JP5205910B2 - トリクロロシラン製造装置 - Google Patents

トリクロロシラン製造装置 Download PDF

Info

Publication number
JP5205910B2
JP5205910B2 JP2007268618A JP2007268618A JP5205910B2 JP 5205910 B2 JP5205910 B2 JP 5205910B2 JP 2007268618 A JP2007268618 A JP 2007268618A JP 2007268618 A JP2007268618 A JP 2007268618A JP 5205910 B2 JP5205910 B2 JP 5205910B2
Authority
JP
Japan
Prior art keywords
reaction
gas
cylinder
trichlorosilane
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007268618A
Other languages
English (en)
Other versions
JP2008133175A (ja
Inventor
敏由記 石井
秀男 伊藤
祐司 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007268618A priority Critical patent/JP5205910B2/ja
Priority to CN2007800273543A priority patent/CN101489931B/zh
Priority to US12/226,201 priority patent/US7998428B2/en
Priority to PCT/JP2007/070843 priority patent/WO2008053786A1/ja
Priority to EP07830577A priority patent/EP2008969A4/en
Publication of JP2008133175A publication Critical patent/JP2008133175A/ja
Application granted granted Critical
Publication of JP5205910B2 publication Critical patent/JP5205910B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • C01B33/1071Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/007Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/02Apparatus characterised by being constructed of material selected for its chemically-resistant properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • B01J19/243Tubular reactors spirally, concentrically or zigzag wound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00132Controlling the temperature using electric heating or cooling elements
    • B01J2219/00135Electric resistance heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/0015Controlling the temperature by thermal insulation means
    • B01J2219/00155Controlling the temperature by thermal insulation means using insulating materials or refractories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/025Apparatus characterised by their chemically-resistant properties characterised by the construction materials of the reactor vessel proper
    • B01J2219/0272Graphite

