WO2001090247A1 - Witterungsstabile polymerblends - Google Patents

Witterungsstabile polymerblends Download PDF

Info

Publication number
WO2001090247A1
WO2001090247A1 PCT/EP2001/005141 EP0105141W WO0190247A1 WO 2001090247 A1 WO2001090247 A1 WO 2001090247A1 EP 0105141 W EP0105141 W EP 0105141W WO 0190247 A1 WO0190247 A1 WO 0190247A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
polymer blends
vinyl
polymer
Prior art date
Application number
PCT/EP2001/005141
Other languages
English (en)
French (fr)
Inventor
Holger Warth
Gerwolf Quaas
Dieter Wittmann
Heinrich Alberts
Original Assignee
Bayer Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE2000124935 external-priority patent/DE10024935A1/de
Priority claimed from DE2000124933 external-priority patent/DE10024933A1/de
Priority claimed from DE2001109225 external-priority patent/DE10109225A1/de
Application filed by Bayer Aktiengesellschaft filed Critical Bayer Aktiengesellschaft
Priority to CA002409013A priority Critical patent/CA2409013A1/en
Priority to EP01931688A priority patent/EP1287074A1/de
Priority to MXPA02011394A priority patent/MXPA02011394A/es
Priority to AU2001258394A priority patent/AU2001258394A1/en
Priority to BR0110853-0A priority patent/BR0110853A/pt
Priority to JP2001587052A priority patent/JP2003534433A/ja
Publication of WO2001090247A1 publication Critical patent/WO2001090247A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • C08F279/04Vinyl aromatic monomers and nitriles as the only monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • C08L51/085Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds on to polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids

Definitions

  • the present invention relates to polymer blends based on polyamide and graft polymers selected from the group consisting of silicone, EP (D) M and acrylate rubbers as the graft base, which have very good mechanical properties such as tensile strength and weather stability.
  • EP-A-202 214 describes polyamide / ABS blends which additionally contain ner-inertness mediators which have functional groups which correspond to the
  • Amine or acid end groups of the polyamides can react.
  • thermoplastic molding compositions made from polyamides using graft polymers which are prepared by a certain redox polymerization method and contain tertiary butyl acrylates in the shell.
  • EP-A-785 234 polymer compositions are described, the graft polymers of aromatic vinyl monomers and monomers of alkyl (meth) acrylates or acrylonitrile on a rubber as the first component, a thermoplastic polymer with polar groups as the second component and an excitability mediator as the third Component included.
  • the object of the present invention is to provide polymer blends with excellent mechanical properties such as tensile strength and weather stability. r / I
  • polymer blends based on polyamide and graft polymers selected from the group consisting of silicone, EP (D) M and acrylate rubbers, which contain excipients, have the desired properties.
  • the invention therefore relates to polymer blends containing
  • the invention preferably relates to polymer blends
  • a non-digestive agent containing at least one thermoplastic polymer with polar groups 0.5 to 50, preferably 1 to 30, particularly preferably 2 to 10 parts by weight of a non-digestive agent containing at least one thermoplastic polymer with polar groups.
  • Polyamides suitable according to the invention are known homopolyamides, copolyamides and mixtures of these polyamides. These can be partially crystalline and / or amorphous polyamides.
  • the partially crystalline polyamides are polyamide 6, polyamide 6,6, mixtures and corresponding copolymers of these components are suitable.
  • partially crystalline polyamides the acid component of which is wholly or partly composed of terephthalic acid and / or isophthalic acid and / or suberic acid and / or sebacic acid and / or azelaic acid and / or adipic acid and / or cyclohexanedicarboxylic acid, the diamine component wholly or partly of m- and / or p-xylylene diamine and / or hexamethylene diamine and / or 2,2,4-trimethylhexamethylene diamine and / or 2,4,4-trimethyl hexamethylene diamine and / or isophorone diamine and the composition of which is known in principle.
  • polyamides which are made wholly or in part from lactams with 7 to 12 carbon atoms in the ring, optionally with the use of one or more of the above-mentioned starting components.
  • Particularly preferred partially crystalline polyamides are polyamide-6 and polyamide-6,6 and their mixtures.
  • Known products can be used as amorphous polyamides. They are obtained by polycondensation of diamines such as ethylene diamine, hexamethylene diamine, decamethylene diamine, 2,2,4- and / or 2,4,4-trimethylhexamethylene diamine, m- and / or p-xylylene diamine, bis- (4th -aminocyclo- hexy ⁇ ) methane, bis- (4-aminocyclohexyl) propane, 3,3'-dimethyl-4,4'-diamino-di-cyclohexyl-methane, 3-aminomethyl-3,5,5-trimethylcyclohexylamine, 2,5- and / or • 2,6-bis (aminomethyl) norbornane and / or 1,4-diaminomethylcyclohexane with dicarboxylic acids such as
  • Copolymers which are obtained by polycondensation of several monomers are also suitable, as are copolymers which are prepared with the addition of aminocarboxylic acids such as ⁇ -aminocaproic acid, ⁇ -aminoundecanoic acid or ⁇ -aminolauric acid or their lactams.
  • aminocarboxylic acids such as ⁇ -aminocaproic acid, ⁇ -aminoundecanoic acid or ⁇ -aminolauric acid or their lactams.
  • Particularly suitable amorphous polyamides are the polyamides prepared from isophthalic acid, hexamethylene diamine and other diamines such as 4,4-diaminodicyclohexyl methane, isophorone diamine, 2,2,4- and / or 2,4,4-trimethylhexamethylene diamine, 2,5- and / or 2,6-bis (aminomethyl) norbornene; or from isophthalic acid, 4,4'-diamino-dicyclohexylmethane and -caprolactam; or from isophthalic acid, 3,3'-
  • Positional isomers diamine dicyclohexalmethanes are used, which are composed of
  • the polyamides preferably have a relative viscosity (measured on a 1% strength by weight solution in m-cresol at 25 ° C.) from 2.0 to 5.0, particularly preferably from 2.5 to 4.0.
  • Component B comprises one or more rubber-elastic graft polymers selected from the group consisting of silicone, acrylate and EP (D) M rubbers as the graft base.
  • Component B preferably comprises one or more graft polymers of
  • B.2 95 to 5, preferably 80 to 20, in particular 70 to 20% by weight of one or more graft bases with glass transition temperatures ⁇ 10 ° C, preferably ⁇ 0 ° C, particularly preferably ⁇ -20 ° C selected from the group consisting of Silicone, acrylate and EP (D) M rubbers.
  • the graft base B.2 generally has an average particle size (d 50 value) of 0.05 to 5 ⁇ m, preferably 0.10 to 0.5 ⁇ m, particularly preferably 0.20 to 0.40 ⁇ m.
  • Component B1 vinyl monomers which can be used according to the invention are those composed of at least one monomer from the series: vinyl aromatics and / or nucleus-substituted vinyl aromatics (such as, for example, styrene, ⁇ -methylstyrene, p-methyl- • styrene, p-chlorostyrene), methacrylic acid (C 1 -C 8 ) -alkyl esters (such as methyl methacrylate, ethyl methacrylate) (B1) with at least one monomer from the series: vinyl cyanides (unsaturated nitriles such as acrylonitrile and methacrylonitrile), (meth) acrylic acid (-C-C 8 ) alkyl esters ( such as methyl methacrylate, n-butyl acrylate, t-butyl acrylate), derivatives (such as anhydrides and imides) of unsaturated carboxylic acids (for example maleic anhydride
  • Component B.l is preferably a mixture of
  • Thermoplastic (co) polymers with a composition according to component D can be formed as a by-product in the graft polymerization to produce component B, especially when large amounts of monomers are grafted onto small amounts of rubber.
  • graft polymer B is understood to mean the product formed from grafted rubber during the graft polymerization and the (co) polymer formed during the graft polymerization.
  • the amounts of the (co) polymer necessarily formed during the graft polymerization depend, inter alia, on depends on the monomer composition and polymerization method.
  • Particularly preferred vinyl monomers B.l are styrene and acrylonitrile and optionally methyl methacrylate, ⁇ -methylstyrene and acrylonitrile and optionally methyl methacrylate, or styrene, ⁇ -methylstyrene and acrylonitrile and optionally
  • Silicone rubbers B.2 suitable according to the invention consist predominantly of structural units in which
  • RU and Rl2 may be the same or different, and Ci-Cg-alkyl or cycloalkyl or Cß-C 2-aryl and
  • n is an integer.
  • Preferred silicone rubbers B.2 are particulate with an average particle diameter d5Q of 0.09 to 1 ⁇ m, preferably 0.09 to 0.4 ⁇ m and one
  • dihalogenosilanes 2) 0 to 10 mol%, based on 1), trihalosilanes and
  • Ci-Cß-alkenyl preferably vinyl or allyl
  • Preferred silicone rubbers B.2 contain at least as organic residues
  • the end group is generally a diorganyl-hydroxylsiloxy unit, preferably a dimethylhydroxysiloxy unit.
  • Preferred silanes 1) to 4) for the production of the silicone rubbers B.2 contain chlorine as halogen substituents.
  • silicone rubber B.2 does not necessarily have to be produced from the halogen compounds 1) to 4).
  • silicone rubbers B.2 of the same structure consist of silanes with other hydrolyzable groups, e.g. Ci ⁇ Cg alkoxy groups, or have been prepared from cyclic siloxane oligomers, are included.
  • Silicone graft rubbers are mentioned as a particularly preferred component B.2. These can be produced, for example, using a three-stage process.
  • the crosslinked silicone rubbers are obtained from these cyclic oligomers with the addition of mercaptopropylmethyldimethoxysilane by ring-opening cationic polymerization.
  • the silicone rubbers obtained which have graft-active vinyl and mercapto groups, are radically graft-polymerized with vinyl monomers (or mixtures).
  • mixtures of cyclic siloxane oligomers such as octamethylcyclotetrasiloxane and tetramethyltetravinylcyclotetrasiloxane in an emulsion are preferably cationically polymerized in a ring-opening manner.
  • the silicone rubbers are particulate as an emulsion.
  • alkylbenzenesulfonic acids which are both catalytically active and emulsifiers. After the polymerization, the acid is neutralized.
  • alkylbenzenesulfonic acids n-alkylsulfonic acids can also be used. It is also possible to use co-emulsifiers in addition to the sulfonic acid.
  • Co-emulsifiers can be nonionic or anionic. Particularly suitable anionic co-emulsifiers are salts of n-alkyl- or alkylbenzenesulfonic acids.
  • Nonionic co-emulsifiers are polyoxyethylene derivatives of fatty alcohols and fatty acids. Examples are POE (3) lauryl alcohol, POE (20) oleyl alcohol, POE (7) nonyl alcohol or POE ( ⁇ ) stearate. (The notation POE (number) alcohol means that the number of units of ethylene oxide added to a molecule .... alcohol corresponds to the number. POE stands for polyethylene oxide. The number is an average.)
  • crosslinking and grafting groups (vinyl and mercapto groups, cf. organic residues ⁇ and ⁇ ) can be inserted into the silicone rubber by using appropriate siloxane oligomers.
  • siloxane oligomers such are, for example, tetramethyltetravinylcyclotetrasiloxane, or ⁇ -mercaptopropylmethyldimethoxysiloxane or its hydrolyzate. They are added to the main oligomer, for example octamethylcyclotetrasiloxane, in the desired amounts in the second stage.
  • Adequate crosslinking of the silicone rubber can already be achieved if the residues ⁇ and ⁇ react with one another in the emulsion polymerization, so that the addition of an external crosslinker can be unnecessary.
  • a crosslinking silane can be added in the second reaction step to increase the degree of crosslinking of the silicone rubber.
  • Branches and cross-links can be achieved by adding e.g. Tetraethoxysilane or a silane of the formula
  • X is a hydrolyzable group, in particular an alkoxy or halogen radical
  • y is an organic residue
  • Preferred silanes y-SiX3 are methyltrimethoxysilane and phenyltrimethoxysilane.
  • the gel content is determined at 25 ° C. in acetone (cf. DE-AS 2 521 288, SP. 6, lines 17 to 37).
  • silicone rubbers according to the invention it is at least 70% by weight, preferably 73 to 98% by weight.
  • Grafted silicone rubbers B can be produced by radical graft polymerization, for example analogously to DE-PS 2 421 288.
  • the graft monomers can be graft-polymerized radically in the presence of the silicone rubber, in particular at 40 to 90 ° C.
  • the graft polymerization can be carried out in suspension, dispersion or emulsion. Continuous or discontinuous emulsion polymerization is preferred.
  • This graft polymerization is carried out using free radical initiators (e.g. peroxides, azo compounds, hydroperoxides, persulfates, perphosphates) and, if appropriate, under
  • anionic emulsifiers e.g. Carboxonium salts, sulfonic acid salts or organic sulfates.
  • the silicone rubber has graft-active residues, so that special measures for heavy grafting are unnecessary.
  • the grafted silicone rubbers can be prepared by graft polymerization from 5 to 95 parts by weight, preferably 20 to 80 parts by weight of a vinyl monomer or a vinyl monomer mixture to 5 to 95, preferably 20 to 80 parts by weight of silicone rubber.
  • a particularly preferred vinyl monomer is styrene or methyl methacrylate.
  • Suitable vinyl monomer mixtures consist of 50 to 95 parts by weight of styrene, ⁇ -methylstyrene (or other alkyl- or halogen-substituted styrenes) or methyl methacrylate on the one hand and from 5 to 50 parts by weight of acrylonitrile, methacrylonitrile, acrylic acid-Ci-Cig -alkyl esters, Ci-Ciss-alkyl alkyl, maleic anhydride or substituted maleimides on the other hand.
  • Acrylic acid esters of primary or secondary aliphatic C 2 -C 10 alcohols preferably n-butyl acrylate or acrylic or methyl acrylate esters of tert-butanol, preferably t-butyl acrylate, may additionally be present as further vinyl monomers in smaller amounts.
  • a particularly preferred monomer mixture is 30 to 40 Parts by weight of ⁇ -methylstyrene, 52 to 62 parts by weight of methyl methacrylate and 4 to 14 parts by weight of acrylonitrile.
  • the thus grafted silicone rubbers can be worked up in a known manner, e.g. by coagulation of the latices with electrolytes (salts, acids or
  • free polymers or copolymers of the graft monomers forming the graft shell are generally also formed to a certain extent in addition to the actual graft copolymer.
  • grafted silicone rubber is the product obtained by polymerizing the graft monomers in the presence of the silicone rubber, that is to say strictly speaking a mixture of graft copolymer and free (co) polymer of the graft monomers.
  • Graft polymers based on acrylate are preferably made of
  • the acrylate rubbers (a) are preferably polymers made from acrylic acid alkyl esters, optionally with up to 40% by weight, based on (a), of other polymerizable, ethylenically unsaturated monomers.
  • the preferred polymerizable acrylic acid esters include C 1 -C 6 -alkyl esters, for example methyl, ethyl, butyl, n-octyl and 2-ethylhexyl esters; Halogen alkyl esters, preferably halogen-Cj-Cg-alkyl esters, such as chloroethyl acrylate, and mixtures of these monomers.
  • Monomers with more than one polymerizable double bond can be copolymerized for crosslinking.
  • crosslinking monomers are esters of unsaturated monocarboxylic acids with 3 to 8 C atoms and unsaturated monohydric alcohols with 3 to 12 C atoms, or saturated polyols with 2 to 4 OH groups and 2 to 20 C atoms, such as, for example, ethylene glycol dimethacrylate, Allyl methacrylate; polyunsaturated heterocyclic compounds, such as, for example, trivinyl and triallyl cyanurate; polyfunctional vinyl compounds such as di- and trivinylbenzenes; but also triallyl phosphate and diallyl phthalate.
