WO2001085613A1 - Silicium polycristallin et procede et appareil de production correspondants - Google Patents

Silicium polycristallin et procede et appareil de production correspondants Download PDF

Info

Publication number
WO2001085613A1
WO2001085613A1 PCT/JP2001/003865 JP0103865W WO0185613A1 WO 2001085613 A1 WO2001085613 A1 WO 2001085613A1 JP 0103865 W JP0103865 W JP 0103865W WO 0185613 A1 WO0185613 A1 WO 0185613A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
polycrystalline silicon
cylindrical container
hydrogen
supply pipe
Prior art date
Application number
PCT/JP2001/003865
Other languages
English (en)
French (fr)
Inventor
Satoru Wakamatsu
Hiroyuki Oda
Original Assignee
Tokuyama Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corporation filed Critical Tokuyama Corporation
Priority to US10/030,657 priority Critical patent/US6861144B2/en
Priority to EP01929998A priority patent/EP1285880B1/en
Priority to AU56670/01A priority patent/AU770276C/en
Priority to CA002377892A priority patent/CA2377892C/en
Priority to DE60124246T priority patent/DE60124246T2/de
Publication of WO2001085613A1 publication Critical patent/WO2001085613A1/ja
Priority to NO20020117A priority patent/NO333347B1/no
Priority to NO20120619A priority patent/NO20120619L/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J10/00Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
    • B01J10/005Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor carried out at high temperatures in the presence of a molten material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/03Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition of silicon halides or halosilanes or reduction thereof with hydrogen as the only reducing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/0009Coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00094Jackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00159Controlling the temperature controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10S117/901Levitation, reduced gravity, microgravity, space
    • Y10S117/902Specified orientation, shape, crystallography, or size of seed or substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1016Apparatus with means for treating single-crystal [e.g., heat treating]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/102Apparatus for forming a platelet shape or a small diameter, elongate, generally cylindrical shape [e.g., whisker, fiber, needle, filament]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a novel polycrystalline silicon, a method for producing the same, and a production apparatus. More specifically, it is a light-weight, bubble-containing polycrystalline silicon that generates a very small amount of fine particles generated during crushing, a method for stably producing the same, and a method suitable for producing the polycrystalline silicon at a high speed and The present invention relates to an industrially useful polycrystalline silicon production apparatus capable of continuously producing polycrystalline silicon stably for a long period of time.
  • Siemens method a silicon rod heated to the precipitation temperature of silicon by energization is placed on one inside Perugia, here trichloro port silane (S i HC 1 3, hereinafter referred to as TCS) Ya monosilane (S i H 4), is a method for precipitating silicon in contact with a reducing gas such as hydrogen.
  • polycrystalline silicon in the form of granules crushed to a particle size of about 300 to 2 mm.
  • the granular polycrystalline silicon is used by melting it.
  • particulate polycrystalline silicon is introduced into an oxyhydrogen flame and melted and evaporated to produce particulate silica having a particle diameter of about 1.
  • silicon nanoparticles which are attracting attention as visible light emitting devices, are produced by irradiating a silicon target with an excimer laser in a helium atmosphere, and granular polycrystalline silicon is used as a material for the silicon target. If easily available, silicon nanoparticles can be produced efficiently.
  • the above-mentioned granular polycrystalline silicon is obtained by converting a silicon rod manufactured by the Siemens method into a fist dog. Nuggets obtained by crushing were manufactured by a method of further crushing. However, when attempting to obtain granular polycrystalline silicon by crushing the silicon rod, it is difficult to crush it, and when crushing, a large amount of flakes, needles, and fine particles, called fine particles, are generated. Occurs. Such fine particles cause dust generation and are difficult to handle.Particularly, fine particles with a particle size of about 150 zzm or less have been discarded carefully because of the danger of ignition. . This not only reduced the yield of raw materials, but also required a great deal of effort in disposal.
  • the Siemens method is characterized in that high-purity silicon can be obtained, and is most commonly used as a method.
  • Another method for obtaining polycrystalline silicon is a deposition method using a fluidized bed. In this method, while using a fluidized bed, while supplying about 100 m of silicon fine particles as precipitation nuclei, the above-mentioned monosilane is supplied to precipitate silicon on the silicon fine particles, and the silicon is continuously formed as 1-2 mm silicon particles. It is a method of extracting.
  • the feature of this method is that it is not necessary to stop the reaction in order to extract silicon, and relatively long-term continuous operation is possible.
  • the temperature of the members at or around the connection between the reactor and the silane supply pipe has a temperature gradient from the melting temperature to a temperature at which silicon does not precipitate, and In the middle of the process, there is always a temperature region where silicon is self-decomposed and deposited, and there is a concern that such a portion may be blocked by the deposited silicon in industrial practice.
  • Japanese Patent Application Laid-Open No. H11-114996 describes that a heat-generating solid, a high-frequency coil arranged to face a lower surface of the heat-generating solid, and at least one Using a device having a gas outlet, a raw material gas containing a precipitated component is blown from the gas outlet to the lower surface of the heat-generating solid that has been induction-heated by the high-frequency coil.
  • a method for producing a crystal for example, polycrystalline silicon by depositing and dissolving the precipitated component, and dropping or flowing down the deposited melt from the bottom of the exothermic solid.
  • a first object of the present invention is to provide a bubble-filled polycrystalline silicon which generates a very small amount of fine particles in the crushing for producing a crushed product of the polycrystalline silicon.
  • a second object of the present invention is to provide a manufacturing method for stably manufacturing the polycrystalline silicon with good reproducibility.
  • a third object of the present invention is also suitable for the above-mentioned method for producing polycrystalline silicon, and it is possible to produce polycrystalline silicon stably and continuously for a long period of time at high speed.
  • An object of the present invention is to provide an extremely useful polycrystalline silicon manufacturing apparatus.
  • the present inventors have confirmed that the generation mechanism of fine particles in pulverization of polycrystalline silicon depends on the cleavage property of polycrystalline silicon. That is, since polycrystalline silicon has a strong cleavage property, when the nugget obtained by crushing the silicon rod is further crushed into granular polycrystalline silicon, a large amount of flakes and needle-shaped fine particles are generated. It's easy to do.
  • the polycrystalline silicon structure has By adopting a structure that encloses bubbles, which is not conventionally known as the form of crystalline silicon, the energy at the time of crushing silicon can act as the breaking energy of the bubble wall over the cleavage plane of the crystal. As a result, the rate of generation of fine particles to be discarded was significantly reduced as compared with normal silicon shards.
  • the above objects and advantages of the present invention are as follows: first, a bubble having an internal bubble and an apparent density of not more than 2.20 g Z cm 3 Achieved by containing polycrystalline silicon.
  • a droplet of silicon containing hydrogen melted in the presence of hydrogen can be spontaneously produced in 0.2 to 3 seconds. This is achieved by a process for producing bubbled polycrystalline silicon, characterized in that it is dropped and allowed to cool to a state where hydrogen bubbles are trapped in the droplets.
  • the present inventors have made it clear that the heating element serving as the silicon deposition surface is cylindrical, and that the silicon surface is deposited and melted on the inner surface with high thermal efficiency. confirmed. Then, even in the region heated to the silicon deposition temperature, silicon is not deposited unless the source gas is present, and silicon is not substantially deposited if the region where the source gas is present does not reach the deposition temperature.
  • chlorosilanes whose onset temperature of silicon is closer to the melting point of silicon than monosilane, are used as a raw material gas, and a supply pipe for the raw material gas is placed in a cylindrical heating element serving as the heating element.
  • a first seal gas supply pipe for supplying a seal gas to a gap formed by the inner wall of the cylindrical container and the outer wall of the chlorosilanes supply pipe;
  • the above-described apparatus can efficiently obtain the bubble-containing polycrystalline silicon of the present invention. That is, in the above apparatus, since hydrogen exists in the silicon precipitation / melting region, the hydrogen can be brought into contact with and melted into the silicon melt generated on the surface of the cylindrical container serving as a heating element.
  • the bubble-containing polycrystalline silicon is efficiently produced by allowing the droplet to naturally fall as a droplet from the edge of the lower end opening of the cylindrical container, receiving the droplet on a suitable coolant, and cooling and collecting the droplet. be able to.
  • FIG. 1 is a schematic diagram showing a basic mode of a polycrystalline silicon manufacturing apparatus according to the present invention.
  • FIG. 2 is a schematic diagram showing another basic aspect of the polycrystalline silicon manufacturing apparatus of the present invention.
  • FIG. 3 is a schematic diagram showing a typical embodiment of the polycrystalline silicon manufacturing apparatus of the present invention.
  • FIG. 4 is a schematic view showing another typical embodiment of the polycrystalline silicon manufacturing apparatus of the present invention.
  • FIG. 5 is a cross-sectional view showing a typical embodiment of a cylindrical container used in the polycrystalline silicon manufacturing apparatus of the present invention.
  • FIG. 6 is a cross-sectional view showing another typical embodiment of the cylindrical container used in the polycrystalline silicon production apparatus of the present invention.
  • the bubble-containing polycrystalline silicon of the present invention has bubbles inside.
  • a polycrystalline silicon structure having a bubble inside is not conventionally known, and is a great feature of the bubble-containing polycrystalline silicon of the present invention.
  • the polycrystalline silicon rod obtained by the Siemens method uses hydrogen gas as a raw material in production, but the polycrystalline silicon deposited is a solid, and there is no room for hydrogen to dissolve.
  • polycrystalline silicon obtained by using monosilane as a source gas and growing polysilicon particles in a fluidized bed takes in relatively large amounts of hydrogen, which is combined with silicon in the polycrystalline silicon. And cannot exist as bubbles.
  • the bubble-containing polycrystalline silicon of the present invention may have any shape as long as it has bubbles inside.
  • they are generally and preferably in the form of amorphous, independent particles.
  • the size of the independent particles is preferably such that the volume falls within a range of 0.1 to 3 cc, particularly 0.05 to 1 cc.
  • the obtained particles may be obtained as partially fused aggregates depending on the cooling mode. Such agglomerates can be easily broken by separating the fused portions by light crushing, and the amorphous independent particles can be easily formed.
  • the polycrystalline silicon containing bubbles of the present invention is preferably in the form of an aggregate of independent particles or an aggregate of independent particles.
  • the aggregate of the independent particles is preferably composed of 50 g or more of the independent particles in which the weight of one independent particle in 100 g is in the range of 0.1 to 2 g. More preferably, from 0.1 to 2 g of independent particles occupy 80 g or more, based on the same criteria.
  • the bubbled polycrystalline silicon particles of the present invention can be obtained in a form that contains a plurality of closed cells and the closed cells exist at the center of the particles.
  • abundance of air bubbles of the aerated polycrystalline silicon has an apparent density is 2. 2 0 g / cm 3 or less and comprising an amount, the amount which is preferably a 2. O g Z cm 3 or less, further The amount is preferably 1.8 g / cm 3 or less.
  • the true density of polycrystalline silicon is 2.33 g / cm 3 , but the apparent density decreases when air bubbles are included.
  • the bubble-containing polycrystalline silicon of the present invention can contain bubbles in an amount such that the apparent density is 2.20 g Z cm 3 or less, so that the generation of fine particles during crushing can be significantly reduced. .
  • the apparent density is a value obtained from the volume and weight of particles obtained using a pycnometer.
  • Degassing was performed by a vacuum degassing method. Specific examples include the method described on pages 51 to 54 of the Powder Engineering Handbook (Nikkan Kogyo Shimbun, published February 28, 1986).
  • the bubble-containing polycrystalline silicon of the present invention is light, when supplied as it is to a crucible for producing single-crystal silicon as silicon for recharging, there is also an advantage that the generation of a droplet of silicon melt in the crucible is small. However, it is useful even when it is not broken.
  • a large number of bubbles may exist uniformly, or one or several large bubbles may exist, but the bubble diameter per one is: It is preferably at least 50 m.
  • the polycrystalline silicon foam having an excessively small apparent density is difficult to manufacture and may be difficult to handle
  • the polycrystalline silicon generally has an apparent density of 1 g_cm. Three or more are preferred.
  • a crushed product of the bubbled polycrystalline silicon of the present invention is similarly provided by utilizing the above-mentioned properties of the bubbled polycrystalline silicon of the present invention.
  • This crushed product preferably has an average particle size of more than 200 m and less than 5 mm. The average particle diameter was determined using a JIS-Z8801 sieve.
  • the crushed material often has a rupture surface broken at a bubble portion of the polycrystalline silicon containing bubbles.
  • the gas present in the bubbles of the polycrystalline silicon of the present invention is generally hydrogen gas from the production method described later, but the present invention is not limited to this.
  • the method for crushing polycrystalline silicon containing bubbles of the present invention is not particularly limited, and the crushing method using a known crusher such as a jaw crusher or a pin mill suppresses the generation of fine particles. It is possible to obtain polycrystalline silicon crushed products in yield It is possible.
  • the method for producing polycrystalline silicon of the present invention is not particularly limited, as described above as the method for producing polycrystalline silicon, hydrogen gas is easily dissolved into silicon melt and hydrogen gas is used. It is preferable to carry out the method by dropping silicon melted in the above atmosphere into a droplet, and allowing it to fall naturally and cooling to a state in which hydrogen bubbles are trapped in the droplet.
  • a method of obtaining silicon melted in the presence of hydrogen may be a method of melting silicon or bringing molten silicon into contact with hydrogen gas.
  • the most efficient way to dissolve hydrogen into the silicon melt is to simultaneously and simultaneously precipitate the deposition of silicon from chlorosilanes and the melting of the silicon in the presence of hydrogen.
  • a mixed gas of hydrogen gas and chlorosilanes is brought into contact with the surface of a heating body heated to a temperature equal to or higher than the melting point of silicon, and precipitation and melting of silicon are simultaneously performed.
  • chlorosilanes chlorosilanes containing hydrogen in the molecule, for example, trichlorosilane and dichlorosilane are preferable because they can further increase the hydrogen concentration in the silicon melt.
  • the proportion of hydrogen used for the chlorosilanes may be a known rate without any particular limitation, but in order to form a hydrogen atmosphere with a higher concentration, the molar ratio of hydrogen Z It is preferable to adjust so as to be 50.
  • the silicon melt in which hydrogen has been dissolved in this manner is allowed to fall naturally as droplets, and the hydrogen bubbles are trapped in the droplets within a time period of 0.2 to 3 seconds.
  • the method of confinement is not particularly limited, but a method of contacting with a coolant having a surface temperature of 1,100 or less, preferably 1,0,0 t or less, and particularly 500,000 ° C or less is effective. Is preferably used.
  • the silicon melt falls naturally as droplets.
  • the supersaturated hydrogen gas present in the silicon melt changes over time.
  • the bubbles move upward due to the effect of gravity, and the hydrogen gas that should have been dissolved is discharged to the outside very easily.
  • the mechanism by which the bubbles stay in the droplets and gather at the center is estimated as follows. That is, when the melt is dropped from the substrate holding the liquid, the droplet has momentum due to deformation, and tends to become spherical immediately from its surface tension, so the momentum resulting from the deformation is the angular momentum of rotation. Therefore, centrifugal force acts on the inside of the droplet due to the above-mentioned rotation even though it is weightless. Then, this centrifugal force replaces gravity, and the hydrogen bubbles existing inside have a buoyancy toward the center, and as a result, the bubbles gather at the center of the droplet.
  • the conditions for the above bubbles to collect at the center depend on the rotational angular velocity of the droplet and the elapsed time.
  • the initial momentum given to the droplet is such that the longer the yarn is pulled during separation, the greater the momentum of rotation and the greater the angular velocity.
  • the higher the adhesion between the silicon melt and the substrate the faster the internal bubbles collect in the center and remain more easily.
  • the substrate can also be used such as S i 0 2 Ya silicon nitride, easily it is more wettable with high S i C, or initially poor wettability sheet
  • the effect of the present invention can be more remarkably exhibited by using a carbon material that forms reside and has high wettability.
  • the time required for leaving the heating element in which the silicon droplet is present and for trapping the bubble is at least as long as the apparent density of the present invention can be achieved. It is necessary that the time be such that it can be maintained until it gathers at the surface, and it is preferably at least 0.2 seconds, more preferably at least 0.4 seconds, and even more preferably at least 0.6 seconds.
  • the air bubbles collected at the center of the corner also diffuse and escape to the outside if cooled slowly, so the above time is 3 seconds or less, preferably 2 seconds or less.
  • the time required for leaving the heating element in which the silicon droplet is present and for trapping bubbles is predicted to be slightly different depending on the material of the heating element.
  • silicon nitride having poor wettability is used for the substrate as compared with the case where it is used for the substrate, it is preferable that the above-mentioned time is set to be somewhat longer.
  • the coolant in the operation of bringing the droplet into contact with the coolant, is not particularly limited, such as a solid, a liquid, and a gas.
  • the coolant is constituted by a material that does not substantially react with silicon, for example, a member such as silicon, copper, and molybdenum.
  • a material that does not substantially react with silicon for example, a member such as silicon, copper, and molybdenum.
  • a mode in which droplets are dropped a mode in which a liquid refrigerant that does not substantially react with silicon, for example, liquid silicon tetrachloride, liquid nitrogen, or the like is used as a coolant, and droplets of a silicon melt are dropped therein. Is mentioned.
  • a cooling gas generated by spraying the above-described refrigerant can be used as a refrigerant to be brought into contact with droplets of the silicon melt.
  • the surface may be cooled directly or indirectly by a known cooling method, if necessary.
  • bubbles of polycrystalline silicon containing bubbles may accumulate as droplets of the silicon melt successively fall and solidify on the coolant.
