2,5-thiadiazole ring, tetrazole ring .
  • a 1,3,5-thiaxadiazole ring and a 1,3,5-thiadiazol ring are preferable, and a 1,3,5-thiadiazol ring is more preferable.
  • a pyridine ring is an example of a six-membered ring containing one heteroatom. Further, a quinoline ring in which a benzene ring is condensed with a pyridine ring, and an isoquinoline ring are exemplified. Next, examples of the six-membered ring containing two hetero atoms include a pyridazine ring, a pyrimidine ring, and a pyrazine ring.
  • a in the general formula (1) may be a polycyclic system. Specifically, it is a polycyclic system in which a plurality of ring systems are one-dimensionally connected by one single bond as shown in the general formula (7).
  • Z represents an oxygen atom or a sulfur atom.
  • M represents an integer of 0 to 2. Of these, a yellow atom is preferred. Further, a preferred range of m is 0 or 1, and a more preferred range is 0.
  • the carbocyclic aromatic ring of A in the general formula (1) is a cyclic compound in which all atoms constituting the aromatic ring are carbon atoms.
  • Carbocyclic aromatic rings are composed of five-membered or six-membered rings. It is preferably formed by condensing a single ring or 2 to 5 aromatic rings, and more preferably formed by condensing a single ring or 2 to 4 aromatic rings.
  • the number of carbon atoms contained in the carbocyclic aromatic ring is preferably 6 to 22, and more preferably 6 to 18.
  • Such a carbocyclic aromatic ring include a condensed polycyclic aromatic ring.
  • examples include a pentalene ring, a phenalene ring, a triphenylene ring, a perylene ring, an indene ring, an azulene ring, a phenanthrene ring, pyrene, and picene.
  • acene-type aromatic rings are preferred.
  • Specific examples include a benzene ring, a naphthalene ring, an anthracene ring, a naphthocene ring, and a pentacene ring.
  • a benzene ring, a naphthalene ring and an anthracene ring are more preferred, and a benzene ring and a naphthalene ring are more preferred.
  • a in the general formula (1) may be a polycyclic system. Specifically, it is a polycyclic system in which a plurality of ring systems are one-dimensionally connected by one single bond as shown in the general formula (8).
  • m is an integer of 0 to 2.
  • the preferred range of m is 0 or 1, and the more preferred range is 0.
  • a in the general formula (1) may have a structure represented by the general formula (9).
  • a dibenzothiene phen ring, a fluorene ring, a fluorene lenone ring and a dibenzothiene phensulfone ring are preferred, and a dibenzothiene phenene ring, a fluorene ring and a fulenelenone ring are more preferred.
  • the preferred structure of the carbocyclic aromatic ring or heterocyclic aromatic ring represented by A is the following structural formula. 0 ', 0
  • the heteroaromatic ring or carbocyclic aromatic ring represented by A in the general formula (1) may have a substituent.
  • substituents include an alkyl group, an alkoxy group and a halogen atom.
  • an alkyl group having 1 to 4 carbon atoms is preferable. Specifically, a linear group such as a methyl group, an ethyl group, an n-propyl group, and an n-butyl group, and a branched group such as an isopropyl group, an s-butyl group, and a t-butyl group are preferable.
  • an alkoxy group an alkoxy group having 1 to 3 carbon atoms is preferable. Specifically, a methoxy group, an ethoxy group, a propoxy group, and an isopropoxy group are preferred.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • they are a fluorine atom and a chlorine atom.
  • substituents are determined in consideration of the melting point, compatibility with the polymer, and the like. When the compatibility with the polymer is poor, it is effective to introduce a bulky t-butyl group or the like.
  • B 1 to B n in the general formula (1) will be described.
  • B 1 to B n each independently represent a carbocyclic aromatic group or a heterocyclic aromatic group which may have a substituent.
  • an aromatic group is composed of atoms of two or more elements.
  • the atoms of two or more elements include a carbon atom, an oxygen atom, a phosphorus atom, a sulfur atom, and a nitrogen atom.
  • it is composed of atoms of 2 to 5 elements, and more preferably, it is composed of atoms of 2 to 4 elements. Note that atoms other than carbon atoms are referred to as hetero atoms.
  • the heterocyclic aromatic group is composed of a five-membered ring or a six-membered ring.
  • 1 to 4 aromatic rings are condensed, and more preferably, 1 to 3 aromatic rings are condensed if.
  • the number of carbon atoms contained in the heterocyclic aromatic group is preferably ⁇ 4 to "! 4, and more preferably 4 to 11.
  • a 5-membered ring containing one hetero atom represented by the general formula (10) can be given.
  • Z is a furyl group of 0, Z is a phenyl group of S, and Z is a pyrrolyl group of NH.
  • a phenyl group and a furyl group are preferred, and a phenyl group is more preferred.
  • Z is an indolyl group of NH
  • Z is a benzofuryl group of 20
  • Z is a benzothienyl group of S.
  • a benzophenyl group and a benzofuryl group are preferable, and a benzothienyl group is more preferable.
  • a 6-membered ring containing one heteroatom includes a pyridyl group.
  • a quinolyl group and an isoquinolyl group in which a benzene ring is condensed with a pyridyl group are exemplified.
  • Preferred is the pyridyl group.
  • examples of the six-membered ring containing two hetero atoms include a pyridazyl group, a pyrimidyl group, and a virazyl group.
  • a benzo [d] pyridazyl group, a benzo [c] pyridazyl group, a quinazolyl group, and a quinoxalinyl group in which a benzene ring is condensed to these six-membered rings are exemplified.
  • the carbocyclic aromatic group of B 1 to B n in the general formula (1) is a cyclic compound group in which all atoms constituting the aromatic ring are carbon atoms.
  • the carbocyclic aromatic group is composed of a five-membered ring or a six-membered ring. It is preferably formed by condensing a single ring or 2 to 5 aromatic rings, and more preferably formed by condensing a single ring or 2 to 4 aromatic rings.
  • the number of carbon atoms contained in the carbocyclic aromatic group is preferably from 6 to 22 and more preferably from 6 to 18.
  • Such a carbocyclic aromatic group include a condensed polycyclic aromatic group. Pennylenyl, phenenyl, triphenylenyl, perylenyl, indenyl, azulenyl, phenanthryl, pyrenyl, picenyl and the like. Among them, an acene type aromatic group is preferred. As a specific example, Examples thereof include a phenyl group, a naphthyl group, an anthryl group, a naphthacenyl group, and a pentacenyl group. Of these, phenyl, naphthyl and anthracenyl groups are preferred, and phenyl and naphthyl groups are more preferred.
  • Preferred structures of B 1 to B n in the general formula (1) are the following structural formulas. Or they may all be different.
  • Beta carbocyclic aromatic group or heteroaromatic group represented by ⁇ ⁇ beta eta may be substituted.
  • substituents include an alkyl group, an alkoxy group, and a halogen atom.
  • an alkyl group having from "! To 4 carbon atoms is preferable.
  • a straight-chain alkyl group such as a methyl group, an ethyl group, an ⁇ -propyl group, an ⁇ -butyl group, an isopropyl group, A branched s-butyl or t-butyl group is preferable, and a methyl group, an ethyl group, an n-butyl group, and a t-butyl group are particularly preferable.
  • an alkoxy group having 1 to 3 carbon atoms is preferable. Specifically, a methoxy group, an ethoxy group, a propoxy group, and an isopropoxy group are preferred, and a methoxy group is particularly preferred.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • a fluorine atom Preferably it is a fluorine atom, a chlorine atom, particularly preferably a fluorine atom.
  • substituents are determined in consideration of the melting point, compatibility with the polymer, and the like. When the compatibility with the polymer is poor, it is effective to introduce a bulky t-butyl group or the like. In the case of a straight-chain alkyl group, a methyl position is more preferable than a nora position in order to introduce a methyl group into an asymmetric position, for example, a phenyl group.
  • n represents an integer of 2 to 12.
  • n is determined by the molecular structure of A, and is not particularly limited. In the case of an A-force heteroaromatic ring, the preferred range of n is 2 to 6, and the more preferred range is 2 to 4. Further, when A is a carbocyclic aromatic ring, the preferred range of n is 2 to 10, and the more preferred range is 2 to 6.
  • k represents an integer of “! To n.
  • the optical material using the aromatic sulfide compound according to the present invention can also be used as an anti-reflection film by forming a laminated film in combination with a material such as a lens or an optical filter or a material having a refractive index.
  • a material such as a lens or an optical filter or a material having a refractive index.
  • Such an optical component is classified into a case where the transparent polymer and the dopant are uniformly dispersed and a case where the transparent polymer and the dopant have a distribution.
  • application to an array lens used in combination with the GI type P0F is preferable.
  • a known molding method such as an injection molding method, a compression molding method, a micromold method, a floating mold method, a low-links method, and a casting method can be used.
  • the mixture may be poured into a mold, and the final polymerization may be performed to obtain a molded product, and at the same time, the optical material according to the present invention may be manufactured.
  • a sample for molding can be obtained by blending a compound with a thermosetting resin in the injection molding method: ⁇ and stirring the mixture until it becomes uniform. This can be achieved by adding a dopant to the UV-curable monomer and halving the mixture until it becomes uniform.
  • M g F 2 , S i O Such as inorganic compounds such as silane coupling agents on the surface of molded products, and vinyl monomers, melamine resins, and epoxy resins.
  • inorganic compounds such as silane coupling agents on the surface of molded products, and vinyl monomers, melamine resins, and epoxy resins.
  • the aromatic sulfide compound of the present invention is used as such an application, it is generally used as a high-refractive-index compound, and thus the refractive index is in the range of 1.6 to 2.0. And more preferably in the range of 1.63 to 1.90.
  • These high refractive index dopants may be contained alone in the core portion, or a plurality of them may be contained in the core portion, or other known dopants may be contained in the core portion. And one or more of these may be included in the core portion.
  • the content of the high refractive index dopant contained in the core portion of P 0 F is not particularly limited as long as the refractive index distribution desired by Togano is obtained and the target of the finer is not impaired.
  • the high-refractive-index dopant is added to the heavy monomer constituting the core when the POF material is produced by polymerization, and the high-refractive-index dopant is mixed with the high-refractive-index dopant. Contained in the core of the POF material produced by conducting the polymerization reaction.
  • the content of the high refractive index dopant in the core portion of the POF is preferably 60% by mass or less, more preferably 50% by mass or less, and even more preferably 45% by mass or less.
  • the molecular volume of the high-refractive-index dopant compound used in the P 0 F of the present invention is determined by the combination of the core POF material used and the monomer, and is not particularly limited. Absent. Considering that minute the product of main evening methyl acrylic acid used in the conventional POF is about 1 0 1 A 3, when using methyl methacrylate as a core part preform monomer, 1 0 0 5 0 0 range is it is good Mashiku of, and more preferably in the range of 1 5 0 to 4 0 OA 3.
  • the aromatic sulfide compound of the present invention can be obtained by reacting a halogen compound with a thiol compound under a base.
  • the aromatic sulfide compound contained in the POF of the present invention can be obtained by reacting a dihalogen compound with a thiocyanate compound in the presence of a base.
  • the dihalogen used in the reaction can be easily obtained by halogenating the target aromatic compound.
  • the chiral compound used in the reaction is, for example, a nucleophilic substitution reaction between a diazodium salt and an sulfide as described in Can. J. Chem., 53, 1480 (1975). Can be obtained easily.
  • the total amount of the thiol compound used is 2 to 5 moles, preferably 2 to 3 moles, based on the dihalogen compound.
  • the base used in the present invention for example, sodium hydroxide, sodium oxide such as 7k oxidizing rim, sodium carbonate, carbonate such as sodium carbonyl, trimethylamine, triethylamine, etc. And tertiary amines such as tripropylamine, triptylamine, ⁇ , dimethylaniline, etc., sodium alcohol such as sodium methacrylate and potassium tert-butyrate, and the like. Preferred are metal alcohols such as sodium methylate and sodium methylate.
  • the amount of the base used is 2 to 5 moles, preferably 2 to 3 moles, per mole of the dihalogen.
  • the reaction temperature is in the range of 100 to 200 ° C, preferably in the range of 130 to 180 ° C.
  • Byproducts increase when reaction temperature exceeds 18 CTC! And the yield of the target aromatic sulfide compound is reduced.
  • the reaction is lower than 1 oo ° c, the reaction speed is low and not practical.
  • a polar organic solvent examples include N-methyl-2-pyrrolidone, N-propyl-12-pyrrolidone, dimethylacetamide, dimethylformamide, dimethylsulfoxide and the like.
  • the above method is an example of a method for producing an aromatic sulfide compound used as a high-refractive-index dopant in the present invention, and the aromatic sulfide compound used as a high-refractive-index dopant in the present invention is obtained by the following method. It is not limited to the method obtained only by the method ⁇ ). .