Description

本発明は、テトラクロロシランをトリクロロシランに転換するトリクロロシラン製造装置に関する。
高純度のシリコン(Si:珪素)を製造するための原料として使用されるトリクロロシラン(SiHCl)は、テトラクロロシラン(SiCl:四塩化珪素)を水素と反応させて転換することで製造することができる。
すなわち、シリコンは、以下の反応式(1)(2)によるトリクロロシランの還元反応と熱分解反応で生成され、トリクロロシランは、以下の反応式(3)による転換反応で生成される。
SiHCl+H → Si+3HCl ・・・(1)
4SiHCl → Si+3SiCl+2H ・・・(2)
SiCl+H → SiHCl+HCl ・・・(3)
このトリクロロシランを製造する装置として、例えば特許文献1には、発熱体に囲まれた反応室が、同心配置の2つの管によって形成された外室と内室をもった二重室設計とされ、この反応室の下部に設けられた熱交換器を介して反応室に下方から水素とテトラクロロシランとの供給ガスを供給すると共に反応室の下方から反応生成ガスを排出する反応器が提案されている。この反応器では、上記熱交換器において、反応室に供給される供給ガスが、反応室から排出される反応生成ガスから熱を伝達されて予熱されると共に、排出される反応生成ガスの冷却が行われるようになっている。
特許第3781439号公報
上記従来の技術には、以下の課題が残されている。
すなわち、上記従来のトリクロロシランの製造装置では、反応室の下部に設けられた熱交換器によって供給される供給ガスと熱交換することで、反応生成ガスの冷却が行われるが、上記反応式(3)によるテトラクロロシランのトリクロロシランへ転換反応は、排出される反応生成ガスを急冷しないと、元に戻る逆反応も生じてしまう。このため、従来のようなガス同士の熱交換による冷却では急冷効果が低く、トリクロロシランへの転換率が低くなってしまうという不都合があった。
本発明は、前述の課題に鑑みてなされたもので、効率的に反応生成ガスを急冷し、転換効率を向上させることが可能なトリクロロシラン製造装置を提供することを目的とする。
本発明は、前記課題を解決するために以下の構成を採用した。すなわち、本発明のトリクロロシラン製造装置は、テトラクロロシランと水素とを含む供給ガスが内部に供給されてトリクロロシランと塩化水素とを含む反応生成ガスが生成される反応容器と、前記反応容器の内部を加熱する加熱機構と、前記反応容器及び前記加熱機構を収納する収納容器と、前記反応容器内に前記供給ガスを供給するガス供給内筒と、前記ガス供給内筒の外側にほぼ同軸で配され前記ガス供給内筒の外周面と自己の内周面との間に前記反応生成ガスの排気流路が形成されたガス排気外筒と、前記ガス排気外筒を内側で支持し内部に冷媒を流通させる冷媒路が形成された冷却筒とを備えていることを特徴とする。
このトリクロロシラン製造装置では、ガス供給内筒の外側に配されたガス排気外筒が、内部に冷媒路が形成された冷却筒の内側に支持されているので、反応容器から排出され高温状態の反応生成ガスがガス排気外筒の内側の排気流路を流れて排出する際に、外側の冷却筒によって急冷されると共に、内側のガス供給内筒を流れる供給ガスとの間でガス供給内筒の広い円筒表面を介して熱交換が行われてさらに冷却される。すなわち、冷却筒による冷却及び供給ガスとの熱交換による冷却の両効果によって、反応生成ガスが急激に冷却されて排出されるので、転換の逆反応が抑制されて安定した転換反応が維持され、転換率を向上させることができる。
また、本発明のトリクロロシラン製造装置は、前記収納容器内にアルゴンを供給するアルゴン供給機構を備えていることを特徴とする。すなわち、このトリクロロシラン製造装置では、アルゴン供給機構により収納容器内にアルゴンが供給されるので、反応容器周囲をアルゴンにより加圧状態にすることで、反応容器から供給ガスや反応生成ガスが漏洩することを防ぐことができる。これにより、反応容器から漏洩した供給ガスや反応生成ガスが反応容器外側の加熱機構等に使用されるカーボンと反応することを防ぐことができる。また、アルゴン供給機構によりガス排気外筒の周囲にもアルゴンを供給することにより、ガス排気外筒をより冷却することもでき、内側を流通する反応生成ガスの急冷をより促進することも可能である。
また、本発明のトリクロロシラン製造装置は、前記反応容器の内部には、ほぼ同心配置された内径の異なる複数の反応筒壁によって仕切られた複数の小空間を、これら反応筒壁の下部と上部とに交互に形成した流通用貫通部によって内側から順に連通状態としてなる反応流路が形成され、該反応流路に前記ガス供給内筒及びガス排気外筒が接続されていることを特徴とする。すなわち、このトリクロロシラン製造装置では、反応筒壁内の反応流路に供給された供給ガスが加熱されながら流通用貫通部を介して反応筒壁を隔てた外側又は内側の小空間に順次流れつつ反応して反応生成ガスとなる。この際、上記各反応筒壁に、内側から順に下部と上部とに交互に流通用貫通部が形成されているので、ガスは外側又は内側の小空間に移動する度に下部から上部へ、上部から下部へと交互に流れ方向を繰り返し変える。したがって、反応容器内に長い反応流路が確保されると共に複数枚の反応筒壁で伝熱面積が増大されることで、供給ガスが反応するために必要な十分な保持時間及び加熱を確保することができ、転換率をより向上させることができる。また、反応流路が上下に折り返し連続して構成されることで、反応容器全体を小型化することができると共に、反応容器全体の熱放散を低くすることが可能になる。
この場合、流通用貫通部としては、後述の実施形態における反応筒壁に形成した貫通孔の他、反応筒壁の上端部又は下端部に形成した切欠き等が含まれる。
さらに、本発明のトリクロロシラン製造装置は、前記複数の小空間のうち最も内側の小空間に前記ガス供給内筒が連通されていると共に、最も外側の小空間に前記排気流路が接続されていることを特徴とする。すなわち、このトリクロロシラン製造装置では、反応流路のうちの最も内側の小空間にガス供給内筒が連通されていると共に、最も外側の小空間に排気流路が接続されているので、加熱機構により最も高温状態とされた反応生成ガスが最も外側の小空間からガス排気外筒内の排気流路へと導かれる。したがって、最も高温状態とされた反応生成ガスが、ガス排気外筒内で急冷されることで、より急激な冷却作用が得られ、安定した転換反応を得ることができる。