  • the uppermost surface of the polycrystalline silicon containing bubbles is formed. Acts as a coolant.
  • the surface of the coolant has irregularities.
  • a particle such as silicon particles may be present in advance.
  • an apparatus for carrying out the method of the present invention is not particularly limited, it is shown as an apparatus suitable for continuously dropping a droplet of a silicon melt, as the apparatus for producing polycrystalline silicon.
  • a suitable device is preferred.
  • FIG. 1 and FIG. 2 are schematic diagrams showing the basic mode of the above-mentioned device. That is, the manufacturing apparatus of FIGS. 1 and 2
  • a cylindrical container having an opening at the lower end serving as a silicon outlet, (b) a heating device for heating the inner wall from the lower end of the cylindrical container to an arbitrary height to a temperature equal to or higher than the melting point of silicon;
  • a first seal gas supply pipe for supplying a seal gas to a gap formed by the inner wall of the cylindrical container and the outer wall of the chlorosilanes supply pipe;
  • the hydrogen supply pipe may be omitted when hydrogen is supplied from the first seal gas supply pipe.
  • the cylindrical container 1 has, as a silicon outlet, an opening 2 through which silicon precipitated and dissolved therein can fall out of the container by natural flow, as described later in detail. Any structure is acceptable.
  • the cross-sectional shape of the cylindrical container 1 can take any shape such as a circular shape or a polygonal shape.
  • the cylindrical container 1 can be formed into a straight body having the same cross-sectional area as shown in FIGS. 1 to 3 for each part in order to facilitate manufacture, and the residence time of the reaction gas is increased.
  • conversion it is also preferable to make the cross section as shown in Fig. 4 partly larger than other parts. It is.
  • the opening of the opening 2 in the cylindrical container 1 may be a form in which the opening is formed in a straight line, or a constricted portion is formed so that the diameter gradually decreases downward. It may be a formed embodiment.
  • the opening 2 of the cylindrical container 1 may be configured such that the periphery thereof is horizontal, and the silicon melt can be dropped as a droplet without any problem, but the periphery is inclined as shown in FIG.
  • the diameter of the droplet of the silicon melt dropping from the periphery of the opening 2 is more uniformly adjusted by forming the periphery in a wavy shape as shown in FIG. It is preferable because it can be performed.
  • the peripheral shapes of the openings in order to make the particle diameters of the droplets of the molten silicon uniform, it is a more preferable embodiment to form an edge shape in which the thickness gradually decreases toward the front end.
  • the above cylindrical container 1 is heated to 1,430 ° C or higher, and the inside comes into contact with chlorosilanes and silicon melt. Therefore, a material that is sufficiently resistant to these temperature conditions and contact materials is selected. It is desirable to perform stable production of silicon for a long period of time.
  • Such materials for example, carbon materials such as graphite, carbide Gay element (S i C), nitride Gay element (S i 3 N 4), boron nitride (BN) and aluminum nitride (A 1 N) and the like ceramics
  • the material may be a single material or a composite material.
  • the life of the cylindrical container can be significantly increased by coating at least the portion that comes into contact with the silicon melt with the carbon material as the base material with gallium nitride, boron nitride, or gallium carbide. Therefore, it is particularly preferable in industrial continuous use.
  • the cylindrical container 1 is provided with a heating device 3 for heating the peripheral wall from the lower end to an arbitrary height to a temperature equal to or higher than the melting point of silicon.
  • the width for heating to the above temperature that is, the height at which the heating device 3 is provided from the lower end of the cylindrical container 1 is determined in consideration of the size of the cylindrical container, the above-mentioned heating temperature, the amount of chlorosilanes to be supplied, and the like.
  • the range of the cylindrical container heated by the heating device to the melting point of silicon or higher is 20 to 90% of the total length of the cylindrical container 1 from the lower end.
  • the length is determined to be 30 to 80%.
  • any known means can be employed without any particular limitation as long as the inner wall of the cylindrical container can be heated to the melting point of silicon or more, that is, 1,430 ° C. or more.
  • a specific example of a heating device is a device that heats the inner wall of a cylindrical container by external energy as shown in FIG. More specifically, there are a heating device using a high frequency, a heating device using a heating wire, a heating device using infrared rays, and the like.
  • the heating device using high frequency is a heating coil that emits high frequency. This is preferable because the cylindrical container can be heated to a uniform temperature while keeping the shape of the cylinder simple.
  • the chlorosilanes supply pipe 5 is for directly supplying chlorosilanes A to the space 4 surrounded by the inner wall of the cylindrical container 1 heated to the melting point of silicon or higher. It is provided so as to open downward in 4.
  • the term “downward” indicating the opening direction of the chlorosilanes supply pipe 5 is not limited to the vertical direction, but includes all embodiments in which the supplied chlorosilanes are opened so as not to contact the openings again.
  • the most preferable mode is a mode in which the supply pipe is provided in a direction perpendicular to the plane.
  • the chlorosilanes supplied from the chlorosilanes supply pipe 5 have a higher thermal decomposition temperature than monosilane, which is another silicon raw material, and the inside of the pipe is heated in the space 4 of the cylindrical container heated above the melting point of silicon. Even if it is done, it does not decompose remarkably, but it is preferable to perform cooling in order to prevent the deterioration of the supply pipe due to heat and to prevent a small amount of chlorosilanes from being decomposed.
  • cooling means is not particularly limited, for example, as shown in FIG. 1, inside supplies water, from a coolant liquid heat medium oil, provided a passage which is adapted to discharge from the D 2 A liquid-jacket system that cools and cools down.Although not shown, multiple ring nozzles of double pipes or more are provided in the chlorosilanes supply pipe, chlorosilanes are supplied from the center, and cooling gas is purged from the outer ring nozzle. An air-cooled jacket system that cools the air is used.
  • the cooling temperature of the chlorosilanes supply pipe may be cooled to such an extent that the material constituting the supply pipe is not significantly deteriorated, and is generally set to be lower than the self-decomposition temperature of the supplied chlorosilanes. It is preferable to cool to 600 ° C. or less. More rather preferable, specifically, in the case of using TCS or tetrachloride Gay element (S i C l 4, hereinafter referred to as STC) as a raw material, preferably no more than 8 0 0, more preferably 6 0 0 Below, it is most preferable to set it to 300 or less.
  • STC tetrachloride Gay element
  • the chlorosilanes supply pipe 5 may be made of the same material as that of the cylindrical container 1 or stone. English glass, iron and stainless steel can also be used.
  • the opening of the silane supply pipe is connected to the space of the enlarged portion.
  • the opening can be separated from the heated inner wall, and cooling for preventing precipitation of silicon in the chlorosilanes supply pipe can be more easily performed.
  • the first seal gas supply pipe 7 is provided with a seal gas in a gap formed by the inner wall of the cylindrical container and the outer wall of the chlorosilanes supply pipe located above the opening position of the chlorosilanes supply pipe 5.
  • supply B Provided to supply B. That is, the present invention is based on the assumption that chlorosilanes supplied as a raw material come into contact with a low-temperature region where silicon can be precipitated but cannot be melted on the inner wall of a cylindrical container, and solid silicon is deposited. To prevent this, chlorosilanes are directly supplied to the high-temperature space where silicon melts. However, a similar low-temperature region exists in the gap formed by the inner wall of the cylindrical container and the outer wall of the chlorosilanes supply pipe.
  • the first seal gas supply pipe 7 for supplying the seal gas to the gap and filling the gap where the low temperature region exists with the seal gas, the mixed gas of chlorosilanes and hydrogen is provided. To prevent solid silicon from being deposited in the low-temperature region.
  • the first seal gas supply pipe 7 is not particularly limited as long as it is above the opening position of the chlorosilanes supply pipe 5, but is preferably provided on the wall surface of the cylindrical container where the heating device 3 does not exist.
  • a gas that does not generate silicon and does not adversely affect the generation of silicon in a region where the chlorosilanes are present is preferable.
  • an inert gas such as argon and helium, and hydrogen described below are suitable.
  • the supply amount of the sealing gas is sufficient if it is supplied to such an extent that the pressure that always fills the space where the temperature gradient exists is maintained.
  • the shape and shape of the cylindrical container 1 are reduced so that the cross-sectional area of the entire space or the lower part is reduced.
  • the shape and the like of the outer wall of the chlorosilanes supply pipe may be determined.
  • the hydrogen supply pipe for supplying hydrogen used for the precipitation reaction together with the chlorosilanes is provided at a position where it can be supplied to the cylindrical container 1 and the space 4 independently of the chlorosilanes supply pipe 5.
  • the cylindrical container 1 there is no particular limitation as long as it is open. Therefore, in consideration of the structure, size, and the like of the cylindrical container 1 constituting the silicon manufacturing apparatus, it is preferable to appropriately provide the cylindrical container 1 at a location where the reaction with chlorosilanes can be performed efficiently.
  • FIG. 1 an embodiment in which hydrogen C is supplied to the first seal gas supply pipe 7 as a seal gas is preferable.
  • a mode in which a hydrogen supply pipe 8 for supplying hydrogen C is attached to a side wall of the cylindrical container 1 may be mentioned.
  • the above two embodiments can be used in combination.
  • the polycrystalline silicon manufacturing apparatus of the present invention As described above, the polycrystalline silicon manufacturing apparatus of the present invention
  • the thermal efficiency of the heating surface for depositing and melting silicon can be extremely increased, which is industrially very advantageous.
  • the combination of (2) and (3) can completely prevent solid silicon, which has precipitated and does not melt, in the equipment.
  • FIGS. Representative embodiments of the closed container 10 are shown in FIGS.
  • the cylindrical container It is preferable to form a cooling space 15 that covers the opening 2 corresponding to the silicon outlet of the vessel 1 and into which the silicon melt can fall, and that a gas exhaust pipe 12 for extracting exhaust gas is provided.
  • the closed container 10 may be provided so as to cover the lower end of the cylindrical container 1 with the edge of the opening 2 of the cylindrical container 1 protruding. It may be connected on the outer circumference. However, since there is a high possibility that there is a low-temperature region where the solid silicon is deposited on the surface of the sealed container at a position away from the connection point, as shown in FIGS. 3 and 4, the surface is separated from the high-temperature region including the opening. It is preferable that the connection be made at the outer periphery of the upper part of the cylindrical container, or that the container be provided so as to cover the entire cylindrical container.
  • the chlorosilanes present in the gas discharged from the cylindrical container 1 are approaching a stable gas composition that does not precipitate any more silicon, and even if silicon is precipitated, the amount is small.
  • a seal is formed in the gap formed by the outer wall of the cylindrical vessel and the inner wall of the closed vessel. It is preferable to provide a second seal gas supply pipe 11 for supplying the gas E.
  • the type, supply amount, and the like of the seal gas can be determined in the same manner as when the seal gas is supplied to the first seal gas supply pipe 7.
  • the linear velocity of the seal gas flowing around the cylindrical container 1 should be at least 0.1 mZ s, preferably 0.5 mZ s, Most preferably, it is more than lmZs.
  • any of a metal material, a ceramic material, a glass material, and the like can be suitably used.
  • a metal material is used in order to make the industrial equipment robust and recover high-purity silicon. It is more preferable to line the inside of the recovery chamber with silicon, Teflon, quartz glass, or the like.
  • the exhaust gas after the reaction in the cylindrical container 1 is taken out from a gas discharge pipe 12 provided in the closed container 10.
  • the molten silicon that had melted and dropped from the cylindrical container 1 was cooled and solidified while falling through the cooling space 15 of the closed container 10 or by contact with the coolant existing on the bottom surface at the time of falling. It accumulates at the bottom of the container as silicon 23 and is cooled to a temperature that is easy to handle. If the cooling space is set sufficiently long, granulated silicon can be obtained. If the cooling space is short, solid silicon plastically deformed by the impact of dropping can be obtained.
  • the condition in which the silicon melt generated in the presence of hydrogen on the inner wall of the cylindrical container falls naturally as droplets and solidifies depends on the length of the space 15.
  • a solid or liquid coolant may be separately provided on the bottom of the closed vessel 10 to cool the silicon melt droplets more powerfully as necessary. can do. Silicon, copper, molybdenum, or the like can be used as such a solid coolant, and liquid silicon tetrachloride, liquid nitrogen, or the like can be used as a liquid coolant.
  • the closed container 10 can be provided with an outlet 17 for extracting the solidified silicon I continuously or intermittently as necessary.
  • the silicon is obtained in a cohesive state in which silicon is partially fused, it is preferable to adopt a structure in which the lower part of the sealed container can be replaced.
  • a cooling device 14 in the closed container 10. Aspects of such cooling are, for example, as shown in FIGS. 3 and 4, the water inside, thermal oil, F 2 2 from the refrigerant liquid such as alcohol from F 1 2, F 2 1, or from a F 3 1 F 3 and most preferably by liquids jacket method for cooling by providing a 2 channel for circulating a.
  • a cooling medium such as heat transfer oil can be circulated by appropriately forming a jacket structure to protect the material. If the material has heat resistance, heat insulation should be applied to enhance the heat effect. You can also keep it warm.
  • the bubbled polycrystalline silicon of the present invention has an extremely small amount of fine particles generated in the crushing for producing granular polycrystalline silicon, and is light prior to pulverization. It is extremely useful as a silicon source for various applications that use silicon.
  • the method for producing bubble-containing polycrystalline silicon of the present invention can stably produce the above-mentioned bubble-containing polycrystalline silicon with good reproducibility, and is useful in industrial practice.
  • the apparatus for producing polycrystalline silicon according to the present invention is suitable for the method for producing a polycrystalline silicon foam, and is capable of producing polycrystalline silicon containing polycrystalline silicon in a form other than those described above at high speed for a long time and stably. It is an industrially useful device that can be manufactured continuously.
  • the particle diameter is a value measured according to JIS-Z8801.
  • High frequency heating as a heating device 3 around a silicon carbide cylindrical container 1 with an inner diameter of 25 mm and a length of 5 Ocm and an opening 2 at the bottom, from the upper 10 cm to the lower end A coil was installed.
  • a stainless steel chlorosilanes supply pipe 5 having an inner diameter of 10 mm and an outer diameter of 17 mm and having a jacket structure capable of passing liquid as shown in FIG. 2 was inserted to a height of 15 cm from the upper end of the cylindrical container.
  • the closed container 10 was made of stainless steel having an inner diameter of 500 mm and a length of 3 m.
  • the peripheral edge of the lower end of the cylindrical container was shaped as shown in FIG.
  • the silicon melt was separated and dropped from the opening of the cylindrical container. At this time, the tip of the lower opening of the cylindrical container was sufficiently wet with silicon, and the surface was covered with silicon.
  • the silicon melt droplets thus separated and dropped were allowed to fall naturally, and were brought into contact with the cooling receiver 9 provided at the bottom of the sealed container 7 in 0.5 seconds.
  • the cooling receiving part 9 was laid with previously obtained polycrystalline silicon particles containing bubbles, and cooled so that the surface temperature was maintained at 30 Ot :.
  • the apparent density of the obtained bubbled polycrystalline silicon 10 was 1.66 gZcm 3 .
  • Polycrystalline silicon with bubbles was obtained under the same conditions as in Example 1 except that a silicon melt was formed using tetrasilicon silicon as a raw material.
  • the apparent density of the solidified particles was measured and found to be 2.05 gZcm 3 .
  • the particle size of the crushed material was measured in the same manner as in Example 1. As a result, the incidence of fine particles passing through a sieve having openings of 180 m was 0.2%.
  • solid silicon is filled into a graphite container with a hole at the bottom, and heated to 1,500 with high frequency in a hydrogen atmosphere. A silicon melt was formed. After maintaining the molten state in the presence of hydrogen for 30 minutes, pressure was applied from the upper part of the melt with hydrogen, and the silicon melt was dropped from the lower hole.
  • the separated silicon melt droplet was allowed to fall naturally, and was brought into contact with a cooling receiver 9 provided at a lower portion in 0.5 seconds.
  • the cooling receiving part 9 was laid with particles of polycrystalline silicon containing bubbles obtained in advance, and cooled so that the surface temperature was maintained at 300.
  • Polycrystalline silicon was obtained by operating under the same conditions as in Example 1 except that the time until contact with the cooling receiver was set to 0.05 second in Example 1. No visible air bubbles were observed in the obtained polycrystalline silicon particles. The apparent density of the particles was 2.25 gZcm 3 .
  • Example 1 a heater was provided at the bottom as a cooling receiver, and the temperature was set to 1,350 ° C. Using a heated quartz plate, it was cooled slowly.
  • Example 2 Further, the particle size of the crushed material which was crushed in the same manner as in Example 1 was measured in the same manner. As a result, the incidence of fine particles having a size of 200 m or less was 2%.
  • a stainless-steel chlorosilanes supply pipe 5 having an inner diameter of 10 mm and an outer diameter of 17 mm having the cooling jacket structure 6 of Example 1 was inserted to a height of 5 cm from the top of the cylindrical container. Otherwise, the operation was performed under the same conditions as in Example 1.
  • the silicon manufacturing apparatus shown in FIG. 4 was manufactured as described below to continuously obtain granular silicon.
  • the inside diameter of the insertion part and the opening 2 of the black silane supply pipe 5 is 25 mm, the inside diameter is enlarged to 50 mm over 20 cm near the center, and the tapered part is 5 cm each.
  • a high-frequency heating coil was installed as a heating device 3 around a 50-cm-long silicon carbide cylindrical container 1 having a total length of 10 cm from its upper end to its lower end.
  • a stainless steel chlorosilanes supply pipe 5 having an inner diameter of 10 mm and an outer diameter of 17 mm having a jacket structure capable of passing liquid as shown in FIG. 2 was inserted to a height of 15 cm from the upper end of the cylindrical container 1. .
  • the sealed container 10 was made of stainless steel having an inner diameter of 75 O mm and a length of 3 m.
  • the peripheral edge of the lower end of the cylindrical container had the shape shown in FIG.
  • Water is passed through the cooling jacket of the chlorosilanes supply pipe to maintain the inside of the pipe at 50 ° C or less, and water is also passed through the lower jacket of the closed vessel to supply hydrogen at the top of the cylindrical vessel.
  • the high-frequency heating device was started and the cylindrical vessel 1 was heated to 1,500 ° C. Heated. The pressure inside the vessel was almost atmospheric pressure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Silicon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