  • the POF material of the present invention is composed of a core portion and a clad portion having a lower refractive index than the central portion of the core portion.
  • the double strand constituting the core of the POF of the present invention can be used without any particular limitation as long as it can form a transparent polymer.
  • the double strands constituting the cladding portion of the POF of the present invention can form a transparent polymer.
  • polymethyl methacrylate (PMMA), polyacrylonitrile (PC), methacrylic acid, or a transparent copolymer of methyl methacrylate and another monomer is used.
  • monofunctional (meth) acrylates, fluorinated alkyl (meth) acrylates, and acrylic monomers such as acrylic acid and methacrylic acid can be used.
  • the POF of the present invention can be produced by a known method, but is generally produced by two methods exemplified below. One is a method of thermally drawing a fiber from a preform (base material), and the other is a method of continuously forming a fiber without passing through a preform.
  • the optical material before being spun into a polymer optical fiber is defined as a POF preform.
  • a polymerizable solution is prepared by dissolving a double tube of a hollow tube in a hollow of a polymer hollow tube prepared in advance and dispersing a non-polymerizable low-molecular compound.
  • a monomer mixture containing a monomer component, a polymerization initiator, and a molecular weight modifier), and the monomer is polymerized from the outside by heating or light irradiation from the outside to obtain a rod-shaped preform. This is a method of stretching by heating to a desired diameter.
  • the polymer hollow tube may be formed from the same monomer mixture as that filled in the hollow portion except that it does not contain a non-polymerizable low-molecular compound, and may be a main component thereof. If the monomers are the same, they may be formed from different monomer mixtures.
  • a usual radical chain transfer agent such as a mercaptan such as n-butyl mercaptan is used.
  • azobis Usual radical polymerization methods such as azotization of soptyronitrile and the like and peroxides such as benzoyl peroxide are used.
  • about 40 such as benzoyl peroxide and lauroyl peroxide.
  • the so-called medium temperature opening which effectively generates radicals at C to about 100 ° C can be suitably used. Therefore, the polymerization reaction conditions using such a medium temperature initiator are preferably about 40. C to about 100 ° C.
  • the polymerization reaction 3 ⁇ 4Jg is adjusted so that cracks and the like do not occur in the polymer during or after the polymerization reaction due to the heat of reaction or expansion and contraction due to the reaction itself, and that the monomer does not boil during the reaction due to the heat of reaction.
  • This can be adjusted by a combination of polymerization and open concentration.
  • the amount of the initiator to be added to the radical polymerization reaction is about 0.001 to 10% by mass with respect to the entire system with respect to the conditions of the initiation of the polymerization reaction at about 40 ° C. to about 100 ° C., and further, May be about 0.01 to 0.3% by mass.
  • bulk polymerization using light energy can be used.
  • the polymerization reaction rate can be adjusted by a combination of the input energy amount such as the temperature and the open concentration.
  • the weight average molecular weight of the polymer constituting the core part and the clad part of the POF base material is 10 0, 0 00 or more, 3 0 0, 0 0 0 or less. ⁇ Further, it is preferably 30 0 0 0 0 It is preferable that it is not less than 0000 and not more than 200, 000.
  • the manufacturing equipment used to produce the core or cladding must be capable of rotating the POF base material and controlling the temperature. Any device having a heating means having the above function can be suitably used in the present invention regardless of the form.
  • a function capable of sealing both ends is provided. It is preferable to be done.
  • a low polymerization degree polymer containing a non-polymerizable compound and a high polymerization degree polymer not containing a non-polymerizable compound are not used. It is also possible to adopt a method in which the union is placed outside and the composite spinning is performed, and the non-polymerizable conjugated product inside is subjected to carothermal diffusion.
  • a coating layer (jacket layer) can be provided on the outer periphery of the GI type POF thus manufactured.
  • the coating layer can have a multilayer structure of two or more layers.
  • Known materials such as polyethylene, polyvinyl chloride, chlorinated polyethylene, Takara polyethylene, polyolefin elastomer, polyurethane, nylon resin, and ethylene-vinyl acetate copolymer can be used for the coating layer (jacket layer).
  • the present invention will be described specifically with reference to examples.
  • Examples 1 to 7 show synthesis examples of the aromatic sulfide compound ⁇ / according to the present invention.
  • the glass transition temperature of the optical material of the present invention was measured at a temperature rise of 10 ° C./min using a DSC manufactured by Max Science.
  • Examples 16 to 21 show the performance of POF using the aromatic sulfide according to the present invention as an optical component.
  • the refractive index distribution was measured by a known method using an Interfaco interference microscope manufactured by Carl Zeiss.
  • Optical transmission loss was measured by the cutback method using He-Ne laser light (wavelength 633 nm).
  • 2,5—jib-mouth motifen 12.10 g (0.05 Omo 1), titanium phenol 12.12 g (0.110 mo 1), copper oxide (I) 3.58 g (0.025 mo 1) was placed in 100 ml of pyridine / quinoline (1/4) and refluxed at 160 ° C. for 42 hours.
  • the reaction solution was treated with 6N hydrochloric acid and extracted with toluene.
  • the organic layer was taken out and the solvent was removed by an evaporator to obtain a pale yellow liquid.
  • the target product was obtained by recrystallizing the obtained liquid from ethanol. Yield: 10.1 g (67.0% yield) o Melting point: 47-48 ° Co
  • Example 7 Synthesis of 1,3,5-tris (phenylthio) triazine
  • 16.58 g of thienylphenol was added. 0.150mo)
  • 9.90 g (0.176m ⁇ ⁇ ) of potassium iodide, and 180ml of dehydrated DM were charged, and the mixture was heated at 80 ° C for 2B.
  • 9.22 g (0.050 mol) of cyanuric chloride was added to this reaction solution, and the mixture was refluxed at a reaction temperature of 120 ° C for 3 fl and at a temperature of 40 ° C for 9B.
  • composition ratio dependency of the refractive index was measured in the same manner as in Example 8, and the refractive index of the compound of the present invention was calculated by extrapolating a straight line.
  • the results are shown in Table 1 below. All compounds were found to have a higher refractive index than diphenyl sulfide.
  • the glass transition temperature of a film in which diphenyl sulfide was dispersed in PMMA was measured in the same manner as in Example 15. The results are shown in FIG.
  • a glass tube with a length of 500 mm and an inner diameter of 18 mm held horizontally 112 g of methyl methacrylate (MMA) as a monomer, 0.56 g of benzoylperoxide as a polymerization initiator, and n-butyl mercap as a chain transfer agent
  • MMA methyl methacrylate
  • benzoylperoxide as a polymerization initiator
  • n-butyl mercap as a chain transfer agent
  • this PMMA hollow tube was sealed, and 48 g of MMA, 12 g of a high-refractive-index compound shown below, 54 liters of di-tert. Fill with 160 liters of lauryl mercaptan, seal the other end, hold horizontally, rotate at 10 rpm for 24 hours at 95 ° C, then stop rotating 1 hour at 10 ° C for 48 hours
  • the rod with an outer diameter of 18 mm is lg 0
  • This rod is mounted vertically on a rod feeder, and is heated and melted in a cylindrical heating furnace at 220 ° C, is taken up at a constant speed, is melt-spun by winding up, and has a diameter of 0.
  • a 75 mm optical fiber was obtained.
  • the refractive index distribution of the fiber cross section of the obtained optical fiber was measured, the refractive index was continuously reduced from the center to the outside.
  • the transmission loss was 17.8 dB at a wavelength of 650 nm and the transmission band was 3.4 GHz, indicating that the optical fiber has good performance as a refractive index distribution type POF.
  • the obtained optical fiber was placed in a storage chamber at 85 ° C and subjected to a calorific heat test. The refractive index distribution after 3000 hours was measured, and the initial refractive index distribution was maintained.
  • this PMMA hollow tube was filled with 48 g of MMA, 12 g of a high-refractive index compound shown below, and di-t-butyrino as a polymerization initiator. Filled with 54 ⁇ l of oxide and 160 liters of ⁇ -lauryl mercaptan as a chain transfer agent, sealed the other end, kept flat at 7k, heated at 95 ° C while rotating at 10 rpm and heated at 24 ° C for 24B. Thereafter, the rotation was stopped, and the mixture was heated at 110 ° C. for 48 hours and polymerized to obtain a rod having an outer diameter of 18 mm.
  • This rod was mounted vertically on a rod feed device, and was heated and melted in a cylindrical heating furnace at 220 ° C, bowed at a constant speed, and melted and spun by winding to obtain an optical fiber with a diameter of 0.75 mm). .
  • the refractive index distribution of the fino section of the obtained optical fiber was measured, it was found that the refractive index gradually decreased from the center to the outside.
  • the transmission loss was 15.3 dB at a wavelength of 65 Onm
  • the transmission band was 3.1 GHz, and good performance as a graded-index plastic optical fiber was obtained.
  • the PMMA hollow tube had MMA of 48 g, the high refractive index dopant shown below, and a polymerization initiator of 12 g.
  • G-t-butyirno ⁇ ° 54 liters of n-lauryl mercapone as a chain transfer agent is filled with 160 ⁇ l of a chain transfer agent, one end is sealed, then held horizontally, and rotated at 10 ° at 95 ° 10 For 24 hours, then stopped the rotation and heated at 110 ° C for 48 hours to polymerize to obtain a load having an outer diameter of 17.6 mm.
  • This rod is mounted vertically on a rod feeder, and is heated and melted in a cylindrical heating furnace at 220 ° C, and is bowed at a constant speed, and is melt-spun by winding up to obtain a 0.75 mm diameter optical fiber. Obtained.
  • the refractive index distribution of the fino section of the obtained optical fiber was measured, it was found that the refractive index gradually decreased from the center to the outside.
  • the transmission loss was 14.58, ⁇ 3 ⁇ 4 band or 2.3 GHz at a wavelength of 65 Onm, which was good as a refractive index distributed plastic optical fiber. Performance.
  • the obtained optical fiber was placed in an oven at 85 ° C, and a heating St test was performed. When the refractive index distribution was measured after 3000 hours, the initial refractive index distribution was maintained.
  • this PMMA hollow tube was filled with 48 g of MMA, 12 g of a high-refractive-index dopant shown below, and di-t-butyl benzene as a polymerization initiator. Little, filled with n-laurylmercaptan 160 / litre as a chain transfer agent, sealed the other end, kept horizontal, rotated at 10 rpm for 24 hours at 95 ° C, then stopped rotating 1 The mixture was heated at 10 ° C for 48 hours and polymerized to obtain a load of 18 mm in outer diameter.
  • This rod is mounted vertically on a rod feeder, and is heated and melted in a cylindrical heating furnace at 220 ° C, and is taken out with a constant 3 ⁇ 4 ⁇ bow I and then melted and spun to form an optical fiber with a diameter of 0.75 mm. Obtained.
  • the refractive index distribution of the fiber cross section of the obtained optical fiber was measured, the refractive index was continuously reduced from the center to the outside.
  • the transmission characteristics of the obtained optical fiber were evaluated at a length of 100 m, the loss was 17.8 dB at a wavelength of 650 nm and the transmission band was 3.5 GHz, indicating good performance as a refractive index distribution type POF.
  • the obtained optical fiber was placed in an oven at 85 ° C and subjected to a calo-heat test. The refractive index distribution after 3000 hours was measured, and the initial refractive index distribution was maintained.
  • This rod is mounted vertically on a rod feeder, and is heated and melted in a cylindrical heating furnace at 220 ° C while being bowed at a constant speed and melt-spun by winding up to obtain an optical finof 0.75 mm in diameter. Pita.
  • the refractive index distribution of the fiber cross section of the obtained optical fiber was measured, it was found that the refractive index gradually decreased from the center to the outside.
  • the characteristics of the obtained optical fiber at 1 OOm length were evaluated by iffi.As a result, the transmission loss was 16.2 dB at a wavelength of 650 nm and the transmission bandwidth power was 3.1 GHz. It had good performance as a plastic optical fiber.
  • the obtained optical fiber was placed in an oven at 85 ° C and subjected to a force [] heat test. The refractive index distribution after 3000 hours was measured, and the initial refractive index distribution was maintained.
  • the optical material of the present invention can increase the refractive index more efficiently than conventionally known dopants, has a small effect, has excellent heat resistance, and improves the reliability as an optical material. .
  • the GI type P0F which is a kind of optical component of the present invention, is superior in heat resistance stability of the refractive index distribution as compared with conventional ones, and has improved reliability of transmission characteristics as an optical fiber. It is.
  • the P0F of the present invention can be used for a long period of time even in fields requiring heat resistance, such as automobile engines, which cannot be used in the conventional P0F.