  • Preferred crosslinking monomers are allyl methacrylate, ethylene glycol dimethacrylate, diallyl phthalate and heterocyclic compounds which have at least 3 ethylenically unsaturated groups.
  • crosslinking monomers are the cyclic monomers trialyll cyanurate, triallyl isocyanurate, triacryloylhexahydro-s-triazine and triallylbenzenes.
  • the amount of the crosslinked monomers is preferably 0.02 to 5, in particular 0.05 to 2% by weight, based on the rubber base.
  • Preferred "other" polymerizable, ethylenically unsaturated monomers which, in addition to the acrylic esters, can optionally be used to prepare the graft base B.2 are, for. B. acrylonitrile, styrene, ⁇ -methylstyrene, acrylamides, vinyl-Ci- C 6 alkyl ether, methyl methacrylate, butadiene.
  • Preferred acrylate rubbers as graft base layer B.2 are emulsion polymers which have a gel content of at least 60% by weight.
  • the acrylate-based polymers are generally known, can be prepared by known processes (for example EP-A 244 857) or are commercially available products.
  • the gel content of the graft base is determined at 25 ° C. in a suitable solvent (M. Hoffmann, H. Krömer, R. Kuhn, Polymeranalytik I and II, Georg
  • the average particle size d 0 is the diameter above and below which 50% by weight of the particles lie. It can be determined by means of ultracentrifuge measurement (W. Scholtan, H. Lange, Kolloid, Z. and Z. Polymer 250 (1972), 782-796).
  • the EP (D) M graft base used is at least one copolymer or terpolymer containing ethylene and propylene with only a small number of double bonds (cf. EP-A 163 411, EP-A 244 857).
  • EP (D) M rubbers used are those which have a glass transition temperature in the range from -60 to -40 ° C.
  • the rubbers have only a small number of double bonds, ie fewer than 20 double bonds per 1000 carbon atoms, in particular 3 to 10 double bonds per 1000 carbon atoms.
  • Examples of such rubbers are copolymers consisting of ethylene-propylene and ethylene-propylene terpolymers. The latter are produced by polymerizing at least 30% by weight of ethylene, at least 30% by weight of propylene and 0.5 to 15% by weight of a non-conjugated diolefinic component.
  • Diolefins with at least 5 carbon atoms such as 5-ethylidene norbornene, dicyclopentadiene, 2,2,1-dicyclopentadiene and 1,4-hexadiene, are generally used as the ter component.
  • polyalkylene amers such as polypentenamer, polyoctenamer, polydodecanamer or mixtures of these substances.
  • Partially hydrogenated polybutadiene rubbers in which at least 70% of the residual double bonds are hydrogenated are also suitable.
  • EPDM rubbers generally have a Mooney viscosity ML1.4 (100 ° C) of 25 to 120. They are commercially available.
  • the EP (D) M-based graft polymer can be prepared in various ways
  • a solution of the EP (D) M elastomer (rubber) is preferably prepared in the monomer mixture and (if appropriate) indifferent solvents and the grafting reaction is carried out at higher temperatures by radical initiators, such as azo compounds or peroxides.
  • radical initiators such as azo compounds or peroxides.
  • DE-AS 23 02 014 and DE-A 25 33 991 may be mentioned as examples. It is also possible - as described in US Pat. No. 4,202,948 - to work in suspension.
  • thermoplastic polymers with polar groups are preferably used as compatibilizers.
  • C.2 at least one monomer selected from the group C2 to C12 alkyl methacrylates, C2 to C ⁇ ⁇ alkyl acrylates, methacrylonitriles and acrylonitriles and
  • C.3 contain ⁇ -, ß-unsaturated components containing dicarboxylic anhydrides.
  • Styrene is particularly preferred as the vinyl aromatic monomer C.I.
  • Acrylonitrile is particularly preferred for component C.2.
  • Maleic anhydride is particularly preferred for ⁇ -, ⁇ -unsaturated components containing dicarboxylic anhydrides C.3.
  • C. I, C.2 and C.3 are preferably used as components of components
  • terpolymers of styrene, acrylonitrile and maleic anhydride are preferably used. These polymers in particular contribute to the improvement of the mechanical properties, such as tensile strength and weather stability.
  • the amount of maleic anhydride in the polymer can vary within wide limits. The amount is preferably 0.2-5 mol%.
  • Quantities between 0.5 and 1.5 mol% are particularly preferably contained in component C.I. Particularly good mechanical properties with regard to tensile strength and weather stability are achieved in this area.
  • Te ⁇ olymer can be produced in a manner known per se.
  • a suitable one
  • the method is to dissolve monomer components of the polymer, e.g. of styrene, maleic anhydride or acrylonitrile in a suitable solvent, e.g. Methyl ethyl ketone (MEK).
  • a suitable solvent e.g. Methyl ethyl ketone (MEK).
  • One or optionally several chemical initiators are added to this solution. Suitable initiators are e.g. Peroxides.
  • the mixture is then polymerized at elevated temperature for several hours.
  • the solvent and the unreacted monomers are then removed in a manner known per se.
  • the ratio between the component Cl (vinylaromatic monomer) and the component C.2, for example the acrylonitrile monomer in the polymer, is preferably between 80:20 and 50:50.
  • an amount of vinyl aromatic monomer Cl is preferably selected which corresponds to the amount of the vinyl monomer B1 in the graft copolymer B.
  • the amount of component C in the polymer blends according to the invention is between 0.5 and 50% by weight, preferably between 1 and 30% by weight, particularly preferably between 2 and 10% by weight. Quantities between 5 and 7% by weight are most preferred.
  • Such polymers are described for example in EP-A-785 234 and EP-A-202 214. According to the invention, particular preference is given to the polymers mentioned in EP-A-202 214.
  • Component D comprises one or more thermoplastic vinyl (co) polymers.
  • Suitable as vinyl (co) polymers D are polymers of at least one monomer from the group of the vinyl aromatics, vinyl cyanides (unsaturated nitriles), (meth) acrylic acid (C 1 -C 8 ) alkyl esters, unsaturated carboxylic acids and derivatives (such as anhydrides and imides ) unsaturated carboxylic acids.
  • (Co) polymers of are particularly suitable
  • Dl 50 to 99 preferably 60 to 80 parts by weight of vinyl aromatics and / or nucleus-substituted vinyl aromatics such as styrene, ⁇ -methylstyrene, p-methylstyrene, p-chlorostyrene) and / or methacrylic acid (C 1 -C 8 ) alkyl esters such as eg methyl methacrylate, ethyl ethacrylate), and
  • D.2 1 to 50, preferably 20 to 40 parts by weight of vinyl cyanides (unsaturated nitriles) such as acrylonitrile and methacrylonitrile and / or (meth) acrylic acid (C 8 -C 8 ) alkyl esters (such as methyl methacrylate, n-butyl acrylate, t -Butyl acrylate) and / or unsaturated carboxylic acids (such as maleic acid) and / or derivatives (such as anhydrides and imides) of unsaturated carboxylic acids (for example
  • vinyl cyanides unsaturated nitriles
  • C 8 -C 8 alkyl esters such as methyl methacrylate, n-butyl acrylate, t -Butyl acrylate
  • unsaturated carboxylic acids such as maleic acid
  • derivatives such as anhydrides and imides
  • the (co) polymers D are resinous, thermoplastic and rubber-free.
  • the copolymer of D.l styrene and D.2 acrylonitrile is particularly preferred.
  • the (co) polymers according to D are known and can be prepared by radical polymerization, in particular by emulsion, suspension, solution or bulk polymerization.
  • the (co) polymers preferably have molecular weights M w (weight average, determined by light scattering or sedimentation) between 15,000 and 200,000.
  • (Co) polymers according to component D often arise as by-products in the graft polymerization of component B, especially when large amounts of monomers B.l are grafted onto small amounts of rubber B.2.
  • the polymer blends according to the invention can contain conventional additives such as flame retardants, anti-dripping agents, very finely divided inorganic compounds, lubricants and mold release agents, nucleating agents, antistatic agents, stabilizers, fillers and
  • the polymer blends according to the invention can generally contain 0.01 to 20% by weight, based on the total molding composition, of flame retardants.
  • flame retardants are organic halogen compounds such as decabromobisphenyl ether, tetrabromobisphenol, inorganic halogen compounds such as ammonium bromide, nitrogen compounds such as melamine, melamine formaldehyde resins, inorganic hydroxide compounds such as Mg-alhydroxide, inorganic compounds such as aluminum oxides, titanium dioxide, antimony oxides, barium metaborate , Hydroxoantimonate, zirconium oxide, zirconium hydroxide, molybdenum oxide, ammonium molybdenum dat, tin borate, ammonium borate, barium metaborate and tin oxide as well as siloxane compounds.
  • Phosphorus compounds as described in EP-A-363 608, EP-A-345 522 or EP-A-640 655 can also be used as flame retardant compounds.
  • the inorganic compounds which can be used comprise compounds of one or more metals of the 1st to 5th main group and the 1st to 8th subgroup of the periodic table, preferably the 2nd to 5th main group and the 4th to 8th subgroup, particularly preferably the 3rd to the 5th main group and the 4th to 8th subgroup with the elements oxygen, sulfur, boron, phosphorus, carbon, nitrogen, hydrogen and / or silicon.
  • Examples of such compounds are oxides, hydroxides, water-containing oxides,
  • These include, for example, TiN, TiO 2 , SnO 2 , WC, ZnO, Al 2 O 3 , AIO (OH), ZrO 2 , Sb 2 O 3 , SiO 2 , iron oxides, NaSO, BaSO, vanadium oxides, zinc borate, silicates such as Al Silicates, Mg silicates, one, two, three-dimensional silicates, mixtures and doped
  • nanoscale particles can be surface-modified with organic molecules in order to achieve better compatibility with the polymers. In this way, hydrophobic or hydrophilic surfaces can be created.
  • the average particle diameters are less than or equal to 200 n, preferably less than or equal to 150 nm, in particular 1 to 100 nm.
  • Particle size and particle diameter always means the mean particle diameter d 50 , determined by ultracentrifuge measurements according to W. Scholtan et al.
  • the inorganic compounds can be in the form of powders, pastes, brine, dispersions or suspensions. Powder can be obtained from dispersions, brines or suspensions by precipitation.
  • the powders can be incorporated into the thermoplastic materials by customary methods, for example by direct kneading or extruding the constituents of the molding composition and the very finely divided inorganic powders.
  • Preferred methods are the preparation of a master batch, e.g. in flame retardant additives, other additives, monomers, solvents, in component A or the co-precipitation of dispersions of components B or C with dispersions, suspensions, pastes or sols of the finely divided inorganic materials.
  • Filling and reinforcing materials e.g. Glass fibers, optionally cut or ground, contain glass beads, glass balls, flake-like reinforcing material, such as kaolin, talc, mica, silicates, quartz, talc, titanium dioxide, wool astonite, mica, carbon fibers or a mixture thereof. Cut or ground glass fibers are preferably used as the reinforcing material.
  • Preferred fillers which can also have a reinforcing effect, are glass balls, mica, silicates, quartz, talc, titanium dioxide, wollastonite.
  • the polymer blends of the present invention can be used to produce molded articles of any kind.
  • molded bodies can be produced by injection molding.
  • moldings that can be produced are: Housing parts of all types, e.g. for household appliances, such as juicers, coffee machines, blenders, for
  • Office machines such as computers, printers, monitors or cover plates for the construction sector and parts for the motor vehicle sector.
  • the polymer blends are particularly suitable for the production of molded parts to which particularly high demands are made with regard to weather resistance, tensile strength and stress crack resistance.
  • the use of the polymer blends for the production of moldings and the moldings obtainable therefrom are also the subject of the present invention.
  • a polyamide (DURETHAN B30 from Bayer AG, Leverkusen,
  • Styrene and acrylonitrile in a ratio of 73:27 to 60 parts by weight of particulate cross-linked polybutadiene rubber (average particle diameter d 50 0.28 ⁇ m), produced by emulsion polymerization B2 acrylonitrile-ethylene-styrene copolymer (AES) with an EPDM
  • Blendex WX270 from General Electric B3 acrylate-styrene-acrylonitrile copolymer (ASA) with a rubber content of approx. 60% by weight
  • Blendex WX160 from General Electric B4 Silicon Acrylate Chew Scb.uk with core-shell structure from one
  • Metablen S2001 Metaln Company B.N., Nlissingen, The Netherlands.
  • the polymer blends according to the invention are produced by mixing the respective constituents in a known manner and melt-compounding or melt-extruding them at temperatures of 200 to 300 ° C. in conventional units, such as internal kneaders, extruders and twin-screw screws, the fluorinated polyolefins preferably in the form of the coagulated mixture already mentioned be used.
  • the individual constituents can be mixed in a known manner both successively and simultaneously, both at about 20 ° C. (room temperature) and at an elevated temperature.
  • the heat resistance according to Vicat A and B is determined according to DI ⁇ 53 460 (ISO 306).
  • HDT A was determined at 1.8 MPa according to ISO75.
  • the melt volume rate was determined according to ISO 527.
  • Weathering was determined according to SAE J 1885:
  • the modulus of elasticity was determined in accordance with DIN 53 457 / ISO 527.
  • the elongation at break was determined in accordance with ISO 527.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