明 細 多結晶シリコン、 その製造方法および製造装置 技術分野
本発明は、 新規な多結晶シリコン、 その製造方法および製造装置に関する。 詳 しくは、 軽質で、 破碎時に発生する微粒子の発生量が極めて少ない気泡入り多結 晶シリコンおよびそれを安定して製造する方法、 並びに、 該多結晶シリコンの製 造にも適し、 高速でかつ長期間安定して多結晶シリコンを連続的に製造すること が可能である、 工業的に極めて有用な多結晶シリコンの製造装置に関する。
背景技術
従来から、 半導体あるいは太陽光発電用電池の原料として使用される多結晶シ リコンを製造する方法は種々知られており、 そのうちのいくつかは既に工業的に 実施されている。
例えば、 その一つはシーメンス法と呼ばれる方法であり、 通電によりシリコン の析出温度に加熱したシリコン棒をペルジャ一内部に配置し、 ここにトリクロ口 シラン (S i H C 1 3、 以下 T C Sという) やモノシラン (S i H 4) を、 水素 等の還元性ガスと共に接触させてシリコンを析出させる方法である。
上記の多結晶シリコンを粒子径が 3 0 0 から 2 mm程度の粒径に破砕した 粒状体としての需要も高まりつつある。 例えば、 半導体用あるいは太陽電池の用 途において、 該粒状多結晶シリコンはこれを溶融して使用されている。
また、 該粒状多結晶シリコンを酸水素火炎中に導入し、 溶融蒸発させることで、 粒子径 1 程度の微粒子状シリカを製造する技術も知られている。
さらに、 可視光発光素子として注目されているシリコンナノ粒子は、 ヘリウム 雰囲気中で、 シリコンターゲットにエキシマレ一ザ一を照射し製造されるが、 該 シリコン夕一ゲットの材料として、 粒状多結晶シリコンを簡単に入手することが できれば、 シリコンナノ粒子を効率的に製造できる。
上記粒状多結晶シリコンは、 シ一メンス法で製造したシリコンロッドを拳犬に 破碎して得られるナゲットを、 さらに細かく砕く方法によって製造されていた。 しかしながら、 上記シリコンロッドを破碎して粒状多結晶シリコンを得ようと した場合、 破碎が困難であるため砕く際に大量の薄片状、 針状、 および微粉状の、 「微粒子」 と呼ばれる破片が多量に発生する。 かかる微粒子は、 粉塵の発生原因 となり取扱いが困難である上、 特に、 1個の粒子径が 1 5 0 zzm以下程度の微粒 子は、 発火の危険性もあるため、 慎重に廃棄処分されていた。 そのため、 原料に 対する収率が落ちるばかりでなく、 廃棄処分においても多大の労力を要していた。 一方、 前記シ一メンス法は高純度なシリコンが得られることが特徴であり、 最 も一般的な方法として実施されているが、 析出がバッチ式であるため、 種となる シリコン棒の設置、 シリコン棒の通電加熱、 析出、 冷却、 取り出し、 ベルジャー の洗浄、 等の極めて煩雑な手順を行わなければならないという問題点がある。 また、 多結晶シリコンを得るための別の方法として、 流動層による析出方法が ある。 この方法は流動層を用い、 1 0 0 m程度のシリコン微粒子を析出核とし て供給しながら、 上述のモノシランを供給してシリコン微粒子上にシリコンを析 出し、 1〜 2 mmのシリコン粒として連続的に抜出す方法である。
この方法はシリコンを抜出すために反応停止する必要が無く、 比較的長期の連 続運転が可能であることが特徴である。
しかしながら、 工業的に実施されている上記方法は、 析出温度の低いモノシラ ンをシリコン原料として使用しているため、 比較的低温域においても該モノシラ ンの熱分解による微粉シリコンの生成や、 反応器壁へのシリコンの析出等が起こ りやすく、 反応容器の定期的な洗浄または交換が必要となる。
また、 流動状態にある析出途中のシリコン粒子が長時間に渡って反応器壁と激 しく接触して摩擦するために生成シリコンの純度においても問題が残る。
上述の既存技術の問題を解決するため、 特開昭 5 9 - 1 2 1 1 0 9号公報、 特 開昭 5 4— 1 2 4 8 9 6号公報、 および特開昭 5 6 _ 6 3 8 1 3号公報などに よって、 反応器の温度をシリコンの融点以上に加熱しながら、 該反応器内に析出 原料としてシラン類を供給し、 シリコンを析出 ·溶融せしめてその融液を貯留し、 溶融状態または溶融物を冷却固化した状態で、 連続的または断続的に反応器外に 抜出す方法が提案されている。
ところが、 特にモノシランを用いる方法においては、 比較的低温のガス中でも 自己分解して微粉状シリコンを生成しやすい性質をもっため、 ガス下流域での閉 塞が懸念される。
また、 従来提案されているいずれの方法においても、 反応器とシラン類供給管 の接続部分またはその周辺部分の部材温度は、 溶融温度からシリコンが析出しな い温度までの温度勾配をもつ結果、 その途中でシリコンが自己分解して析出する 温度領域となる箇所が必ず存在し、 工業的な実施において析出したシリコンによ りかかる部分が閉塞することが懸念される。
そして、 上記シリコンの析出による閉塞を防止するための有効かつ簡易な手段 についての報告は為されていないのが現状である。
また、 特開平 1 1一 3 1 4 9 9 6号公報には、 発熱固体と、 該発熱固体の下部 表面に対向して配置された高周波コイルと、 該コイル面に設けられた少なくとも 1個のガス吹き出し口とを備えた装置を用い、 前記ガス吹き出し口から前記高周 波コイルにより誘導加熱された前記発熱固体の下部表面に、 析出成分を含む原料 ガスを吹き付け、 前記発熱固体の下部表面で前記析出成分の析出と溶解を行わせ、 析出した溶融液を前記発熱固体の底部より滴下あるいは下降流出させて結晶例え ば多結晶シリコンの製造を行う方法が開示されている。
しかしながら、 この方法は、 高周波コイルと発熱固体が近接しているため、 機 能維持のため水冷を必要とする高周波コイルが熱を奪うのでエネルギー効率が低 いという問題点がある。 また、 この公報には気泡入り多結晶シリコンの製造につ いては何ら記載されていない。
発明の目的
従って、 本発明の第 1の目的は、 多結晶シリコンの破碎物を製造するための破 砕における微粒子の発生量が極めて少ない気泡入り多結晶シリコンを提供するこ とにある。
また、 本発明の第 2の目的は、 上記多結晶シリコンを再現性よく、 安定に製造 するための製造方法を提供することにある。 また、 本発明の第 3の目的は、 上記多結晶シリコンの製造方法にも適し、 多結 晶シリコンを高速でかつ長期間安定して連続的に製造することが可能である、 ェ 業的に極めて有用な多結晶シリコンの製造装置を提供することにある。
本発明のさらに他の目的および利点は以下の説明から明らかになろう。
発明の開示
上記第 1の目的に対して、 本発明者らは、 多結晶シリコンの粉砕における微粒 子の発生機構が、 多結晶シリコンの劈開性によることを確認した。 すなわち、 多 結晶シリコンは劈開性が強いため、 前記シリコンロッドを破砕して得られるナ ゲットをさらに破碎して、 粒状多結晶シリコンにする際、 薄片状、 針状に割れた 微粒子が多量に発生しやすい。
そして、 かかる劈開性を示す応力より小さい応力により、 優先的に破碎される 構造を多結晶シリコンの構造体に与えれば、 破碎における微粒子の発生が抑えら れるという知見に基づき、 かかる構造として、 多結晶シリコンの形態として従来 では知られていない、 気泡を包む構造を採ることによって、 シリコンを破碎する 際のエネルギーが結晶の劈開面に作用するより優先して気泡壁の破壊エネルギー として作用せしめることができ、 通常のシリコンの破碎物と比べ、 廃棄すべき微 粒子物の発生率を格段に小さくすることに成功した。
また、 上記気泡を存在させる効果を十分に発揮するためには、 その存在量を特 定の見かけ密度以卞となる量とすることが有効であることを見い出し、 本発明を 完成するに至った。
それ故、 本発明によれば、 上記知見に基づき、 本発明の上記目的および利点は、 第 1に、 内部に気泡を有しそして見かけ密度が 2 . 2 0 g Z c m3以下である気 泡入り多結晶シリコンによって達成される。
また、 本発明の第 2の発明に対し、 シリコン融液のような溶融金属中には気体 が殆ど溶け込まないことが知られているが、 本発明者らは、 気体が水素の場合、 ある程度の量で溶け込ませることができるという知見を得た。 そして、 かかる知 見に基づき、 研究を重ねた結果、 シリコン融液に水素を接触させて溶け込ませた 後、 これを液滴として自然落下させ、 かつ、 特定の冷却条件で固化せしめること により、 該液滴に存在する水素が気泡として、 気泡が内包された固化した多結晶 シリコンが得られることを見い出した。
それ故、 本発明によれば、 本発明の上記目的および利点は、 第 2に、 水素の存 在下で溶融させた水素を含むシリコンの液滴を、 0 . 2〜 3秒の間に、 自然落下 させそして液滴中に水素気泡を閉じ込めた状態にまで冷却せしめることを特徴と する、 気泡入り多結晶シリコンの製造法によって達成される。
さらに、 本発明の第 3の目的に対し、 本発明者らは、 シリコンの析出面となる 加熱体を筒状とし、 その内面にてシリコンの析出 ·溶融を行うことが熱効率が高 いことを確認した。 そして、 シリコンの析出温度に加熱された領域でも原料ガス が存在しなければシリコンは析出せず、 また、 原料ガスが存在する領域が析出温 度に達していなければシリコンは実質的に析出しないという原理に基づき、 モノ シランに比してシリコンの析出開始温度がシリコンの融点により近いクロロシラ ン類を原料ガスとして使用し、 該原料ガスの供給管を上記加熱体となる筒状の加 熱体内に開口させて、 原料ガスをシリコンの析出 ·溶融を行う高温領域内に直接 供給すると同時に、 該領域内に水素を供給し、 かつ、 原料ガスの供給管と筒状の 加熱体との間隙にシールガスを供給することによって、 反応装置内壁での固体シ リコンの生成を極めて効果的に抑制しながら、 溶融状態のシリコンを連続的に取 り出すことが可能となることを見い出した。
それ故、 本発明によれば、 本発明の上記目的および利点は、 第 3に、
( a ) 下端にシリコン取出口となる開口部を有する筒状容器、
( b) 上記筒状容器の下端から任意の高さまでの内壁をシリコンの融点以上の温 度に加熱する加熱装置、
( c ) 上記筒状容器の内径より小さい外径を有する内管よりなり、 シリコンの融 点以上に加熱された内壁により囲まれる空間に該内管の一方の開口を下方に向け て設けることにより構成されたクロロシラン類供給管、 および
( d ) 筒状容器の内壁とクロロシラン類供給管の外壁とによって形成される間隙 にシールガスを供給する第 1シールガス供給管、
を具備することを特徴とする多結晶シリコンの製造装置によって達成される。 また、 上記装置により、 本発明の気泡入り多結晶シリコンを効率よく得ること ができる。 すなわち、 上記装置において、 シリコンの析出 ·溶融領域には水素が 存在するため、 加熱体となる筒状容器の表面で生成するシリコン融液に水素を接 触させて溶け込ませることができ、 これを該筒状容器の下端開口部の縁より液滴 として自然落下させ、 該液滴を適当な冷却材上に受けて冷却 ·回収することによ り、 前記気泡入り多結晶シリコンを効率よく製造することができる。
図面の簡単な説明
図 1は、 本発明の多結晶シリコン製造装置の基本的な態様を示す概略図である。 図 2は、 本発明の多結晶シリコン製造装置の基本的な他の態様を示す概略図で ある。
図 3は、 本発明の多結晶シリコン製造装置の代表的な実施態様を示す概略図で ある。
図 4は、 本発明の多結晶シリコン製造装置の代表的な他の実施態様を示す概略 図である。
図 5は、 本発明の多結晶シリコン製造装置において使用される筒状容器の代表 的な態様を示す断面図である。
図 6は、 本発明の多結晶シリコン製造装置において使用される筒状容器の代表 的な他の態様を示す断面図である。
発明を実施するための最良の形態