Description

明 細 書
芳香族スルフィ ド化合物を用いた光学材料及び光学部品
ならびに芳香族スルフィ ド化合物 技術分野
本発明は、 芳香族スルフィ ド化合物を用いた光学材料及び光学部品ならびに芳 香族スルフィ ド化合物に関し、特にポリマー光ファイバ一に関する。 背景技術
光学材料は以前はガラスであつたが、近年透明性ポリマー材料が普及し始めて いる。特に、光学レンズ、光ディスク、光ファイバ一、ロッドレンズ、光導波路、 光スイッチ、 光ピックアップレンズ等の分野で用いられている。光学用ポリマー 材料は、透明化、高屈折率化、低分散化、 折率化、高耐熱ィ匕などと高機能 化を追及し、 進化してきた。 その中でもポリマー光ファイバ一 (P O F ) は、 L A N (local area network)、 I S D N (integrated service dig tal networK ) 等の次世代通 iSf罔構想において、 重要性が増大している。
P O Fはコア部ならびにクラヅド部カ洪にポリマーから構成されており、 石英 光ファイノ 一に比べて加工や取り扱いが容易で、材料が低コストであることから、 伝 _送損失が実質的に問題にされなし \ に短距離の ¾ί云送路として多用されてい る ο
Ρ皆段状に屈折率分布が変化するステップインデックス型(3 1型) の 0 が 5 0 m程度の短距離伝送用として既に実用化されているが、伝送容量が少ないた めに光通信用途には適していない。 それに対して、 半径方向に屈折率分布が変ィ匕 するグレイテッドインデックス型 (G I型) の P O Fは S I型に比べて伝送容量 が大きいので光通信用途に適しており、 この屈折率分布が滑らかになるほどファ ィバーの伝送容量が大きくなる。
G I型 P O Fの作製方法としては二つのタイプがある。一つは、 例えば W093 /08488号に開示されているようなドーパントタイプで、 マトリックス用のポリマ 一に、 当該ポリマーに対して反応性を有しない低分子ィ匕合物を添カロし、 この低分 子化^]の拡散により濃度勾配を形成させることで屈折率分布を得る。他方は、 例えば、特開平 5- 173025号ゃ特開平 5- 173026号に開示されている共重合タィプで、 二種類のモノマ一を共重合させる際に、両モノマーの反応性比の相違を利用して 濃度勾配を形成させることで屈折率分布を得る。
共重合夕ィプの場合には、共重合繊の違いによるミクロな不均一構造の発生 を避けがたく、 これに起因する透明性の問題が生じやすい。そのため、現状で可 能な ί^Ι距離は 50m に留まり、家庭内 L A などで要求される伝送距離を十 分に満足させることができない。一方、 ドーパン卜タイプの^^には、 ドーパン 卜の大きさが数 Aオーダーであるので波長に対して極めて透明性は高いが、耐熱 性に問題がある。ある温度よりも高温雰囲気下で使用すると、 ドーパン卜の分布 に変動しゃすくなり、 そのため屈折率分布が変化し易く屈折率分布の耐! ^定性 に劣るという問題点を有する。
その原因は、 ド一パン卜による可塑効果によりコア材料のガラス転移点が低下 するためである。従来の P O Fに用いられている P MM Aのガラス幸云移点は 1 0 5°c imであるが、 ドーパン卜を添加するとガラス転移点が室温付近まで低下し てしまう。例えば安息香酸ベンジル、 フタル酸べンジル n—プチル、サリチル酸 ベンジル、 ブロモベンゼン、 ベンジルフエニルエーテル、 フタル酸ジフエニル、 ジフエニルメタン、 ジフエ二ルエーテル、 ジフエニル、 ジフエニルスルフィ ド、 フエ二ルペンゾエー卜、 リン酸卜リフエニル、 リン酸卜リクレシルなどが G I型 P O Fのドーパン卜として知られている。 これらの中でも、 ジフエニルスルフィ ドが^ M効果と高屈折率化を両立するドーパン卜として特開平 1 1一 1 4 2 6 5 7に開示されている。 しかしながら、 このドーパントを用いても耐熱性を十分に 満足させることが出来なかつた。 発明の開示
本発明は上記の状況を背景になされたものであり、光学材料に有用な芳香矣ス ルフィド化合物を提供することを目的としている。さらに詳しくは、耐熱性の改 善されたドーパン卜タイプの G I型 P 0 Fを K共するしょうとするものである。 本発明者らは、前記した問題点を解決するために鋭意し、特定構造を有する芳 香族スルフィ ド化合物を光学材料のドーパントとして用いることにより、 コア材 料のガラス転移点力 ¾下することを抑制することができ、耐熱性が改善され、 あ る温度よりも高温雰囲気下で使用し得ることを見出し、本発明を完成した。
すなわち、 本発明は、
[ 1 ] 一般式 ( 1 ) で表される芳香族スルフィ ド化合物を少なくとも 1種含有し てなる光学材料であり、 また、
Figure imgf000005_0001
[式中、 nは 2〜1 2の を表し、 kは 1〜nの整数を表す。
Aは、置換基を有していても良い、 n価の炭素環式芳香族環または複素環式芳 香族環を表し、
B1〜Bnは、 それぞれ独立に、置換基を有していても良い、炭素環式芳香矣基 または複素環式芳香族基を表す。 ]
[ 2 ] 一般式 ( 1 ) において、 nが 2〜4の整数であり、 力つ Aは置換基を有し ていても良い複素環式芳截矣環である [ 1 ]記載の光学材料であり、 また、
[ 3〕 一般式 ( 1 ) において、 B1〜Bnが、 それぞれ独立に、置換基を有してい ても良いフエニル基、置換基を有していても良いピリミジル基、置換基を有して いても良いナフチル基、 置換基を有していても良いチェニル基、 置換基を有して いても良いベンゾチアゾリル基、置換基を有していても良いベンゾ才キサゾリル 基、置換基を有していても良いチアジアゾリル基、 置換基を有していても良いチ ァゾリル基のし \ずれかである [ 2 ]記載の光学材料であり、 また、
[ 4 ] 一般式 ( 1 ) において、 Aは置換基を有していても良いチ才フェン環、置 換基を有していても良いチ才フェン一 1 , 1ージォキシド環、置換基を有していても 良いチ才フェンチアジアゾ一ル基、置換基を有していても良いチェノ [ 3 , 2— b ] チ才フェン環、 置換基を有していても良い卜リアジン環、置換基を有していても 良いピリミジン環のいずれかから選ばれる 2価の複素環式芳香族環である [ 2 ]記 載の光学材料であり、 また、
[ 5 ] —般式 ( 1 ) において、 B ' B"が、 それぞれ独立に、置換基を有してい ても良いフエニル基、置換基を有していても良いピリミジル基、 置換基を有して いても良いナフチル基、置換基を有していても良いチェニル基、置換基を有して いても良いベンゾチアゾリル基、置換基を有していても良いベンゾ才キサゾリル 基、置換基を有していても良いチアジアゾリル基、置換基を有していても良いチ ァゾリル基のいずれかである [ 4 ]記載の光学材料であり、 また、
[ 6 ] 一般式 ( 1 ) において、 Aが置換基を有していても良いチ才フェン環、置 換基を有していても良い卜リアジン環、置換基を有していても良いピリミジン基 のいずれかから選ばれる 3価の複素璟式芳香族環である [ 2 ]記載の光学材料であ り、 また、
[ 7 ] 一般式 (1 ) において、 B1〜Bnが、 それぞれ独立に、置換基を有してい ても良いフエニル基、置換基を有していても良いピリミジル基、置換基を有して いても良いナフチル基、置換基を有していても良いチェニル基、置換基を有して いても良いベンゾチアゾリル基、置換基を有していても良いベンゾ才キサゾリル 基、置換基を有していても良いチアジアゾリル基、置換基を有していても良いチ ァゾリル基のいずれかである [ 6 ]記載の光学材料であり、 また、
[ 8 ] 一般式 ( 1 ) において、 Aは置換基を有していても良いチ才フェン環、置 換基を有していても良いチェノ [ 3, 2 - b ]チォフェン環のいずれかから選ばれ る 4価の複素環式芳香族環である [ 2 ]記載の光学材料であり、 また、
[ 9 ] 一般式 (1 ) において、 B 1〜Bnが、 それぞれ独立に、置換基を有してい ても良いフエニル基、置換基を有していても良いピリミジル基、置換基を有して いても良いナフチル基、置換基を有していても良いチェニル基、置換基を有して いても良いベンゾチアゾリル基、置換基を有していても良いベンゾ才キサゾリル 基、置換基を有していても良いチアジアゾリル基、置換基を有していても良いチ ァゾリル基のいずれかである [ 8 ]記載の光学材料であり、 また、
[ 1 0 ] —般式(1 ) において、 nが 2〜6の整数であり、 かつ Aが置換基を有 していても良い炭素環式芳香族環である [ 1 ]記載の光学材料であり、 また、 [ 1 1 ] —般式 ( 1 ) において、 B1〜Bnが、 それぞれ独立に、置換基を有して いても良いフエニル基、置換基を有していても良いピリミジル基、置換基を有し ていても良いナフチル基、置換基を有していても良いチェニル基、置換基を有し ていても良いベンゾチアゾリル基、置換基を有していても良いベンゾ才キサゾリ ル基、置換基を有していても良いチアジアゾリル基、置換基を有していても良い チアゾリル基のいずれかである [ 1 0 ]記載の光学材料であり、 また、
[1 2] 一般式 (1 ) において、 Aが置換基を有していても良いベンゼン環、置 換基を有していても良いナフタレン環、置換基を有していても良いフルオレン環、 置換基を有していても良いビフエ二ル環のいずれかから選ばれる 2価の炭素環式 芳香族環である [10]記載の光学材料であり、 また、
[1 3] 一般式 (1 ) において、 B1〜Bnが、 それぞれ独立に、置換基を有して いても良いフエニル基、置換基を有していても良いピリミジル基、置換基を有し ていても良いナフチル基、置換基を有していても良いチェニル基、置換基を有し ていても良いベンゾチアゾリル基、置換基を有していても良いベンゾ才キサゾリ ル基、置換基を有していても良いチアジアゾリル基、置換基を有していても良い チアゾリル基のいずれかである [1 2]記載の光学材料であり、 また、
[1 4] 一般式 (1 ) において、 Aが置換基を有していても良いベンゼン環、置 換基を有していても良いフルオレン環のいずれかから選ばれる 3価の炭素環式芳 香 ¾矣環である [10]記載の光学材料であり、 また、
[1 5] 一般式 (1 ) において、 B1〜Bnが、 それぞれ独立に、置換基を有して いても良いフエニル基、置換基を有していても良いピリミジル基、置換基を有し ていても良いナフチル基、置換基を有していても良いチェニル基、置換基を有し ていても良いベンゾチアゾリル基、置換基を有していても良いベンゾォキサゾリ ル基、置換基を有していても良いチアジアゾリル基、置換基を有していても良い チアゾリル基のいずれかである [1 4]記載の光学材料であり、 また、
[1 6] 一般式 (1 ) において、 Aが置換基を有していても良いベンゼン環、置 換基を有していても良いビフエ二ル璟のいずれかから選ばれる 4価の炭素環式芳 香 ¾矣環である [10]記載の光学材料であり、 また、
[1 7] —般式 (1 ) において、 B1〜Bnが、 それぞれ独立に、置換基を有して いても良いフエニル基、置換基を有していても良いピリミジル基、置換基を有し ていても良いナフチル基、置換基を有していても良いチェニル基、置換基を有し ていても良いベンゾチアゾリル基、置換基を有していても良いベンゾォキサゾリ ル基、置換基を有していても良いチアジアゾリル基、置換基を有していても良い チアゾリル基のいずれかである [1 6]記載の光学材料であり、 率た、
[1 8] 光学材料がポリマー光ファイバ—材料である [1〗〜[17]記載の光学材 料であり、 また、
[1 9] 光学材料がポリマ—光ファイバ—である [1;]〜 [17]記載の光学材料で あり、 また、
[20] ポリマー光ファイバ一が G I型ポリマー光ファイバ一である [1 7]記載の光学材料であり、 また、
[21 ] 一般式(1 a) で表される芳香族スルフィド化^であり、 また、
A-(-S-Bつ
Figure imgf000008_0001
(1a)
[式中、 kは"!〜 2の整数を表す。
Aは、置換されていても良いベンゼン環、置換されていても良いナフタレン環、 置換されていても良いフルオレン環、置換基を有していて良いビフエ二ル璟、置 換されていても良いチ才フェン環、置換されていても良いチ才フェン一 1, 1ージ才 キシド環、置換されていても良いチ才フェンチアジアゾ一ル環、置換基を有して いても良いチェノ [3, 2— b]チ才フェン環、置換基を有していても良い卜リア ジン環、置換基を有していても良いピリミジン環から選ばれる 2価の炭素環式芳 香族環または複素環式芳香族環を表し、
B1、 B2は、 それぞれ独立に、置換されていても良いフエニル基、 置換されて いても良いピリミジル基、置換されていても良いナフチル基、置換されていても 良いチェニル基、置換されていても良いベンゾチアゾリル基、置換されていても 良いベンゾ才キサゾリル基、置換されていても良いチアジアゾリル基、置換され ていても良いチアゾリル基から選ばれる炭素環式芳香族基または複素環式芳香方矣 基を表す。 ]
[22] 一般式(1 b) で表される芳香族スルフィド化合物であり、 また、
A- -S-Bつ
Figure imgf000008_0002
(1b)
[式中、 kは 1〜3の整数を表す。
Aは、置換されていても良いベンゼン環、置換されていても良いフルオレン環、 置換されていても良いチ才フェン環、置換されていても良い卜リアジン環、置換 されていても良いピリミジン環から選ばれる 3価の炭素環式芳香族環または複素 環式芳香族環を表し、
B\ B B3は、 それぞれ独立に、置換されていても良いフエ二ル基、置換さ れていても良いピリミジル基、置換されていても良いナフチル基、置換されてい ても良いチェニル基、置換されていても良いベンゾチアゾリル基、置換されてい ても良いベンゾォキサゾリル基、置換されていても良いチアジアゾリル基、置換 されていても良いチアゾリル基から選ばれる炭素環式芳香族基または複素環式芳 香族基を表す。 ]
[ 2 3 ] 一般式 ( 1 c ) で表される芳香族スルフィド化合物である。
A-(-S-B k )4 (1c)