Die vorliegende Erfindung betrifft witterungsstabile Polymerblends enthaltend A) Polyamid, B) mindestens ein kautschukelastisches Pfropfpolymerisat ausgewählt aus der Gruppe bestehend aus Silikon-, EP(D)M- und Acrylatkautschuk als Pfropfgrundlage, C) mindestens einen Verträglichkeitsvermittler enthaltend mindestens ein thermoplastisches Polymer mit polaren Gruppen und D) gegebenenfalls mindestens ein Vinyl(co)polymerisat.

Description

Witterungsstabile Polymerblends
Die vorliegende Erfindung betrifft Polymerblends auf Basis Polyamid und Pfropf- polymerisaten ausgewählt aus der Gruppe der Silikon-, EP(D)M- und Acrylat- kautschuke als Pfropfgrundlage, die sehr gute mechanische Eigenschaften wie Zugfestigkeit und Witterungsstabilität aufweisen.
In EP-A-202 214 sind Polyamid/ABS-Blends beschrieben, die zusätzlich Nerträg- lichkeitsvermitfler enthalten, die funktioneile Gruppen aufweisen, welche mit den
Amin- oder Säureendgruppen der Polyamide reagieren können.
In der DE-A-39 38 421 werden thermoplastische Formmassen aus Polyamiden unter Verwendung von Pfropfpolymerisaten beschrieben, die nach einer bestimmten Nerfahrensweise der Redoxpolymerisation hergestellt werden und in der Hülle tertiäre Butylacrylate enthalten.
In der EP-A-785 234 sind schließlich Polymerzusammensetzungen beschrieben, die Pfropfpolymerisate von aromatischen Ninylmonomeren und Monomeren aus Alkyl- (meth)acrylaten oder Acrylnitril auf einem Kautschuk als erste Komponente, ein thermoplastisches Polymer mit polaren Gruppen als zweite Komponente sowie einen Nerträglichkeitsvermittler als dritte Komponente enthalten.
Aufgabe der vorliegenden Erfindung ist die Bereitstellung von Polymerblends mit ausgezeichneten mechanischen Eigenschaften wie Zugfestigkeit und Witterungsstabilität. r / I
Es wurde nun gefunden, dass Polymerblends auf Basis Polyamid und Pfropfpolymerisaten ausgewählt aus der Gruppe der Silikon-, EP(D)M- und Acrylatkautschuke, die Nerträglichkeitsvermittler enthalten, die gewünschten Eigenschaften aufweisen. Gegenstand der Erfindung sind daher Polymerblends enthaltend
A) Polyamid,
B) mindestens ein kautschukelastisches Pfropφofymerisat ausgewählt aus der
Gruppe bestehend aus Silikon-, EP(D)M- und Acrylatkautschuk als Pfropfgrundlage,
C) mindestens einen Nerträglichkeitsvermittler enthaltend mindestens ein thermoplastisches Polymer mit polaren Gruppen und
D) gegebenenfalls mindestens ein Ninyl(co)polymerisat.
Gegenstand der Erfindung sind vorzugsweise Polymerblends enthaltend
10 bis 98, bevorzugt 15 bis 70, besonders bevorzugt 20 bis 60 Gew.-Teile Polyamid A,
0,5 bis 80, bevorzugt 10 bis 70, besonders bevorzugt 20 bis 65 Gew.-Teile eines Gemischs bestehend aus den Komponenten B und gegebenenfalls D, bzw.
0,5 bis 50, bevorzugt 1 bis 30, besonders bevorzugt 2 bis 10 Gew.-Teile eines Nerträglichkeitsvermittlers enthaltend mindestens ein thermoplastisches Polymer mit polaren Gruppen.
Komponente A
Erfindungsgemäß geeignete Polyamide sind bekannte Homopolyamide, Copoly- amide und Mischungen dieser Polyamide. Es können dies teilkristalline und/oder amorphe Polyamide sein. Als teilkristalline Polyamide sind Polyamid-6, Polyamid- 6,6, Mischungen und entsprechende Copolymerisate aus diesen Komponenten geeignet. Weiterhin kommen teilkristalline Polyamide in Betracht, deren Säurekomponente ganz oder teilweise aus Terephthalsäure und/oder Isophthalsäure und/oder Korksäure und/oder Sebacinsäure und/oder Azelainsäure und/oder Adipinsäure und/oder Cyclohexandicarbonsäure, deren Diaminkomponente ganz oder teilweise aus m- und/oder p-Xylylen-diamin und/oder Hexamethylendiamin und/oder 2,2,4- Trimethylhexamethylendiamin und/oder 2,4,4-Trimethylhexamefhylendiamin und/oder Isophorondiamin besteht und deren Zusammensetzung prinzipiell bekannt ist.
Außerdem sind Polyamide zu nennen, die ganz oder teilweise aus Lactamen mit 7 bis 12 C-Atomen im Ring, gegebenenfalls unter Mitverwendung einer oder mehrerer der oben genannten Ausgangskomponenten, hergestellt werden.
Besonders bevorzugte teilkristalline Polyamide sind Polyamid-6 und Polyamid-6,6 und ihre Mischungen. Als amorphe Polyamide können bekannte Produkte eingesetzt werden. Sie werden erhalten durch Polykondensation von Diaminen wie Ethylen- diamin, Hexamethylendiamin, Decamethylendiamin, 2,2,4- und/oder 2,4,4-Tri- methylhexamethylendiamin, m- und/oder p-Xylylen-diamin, Bis-(4-aminocyclo- hexyι)-methan, Bis-(4-aminocyclohexyl)-propan, 3,3'-Dimethyl-4,4'-diamino-di- cyclohexyl-methan, 3-Aminomethyl-3,5,5-trimethylcyclohexylamin, 2,5- und/oder 2,6-Bis-(aminomethyl)-norbornan und/oder 1,4-Diaminomethylcyclohexan mit Dicarbonsäuren wie Oxalsäure, Adipinsäure, Azelainsäure, Decandicarbonsäure, Heptadecandicarbonsäure, 2,2,4- und/oder 2,4,4-Trimethyladipinsäure, Isophthal- säure und Terephthalsäure.
Auch Copolymere, die durch Polykondensation mehrerer Monomerer erhalten werden, sind geeignet, ferner Copolymere, die unter Zusatz von Aminocarbonsäuren wie ε-Aminocapronsäure, ω-Aminoundecansäure oder ω-Aminolaurinsäure oder ihren Lactamen, hergestellt werden. Besonders geeignete amorphe Polyamide sind die Polyamide hergestellt aus Isophthalsäure, Hexamethylendiamin und weiteren Diaminen wie 4,4-Diaminodi- cyclohexylmethan, Isophorondiamin, 2,2,4- und/oder 2,4,4-Trimethylhexamethylen- diamin, 2,5- und/oder 2,6-Bis-(aminomethyl)-norbornen; oder aus Isophthalsäure, 4,4'-Diamino-dicyclohexylmethan und -Caprolactam; oder aus Isophthalsäure, 3,3'-
Dimethy 1-4,4 '-diamino-dicyclohexylmefhan und Laurinlactam; oder aus Terephthalsäure und dem Isomerengemisch aus 2,2,4- und/oder 2,4,4-Trimethylhexamethylen- diamin.
Anstelle des reinen 4,4'-Diaminodicyclohexylmethans können auch Gemische der
Stellungsisomeren Diamindicyclohexalmethane eingesetzt werden, die sich zusammensetzen aus
70 bis 99 mol-% des 4,4'-Diamino-Isomeren l bis 30 mol-% des 2,4'-Diamino-Isomeren
0 bis 2 mol-% des 2,2'-Diamino-Isomeren
gegebenenfalls entsprechend höher kondensierten Diaminen, die durch Hydrierung von Diaminodiphenylmethan technischer Qualität erhalten werden. Die Isophthal- säure kann bis zu 30 % durch Terephthalsäure ersetzt sein.
Die Polyamide weisen vorzugsweise eine relative Viskosität (gemessen an einer 1 gew.-%igen Lösung in m-Kresol bei 25°C) von 2,0 bis 5,0, besonders bevorzugt von 2,5 bis 4,0 auf.
Komponente B
Die Komponente B umfasst ein oder mehrere kautschukelastische Pfropfpolymerisate ausgewählt aus der Gruppe bestehend aus Silikon-, Acrylat- und EP(D)M- Kautschuken als Pfropfgrundlage. Vorzugsweise umfasst die Komponente B ein oder mehrere Pfropfpolymerisate von
B.l 5 bis 95, vorzugsweise 20 bis 80, insbesondere 30 bis 80 Gew.-%, wenigstens eines Ninylmonomeren auf
B.2 95 bis 5, vorzugsweise 80 bis 20, insbesondere 70 bis 20 Gew.-% einer oder mehrerer Pfropfgrundlagen mit Glasübergangstemperaturen < 10°C, vorzugsweise < 0°C, besonders bevorzugt < -20°C ausgewählt aus der Gruppe bestehend aus Silikon-, Acrylat- und EP(D)M-Kautschuken.
Die Pfropfgrundlage B.2 hat im allgemeinen eine mittlere Teilchengröße (d50-Wert) von 0,05 bis 5 μm, vorzugsweise 0,10 bis 0,5 μm, besonders bevorzugt 0,20 bis 0,40 μm.
Erfindungsgemäß einsetzbare Ninylmonomere gemäß Komponente B.l sind solche aus wenigstens einem Monomeren aus der Reihe: Ninylaromaten und/oder kernsubstituierten Ninylaromaten (wie beispielsweise Styrol, α-Methylstyrol, p-Methyl- styrol, p-Chlorstyrol), Methacrylsäure-(C1-C8)-Alkylester (wie z.B. Methylmeth- acrylat, Ethylmethacrylat) (B.l.l) mit wenigstens einem Monomeren aus der Reihe: Ninylcyanide (ungesättigte Νitrile wie Acrylnitril und Methacrylnitril), (Meth)Acryl- säure-(Cι-C8)-Alkylester (wie z.B. Methylmethacrylat, n-Butylacrylat, t-Butyl- acrylat), Derivate (wie Anhydride und Imide) ungesättigter Carbonsäuren (beispielsweise Maleinsäureanhydrid und Ν-Phenyl-Maleinimid). (B.l.2).
Vorzugsweise handelt es sich bei Komponente B.l um Gemische aus
50 bis 99, vorzugsweise 60 bis 80 Gew.-Teilen der Komponente B.l.l und
1 bis 50, vorzugsweise 40 bis 20 Gew.-Teilen der Komponente B.1.2 Ci-Cg-Alkylacrylate bzw.
Figure imgf000007_0001
sind Ester der Acrylsäure bzw. Me hacrylsäure und einwertiger Alkohole mit 1 bis 8 C- Atomen. Besonders bevorzugt sind Methacrylsäuremethylester, -ethylester und -propylester. Als besonders bevorzugter Methacrylsäureester wird Methylmethacrylat genannt.
Thermoplastische (Co)polymerisate mit einer Zusammensetzung gemäß Komponente D können bei der Pfropfpolymerisation zur Herstellung der Komponente B als Nebenprodukt entstehen, besonders dann, wenn große Mengen Monomere auf kleine Mengen Kautschuk gepfropft werden.
Im Sinne der vorliegenden Erfindung wird unter Pfropfpolymerisat B) das bei der Pfropfpolymerisation entstandene Produkt aus gepfropftem Kautschuk und das bei der Pfropfpolymerisation entstehende (Co)Polymerisat verstanden. Die Mengen des bei der Pfropφolymerisation zwangsläufig entstehenden (Co)Polymerisats hängen u.a. von der Monomerzusammensetzung und Polymerisationsmethode ab.
Da sich je nach Menge und gegebenenfalls Art des separat zugesetzten (Co)Polymerisats D), dieses nicht von dem bei der Polymerisation des Pfropf- polymeren entstehenden (Co)polymerisat unterscheiden lässt, entspricht die Summe der Mengen an Komponente B) und D) gleich der Summe aus Pfropf- und
(Co)Polymeren.
Besonders bevorzugte Vinylmonomere B.l sind Styrol und Acrylnitril und gegebenenfalls Methylmethacrylat, α-Methylstyrol und Acrylnitril und gegebenenfalls Methylmethacrylat, oder Styrol, α-Methylstyrol und Acrylnitril und gegebenenfalls
Mefhmethacrylat.
Erfindungsgemäß geeignete Silikonkautschuke B.2 bestehen überwiegend aus Struktureinheiten
Figure imgf000008_0001
wobei
RU und Rl2 gleich oder verschieden sein können, und Ci-Cg-Alkyl oder Cyclo- alkyl oder Cß-C 2-Aryl und
n eine ganze Zahl bedeuten.
Bevorzugte Silikonkautschuke B.2 sind teilchenformig mit einem mittleren Teil- chendurchmesser d5Q von 0,09 bis 1 μm, vorzugsweise 0,09 bis 0,4 μm und einem
Gelgehalt von mehr als 70 Gew.-%, insbesondere 73 bis 98 Gew.-% und sind erhältlich aus
1) Dihalogenorganosilanen 2) 0 bis 10 Mol-%, bezogen auf 1), Trihalogensilanen und
3) 0 bis 3 Mol-%, bezogen auf 1), Tetrahalogensilanen und
4) 0 bis 0,5 Mol-%, bezogen auf 1), Halogentriorganosilanen,
wobei die organischen Reste in den Verbindungen 1), 2), 4)
α) C ι -C - Alkyl oder Cyclohexyl, vorzugsweise Methyl oder Ethyl,
ß) C6-Ci2- ryl, vorzugsweise Phenyl,
γ) Ci-Cß-Alkenyl, vorzugsweise Vinyl oder Allyl,
δ) Mercapto-Cj-Cö-alkyl, vorzugsweise Mercaptopropyl sind, mit der Maßgabe, dass die Summe (γ + δ) 2 bis 10 Mol-%, bezogen auf alle organischen Reste der Verbindungen 1), 2) und 4) ist, und das Molverhältnis γ:δ = 3:1 bis 1:3, vorzugsweise 2:1 bis 1:2 ist.
Bevorzugte Silikonkautschuke B.2 enthalten als organische Reste mindestens
80 Mol-% Methylgruppen. Endgruppe ist im allgemeinen eine Diorganyl-hydroxyl- siloxy-Einheit, vorzugsweise eine Dimethylhydroxysiloxy-Einheit.
Für die Herstellung der Silikonkautschuke B.2 bevorzugte Silane 1) bis 4) enthalten als Halogensubstituenten Chlor.
"Erhältlich" bedeutet, dass der Silikonkautschuk B.2 nicht unbedingt aus den Halogenverbindungen 1) bis 4) hergestellt werden muss. Es sollen auch Silikonkautschuke B.2 gleicher Struktur, die aus Silanen mit anderen hydrolisierbaren Gruppen, wie z.B. Ci^Cg-Alkoxygruppen, oder aus cyclischen Siloxanoligomeren hergestellt worden sind, umfasst werden.
Als eine besonders bevorzugte Komponente B.2 werden Silikonpfropfkautschuke genannt. Diese können beispielsweise nach einem dreistufigen Verfahren hergestellt werden.
In der ersten Stufe werden Monomere wie Dimethyldichlorsilan, Vinylmethyldi- chlorsilan oder Dichlorsilane mit anderen Substituenten zu den durch Destillation einfach zu reinigenden cyclischen Oligomeren (Octamethylcyclotetrasiloxan oder Tetravinyltetramethylcyclotetrasiloxan) umgesetzt (vgl. Chemie in unserer Zeit 4