本発明の気泡入り多結晶シリコンは、 内部に気泡が存在する。 このように、 内 部に気泡を持つ多結晶シリコン構造体は従来知られて無く、 本発明の気泡入り多 結晶シリコンの大きな特徴である。
すなわち、 前記シーメンス法により得られる多結晶シリコンロッドは、 製造上 水素ガスを原料として使用するが、 析出する多結晶シリコンは固体であり、 水素 が溶け込む余地がない。
また、 水素を原料の一つとしてシリコンを析出せしめ、 該シリコンを融液で回 収する方法も提案されているが、 これらの方法において、 融液は水素雰囲気外で 取り出され、 固化されるため、 該固化体中の水素ガスは融液の状態において拡散 して消失している。
さらに、 水素ガス中にて生成したシリコンを溶融状態で回転円盤上に滴下して 飛ばすことにより多結晶シリコン粒子を製造する方法も提案されているが、 かか る方法では、 飛ばした際にシリコン融液の液滴の表面更新が激しく起こるため溶 け込んだ水素ガスが逃散して、 溶け込んだ水素ガスが気泡にまで成長した多結晶 シリコン発泡体を得ることができない。
さらにまた、 モノシランを原料ガスとして使用し、 流動床でポリシリコン粒子 を成長させて得られる多結晶シリコンは、 比較的多くの水素を取り込んでいるが、 該水素は多結晶シリコン中にシリコンと結合して存在するため、 気泡として存在 することができない。
本発明の気泡入り多結晶シリコンは、 内部に気泡を有するものであれば、 如何 なる形状を成していてもよい。 例えば、 不定形の独立粒子の形状にあるのが一般 的であり、 好ましい。 該独立粒子の大きさは、 体積で 0 , 0 1〜3 c c、 特に、 0 . 0 5〜1 c cの範囲に入る程度が好ましい。 また、 後述する製造方法におい て、 得られる粒子が、 冷却態様によっては、 部分的に融着した凝集体として得ら れる場合がある。 かかる凝集体は、 軽い破碎により、 かかる融着部分を切り離し て凝集を容易に解消することができ、 容易に上記不定形の独立粒子とすることが できる。
本発明の気泡入り多結晶シリコンは、 独立粒子の集合体あるいは独立粒子の凝 集体の形態にあるのが好ましい。
また、 独立粒子の集合体は、 好ましくは 1 0 0 g中 1個の独立粒子の重量が 0 . 1〜2 gの範囲にある独立粒子が 5 0 g以上を占めて構成される。 より好ましく は、 同じ基準に対し、 0 . l〜2 gの独立粒子が 8 O g以上を占める。
さらに、 本発明の気泡入り多結晶シリコンの粒子は、 複数個の独立気泡を含有 しかつそれらの独立気泡が粒子の中央部に存在する形態で得ることができる。 本発明において、 上記気泡入り多結晶シリコン中の気泡の存在量は、 見かけ密 度が 2 . 2 0 g / c m3以下となる量、 好ましくは 2 . O g Z c m3以下となる 量、 さらに好ましくは 1 . 8 g / c m3以下となる量である。 通常、 多結晶シリコンの真密度は 2 . 3 3 g / c m3であるが、 気泡を含有さ せると見かけ密度が低下する。 そして、 本発明の気泡入り多結晶シリコンは、 見 かけ密度が 2 . 2 0 g Z c m3以下となる量で気泡を含有させることにより、 破 砕時における微粒子の発生を著しく少なく抑えることができる。
なお、 本発明において、 見かけ密度は、 ピクノメータ一を使用して求めた粒子 の体積と、 重量から求めた値である。 脱気は減圧脱気法によって行った。 具体的 には、 粉体工学便覧 (日刊工業新聞社、 昭和 6 1年 2月 2 8日発行) 5 1〜5 4 頁に記載の方法が挙げられる。
本発明の気泡入り多結晶シリコンは、 軽いので、 そのまま単結晶シリコン製造 用のるつぼに、 リチャージ用のシリコンとして供給する場合、 るつぼ中における シリコン融液の飛沫の発生が少ないというメリツトをも有し、 破碎しない状態で も有用である。
上記気泡入り多結晶シリコンにおいて、 上記のごとく気泡は多数が均一に存在 していてもよいし、 1つまたは数個の大きな気泡が存在していてもよいが、 1つ 当りの気泡直径は、 5 0 m以上であることが好ましい。
本発明において、 前記見かけ密度が過度に小さい多結晶シリコン発泡体は、 製 造が困難であると共に、 取り扱いが困難となるおそれがあるため、 一般に、 多結 晶シリコンは、 見かけ密度が 1 g_ c m3以上のものが好ましい。
本発明によれば、 本発明の気泡入り多結晶シリコンの前記性質を利用して、 本 発明の気泡入り多結晶シリコンの破碎物が同様に提供される。 この破碎物は、 好 ましくは平均粒径が 2 0 0 mを超え 5 mm以下である。 なお、 上記平均粒子径 は、 J I S— Z 8 8 0 1のふるいを用いて求めた。 また、 この破碎物は、 気泡入 り多結晶シリコンの気泡部分で破断された破断面を有していることが多い。 本発明の多結晶シリコンの気泡に存在するガスは、 後記の製造方法から、 水素 ガスであることが一般的であるが、 本発明は、 これに限定されるものではない。 また、 本発明の気泡入り多結晶シリコンの破碎方法は、 特に制限されるもので はなく、 ジョークラッシャー、 ピンミル等の公知の破碎機を使用した破砕方法に より、 微粒子の発生を抑えて、 高い収率で多結晶シリコンの破碎物を得ることが 可能である。
本発明の多結晶シリコンの製造方法は特に制限されるものではないが、 前記多 結晶シリコンの製造方法として示したように、 シリコン融液に水素ガスが溶け込 みやすいことを利用して、 水素ガスの雰囲気中で溶融したシリコンを液滴とし、 自然落下および液滴中に水素気泡を閉じ込めた状態にまで冷却させることにより 実施するのが好ましい。
本発明の気泡入り多結晶シリコンの製造方法において、 水素の存在下で溶融さ せたシリコンを得る方法としては、 シリコンを溶融しながらあるいは溶融したシ リコンを水素ガスと接触させる方法を採用することもできるが、 シリコン融液に 最も効率的に水素を溶け込ませる方法として、 水素の存在下で、 クロロシラン類 を原料としたシリコンの析出と該シリコンの溶融とを同時進行的に実施する方法 が挙げられる。
具体的には、 水素ガスとクロロシラン類との混合ガスをシリコンの融点以上に 加熱された加熱体の表面に接触せしめ、 シリコンの析出と溶融とを同時進行的に 行う態様が挙げられる。
上記クロロシラン類としては、 分子内に水素を含むクロロシラン類、 例えばト リクロロシラン、 ジク口口シランがシリコン融液中の水素濃度をより高めること ができるため好適である。
また、 上記クロロシラン類に対する水素の使用割合は、 公知の割合が特に制限 なく採用されるが、 より高濃度の水素雰囲気を形成するためには、 水素 Zクロ口 シラン類のモル比が、 5〜5 0となるように調整することが好ましい。
また、 このようにして水素が溶け込んだシリコン融液を液滴として自然落下せ しめ、 0 . 2〜3秒の時間内に上記水素の気泡を液滴中に閉じ込める。 閉じ込め 方法は特に制限されないが、 1 , 1 0 0 以下、 好ましくは、 1 , O O O t以下、 特に、 5 0 0 °C以下の表面温度を有する冷却材と接触させる方法が有効であり、 本発明において好適に使用される。
上記方法において、 シリコン融液を液滴として自然落下させることが重要であ る。 すなわち、 シリコン融液中に存在する過飽和の水素ガスは、 時間の経過と共 に集合して気泡となるが、 該融液をそのまま固化したのでは、 該気泡は重力の影 響で上方に向かい、 溶け込んでいたはずの水素ガスは極めて容易に外部に放出さ れるのである。
これに対して、 上記シリコン融液を自然落下させることにより、 無重力状態と なり、 ここでは浮力が存在しないため、 ガス化した水素は液滴内に留まる。 この 自然落下の時間は 0 . 2〜 2秒が好ましい。
この場合、 気泡が該液滴中に留まり中央部に集まる機構としては、 下記のよう に推定される。 すなわち、 融液が保持されている基材から落下させる際、 液滴は 変形に伴う運動量を持ち、 その表面張力からすぐに球形になろうとするため、 変 形に由来する運動量は回転の角運動量へと変化するため、 無重力ではあっても、 上記回転運動によって液滴内部には遠心力力働く。 そして、 この遠心力が重力の 代わりとなり、 内部に存在していた水素の気泡は、 中央部に向かって浮力が働き、 その結果、 液滴の中央部に、 気泡が集合する。
上記気泡が中央部に集まるための条件は、 液滴の回転角速度と経過時間に依存 する。 液滴に与える初期の運動量は、 分離に際して糸を長く引くようにするほど、 回転の運動量は大きくなり、 角速度は大きくなる。 すなわち、 シリコン融液と基 材との密着性が高いほど、 内部の気泡は中央部に速く集まり、 残りやすくなる。 シリコン融液との密着性を考えた場合、 基材には S i 02ゃ窒化珪素なども使用 できるが、 より濡れ性の高い S i C、 あるいは始めは濡れ性が悪くても容易にシ リサイドを形成し、 濡れ性が高くなるカーボン材を使用するほうが、 本発明の効 果をより顕著に示すことができる。
本発明の上記方法において、 シリコンの液滴が存在する加熱体を離れ、 気泡を 閉じ込めるまでの時間は、 少なくとも、 本発明の前記見かけ密度を達成すること ができる程度に、 気泡が液滴の中央に集まる状態まで維持し得る時間であること が必要であり、 0 . 2秒以上、 さらには 0 . 4秒以上、 さらには 0 . 6秒以上で あることが好ましい。
逆に、 折角中央に集めた気泡も、 ゆっくり冷却したのでは拡散して外部に逃げ るため、 上記時間は、 3秒以下、 好ましくは 2秒以下とする。 シリコンの液滴が存在する加熱体を離れ、 気泡を閉じ込めるまでの時間は、 該 加熱体の材質により、 液滴に与えられる角速度が多少異なると予測され、 十分に 角速度を大きくできる S i Cを基材に使用した場合に比べ、 濡れ性の悪い窒化珪 素を基材に使う場合は、 上記時間を多少長めにとることが好ましい。
本発明において、 液滴を冷却材と接触させる操作において、 該冷却材は、 固体、 液体、 ガス等、 特に制限されない。
上記冷却材を使用した好適な態様を例示すれば、 シリコンと実質的に反応しな い材質、 例えば、 シリコン、 銅、 モリブデン等の部材により冷却材を構成し、 こ の上にシリコン融液の液滴を落下させる態様、 シリコンと実質的に反応しない液 体の冷媒、 例えば、 液体四塩化珪素、 液体窒素等を冷却材として使用し、 この中 にシリコン融液の液滴を滴下させる態様などが挙げられる。
また、 上記冷媒を噴霧することにより生じる冷却ガスを冷媒として、 シリコン 融液の液滴と接触させることもできる。
上記固体の冷却材を使用する態様において、 その表面は、 必要に応じて、 公知 の冷却方法により直接的あるいは間接的に冷却してもよい。 また、 冷却材の上に シリコン融液の液滴が順次落下して固化することにより、 気泡入り多結晶シリコ ンが堆積する場合もあるが、 この場合、 かかる気泡入り多結晶シリコンの最上面 が冷却材として作用する。 また、 冷却材表面にシリコン融液の液滴が落下する際 の衝撃を吸収するため、 該冷却材の表面は、 凹凸があることが好ましく、 例えば、 シリコン粒子等の粒状物をあらかじめ存在させておくことが好ましい。 この塲合、 該シリコン粒子として、 得られた気泡入り多結晶シリコンの一部を使用すること が特に好ましい。
本発明の方法を実施するための装置は、 特に制限されるものではないが、 連続 的にシリコン融液の液滴を落下させるために好適な装置として、 前記多結晶シリ コンの製造装置として示した装置が好適である。
図 1および図 2には、 上記装置の基本的な態様についての概略図が示されてい る。 すなわち、 図 1および図 2の製造装置は、
( a ) 下端にシリコン取出口となる開口部を有する筒状容器、 ( b ) 上記筒状容器の下端から任意の高さまでの内壁をシリコンの融点以上の温 度に加熱する加熱装置、