[式中、 kは 1〜 4の整数を表す。
Aは、置換されていても良いベンゼン環、置換されていても良いビフエ二ル環、 置換されていても良いチォフェン環、置換されていても良いチェノ [ 3 , 2 - b ] チ才フェン環から選ばれる炭素環式芳香族環または複素環式芳香族璟を表し、
B1、 B2、 B3、 B4は、 それぞれ独立に、置換されていても良いフエニル基、置 換されていても良いピリミジル基、置換されていても良いナフチル基、置換され ていても良いチェニル基、置換されていても良いベンゾチアゾリル基、置換され ていても良いベンゾ才キサゾリル基、置換されていても良いチアジァゾリル基、 置換されていても良いチアゾリル基から選ばれる炭素璟式芳香族基または複素環 式芳香族基を表す。 ] 図面の簡単な説明
図 1は、実施例 8及び比較例 1で測定したドーパント濃度の変化によるスピン コー卜膜の屈折率の変化を示すグラフである。
図 2は、実施例 1 5及び比較例 2で測定したガラス転移温度と屈折率との関係 を示すグラフである。 発明を実施するための最良の形態
以下に、本発明を詳細に説明する。
本発明の光学材料は、
( a )透明性ポリマー
( b )芳香 ¾矣スルフィド化合物
が含有されていることを特徴とする。
本発明の光学材料は、一般式 ( 1 )で表される芳香族スルフィ ド化合物を少な くとも 1種含有してなることを特徴とする。
A-( \-S-B k ) n (ヽ1) ' 式中、 nは 2〜1 2の整数を表し、 kは 1〜nの整数を表す。
Aは、置換基を有していても良い、 n価の炭素環式芳香族環または複素環式芳 香族環を表し、
B〗〜Bnは、 それぞれ独立に、置換基を有していても良い、炭素環式芳香族基 または複素環式芳香族基を表す。
まず、 中心骨格を形成する一般式(1 )の Aについて説明する。
複素環式芳香族環は、 2種またはそれ以上の元素の原子から芳香族環が構成さ れている。 2種以上の元素の原子としては炭素原子、酸素原子、 リン原子、硫黄 原子、窒素原子などが挙げられる。好ましくは 2〜5種の元素の原子で構成され ており、 より好ましくは 2〜4種の元素の原子で構成されている。 なお、炭素原 子以外の原子をへテロ原子と記載する。
複素環式芳香族環は、五員環あるいは六員環から構成される。好ましくは単環 又は 2〜4個の芳香族環が縮合して構成されており、 より好ましくは単環又は 2 〜 3個の芳香族環が縮合して構成されている。
複素璟式芳香族環に含有される炭素数は、好まし〈は 4〜1 4個であり、 より 好ましくは 4〜1 1個である。
さらに好ましい複素璟式芳香族環の具体的例示として記載する。
まず、一般式 ( 2 ) に示すヘテロ原子 1個を含む五員環が挙げられる。一般式 ( 2 ) において、 Z =〇のフラン環であり、 Z = Sのチ才フェン環であり、 Z二 NHのピロ一ル環が挙げられる。 これらの中で好ましくはチ才フェン環、 フラン 環であり、 より好ましくはチ才フェン環である。
Figure imgf000011_0001
また、 一般式 (2) にベンゼン環が縮合した一般式 (3) が挙げられる。一般 式 (3) において、 Z = N Hのインドール環であり、 Z = 0のべンゾフラン環で あり、 Z = Sのベンゾチ才フェン環が挙げられる。
Figure imgf000011_0002
また、一般式 (2)の Z = Sのチォフェン環に芳香環が縮合した式(4a)〜 (4f ) が挙げられる。 これらの中で好ましくは、 イソチアナフテン璟、 チエノ チアジアゾール環、 チエノ [3, 2— b]チ才フェン環であり、 より好ましくはチ エノチアジアゾ一ル環、 チエノ [3, 2— b]チォフェン環である。
Figure imgf000011_0003
Figure imgf000011_0004
(4d) (4e) (4f) 次に、 ~¾式 (5a) 又は (5 b) に示すヘテロ原子 2個を含む五員環が挙げ られる。一般式 (5 a) において、 Z1 = 0のォキサゾール環であり、 Z1=Sの チアゾール環であり、 Z1 = NHのイミダゾ一ル環が挙げられる。また、一般式(5 b) において、 Z2=0のイソ才キサゾ一ル環であり、 Z2==Sのイソチアゾ一ル 環であり、 Z2二 N Hのピラゾール環が挙げられる。これらの中で好ましくはォキ サゾール環、 チアゾ一ル環であり、 より好ましくはチアゾ一ル環である。
N
(5a) (5b) また、一般式(5 a)又は(5 b)の五員璟 (こベンゼン環が縮合した一般式(6 a)又は (6 b) が挙げられる。一般式 (6a)において、 Z1 = 0のベンゾ才キ サゾール環であり、 Z1=Sのべンゾチアゾ一ル環であり、 Z1=NHのべンゾィ ミダゾ—ル環が挙げられる。 また、一般式 (6 b)において、 Z2=0のべンゾィ ソ才キサゾール環であり、 Z2=Sのべンゾイソチアゾ一ル環であり、 Z2=NH のべンゾビラゾ一ル環が挙げられる。
Figure imgf000012_0001
(6a) (6b)
ヘテロ原子 3個以上含む五員環として、 n—トリァゾ一ル環、 s—卜リアゾ一 ル環、 1,2,4—才キサジァゾ一ル環、 1,3,5—才キサジァゾール環、 1,2,5—才キサ ジァゾ一ル環、 1,2,4—チアジアゾ一ル環、 1,3,5—チアジアゾール環、 1,2,5—チ アジアゾ一ル環、 テ卜ラゾール環が挙げられる。 これらの中で好ましいのは、 1, 3,5—才キサジァゾール環、 1,3,5—チアジアゾ一ル環であり、より好ましいのは 1, 3, 5—チアジァゾ一ル環である。
ヘテロ原子 1個含有する六員環として、 ピリジン環が挙げられる。 さらに、 ピ リジン環にベンゼン環が縮合したキノリン環、 ィソキノリン環を挙げられる。 次に、 ヘテロ原子 2個含有する六員環として、 ピリダジン環、 ピリミジン環、 ピラジン環が挙げられる。 また、 これらの六員環にベンゼン環が縮合したベンゾ [d]ピリダジン環、 ベンゾ [c]ピリダジン環、 キナゾリン環、 キノキサリン環が 挙げられる。
さらに、 ヘテロ原子 3個含有する六員環として、 トリアジン璟が挙げられる。 また、一般式 ( 1 ) における Aは多環系であっても良い。具体的には、一般式 ( 7 ) に示すような、複数の環系が単結合 1本ずつで一次元的に連結された多環 系である。
ここで、 Zは酸素原子または硫黄原子を表す。また、 mは 0〜2の整数を表す。 これらの中で好ましくは、 Ζ 黄原子である。 また、 mの好ましい範囲は 0ま たは 1であり、 より好ましい範囲は 0である。
Figure imgf000013_0001
一般式 ( 1 ) における Aの炭素環式芳香族環は、芳香族環を構成する原子が全 て炭素原子である環式化合物である。炭素環式芳香族環は、五員環あるいは六員 環から構成される。好ましくは単環又は 2〜 5個の芳香族環が縮合して構成され ており、より好ましくは単環又は 2〜4個の芳香族環が縮合して構成されている。 炭素環式芳香族環に含有される炭素数は、 好ましくは 6〜2 2個であり、 より 好ましくは 6〜1 8個である。
このような炭素環式芳香族環の具体的例示として、縮合多環式芳香族環が挙げ られる。 ペンタレン環、 フエナレン環、 卜リフエ二レン環、 ペリレン環、 インデ ン環、 ァズレン環、 フエナン卜レン環、 ピレン璟、 ピセン璟などが挙げられる。 その中でもァセン形芳香族環が好ましい。具体的な例示としては、 ベンゼン環、 ナフタレン環、アントラセン環、ナフ夕セン環、ペンタセン環などが挙げられる。 これらの中でより好ましくはベンゼン環、ナフタレン環、ァン卜ラセン環であり、 さらに好ましくはベンゼン環、 ナフタレン環である。
次に、 一般式 (1 ) における Aは多環系であっても良い。具体的には、一般式 ( 8 ) に示すような、 複数の環系が単結合 1本ずつで一次元的に連結された多環 系である。 ここで、 mは 0~ 2の整数である。 また、 mの好ましい範囲は 0また は 1であり、 より好ましい範囲は 0である。
Figure imgf000014_0001
さらに、 一般式 (1 ) における Aは一般式 (9)で示すような構造であっても 良い。 具体的例示としては、 Z3=NHの力ルバゾ一ル環、 Z3=0のジベンゾフ ラン環、 Z3=Sのジベンゾチ才フェン環、 Z3=CH2のフルオレン璟、 Z3=CO のフル才レノン環、 Z3=S02のジベンゾチオフェンスルフォン環が挙げられる。 これらの中で、好ましくはジベンゾチ才フェン環、 フルオレン環、 フル才レノン 環、 ジベンゾチ才フェンスルフォン環であり、 より好まし〈はジベンゾチ才フエ ン環、 フルオレン環、 フル才レノン環である。
Figure imgf000014_0002
Aで示される炭素環式芳香族環または複素環式芳香族環として好ましい構造は、 下 Ϊ己の構造式である。
Figure imgf000014_0003
0' 、0
Figure imgf000014_0004
一般式 (1 ) における Aで示される複素環式芳香族環または炭素環式芳香族環 は置換基を有していても良い。置換基としては、 アルキル基、 アルコキシ基、 ハ □ゲン原子などが挙げられる。
アルキル基としては、炭素数 1〜4のアルキル基が好ましい。具体的には、 メ チル基、 ェチル基、 n—プロピル基、 n—ブチル基の直鎖状のものと、 ィゾプロ ピル基、 s—ブチル基、 t一ブチル基の分岐状のものが好ましい。 アルコキシ基としては、炭素数 1〜3のアルコキシ基が好ましい。具体的には、 メトキシ基、エトキシ基、 プロポキシ基、 イソプロポキシ基が好ましい。
ハロゲン原子としては、 フッ素原子、塩素原子、臭素原子、 ヨウ素原子が挙げ られる。好ましくは、 フッ素原子、塩素原子である。
これらの置換基は、融点やポリマーへの相溶性等を考慮して決められる。ポリ マ一への相溶性が悪い場合には、嵩高い t—プチル基等を導入するのが効果的で
¾!る。
次に、一般式 ( 1 )の B1〜Bnについて説明する。 B1〜Bnは、 それぞれ独立 に、置換基を有していても良い、炭素環式芳截矣基または複素環式芳香族基を表 す。
複素環式芳香族基は、 2種またはそれ以上の元素の原子から芳香 ¾ が構成さ れている。 2種以上の元素の原子としては炭素原子、酸素原子、 リン原子、硫黄 原子、窒素原子などが挙げられる。好ましくは 2〜5種の元素の原子で構成され ており、 より好ましくは 2〜4種の元素の原子で構成されている。 なお、炭素原 子以外の原子をへテロ原子と記載する。
複素環式芳香族基は、五員環あるいは六員環から構成される。好ましくは 1〜 4個の芳香族環が縮合して構成されており、 より好ましくは 1〜3個の芳香族環 が if宿合して構成されている。
複素環式芳香族基に含有される炭素数は、好まし〈は 4〜"! 4個であり、 より 好ましくは 4〜1 1個である。
このような複素環式芳香族基の具体的例示としては、 まず、一般式(1 0 ) に 示すヘテロ原子 1個を含む五員環を挙げられる。一般式 ( 1 0 ) において、 Z = 0のフリル基であり、 Z = Sのチェニル基であり、 Z = N Hのピロリル基が挙げ られる。 これらの中で好ましくはチェニル基、 フリル基であり、 より好まし〈は チェニル基である。
Figure imgf000015_0001
また、一般式(1 0 ) にベンゼン環が縮合した一般式 ( 1 1 ) が挙げられる, 一般式 (1 1 ) において、 Z = N Hのインドリル基であり、 Z二 0のベンゾフリ ル基であり、 Z = Sのべンゾチェニル基が挙げられる。 これらの中で好ましくは ベンゾチェ二ル基、 ベンゾフリル基であり、 より好ましくはべンゾチェニル基で め o
Figure imgf000016_0001
次に、 一般式 (1 2a)又は (1 2b) に示すヘテロ原子 2個を含む五員環が 挙げられる。一般式 (1 2a) において、 Z1 = 0の才キサゾリル基であり、 Z1 二 Sのチアゾリル基であり、 Z1=NHのイミダゾリル基が挙げられる。また、.一. 般式 (1 2b) において、 Z2=0のイソォキサゾリル基であり、 Z2二 Sのイソ チアゾリル基であり、 ' Z2= N Hのピラゾリル基が挙げられる。これらの中で好ま し〈は才キサゾリル基、 チアゾリル基であり、 より好ましくはチアゾリル基であ る o
Figure imgf000016_0002
(12a) (12b) また、 般式 (1 2a)又は (1 2b) に示す五員環にベンゼン環が縮合した 一般式 ( 13 a)又は( 13 b) が挙げられる。一般式(13a) において、 Z1 =0のべンゾォキサゾリル基であり、 Z1=Sのべ.ンゾチアゾリル基であり、 Z1 = N Hのべンゾィミダゾリル基が挙げられる。また、一般式 (1 3 b)において、 z2=oのべンゾイソ才キサゾリル基であり、 z2=sのべンゾイソチアゾリル基 であり、 Z2=NHのべンゾピラゾリル基が挙げられる。これらの中で好ましくは ベンゾ才キサゾリル基、 ベンゾチアゾリル基であり、 より好ましくはべンゾチア ゾリル基である。
Figure imgf000017_0001
(13a) (13b)
ヘテロ原子 3個以上含有する五員環として、 n—トリアジル基、 s—トリアジ ル基、 1 ,2, 4—才キサジァゾリル基、 1 , 3, 5—才キサジァゾリル基、 1 ,2, 5—才キサ ジァゾリル基、 1 ,2,4—チアジアゾリル基、 1 , 3,5—チアジアゾリル基、 1 , 2,5—チ アジアゾリル基、 テトラゾ'リル基が挙げられる。 これらの中で好ましいのは、 1, 3, 5—才キサジァゾリル基、 1, 3, 5—チアジァゾリル基であり、より好ましいのは 1 , 3, 5—チアジァゾリル基である。
ヘテロ原子 1個含有する六員環として、 ピリジル基が挙げられる。 また、 ピリ ジル基にベンゼン環が縮合したキノリル基、 イソキノリル基が挙げられる。好ま しいのはピリジル基である。
次に、 ヘテロ原子 2個含有する六員環として、 ピリダジル基、 ピリミジル基、 ビラジル基が挙げられる。 また、 これらの六員環にベンゼン環が縮合したベンゾ [ d ]ピリダジル基、 ベンゾ [ c ]ピリダジル基、 キナゾリル基、 キノキサリニル基 が挙げられる。