(1987), 121-127).
In der zweiten Stufe werden aus diesen cyclischen Oligomeren unter Zugabe von Mercaptopropylmethyldimethoxysilan durch ringöffnende kationische Polymerisa- tion die vernetzten Silikonkautschuke erhalten. In der dritten Stufe werden die erhaltenen Silikonkautschuke, die über pfropfaktive Vinyl- und Mercaptogruppen verfügen, mit Vinylmonomeren (oder Gemischen) radikalisch pfropφolymerisiert.
Vorzugsweise werden in der zweiten Stufe Mischungen aus cyclischen Siloxanoligomeren wie Octamethylcyclotetrasiloxan und Tetramethyltetravinylcyclotetrasiloxan in Emulsion ringöffnend kationisch polymerisiert. Die Silikonkautschuke fallen teilchenformig als Emulsion an.
Besonders bevorzugt arbeitet man gemäß GB-A 1 024 014, mit Alkylbenzolsulfonsäuren, die sowohl katalytisch als auch als Emulgator wirksam sind. Nach der Polymerisation wird die Säure neutralisiert. Anstelle von Alkylbenzolsulfonsäuren können auch n-Alkylsulfonsäuren eingesetzt werden. Es ist auch möglich, neben der Sulfonsäure auch zusätzlich Co-Emulgatoren einzusetzen.
Co-Emulgatoren können nichtionisch oder anionisch sein. Als anionische Co-Emulgatoren kommen insbesondere Salze der n-Alkyl- oder Alkylbenzolsulfonsäuren in Frage. Nichtionische Co-Emulgatoren sind Polyoxyefhylenderivate von Fettalkoholen und Fettsäuren. Beispiele sind POE (3)-Laurylalkohol, POE (20)-Oleylalkohol, POE (7)-Nonylalkohol oder POE (Ιθ)-Stearat. (Die Schreibweise POE (Zahl) alkohol bedeutet, dass an ein Molekül ....alkohol so viele Einheiten Efhylenoxid addiert worden sind, wie der Zahl entsprechen. POE steht für Polyethylenoxid. Die Zahl ist ein Mittelwert.)
Die vernetzungs- und pfropfaktiven Gruppen (Vinyl- und Mercaptogruppen, vgl. organische Reste γ und δ) können in den Silikonkautschuk durch Verwendung entsprechender Siloxanoligomerer eingefügt werden. Solche sind z.B. Tetramethyltetra- vinylcyclotetrasiloxan, oder γ-Mercaptopropylmethyldimethoxysiloxan oder dessen Hydrolysat. Sie werden dem Hauptoligomer, z.B. Octamethylcyclotetrasiloxan, in der zweiten Stufe in den gewünschten Mengen beigefügt.
Analog kann auch der Einbau längerkettiger Alkylreste, wie z.B. Ethyl, Propyl oder dgl. bzw. der Einbau von Phenylgruppen erreicht werden.
Eine ausreichende Vernetzung des Silikonkautschuks kann schon erreicht werden, wenn die Reste γ und δ bei der Emulsionspolymerisation miteinander reagieren, so dass die Zugabe eines externen Vernetzers entbehrlich sein kann. Jedoch kann ein vernetzendes Silan bei der zweiten Reaktionsstufe zugefügt werden, um den Vernetzungsgrad des Silikonkautschuks zu erhöhen.
Verzweigungen und Vernetzungen können durch Zugabe von z.B. Tetraethoxysilan oder eines Silans der Formel
y-SiX3, wobei
X eine hydrolisierbare Gruppe, insbesondere ein Alkoxy- oder Halogenrest, und
y ein organischer Rest ist,
erzielt werden.
Bevorzugte Silane y-SiX3 sind Methyltrimethoxysilan und Phenyltrimethoxysilan.
Der Gelgehalt wird bei 25°C in Aceton bestimmt (vgl. DE-AS 2 521 288, SP. 6, Z. 17 bis 37). Er beträgt bei den erfindungsgemäßen Silikonkautschuken mindestens 70 Gew.-%, vorzugsweise 73 bis 98 Gew.-%. Gepfropfte Silikonkautschuke B können durch radikalische Pfropφolymerisation, beispielsweise analog DE-PS 2 421 288, hergestellt werden.
Zur Herstellung des gepfropften Silikonkautschuks in der dritten Stufe können die Pfropfrnonomeren in Anwesenheit des Silikonkautschuks radikalisch pfropφoly- merisiert werden, insbesondere bei 40 bis 90°C. Die Pfropφolymerisation kann in Suspension, Dispersion oder Emulsion durchgeführt werden. Bevorzugt ist die kontinuierliche oder diskontinuierliche Emulsionspolymerisation. Diese Pfropφolymerisation wird mit Radikalinitiatoren durchgeführt (z.B. Peroxiden, Azover- bindungen, Hydroperoxiden, Persulfaten, Perphosphaten) und gegebenenfalls unter
Einsatz von anionischen Emulgatoren, z.B. Carboxoniumsalzen, Sulfonsäuresalzen oder organischen Sulfaten. Dabei bilden sich Pfropφolymerisate mit hohen Pfropfausbeuten, d.h. ein großer Anteil des Polymerisates der Pfropfmonomeren wird an den Silikonkautschuk chemisch gebunden. Der Silikonkautschuk besitzt pfropfaktive Reste, so dass besondere Maßnahmen für starke Pfropfung überflüssig sind.
Die gepfropften Silikonkautschuke können durch Pfropφolymerisation von 5 bis 95 Gew.-Teilen, vorzugsweise 20 bis 80 Gew.-Teilen eines Vinylmonomeren oder eines Vinylmonomerengemisches auf 5 bis 95, vorzugsweise 20 bis 80 Gew.-Teile Silikon- kautschuk hergestellt werden.
Ein besonders bevorzugtes Vinylmonomeres ist Styrol oder Methylmethacrylat. Geeignete Vinylmonomermischungen bestehen aus 50 bis 95 Gew.-Teilen Styrol, α-Methylstyrol (oder anderen Alkyl- oder Halogen-kernsubstituierten Styrolen) oder Methylmethacrylat einerseits und aus 5 bis 50 Gew.-Teilen Acrylnitril, Methacryl- nitril, Acrylsäure-Ci-Cig-alkylester, Memacrylsäure-Ci-Ciß-alkylester, Maleinsäureanhydrid oder substituierten Maleinimiden andererseits. Als weitere Vinyl- monomere können zusätzlich in kleineren Mengen Acrylsäureester von primären oder sekundären aliphatischen C2-Cιo~Al oholen, vorzugsweise n-Butylacrylat oder Acryl- oder Methylacrylsäureester des tert.-Butanols, vorzugsweise t-Butylacrylat, anwesend sein. Ein besonders bevorzugtes Monomerengemisch ist 30 bis 40 Gew.-Teile α-Methylstyrol, 52 bis 62 Gew.-Teile Methylmethacrylat und 4 bis 14 Gew.-Teile Acrylnitril.
Die so gepfropften Silikonkautschuke können in bekannter Weise aufgearbeitet werden, z.B. durch Koagulation der Latices mit Elektrolyten (Salzen, Säuren oder
Gemischen davon) und anschließende Reinigung und Trocknung.
Bei der Herstellung der gepfropften Silikonkautschuke bilden sich im allgemeinen neben dem eigentlichen Pfropfcopolymerisat in bestimmtem Ausmaß auch freie Polymerisate bzw. Copolymerisate der die Pfropfhülle bildenden Pfropfmonomeren.
Hier ist gepfropfter Silikonkautschuk das durch Polymerisation der Pfropfinono- meren in Gegenwart des Silikonkautschuks erhaltene Produkt, genau genommen also im allgemeinen ein Gemisch aus Pfropfcopolymerisat und freiem (Co-)Polymerisat der Pfropfmonomeren bezeichnet.
Pfropφolymerisate auf Acrylatbasis sind vorzugsweise aus
(a) 20 bis 90 Gew.-%, bezogen auf das Pfropφolymerisat, Acrylatkautschuk mit einer Glasübergangstemperatur unter -20°C als Pfropfgrundlage und
(b) 10 bis 80 Gew.-%, bezogen auf das Pfropφolymerisat mindestens eines poly- merisierbaren, ethylenisch ungesättigten Monomeren (vgl. B.l) als Pfropf- monomere.
Die Acrylatkautschuke (a) sind vorzugsweise Polymerisate aus Acrylsäurealkyl- estern, gegebenenfalls mit bis zu 40 Gew.-%, bezogen auf (a), anderer polymeri- sierbarer, ethylenisch ungesättigter Monomerer. Zu den bevorzugten polymerisier- baren Acrylsäureestern gehören Ci-Cg-Alkylester, beispielsweise Methyl-, Ethyl-, Butyl-, n-Octyl- und 2-Ethylhexylester; Halogenalkylester, vorzugsweise Halogen- Cj-Cg-alkylester, wie Chlorethylacrylat, sowie Mischungen dieser Monomeren. Zur Vernetzung können Monomere mit mehr als einer polymerisierbaren Doppelbindung copolymerisiert werden. Bevorzugte Beispiele für vernetzende Monomere sind Ester ungesättigter Monocarbonsäuren mit 3 bis 8 C- Atomen und ungesättigter einwertiger Alkohole mit 3 bis 12 C-Atomen, oder gesättigter Polyole mit 2 bis 4 OH- Gruppen und 2 bis 20 C-Atomen, wie z.B. Ethylenglykoldimethacrylat, Allylmefh- acrylat; mehrfach ungesättigte heterocyclische Verbindungen, wie z.B. Trivinyl- und Triallylcyanurat; polyfunktionelle Vinylverbindungen, wie Di- und Trivinylbenzole; aber auch Triallylphosphat und Diallylphthalat.
Bevorzugte vernetzende Monomere sind Allylmethacrylat, Ethylenglykoldimethacrylat, Diallylphthalat und heterocyclische Verbindungen, die mindestens 3 ethylenisch ungesättigte Gruppen aufweisen.
Besonders bevorzugte vernetzende Monomere sind die cyclischen Monomere Trial- lylcyanurat, Triallylisocyanurat, Triacryloylhexahydro-s-triazin, Triallylbenzole.
Die Menge der vernetzten Monomere beträgt vorzugsweise 0,02 bis 5, insbesondere 0,05 bis 2 Gew.-%, bezogen auf die Kautschukgrundlage.
Bei cyclischen vernetzenden Monomeren mit mindestens 3 ethylenisch ungesättigten
Gruppen ist es vorteilhaft, die Menge auf unter 1 Gew.-% der Kautschukgrundlage zu beschränken.
Bevorzugte "andere" polymerisierbare, ethylenisch ungesättigte Monomere, die neben den Acrylsäureestern gegebenenfalls zur Herstellung der Pfropfgrundlage B.2 dienen können, sind z. B. Acrylnitril, Styrol, α-Methylstyrol, Acrylamide, Vinyl-Ci- C6-alkylether, Methylmethacrylat, Butadien. Bevorzugte Acrylatkautschuke als Pfropfgrandlage B.2 sind Emulsionspolymerisate, die einen Gelgehalt von mindestens 60 Gew.-% aufweisen. Die Polymerisate auf Acrylatbasis sind allgemein bekannt, lassen sich nach bekannten Verfahren herstellen (z.B. EP-A 244 857) bzw. sind käufliche Produkte.
Der Gelgehalt der Pfropfgrundlage wird bei 25 °C in einem geeigneten Lösungsmittel bestimmt (M. Hoffmann, H. Krömer, R. Kuhn, Polymeranalytik I und II, Georg
Thieme-Verlag, Stuttgart 1977).
Die mittlere Teilchengröße d 0 ist der Durchmesser, oberhalb und unterhalb dessen jeweils 50 Gew.-% der Teilchen liegen. Er kann mittels Ultrazentrifugenmessung (W. Scholtan, H. Lange, Kolloid, Z. und Z. Polymere 250 (1972), 782-796) bestimmt werden.
Als EP(D)M-Pfropfgrundlage wird mindestens ein Ethylen und Propylen enthaltendes Copolymerisat oder Terpolymerisat mit einer nur geringen Anzahl von Doppelbindungen eingesetzt (vgl. EP-A 163 411 , EP-A 244 857).
Als EP(D)M-Kautschuke werden solche verwendet, die eine Glastemperatur im Bereich von -60 bis -40°C aufweisen. Die Kautschuke haben nur eine geringe Anzahl von Doppelbindungen, d.h. weniger als 20 Doppelbindungen pro 1000 C-Atome, ins- besondere 3 bis 10 Doppelbindungen pro 1000 C-Atome. Beispiele für solche Kautschuke sind aus Ethylen-Propylen bestehende Copolymerisate, sowie Ethylen- Propylen-Terpolymerisate. Letztere werden durch Polymerisation von mindestens 30 Gew.-% Ethylen, mindestens 30 Gew.-% Propylen und 0,5 bis 15 Gew.-% einer nichtkonjugierten diolefinischen Komponente hergestellt. Als Terkomponente werden in der Regel Diolefine mit mindestens 5 Kohlenstoffatomen, wie 5-Ethy- lidennorbornen, Dicyclopentadien, 2,2,1-Dicyclopentadien und 1,4-Hexadien angewendet. Ferner sind geeignet Polyalkylenamere wie Polypentenamer, Polyoctenamer, Polydodecanamer oder Gemische dieser Stoffe. Ferner kommen auch teilhydrierte Polybutadienkautschuke in Betracht, bei denen mindestens 70 % Restdoppel- bindungen hydriert sind. Von den vorstehend genannten Kautschuken werden insbesondere die Ethylen-Propylen-Copolymerisate sowie die Ethylen-Propylen-Ter- polymerisate (EPDM-Kautschuke) angewendet. In der Regel haben EPDM- Kautschuke eine Mooney- Viskosität ML1.4 (100°C) von 25 bis 120. Sie sind im Handel erhältlich.
Die Herstellung des Pfropφolymerisats auf EP(D)M-Basis kann nach verschiedenen
Methoden erfolgen. Vorzugsweise wird eine Lösung des EP(D)M-Elastomeren (Kautschuks) in dem Monomerengemisch und (gegebenenfalls) indifferenten Lösungsmitteln hergestellt und durch Radikalstarter, wie Azoverbindungen oder Peroxide bei höheren Temperaturen die Pfropfreaktion durchgeführt. Beispielhaft seien die Verfahren der DE-AS 23 02 014 und DE-A 25 33 991 genannt. Es ist auch möglich - wie in der US-A 4 202 948 beschrieben - in Suspension zu arbeiten.
Komponente C
Als Verträglichkeitsvermittler werden erfindungsgemäß vorzugsweise thermoplastische Polymeren mit polaren Gruppen eingesetzt.
Erfindungsgemäß kommen vorzugsweise Polymere zum Einsatz, die
C.l ein vinylaromatisches Monomer,
C.2 wenigstens ein Monomer ausgewählt aus der Gruppe C2 bis C12 Alkyl- methacrylate, C2 bis Cι^-Alkylacrylate, Methacrylnitrile und Acrylnitrile und