( c ) 上記筒状容器の内径より小さい外径を有する内管よりなり、 シリコンの融 点以上に加熱された内壁により囲まれる空間に該内管の一方の開口を下方に向け て設けることにより構成されたクロ口シラン類供給管、
( d ) 筒状容器の内壁とクロロシラン類供給管の外壁とによって形成される間隙 にシールガスを供給する第 1シールガス供給管、
および、 場合により、 さらに、
( e ) 上記筒状容器内に水素ガスを供給する水素供給管
を具備する。 該水素供給管は前記第 1シールガス供給管から水素を供給する場合 には、 なくてもよい。
本発明のシリコン製造装置において、 筒状容器 1は、 シリコン取出口として、 後で詳述するように、 その内部で析出 ·溶解したシリコンが自然流下により容器 外に落下し得る開口部 2を有する構造であればよい。
従って、 筒状容器 1の断面形状は、 円状、 多角状等の任意の形状を採ることが できる。 また、 筒状容器 1は、 製作を容易にするために、 図 1〜図 3に示すよう な断面積が各部分で等しい直胴状にすることもできるし、 反応ガスの滞在時間を 長くしてクロロシラン類のシリコンへの転化率 (以下、 単に転化率ともいう) を 向上させるために、 図 4に示すような断面の一部が他の部分よりも拡大された形 状にすることも好適である。
一方、 筒状容器 1における開口部 2の開口の仕方も、 図 1に示すように、 スト レー卜に開口した態様でもよいし、 下方に向かって徐々に径が減少するように絞 り部を形成した態様でもよい。
また、 筒状容器 1の開口部 2は、 その周縁が水平となるように構成する態様で も問題なくシリコン融液を液滴として滴下し得るが、 図 5に示すように周縁が傾 斜するように構成する態様、 さらには図 6に示すように周縁を波状に構成する態 様とすることにより、 該開口部 2の周縁より落下するシリコン融液の液滴の粒径 をより均一に調整することができるため好ましい。 さらに、 上述した何れの開口部周縁の形状においても、 溶融シリコンの液滴の 粒径を揃えるため、 先端部に向かって肉厚が次第に薄くなるエッジ状にすること がより好ましい態様である。
上記筒状容器 1は、 1, 4 3 0 °C以上に加熱され、 その内部はクロロシラン類 やシリコン溶融液に接触するため、 これらの温度条件や接触物に対して十分に耐 える材質を選択することが長期間の安定したシリコンの製造を行う上で望ましい。 かかる材質としては、 例えば、 グラフアイト等の炭素材料、 炭化ゲイ素 (S i C) 、 窒化ゲイ素 (S i 3 N 4) 、 窒化ホウ素 (B N) および窒化アルミ (A 1 N) 等のセラミックス材料の、 単独材料または複合材料が挙げられる。
これらの材料のうち、 炭素材料を基材として、 少なくともシリコン溶融液と接 触する部分を窒化ゲイ素または窒化ホウ素または炭化ゲイ素で被覆することによ り、 筒状容器の寿命を著しく増大できるため、 工業的連続使用において特に好ま しい。
本発明のシリコン製造装置において、 上記筒状容器 1には、 その下端から任意 の高さまでの周壁をシリコンの融点以上の温度に加熱するための加熱装置 3が設 けられる。 上記温度に加熱する幅、 すなわち、 筒状容器 1の下端からの加熱装置 3を設ける高さは、 筒状容器の大きさや上記加熱温度、 さらに、 供給されるクロ ロシラン類の量などを考慮して適宜決定すればよいが、 一般に、 該加熱装置に よってシリコンの融点以上に加熱される筒状容器の範囲が、 該筒状容器 1の全長 に対する下端からの長さが 2 0〜9 0 %、 好ましくは、 3 0〜8 0 %の長さとな るように決定する。
この加熱装置 3は、 筒状容器の内壁をシリコンの融点以上、 すなわち、 1, 4 3 0 °C以上に加熱することができるものであれば、 公知の手段が特に制限なく採 用される。
具体的な加熱装置を例示すれば、 図 1に示すように、 外部からのエネルギーに より筒状容器内壁を加熱する装置が挙げられる。 より具体的には、 高周波による 加熱装置、 電熱線を用いる加熱装置、 赤外線を用いる加熱装置等がある。
これらの装置のうち、 高周波を用いる加熱装置は、 高周波を放出する加熱コィ ルの形状をシンプルにしながら、 筒状容器を均質的な温度に加熱することができ るため、 好適である。
本発明のシリコン製造装置において、 クロロシラン類供給管 5は、 シリコンの 融点以上に加熱された筒状容器 1の内壁によって囲まれた空間 4にクロロシラン 類 Aを直接供給するためのものであり、 空間 4内に下方に向かって開口するよう に設けられる。
なお、 クロロシラン類供給管 5の開口方向を示す 「下方」 とは、 垂直方向のみ に限定されず、 供給されたクロロシラン類が該開口に再度接触しないように開口 する態様が全て含まれる。 しかし、 最も好適な態様は、 平面に対して垂直方向に 該供給管を設ける態様である。
また、 クロロシラン類供給管 5より供給されるクロロシラン類は、 他のシリコ ン原料であるモノシランに比べて熱分解温度が高く、 シリコンの融点以上に加熱 された筒状容器の空間 4において管内が加熱されたとしても、 著しく分解するこ とはないが、 該供給管の熱による劣化を防止し、 また、 少量ではあるがクロロシ ラン類が分解するのを防止するため、 冷却を行うことが好ましい。
冷却手段の具体的態様は、 特に制限されないが、 例えば、 図 1に示すような、 内部に水、 熱媒油等の冷媒液体を から供給し、 D 2より排出するようにした 流路を設けて冷却する液体ジャケット方式、 図示されていないが、 クロロシラン 類供給管に二重管以上の多重環ノズルを設け、 中心部からクロロシラン類を供給 し、 外環ノズルから冷却ガスをパージして中心ノズルを冷却する空冷ジャケット 方式などが挙げられる。
クロ口シラン類供給管の冷却温度は、 供給管を構成する材質が著しく劣化しな い程度に冷却されればよく、 一般には、 供給するクロロシラン類の自己分解温度 未満に設定すればよい。 6 0 0 °C以下まで冷却することが好ましい。 より好まし くは、 具体的には、 T C Sまたは四塩化ゲイ素 (S i C l 4、 以下 S T Cとい う) を原料として用いる場合は、 好ましくは 8 0 0で以下、 より好ましくは 6 0 0 以下、 最も好ましくは 3 0 0 以下とすることがよい。
クロロシラン類供給管 5の材質としては、 筒状容器 1と同様の材質のほか、 石 英ガラス、 鉄およびステンレス鋼等も使用できる。
本発明のシリコン製造装置のうち、 図 4に示すように、 筒状容器の一部に拡大 部を設けた態様においては、 上記クロ口シラン類供給管の開口部を該拡大部の空 間に設けることが好ましい。 こうすることによって、 加熱された内壁から該開口 部を離すことができ、 該クロロシラン類供給管でのシリコンの析出を防止するた めの冷却を一層容易に行うことができる。
本発明において、 第 1シールガス供給管 7は、 クロロシラン類供給管 5の開口 位置より上部に存在する筒状容器の内壁とクロロシラン類供給管の外壁とによつ て形成される間隙にシールガス Bを供給するために設けられる。 すなわち、 本発 明は、 原料として供給されたクロロシラン類が、 筒状容器の内壁において、 シリ コンを析出することはできるが溶融することはできない低温領域と接触して固体 シリコンが析出するのを防止するため、 シリコンの溶融が起こる高温の空間にク ロロシラン類を直接供給する。 しかしながら、 筒状容器の内壁とクロロシラン類 供給管の外壁とによって形成される間隙には同様の低温領域が存在する。
そのため、 本発明の装置においては、 上記間隙にシールガスを供給する第 1 シールガス供給管 7を設けて上記低温領域が存在する間隙にシールガスを満たす ことにより、 クロロシラン類と水素との混合ガスが侵入して該低温領域で固体シ リコンが析出するのを効果的に防止することができる。
本発明において、 第 1シールガス供給管 7は、 クロロシラン類供給管 5の開口 位置より上部であれば特に制限されないが、 加熱装置 3が存在しない筒状容器壁 面に設けることが好ましい。
また、 第 1シールガス供給管 7より供給されるシールガスは、 シリコンを生成 せず、 かつクロ口シラン類が存在する領域においてシリコンの生成に悪影響を与 えないガスが好適である。 具体的には、 アルゴン、 ヘリウム等の不活性ガスや後 記の水素等が好適である。
この場合、 シールガスの供給量は、 前記温度勾配の存在する空間を常に満たす 圧力を保つ程度に供給されていれば十分である。 かかる供給量を低減するには、 該空間の全体あるいは下部の断面積を小さくするように、 筒状容器 1の形状、 あ るいは、 クロロシラン類供給管の外壁の形状等を決定すればよい。
本発明のシリコン製造装置において、 クロロシラン類と共に析出反応に供され る水素を供給するための水素供給管は、 クロロシラン類供給管 5と独立して筒状 容器 1前記空間 4に供給し得る位置に開口するものであれば、 特に制限されない。 従って、 シリコン製造装置を構成する筒状容器 1の構造、 大きさ等を勘案して、 クロロシラン類との反応を効率よく行うことのできる箇所に適宜設けることが好 ましい。 具体的には、 図 1において、 第 1シールガス供給管 7にシールガスとし て水素 Cを供給する態様が好適である。 また、 図 2に示すように筒状容器 1の側 壁に水素 Cを供給するための水素供給管 8を取り付ける態様も挙げられる。 もち ろん、 上記 2つの態様を併用することも可能である。
本発明の多結晶シリコン製造装置は、 上述したように、
①シリコンの析出 ·溶融を筒状容器の内面で行い、
②該筒状容器内におけるシリコンの溶融域までク口口シラン類の供給管を挿入し そして
③該筒状容器とクロロシラン類の供給管との間隙にシールガスを供給する構造を 有する。
上記①の構成により、 シリコンの析出 ·溶融を行うための加熱面の熱効率が極 めて高くすることができ工業的に非常に有利である。
また、 ②および③の組合せにより、 装置内で、 固体シリコンが析出したまま溶 融しないで存在するのを完全に防止することができる。
本発明のシリコン製造装置において、 その他の構造は、 特に制限されるもので はないが、 好適な態様を例示すれば、 下記の態様を挙げることができる。 例えば、 筒状容器 1内で発生する排ガスを効率よく回収するために、 また、 筒状容器 1の 開口部 2より溶融落下するシリコン融液の液滴を外気と触れることなく冷却固化 せしめて回収するために、 該筒状容器の少なくとも下端開口部を、 排ガスの排出 管 1 2を接続した密閉容器 1 0によって覆う態様が好ましい。 これによつて高純 度のシリコンを工業的に得ることができる。
上記密閉容器 1 0の代表的な態様は図 3および 4に示されている。 前記筒状容 器 1のシリコン取出口に当たる開口部 2を覆い、 シリコン融液が落下し得る冷却 空間 1 5を形成すると共に、 排ガスを取り出すガス排出管 1 2を設けて構成され ることが好ましい。
上記密閉容器 1 0は、 筒状容器 1の開口部 2の縁部を突出させる状態で該筒状 容器の下端部を覆うように設ければよく、 例えば、 該開口部近辺の筒状容器の外 周で接続してもよい。 しかしながら、 接続箇所から離れた位置の密閉容器の表面 において前記固体シリコンが析出する低温領域が存在する可能性が高いため、 図 3および 4に示すように、 該開口部を含む高温の領域から離れた筒状容器の上方 部の外周で接続するか、 あるいは、 筒状容器全体を覆うように設けることが好ま しい。
筒状容器 1より排出されるガス中に存在するクロロシラン類は、 もはやそれ以 上のシリコンを析出しない安定的なガス組成にまで近づいており、 シリコンを析 出したとしてもその量は少ない。
しかし、 密閉容器 1 0においても固体シリコンの析出を可及的に防止するため には、 図 3および 4に示すように、 筒状容器の外壁と密閉容器の内壁とによって 形成される間隙にシールガス Eを供給する第 2シールガス供給管 1 1を設ける態 様が好適である。