また、本発明のトリクロロシラン製造装置において、前記ガス供給内筒及び前記ガス排気外筒は、前記反応容器の上方に配置されるとともに、前記反応容器の底板(実施形態では下部支持円板14)の中央部が、前記収納容器内に上向きに突出する支持柱によって支持されていることを特徴とする。
このような構成とすることにより、反応容器の底板が支持柱部材によって収納容器の内底面から浮かされた状態に支持されるため、その間が断熱空間とされるとともに、反応容器の壁の熱膨張をこの底板の撓みによって吸収することができる。
また、本発明のトリクロロシラン製造装置は、反応容器を構成する部材が、カーボンで形成されていることを特徴とする。
さらに、本発明のトリクロロシラン製造装置は、前記カーボンの表面が、炭化珪素でコーティングされていることを特徴とする。すなわち、このトリクロロシラン製造装置では、炭化珪素(SiC)でコーティングされたカーボンで反応容器が構成されているので、カーボンと供給ガス及び反応生成ガス中の水素、クロロシラン及び塩化水素(HCl)とが反応してメタン、メチルクロロシラン、炭化珪素等が生成されて不純物となることを防ぎ、純度の高いトリクロロシランを得ることができる。
本発明によれば、以下の効果を奏する。
すなわち、本発明に係るトリクロロシラン製造装置によれば、ガス供給内筒の外側に配されたガス排気外筒が、内部に冷媒路が形成された冷却筒の内側に支持されているので、冷却筒による冷却及び供給ガスとの熱交換による冷却の両効果によって、反応生成ガスが急激に冷却され、転換の逆反応が抑制されて高い転換率でトリクロロシランを得ることができる。
以下、本発明に係るトリクロロシラン製造装置の一実施形態を、図1を参照しながら説明する。
本実施形態のトリクロロシラン製造装置は、図1に示すように、テトラクロロシランと水素との供給ガスが内部に供給されて転換反応によりトリクロロシランと塩化水素との反応生成ガスが生成される反応容器1と、反応容器1の周囲に配され該反応容器1を加熱する加熱機構2と、反応容器1及び加熱機構2の周囲を覆うように配された断熱材3と、反応容器1、加熱機構2及び断熱材3を収納する収納容器5と、反応容器1上に設けられ該反応容器1内に上部から供給ガスを供給するガス供給内筒6と、ガス供給内筒6の外側に同一中心軸で配されガス供給内筒6の外周面と自己の内周面との間に反応容器1から排出された反応生成ガスの排気流路7が形成されたガス排気外筒8と、ガス排気外筒8を内側で支持し内部に水(冷媒)を流通させる冷媒路4が形成された冷却筒9と、収納容器5内にアルゴン(Ar)を供給するアルゴン供給機構10とを備えている。
上記反応容器1は、その内部空間を複数の小空間11a〜11dに区画するための内径の異なる円筒状の第1〜第4反応筒壁12a〜12dを備えている。すなわち、反応容器1内の空間(最も外側の第4反応筒壁12dより内側の空間)は、3つの第1〜第3反応筒壁12a〜12cにより、中央に1つの円柱状の小空間11aと、その外側に3つの円筒状の小空間11b〜11dとに仕切られている。また、最も内側の第1反応筒壁12aの内側空間である円柱状の小空間11aの上部にガス供給内筒6が連通されていると共に、最も外側の小空間11dに排気流路7が接続されている。
また、これら第1〜第3反応筒壁12a〜12cには、内側から順に下部と上部とに交互に流通用貫通孔13が形成されている。すなわち、第1反応筒壁12aには、下部に複数の流通用貫通孔13が周方向に形成され、第2反応筒壁12bには、上部に複数の流通用貫通孔13が周方向に形成されている。また、第3反応筒壁12cには、下部に複数の流通用貫通孔13が形成されている。そして、これら流通用貫通孔13によって各小空間11a〜11dを内側から順次連通状態とした反応流路30が構成される。
したがって、第1反応筒壁12aの内側の小空間11aに供給された供給ガスが加熱されながら複数の流通用貫通孔13を介して外側の小空間11b〜11dに順次流れつつ反応して反応生成ガスとなるように設定されている。また、内側から順に反応筒壁12a〜12cの上部と下部とで交互に配された流通用貫通孔13間をガスが流れることで、上方向と下方向とにガスの流れ方向が繰り返し変わるように設定されている。なお、図中において、ガスの流れ方向を矢印で示している。
上記第1〜第3反応筒壁12a〜12cは、下部が下部支持円板14のリング状溝31にはめ込まれて支持されていると共に、上部が上部支持円板15で固定されている。該上部支持円板15の上部には、ガス供給内筒6の下端が固定されている。また、上部支持円板15には、中心孔32が形成され、該中心孔32を介して第1反応筒壁12aの内側の小空間11aとガス供給内筒6とが連通されている。上記下部支持円板14は、その中央が支持柱部材16に支持されている。この支持柱部材16は、収納容器5の底板を構成している底部支持部材23の中央から上向きに突出しており、その上端に上記下部支持円板14の中央部が支持されていることから、この下部支持円板14は、底部支持部材23から浮かされた状態とされている。
上記第4反応筒壁12dは、第1〜第3反応筒壁12a〜12cよりも若干高く形成されており、その下部が下部支持円板14のリング状溝31にはめ込まれて支持されていると共に、上部が円環状の上部円環板17に固定されている。該上部円環板17は、上部支持円板15の上方に所定間隔を空けて配されており、上部支持円板15との間に扁平な連絡流路33が水平に形成されている。さらに、上部円環板17上には、ガス排気外筒8の下端が固定されている。なお、ガス排気外筒8の下端開口部と上部円環板17の中央開口部17aとは、内径が同一に設定されており、互いの開口部が一致するように配されている。したがって、上部支持円板15と上部円環板17との間の連絡流路33は、上部円環板17の中央開口部17aを介して排気流路7に接続されている。
上記ガス供給内筒6は、冷却筒9の上部に設けられた供給ガス導入部18内に上端部が開口されている。この供給ガス導入部18内には、供給ガス導入管19が接続され、供給ガスの供給源(図示略)からの供給ガスが供給ガス導入管19から供給ガス導入部18を介してガス供給内筒6内に供給されるようになっている。