さらに、 ヘテロ原子 3個含有する六員環として、 卜リアジル基が挙げられる。 一般式 (1 ) における B 1〜Bnの炭素環式芳香族基は、芳香族環を構成する原 子が全て炭素原子である環式化合物基である。炭素環式芳香族基は、五員環ある いは六員環から構成される。好ましくは単環又は 2〜 5個の芳香族環が縮合して 構成されており、 より好ましくは単環又は 2〜 4個の芳香族環が縮合して構成さ れている。
炭素環式芳香族基に含有される炭素数は、好まし.〈は 6〜2 2個であり、 より 子ましくは 6〜1 8個である。
このような炭素環式芳香族基の具体的例示として、縮合多環式芳香族基が挙げ られる。ペン夕レニル基、フエナレニル基、 卜リフエ二レニル基、ペリレニル基、 インデニル基、 ァズレニル基、 フエナントリル基、 ピレニル基、 ピセニル基など が挙げられる。その中でもァセン形芳香族基が好ましい。具体的な例示としては、 フエニル基、 ナフチル基、 アントリル基、 ナフタセニル基、 ペンタセニル基など が挙げられる。 これらの中で好ましくはフエニル基、 ナフチル基、 アン卜ラセ二 ル基であり、 より好ましくは、 フエニル基、 ナフチル基である。
一般式 ( 1 ) における B1〜Bnの好ましい構造は、 下記の構造式である。
Figure imgf000018_0001
Figure imgf000018_0002
も良いし、 全て異なって いても良い。
Β〗〜 Β ηで示される炭素環式芳香族基または複素環式芳香族基は置換されてい ても良い。置換基としては、 アルキル基、 アルコキシ基、 ハロゲン原子などを挙 げることができる。
アルキル基としては、炭素数"!〜 4のアルキル基が好ましい。 具体的には、 メ チル基、 ェチル基、 η—プロピル基、 η—ブチル基の直鎖状のものと、 イソプロ ピル基、 s—プチル基、 t—ブチル基の分岐状のものが好ましく、特に好ましく はメチル基、 ェチル基、 n—ブチル基、 t—ブチル基である。
アルコキシ基としては、炭素数 1〜3のアルコキシ基が好ましい。具体的には、 メトキシ基、 エトキシ基、 プロポキシ基、 イソプロポキシ基が好ましく、 メトキ シ基は特に好ましい。
ハロゲン原子としては、 フヅ素原子、塩素原子、臭素原子、 ヨウ素原子が挙げ られる。好ましくは、フッ素原子、塩素原子、特に好ましくはフヅ素原子である。 これらの置換基は、 融点やポリマーへの相溶性等を考慮して決められる。 ポリ マーへの相溶性が悪い場合には、 嵩高い t一プチル基等を導入するのが効果的で ある。 また、 直鎖状アルキル基においては、 非対称の位置、例えばフエニル基に メチル基を導入する にはノ ラ位よりもメ夕位の方が好ましい。 —般式 ( 1 ) において nは 2~ 1 2の整数を表す。 nは Aの分子構造により決 まるもので、特に限定されるものではない。 A力、'複素環式芳香族環である場合に は、 nの好ましい範囲は 2〜6であり、より好ましい範囲は 2〜4である。また、 Aが炭素環式芳香族環である齢には、 nの好ましい範画ま 2〜1 0であり、 よ り好ましい範囲は 2〜6である。
一般式 ( 1 ) において kは"!〜 nの整数を表す。置換位置は、 できるだけ分子 の対称性が高 <なるように導入するのが好ましい。具体的には、 n = 3の に、 ベンゼン環の 1 , 2 , 4一位よりも 1 , 3 , 5—位に置換基を導入することが好. ましい。
本発明にかかる芳香 ¾矣スルフィ ド化合物を用いた光学材料は、 レンズや光学フ ィルターなどの材料、 あるいは 折率な材料と組み合わせて積層フィルムとす ることにより、反射防止膜として利用することもできる。 また、 一般カメラ用レ ンズ、 ビデ才力メラ用レンズ、 レーザーピックアップレンズ、 レーザブリン夕一 用 f 0レンズ、 フレネルレンズ、 液晶プロジェクタ一用レンズ、 眼鏡用レンズ等 のレンズ、 プロジェクタ一用スクリーン、光ファイバ一、 光導波路、 プリズム等 の光学部品などへの適用が挙げられる。 これらの中でも P 0 Fの材料として好適 に用いることができる。
このような光学部品において、透明性ポリマーとド一パン卜が均一に分散され ている場合と分布を持つ場合に分けられる。屈折率分布を持つ場合には GI型 P0F と複 に使用されているアレイレンズへの適用が好ましい。
本発明の光学材料の製造方法としては、射出成形法、 圧縮成形法、 マイクロモ —ルド法、 フローティングモールド法、 ローリンクス法、注型法等の公知の成形 法を利用することができる。注型法においては、 部分的に重合を進めた後、 型に 注入し、 最終的な重合を行って、成形品を得ると同時に本発明に係わる光学材料 を製造してもよい。 また、成型用サンプルは、射出成形法の:^には熱 性樹 月旨にド一パン卜を配合して均一になるまで撹拌することにより得ることができ、 注入法の i ^には例えば U V硬化性モノマーにドーパン卜を添加して均一になる まで覚キ半することにより ί寻ることができる。
さらに、 上記のような成形法により得られた成形品表面に、 M g F2、 S i O, などの無機化合物を真空蒸着法、 スパッタリング法、 イオンプレーティング法な どによってコーティングすること、 また、成形品表面にシランカップリング剤な どの有機シリコン化^ #)、 ビニルモノマー、 メラミン樹脂、 エポキシ樹脂、 フヅ 素系樹脂、 シリコーン樹月旨などをハードコ一卜することなどによって、 耐湿性、 光学特性、 耐薬品†生、 耐磨耗性、 曇り止めなどを向上させることができる。
以下、 G I型 P O Fの材料として本発明の芳香族スルフィド化合物を用いる場 合についてより詳細に説明する。
かかる用途として、本発明の芳香族スルフィ ド化合物を用いる場合は、 高屈折 率ド一パン卜として用いられることが一般的であるため、屈折率が 1 . 6 0〜2 . 0の範囲であることが好ましく、 1 . 6 3〜1 . 9 0の範囲であることがより好 ましい。
なお、 これらの高屈折率ド一パントは、 コア部に単独で含まれていても良く、 これらの中から複数選択してコア部に含まれていても良く、 または、他の公知の ドーパン卜とこれらの 1つないし複数とがコア部に含まれていても良い。
P 0 Fのコア部に含まれる高屈折率ドーパン卜の含有量は、戸斤望の屈折率分布 が得られ、 かつファイノ ーの 的¾^等を損なわなければ特に制限されるもの ではない。好ましくは、 高屈折率ドーパントは P O F材料が重合により製造され る際に、 コア部を構成する重^本のモノマーに添カロされ、 このモノマーと高屈折 率ド一パン卜との混^に対して重合反応を行うことにより製造された P 0 F材 料のコア部に含まれる。 P O Fのコア部における高屈折率ド一パントの含有量は、 好ましくは 6 0質量%以下であり、 より好ましくは 5 0質量%以下であり、 さら に好ましくは 4 5質量%以下である。
本発明の P 0 Fに使用される高屈折率ド一パン卜化合物の分子体積は、使用す るコア部 P O F材料のモノマーとの組み合わせにより決定されるものであり、特 に限定されるものではない。従来の P O Fで用いられているメ夕クリル酸メチル の分 本積は 1 0 1 A3程度であることを考慮すると、メタクリル酸メチルをコア 部母材モノマーとして用いる場合には、 1 0 0〜5 0 0 の範囲であることが好 ましく、 1 5 0〜4 0 O A3の範囲であることがより好ましい。
光ファイバの中心部と外周部とに高屈折率差があることは、 開口数を大きくさ せ、伝送損失を低くするだけでなく、結合損失及び曲げ損失を低くするので好ま しい。本発明のプラスチヅク光ファイバ一における開口数は、好ましくは 0 . 1 5〜0 . 4 0の範囲であり、 より好ましくは 0 . 1 8〜0 . 3 0の範囲である。 以上説明したように、本発明に係る芳香族スルフィ ド化合物は、一般式(1 ) で表される骨格を有する化合物からなり、 このような芳 矣スルフィド化合物と しては、具体的には次表に記載した化合物を挙げることができる。 n= 2の具体的例示
Figure imgf000021_0001
n = 2の具体的例示
番号 A B1 B2
9 ノ H3
H3CO— ~ H3CO— <^—
10 上に同じ 1
11 上に同じ
12 上に同じ
13 上に同じ レリ w H3し U "
14 上に同じ
Figure imgf000022_0001
15 上に同じ
s S
N-N N-N
16 上に同じ
H H3C n- 2の具体的例示
つ A B1 B2
C2H C2H厂 8 上に同じ (V 9 上に同じ
Figure imgf000023_0001
0 上に同じ 1 上に同じ ί V- s 〔Sト
C3H7 .2 上に同じ ft
S 3 上に同じ y
4 上に同じ
Figure imgf000023_0002
Η3θ ^
n=2の具体的例示
番号 A B1 B2
25 界 0- Or
26 上に同じ f - f -
27 上に同じ
28 上に同じ
29 上に同じ Jo> -
30 上に同じ
31 上に同じ ah
32 上に同じ
n==2の具体的例示
A B1 B2
02H5 - 上に同じ
厂 上に同じ
上に同じ
上に同じ 上に同じ
s j 上に同じ ay
Figure imgf000025_0001
N-N
上に同じ
Η3θ ^
n = 2の具体的例示
番号 A B1 B2
41
AO 卜 1一 Elに
43 上に同じ
44 上に同じ
45 上に同じ
46 上に同じ
47 上に同じ . y C
N-N N-N
48 上に同じ
H3
Figure imgf000027_0001
n = 2の具体的例示
Figure imgf000028_0001
n = 2の具体的例示
Figure imgf000029_0001
n- 2の具体的例示
Figure imgf000030_0001
n = 2の具体的例示
Figure imgf000031_0001
n= 2の具体的例示
Figure imgf000032_0001
n = 2の具体的例示
Figure imgf000033_0001
n== 2の具体的例示
Figure imgf000034_0001
Figure imgf000035_0001
n= 2の具体的例示
街"^ A B1 B2
121 ^ Qr
192. 上に同じ
123 上に同じ
124 上に同じ
125 上に同じ
126 上に同じ
127 上に同じ
N-N
128 上に同じ
n=2の具体的例示
Figure imgf000037_0001
n= 2の具体的例示
Figure imgf000038_0001
n = 2の具体的例示
畨 A B1 B2
145 Or H3C
146 上レ问じ
147 上に同じ H3C- -
148 上に同じ
1 9 上に同じ
11 丄卜 Ϊ 1一同 1口 Jし
151 上に同じ
CH3
152 上に同じ
n= 2の具体的例示
Figure imgf000040_0001
n= 2の具体的例示
番号 A B1 B2
161 、 /
162 上に同じ V-
163 上に同じ
H3C
164 上に同じ
165 上に同じ
Figure imgf000041_0001
166 上に同し
167 上に同じ
CH3
168 上に同じ
H3C H3C^
n = 2の具体的例示
番号 A B1 B2
N-N
169
IM H3C
170 上に同じ
171 上に同じ Or CH3
172 上に同じ ay
173 上に同じ ~Qr
1フ 4 上に同じ -N
17.5 上に同じ
H3
176 上に同じ cs .
H3C
n = 2の具体的例示
番号 A B1 B2
177 f 、\
S Γ
178 上に同じ
N- Or
H3C
179 上に同じ
180 上に同じ
Figure imgf000043_0001
181 上に同じ
H3C
182 上に同じ H3C- ~
183 上に同じ
184 上に同じ H3d N-N
n= 2の具体的例示
A B1 B2
185 Or
186 上に同じ
18フ 上に同じ
188 上に同じ οό
Ν-Ν
189 上に同じ
C2H y 丄卜 1 f一 1 |5PJ1し
H3C S八
191 上に同じ
H H3C P-
192 上に同じ
n = 2の具体的例示
番号 A B1 B2
193 C2H5 -
H3C
1 4 * 上に同じ 《 、ト
195 上に同じ
196 上に同じ
197 上に同じ
Figure imgf000045_0001
1
198 上に同じ
199 上に同じ y H3C
200 上に同じ
n=2の具体的例示
番号 A B1 B2
201 C2H5 - H3C^ 、
202 上に同じ ~ ^~C(CH3)3
203 上に同じ ~r
204 上に同じ
205 上に同じ
Figure imgf000046_0001
206 上に同じ H3
207 上に同じ
N-N
208 上に同じ H
Η3θ ^
n = 2の具体的例示
番号 A B1 B2
209
Z i U ェ ί l |、、
|口 Jし
211 上に同じ oト
212 上に同じ
213 上に同じ
Figure imgf000047_0001
214 上に同じ
215 上に同じ T ay
N-N
216 上に同じ H
n = 2の具体的例示
番号 A B1 B2
217
oみ。 H3C
218 上に同じ
H3C S
219 上に同じ - "C(CH3)3
220 上に同じ
221 上に同じ H3C-HQ -
222 上に同じ
02H5^
223 上に同じ h ay
-N
224 上に同じ H
n = 3の具体的例示
Figure imgf000049_0001
Figure imgf000050_0001
n =3の具体的例示
Figure imgf000051_0001
n= 4の具体的例示
Figure imgf000052_0001
n = 4の具体的例示
Figure imgf000053_0001
n=: 4の具体的例示
Figure imgf000054_0001
n=4の具体的例示
番号 n A B Bn
281 4
H3C
282 上に同じ 上に同じ
283 上に同じ 上に同じ
284 上に同じ 上に同じ
285 上に同じ 上に同じ . ト
286 上に同じ 上に同じ
287 上に同じ 上に同じ
Figure imgf000055_0001
N-N
288 上に同じ 上に同じ
n = 4の具体的例示
番号 η A Β ~ Βη
289 4
H3C
290 丄レ 1口レ
291 上に同じ 上に同じ