C.3 α-, ß-ungesättigte Komponenten enthaltend Dicarbonsäureanhydride enthalten.
Als vinylaromatische Monomere C.l ist Styrol besonders bevorzugt.
Für die Komponente C.2 ist Acrylnitril besonders bevorzugt. Für α-, ß-ungesättigte Komponenten enthaltend Dicarbonsäureanhydride C.3 ist besonders bevorzugt Maleinsäureanhydrid.
Vorzugsweise werden als Komponente C.l, C.2 und C.3 Teφolymere der genannten
Monomeren eingesetzt. Demgemäss kommen vorzugsweise Terpolymere von Styrol, Acrylnitril und Maleinsäureanhydrid zum Einsatz. Diese Teφolymere tragen insbesondere zur Verbesserung der mechanischen Eigenschaften, wie Zugfestigkeit und Witterungsstabilität bei. Die Menge an Maleinsäureanhydrid im dem Teφolymer kann in weiten Grenzen schwanken. Vorzugsweise beträgt die Menge 0,2-5 mol-%.
Besonders bevorzugt sind Mengen zwischen 0,5 und 1,5 mol-% in der Komponente C.l enthalten. In diesem Bereich werden besonders gute mechanische Eigenschaften bezüglich Zugfestigkeit und Witterungsstabilität erzielt.
Das Teφolymer kann in an sich bekannter Weise hergestellt werden. Eine geeignete
Methode ist das Lösen Monomerkomponenten des Teφolymers, z.B. des Styrols, Maleinsäureanhydrids oder Acrylnitrils in einem geeigneten Lösemittel, z.B. Methyl- ethylketon (MEK). Zu dieser Lösung werden ein oder gegebenenfalls mehrere chemische Initiatoren hinzugesetzt. Geeignete Initiatoren sind z.B. Peroxide. Sodann wird das Gemisch für mehrere Stunden bei erhöhter Temperatur polymerisiert.
Anschließend werden das Lösemittel und die nicht umgesetzten Monomere in an sich bekannter Weise entfernt.
Das Verhältnis zwischen der Komponente C.l (vinylaromatisches Monomer) und der Komponente C.2, z.B. dem Acrylnitrilmonomer in dem Teφolymer liegt vorzugsweise zwischen 80:20 und 50:50. Um die Mischbarkeit des Teφolymers mit dem Pfropfcopolymer B zu verbessern wird vorzugsweise eine Menge an vinylaroma- tischen Monomer C.l ausgewählt, die der Menge des Vinylmonomeren B.l in dem Pfropfcopolymer B entspricht. Die Menge der Komponente C in den erfindungsgemäßen Polymerblends liegt zwischen 0,5 und 50 Gew.-%, vorzugsweise zwischen 1 und 30 Gew.-%, besonders bevorzugt zwischen 2 und 10 Gew.-%. Höchst bevorzugt sind Mengen zwischen 5 und 7 Gew.-%.
Solche Polymere sind beispielsweise in der EP-A-785 234 und der EP-A-202 214 beschrieben. Erfindungsgemäß bevorzugt sind insbesondere die in der EP-A-202 214 genannten Polymere.
Komponente D
Die Komponente D umfasst ein oder mehrere thermoplastische Vinyl (co)poly- merisate.
Geeignet sind als Vinyl(co)Polymerisate D Polymerisate von mindestens einem Monomeren aus der Gruppe der Vinylaromaten, Vinylcyanide (ungesättigte Nitrile), (Meth)Acrylsäure-(C1-C8)-Alkylester, ungesättigte Carbonsäuren sowie Derivate (wie Anhydride und Imide) ungesättigter Carbonsäuren. Insbesondere geeignet sind (Co)Polymerisate aus
D.l 50 bis 99, vorzugsweise 60 bis 80 Gew.-Teilen Vinylaromaten und/oder kernsubstituierten Vinylaromaten wie beispielsweise Styrol, α-Methylstyrol, p- Methylstyrol, p-Chlorstyrol) und/oder Methacrylsäure-(C1-C8)-Alkylester wie z.B. Methylmethacrylat, Ethyl ethacrylat), und
D.2 1 bis 50, vorzugsweise 20 bis 40 Gew.-Teilen Vinylcyanide (ungesättigte Nitrile) wie Acrylnitril und Methacrylnitril und/oder (Meth)Acrylsäure-(Cι- C8)-Alkylester (wie z.B. Methylmethacrylat, n-Butylacrylat, t-Butylacrylat) und/oder ungesättigte Carbonsäuren (wie Maleinsäure) und/oder Derivate (wie Anhydride und Imide) ungesättigter Carbonsäuren (beispielsweise
Maleinsäureanhydrid und N-Phenyl-Maleinimid). Die (Co)Polymerisate D sind harzartig, thermoplastisch und kautschukfrei.
Besonders bevorzugt ist das Copolymerisat aus D.l Styrol und D.2 Acrylnitril.
Die (Co)Polymerisate gemäß D sind bekannt und lassen sich durch radikalische Polymerisation, insbesondere durch Emulsions-, Suspensions-, Lösungs- oder Massepolymerisation herstellen. Die (Co)Polymerisate besitzen vorzugsweise Molekulargewichte Mw (Gewichtsmittel, ermittelt durch Lichtstreuung oder Sedimentation) zwischen 15 000 und 200 000.
(Co)Polymerisate gemäß Komponente D entstehen häufig bei der Pfropφolymerisation der Komponente B als Nebenprodukte, besonders dann, wenn große Mengen Monomere B.l auf kleine Mengen Kautschuk B.2 gepfropft werden.
Komponente E
Die erfindungsgemäßen Polymerblends können übliche Additive, wie Flammschutzmittel, Anti-Dripping-Mittel, feinstteilige anorganische Verbindungen, Gleit- und Entformungsmittel, Nukleierungsmittel, Antistatika, Stabilisatoren, Füll- und
Verstärkungsstoffe sowie Farbstoffe und Pigmente enthalten.
Die erfindungsgemäßen Polymerblends können im allgemeinen 0.01 bis 20 Gew.-%, bezogen auf die Gesamt-Formmasse, Flammschutzmittel enthalten. Beispielhaft wer- den als Flammschutzmittel organische Halogenverbindungen wie Decabrombis- phenylether, Tetrabrombisphenol, anorganische Halogenverbindungen wie Ammo- niumbromid, Stickstoffverbindungen, wie Melamin, Melaminformaldehyd-Harze, anorganische Hydroxidverbindungen wie Mg-Alhydroxid, anorganische Verbindungen wie Aluminiumoxide, Titandioxide, Antimonoxide, Barium-metaborat, Hydroxoantimonat, Zirkonoxid, Zirkonhydroxid, Molybdenoxid, Ammoniummolyb- dat, Zinnborat, Ammoniumborat, Bariummetaborat und Zinnoxid sowie Siloxan- verbindungen genannt.
Als Flammschutzverbindungen können ferner Phosphorverbindungen, wie sie in der EP-A-363 608, EP-A-345 522 oder EP-A-640 655 beschrieben sind, eingesetzt werden.
Die einsetzbaren anorganischen Verbindungen umfassen Verbindungen eines oder mehrerer Metalle der 1. bis 5. Hauptgruppe und der 1. bis 8. Nebengruppe des Periodensystems, bevorzugt der 2. bis 5. Hauptgruppe und der 4. bis 8. Nebengruppe, besonders bevorzugt der 3. bis 5. Hauptgruppe und der 4. bis 8. Nebengruppe mit den Elementen Sauerstoff, Schwefel, Bor, Phosphor, Kohlenstoff, Stickstoff, Wasserstoff und/oder Silicium.
Beispiele für solche Verbindungen sind Oxide, Hydroxide, wasserhaltige Oxide,
Sulfate, Sulfite, Sulfide, Carbonate, Carbide, Nitrate, Nitrite, Nitride, Borate, Silikate, Phosphate, Hydride, Phosphite oder Phosphonate. Hierzu zählen beispielsweise TiN, TiO2, SnO2, WC, ZnO, Al2O3, AIO(OH), ZrO2, Sb2O3, SiO2, Eisenoxide, NaSO , BaSO , Vanadiumoxide, Zinkborat, Silicate wie AI-Silikate, Mg-Silikate, ein, zwei, dreidimensionale Silikate, Mischungen und dotierte
Verbindungen sind ebenfalls verwendbar. Des weiteren können diese nanoskaligen Partikel mit organischen Molekülen oberflächenmodifiziert sein, um eine bessere Verträglichkeit mit den Polymeren zu erzielen. Auf diese Weise lassen sich hydrophobe oder hydrophile Oberflächen erzeugen.
Die durchschnittlichen Teilchendurchmesser sind kleiner gleich 200 n , bevorzugt kleiner gleich 150 nm, insbesondere 1 bis lOOnm.
Teilchengröße und Teilchendurchmesser bedeutet immer den mittleren Teilchen- durchmesser d50, ermittelt durch Ultrazentrifugenmessungen nach W.Scholtan et al.
Kolloid-Z. und Z. Polymere 250 (1972), S.782 bis 796. Die anorganischen Verbindungen können als Pulver, Pasten, Sole, Dispersionen oder Suspensionen vorliegen, Durch Ausfällen können aus Dispersionen, Solen oder Suspensionen Pulver erhalten werden.
Die Pulver können nach üblichen Verfahren in die thermoplastischen Kunststoffe eingearbeitet werden, beispielsweise durch direktes Kneten oder Extrudieren der Bestandteile der Formmasse und den feinstteiligen anorganischen Pulvern. Bevorzugte Verfahren stellen die Herstellung eines Masterbatch, z.B. in Flammschutzadditiven, anderen Additiven, Monomeren, Lösungsmitteln, in Komponente A oder die Co- fällung von Dispersionen der Komponenten B oder C mit Dispersionen, Suspensionen, Pasten oder Solen der feinstteiligen anorganischen Materialien dar.
Als Füll- und Verstärkungsmaterialien können z.B. Glasfasern, gegebenenfalls ge- schnitten oder gemahlen, Glasperlen, Glaskugeln, blättchenförmiges Verstärkungsmaterial, wie Kaolin, Talk, Glimmer, Silicate, Quarz, Talkum, Titandioxid, Woll- astonit, Mika, Kohlefasern oder deren Mischung enthalten. Vorzugsweise werden als Verstärkungsmaterial geschnittene oder gemahlene Glasfasern eingesetzt. Bevorzugte Füllstoffe, die auch verstärkend wirken können, sind Glaskugeln, Glimmer, Silikate, Quarz, Talkum, Titandioxid, Wollastonit.
Die Polymerblends der vorliegenden Erfindung können zur Herstellung von Form- köφern jeder Art verwendet werden. Insbesondere können Formköφer durch Spritz- guss hergestellt werden. Beispiele für herstellbare Formköφer sind: Gehäuseteile jeder Art, z.B. für Haushaltsgeräte, wie Saftpressen, Kaffeemaschinen, Mixer, für
Büromaschinen, wie Computer, Drucker, Monitore oder Abdeckplatten für den Bausektor und Teile für den Kfz-Sektor.
Besonders geeignet sind die Polymerblends zur Herstellung von Formteilen an die besonders hohe Ansprüche hinsichtlich der Witterungsbeständigkeit, Zugfestigkeit und Spannungsrissbeständigkeit gestellt werden. Die Verwendung der Polymerblends zur Herstellung von Formteilen sowie die daraus erhältlichen Formteile sind ebenfalls Gegenstand der vorliegenden Erfindung.
Im folgenden wird die Erfindung anliand einiger Beispiele näher erläutert:
Beispiele
1. Eingesetzte Komponeten
A Polyamid (DURETHAN B30 der Firma Bayer AG, Leverkusen,
Deutschland) Bl Pfropφolymerisat von 40 Gew.-Teilen eines Copolymerisats aus
Styrol und Acrylnitril im Verhältnis von 73:27 auf 60 Gew.-Teile teilchenformig vernetzten Polybutadienkautschuk (mittlerer Teil- chendurchmesser d50=0,28 μm), hergestellt durch Emulsionspolymerisation B2 Acrylnitril-Ethylen-Styrol-Copolymerisat (AES) mit einem EPDM
Anteil von ca. 70 Gew.-%, z.B. Blendex WX270 der Fa. General Electric B3 Acrylat-Styrol- Acrylnitril Copolymer (ASA) mit einem Kautschukanteil von ca. 60 Gew.-%, z.B. Blendex WX160 der Fa. General Electric B4 Silikonacrylatkautscb.uk mit Kern-Schale-Struktur aus einem
Acrylat-Kern und einer Silikon-Schale mit einem G'-Modulniveau bei RT von ca. 110 MPA:
(1) Metablen S2001 (Metablen Company B.N., Nlissingen, Niederlande).
(2) Metablen SKR200 (Metablen Company B.N., VTissingen, Niederlande). C Nerträglichkeitsvermittler: Teφolymer von Styrol und Acrylnitril-
(2,1:1 Gewichtsverhältnis) enthaltend 1 Mol % Maleninsäure- anhydrid
D Styrol/Acrylnitril-Copolymerisat mit einem Styrol/Acrylnitril-
Nerhältnis von 72:28 und einer Grenzviskosität von 0,75 dl/g (Messung in Dimethylformamid bei 20°C) E Mineralische Füllstoffe gem. US-A 5 714 537 (1 ) Tremin 939-300 EST (Talkum)
(2) Burgess 2211 (AI-Silikat)
(3) Wicroll 40PA (Wollastonit) (4) Finntalc M30SL (Finntalc) F Additive
2. Herstellung der Polymerblends
Die erfindungsgemäßen Polymerblends werden hergestellt, indem man die jeweiligen Bestandteile in bekannter Weise vermischt und bei Temperaturen von 200 bis 300°C in üblichen Aggregaten, wie Innenknetern, Extrudern und Doppelwellenschnecken schmelzcompoundiert oder schmelzextrudiert, wobei die fluorierten Polyolefine vorzugsweise in Form der bereits erwähnten koagulierten Mischung eingesetzt werden.
Die Vermischung der einzelnen Bestandteile kann in bekannter Weise sowohl sukzessiv als auch simultan erfolgen, und zwar sowohl bei etwa 20°C (Raumtemperatur) als auch bei erhöhter Temperatur.
3. Witterungsstabile Kautschuke (ASA, AES, Silikonacrylate statt ABS)
a) mit ASA +AES
Figure imgf000024_0001
• TA -
Figure imgf000025_0001
b) mit Silikonacrylat
Figure imgf000025_0002
Die Bestimmung der Wärmeformbeständigkeit nach Vicat A und B erfolgt gemäß DIΝ 53 460 (ISO 306).
HDT A wurde bestimmt bei 1,8 MPa gemäß ISO75 Die Schmelzvolumenrate wurde bestimmt nach ISO 527 Die Bewitterung wurde bestimmt gemäß SAE J 1885:
Gerät Uerit: Xe WO ll Sprühzyklus: 102=18 Lichtzeit: 1000 h Bestrahlungsenergie: 1260 KJ/m2 Bestrahlung: 144.9 MJ/m2
Das E-Modul wurde bestimmt nach DIN 53 457/ ISO 527.
Die Reißdehnung wurde bestimmt nach ISO 527.