上記ガス排気外筒8は、その上端開口部が冷却筒9の上端部から所定間隔を空けて配されており、その上部にはガス排気管20が接続され、ガス排気外筒8の上端開口部からの反応生成ガスは、冷却筒9の上部を介してガス排気管20から外部に排出されるようになっている。
反応容器1を構成する部材、この実施形態の場合は第1〜第4反応筒壁12a〜12d、下部支持円板14、上部支持円板15及び上部円環板17と、ガス供給内筒6と、ガス排気外筒8とは、それぞれカーボンで形成されていると共に、該カーボンの表面に炭化珪素がコーティングされている。
上記収納容器5は、断熱材3の半径方向外側に配置される筒状壁34と、その筒状壁34の上端に一体に設けられたテーパ部35とを備え、その内側の断熱材3とともに上記反応容器1を囲うものであり、上記冷却筒4はテーパ部35の上端に一体に設けられている。上記収納容器5及び上記冷却筒9は、ステンレス製である。
上記加熱機構2は、反応容器1の周囲に反応容器1を囲うように配された発熱体であるヒータ部21と、該ヒータ部21の下部に接続されヒータ部21に電流を流すための電極部22とを備えている。この電極部22は、図示しない電源に接続されている。上記ヒータ部21は、カーボンで形成されている。また、加熱機構2は、反応容器1内が800℃〜1400℃の範囲内の温度になるように加熱制御を行う。なお、反応容器1内を1200℃以上に設定すれば、転換率が向上する。また、ジシラン類を導入し、シラン類を取り出してもよい。
上記断熱材3は、例えばカーボンで形成され、上記収納容器5の筒状壁34の内側に配置される筒状壁36と、この筒状壁36の上端と上記ガス排気外筒8との間を閉塞する天板部37とを備えており、下部を円板状の底部支持部材23に支持されている。この底部支持部材23は断熱材3によって囲まれた空間の底部を構成するとともに、収納容器5の底部も兼ねているものである。この場合、断熱材3の筒状壁36は収納容器5の筒状壁34に若干の隙間を空けてほぼ内貼りされたように配置されるが、断熱材3の天板部37は、上記収納容器5のテーパ部35及びガス排気外筒8との間に円錐環状の空間38を形成している。この断熱材3は、この断熱材3によって囲まれた空間に対して厳密な気密構造を有するものではない。
なお、上記上部円環板17の下面には、反応流路30のうちの最も外側の小空間11d内に突出した温度センサSが固定されている。この温度センサSで温度を測定しながら、加熱機構2により温度制御を行う。
上記アルゴン供給機構10は、底部支持部材23を貫通して収納容器5内(図1の例では断熱材3に囲まれた空間内)に先端が突出したアルゴン供給管24と、アルゴン供給管24に接続されたアルゴン供給源25とを備えている。なお、このアルゴン供給機構10は、収納容器5内が所定の加圧状態となるようにアルゴンの供給制御を行っている。また、収納容器5内に供給されるアルゴンは、収納容器5の上部から内部に突出したガス排気外筒8の下部周囲(上記円錐環状の空間38)にも供給されるようになっている。なお、収納容器5の上部には、内部雰囲気の置換やアルゴンの排気を行うための容器用ポンプP1が接続されている。
このように本実施形態では、反応容器1上のガス供給内筒6の外側に配されたガス排気外筒8が、水冷の冷却筒9の内側に支持されているので、反応容器1から排出され高温状態の反応生成ガスがガス排気外筒8の内側の排気流路7を流れて排出する際に、外側の冷却筒9によって急冷されると共に、内側のガス供給内筒6を流れる供給ガスとの間でガス供給内筒6の広い円筒表面を介して熱交換が行われてさらに冷却される。
すなわち、冷却筒9による冷却及び供給ガスとの熱交換による冷却の両効果によって、反応生成ガスが急激に冷却されて排出されるので、転換の逆反応が抑制されて安定した転換反応が維持され、転換率を向上させることができる。また、本実施形態のトリクロロシラン製造装置では、ガス同士の熱交換機構が反応容器1の上部に一体化して設けられることになり、全体を小型化することができる。
また、アルゴン供給機構10により収納容器5内にアルゴンが供給されるので、反応容器1周囲をアルゴンにより加圧状態にすることで、反応容器1から供給ガスや反応生成ガスが漏洩することを防ぐことができる。これにより、反応容器1から漏洩した供給ガスや反応生成ガスが反応容器1外側の加熱機構2等に使用されるカーボンと反応することを防ぐことができる。さらに、アルゴン供給機構10によりガス排気外筒8の周囲にもアルゴンを供給することにより、ガス排気外筒8をより冷却することもでき、内側を流通する反応生成ガスの急冷をより促進することも可能である。
なお、アルゴンをパージガスとして供給する場合には、アルゴン供給機構10では、収納容器5の下部からアルゴンを供給するので、ヒータ部21による加熱で自然対流が上向きに生じる。そして、収納容器5上部に接続された容器用ポンプP1から吸引することで、パージガスが下から上へとスムーズに流れて抜けることで、高いパージ効果を得ることができる。
また、第1〜第3反応筒壁12a〜12cに、内側から順に下部と上部とに交互に流通用貫通孔13が形成されているので、ガスは反応流路30の外側に移動する度に下部から上部へ、上部から下部へと交互に流れ方向を変える。したがって、反応容器1内に長い反応流路30が確保されると共に複数枚の第1〜第4反応筒壁12a〜12dで伝熱面積が増大されることで、供給ガスが反応するために必要な十分な保持時間及び加熱を確保することができ、転換率をより向上させることができる。また、反応流路30が上下に折り返し連続して構成されることで、反応容器1全体を小型化することができると共に、反応容器1全体の熱放散を低くすることが可能になる。
さらに、第1反応筒壁12aの上部にガス供給内筒6が連通されていると共に、反応流路30の最も外側の小空間11dに排気流路7が接続されているので、加熱機構2により最も高温状態とされた反応生成ガスが最も外側の小空間11dからガス排気外筒8内の排気流路7へと導かれる。したがって、最も高温状態とされた反応生成ガスが、ガス排気外筒8内で急冷されることで、より急激な冷却作用が得られ、安定した転換反応を得ることができる。