292 上に同じ 上に同じ
293 上に同じ 上に同じ ay
294 上に同じ 上に同じ
295 上に同じ 上に同じ
N-N
296 上に同じ 上に同じ . H3C k
n= 5の具体的例示
街 n A
297 5 善 H3C p-
298 上に同じ 上に同じ 、ト
299 上に同じ 上に同じ
300 上に同じ 上に同じ ~ ~C(CH3)3
301 上に同じ 上に同じ
302 上に同じ 上に同じ
303 上に同じ 上に同じ h
N-N
304 上に同じ 上に同じ
H
n-6の具体的例示
番号 n A
305 6
Figure imgf000058_0001
306 上に同じ 上に同じ
307 上に同じ 上に同じ
308 上に同じ 上に同じ
309 上 f一 上 1—固じ rr
310 上に同じ 上に同じ
311 上に同じ 上に同じ
312 上に同じ 上に同じ
Η
n = 8の具体的例示
番号 n A B1~Bn
Q
H3C
314 上に同じ 上に同じ
315 上に同じ 上に同じ
1 l一 13Ι、、 — L Λ— CiCH
317 上に同じ 上に同じ
318 上に同じ 上に同じ
319 上に同じ 上に同じ
N - N
320 上に同じ 上に同じ
n = 10の具体的例示
Figure imgf000060_0001
n= 10の具体的例示
Figure imgf000061_0001
本発明の芳香族スルフィ ド化合物は、 ハロゲン体とチオール体とを塩基下にて 反応させることにより得ることが出来る。
X-A-X HIS— A—SH
B1— SH 丄 B1— X
B1 -S-A-X B1 -S-A-SH
B2— SH B2— X 方法 I 方法 Π
B1— S— A— S— B2 次に本発明の n = 2の の芳香族スルフィド化 の製造方法について詳し く説明する。製造方法として、 上記いずれの合成経路でも製造可能であるが、 こ れらに限定されるものではない。
以下、 方法 Iについて詳細に説明する。即ち、本発明の P O Fに含有する芳香 族スルフィ ド化合物は、 ジハロゲン体とチ才一ル体とを塩基の存在下にて反応さ せることにより得ることができる。
反応に用いられるジハロゲン体は、 目的とする芳香族化合物をハロゲン化する ことにより容易に得ることができる。
反応に用いられるチ才一ル体は、 例えば Can. J. Chem. , 53, 1480 (1975)等に 記載されているようなジァゾ二ゥム塩と硫化ァニ才ンとの求核置換反応により容 易に得られる。チオール体の合計使用量はジハロゲン体に対して 2〜5倍モル、 好ましくは 2〜 3倍モルである。
本発明に用いられる塩基としては、例えば水酸化ナ卜リゥ厶、 7k酸化力リゥム 等の «7 酸化物、 炭酸ナ卜リゥ厶、炭酸力リゥム等の^ 炭酸塩、 卜リメチル ァミン、 卜リエチルァミン、 トリプロピルアミン、 トリプチルァミン、 Ν , Ν—ジ メチルァニリン等の第 3級ァミン、 ナトリゥムメチラ一トゃナ卜リゥムェチラ一 ト、 カリゥム tert—ブチラ一卜等の^ «アルコラ一卜等が挙げられる。好ましく は、ナトリゥ厶メチラ一卜やナ卜リゥ厶ェチラ一ト等の金属アルコラ一卜である。 塩基の使用量はジハロゲン体に対して 2〜5倍モル、 好ましくは 2〜3倍モル である。
反応温度は、 1 0 0〜2 0 0°Cの範囲であり、好ましくは 1 3 0〜1 8 0°Cの 範囲である。反応温度が 1 8 CTCを超えると副生成物が増力!]し、 目的とする芳香 族スルフィド化合物の収率が低下する。 また、反応 が 1 o o°cより低いと反 応速度が遅くて実用的ではない。
反応溶媒は極性有機溶媒を用いることが好ましい。極性有機溶媒としては、例 えば、 N—メチルー 2—ピロリ ドン、 N—プロピル一 2—ピロリ ドン、 ジメチル ァセ卜アミド、 ジメチルホルムアミド、 ジメチルスルホキシド等を挙げることが できる。
その他の製造方法としては、例えば Tetrahedron Lett. , 39, 543 (1998)に記載 の方法により製造することができる。
なお、上記方法は本発明で高屈折率ドーパン卜として用いられる芳香族スルフ ィ ド化合物の製造方法の一例であって、本発明で高屈折率ドーパン卜として用い られる芳香族スルフィド化合物は、 この製造方法でのみ得られる化^)に限定さ れるものではない。 .
本発明の P O F材料は、 コア部と、 コア部の中心部より低い屈折率を有するク ラッド部とからネ冓成されている。
本発明の P 0 Fのコア部を構成する重^本は、透明な重合体を形成しうるもの であれば特に制限はなく使用することが可能である。例えば、 メタクリル酸メチ ル、 メタクリル酸ェチル、 メタクリル酸 n—プロピル、 メタクリル酸イソプロピ ル、 メタクリル酸 n—プチル、 メタクリル酸イソプチル、 メタクリル酸 s—プチ ル、 メタクリル酸 t—プチル、 メ夕クリル酸シクロへキシル、 メタクリル酸ベン ジル、 メタクリル酸フエニル、 メタクリル酸ボルニル、 メタクリル酸ァダマンチ ル、 メタクリル酸卜リシクロデシル、 メ夕クリル酸ジシクロペンタニル、 メ夕ク リル酸 2 , 2 , 2—トリフル才ロェチル、 メタクリル酸 2, 2 , 3 , 3—テ卜ラ フル才ロプロピル、メタクリル酸 2 , 2 , 3, 3、 3—ペン夕フル才口プロピル、 メタクリル酸 2 , 2 , 3 , Λ , 4 , 4—へキサフル才ロブチル、 メ夕クリル酸 1 —トリフル才ロメチル一 2 , 2 , 2—トリフル才ロェチル、 メタクリル酸 1 H , 1 H , 5 Hーォクタフルオルペンチル等のメタクリル酸エステル類の単独重合体 あるいは共重^ ί本もしくはこれらのブレンド重合体、置換基としてメチル基、 ェ チル基、 η—プロピル基、 イソプロピル基、 η—ブチル基、 イソブチル基、 s— ブチル基、 t一ブチル基、 シクロへキシル基等を有する月旨肪族の N—置換マレイ ミド単量体類の単独重合体あるいは共重^ f本もしくはこれらのプレンド重合体、 スチレン及びその誘導体の単独重合体あるいは共重 もしくはこれらのプレン ド重^ f本等が挙げられる。
本発明の P O Fのクラッド部を構成する重^本には、 透明な重合体を形成しう 'るものであれば特に制限はな〈使用することが可能である。例えば、 ポリメタク リル酸メチル (P MM A ) 、 ポリ力一ボネ一卜 (P C ) 、 メタクリル酸あるいは メタクリル酸メチルと他の単量体との透明な共重合体が用いられる。他の単 本 としては、単官能の (メタ) ァクリレート類、、 フッ素化アルキル (メタ) ァクリ レー卜類、 ァクリル酸、 メタクリル酸等のァクリル系単量体などが使用可能であ る o
本発明の P 0 Fは公知の方法にて製造することができるが、 一般的には以下に 例示する 2通りの方法で製造される。一つはプリフォーム (母材) からファイバ —を熱延伸する方法で、他方はプリフォームを介さずに連続的にファイバ一を成 形する方法である。 なお、 ポリマー光ファイバ一へと紡糸する前の状態の光学材 料を P O F母材と定義する。
プリフォーム法では、 予め作製しておいた重合体製中空管の中空内に、 その中 空管の重^本を溶解しかつ非重合性低分子ィ匕^ )を分散含有する重合性溶液 (単 量体成分、 重合開始剤、 分子量調整剤を含む単量体混合物) を充填させ、 外部か ら加熱または光照射により単量体を外部から重合させ、 ロヅド状のプリフォーム を得、 その後に、 所望の径になるように加熱延伸する方法である。 この際の重合 体製中空管は、 非重合性の低分子化合物を含有しない以外は中空部内に充填した 物と同じ単量体混合物から形成してもよいし、 また、 その主成分となる単量体が 同じであれば異なる単量体混合物から形成してもよい。
また、分子量調整剤としては n—プ'チルメルカブ夕ン等のメルカプタン類等の 通常のラジカル連鎖移動剤が用いられる。 また、 重合開始剤としてはァゾビスィ ソプチロニ卜リル等のァゾ化^]、過酸化べンゾィル等の過酸化物等の通常のラ ジカル重合開½¾が用いられる。 このとき、過酸化べンゾィル、過酸化ラウロイ ル等の、約 4 0。C〜約 1 0 0°Cで有効にラジカルを発生するいわゆる中温開 が好適に使用可能である。従って、 このような中温開始剤を用いた^^、重合反 応の 条件は、好適には約 4 0。C〜約 1 0 0°Cである。反応熱や反応自体によ る膨脹収縮によって重合反応中若しくは反応後ポリマーにクラック等が生じない ように、並びに、反応熱によってモノマーが反応中に沸騰することのないように、 重合反応 ¾Jgは調節される必要があり、 これは重合 と開^! U濃度との組み合 わせにより調節可能である。 ラジカル重合反応の開始剤の添加量は、約 4 0°C〜 約 1 0 0°Cの重合反応開始の条件に関して、 系全体に対して 0 . 0 0 1〜1 0質 量%程度、更には 0 . 0 1〜0 . 3質量%程度であればよい。尚、 このような熱 エネルギーによる塊状重合以外にも、光エネルギーを用いた塊状重合等も使用可 能である。 この場合においても同様に、温度等の入力エネルギー量と開 濃度 との組み合わせにより、重合反応速度を調節することが可能である。
P O F母材をカロ熱溶融して P 0 Fへと紡糸する際の線弓 Iきの作業性の点から、 P O F母材のコア部とクラッド部とを構成する重合体の重量平均分子量が、 1 0 , 0 0 0以上 3 0 0 , 0 0 0以下であることが好まし〈、更には 3 0 , 0 0 0以上 2 5 0 , 0 0 0以下であることが好ましく、特に 5 0, 0 0 0以上 2 0 0, 0 0 0以下であることが好ましい。
プラスチック光ファイノ材料のコア又はクラヅド部が、カロ熱により開始する重 合反応により製造される には、 コア又はクラッド部の製造に用いられる製造 装置は、 P O F母材を回転可能で、且つ温度制御の機能をもつ加熱手段を有する 装置であれば、形態を問わず、本発明に好適に使用できる。但し、 この重合反応 には、空気中の酸素に反応の進行が阻害される場合もあるため、 P O F母材をモ —ルドに揷入して設置する際、 その両端を封止できる機能が具備されることが好 ましい。
また、連続方式としては、非重合性化合物を含有する低重合度重^ f本と非重合 性ィ匕^ )を含まぬ高重合度重合体を、非重合性化合物を含まぬ高重合度重合体を 外側にして、複合紡糸し、 内部の非重合性ィ匕合物をカロ熱拡散する方法も採用でき る
このように作製した G I型 P OFの外周部に被覆層 (ジャケヅ卜層) を設ける ことができる。被覆層は 2層以上の多層構造とすることができる。被覆層 (ジャ ケッ卜層) にはポリエチレン、 ポリ塩化ビニル、塩素化ポリエチレン、 喬ポリ エチレン、 ポリオレフインエラストマ、 ポリウレタン、 ナイロン樹脂、 エチレン —酢酸ビニル共重合体等の公知の物を使用できる。 以下、本発明を実施例により具体的に説明する。
本発明に係る芳香族スルフィ ド化^ /の合成例を^ 例 1〜7に示す。
本発明の光学材料の屈折率測定は、以下のように行なった。 PMMA (アルド リツチ製試薬、 w=120,000)中に組成比を変えたサンプルをシリコン基板上に スピンコートし、プリズムカブラ法(波長 633 n m )により屈折率を測定した。 また、 比と屈折率との関係から、本発明に係る芳香族スルフィ ド化^ )の屈 折率を算出した。
本発明の光学材料のガラス転移温度は、 マヅクサイエンス社製 D S Cを用いて 昇温 ¾ 10°C/m i nにて測定した。
本発明に係る芳香族スルフィ ド化 を用いた P 0 Fの光学部品としての性能 を実施例 16〜21に示す。屈折率分布の測定は、 カールツァイス社製インター フアコ干渉顕 ί辦竟を用いて公知の方法で測定した。光伝送損失は He— Neレ一ザ一 光 (波長 633 nm)を用いてカツ卜バック法により測定した。
実施例 1 : 2, 5—ビス (フエ二ルチオ) チ才フェンの合成
2, 5—ジブ口モチォフェン 12. 10 g (0. 05 Omo 1 ) 、 チ才フエノ ール 12. 1 2 g ( 0. 110 m o 1 ) 、酸化銅 (I) 3. 58 g (0. 025 mo 1 )をピリジン/キノリン(1 /4) 100mlに入れて 160°Cで 42時間 還流させた。反応液を 6 N塩酸で処理し、 トルエンで抽出した。有機層を取り出 してエバポレーターで溶媒を除去して、 淡黄色の液体を得た。得られた液体をェ タノ一ルから再結晶することにより、 目的物を得た。収量: 10. 1 g (収率 6 7. 0%) o融点: 47~48°Co
Figure imgf000067_0001
: 4, 4 (一ビス (フエ二ルチオ) ビフエ二ルの合成 4, 4 '—ジブロモビフエニル 12.50g (0.040m o 1 ) 、チ才フエノール 9.70 g (0.088m o 1 )、 K0H4.9 g (0.088m o 1 )を DM OOmlに入れて、 1 60°C で 62時間反応させた。反応液をトルエンで抽出後、溶媒を除去して白色固体を得 た。 これをトルエン/へキサン (2/8) を展開溶媒としてカラム精製を行い、 白色 固体を得た。 IPA/酢酸ェチル(9/1)から再結晶を行い、光沢のある薄板状の白色 固体の目的物を得た。収量: 1 1 · 5 g (収率 78. 0%) 。融点: 117.7°C。
Figure imgf000067_0002
»例 3 : 1 , 4—ビス (フエ二ルチオ)ベンゼンの合成
p—ジブロモベンゼン 11.80g (0.050m o 1 ) 、 チ才フエノール 13.22g (0.1 20mo 1 ) 、 K0H6.73g (0.120m o 1 ) を DMIIOOmlに入れて、 1 60°Cで 57時 間反応させた。反応液をトルエンで抽出後、溶媒を除去して白色固体を得た。 こ れをトルエン/へキサン (1/9) を展開溶媒としてカラムクロマトグラフィーを行 い、淡黄色の固体を得た。ェ夕ノールから再結晶を行い、光沢のある薄板状の白 色固体の目的物を得た。収量 7. 18g (収率 49.0%)。融点: 80〜81 °C。
Figure imgf000067_0003
^例 4': 1 , 3, 5—卜リス (フエ二ルチオ) ベンゼンの合成