上記シールガスの種類、 供給量等は前記第 1シールガス供給管 7にシールガス を供給する場合と同様に決定することができる。
上記態様において、 特にシールガスによる効果を十分に発揮させるためには、 筒状容器 1周囲を流通するシールガスの線速度を、 少なくとも 0 . l mZ s、 好 ましくは 0 . 5 mZ s、 最も好ましくは l mZ s以上とすることがよい。
密閉容器 1 0の材質としては、 金属材料、 セラミックス材料、 ガラス材料等が いずれも好適に使用できるが、 工業装置として頑丈でありかつ高純度のシリコン を回収することを両立するために、 金属製回収室の内部を、 シリコン、 テフロン、 石英ガラス等でライニングを施すことがより好適である。
一方、 筒状容器 1での反応後の排ガスは、 密閉容器 1 0に設けられたガス排出 管 1 2より取り出される。 また、 筒状容器 1より溶融落下した溶融シリコンは、 密閉容器 1 0の冷却空間 1 5を落下するうちに、 あるいは、 落下時に底面に存在する冷却材と接触するこ とにより冷却され、 固化したシリコン 2 3として容器下部に蓄積され、 取り扱い 容易な温度までに冷却される。 上記冷却空間を十分長く設定すると粒状化された シリコンが得られ、 該冷却空間が短い場合は、 落下の衝撃により塑性変形した固 体シリコンが得られる。
本発明の前記気泡入り多結晶シリコンを製造する場合、 筒状容器内壁において 水素の存在下に生成したシリコン融液が液滴として自然落下し、 固化される条件 を該空間部 1 5の長さおよび冷却材として働く底面の冷却条件を適宜設定するこ とにより、 気泡入り多結晶シリコンを効率よく製造することができる。
なお、 上記冷却を促進するために、 冷却ガス Hの供給管 1 3を設けることは好 適な態様である。 また、 図には示していないが、 密閉容器 1 0の底面に、 別途、 固体または液体の冷却材を存在させてシリコン融液の液滴をより強力に冷却する ことも、 必要に応じて実施することができる。 かかる固体冷却材としてはシリコ ン、 銅、 モリブデン等を使用することができ、 また、 液体の冷却材としては、 液 体四塩化珪素、 液体窒素等を使用することができる。
また、 密閉容器 1 0には、 必要に応じて、 固化したシリコン Iを連続的あるい は断続的に抜き出す取出口 1 7を設けることも可能である。 上記取出口の形式は、 シリコンが部分的に融着した凝集状態で得られる場合は、 密閉容器の下部が取り 替えできる構造を採用することが好ましい。
また、 上記シリコンの冷却をより効果的に実施するために、 密閉容器 1 0に冷 却装置 1 4を設けることが好ましい。 かかる冷却の態様は、 例えば、 図 3および 4に示すように、 内部に水、 熱媒油、 アルコール等の冷媒液体を から F 1 2、 F 2 1から F 2 2、 あるいは、 F 3 1から F 3 2に流通させる流路を設けて冷却する液 体ジャケット方式によることが最も好ましい。
図 3および 4に示す態様のように、 密閉容器 1 0を筒状体の上部で接合した場 合、 材質保護のために適宜ジャケット構造にして熱媒油等の冷却媒を流通するこ ともできるし、 材質に耐熱性がある場合には熱効果を高めるために断熱材を施し て保温することもできる。
以上の説明より理解されるように、 本発明の気泡入り多結晶シリコンは、 粒状 多結晶シリコンを製造するための破砕における微粒子の発生量が極めて少なく、 しかも、 粉碎前は軽質であり、 多結晶シリコンを使用する種々の用途におけるシ リコンの供給源として極めて有用である。
また、 本発明の気泡入り多結晶シリコンの製造方法は、 上記気泡入り多結晶シ リコンを再現性よく、 安定に製造することが可能であり、 工業的な実施において 有用である。
さらに、 本発明の多結晶シリコンの製造装置は、 前記多結晶シリコン発泡体の 製造方法にも適すると共に、 上記以外の形態の多結晶シリコンを含む多結晶シリ コンを高速でかつ長期間安定して連続的に製造することが可能である、 工業的に 極めて有用な装置である。 実施例
以下、 本発明を詳細に説明するために実施例を挙げて説明するが、 本発明はこ れらの実施例に限定されるものではない。
粒子径は J I S - Z 8 8 0 1に準じて測定した値である。
実施例 1
下記に示すように、 図 3と同様な多結晶シリコン製造装置を構成し、 多結晶シ リコンを連続して製造した。
内径 2 5 mm、 長さが 5 O c mで、 下部に開口部 2を持つ炭化ケィ素製筒状容 器 1に、 その上部 1 0 c mの位置から下端までの周囲に加熱装置 3として高周波 加熱コイルを設置した。 図 2に示す通液可能なジャケット構造をもつ、 内径 1 0 mm、 外径 1 7 mmのステンレス製のクロロシラン類供給管 5を、 該筒状容器の 上端から 1 5 c mの高さまで挿入した。 密閉容器 1 0は、 内径 5 0 0 mm、 長さ が 3 mのステンレス製とした。
なお、 上記筒状容器の下端の周縁は図 5に示す形状とした。
クロロシラン類供給管の冷却ジャケッ卜に通水して、 管の内部を 5 0 °C以下に 維持すると共に、 密閉容器 10の下部ジャケットにも通水し、 筒状容器 1上部の 水素供給管 14、 および密閉容器 10の上部のシールガス供給管 11から水素ガ スをそれぞれ 5LZmi n流通させたのち、 高周波加熱装置を起動して、 筒状容 器 1を 1, 500tに加熱した。 容器内の圧力は、 ほぼ大気圧であった。
クロロシラン類供給管 5にトリクロロシランを 1 OgZmi nの速度で供給し たところ、 約 0. 6 gZmi nの速度でほぼ均一な粒径を有する粒状のシリコン 液滴が自然落下中に観察された。 この場合のトリクロ口シランの転化率は約 3 0%であった。
該シリコン融液を、 筒状容器の開口部から分離落下させた。 この時、 筒状容器 の下部開口部先端は、 十分にシリコンで濡れ、 表面はシリコンで覆われていた。
50時間反応を継続した後、 運転を停止して装置内部を開放観察したところ、 シリコンによる閉塞は発生していなかった。
上記分離落下させたシリコン融液の液滴を自然落下させ、 0. 5秒で密閉容器 7の底部に設けた冷却受け部 9と接触させた。
なお、 冷却受け部 9は、 あらかじめ得られた気泡入り多結晶シリコンの粒子を 敷き詰め、 その表面温度が、 30 Ot:に保持されるように冷却した。
得られた気泡入り多結晶シリコン 10の見かけ密度は、 1. 66 gZcm3で あった。
上記気泡入り多結晶シリコンを破枠したところ、 平均粒子容積 0. I c eの不 定形粒子が得られた。 この粒子をハンマーで割ったところ、 その破断面には、 気 泡の跡が多数観察された。 また、 該シリコン粒子をダイヤモンドで研磨し、 断面 を観察したところ、 中央部に直径 0. 5 mmから lmmの気泡が多数存在してい た。
また、 多結晶シリコン発泡体の上記粒子 100 gをジョークラッシャーにより、 最大粒子径が 2mm以下になるまで破碎し、 破碎物の粒子径をレーザ一回折散乱 粒度分布測定装置 SK LASER PRO- 7000 (セィシン企業製) で測 定したところ、 目開き 180 mのふるいを通過する微粒子の発生率は 0. 0 5%未満であった。 実施例 2
実施例 1において、 四塩ィ匕珪素を原料としてシリコン融液を形成した以外はす ベて実施例 1と同じ条件で気泡入り多結晶シリコンを得た。
固化した粒子の見かけ密度を測定したところ、 2. 05gZcm3であった。 また、 実施例 1と同様に破碎した破碎物の粒子径を同様にして測定したところ、 目開き 180 mのふるいを通過する微粒子の発生率は 0. 2%であった。
実施例 3
トリクロ口シランと水素を反応させてシリコン融液を形成する代わりに、 下部 に穴を空けたグラフアイトの筒状容器に固体シリコンを充填し、 水素雰囲気中、 高周波で 1, 500 に加熱してシリコン融液を形成した。 さらに水素の存在下 で 30分溶融状態を保持した後、 融液上部より水素で圧力をかけ、 下部の穴から シリコン融液を落下させた。
該分離落下させたシリコン融液の液滴を自然落下させ、 0. 5秒で下部に設け た冷却受け部 9と接触させた。
なお、 冷却受け部 9は、 あらかじめ得られた気泡入り多結晶シリコンの粒子を 敷き詰め、 その表面温度が、 300でに保持されるように冷却した。
固化した粒子の見かけ密度を測定したところ、 2. l l gZcm3であった。 また、 実施例 1と同様に破砕した破碎物の粒子径を SKレーザ一で測定したと ころ、 目開き 180 mのふるいを通過する微粒子の発生率は 0. 2%であった。 比較例 1
実施例 1において、 冷却受け部と接触するまでの時間を 0. 05秒とした以外 はすべて実施例 1と同じ条件で操作して、 多結晶シリコンを得た。 得られた多結 晶シリコン粒子には、 目視できる気泡は観察されなかった。 この粒子の見かけ密 度は、 2. 25 gZcm3であった。
また、 実施例 1と同様に破枠した破碎物の粒子径を同様に測定したところ、 目 開き 180 mのふるいを通過する微粒子の発生率は 1 %であった。
比較例 2
実施例 1において、 冷却受け部として、 下部にヒー夕一を設け 1, 350°Cに 加熱した石英板を使用し、 ゆっくりと冷却した。
このシリコン中には、 気泡が存在しなかった。 この粒子の見かけ密度は、 2 . 3 3 gノ c m3であった。
また、 実施例 1と同様に破碎した破碎物の粒子径を同様に測定したところ、 2 0 0 m以下の微粒子の発生率は 2 %であった。
比較例 3
実施例 1の冷却ジャケット構造 6を持つ、 内径 1 0 mm、 外径 1 7 mmのステ ンレス製のクロロシラン類供給管 5を、 該筒状容器の上部から 5 c mの高さまで 挿入した。 その他は実施例 1と同様の条件で運転を実施した。
運転開始当初は約 0 . 6 gZm i nの速度で粒状のシリコンを得ることができ たが、 約 1 5時間後にはトリクロ口シランおよびシール水素を供給することが困 難になった。
停止後開放観察したところ、 筒状容器 1の内部の上部付近がほとんど閉塞して いた。 閉塞物はシリコンであった。
実施例 4
図 4に示すシリコン製造装置を下記のように製造して粒状のシリコンを連続し て得た。
クロ口シラン類供給管 5の挿入部分および開口部 2の内径が 2 5 mmで、 中央 部付近が 2 0 c mにわたつてその内径が 5 O mmに拡大され、 かつテーパー部が それぞれ 5 c mの長さで形成されている、 全長 5 0 c mの炭化ケィ素製筒状容器 1に、 その上端 1 0 c mの位置から下端までの周囲に加熱装置 3として高周波加 熱コイルを設置した。 図 2に示す通液可能なジャケット構造をもつ、 内径 1 0 m m、 外径 1 7 mmのステンレス製のクロロシラン類供給管 5を、 該筒状容器 1の 上端から 1 5 c mの高さまで挿入した。 密閉容器 1 0は、 内径 7 5 O mm、 長さ が 3 mのステンレス製とした。
なお、 上記筒状容器の下端の周縁は図 6に示す形状とした。
クロロシラン類供給管の冷却ジャケットに通水して、 管の内部を 5 0 °C以下に 維持すると共に、 密閉容器の下部ジャケットにも通水し、 筒状容器上部の水素供 給管 14、 および密閉容器 10の上部のシールガス供給管 21から水素ガスをそ れぞれ 5LZmi n流通させたのち、 高周波加熱装置を起動して、 筒状容器 1を 1, 500°Cに加熱した。 容器内の圧力は、 ほぼ大気圧であった。
クロロシラン類供給管 5にトリクロロシランを 10 gZmi nの速度で供給し たところ、 約 1 gZm i nの速度でほぼ均一な粒径を有する粒状のシリコンの液 滴が自然落下中に観察された。 この場合のトリクロロシランの転化率は約 50% であった。
50時間反応を継続した後、 運転を停止して装置内部を開放観察したところ、 シリコンによる閉塞は発生していなかった。