Claims

Patentansprttche
1. Polymerblends enthaltend
A) Polyamid,
B) mindestens ein kautschukelastisches Pfropφolymerisat ausgewählt aus der Gruppe bestehend aus Silikon-, EP(D)M- und Acrylatkautschuk als Pfropfgrundlage,
C) mindestens einen Nerträglichkeitsvermittler enthaltend mindestens ein thermoplastisches Polymer mit polaren Gruppen und gegebenenfalls
D) mindestens ein Ninyl(co)polymerisat.
2. Witterungsstabile Polymerblends nach Anspruch 1, enthaltend 10 - 98 Gew.-Teile Polyamid A,
0,5 - 80 Gew.-Teile der Komponenten B, 0,5 - 50 Gew.-Teile der Komponente C und gegebenenfalls 0,5 - 80 Gew.-Teile Vinyl(co)polymerisat D.
3. Witterungsstabile Polymerblends nach Anspruch 1 , enthaltend 15 - 70 Gew.-Teile Polyamid A,
10 - 70 Gew.-Teile eines Gemisches der Komponenten B und gegebenenfalls D und
1 - 30 Gew.-Teile der Komponente C.
4. Polymerblends nach Ansprach 1, enthaltend 20 - 60 Gew.-Teile Polyamid A,
20 - 65 Gew.-Teile eines Gemisches der Komponenten B und gegebenenfalls D und 2 - 10 Gew.-Teile der Komponente C.
5. Polymerblends gemäß Ansprach 1 bis 4, wobei Komponente B) ein oder mehrere Pfropφolymerisate von
B.l 5 bis 95 Gew.-% wenigstens eines Vinylmonomeren auf
B.2 95 bis 5 Gew.-% einer oder mehrerer Pfropfgrundlagen mit Glasübergangstemperaturen <10°C ausgewählt aus der Gruppe bestehend aus Silikon-, Acrylat- und EP(D)M-Kautschuken.
6. Polymerblends gemäß Ansprach 5, wobei Vinylmonomer B.l ausgewählt ist aus:
B.l.l 50 bis 99 Gew.-Teilen Vinylaromaten und/oder kernsubstituierten Vinylaromaten und/oder Methacrylsäure-(Cι-Cg)-Alkylester und
B.1.2 1 bis 50 Gew.-Teilen Vinylcyanide, (Mefh)Acrylsäure-(Cι-Cg)-Alkyl- ester und/oder Derivate ungesättigter Carbonsäuren.
7. Polymerblends gemäß Anspruch 6, wobei Monomere B)
B.l.l ausgewählt sind aus mindestens einem der Monomere Styrol, α-Methylstyrol und Methylmethacrylat und
B.l.2 aus mindestens einem der Monomere Acrylnitril, Maleinsäureanhydrid und Methylmethacrylat.
8. Polymerblends gemäß Anspruch 1 bis 4, wobei Komponente D Vinyl(co)polymerisate von mindestens einem Monomer aus der Gruppe der Vinylaromaten, Vinylcyaniden, (Meth)Acrylsäure-(Cι^Cg)-alkylester, unge- sättigte Carbonsäuren sowie Derivate ungesättigter Carbonsäuren ist.
9. Polymerblends nach Ansprach 1 bis 4, dadurch gekennzeichnet, dass Komponente C vinylaromatische Monomere (C.l), wenigstens ein Monomer aus der Gruppe C2-C12 Alkyl(meth)acrylate, Methacrylnitrile und Acrylnitrile (O2) und α,ß-ungesättigte Komponenten enthaltend Dicarbonsäureanhydride.
10. Polymerblends gemäß einem der vorhergehenden Ansprüche, enthaltend wenigstens ein Additiv ausgewählt aus der Gruppe der Gleit- und Ent- formungsmittel, Nukleiermittel, Antistatika, Stabilisatoren, Füll- und Ver- Stärkungsstoffe, Anti-Dipping-Mittel, feinstteilige anorganische Verbindungen, Farbstoffe und Pigmente.
11. Polymerblends gemäß einem der vorhergehenden Ansprüche enthaltend ein Flammschutzmittel.
12. Verwendung der Polymerblends nach einem der Ansprüche 1 bis 11 zur Herstellung von Formköφern.
13. Formköφer, dadurch gekennzeichnet, dass sie unter Verwendung von Poly- merblends nach einem der Ansprüche 1 bis 11 hergestellt werden.
14. Gehäuseteile, Abdeckplatten und Teile für den Kfz-Sektor, erhältlich aus Polymerblends gemäß Anspruch 1 bis 11.
PCT/EP2001/005141 2000-05-19 2001-05-07 Witterungsstabile polymerblends WO2001090247A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA002409013A CA2409013A1 (en) 2000-05-19 2001-05-07 Weather-resistant polymer blends
EP01931688A EP1287074A1 (de) 2000-05-19 2001-05-07 Witterungsstabile polymerblends
MXPA02011394A MXPA02011394A (es) 2000-05-19 2001-05-07 Mezclas de polimeros estables a la intemperie.
AU2001258394A AU2001258394A1 (en) 2000-05-19 2001-05-07 Weather-resistant polymer blends
BR0110853-0A BR0110853A (pt) 2000-05-19 2001-05-07 Misturas de polìmeros estáveis ao tempo
JP2001587052A JP2003534433A (ja) 2000-05-19 2001-05-07 耐候性ポリマーブレンド、その使用およびそれから得られる成形品

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE2000124935 DE10024935A1 (de) 2000-05-19 2000-05-19 Witterungsstabile Polymerblends
DE2000124933 DE10024933A1 (de) 2000-05-19 2000-05-19 Polymerblends enthaltend Polyamid und über Masse-Polymerisationsverfahren hergestellte kautschukmodifizierte Polymerisate
DE10024933.7 2000-05-19
DE10024935.3 2000-05-19
DE10109225.3 2001-02-26
DE2001109225 DE10109225A1 (de) 2001-02-26 2001-02-26 Schlagzähmodifizierte Polymer-Zusammensetzungen

Publications (1)

Publication Number Publication Date
WO2001090247A1 true WO2001090247A1 (de) 2001-11-29

Family

ID=27213870

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/EP2001/005137 WO2001090241A1 (de) 2000-05-19 2001-05-07 Schlagzähmodifizierte polymer-zusammensetzungen
PCT/EP2001/005140 WO2001090246A1 (de) 2000-05-19 2001-05-07 Polymerblends enthaltend polyamid und über masse-polymerisationsverfahren hergestellte kautschukmodifizierte polymerisate
PCT/EP2001/005141 WO2001090247A1 (de) 2000-05-19 2001-05-07 Witterungsstabile polymerblends

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/EP2001/005137 WO2001090241A1 (de) 2000-05-19 2001-05-07 Schlagzähmodifizierte polymer-zusammensetzungen
PCT/EP2001/005140 WO2001090246A1 (de) 2000-05-19 2001-05-07 Polymerblends enthaltend polyamid und über masse-polymerisationsverfahren hergestellte kautschukmodifizierte polymerisate

Country Status (12)