1 , 3, 5—トリブロモベンゼン 15.40g (0.0489m o 1 ) 、 チ才フエノール 1 6.43g (0.149m o Ί )、酸化銅 (I) 3.56g (0.025m o 1 )をピリジン/キノリ ン ( 1 /4 ) 100m Ίに入れて 1 60。Cで 57時間還流させた。反応液 (固体) を卜 ルェンに溶解させて水洗した。その後、 6 N塩酸で洗浄し、 トルエン層を抽出し て溶媒を除去し、淡黄色の液体を得た。 トルエン/へキサン(2/8) を展開液とし てカラムクロマトグラフィーを行い、 白色固体の目的物を得た。収量: 1 3. 0 g (収率 66. 0%) 。融点: 40〜41 °C。
Figure imgf000068_0001
^ : 2, 5 '一ビス (フエ二ルチオ) ビチ才フェンの合成 撹拌機、 温度計、 ジムロート型冷却菅を備えた 4つ口フラスコに 5,5'—ジブ口 モ- 2, 2'—ジチ才フェン 4.86 g (0.015mo Ί ) 、チ才フエノール 6.78g (0.062m o 1 )、 7酸化カリウム 4.049 (0.072mo 1 )、脱水 DM 150mlを仕込み、反 応温度 130°Cで 13時間 30分、 160°Cで 6時間 30分還流させた。 この反応液に、水 500 gを加えて撹拌し、 さらにトルエンを加えて撹拌し、反応液を分液した。有機層 を飽和 N a C Ί水溶液で洗浄した後、 無水硫酸マグネシゥ厶で脱水し、 トルエン を留去して淡黄色の固体を得た。 この固体を I P Aから再結晶して精製すること により、淡黄色の針状結晶の目的物を得た。収量: 5. 23g (収率 91. 1 %)。 ί虫点: 1 10〜1 1 2°C。
Figure imgf000068_0002
例 6 : 4, 6—ビス (フエ二ルチオ) ピリミジンの合成
撹 ί精、温度計、 ジムロート型冷却菅を備えた 4つ口フラスコに 4, 6—ジク 口口ピリミジン 7.45g (0.050m o 1 )、チ才フエノール 22.12g (0.201m o 1 )、 水酸化カリウム 11.32g (0.202m o 1 )、脱水 DMI80mlを仕込み、反応^^ 1 30°Cで 1時間 50分、 150°Cで 4時間 30分還流させた。 この反応液に、 水 1000gを加 えて撹拌し、 さらに酢酸ェチルを加えて撹拌し、 反応液を分液した。有機層を飽 和 NaC 1水溶液で洗浄した後、 無水硫酸マグネシウムで脱水し、 酢酸ェチルを 留去して茶色の固体と液体の混合物を得た。 この液体をトルエン/酢酸ェチル (8 II)でカラム精製を行い、 黄色固体を得た。 この固体と先の固体を IP Aから再 結晶して精製することにより、淡黄色の結晶の目的物を得た。収量: 7. 75g (収率 52· 3%) 。融点: 117°C。
Figure imgf000069_0001
例 7 : 1 , 3, 5—トリス (フエ二ルチオ) 卜リアジンの合成 撹 ί權、温度計、 ジム口一卜型冷却菅を備えた 4つ口フラスコに、チ才フエノ ール 16.58g (0.150mo Ί ) 、フ]酸ィ匕カリウム 9.90 g (0.176m ο Ί )、脱水 D M 180m 1を仕込み、反応 80°Οで 2B寺間加熱した。この反応液に、塩化シァヌル 9.22g(0.050mo 1 )を加えて反応温度 120°Cで 3fl寺間、〗 40°Cで 9B寺間還流させた。 この反応液に水を加えて撹拌し、 さらに酢酸ェチルを加えて撹 ί半し、反応液を分 液した。有機層を飽和 N a C 1水溶液で洗浄した後、 無水硫酸マグネシウムで脱 水し、酢酸ェチルを留去して黄色の粘性のある液体を得た。この液体をトルエン/ へキサン(6/4)でカラム精製を行い、黄色の粘性のある液体を得た。 (放置後結 晶化) この固体を I PA'から再結晶して精製することにより、 白色の針状結晶の 目的物を得た。収量: 8.799 (収率: 43.3%) 。融点: 97~99°Co
Figure imgf000069_0002
[屈折率の測定]
実施例 8
実施例 4に記載した 1 , 3, 5—卜リス (フエ二ルチオ) ベンゼンを PMMA 中に組成比を変えて分散させたスピンコート膜の屈折率をプリズムカプラー法に より測定した。結果を図 1に示す。 この直線を外挿することにより、 1 , 3 , 5 —卜リス (フエ二ルチオ) ベンゼンは n = 1 . 7 0 2の屈折率を有することが分 かった。
比較例 1
ジフエニルスルフィドを P MM A中に分散させたスピンコート膜の屈折率を実 施例 8と同様に測定した。結果を図 1に示す。外挿よりジフエニルスルフィドは n = 1 . 6 1 5の屈折率を有することが分かった。
麵列 9〜"! 4
実施例 8と同様にして屈折率の組成比依存性を測定し、直線を外挿して本発明 化合物の屈折率を算出した。結果を下記第 1表に示す。 いずれの化合物もジフェ ニルスルフィドより高屈折率であることがわかった。
第 1表 分子構造 屈折率(外揷値) 実施例 9 ) 1.690 実施例 10 ) 1.723 実施例 11 ) 1.700
実施例 12 ) 1.738 実施例 13 ) 1.672
実施例 14 ) 1.698
Figure imgf000070_0001
*) P M M A中に分散させたフィルム [ガラス転移温度の測定]
実施例 1 5
実施例 4に記載した 1 , 3, 5—卜リス (フエ二ルチオ)ベンゼンを PMMA 中に組成比を変えて分散させたフィル厶のガラス転移温度を測定した。図 2に測 定したガラス転移温度を屈折率に対してプロッ卜した結果を示した。
比較例 2
ジフエニルスルフィドを P MM A中に分散させたフィル厶のガラス転移温度を 実施例 1 5と同様に測定した。結果を図 2に示した。
子口 Pロロ」
細列 1 6
水平に保持した長さ 500mm、 内径 18 mmのガラス管にモノマーとしてメ タクリル酸メチル (MMA) 1 1 2g、重合開始剤としてベンゾィルパー才キサ イド 0. 56 g、連鎖移動剤として n—プチルメル力プ夕ン 350 リットルを 充填した。ガラス管の両端をシールした後、 3000 r pmで回転させながら 7 0 °Cで 20時間加熱し、 その後回転を止め 90 °Cで 10時間加熱し重合してポリ メ夕クリル酸メチル (PMMA) からなる重合管を作製した。 このポリマーロッ ドの中心にドリルで 5 mm径の中空部を形成して中空管を得た。
この PMMA製中空管の片端を封じ、 MMA48g、下記に示した高屈折率ド 一パント 1 2 g、重合開 ijとしてジ一 t—ブチルバ一才キサイド 54 リット ル、遊臭移動剤として n—ラウリルメルカブタン 1 60 リツトルを充¾し、他 端を封じた後、水平に保持し、 10 r pmで回転させながら 95°Cで 24時間カロ 熱、 その後回転を止め 1 10°Cで 48時間カロ熱し重合して外径 1 8 mmのロッド を lg 0
Figure imgf000071_0001
このロッドをロッドフィ一ド装置に垂直に取り付け、 220°Cの円筒状加熱炉 で加熱溶融しつつ一定速度で引き取り、捲き取ることにより溶融紡糸し、直径 0. 75 mmの光ファイバを得た。得られた光ファイバのファイバ断面の屈折率分布 を測定したところ、屈折率が中心部から外側方向に連続的に減少していた。得ら れた光ファイバの 100m長における伝送特性を評価したところ、伝送損失が波 長 650 nmにおいて 17. 8dB、伝送帯域が 3. 4GHzであり、屈折率分 布型 POFとして良好な性能を有していた。 また、得られた光ファイバを 85°C の才一ブンに入れてカロ熱試験を行い、 3000時間後における屈折率分布を測定 したところ、初期の屈折率分布を保持していた。
諭例 17
i 6と同様に作製した PMM A製中空管を用い、 この PMMA製中空 管に MMA48g、下記に示した高屈折率ド一パン卜 12g、重合開始剤として ジ一 t一プチルノ \°—才キサイド 54 μリヅ卜ル、連鎖移動剤として η—ラウリル メルカプタン 160 リットルを充填し、他端を封じた後、 7k平に保持し、 10 r pmで回転させながら 95°Cで 24B寺間加熱、 その後回転を止め 1 10°Cで 4 8時間加熱し重合して外径 18 m mのロッドを得た。
Figure imgf000072_0001
このロッドをロッドフィ一ド装置に垂直に取り付け、 220°Cの円筒状加熱炉 で加熱溶融しつつ一定速度で弓 取り、捲き取ることにより溶融紡糸し、直径 0. 75mmの光ファィ )を得た。得られた光フアイバのファイノ 断面の屈折率分布 を測定したところ、屈折率が中心部から外側方向になだらかに減少していた。得 られた光ファイバの 100m長における伝送特性を評価したところ、伝送損失が 波長 65 Onmにおいて 15. 3 dB、伝送帯域が 3. 1 GHzであり、屈折率 分布型プラスチック光ファイバとして良好な性能を有していた。 また、得られた 光ファイバを 85 °Cのオーブンに入れて力!]熱言 i験を行い、 3000時間後におけ る屈折率分布を測定したところ、初期の屈折率分布を保持していた。
議例 18
難例 16と同様に作製した PMM A製中空管を用い、 この PMMA製中空 管に MMA48g、 下記に示した高屈折率ドーパン卜 12g、重合開始剤として ジー t -ブ'チルノ \°一才キサイド 54 リットル、連鎖移動剤として n—ラウリル メルカプ夕ン 160μリヅトルを充填し、 片端を封じた後、水平に保持し、 10 「 で回転させながら95°〇で24時間加熱、 その後回転を止め 1 10°Cで 4 8時間加熱し重合して外径 17. 6 m mのロヅドを得た。
Figure imgf000073_0001
このロッドをロッ ドフィ一ド装置に垂直に取り付け、 220°Cの円筒状加熱炉 で加熱溶融しつつ一定速度で弓 Iき取り、捲き取ることにより溶融紡糸し、直径 0. 75mmの光ファイノ を得た。得られた光フアイバのファイノ 断面の屈折率分布 を測定したところ、屈折率が中心部から外側方向になだらかに減少していた。得 られた光ファイバの 100m長における伝送特性を評価したところ、伝送損失が 波長 65 Onmにおいて 14. 5 8、 ^¾帯或が2. 3GHzであり、屈 ί斤率 分布型プラスチック光ファイバとして良好な性能を有していた。 また、得られた 光ファイバを 85 °Cのオーブンに入れて加熱 St験を行い、 3000時間後におけ る屈折率分布を測定したところ、 初期の屈折率分布を保持していた。
麵列 19
実施例 16と同様に作製した PMM A製中空管を用い、 この PMMA製中空管 に MMA48g、 下記に示した高屈折率ドーパン卜 12g、 重合開始剤としてジ 一 t一プチルバ一才キサイド 54 リツトル、連鎖移動剤として n—ラウリルメ ルカブタン 160 / リツトルを充填し、他端を封じた後、水平に保持し、 10 r pmで回転させながら 95°Cで 24時間カロ熱、 その後回転を止め 1 10°〇で48 時間加熱し重合して外佳 18 m mのロヅ ドを得た。
Figure imgf000074_0001
このロッドをロッドフィード装置に垂直に取り付け、 220°Cの円筒状加熱炉 で加熱溶融しつつ一定 ¾ ^で弓 Iき取り、捲き取ることにより溶融紡糸し、直径 0. 75 mmの光ファイバを得た。得られた光ファイバのファイバ断面の屈折率分布 を測定したところ、屈折率が中心部から外側方向に連続的に減少していた。得ら れた光ファイバの 100m長における伝送特性を評価したところ、 ί¾Ι損失が波 長 650 nmにおいて 17. 8dB、伝送帯域が 3. 5GHzであり、屈折率分 布型 POFとして良好な性能を有していた。 また、得られた光ファイバを 85°C のオーブンに入れてカロ熱試験を行い、 3000時間後における屈折率分布を測定 したところ、初期の屈折率分布を保持していた。
麵列 20
16と同様に作製した PMM A製中空管を用い、 この PMMA製中空 管に MM A 48 g、下記に示した高屈折率ドーパン卜 1 2 g、重合開始剤として ジー t一プ 'チルバ一才キサイド 54 リヅ卜ル、連鎖移動剤として n—ラウリル メルカブタン 160 リヅトルを充填し、他端を封じた後、 7平に保持し、 10 r pmで回転させながら 95°Cで 24時間加熱、 その後回転を止め 110°Cで 4 8時間加熱し重合して外径 18 m mのロヅドを得た。
Figure imgf000075_0001
このロッドをロッドフィ一ド装置に垂直に取り付け、 220°Cの円筒状加熱炉 で加熱溶融しつつ一定速度で弓 Iき取り、捲き取ることにより溶融紡糸し、直径 0. 75 mmの光ファイノ を ί寻た。得られた光ファイバのファイバ断面の屈折率分布 を測定したところ、屈折率が中心部から外側方向になだらかに減少していた。得 られた光ファイバの 1 OOm長におけるィ¾¾特す生を評 iffiしたところ、伝送損失が 波長 650 nmにおいて 1 6. 2 d B、 伝送帯域力 3. 1 GHzであり、屈斤率 分布型プラスチック光ファイバとして良好な性能を有していた。 また、得られた 光ファイバを 85 °Cのオーブンに入れて力 []熱試験を行い、 3000時間後におけ る屈折率分布を測定したところ、初期の屈折率分布を保持していた。
鶴例 21
実施例 1に言己載した 2, 5—ビス (フエ二ルチオ)チ才フェンを PMMAに 2 Owt%添加し、 乳鉢で 10分間混合した。 この試料を熱プレス機によりフィル ムを得て光学物性を測定したところ、全光線 率 91 %、色相 3. 5、 nd 1. 5187、 アッベ数 46. 7のフイルムを得ることができた。 PMMA単独の透過率 や色相をあまり変化させずに屈折率を向上させることがわかった。
産業上の利用可能性
本発明の光学材料は、従来知られていたドーパン卜よりも効率良く高屈折率化 できるものであり、 効果が小さく耐熱性に優れており、光学材料としての信 頼性を向上させるものである。
また、本発明の光学部品の一種である GI型 P0Fは、従来のものに比べ屈折率分布 の耐熱安定性に優れたもであり、光ファイバとしての伝送特性の信頼性を向上さ せたものである。
したがって、本発明の P0Fは、従来の P0Fでは使用できなかった自動車のェンジ ンル一厶等の耐熱性が要求される分野においても長期的に使用が可能となる。