ところで、各反応筒壁12a〜12dは、加熱機構2からの熱によって熱膨張が生じ、特に、最も加熱機構2に近い外側の第4反応筒壁12dの熱膨張が大きくなる。この場合、これら反応筒壁12a〜12dを下方から支持している下部支持円板14は、その中央部が支持柱部材16に支持され、その支持部分の周囲は底部支持部材23から浮かされた状態となっているため、支持柱部材16を中心とする撓み変形が容易な状態とされている。したがって、反応筒壁12a〜12dの熱膨張に対して下部支持円板14が撓み変形することにより、その応力を吸収することができる。
一方、反応筒壁12a〜12dの上端は、第1反応筒壁12aから第3反応筒壁12cまでが上部支持円板15に当接し、第4反応筒壁12dは上部円環板17に当接しており、各反応筒壁12a〜12dの熱膨張を上部支持円板15と上部円環板17との二か所に分散して受けることになる。そのうち、上部支持円板15は、下部支持円板14と同様、中央部が支持された状態で外周部はフリーな状態とされていることから、撓み変形が容易である。上部円環板17は断熱材3の表面に固定されているから、第4反応筒壁12dの熱膨張は主として下部支持円板14の撓み変形によって吸収することになるが、断熱材3としてクッション性を有するものを使用すれば、下部支持円板14の撓み変形とともに断熱材3の変形によっても熱膨張を吸収することができる。
このように反応筒壁12a〜12dの熱膨張を上下の支持円板14,15の撓み変形等によって効率よく吸収することができるとともに、上部支持円板15と上部円環板17とは応力を分散して受けることになり、割れ等の発生を防止することができる。また、反応筒壁12a〜12dの熱膨張に伴い、これら反応筒壁12a〜12dと上下の支持円板14,15及び上部円環板17との密接力がより強められることになり、セルフシーリング効果が高まって各小空間12a〜12d間でのガスのリークが防止され、長い反応流路30としての信頼性が高められる。
もちろん、下部支持円板14が底部支持部材23から浮かされていることから、その間の空間による断熱作用も加わって、高い断熱性を発揮することができる。
また、炭化珪素でコーティングされたカーボンで反応容器1の構成部材(第1〜第4反応筒壁12a〜12d、下部支持円板14、上部支持円板15、上部円環板17、ガス供給内筒6及びガス排気外筒8)が構成されているので、カーボンと供給ガス及び反応生成ガス中の水素、クロロシラン及び塩化水素(HCl)とが反応してメタン、メチルクロロシラン、炭化珪素等が生成されて不純物となることを防ぎ、純度の高いトリクロロシランを得ることができる。
なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記実施形態では、4つの第1〜第4反応筒壁12a〜12dを用いたが、3又は5以上の反応筒壁を採用しても構わない。なお、反応筒壁の枚数が多いと、伝熱面積が増えてエネルギー効率が高くなる反面、加熱機構2による輻射熱が内側に伝わり難くなって加熱効果が低下するため、反応筒壁は、ガス流量及び装置全体の大きさに応じて適切な枚数に設定される。
また、収納容器5の壁内部に水等の冷媒を流通させる冷媒路を形成し、冷却機構を付加しても構わない。
さらに、互いの周面間に流路を形成する両反応筒壁の流通用貫通孔13は、上下位置だけでなく互いに周方向にずれて形成されていても構わない。この場合、流通用貫通孔13間の流路をより長くすることができる。また、貫通孔でなくともよく、反応筒壁の上端部又は下端部に形成した切欠による構成としてもよい。本発明の流通用貫通部は貫通孔、切欠のいずれをも含むものである。
また、下部支持円板14のリング状溝31に反応筒壁12a〜12dをはめ込む構成としたが、そのリング状溝は図1に示される断面矩形のものだけでなく、反応筒壁の端面を断面半円形にして、リング状溝も断面半円形のものとすることにより、若干の回動が可能なようにしてもよく、下部支持円板の撓み変形を円滑にすることができる。
また、このリング状溝は各反応筒壁を同心状に位置合わせして配置する機能をも有するものであるが、このリング状溝を形成するのではなく、下部支持円板の上面は平坦面として反応筒壁を載置し、各反応筒壁の間に相互位置関係を拘束するためのリング状のスペーサを介在させる構成としてもよい。
さらに、上記実施形態では、反応容器の上方にガス供給内筒とガス排気外筒とを設けて、反応容器の上部に供給ガスを供給し、反応生成ガスも反応容器の上部から排出するように構成したが、反応容器の下方にガス供給内筒とガス排気外筒とを設けて、反応容器の下部に供給ガスを供給し、反応容器の下部から反応生成ガスを排出するように構成してもよい。
図1に示すトリクロロシラン製造装置を使用して、以下の実験条件の下に転換率を測定した。比較例としては、図1に示すトリクロロシラン製造装置における供給ガスの入り口と出口とを逆にし、ガス排気管20から供給ガスを供給し、反応生成ガスが供給ガス導入管19から排出されるようにしたものを適用した。
実験条件としては、供給ガス中のテトラクロロシラン及び水素の各投入流量、加熱機構におけるヒータ部の加熱温度を変えた表1に示す実験条件1〜3の3通りとした。
Figure 0005205910
これら3条件において、供給ガスの投入流量はマスフローコントローラーを用いて一定流量を確保し、反応生成ガスの組成をガスクロマトグラフを用いて測定した。反応時間は流量・温度が安定した時点を基準として48時間とした。転換率は、その反応時間中に投入された総テトラクロロシランがトリクロロシランに転換された比率(mol%)とした。結果は表2の通りであり、本発明の実施例の構成の場合、比較例に比べて約40%転換率が向上している。
Figure 0005205910
本発明に係るトリクロロシラン製造装置の一実施形態を示す簡略的な断面図である。
符号の説明
1…反応容器、2…加熱機構、3…断熱材、4…冷媒路、5…収納容器、6…ガス供給内筒、7…排気流路、8…ガス排気外筒、9…冷却筒、10…アルゴン供給機構、11a〜11d…小空間、12a〜12d…第1〜第4反応筒壁、13…流通用貫通孔(流通用貫通部)、14…下部支持円板(底板)、16…支持柱部材、23…底部支持部材、30…反応流路