Country Link
US (3) US20030181582A1 (de)
EP (3) EP1287074A1 (de)
JP (3) JP2003534429A (de)
KR (3) KR20030001517A (de)
CN (3) CN1244636C (de)
AR (3) AR033370A1 (de)
AU (3) AU2001260282A1 (de)
BR (3) BR0110873A (de)
CA (3) CA2409011A1 (de)
MX (3) MXPA02011394A (de)
TW (1) TWI281484B (de)
WO (3) WO2001090241A1 (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6925513B1 (en) * 1999-05-04 2005-08-02 Apple Computer, Inc. USB device notification
EP1430100A1 (de) * 2001-09-21 2004-06-23 Bayer Aktiengesellschaft Schlagzähmodifizierte polymer-zusammensetzungen
US7135520B2 (en) * 2002-07-01 2006-11-14 Lanxess Corporation Glass fiber filled thermoplastic compositions with good surface appearance
DE10231001A1 (de) 2002-07-09 2004-02-12 Volkswagen Ag Aus Kunststoff bestehendes Werkzeug
DE10233170A1 (de) * 2002-07-22 2004-02-12 Bayer Ag Polymerblends auf Basis Polyamid
DE10254877A1 (de) * 2002-11-25 2004-06-03 Bayer Ag Schlagzähmodifizierte Polymer-Zusammensetzungen
ATE517151T1 (de) * 2002-11-25 2011-08-15 Ineos Abs Jersey Ltd Schlagzähmodifizierte polymer-zusammensetzungen
DE10310693A1 (de) * 2003-03-12 2004-09-23 Bayer Ag Schlagzähmodifizierte Polymer-Zusammensetzungen
WO2005040281A1 (en) * 2003-10-10 2005-05-06 Basf Aktiengesellschaft Thermoplastic molding compositions
JP2008505199A (ja) * 2004-07-02 2008-02-21 エルジー・ケム・リミテッド ナノ複合体難燃性熱可塑性樹脂組成物
US7914708B2 (en) * 2004-11-04 2011-03-29 Lion Corporation Conductive masterbatch and resin composition including the same
KR100616723B1 (ko) 2005-04-15 2006-08-28 주식회사 이폴리머 재생 폴리아미드 나노복합체 조성물
CN101787205B (zh) * 2009-10-28 2012-07-04 上海锦湖日丽塑料有限公司 一种改善皮纹制件表面闪光点的pa6/苯乙烯类树脂共混物
KR20140117459A (ko) 2012-01-11 2014-10-07 스티롤루션 유럽 게엠베하 스티렌 공중합체 및 폴리아미드를 기재로 한 향상된 인성을 갖는 내후성 열가소성 성형 배합물
US20170073496A1 (en) * 2014-03-07 2017-03-16 Invista North America S.A R.L. Polyamide resins with mineral additives
US10544286B2 (en) * 2015-02-13 2020-01-28 Ems-Patent Ag Polyamide moulding composition and moulded article made from this moulding composition
WO2017094696A1 (ja) * 2015-12-02 2017-06-08 東洋紡株式会社 ガラス繊維強化ポリアミド樹脂組成物
CN105860512A (zh) * 2016-04-28 2016-08-17 苏州新区华士达工程塑胶有限公司 一种多功能防老化塑料
CN109790356A (zh) 2016-09-08 2019-05-21 英力士苯领集团股份公司 用于选择性激光烧结(sls)的热塑性聚合物粉末
CN109135277A (zh) * 2018-08-28 2019-01-04 安徽江淮汽车集团股份有限公司 一种pa66复合材料及其制备方法
CN109897331A (zh) * 2019-02-28 2019-06-18 金发科技股份有限公司 一种高极性阻燃苯乙烯类组合物、制备方法及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0068132A2 (de) * 1981-05-25 1983-01-05 BASF Aktiengesellschaft Schlagzähe thermoplastische Formmassen
EP0272241A2 (de) * 1986-12-19 1988-06-22 Monsanto Company Polymermischung von stabiler Farbe
EP0278500A2 (de) * 1987-02-13 1988-08-17 Sumitomo Dow Limited Thermoplastische Harzzubereitung
EP0327806A2 (de) * 1988-01-20 1989-08-16 Bayer Ag Mit Silikon-Pfropfkautschuken modifizierte, schlagzähe Polyamidformmassen
EP0427268A2 (de) * 1989-11-09 1991-05-15 ENICHEM S.p.A. Thermoplastische Zusammensetzungen basierend auf vinylaromatischen Copolymeren und Polyamid-Harzmassen
EP0468462A2 (de) * 1990-07-24 1992-01-29 Mitsubishi Rayon Co., Ltd. Harzzusammensetzungen mit ausgezeichneter Schlagfestigkeit und Wärmestabilität
EP0785234A1 (de) * 1995-12-29 1997-07-23 Dsm N.V. Mit Kautschuk modifizierte Polymerzusammensetzung
JPH09217006A (ja) * 1996-02-10 1997-08-19 Kanegafuchi Chem Ind Co Ltd 耐熱性熱可塑性樹脂組成物

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4713415A (en) * 1985-05-10 1987-12-15 Monsanto Company Rubber modified nylon composition
US5227428A (en) * 1985-05-10 1993-07-13 Monsanto Company Rubber modified nylon composition
NL8603246A (nl) * 1986-12-20 1988-07-18 Stamicarbon Thermoplastische polymeermengsels.
JP2715499B2 (ja) * 1988-12-15 1998-02-18 住友化学工業株式会社 熱可塑性樹脂組成物
DE4114589A1 (de) * 1991-05-04 1992-11-05 Bayer Ag Polycarbonat/polyamid-formmassen
JPH08143768A (ja) * 1994-11-16 1996-06-04 Kanegafuchi Chem Ind Co Ltd 耐熱性熱可塑性樹脂組成物
BE1009904A3 (nl) * 1995-12-29 1997-10-07 Dsm Nv Rubber gemodificeerde polyamide polymeersamenstelling.
WO1998036022A1 (de) * 1997-02-17 1998-08-20 Basf Aktiengesellschaft Flammgeschützte thermoplastische formmassen
JP4124854B2 (ja) * 1998-02-25 2008-07-23 本田技研工業株式会社 車輛用外装プラスチック部品
WO1999045069A1 (de) * 1998-03-05 1999-09-10 Basf Aktiengesellschaft Polyamid/polyphenylenether-formmassen mit mineralischen füllstoffen
JP4250220B2 (ja) * 1998-03-31 2009-04-08 日本エイアンドエル株式会社 熱可塑性樹脂組成物および塗装成形品
JP4433512B2 (ja) * 1998-04-28 2010-03-17 東レ株式会社 ポリアミド樹脂組成物およびその製造方法
JP4433515B2 (ja) * 1998-06-11 2010-03-17 東レ株式会社 自動車電装部品ハウジング用ポリアミド樹脂組成物
WO2000036011A1 (en) * 1998-12-17 2000-06-22 Montell Technology Company B.V. Polyolefin graft copolymer/polyamide blend
JP3715813B2 (ja) * 1999-01-22 2005-11-16 日本エイアンドエル株式会社 車両用外装部品
EP1200523A1 (de) * 1999-08-02 2002-05-02 E.I. Du Pont De Nemours And Company Polyamidzusammensetzungen zum formen

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0068132A2 (de) * 1981-05-25 1983-01-05 BASF Aktiengesellschaft Schlagzähe thermoplastische Formmassen
EP0272241A2 (de) * 1986-12-19 1988-06-22 Monsanto Company Polymermischung von stabiler Farbe
EP0278500A2 (de) * 1987-02-13 1988-08-17 Sumitomo Dow Limited Thermoplastische Harzzubereitung
EP0327806A2 (de) * 1988-01-20 1989-08-16 Bayer Ag Mit Silikon-Pfropfkautschuken modifizierte, schlagzähe Polyamidformmassen
EP0427268A2 (de) * 1989-11-09 1991-05-15 ENICHEM S.p.A. Thermoplastische Zusammensetzungen basierend auf vinylaromatischen Copolymeren und Polyamid-Harzmassen
EP0468462A2 (de) * 1990-07-24 1992-01-29 Mitsubishi Rayon Co., Ltd. Harzzusammensetzungen mit ausgezeichneter Schlagfestigkeit und Wärmestabilität
EP0785234A1 (de) * 1995-12-29 1997-07-23 Dsm N.V. Mit Kautschuk modifizierte Polymerzusammensetzung
JPH09217006A (ja) * 1996-02-10 1997-08-19 Kanegafuchi Chem Ind Co Ltd 耐熱性熱可塑性樹脂組成物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 199750, Derwent World Patents Index; Class A18, AN 1997-539597, XP002171210 *
LU M ET AL: "TOUGHENING OF NYLON 6 WITH GRAFTED RUBBER IMPACT MODIFIERS", JOURNAL OF APPLIED POLYMER SCIENCE,US,JOHN WILEY AND SONS INC. NEW YORK, vol. 58, no. 7, 14 November 1995 (1995-11-14), pages 1175 - 1188, XP000537865, ISSN: 0021-8995 *

Also Published As

Publication number Publication date
AU2001258394A1 (en) 2001-12-03
KR20030001519A (ko) 2003-01-06
KR20030001518A (ko) 2003-01-06
CA2409012A1 (en) 2002-11-15
AR033369A1 (es) 2003-12-17
AU2001260282A1 (en) 2001-12-03
WO2001090246A1 (de) 2001-11-29
AR033368A1 (es) 2003-12-17
US20030153677A1 (en) 2003-08-14
CN1429254A (zh) 2003-07-09
KR20030001517A (ko) 2003-01-06
CA2409011A1 (en) 2002-11-15
US20030181582A1 (en) 2003-09-25
EP1287074A1 (de) 2003-03-05
EP1287067A1 (de) 2003-03-05
JP2003534432A (ja) 2003-11-18
JP2003534429A (ja) 2003-11-18
MXPA02011394A (es) 2003-06-06
BR0110823A (pt) 2003-02-11
TWI281484B (en) 2007-05-21
MXPA02011369A (es) 2003-06-06
CN1429250A (zh) 2003-07-09
CN1244636C (zh) 2006-03-08
JP2003534433A (ja) 2003-11-18
CA2409013A1 (en) 2002-11-15
BR0110873A (pt) 2003-02-11
AR033370A1 (es) 2003-12-17
BR0110853A (pt) 2003-02-11
US20030181591A1 (en) 2003-09-25
EP1287075A1 (de) 2003-03-05
WO2001090241A1 (de) 2001-11-29
AU2001254829A1 (en) 2001-12-03
MXPA02011371A (es) 2003-06-06
CN1430647A (zh) 2003-07-16

Similar Documents

Publication Publication Date Title
WO2001090247A1 (de) Witterungsstabile polymerblends
EP1711560B1 (de) Thermoplastische formmassen auf basis von styrolcopolymeren und polyamiden
EP2121833B1 (de) Formmassen mit reduzierter anisotropie der schlagzähigkeit
EP1567591B1 (de) Schlagzähmodifizierte polymer-zusammensetzungen
KR100665804B1 (ko) 내화학성과 내크랙성이 우수한 내열성 abs 수지 조성물
US20040235999A1 (en) Modified shock-resistant polymer compositions
DE10024935A1 (de) Witterungsstabile Polymerblends
DE102005036981A1 (de) Thermoplastische Formmassen mit reduziertem Durchgangswiderstand und erhöhter Stabilität
EP0248255B1 (de) Thermoplastische Pfropfpolymerisate
DE10254877A1 (de) Schlagzähmodifizierte Polymer-Zusammensetzungen
EP0327806A2 (de) Mit Silikon-Pfropfkautschuken modifizierte, schlagzähe Polyamidformmassen
EP1611202B1 (de) Verfahren zur herstellung thermoplastischer formmassen
DE10024933A1 (de) Polymerblends enthaltend Polyamid und über Masse-Polymerisationsverfahren hergestellte kautschukmodifizierte Polymerisate
WO2006061154A1 (de) Füllstoffhaltige formmassen auf basis von styrolcopolymeren
US20030073773A1 (en) Impact-modified polymer compositions
DE10109225A1 (de) Schlagzähmodifizierte Polymer-Zusammensetzungen
DE10310693A1 (de) Schlagzähmodifizierte Polymer-Zusammensetzungen
WO1999054406A1 (de) Thermoplastische polyketon-formmassen mit verbesserten eigenschaften
DE10149152A1 (de) Schlagzähmodifizierte Polymer-Zusammensetzungen
DE4114590A1 (de) Schlagzaehe polyamid-formmassen
DE3938421A1 (de) Formmassen aus polyamiden und speziellen tert.-alkylester-haltigen pfropfpolymerisaten
WO2000064978A1 (de) Thermoplastische polyketon-formmassen
DE10312745A1 (de) Verfahren zur Herstellung thermoplastischer Formmassen
DE10361064A1 (de) Verfahren zur Herstellung thermoplastischer Formmassen
DE10257077A1 (de) Schlagzähmodifizierte Polymer-Zusammensetzungen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001931688

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2002/01542/MU

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 10276527

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2409013

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: PA/a/2002/011394

Country of ref document: MX

Ref document number: 1020027015547

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 018097359

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020027015547

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001931688

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001931688

Country of ref document: EP