Claims

請求の範囲
1 . 一般式 ( 1 ) で表される芳香族スルフィ ド化合物を少なくとも 1種含有して なる光学材料。
Figure imgf000077_0001
[式中、 nは 2〜1 2の整数を表し、 kは 1〜nの整数を表す。
Aは、置換基を有していても良い、 n価の炭素環式芳香族環または複素環 式芳香 ¾矣環を表し、
B1〜Bnは、それぞれ独立に、置換基を有していても良い、炭素環式芳香 ¾矣 基または複素環式芳香族基を表す。 ]
2. —般式 (1 ) において、 nは 2〜4の整数であり、 かつ Aは置換基を有して いても良い複素環式芳香族環である請求項 1記載の光学材料。
3. 一般式 ( 1 ) において、 Β1〜ΒΠが、それぞれ独立に、置換基を有していても 良いフエニル基、 置換基を有していても良いピリミジル基、 置換基を有して いても良いナフチル基、 置換基を有していても良いチェニル基、 置換基を有 していても良いベンゾチアゾリル基、 置換基を有していても良いベンゾ才キ サゾリル基、置換基を有していても良いチアジアゾリル基、置換基を有して いても良いチアゾリル基のいずれかである請求項 2記載の光学材料。
4. 一般式 (1 ) において、 Αは置換基を有していても良いチ才フェン環、 置換 基を有していても良いチ才フェン一 1 , 1—ジ才キシド環、置換基を有して いても良いチ才フェンチアジアゾール環、 置換基を有していても良いチェノ [ 3 , 2— b ]チォフェン環、置換基を有していても良い卜リアジン環、置換 基を有していても良いピリミジン環のいずれかから選ばれる 2価の複素環式 芳香 ¾矣環である請求項 2記載の光学材料。
5. 一般式(1 ) において、 Β1〜ΒΠが、 それぞれ独立に、置換基を有していても 良いフエニル基、置換基を有していても良いピリミジル基、置換基を有して いても良いナフチル基、置換基を有していても良いチェニル基、置換基を有 していても良いベンゾチアゾリル基、 置換基を有していても良いベンゾ才キ サゾリル基、 置換基を有していても良いチアジアゾリル基、 置換基を有して いても良いチアゾリル基のいずれかである請求項 4記載の光学材料。
6. 一般式 (1 ) において、 Aが置換基を有していても良いチ才フェン環、置換 基を有していても良い卜リアジン環、置換基を有していても良いピリミジン 基のいずれかから選ばれる 3価の複素環式芳香族環である請求項 2記載の光 学材料。
7. 一般式(1 )において、 B1〜Bnが、それぞれ独立に、置換基を有していても 良いフエニル基、置換基を有していても良いピリミジル基、置換基を有して いても良いナフチル基、置換基を有していても良いチェニル基、置換基を有 していても良いベンゾチアゾリル基、置換基を有していても良いベンゾ才キ サゾリル基、置換基を有していても良いチアジアゾリル基、置換基を有して いても良いチアゾ'リル基のいずれかである請求項 6記載の光学材料。
8. 一般式 ( 1 ) において、 Aは置換基を有していても良いチ才フェン璟、置換 基を有していても良いチェノ [ 3 , 2— b ]チ才フェン環のいずれかから選ば れる 4価の複素環式芳香族環である請求項 2記載の光学材料。
9. 一般式(1 )において、 B 1〜Bnが、それぞれ独立に、置換基を有していても 良いフエニル基、置換基を有していても良いピリミジル基、置換基を有して いても良いナフチル基、置換基を有していても良いチェニル基、置換基を有 していても良いベンゾチアゾリル基、置換基を有していても良いベンゾ才キ サゾリル基、置換基を有していても良いチアジアゾリル基、置換基を有して いても良いチアゾリル基のいずれかである請求項 8記載の光学材料。
10.一般式 ( 1 ) において、 nが 2〜6の整数であり、 かつ Aは置換基を有して いても良い炭素環式芳香族環である請求項 1記載の光学材料。
11 .一般式(1 )において、 B 1〜Bnが、それぞれ独立に、置換基を有していても 良いフエニル基、置換基を有していても良いピリミジル基、置換基を有して いても良いナフチル基、置換基を有していても良いチェニル基、置換基を有 していても良いベンゾチアゾリル基、置換基を有していても良いベンゾ才キ サゾリル基、置換基を有していても良いチアジアゾリル基、置換基を有して いても良し、チアゾリル基のし、ずれかである請求項 1 0記載の光学材料。
12.一般式(1 ) において、 Aが置換基を有していても良いベンゼン環、置換基 を有していても良いナフタレン環、置換基を有していても良いフルオレン環、 置換基を有していても良いビフエニル環のいずれかから選ばれる 2価の炭素 環式芳香族環である請求項 1 0記載の光学材料。
13.一般式(1 )において、 B 1〜Bnが、それぞれ独立に、置換基を有していても 良いフエニル基、 置換基を有していても良いピリミジル基、置換基を有して いても良いナフチル基、置換基を有していても良いチェニル基、置換基を有 していても良いベンゾチアゾリル基、置換基を有していても良いベンゾ才キ サゾリル基、置換基を有していても良いチアジアゾリル基、 置換基を有して いても良いチアゾリル基のいずれかである請求項 1 2記載の光学材料。
14.一般式 (1 ) において、 Aが置換基を有していても良いベンゼン環、 置換基 , を有していても良いフルオレン環のいずれかから選ばれる 3価の炭素環式芳 香族環である請求項 1 0記載の光学材料。
15 -般式(1 )において、 B 1〜Bnが、 それぞれ独立に、置換基を有していても 良いフエニル基、 置換基を有していても良いピリミジル基、 置換基を有して いても良いナフチル基、 置換基を有していても良いチェニル基、 置換基を有 していても良いベンゾチアゾリル基、 置換基を有していても良いベンゾォキ サゾ 'リル基、置換基を有していても良いチアジアゾリル基、置換基を有して いても良いチアゾリル基のいずれかである請求項 1 4記載の光学材料。
16. 一般式 (1 ) において、 Aが置換基を有していても良いベンゼン環、 置換基 を有していても良いビフエ二ル環のいずれかから選ばれる 4価の炭素環式芳 香族環である請求項 1 0記載の光学材料。
17.一般式 ( )において、 B 1〜Bnが、それぞれ独立に、置換基を有していても 良いフエニル基、 置換基を有していても良いピリミジル基、 置換基を有して いても良いナフチル基、 置換基を有していても良いチェニル基、 置換基を有 していても良いベンゾチアゾリル基、 置換基を有していても良いベンゾ才キ サゾリル基、 置換基を有していても良いチアジアゾリル基、 置換基を有して いても良いチアゾリル基のいずれかである請求項 1 6記載の光学材料。
18. ポリマー光ファイバ一材料である請求項 1〜1 7記載の光学材料。
19.請求項 1 8記載のポリマー光ファイバ一材料からなる光学部品。
20. G I型ポリマー光ファイバ一である請求項 1 9記載の光学部品。
21 .一般式 (1 a ) で表される芳香族スルフィド化合物。
A-(-S-B k )2 (1 a) [式中、 kは 1〜2の整数を表す。
Aは、置換されていても良いベンゼン環、置換されていても良いナフタレン 環、置換されていても良いフルオレン環、置換基を有していて良いビフエ二 ル環、置換されていても良いチ才フェン環、 置換されていても良いチ才フエ ン— 1, 1—ジ才キシド環、置換されていても良いチ才フェンチアジアゾ一ル環、 置換基を有していても良いチェノ [ 3., 2— b ]チォフェン環、置換基を有し ていても良い卜リアジン環、 置換基を有していても良いピリミジン環から選 ばれる 2価の炭素環式芳香族環または複素環式芳香族環を表し、
B 1、 B2は、 それぞれ独立に、置換されていても良いフエニル基、置換されて いても良いピリミジル基、置換されていても良いナフチル基、置換されてい ても良いチェニル基、 置換されていても良いベンゾチアゾ'リル基、置換され ていても良いベンゾ才キサゾリル基、 置換されていても良いチアジアゾリル 基、置換されていても良いチアゾ.リル基から選ばれる炭素環式芳香族基また は複素璟式芳香族基を表す。 ]
22.一般式 (1 b ) で表される芳香族スルフィド化合物。
A— (-S-B k )3 (1 b) [式中、 kは 1〜3の整数を表す。
Aは、置換されていても良いベンゼン環、置換されていても良いフルオレン 環、置換されていても良いチ才フェン環、置換されていても良い卜リアジン 環、置換されていても良いピリミジン環から選ばれる 3価の炭素環式芳香族 環または複素璟式芳香族環を表し、
B1、 B2、 B3は、 それぞれ独立に、置換されていても良いフエニル基、 置換 されていても良いピリミジル基、置換されていても良いナフチル基、置換さ れていても良いチェニル基、置換されていても良いベンゾチアゾリル基、置 換されていても良いベンゾ才キサゾリル基、置換されていても良いチアジァ ゾリル基、置換されていても良いチアゾリル基から選ばれる炭素環式芳香族 基または複素環式芳香族基を表す。 ]
23.一般式(1 c ) で表される芳香族スルフィド化合物。
A— (-S-B k ) Λ (1 c)
[式中、 kは 1〜4の整数を表す。
Aは、置換されていても良いベンゼン環、置換されていても良いビフエ二ル 環、置換されていても良いチ才フェン環、置換されていても良いチェノ [ 3, 2— b ]チ才フェン環から選ばれる炭素環式芳香族環または複素環式芳香族 環を表し、
B 1、 B2、 B3、 B4は、 それぞれ独立に、置換されていても良いフエニル基、 置換されていても良いピリミジル基、置換されていても良いナフチル基、置 換されていても良いチェニル基、置換されていても良いベンゾ'チアゾリル基、 置換されていても良いベンゾ才キサゾリル基、置換されていても良いチアジ ァゾリル基、置換されていても良いチアゾリル基から選ばれる炭素環式芳香 族基または複素環式芳香族基を表す。 ]
PCT/JP2001/004491 2000-05-31 2001-05-29 Materiau optique et element optique contenant un compose de sulfure aromatique et compose de sulfure aromatique WO2001092925A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020027001388A KR20020044134A (ko) 2000-05-31 2001-05-29 방향족술피드화합물을 사용한 광학재료 및 광학부품 및방향족술피드화합물
EP01934387A EP1291679A1 (en) 2000-05-31 2001-05-29 Optical material and optical part each containing aromatic sulfide compound and aromatic sulfide compound

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-161348 2000-05-31
JP2000161348 2000-05-31
JP2000-372499 2000-07-12
JP2000372499 2000-12-07

Publications (1)

Publication Number Publication Date
WO2001092925A1 true WO2001092925A1 (fr) 2001-12-06

Family

ID=26592979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/004491 WO2001092925A1 (fr) 2000-05-31 2001-05-29 Materiau optique et element optique contenant un compose de sulfure aromatique et compose de sulfure aromatique

Country Status (6)

Country Link
US (1) US20030085387A1 (ja)
EP (1) EP1291679A1 (ja)
KR (1) KR20020044134A (ja)
CN (1) CN1386202A (ja)
TW (1) TW526225B (ja)
WO (1) WO2001092925A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230595A1 (ja) * 2017-06-14 2018-12-20 富士フイルム株式会社 組成物、膜、レンズ、固体撮像素子、化合物

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4057325B2 (ja) * 2002-03-29 2008-03-05 富士フイルム株式会社 光学部材用重合性組成物およびそれを用いた光学部材ならびにチオ化合物
EP1581595A4 (en) 2003-01-06 2007-03-21 Fujifilm Corp OPTICAL ELEMENTS AND POLYMERIZABLE COMPOSITIONS AND THIOVER BINDINGS FOR THEIR PREPARATION
DE102004013525B4 (de) * 2003-04-10 2006-02-02 Forschungszentrum Karlsruhe Gmbh Lichtleitendes Material und Lichtwellenleiter
CN100356211C (zh) * 2003-07-11 2007-12-19 富士胶片株式会社 塑料光纤及其制备方法
US10093787B2 (en) 2016-08-18 2018-10-09 The Hong Kong Polytechnic University Polymeric waveguide with single dopant
JP2022552307A (ja) * 2019-10-15 2022-12-15 ソルベイ スペシャルティ ポリマーズ ユーエスエー, エルエルシー ポリ(アリーレンスルフィド)ポリマー及び対応するポリマー組成物並びに物品
JP2022552664A (ja) * 2019-10-15 2022-12-19 ソルベイ スペシャルティ ポリマーズ ユーエスエー, エルエルシー ポリ(アリーレンスルフィド)ポリマー及び対応するポリマー組成物及び物品
CN115058215B (zh) * 2022-06-28 2024-05-03 万华化学集团股份有限公司 一种高折射光伏组件封装胶膜及其制备方法和用途

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0907088A2 (en) * 1997-10-02 1999-04-07 Asahi Glass Company Ltd. Graded-refractive-index optical plastic material and method for its production

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1768202C3 (de) * 1967-04-15 1974-11-28 Sagami Chemical Research Center, Tokio Verfahren zu* Herstellung von aromatischen Sulfiden
US4198403A (en) * 1978-04-05 1980-04-15 Syntex (U.S.A.) Inc. 17 Beta-thiocarboxylic acid esters of 4-halo-3-oxoandrost-4-enes
US5514770A (en) * 1995-04-18 1996-05-07 Ansong; Omari Sulfides of nitroamino triphenyl and substitution or amino functionalized products thereof and the method of preparing the same
JP2001506666A (ja) * 1996-12-20 2001-05-22 ビイク グルデン ロンベルク ヒエーミツシエ フアブリーク ゲゼルシヤフト ミツト ベシユレンクテル ハフツング イミダゾピリダジン
EP0869122B1 (en) * 1997-03-31 2002-12-04 Korea Research Institute Of Chemical Technology Quinolinic sulfide derivatives acting as NMDA receptor antagonists and process for preparation thereof
US6232428B1 (en) * 1999-01-19 2001-05-15 I.S.T. Corporation Essentially colorless, transparent polyimide coatings and films

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0907088A2 (en) * 1997-10-02 1999-04-07 Asahi Glass Company Ltd. Graded-refractive-index optical plastic material and method for its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230595A1 (ja) * 2017-06-14 2018-12-20 富士フイルム株式会社 組成物、膜、レンズ、固体撮像素子、化合物
JPWO2018230595A1 (ja) * 2017-06-14 2020-04-16 富士フイルム株式会社 組成物、膜、レンズ、固体撮像素子、化合物
US11656384B2 (en) 2017-06-14 2023-05-23 Fujifilm Corporation Composition, film, lens, solid state imaging element, and compounds

Also Published As

Publication number Publication date
KR20020044134A (ko) 2002-06-14
CN1386202A (zh) 2002-12-18
TW526225B (en) 2003-04-01
EP1291679A1 (en) 2003-03-12
US20030085387A1 (en) 2003-05-08

Similar Documents

Publication Publication Date Title
WO2001092925A1 (fr) Materiau optique et element optique contenant un compose de sulfure aromatique et compose de sulfure aromatique
JP5264491B2 (ja) 光活性芳香族重合体及びその製造方法
WO2006070824A1 (ja) 重合体組成物、プラスチック光ファイバー、プラスチック光ファイバーケーブル及びプラスチック光ファイバーの製造方法
JP2011162584A (ja) ジベンゾチオフェン骨格を有する化合物における屈折率付与効果を増大又は調整する方法
CN104558004A (zh) 具有D-π-A结构的有机二阶非线性光学发色团及合成方法和用途
JP2015209511A (ja) 重合体組成物、重合体ペレット、成形体及びフィルム
JP4174007B2 (ja) 光学用樹脂及びそれを用いた用途
Maheswara et al. High refractive index of transparent acrylate polymers functionalized with alkyl sulfur groups
JP2002236222A (ja) 芳香族スルフィド化合物を用いた光学材料及び光学部品ならびに芳香族スルフィド化合物
JPH0547544B2 (ja)
JP4905991B2 (ja) 高アッベ数を有する高屈折率材料
US7250121B2 (en) Non-linear optical device material composition
US5198925A (en) α-fluoroacrylic acid esters and polymers thereof
JP2013023688A (ja) 含フッ素重合体及びその製造方法、樹脂組成物並びに光ファイバー
JP3595615B2 (ja) 含硫黄(メタ)アクリル酸エステル
JP2002053576A (ja) 含硫環状化合物および光学材料
JP2012177056A (ja) 高屈折率を有する重合体
JPH0684333B2 (ja) ビフェニル化合物及びその製造方法
JP5638414B2 (ja) 新規含フッ素重合体及びその製造方法、該重合体を含む樹脂組成物並びに光ファイバー
JP2609487B2 (ja) 亜リン酸エステル化合物
JP5888579B2 (ja) 光学材料、光学素子、及び物品の屈折率を変化させる方法
JP2575233B2 (ja) 亜リン酸エステル化合物及びその製造方法
KR0164102B1 (ko) 열적으로 안정한 광소자용 유기 광전자 화합물 및 이의 제조방법
JPH0539296A (ja) リン酸エステル化合物
JPH02268152A (ja) ノルボルナン化合物及びその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 10048001

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020027001388

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2001934387

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 018022308

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020027001388

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001934387

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001934387

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1020027001388

Country of ref document: KR