Claims (7)

  1. テトラクロロシランと水素とを含む供給ガスが内部に供給されてトリクロロシランと塩化水素とを含む反応生成ガスが生成される反応容器と、
    前記反応容器の内部を加熱する加熱機構と、
    前記反応容器及び前記加熱機構を収納する収納容器と、
    前記反応容器内に前記供給ガスを供給するガス供給内筒と、
    前記ガス供給内筒の外側にほぼ同軸で配され前記ガス供給内筒の外周面と自己の内周面との間に前記反応生成ガスの排気流路が形成されたガス排気外筒と、
    前記ガス排気外筒を内側で支持し内部に冷媒を流通させる冷媒路が形成された冷却筒とを備えていることを特徴とするトリクロロシラン製造装置。
  2. 請求項1に記載のトリクロロシラン製造装置において、
    前記収納容器内にアルゴンを供給するアルゴン供給機構を備えていることを特徴とするトリクロロシラン製造装置。
  3. 請求項1又は2に記載のトリクロロシラン製造装置において、
    前記反応容器の内部には、ほぼ同心配置された内径の異なる複数の反応筒壁によって仕切られた複数の小空間を、これら反応筒壁の下部と上部とに交互に形成した流通用貫通部によって内側から順に連通状態としてなる反応流路が形成され、
    該反応流路に前記ガス供給内筒及びガス排気外筒が接続されていることを特徴とするトリクロロシラン製造装置。
  4. 請求項3に記載のトリクロロシラン製造装置において、
    前記複数の小空間のうち最も内側の小空間に前記ガス供給内筒が連通されていると共に、最も外側の小空間に前記排気流路が接続されていることを特徴とするトリクロロシラン製造装置。
  5. 請求項1から4のいずれか一項に記載のトリクロロシラン製造装置において、
    前記ガス供給内筒及び前記ガス排気外筒は、前記反応容器の上方に配置されるとともに、
    前記反応容器の底板の中央部が、前記収納容器内に上向きに突出する支持柱部材によって下方から支持されていることを特徴とするトリクロロシラン製造装置。
  6. 請求項1から5のいずれか一項に記載のトリクロロシラン製造装置において、
    前記反応容器を構成する部材が、カーボンで形成されていることを特徴とするトリクロロシラン製造装置。
  7. 請求項6に記載のトリクロロシラン製造装置において、
    前記カーボンの表面が、炭化珪素でコーティングされていることを特徴とするトリクロロシラン製造装置。
JP2007268618A 2006-10-31 2007-10-16 トリクロロシラン製造装置 Expired - Fee Related JP5205910B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007268618A JP5205910B2 (ja) 2006-10-31 2007-10-16 トリクロロシラン製造装置
CN2007800273543A CN101489931B (zh) 2006-10-31 2007-10-25 三氯硅烷制造装置
US12/226,201 US7998428B2 (en) 2006-10-31 2007-10-25 Apparatus for producing trichlorosilane
PCT/JP2007/070843 WO2008053786A1 (fr) 2006-10-31 2007-10-25 Appareil de production de trichlorosilane
EP07830577A EP2008969A4 (en) 2006-10-31 2007-10-25 DEVICE FOR PREPARING TRICHLORESILANE