Claims

請求の範囲
1 . 内部に気泡を有しそして見かけ密度が 2 . 2 0 c m3以下である気泡入 り多結晶シリコン。
2 . 独立粒子の集合体あるいは独立粒子の凝集体の形態にある請求項 1に記載の 気泡入り多結晶シリコン。
3 . 独立粒子の集合体が 1 0 0 g中 1個の独立粒子の重量が 0. 2〜 2 gの範囲 にある独立粒子が 5 0 g以上を占めて構成される請求項 2に記載の気泡入り多結 晶シリコン。
4. 独立粒子の集合体が独立粒子の凝集体の凝集を解散して形成される請求項 2 に記載の気泡入り多結晶シリコン。
5 . 複数個の独立気泡を含有しかつそれらの独立気泡が粒子の中央部に存在する 請求項 1に記載の気泡入り多結晶シリコン。
6 . 請求項 1に記載の気泡入り多結晶シリコンの破碎物。
7 . 平均粒径が 2 0 0 mを超え 5 mm以下である請求項 6に記載の破碎物。
8 . 水素の存在下で溶融させた水素を含むシリコンの液滴を、 0 . 2〜 3秒の間 に、 自然落下させそして液滴中に水素気泡を閉じ込めた状態にまで冷却せしめる ことを特徴とする、 気泡入り多結晶シリコンの製造法。
9 . 自然落下を 0 . 2〜 2秒の間実施する請求項 8に記載の方法。
10. 水素とクロロシラン類を原料とするシリコンの析出反応および析出したシ リコンを水素の存在下で溶融させる反応を同時進行的に実施して上記水素を含む シリコンの液滴を準備する請求項 8に記載の方法。
11. (a) 下端にシリコン取出口となる開口部を有する筒状容器、
(b) 上記筒状容器の下端から任意の高さまでの内壁をシリコンの融点以上の温 度に加熱する加熱装置、
(c) 上記筒状容器の内径より小さい外径を有する内管よりなり、 シリコンの融 点以上に加熱された内壁により囲まれる空間に該内管の一方の開口を下方に向け て設けることにより構成されたクロロシラン類供給管、 および
(d) 筒状容器の内壁とクロロシラン類供給管の外壁とによって形成される間隙 にシールガスを供給する第 1シールガス供給管、
を具備することを特徴とする多結晶シリコンの製造装置。
12. (e) 上記筒状容器内に水素ガスを供給する水素ガス供給管をさらに有す る請求項 11に記載の装置。
13. 上記筒状容器内に前記筒状容器の下方に、 間隔をあけて、 筒状容器下端か ら落下する液滴を受ける冷却受け部を配置した請求項 11に記載の装置。
14. 筒状容器の少なくとも下端部を覆い、 かつ、 該筒状容器の下方に空間を形 成する密閉容器を有し、 該密閉容器には排ガス取出用配管が設けられ、 そして、 筒状容器の外壁と密閉容器の内壁とによって形成される間隙にシールガスを供給 する第 2シールガス配管が設けられた請求項 11〜13のいずれかに記載の多結 晶シリコン製造装置。
PCT/JP2001/003865 2000-05-11 2001-05-09 Silicium polycristallin et procede et appareil de production correspondants WO2001085613A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US10/030,657 US6861144B2 (en) 2000-05-11 2001-05-09 Polycrystalline silicon and process and apparatus for producing the same
EP01929998A EP1285880B1 (en) 2000-05-11 2001-05-09 Polycrystalline silicon and process for producing the same
AU56670/01A AU770276C (en) 2000-05-11 2001-05-09 Polycrystalline silicon and process and apparatus for producing the same
CA002377892A CA2377892C (en) 2000-05-11 2001-05-09 Polycrystalline silicon, method and apparatus for producing the same
DE60124246T DE60124246T2 (de) 2000-05-11 2001-05-09 Polykristallines silicium und verfahren zur herstellung desselben
NO20020117A NO333347B1 (no) 2000-05-11 2002-01-10 Oppskummet polykrystallinsk silisium, knust produkt derav og fremgangsmate for fremstilling derav
NO20120619A NO20120619L (no) 2000-05-11 2012-05-25 Polykrastallinsk silisium, anordning for fremstilling derav

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000139023 2000-05-11
JP2000-139023 2000-05-11

Publications (1)

Publication Number Publication Date
WO2001085613A1 true WO2001085613A1 (fr) 2001-11-15

Family

ID=18646543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/003865 WO2001085613A1 (fr) 2000-05-11 2001-05-09 Silicium polycristallin et procede et appareil de production correspondants

Country Status (10)