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006297033 2006-10-31
JP2006297033 2006-10-31
JP2007268618A JP5205910B2 (ja) 2006-10-31 2007-10-16 トリクロロシラン製造装置

Publications (2)

Publication Number Publication Date
JP2008133175A JP2008133175A (ja) 2008-06-12
JP5205910B2 true JP5205910B2 (ja) 2013-06-05

Family

ID=39344128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007268618A Expired - Fee Related JP5205910B2 (ja) 2006-10-31 2007-10-16 トリクロロシラン製造装置

Country Status (5)

Country Link
US (1) US7998428B2 (ja)
EP (1) EP2008969A4 (ja)
JP (1) JP5205910B2 (ja)
CN (1) CN101489931B (ja)
WO (1) WO2008053786A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5316290B2 (ja) * 2008-08-05 2013-10-16 三菱マテリアル株式会社 トリクロロシラン製造装置及び製造方法
JP5316291B2 (ja) * 2008-08-05 2013-10-16 三菱マテリアル株式会社 トリクロロシラン製造装置及び製造方法
JP5392488B2 (ja) * 2008-10-30 2014-01-22 三菱マテリアル株式会社 トリクロロシランの製造方法および用途
JP5412447B2 (ja) * 2009-01-30 2014-02-12 電気化学工業株式会社 炭素含有材料からなる反応容器を備える反応装置、その反応装置の腐食防止方法およびその反応装置を用いたクロロシラン類の生産方法
JP5436454B2 (ja) * 2009-01-30 2014-03-05 電気化学工業株式会社 発熱装置
JP5329641B2 (ja) * 2009-03-11 2013-10-30 電気化学工業株式会社 クロロシラン回収装置およびそれを用いたクロロシラン回収方法
JP5633375B2 (ja) * 2010-01-27 2014-12-03 三菱マテリアル株式会社 トリクロロシラン製造装置
CN102134079B (zh) * 2010-01-27 2014-07-09 三菱综合材料株式会社 三氯硅烷制造装置
CN102190303B (zh) 2010-03-04 2015-04-01 三菱综合材料株式会社 三氯硅烷制造装置及制造方法
CN102190304B (zh) * 2010-03-08 2015-04-15 三菱综合材料株式会社 三氯硅烷制造装置
DE102010039267A1 (de) * 2010-08-12 2012-02-16 Evonik Degussa Gmbh Verwendung eines Reaktors mit integriertem Wärmetauscher in einem Verfahren zur Hydrodechlorierung von Siliziumtetrachlorid
CN103228351B (zh) * 2010-09-27 2019-09-24 Gtat公司 加热装置及与其相关的方法
DE102011002749A1 (de) 2011-01-17 2012-07-19 Wacker Chemie Ag Verfahren und Vorrichtung zur Konvertierung von Siliciumtetrachlorid in Trichlorsilan
DE102011005647A1 (de) * 2011-03-16 2012-10-04 Evonik Degussa Gmbh Verbundverfahren zur Umstetzung von STC-haltigen und OCS-haltigen Nebenströmen zu wasserstoffhaltigen Chlorsilanen
US9168502B2 (en) * 2011-11-28 2015-10-27 Mitsubishi Materials Corporation Apparatus for producing trichlorosilane
DE102012218741A1 (de) 2012-10-15 2014-04-17 Wacker Chemie Ag Verfahren zur Hydrierung von Siliciumtetrachlorid in Trichlorsilan
DE102012223784A1 (de) 2012-12-19 2014-06-26 Wacker Chemie Ag Verfahren zur Konvertierung von Siliciumtetrachlorid in Trichlorsilan
KR20160005736A (ko) 2013-05-07 2016-01-15 브루스 헤이즐틴 모니리딕 열교환기, 할로실란의 수소첨가 장치 및 방법
DE102014205001A1 (de) 2014-03-18 2015-09-24 Wacker Chemie Ag Verfahren zur Herstellung von Trichlorsilan
JP6468901B2 (ja) * 2015-03-19 2019-02-13 東京エレクトロン株式会社 基板処理装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR656254A (fr) * 1926-06-22 1929-05-06 Appareil pour l'exécution de réactions entre fluides, s'accomplissant à température élevée
US2145084A (en) * 1936-02-12 1939-01-24 Hersey John Cronin Heat exchange apparatus
NL78699C (ja) * 1950-03-06
DE2518853C3 (de) * 1975-04-28 1979-03-22 Siemens Ag, 1000 Berlin Und 8000 Muenchen Vorrichtung zum Abscheiden von elementarem Silicium aus einem Reaktionsgas
US4343772A (en) 1980-02-29 1982-08-10 Nasa Thermal reactor
DE3024320A1 (de) * 1980-06-27 1982-04-01 Wacker-Chemitronic Gesellschaft für Elektronik-Grundstoffe mbH, 8263 Burghausen Vorrichtung zur hochtemperaturbehandlung von gasen
JPS57156318A (en) * 1981-03-16 1982-09-27 Koujiyundo Silicon Kk Production of trichlorosilane
US4351805A (en) * 1981-04-06 1982-09-28 International Business Machines Corporation Single gas flow elevated pressure reactor
US4668493A (en) * 1982-06-22 1987-05-26 Harry Levin Process for making silicon
DE3245636A1 (de) * 1982-12-09 1984-06-14 Interatom Internationale Atomreaktorbau Gmbh, 5060 Bergisch Gladbach Roehrenspaltofen mit umhuellten spaltrohren
JPS60122714A (ja) 1983-12-06 1985-07-01 Denki Kagaku Kogyo Kk 四塩化珪素の製造方法及びその製造装置
JPS6221706A (ja) 1985-07-22 1987-01-30 Nippon Steel Corp トリクロルシランを介する珪素または珪素化合物の循環的製造方法
JPH0649569B2 (ja) 1985-11-25 1994-06-29 高純度シリコン株式会社 トリクロルシランの製造方法およびその装置
US5118486A (en) 1991-04-26 1992-06-02 Hemlock Semiconductor Corporation Separation by atomization of by-product stream into particulate silicon and silanes
US5906799A (en) 1992-06-01 1999-05-25 Hemlock Semiconductor Corporation Chlorosilane and hydrogen reactor
US5382412A (en) * 1992-10-16 1995-01-17 Korea Research Institute Of Chemical Technology Fluidized bed reactor heated by microwaves
JP3529070B2 (ja) * 1995-12-01 2004-05-24 電気化学工業株式会社 カーボン製反応容器
US5820654A (en) * 1997-04-29 1998-10-13 Praxair Technology, Inc. Integrated solid electrolyte ionic conductor separator-cooler
CN1224574C (zh) 2000-05-11 2005-10-26 德山株式会社 多晶硅、其生产方法及生产装置
US7143610B2 (en) * 2001-03-23 2006-12-05 Vitro Global, S.A. Method and system for feeding and burning a pulverized fuel in a glass melting furnace, and burner for use in the same
DE10123950A1 (de) * 2001-05-17 2002-11-28 Degussa Granulate auf Basis von mittels Aerosol mit Aluminiumoxid dotiertem, pyrogen hergestelltem Siliziumdioxid, Verfahren zu ihrer Herstellung und ihre Verwendung
US20040173597A1 (en) * 2003-03-03 2004-09-09 Manoj Agrawal Apparatus for contacting gases at high temperature
JP2006297033A (ja) 2005-04-20 2006-11-02 Kunihiko Konno 書見台
JP2007268618A (ja) 2006-03-30 2007-10-18 Tdk Corp 研磨装置および研磨方法