Country Link
US (1) US6861144B2 (ja)
EP (2) EP1719736B1 (ja)
KR (1) KR100692444B1 (ja)
CN (2) CN100406378C (ja)
AU (1) AU770276C (ja)
CA (1) CA2377892C (ja)
DE (2) DE60124246T2 (ja)
ES (2) ES2274884T3 (ja)
NO (2) NO333347B1 (ja)
WO (1) WO2001085613A1 (ja)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003241712A1 (en) * 2002-06-18 2003-12-31 Tokuyama Corporation Reaction apparatus for producing silicon
NO20033207D0 (no) * 2002-07-31 2003-07-15 Per Kristian Egeberg Fremgangsmåte og reaktor for fremstilling av höyrent silisium, samt anvendelse av fremgangsmåten og reaktoren ved fremstilling av höyrentsilisium fra uraffinert silisium
AU2004265173B2 (en) * 2003-08-13 2010-05-27 Tokuyama Corporation Tubular reaction vessel and process for producing silicon therewith
AU2004266934B2 (en) * 2003-08-22 2010-03-11 Tokuyama Corporation Silicon manufacturing apparatus
CA2567500C (en) * 2004-05-21 2010-07-13 Tokuyama Corporation Mass of silicon solidified from molten state and process for producing the same
JP4545505B2 (ja) * 2004-07-22 2010-09-15 株式会社トクヤマ シリコンの製造方法
EP1798198B1 (en) * 2004-08-11 2013-12-25 Tokuyama Corporation Silicon manufacturing apparatus
WO2006019110A1 (ja) * 2004-08-19 2006-02-23 Tokuyama Corporation クロロシラン類の反応装置
US7727483B2 (en) * 2004-08-19 2010-06-01 Tokuyama Corporation Reactor for chlorosilane compound
WO2006059632A1 (ja) * 2004-11-30 2006-06-08 Space Energy Corporation 多結晶シリコンインゴットの製造方法
JP4276627B2 (ja) 2005-01-12 2009-06-10 ソルボサーマル結晶成長技術研究組合 単結晶育成用圧力容器およびその製造方法
DE102006050901A1 (de) * 2005-11-17 2007-05-31 Solarworld Industries Deutschland Gmbh Verfahren zum Herstellen eines Halbleiterkörpers und zum Herstellen einer Halbleitervorrichtung
US9683286B2 (en) * 2006-04-28 2017-06-20 Gtat Corporation Increased polysilicon deposition in a CVD reactor
KR100768147B1 (ko) * 2006-05-11 2007-10-18 한국화학연구원 혼합된 코어수단을 이용한 다결정 실리콘 봉의 제조방법과그 제조장치
KR100783667B1 (ko) * 2006-08-10 2007-12-07 한국화학연구원 입자형 다결정 실리콘의 제조방법 및 제조장치
JP5205910B2 (ja) * 2006-10-31 2013-06-05 三菱マテリアル株式会社 トリクロロシラン製造装置
US7835136B2 (en) 2006-11-15 2010-11-16 Energ2, Inc. Electric double layer capacitance device
WO2008134568A2 (en) * 2007-04-25 2008-11-06 Kagan Ceran Deposition of high-purity silicon via high-surface area gas-solid or gas-liquid interfaces and recovery via liqued phase
DE102007035757A1 (de) * 2007-07-27 2009-01-29 Joint Solar Silicon Gmbh & Co. Kg Verfahren und Reaktor zur Herstellung von Silizium
JP5614990B2 (ja) * 2007-12-28 2014-10-29 株式会社トクヤマ シリコン製造装置
DE102008000052A1 (de) * 2008-01-14 2009-07-16 Wacker Chemie Ag Verfahren zur Abscheidung von polykristallinem Silicium
CN101565852B (zh) * 2008-04-25 2011-10-12 比亚迪股份有限公司 晶体连续生产设备及使用该设备连续生产多晶硅的方法
US8844513B2 (en) * 2008-07-07 2014-09-30 John Stock LaMunyon, III Apparatus, system and method for heating a ventilation system
DE102008036143A1 (de) 2008-08-01 2010-02-04 Berlinsolar Gmbh Verfahren zum Entfernen von nichtmetallischen Verunreinigungen aus metallurgischem Silicium
JP5334490B2 (ja) * 2008-08-06 2013-11-06 株式会社トクヤマ シリコン製造装置
CN103787336B (zh) 2008-09-16 2016-09-14 储晞 生产高纯颗粒硅的方法
KR101527516B1 (ko) * 2008-12-16 2015-06-09 삼성전자주식회사 실리콘 성장방법 및 이를 이용한 태양전지 제조방법
WO2011003033A1 (en) 2009-07-01 2011-01-06 Energ2, Inc. Ultrapure synthetic carbon materials
DE102009035041B3 (de) * 2009-07-28 2011-01-05 Sunicon Ag Anlage zur Herstellung von Silizium-Granulat
CN101837977B (zh) * 2010-03-12 2013-02-13 江苏中能硅业科技发展有限公司 硅单质的生产方法及生产设备
WO2012045002A1 (en) 2010-09-30 2012-04-05 Energ2 Technologies, Inc. Enhanced packing of energy storage particles
US20120262127A1 (en) 2011-04-15 2012-10-18 Energ2 Technologies, Inc. Flow ultracapacitor
CN103947017B (zh) 2011-06-03 2017-11-17 巴斯福股份公司 用于混合能量存储装置中的碳‑铅共混物
WO2013120011A1 (en) 2012-02-09 2013-08-15 Energ2 Technologies, Inc. Preparation of polymeric resins and carbon materials
WO2014143213A1 (en) 2013-03-14 2014-09-18 Energ2 Technologies, Inc. Composite carbon materials comprising lithium alloying electrochemical modifiers
US10195583B2 (en) 2013-11-05 2019-02-05 Group 14 Technologies, Inc. Carbon-based compositions with highly efficient volumetric gas sorption
WO2015137980A1 (en) 2014-03-14 2015-09-17 Energ2 Technologies, Inc. Novel methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same
KR101821006B1 (ko) 2014-05-13 2018-01-22 주식회사 엘지화학 수평형 반응기를 이용한 폴리실리콘 제조 장치 및 제조 방법
US20190097222A1 (en) 2015-08-14 2019-03-28 Energ2 Technologies, Inc. Composites of porous nano-featured silicon materials and carbon materials
DE102015215858B4 (de) * 2015-08-20 2019-01-24 Siltronic Ag Verfahren zur Wärmebehandlung von Granulat aus Silizium, Granulat aus Silizium und Verfahren zur Herstellung eines Einkristalls aus Silizium
CN113224274A (zh) 2015-08-28 2021-08-06 14集团技术公司 具有极其持久的锂嵌入的新型材料及其制造方法
JPWO2017183487A1 (ja) 2016-04-21 2019-03-07 株式会社トクヤマ 金属粉末の製造方法
US10407310B2 (en) 2017-01-26 2019-09-10 Rec Silicon Inc System for reducing agglomeration during annealing of flowable, finely divided solids
US20180208472A1 (en) * 2017-01-26 2018-07-26 Rec Silicon Inc Control of silicon oxide off-gas to prevent fouling of granular silicon annealing system
EP3593369A4 (en) 2017-03-09 2021-03-03 Group14 Technologies, Inc. DECOMPOSITION OF PRECURSORS CONTAINING SILICON ON POROUS SCAFFOLDING MATERIALS
CN107881558B (zh) * 2017-11-08 2023-08-22 广东先导微电子科技有限公司 砷化镓多晶合成装置
US11639292B2 (en) 2020-08-18 2023-05-02 Group14 Technologies, Inc. Particulate composite materials
US11335903B2 (en) 2020-08-18 2022-05-17 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low z
US11174167B1 (en) 2020-08-18 2021-11-16 Group14 Technologies, Inc. Silicon carbon composites comprising ultra low Z
CN114455591B (zh) * 2022-01-18 2023-08-18 山西宏晟利隆科技有限公司 一种工业制造二氧化硅设备
CN114405394B (zh) * 2022-02-14 2023-04-07 南京博纳能源环保科技有限公司 一种熔融硅出料的造粒装置及其造粒方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1033969A (ja) * 1996-07-22 1998-02-10 Jiyousuke Nakada 無機材料製の球状体の製造方法及びその製造装置
JPH10273310A (ja) * 1997-03-28 1998-10-13 Mitsubishi Materials Corp 石英ルツボに融着した残留多結晶シリコンの回収方法と装置
JPH11314996A (ja) * 1998-05-08 1999-11-16 Digital Wave:Kk 結晶の製造方法及び製造装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7508684A (nl) 1974-07-29 1976-02-02 Motorola Inc Werkwijze en inrichting voor de bereiding van silicium.
JPS52133085A (en) 1976-04-30 1977-11-08 Mitsubishi Metal Corp Production of single silicon crystal of high purity
US4176166A (en) * 1977-05-25 1979-11-27 John S. Pennish Process for producing liquid silicon
JPS6015565B2 (ja) 1978-03-20 1985-04-20 三菱マテリアル株式会社 高純度シリコン多結晶棒の連続製造装置
JPS5663813A (en) 1979-10-22 1981-05-30 Niiru Kaaruman Jiyusuteisu Liquid silicon manufacture and apparatus therefor
JPS57135708A (en) * 1981-02-12 1982-08-21 Shin Etsu Chem Co Ltd Manufacturing of high purity silicon granule
JPS57170510A (en) * 1981-04-15 1982-10-20 Hitachi Ltd Method of ion implantation
US4737348A (en) 1982-06-22 1988-04-12 Harry Levin Apparatus for making molten silicon
JPS59501109A (ja) 1982-06-22 1984-06-28 エシルコ−ポレ−シヨン ソ−ラ−グレ−ドの珪素を製造するための装置と方法
DE3236276A1 (de) * 1982-09-30 1984-04-05 Heliotronic Forschungs- und Entwicklungsgesellschaft für Solarzellen-Grundstoffe mbH, 8263 Burghausen Neuer werkstoff aus silicium und verfahren zu seiner herstellung
US4710260A (en) 1982-12-22 1987-12-01 Texas Instruments Incorporated Deposition of silicon at temperatures above its melting point
US4547258A (en) 1982-12-22 1985-10-15 Texas Instruments Incorporated Deposition of silicon at temperatures above its melting point
JPS59121109A (ja) 1982-12-24 1984-07-13 Denki Kagaku Kogyo Kk 高純度シリコンの製造方法
JPS6077115A (ja) * 1983-09-30 1985-05-01 Sumitomo Metal Ind Ltd 高純度シリコンの製造方法およびその装置
JPS627619A (ja) 1985-07-03 1987-01-14 Mitsubishi Chem Ind Ltd ケイ素の製造方法及び装置
US4994107A (en) 1986-07-09 1991-02-19 California Institute Of Technology Aerosol reactor production of uniform submicron powders
US4829019A (en) * 1987-05-12 1989-05-09 Texas Instruments Incorporated Method for increasing source/drain to channel stop breakdown and decrease P+/N+ encroachment
JPH0230611A (ja) * 1988-07-21 1990-02-01 Nkk Corp 多結晶シリコンの製造方法及び装置
WO1993009953A1 (en) * 1991-11-12 1993-05-27 Canon Kabushiki Kaisha Polycrystalline silicon-based base plate for liquid jet recording head, its manufacturing method, liquid jet recording head using the base plate, and liquid jet recording apparatus
US5478396A (en) * 1992-09-28 1995-12-26 Advanced Silicon Materials, Inc. Production of high-purity polycrystalline silicon rod for semiconductor applications
US5382412A (en) * 1992-10-16 1995-01-17 Korea Research Institute Of Chemical Technology Fluidized bed reactor heated by microwaves
CN1092602C (zh) * 1996-10-14 2002-10-16 川崎制铁株式会社 多晶硅的制造方法和装置
JP4003197B2 (ja) * 1998-08-04 2007-11-07 シャープ株式会社 多結晶シリコン塊の製造装置および製造方法
US6350312B1 (en) * 1999-03-15 2002-02-26 Memc Electronic Materials, Inc. Strontium doping of molten silicon for use in crystal growing process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1033969A (ja) * 1996-07-22 1998-02-10 Jiyousuke Nakada 無機材料製の球状体の製造方法及びその製造装置
JPH10273310A (ja) * 1997-03-28 1998-10-13 Mitsubishi Materials Corp 石英ルツボに融着した残留多結晶シリコンの回収方法と装置
JPH11314996A (ja) * 1998-05-08 1999-11-16 Digital Wave:Kk 結晶の製造方法及び製造装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1285880A4 *

Also Published As

Publication number Publication date
CN1224574C (zh) 2005-10-26
DE60124246D1 (de) 2006-12-14
DE60124246T2 (de) 2007-05-31
EP1285880A1 (en) 2003-02-26
NO20020117L (no) 2002-03-06
ES2274884T3 (es) 2007-06-01
ES2350591T3 (es) 2011-01-25
AU770276B2 (en) 2004-02-19
US20020104474A1 (en) 2002-08-08
CN1699161A (zh) 2005-11-23
CN1372530A (zh) 2002-10-02
KR20020026526A (ko) 2002-04-10
EP1285880B1 (en) 2006-11-02
NO20020117D0 (no) 2002-01-10
EP1719736A1 (en) 2006-11-08
DE60142808D1 (de) 2010-09-23
CN100406378C (zh) 2008-07-30
AU5667001A (en) 2001-11-20
CA2377892A1 (en) 2001-11-15
US6861144B2 (en) 2005-03-01
AU770276C (en) 2004-09-23
NO333347B1 (no) 2013-05-13
EP1285880A4 (en) 2004-05-26
NO20120619L (no) 2002-03-06
KR100692444B1 (ko) 2007-03-09
CA2377892C (en) 2009-02-03
EP1719736B1 (en) 2010-08-11

Similar Documents

Publication Publication Date Title
WO2001085613A1 (fr) Silicium polycristallin et procede et appareil de production correspondants
JP4157281B2 (ja) シリコン生成用反応装置
US20090289390A1 (en) Direct silicon or reactive metal casting
TWI386526B (zh) 高純度多結晶矽的製造方法及製造裝置
JP4692247B2 (ja) 高純度多結晶シリコンの製造方法
JP5040716B2 (ja) 高純度多結晶シリコンの製造装置および製造方法
EP2294005B1 (en) Method and skull reactor for producing silicon or a reactive metal
JP4692324B2 (ja) 高純度多結晶シリコンの製造装置
JP3958092B2 (ja) シリコン生成用反応装置
AU2005245291B2 (en) Cooled lump from molten silicon and process for producing the same
JP4639004B2 (ja) シリコン製造装置および製造方法
JP2003002626A (ja) シリコン生成用反応装置
JPH0829924B2 (ja) 高純度珪素の破砕方法
JP4231951B2 (ja) 多結晶シリコン発泡体およびその製造方法
JPS63225516A (ja) 高純度粒状珪素の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN IN KR NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 1020027000166

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 018012205

Country of ref document: CN

Ref document number: 2377892

Country of ref document: CA

Ref document number: IN/PCT/2002/59/CHE

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 56670/01

Country of ref document: AU

Ref document number: 10030657

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001929998

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027000166

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001929998

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 56670/01

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 2001929998

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020027000166

Country of ref document: KR