Also Published As

Publication number Publication date
CN101489931B (zh) 2012-01-11
US20090155138A1 (en) 2009-06-18
US7998428B2 (en) 2011-08-16
JP2008133175A (ja) 2008-06-12
EP2008969A4 (en) 2011-02-16
EP2008969A1 (en) 2008-12-31
WO2008053786A1 (fr) 2008-05-08
CN101489931A (zh) 2009-07-22

Similar Documents

Publication Publication Date Title
JP5205910B2 (ja) トリクロロシラン製造装置
JP5428146B2 (ja) トリクロロシラン製造装置
JP5428145B2 (ja) トリクロロシラン製造装置
EP2501838A2 (en) Fluid bed reactor
JP5205906B2 (ja) トリクロロシラン製造装置
JPS62123011A (ja) トリクロルシランの製造方法およびその装置
JP2013517208A (ja) 四塩化ケイ素をトリクロロシランへと変換するための装置の必須の要素としての、加圧運転されるセラミック熱交換器の使用
JP2008150277A (ja) 耐熱耐食性部材及びトリクロロシラン製造装置
JP5012449B2 (ja) トリクロロシラン製造装置
JP5083004B2 (ja) トリクロロシラン製造装置
JP5160181B2 (ja) トリクロロシラン製造装置
JP5637018B2 (ja) トリクロロシラン製造装置
US9168502B2 (en) Apparatus for producing trichlorosilane
JP5436454B2 (ja) 発熱装置
JP2011157223A (ja) トリクロロシラン製造装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5205910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees