WO2001082314A1 - Elektrisches bauelement, verfahren zu dessen herstellung und dessen verwendung - Google Patents

Elektrisches bauelement, verfahren zu dessen herstellung und dessen verwendung Download PDF

Info

Publication number
WO2001082314A1
WO2001082314A1 PCT/DE2001/001564 DE0101564W WO0182314A1 WO 2001082314 A1 WO2001082314 A1 WO 2001082314A1 DE 0101564 W DE0101564 W DE 0101564W WO 0182314 A1 WO0182314 A1 WO 0182314A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
resistance
ceramic
layers
electrode layers
Prior art date
Application number
PCT/DE2001/001564
Other languages
English (en)
French (fr)
Inventor
Friedrich Rosc
Franz Schrank
Gerald Kloiber
Original Assignee
Epcos Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epcos Ag filed Critical Epcos Ag
Priority to US10/240,300 priority Critical patent/US7215236B2/en
Priority to AU62050/01A priority patent/AU6205001A/en
Priority to AT01935992T priority patent/ATE434823T1/de
Priority to DE50114953T priority patent/DE50114953D1/de
Priority to EP01935992A priority patent/EP1277215B1/de
Priority to JP2001579314A priority patent/JP2003532284A/ja
Publication of WO2001082314A1 publication Critical patent/WO2001082314A1/de
Priority to US11/697,844 priority patent/US7524337B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/041Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient formed as one or more layers or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/1413Terminals or electrodes formed on resistive elements having negative temperature coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/042Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient mainly consisting of inorganic non-metallic substances
    • H01C7/043Oxides or oxidic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49004Electrical device making including measuring or testing of device or component part
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49087Resistor making with envelope or housing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49087Resistor making with envelope or housing
    • Y10T29/49098Applying terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49128Assembling formed circuit to base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49169Assembling electrical component directly to terminal or elongated conductor

Definitions

  • the invention relates to an electrical component with a base body and two outer electrodes, in which the base body contains a ceramic with a predetermined specific resistance.
  • the invention further relates to a method for producing the electrical component.
  • the invention relates to the use of the electrical component.
  • NTC resistors For special applications of NTC resistors, for example in heating technology, industrial electronics or automotive electronics, low resistance values between 50 and
  • the resistance of an NTC component is usually specified at 25 ° Celsius.
  • Ceramics with a low specific resistance are available for the realization of components with the desired low resistance values. These ceramics are based on mixed crystals with spinel structure, which are composed of four cations from the group manganese, nickel, cobalt and copper. The cations are mixed with each other in an atomic ratio Mn / Ni / Co / Cu, which is between
  • the specific resistance of these ceramics is between 100 and 0.1 ⁇ cm.
  • These ceramics have the disadvantage that their resistance is subject to strong scatter. Furthermore, these ceramics have the disadvantage that their electrical properties, in particular their electrical resistance, are not stable over the long term are.
  • the long-term stability of the components is specified as a change in the resistance after the components have been stored, for example at a temperature of 70 ° Celsius over a period of 10,000 hours. Under these conditions, the time-related change in the resistance is greater than 2% for the components produced using low-resistance ceramics.
  • the known components also have the disadvantage that their resistance due to the simple design (ceramic block or disk with two outer contact electrodes) depends exclusively on the specific resistance of the ceramic and is therefore subject to corresponding fluctuations in the ceramic material composition.
  • the manufacturing-related deviation of the actual resistance from the target resistance can be 5% or more.
  • NTC resistor which has a multilayer structure, electrode layers being separated from one another by ceramic layers.
  • the ceramic layers are printed on the electrode layers as a thick film layer by means of screen printing. Because of the screen printing process used, the ceramic layers have large scatter values with regard to their layer thickness, so that the thermistors known from the cited document can only be produced with considerable difficulty with precisely predetermined resistance values.
  • the known thermistors thus have large tolerances with regard to the electrical resistances.
  • the well-known low-resistance NTC resistors are only suitable for applications in which there are low requirements with regard to component tolerances and component stability.
  • One such application is the manufacture of inrush current limiters.
  • the combination of high B value and low R value cannot be achieved physically.
  • the aim of the present invention is therefore to provide an electrical component which is suitable as an NTC resistor and which has a low resistance value with great long-term stability and a narrow spread of resistance values. It is also an object of the invention to provide a method for producing the electrical component which enables the target resistor of the component to be set as precisely as possible.
  • the invention specifies an electrical component with a base body that has a layer stack of overlapping electrically conductive electrode layers. Two adjacent electrode layers are separated from each other by an electrically conductive ceramic layer.
  • the electrically conductive ceramic layers consist of a ceramic material whose specific electrical resistance p (T) has a negative temperature coefficient.
  • the electrically conductive ceramic layers are produced from ceramic green foils sintered together with the electrode layers.
  • external electrodes are arranged on two opposite outer surfaces of the base body and are connected in an electrically conductive manner to the electrode layers.
  • the component according to the invention has the advantage that the electrically conductive ceramic layers are made from ceramic green foils.
  • the process of drawing ceramic green sheets can produce sheets with a thickness of about 50 ⁇ and in compliance with very precise layer thickness specifications.
  • the component according to the invention has the advantage that a predetermined resistance value for the component can be adhered to very precisely.
  • a ceramic material is selected for the electrically conductive ceramic layers, the B value of which describes the temperature profile p (T) of the specific electrical resistance is greater than 4000 K.
  • the B value describes the temperature curve p (T) using the following formula:
  • p 25 is equal to the specific electrical resistance at 25 ° C.
  • the B-value is calculated using the following formula:
  • R (T ] _) and (T 2 ) is the resistance of the ceramic material at two different temperatures T ⁇ and T.
  • Ceramics with large B values have the advantage that they have a high sensitivity of the resistance depending on the temperature, which enables the production of very sensitive temperature sensors. Furthermore, ceramic systems with large B values have the advantage of good long-term stability behavior of the electrical resistance. However, ceramics with high B values also have high specific resistances.
  • the inventive provision of electrode layers in the base body of the electrical component makes it possible to reduce the electrical resistance of the component. This is achieved in that through the electrode layers. the parallel connection of several high-resistance resistors is realized. Thus, despite the high resistances of the ceramics used, temperature sensors with resistance values less than 2 k ⁇ can be manufactured. Furthermore, an electrical component in which the base body has the shape of a cuboid is advantageous.
  • An advantageous form of coating the base body with external electrodes that do not cross edges and thus achieve the goal of leaving four of the side faces of the cuboid base body free of electrically conductive coatings is the use of a screen printing method for printing on side faces of the Cuboids.
  • Temperature sensors can thus be produced which at the same time have a very low resistance and a high sensitivity.
  • Some ceramic materials suitable for use in the component according to the invention are mentioned below whose B value is greater than 3600 K:
  • Such a ceramic has a B value of slightly more than 4000 K.
  • a ceramic which, in addition to Mn 3 Ü 4, also contains additions of nickel and titanium, the mixing ratio Mn / Ni / Ti corresponding to the ratio 77/20/3.
  • Such a ceramic has a B value of 4170 K.
  • Another example is a ceramic that contains nickel and zinc in addition to Mn 3 Ü 4 .
  • the mixing ratio Mn / Ni / Zn is 64/7/29.
  • Such a ceramic has a B value of 4450 K.
  • the ceramic is a mixed crystal in spinel structure, perovskite structure or corundum structure, which is produced on the basis of Mn3Ü 4 with one or more additives, selected from the elements nickel, cobalt , Titanium, zircon or aluminum.
  • the stable compositions which have a high specific resistance between 10 5 and 10 6 ⁇ cm, which can be reduced to a low value with the aid of the electrode layers.
  • a component based on a high-resistance ceramic with a specific resistance> 10 2 ⁇ cm has the advantage that the ceramic has a high long-term stability with regard to its electrical resistance.
  • a mixture based on Mn3Ü4 with a mixing ratio Mn / Ni of 94/6 comes into consideration as a high-resistance ceramic.
  • Such a ceramic has a specific resistance of 10 4 ⁇ cm and a B value of 4600 K.
  • Another possibility is a mixture of manganese, nickel and cobalt with a mixing ratio Mn / Ni / Co of 70/20/10.
  • the latter mixture has a specific resistance of 100 ⁇ cm and a B value of slightly more than 3600 K.
  • each outer electrode is contacted with electrode layers in the form of plane layers lying one above the other in parallel.
  • the layers in contact with an outer electrode form a comb-like electrode packet with this outer electrode.
  • the two electrode packs each belonging to an outer electrode are in the
  • the design of the component according to the invention with comb-like electrode packs pushed into one another has the advantage that it can easily be implemented by stacking individual foils or layers.
  • the layers lying one above the other also have the advantage that the volume available in the component is optimally used to reduce the ohmic resistance. This is because the comb-like arrangement is particularly large
  • the electrode layers are carried out in palladium or platinum or their alloys.
  • the advantage of these precious metals is that they are insensitive to electrochemical corrosion. As a result, the electrical component produced with them becomes insensitive to moisture or moisture entering the component from the outside.
  • the use of the noble metals mentioned as a material for the electrode layers has the advantage that the noble metals have only a very low tendency to migrate, as a result of which the migration of the metals into the ceramic and thus an uncontrollable change in the electrical resistance of the ceramic component can be prevented.
  • the external electrodes can consist of any commercially available electrode material for ceramic components. However, care must be taken to ensure that there is a good electrical connection to the electrode layers. In a particularly advantageous embodiment of the invention
  • the external electrodes consist of a silver or gold baking paste. After the ceramic has been sintered together with the electrode layers, this baking paste can be applied to two outer surfaces of the base body and baked.
  • the silver baking paste has the advantage that it has good electrical conductivity for contacting the component. It also has the advantage that it can be soldered well, so that connecting wires can be soldered to the outer electrodes. With the help of such connecting wires, which can be copper wires, for example, a finished sensor element is obtained from a suitable material after applying a protective coating or other covering.
  • the invention specifies a method for producing an electrical component according to the invention with a predetermined target resistance, in which the component is produced on the basis of a precursor component with a rod-shaped base body.
  • the precursor component is produced by stacking ceramic green foils and electrodes on top of one another and then sintering the layer stack thus created.
  • the precursor component has external electrodes arranged on the long sides of the rod, the actual resistance measured between the external electrodes of the precursor component being smaller than the target resistance of the electrical component to be produced.
  • the precursor component has the property that the resistance of longitudinal sections of the precursor component of the same length and having external electrodes are essentially the same.
  • the actual resistance of the precursor component is measured, for example using an ohmmeter.
  • the length of a longitudinal section to be cut off by the precursor component is then calculated from the actual resistance.
  • the longitudinal section of the precursor component represents the electrical component to be produced.
  • the longitudinal section is cut off from the precursor component with the previously calculated length.
  • the process according to the invention has the advantage that the resistance of the electrical component is only determined in a very late process step, at a point in time at which the ceramic has already been sintered. This may result in slightly different geometries when producing several similar components; however, this is more than compensated for by the great advantage of a very precisely reproducible target resistance. Furthermore, the inventive method has the advantage that the resistance of the ceramic before the final manufacture of the Component is measured. Manufacturing-related fluctuations in the resistance can be compensated in this way.
  • connecting wires can be soldered to the outer electrodes after the component has been cut off from the precursor component.
  • the method according to the invention has the advantage that, in conjunction with the electrode layers that reduce the resistance of the component, even very small resistances can be set exactly.
  • the precursor component is produced from a plate which is a layer stack of ceramic green foils and suitably arranged electrode layers.
  • a suitable arrangement of electrode layers is given, for example, by the plate being composed of a plurality of imaginary rod-shaped precursor components arranged next to one another.
  • a rod is first punched out of the plate, which is then sintered. It is also possible to sinter the plate as a whole and cut it into bars using a suitable separation process (e.g. cutting out). After the rod has been sintered, outer electrodes are applied to the long sides of the rod. This produces a precursor component, which is Method for an electrical component according to the invention can be processed further.
  • the invention also specifies the use of the electrical component as an NTC resistor, the resistance of which is between 50 and 500 ohms at 25 ° Celsius.
  • the use of the component as a low-resistance temperature sensor can be considered. Because of the high sensitivity of the high-resistance ceramic that can be used in the component according to the invention, even applications in the medical field are possible, for example use in clinical thermometers. In the case of clinical thermometers in particular, the temperature sensors used must achieve a very high accuracy of ⁇ 0.1 K when measuring the temperature. Furthermore, the high manufacturing accuracy of the resistor is advantageous in such an application.
  • the electrical component according to the invention is particularly suitable for NTC resistors with small dimensions, since the electrode layers make it possible to dispense with a large cross-sectional area of the resistor.
  • Figure 1 shows a component according to the invention in schematic cross section.
  • FIG. 2 shows a component according to the invention in a perspective representation.
  • Figure 3 shows a component according to the invention, which is designed as a precursor component for the production of further components according to the invention in a perspective view.
  • FIG. 4 shows a schematic cross section of a board suitable for producing a precursor component.
  • FIG. 1 shows a component according to the invention as a monolithic multilayer component with a base body 1 which contains electrically conductive ceramic layers 10.
  • the ceramic is a ceramic whose specific resistance has a negative ven has temperature coefficients. It is a mixed crystal with a spinel structure based on Mn3 ⁇ 4, which also contains a nickel component. The mixing ratio Mn / Ni is 94/6. This ceramic has a high resistance of 10 4 ⁇ cm.
  • electrode layers 3 are arranged which consist of electrically conductive noble metal layers and which are separated from one another by electrically conductive ceramic layers 10.
  • the thickness of the electrode layers 3 is approximately 5 ⁇ m.
  • the resistance of the component made of high-resistance ceramic is suitably reduced by the electrode layers 3, so that the component has an overall low resistance of 50 ohms.
  • the electrode layers 3 are connected to external electrodes 2, which are applied to the outside of the base body 1.
  • the outer electrodes 2 are produced by baking a silver baking paste. A copper wire is soldered to each outer electrode 2 as connecting wire 4.
  • the component shown in FIG. 1 can additionally be coated with a plastic or lacquer layer to protect it from moisture and other environmental influences, or it can also be provided with a protective covering (11) made of glass.
  • Figure 2 shows the component of Figure 1 in perspective.
  • the geometric dimensions of the component according to the invention can be seen from this illustration.
  • Length 1 and width b are 0.5 - 5 mm each.
  • the thickness d is 0.3 - 2 mm. Because the difference between the thickness d and the width b or the length 1 is at least 0.2 mm, the component shown in FIG. 2 can be treated with systems for gripping and transport that have already been tried and tested for other components.
  • the dimensions shown show that the invention
  • Component is particularly suitable for realizing miniaturized temperature sensors.
  • the stability of the electrical properties of the component shown in FIG. 2 can be demonstrated on the basis of various test criteria, which are shown in Table 1 below.
  • FIG. 3 shows a precursor component 5 with a rod-shaped base body 6.
  • An outer electrode 2 is applied to each of two opposite side surfaces of the rod-shaped base body 6.
  • the electrical resistance of the precursor component 5 can be measured with the aid of these external electrodes 2.
  • Electrode layers 3 are arranged in the interior of the rod-shaped base body 6, which Reduce the level of the precursor component and are separated from one another by electrically conductive ceramic layers 10.
  • the electrical properties of the precursor device 5 are uniform along the rod, i.e. each section of the rod that has the same length also has the same electrical resistance. As a result, the electrical resistance of the component to be produced can be set precisely by simply measuring the length of a rod section.
  • FIG. 4 shows a plate 7 from which precursor components can be produced by punching out bars along the punching lines 9.
  • the plate 7 has a thickness that the
  • Length 1 of the component to be manufactured corresponds.
  • the other dimensions of the plate 7 are approximately 105 x 105 mm.
  • the plate consists of ceramic green sheets 8 lying one above the other, between which electrode layers 3 are arranged offset to one another. With the help of the plate 7, which is first processed into precursor components and finally into the components to be produced, the parallel production of a large number of components with precisely defined resistance values is possible.

Abstract

Die Erfindung betrifft ein elektrisches Bauelement mit einem Grundkörper (1), der einen Schichtstapel aus einander überlappenden elektrisch leitfähigen Elektrodenschichten (3) aufweist, die durch elektrisch leitende Keramikschichten (10) voneinander getrennt sind, bei dem die elektrisch leitenden Keramikschichten (10) aus einer Keramik bestehen, deren spezifischer elektrischer Widerstand einen negativen Temperaturkoeffizienten aufweist, bei dem die elektrisch leitenden Keramikschichten (10) aus gemeinsam mit den Elektrodenschichten (3) gesinterten keramischen Grünfolien hergestellt sind und bei dem an zwei gegenüberliegenden Aussenflächen des Grundkörpers (1) Aussenelektroden (2) angeordnet sind, die mit den Elektrodenschichten (3) elektrisch leitend verbunden sind. Ferner betrifft die Erfindung ein Verfahren zur Herstellung des Bauelements und die Verwendung des Bauelements.

Description

Beschreibung
Elektrisches Bauelement, Verfahren zu dessen Herstellung und dessen Verwendung
Die Erfindung betrifft ein elektrisches Bauelement mit einem Grundkörper und zwei Außenelektroden, bei dem der Grundkörper eine Keramik mit einem vorgegebenen spezifischen Widerstand enthält. Ferner betrifft die Erfindung ein Verfahren zur Her- Stellung des elektrischen Bauelements. Darüber hinaus betrifft die Erfindung die Verwendung des elektrischen Bauelements .
Es sind elektrische Bauelemente der eingangs genannten Art bekannt, bei denen der spezifische Widerstand der Keramik einen negativen Temperaturkoeffizienten aufweist und die demzufolge als NTC-Widerstand verwendet werden. Für spezielle Anwendungen der NTC-Widerstände, beispielsweise in der Heizungstechnik, der Industrieelektronik oder der Kfz- Elektronik, werden geringe Widerstandswerte zwischen 50 und
500 Ohm für die Bauelemente gefordert. Üblicherweise wird der Widerstand eines NTC-Bauelements bei 25° Celsius angegeben.
Zur Realisierung von Bauelementen mit den gewünschten niedri- gen Widerstandswerten stehen Keramiken zur Verfügung, die einen niedrigen spezifischen Widerstand aufweisen. Diese Keramiken basieren auf Mischkristallen mit Spinell-Struktur, die sich aus vier Kationen der Gruppe Mangan, Nickel, Kobalt und Kupfer zusammensetzen. Die Kationen sind in einem Atomver- hältnis Mn/Ni/Co/Cu miteinander gemischt, das zwischen
65/19/9/7 und 56/16/8/20 liegt. Der spezifische Widerstand dieser Keramiken liegt zwischen 100 und 0,1 Ωcm.
Diese Keramiken haben den Nachteil, daß ihr Widerstand einer starken Streuung unterworfen ist. Ferner haben diese Keramiken den Nachteil, daß ihre elektrischen Eigenschaften, insbesondere ihr elektrischer Widerstand, nicht langzeitstabil sind. Die Langzeitstabilität der Bauelemente wird als Änderung des Widerstands nach einer Lagerung der Bauelemente, beispielsweise bei einer Temperatur von 70° Celsius über einen Zeitraum von 10.000 Stunden, angegeben. Die zeitbedingte Änderung des Widerstandes ist unter diesen Bedingungen bei den mit niederohmigen Keramiken hergestellten Bauelementen größer als 2%.
Die bekannten Bauelemente haben ferner den Nachteil, daß ihr Widerstand aufgrund des einfachen Designs (Keramikblock oder -scheibe mit zwei äußeren Kontaktelektroden) ausschließlich vom spezifischen Widerstand der Keramik abhängig und daher entsprechenden Schwankungen der Keramikmaterial- Zusammensetzung unterworfen ist. Die herstellungsbedingte Ab- weichung des Ist-Widerstands vom Soll-Widerstand kann 5% oder mehr betragen.
Aus der Druckschrift DE 2321478 ist ein NTC-Widerstand (Thermistor) bekannt, der eine Mehrschichtstruktur aufweist, wobei Elektrodenschichten durch Keramikschichten voneinander getrennt sind. Dabei sind die Keramikschichten als Dickfilm- Schicht mittels Siebdruck auf die Elektrodenschichten aufgedruckt. Aufgrund des verwendeten Siebdruckverfahrens weisen die Keramikschichten große Streuwerte bezüglich ihrer Schichtdicke auf, so daß die aus der genannten Druckschrift bekannten Thermistoren nur unter erheblichen Schwierigkeiten mit exakt vorgegebenen Widerstandswerten hergestellt werden können. Die bekannten Thermistoren weisen somit große Toleranzen bezüglich der elektrischen Widerstände auf.
Aufgrund dieser hohen Streuwerte und der geringen Langzeits- tabilität sind die bekannten niederohmigen NTC-Widerstände nur für Anwendungen geeignet, bei denen geringe Anforderungen bezüglich Bauelementetoleranzen und Bauelementstabilität ge- stellt werden. Eine solche Anwendung ist beispielsweise die Herstellung von Einschaltstrombegrenzern. Ferner ist die Kombination hoher B-Wert und niedriger R-Wert physikalisch nicht realisierbar.
Ziel der vorliegenden Erfindung ist es daher, ein elektri- sches Bauelement anzugeben, das als NTC-Widerstand geeignet ist und das einen niedrigen Widerstandswert bei großer Langzeitstabilität und geringer Streubreite der Widerstandswerte aufweist. Ferner ist es ein Ziel der Erfindung, ein Verfahren zur Herstellung des elektrischen Bauelements anzugeben, das die möglichst exakte Einstellung eines Soll-Widerstands des Bauelementes ermöglicht.
Dieses Ziel wird erfindungsgemäß durch ein elektrisches Bauelement nach Anspruch 1 sowie durch ein Verfahren nach An- spruch 11 erreicht. Vorteilhafte Ausgestaltungen des Bauelements und des Verfahrens und die Verwendung des Bauelements sind den weiteren Ansprüchen zu entnehmen.
Die Erfindung gibt ein elektrisches Bauelement an, mit einem Grundkδrper, der einen SchichtStapel aus einander überlappenden elektrisch leitfähigen Elektrodenschichten aufweist. Jeweils zwei benachbarte Elektrodenschichten sind durch eine elektrisch leitende Keramikschicht voneinander getrennt. Die elektrisch leitenden Keramikschichten bestehen aus einem Ke- ramikmaterial, dessen spezifischer elektrischer Widerstand p (T) einen negativen Temperaturkoeffizienten aufweist. Die elektrisch leitenden Keramikschichten sind aus gemeinsam mit den Elektrodenschichten gesinterten keramischen Grünfolien hergestellt. Darüber hinaus sind an zwei gegenüberliegenden Außenflächen des Grundkörpers Außenelektroden angeordnet, die mit den Elektrodenschichten elektrisch leitend verbunden sind.
Das erfindungsgemäße Bauelement hat den Vorteil, daß die elektrisch leitenden Keramikschichten aus keramischen Grünfolien hergestellt sind. Der Prozeß des Ziehens von keramischen Grünfolien kann zur Herstellung von Folien mit einer Dicke von etwa 50 μ und unter Einhaltung von sehr genauen Schicht- dickenvorgaben eingesetzt werden. Dadurch hat das erfindungsgemäße Bauelement den Vorteil, daß ein vorgegebener Widerstandswert für das Bauelement sehr genau eingehalten werden kann.
Desweiteren ist in einer vorteilhaften Ausführungsform der Erfindung ein Keramikmaterial für die elektrisch leitenden Keramikschichten ausgewählt, dessen den Temperaturverlauf p (T) des spezifischen elektrischen Widerstands beschreibende B-Wert größer als 4000 K ist. Der B-Wert beschreibt den Temperaturverlauf p (T) durch folgende Formel :
p (T) = p25 exp (B/T) .
Dabei ist p 25 gleich dem spezifischen elektrischen Widerstand bei 25°C.
Der B-Wert wird nach folgender Formel berechnet:
Ti x T2 R(Tχ) B = x In
T2 - TX R(T2)
Dabei ist R(T]_) und (T2) der Widerstand des Keramikmaterials bei zwei unterschiedlichen Temperaturen T^ und T .
Keramiken mit großen B-Werten haben den Vorteil, daß sie eine große Empfindlichkeit des Widerstands in Abhängigkeit von der Temperatur aufweisen, was die Herstellung von sehr empfindlichen Temperatursensoren ermöglicht. Desweiteren haben Keramiksysteme mit großen B-Werten den Vorteil eines guten Lang- zeitstabilitätsverhaltens des elektrischen Widerstands. Keramiken mit hohen B-Werten haben jedoch auch große spezifische Widerstände. Durch das erfindungsgemäße Vorsehen von Elektrodenschichten im Grundkörper des elektrischen Bauelements wird es möglich, den elektrischen Widerstand des Bau- elements zu reduzieren. Dies gelingt dadurch, daß durch die Elektrodenschichten. die Parallelschaltung mehrerer hochohmi- ger Widerstände realisiert wird. Somit können trotz der hohen Widerstände der verwendeten Keramiken Temperaturfühler mit Widerstandswerten kleiner als 2 kΩ hergestellt werden. Desweiteren ist ein elektrisches Bauelement vorteilhaft, bei dem der Grundkörper die Form eines Quaders hat. Dabei sind nur zwei Seitenflächen des Quaders von Außenelektroden bedeckt, während die vier restlichen Seitenflächen frei von elektrisch leitenden Beschichtungen sind. Ein solches Bauele- ment hat den Vorteil, daß die Außenelektroden räumlich exakt definiert sind und dadurch den elektrischen Widerstand des Bauelements nicht beeinflussen können. Dies ist ein großer Vorteil gegenüber bekannten Bauelementen, bei denen die Außenelektroden durch Eintauchen in eine leitfähige Paste her- gestellt werden und so mit kappenartig und daher kantenübergreifend auf mehreren Seitenflächen des Grundkörpers aufliegen, wodurch die Außenelektroden unter ungünstigen Umständen den Widerstand sehr stark verringern können, indem sie bei Übertauchen des Grundkörpers sehr nahe aneinanderliegen.
Eine vorteilhafte Form der Beschichtung des Grundkörpers mit Außenelektroden, die nicht kantenübergreifend sind, und die somit das Ziel erreichen, vier der Seitenflächen des quader- förmigen Grundkörpers frei von elektrisch leitenden Beschich- tungen zu lassen, ist die Verwendung eines Siebdruckverfahrens zum Bedrucken von Seitenflächen des Quaders .
Es können somit also Temperaturfühler hergestellt werden, die gleichzeitig einen sehr niedrigen Widerstand und eine hohe Empfindlichkeit aufweisen. Im folgenden werden einige für die Verwendung in dem erfindungsgemäßen Bauelement geeignete Keramikmaterialien genannt, deren B-Wert größer als 3600 K ist:
Es kommt beispielsweise ein hochohmiger Keramikmischkristall auf der Basis von Mn3<-)4 mit einem Zusatz an Nickel und Kobalt in Betracht, wobei das Mischungsverhältnis Mn/Ni/Co = 55,6/3,4/41 beträgt. Eine solche Keramik weist einen B-Wert von etwas mehr als 4000 K auf.
Desweiteren kommt eine Keramik in Betracht, die neben Mn3Ü4 noch Zusätze von Nickel und Titan enthält, wobei das Mischungsverhältnis Mn/Ni/Ti dem Verhältnis 77/20/3 entspricht. Eine solche Keramik weist einen B-Wert von 4170 K auf.
Als weiteres Beispiel kann eine Keramik genannt werden, die neben Mn3Ü4 noch Nickel und Zink enthält. Dabei ist das Mischungsverhältnis Mn/Ni/Zn gleich 64/7/29. Eine solche Keramik weist einen B-Wert von 4450 K auf.
Des weiteren ist ein Bauelement besonders vorteilhaft, bei dem die Keramik ein Mischkristall in Spinell-Struktur, Perowskit-Struktur oder Korund-Struktur ist, der hergestellt ist auf der Basis von Mn3Ü4 mit einem oder mehreren Zusätzen, ausgewählt aus den Elementen Nickel, Kobalt, Titan, Zirkon oder Aluminium. Vorteilhaft sind dabei insbesondere die stabilen Zusammensetzungen, die einen hohen spezifischen Widerstand zwischen 105 und 106 Ωcm aufweisen, der mit Hilfe der Elektrodenschichten auf einen niedrigen Wert abgesenkt werden kann.
Ein Bauelement auf der Basis einer hochohmigen Keramik mit einem spezifischen Widerstand > 102 Ωcm hat den Vorteil, daß die Keramik eine hohe Langzeitstabilität bezüglich ihres elektrischen Widerstands aufweist. Im speziellen kommt als hochohmige Keramik beispielsweise eine Mischung auf der Basis Mn3Ü4 mit einem Mischungsverhältnis Mn/Ni von 94/6 in Betracht. Eine solche Keramik weist einen spezifischen Widerstand von 104 Ωcm und einen B-Wert von 4600 K auf.
Eine weitere Möglichkeit ist eine Mischung aus Mangan, Nickel und Kobalt mit einem Mischungsverhältnis Mn/Ni/Co von 70/20/10. Die zuletzt genannte Mischung weist einen spezifi- sehen Widerstand von 100 Ωcm und einen B-Wert von etwas mehr als 3600 K auf.
Die zur Reduktion des Widerstands des Bauelements geeignete Anordnung der Elektrodenschichten kann vorteilhaft in einem Bauelement realisiert werden, bei dem jede Außenelektrode mit Elektrodenschichten in Form von parallel übereinander liegenden ebenen Schichten kontaktiert ist. Die mit einer Außenelektrode kontaktierten Schichten bilden mit dieser Außenelektrode ein kammartiges Elektrodenpaket. Die beiden jeweils zu einer Außenelektrode gehörenden Elektrodenpakete sind in dem
Bauelement ineinander geschoben.
Die Ausgestaltung des erfindungsgemäßen Bauelements mit kammartigen, ineinander geschobenen Elektrodenpaketen hat den Vorteil, daß sie durch Aufeinanderlegen einzelner Folien bzw. Schichten leicht realisierbar ist. Die parallel übereinander liegenden Schichten haben zudem den Vorteil, daß das in dem Bauelement zur Verfügung stehende Volumen optimal zur Verminderung des ohmschen Widerstands ausgenutzt wird. Dies rührt daher, daß sich in der kammartigen Anordnung besonders große
Flächen der jeweiligen Elektrodenschichten gegenüberstehen. Dadurch steigt der Querschnitt des betrachteten elektrischen Leiters und somit sinkt sein Widerstand.
Zur Ausgestaltung der Elektrodenschichten sind prinzipiell alle Elektrodenmaterialien geeignet, die bei den für die Herstellung des Bauelements notwendigen Temperaturen stabil sind. Die Elektrodenschichten werden in einer besonders bevorzugten Ausführungsform der Erfindung in Palladium oder Platin oder deren Legierungen ausgeführt.' Diese Edelmetalle haben den Vorteil, daß sie unempfindlich sind gegenüber elek- trochemischer Korrosion. Dadurch wird das mit ihnen hergestellte elektrische Bauelement unempfindlich gegenüber von außen in das Bauelement eindringende Feuchte bzw. Nässe.
Ferner hat die Verwendung der genannten Edelmetalle als Mate- rial für die Elektrodenschichten den Vorteil, daß die Edelmetalle nur eine sehr geringe Migrationsneigung aufweisen, wodurch das Wandern der Metalle in die Keramik und damit eine unkontrollierbare Veränderung des elektrischen Widerstands des keramischen Bauelements verhindert werden kann.
Die Außenelektroden können aus jedem handelsüblichen Elektrodenmaterial für keramische Bauelemente bestehen. Es ist allerdings darauf zu achten, daß eine gute elektrische Anbin- dung an die Elektrodenschichten sichergestellt ist. In einer besonders vorteilhaften Ausführungsform des erfindungsgemäßen
Bauelements bestehen die Außenelektroden aus einer Silberoder Gold-Einbrennpaste. Diese Einbrennpaste kann, nachdem die Keramik zusammen mit den Elektrodenschichten gesintert wurde, auf zwei Außenflächen des Grundkδrpers aufgebracht und eingebrannt werden. Die Silber-Einbrennpaste hat den Vorteil, daß sie zur Kontaktierung des Bauelements eine gute elektrische Leitfähigkeit aufweist. Sie hat darüber hinaus den Vorteil, daß sie gut lδtbar ist, so daß an den Außenelektroden Anschlußdrähte angelötet werden können. Mit Hilfe solcher An- schlußdrähte, die beispielsweise Kupferdrähte sein können, erhält man nach Aufbringen einer Schutzlackierung oder einer anderen Umhüllung aus geeignetem Material ein fertiges Sensorelement .
Unter Verwendung einer Au-Außenelektrode und goldbeschichteten Anschlußdrähten ist es möglich, das Bauelement mit einer Schutzumhüllung aus Glas zu versehen. Ferner gibt die Erfindung ein Verfahren zur Herstellung eines erfindungsgemäßen elektrischen Bauelements mit einem vorgegebenen Soll-Widerstand an, bei dem das Bauelement ausgehend von einem Vorläufer-Bauelement mit einem stabförmigen Grundkörper hergestellt wird. Das Vorläufer-Bauelement wird in einer besonders vorteilhaften Ausführungsform der Erfindung hergestellt durch Übereinanderschichten von Keramischen Grünfolien und Elektroden und anschließendes Sintern des so ent- standenen Schichtstapels. Das Vorläufer-Bauelement weist an Längsseiten des Stabs angeordnete Außenelektroden auf, wobei der zwischen den Außenelektroden des Vorläufer-Bauelements gemessene Ist-Widerstand kleiner ist als der Soll-Widerstand des herzustellenden elektrischen Bauelements. Ferner hat das Vorläufer-Bauelement die Eigenschaft, daß der Widerstand gleich langer, Außenelektroden aufweisender Längsabschnitte des Vorläufer-Bauelements im wesentlichen gleich groß sind.
Zunächst wird der Ist-Widerstand des Vorläufer-Bauelements, beispielsweise mittels eines Ohmmeters, gemessen. Anschließend wird aus dem Ist-Widerstand die Länge eines vom Vorläufer-Bauelement abzuschneidenden Längsabschnitts berechnet. Der Längsabschnitt des Vorläufer-Bauelements stellt dabei das herzustellende elektrische Bauelement dar. Schließlich wird der Längsabschnitt mit der vorher berechneten Länge vom Vorläufer-Bauelement abgeschnitten.
Das erfindungsgemäße Verfahren hat den Vorteil, daß der Widerstand des elektrischen Bauelements erst in einem sehr spä- ten Verfahrensschritt, zu einem Zeitpunkt, zu dem die Keramik schon fertig gesintert ist, festgelegt wird. Dadurch entstehen zwar möglicherweise leicht unterschiedliche Geometrien bei der Herstellung mehrerer gleichartiger Bauelemente; dies wird aber durch den großen Vorteil eines sehr exakt reprodu- zierbaren Soll-Widerstands mehr als ausgeglichen. Des weiteren hat das erfindungsgemäße Verfahren den Vorteil, daß der Widerstand der Keramik vor der endgültigen Herstellung des Bauelements gemessen wird. Fertigungsbedingte Schwankungen des Widerstands können auf diese Weise ausgeglichen werden.
Gegebenenfalls können nach dem Abschneiden des Bauelements vom Vorläufer-Bauelement noch Anschlußdrähte an den Außenelektroden festgelötet werden.
Zudem hat das erfindungsgemäße Verfahren den Vorteil, daß in Verbindung mit den Widerstand des Bauelements reduzierenden Elektrodenschichten auch sehr kleine Widerstände exakt eingestellt werden können.
Darüber hinaus ist ein Verfahren besonders vorteilhaft, bei dem das Vorläufer-Bauelement aus einer Platte hergestellt wird, die ein Schichtstapel von Keramischen Grünfolien und geeignet angeordneten Elektrodenschichten ist. Eine geeignete Anordnung von Elektrodenschichten ist beispielsweise dadurch gegeben, daß die Platte aus mehreren nebeneinander angeordneten, gedachten stabförmigen Vorläufer-Bauelementen zusammen- gesetzt wird.
Es wird bei der Herstellung des erfindungsgemäßen Bauelements zunächst aus der Platte ein Stab ausgestanzt, der anschließend gesintert wird. Es ist ebenso möglich, die Platte als Ganzes zu sintern und sie mittels geeigneter Trennverfahren (z. B. Ausschneiden) in Stäbe aufzutrennen. Nach dem Sintern des Stabs werden an Längsseiten des Stabs Außenelektroden aufgebracht. Dadurch wird ein Vorläufer-Bauelement hergestellt, das in dem o.g. Verfahren zu einem erfindungsgemäßen elektrischen Bauelement weiter verarbeitet werden kann.
Dieses Verfahren hat den Vorteil, daß durch Herstellung der Platte aus übereinander liegenden keramischen Grünfolien und Elektrodenschichten die parallele Fertigung einer großen An- zahl von elektrischen Bauelementen ermöglicht wird. Die Erfindung gibt ferner die Verwendung des elektrischen Bauelements als NTC-Widerstand an, dessen Widerstand bei 25° Celsius zwischen 50 und 500 Ohm beträgt. Dabei kommt insbesondere die Anwendung des Bauelements als niederohmiger Temperaturfühler in Betracht. Aufgrund der hohen Empfindlichkeit der in dem erfindungsgemäßen Bauelement einsetzbaren hochohmigen Keramik sind sogar Anwendungen im medizinischen Bereich möglich, beispielsweise der Einsatz in Fieberthermometern. Gerade bei Fieberthermometern müssen die verwendeten Temperatursensoren eine sehr hohe Genauigkeit von <0,1 K bei der Messung der Temperatur erreichen. Des weiteren ist bei so einer Anwendung die hohe Fertigungsgenauigkeit des Widerstandes von Vorteil . Das erfindungsgemäße elektrische Bauelement ist insbesondere geeignet für NTC-Widerstände mit kleinen Ab- messungen, da aufgrund der Elektrodenschichten auf eine große Querschnittsfläche des Widerstands verzichtet werden kann.
Im Folgenden wird die Erfindung anhand von Ausführungsbei- spielen und den dazu gehörigen Figuren näher erläutert .
Figur 1 zeigt ein erfindungsgemäßes Bauelement im schematischen Querschnitt .
Figur 2 zeigt ein erfindungsgemäßes Bauelement in perspekti- vischer Darstellung.
Figur 3 zeigt ein erfindungsgemäßes Bauelement, das als Vorläufer-Bauelement zur Herstellung weiterer erfindungsgemäßer Bauelemente ausgeführt ist in perspektivischer Darstellung.
Figur 4 zeigt eine zur Herstellung eines Vorläufer-Bauelements geeignete Platte im schematischen Querschnitt.
Figur 1 zeigt ein erfindungsgemäßes Bauelement als monolithi- sches Vielschichtbauelement mit einem Grundkörper 1, der elektrisch leitende Keramikschichten 10 enthält. Die Keramik ist eine Keramik, deren spezifischer Widerstand einen negati- ven Temperaturkoeffizienten aufweist. Sie ist ein Mischkristall mit Spinell-Struktur auf der Basis von Mn3θ4, der zusätzlich noch einen Nickelanteil enthält. Das Mischungsverhältnis Mn/Ni beträgt 94/6. Diese Keramik weist einen hohen Widerstand von 104 Ωcm auf.
Im Inneren des Grundkörpers 1 sind Elektrodenschichten 3 angeordnet, die aus elektrisch leitfähigen Edelmetallschichten bestehen und die durch elektrisch leitende Keramikschichten 10 voneinander getrennt sind. Die Dicke der Elektrodenschichten 3 beträgt ca. 5 μm. Durch die Elektrodenschichten 3 wird der Widerstand des aus hochohmiger Keramik bestehenden Bauelements geeignet reduziert, so daß das Bauelement insgesamt einen niedrigen ohmschen Widerstand von 50 Ohm aufweist. Die Elektrodenschichten 3 sind mit Außenelektroden 2 verbunden, die an der Außenseite des Grundkörpers 1 aufgebracht sind. Die Außenelektroden 2 sind durch Einbrennen einer Silber- Einbrennpaste hergestellt. An jeder Außenelektrode 2 ist jeweils ein Kupferdraht als Anschlußdraht 4 angelötet.
Das in Figur 1 gezeigte Bauelement kann zum Schutz vor Feuchte und anderen Umwelteinflüssen zusätzlich noch mit einer Kunststoff- oder Lackschicht umhüllt sein oder auch mit einer Schutzumhüllung (11) aus Glas versehen sein.
Figur 2 zeigt das Bauelement aus Figur 1 in perspektivischer Darstellung. Aus dieser Darstellung gehen die geometrischen Abmessungen des erfindungsgemäßen Bauelements hervor. Die Länge 1 und die Breite b betragen jeweils 0,5 - 5 mm. Die Dicke d beträgt 0,3 - 2 mm. Dadurch, daß der Unterschied zwischen der Dicke d und der Breite b bzw. der Länge 1 mindestens 0,2 mm beträgt, kann das in Figur 2 dargestellte Bauelement mit bereits für andere Bauelemente erprobten Systemen zum Greifen und Transportieren behandelt werden. Aus den ge- zeigten Abmessungen geht hervor, daß das erfindungsgemäße
Bauelement insbesondere zur Realisierung von miniaturisierten Temperatursensoren geeignet ist. Die Stabilität der elektrischen Eigenschaften des in Figur 2 gezeigten Bauelements kann anhand verschiedener Prüfkriteri- en, die in der nachfolgenden Tabelle 1 dargestellt sind, nachgewiesen werden.
Tabelle 1
Figure imgf000015_0001
Figur 3 zeigt ein Vorläufer-Bauelement 5 mit einem stabförmi- gen Grundkörper 6. An zwei gegenüber liegenden Seitenflächen des stabförmigen Grundkörpers 6 ist jeweils eine Außenelektrode 2 aufgebracht. Mit Hilfe dieser Außenelektroden 2 kann der elektrische Widerstand des Vorläufer-Bauelements 5 gemessen werden. Im Inneren des stabförmigen Grundkörpers 6 sind Elektrodenschichten 3 angeordnet, die den elektrischen Wider- Stands des Vorläufer-Bauelements reduzieren und die durch Elektrisch leitende Keramikschichten 10 voneinander getrennt sind.
Die elektrischen Eigenschaften des Vorläufer-Bauelements 5 sind entlang des Stabes gleichmäßig, d.h., daß jeder Abschnitt des Stabes, der dieselbe Länge aufweist, auch denselben elektrischen Widerstand aufweist. Dadurch kann durch einfaches Abmessen der Länge eines Stababschnitts der elektri- sehe Widerstand des herzustellenden Bauelementes exakt eingestellt werden.
Figur 4 zeigt eine Platte 7, aus der durch Ausstanzen von Stäben entlang der Stanzlinien 9 Vorläufer-Bauelemente herge- stellt werden können. Die Platte 7 hat eine Dicke, die der
Länge 1 des herzustellenden Bauelements entspricht. Die anderen Abmessungen der Platte 7 betragen ca. 105 x 105 mm. Die Platte besteht aus übereinander liegenden keramischen Grünfolien 8, zwischen denen Elektrodenschichten 3 versetzt zuein- ander angeordnet sind. Mit Hilfe der Platte 7, die zuerst zu Vorläufer-Bauelementen und schließlich zu den herzustellenden Bauelementen selbst verarbeitet wird, ist die parallele Fertigung einer großen Anzahl von Bauelementen mit exakt definierten Widerstandswerten möglich.
Die Erfindung beschränkt sich nicht auf die beispielhaft gezeigten Ausführungsformen sondern wird in ihrer allgemeinsten Form durch die Ansprüche 1 und 11 definiert.

Claims

Patentansprüche
1. Elektrisches Bauelement mit einem Grundkörper (1), der einen Schichtstapel aus einander überlappenden elektrisch leitfähigen Elektrodenschichten (3) aufweist, die durch elektrisch leitende Keramikschichten (10) voneinander getrennt sind,
- bei dem die elektrisch leitenden Keramikschichten (10) aus einer Keramik bestehen, deren spezifischer elektrischer Widerstand einen negativen Temperaturkoeffizienten aufweist,
- bei dem die elektrisch leitenden Keramikschichten (10) aus gemeinsam mit den Elektrodenschichten (3) gesinterten keramischen Grünfolien hergestellt sind und
- bei dem an zwei gegenüberliegenden Außenflächen des Grundkörpers (1) Außenelektroden (2) angeordnet sind, die mit den Elektrodenschichten (3) elektrisch leitend verbunden sind.
Elektrisches Bauelement nach Anspruch 1, bei dem der den Temperaturverlauf p (T) des spezifischen Widerstands beschreibende B-Wert der Keramik größer als 4000 K ist.
3. Elektrisches Bauelement nach einem der Ansprüche 1 oder 2, bei dem der Grundkörper (1) die Form eines Quaders hat, der vier Seitenflächen aufweist, die frei von elektrisch leitenden Beschichtungen sind.
4. Elektrisches Bauelement nach einem der Ansprüche 1 bis 3, bei dem die Außenelektroden (2) durch ein Siebdruckverfahren auf den Grundkörper (1) aufgebracht sind.
5. Elektrisches Bauelement nach einem der Ansprüche 1 bis 4, bei dem der elektrische Widerstand des Bauelements bei 25°C kleiner als 2 kΩ ist.
6. Bauelement nach einem der Ansprüche 1 bis 5, bei dem die Keramik ein Mischkristall auf der Basis von Mn3θ4 in Spinell-Struktur, Perowskit-Struktur oder Korund-Struktur ist mit einem oder mehreren Zusätzen, ausgewählt aus den Elementen Nickel, Kobalt, Titan, Zirkon oder Aluminium.
7. Bauelement nach einem der Ansprüche 1 bis 6, bei dem jede Außenelektrode (2) mit Elektrodenschichte'n (3) in Form von parallel übereinanderliegenden, ebene Schichten kontaktiert ist, die mit der jeweiligen Außene- lektrode (2) ein kammartiges Elektrodenpaket bilden, und bei dem die Elektrodenpakete ineinandergeschoben sind.
8. Bauelement nach einem der Ansprüche 1 bis 7, bei dem die Elektrodenschichten (3) Gold, Palladium oder Platin enthalten.
9. Bauelement nach einem der Ansprüche 1 bis 8, bei dem die Außenelektroden (2) aus einer Silber- oder Gold-Einbrennpaste bestehen.
10. Bauelement nach einem der Ansprüche 1 bis 9, bei dem an jeder Außenelektrode (2) ein Anschlußdraht (4) angelötet ist.
11. Verfahren zur Herstellung eines elektrischen Bauelements mit einem vorgegebenen Soll-Widerstand, ausgehend von einem Vorläufer-Bauelement (5) nach einem der Ansprüche 1 bis 9 mit einem stabförmigen Grundkörper (6) , mit an Längsseiten angeordneten Außenelektroden (2) , dessen zwischen den Außenelektroden (2) gemessene Ist-Widerstand kleiner ist als der Soll-Widerstand, und bei dem der Wi- derstand gleich langer, Außenelektroden (2) aufweisender Längs bschnitte gleich groß ist, mit folgenden Schritten: a) Messen des Ist-Widerstands des Vorläufer-Bauelements (5) b) Berechnen der zur Erreichung des Soll-Widerstands notwendigen Soll-Länge eines das herzustellende Bauelement darstellenden Längsabschnitts des Vorläufer-Bauelements (5) c) Abschneiden eines Längsabschnitts der Soll -Länge vom Vorläufer-Bauelement (5) .
12. Verfahren nach Anspruch 7, bei dem das Vorläufer-Bauelement (5) aus einer Platte (7) hergestellt wird, die ein Schichtstapel von keramischen Grünfolien (8) und geeignet angeordneten Elektroden- schichten (3) ist, mit folgenden Schritten: a) Ausstanzen eines Stabs aus der Platte (7) b) Sintern des Stabs c) Aufbringen von Außenelektroden (2) auf Längsseiten des Stabs .
13. Verfahren nach Anspruch 7, bei dem das Vorläufer-Bauelement (5) aus einer Platte (7) hergestellt wird, die ein Schichtstapel von keramischen Grünfolien (8) und geeignet angeordneten Elektrodenschichten (3) ist, mit folgenden Schritten: a) Sintern der Platte (7) b) Ausschneiden eines Stabs aus der Platte (7) c) Aufbringen von Außenelektroden (2) auf Längsseiten des Stabs .
14. Verwendung des Bauelements nach Anspruch 1 bis 10 als NTC-Widerstand, dessen Widerstand bei 25 °C zwischen 50 und 500 Ω beträgt.
5. Bauelement nach einem der Ansprüche 1 bis 10, bei dem jeder Anschlußdraht (4) mit Gold beschichtet ist und das eine Schutzumhüllung (11) aus Glas aufweist.
PCT/DE2001/001564 2000-04-25 2001-04-25 Elektrisches bauelement, verfahren zu dessen herstellung und dessen verwendung WO2001082314A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US10/240,300 US7215236B2 (en) 2000-04-25 2001-04-25 Electric component, method for the production thereof and use of the same
AU62050/01A AU6205001A (en) 2000-04-25 2001-04-25 Electric component, method for the production thereof and use of the same
AT01935992T ATE434823T1 (de) 2000-04-25 2001-04-25 Elektrisches bauelement, verfahren zu dessen herstellung und dessen verwendung
DE50114953T DE50114953D1 (de) 2000-04-25 2001-04-25 Elektrisches bauelement, verfahren zu dessen herstellung und dessen verwendung
EP01935992A EP1277215B1 (de) 2000-04-25 2001-04-25 Elektrisches bauelement, verfahren zu dessen herstellung und dessen verwendung
JP2001579314A JP2003532284A (ja) 2000-04-25 2001-04-25 電気的構造素子、その製造法および該構造素子の使用
US11/697,844 US7524337B2 (en) 2000-04-25 2007-04-09 Method for the manufacture of electrical component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10020224 2000-04-25
DE10020224.1 2000-04-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/697,844 Division US7524337B2 (en) 2000-04-25 2007-04-09 Method for the manufacture of electrical component

Publications (1)

Publication Number Publication Date
WO2001082314A1 true WO2001082314A1 (de) 2001-11-01

Family

ID=7639870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/001564 WO2001082314A1 (de) 2000-04-25 2001-04-25 Elektrisches bauelement, verfahren zu dessen herstellung und dessen verwendung

Country Status (8)

Country Link
US (2) US7215236B2 (de)
EP (1) EP1277215B1 (de)
JP (2) JP2003532284A (de)
CN (1) CN1426588A (de)
AT (1) ATE434823T1 (de)
AU (1) AU6205001A (de)
DE (2) DE50114953D1 (de)
WO (1) WO2001082314A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010258482A (ja) * 2001-12-04 2010-11-11 Epcos Ag 負の温度係数を有する電気デバイス
WO2012059401A3 (de) * 2010-11-03 2012-08-30 Epcos Ag Keramisches vielschichtbauelement und verfahren zur herstellung eines keramischen vielschichtbauelements
WO2012031963A3 (de) * 2010-09-09 2012-09-07 Epcos Ag Widerstandsbauelement und verfahren zur herstellung eines widerstandsbauelements

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10313891A1 (de) * 2003-03-27 2004-10-14 Epcos Ag Elektrisches Vielschichtbauelement
DE102004014753B3 (de) * 2004-03-25 2005-11-24 Epcos Ag Keramisches Bauelement mit verbesserter Korrosionsbeständigkeit und Verfahren zur Herstellung
JP4726890B2 (ja) * 2005-02-08 2011-07-20 株式会社村田製作所 表面実装型負特性サーミスタ
DE102007046907B4 (de) * 2007-09-28 2015-02-26 Heraeus Sensor Technology Gmbh Schichtwiderstand und Verfahren zu dessen Herstellung
KR20100083180A (ko) * 2007-10-25 2010-07-21 오스람 게젤샤프트 미트 베쉬랭크터 하프퉁 회로 기판 상의 부품들 및 상응하는 회로 기판을 솔더링하는 방법
DE102008029192A1 (de) 2008-03-13 2009-09-24 Epcos Ag Fühler zum Erfassen einer physikalischen Größe und Verfahren zur Herstellung des Fühlers
JP5347553B2 (ja) * 2009-02-20 2013-11-20 Tdk株式会社 サーミスタ素子
JP5678520B2 (ja) * 2010-08-26 2015-03-04 Tdk株式会社 サーミスタ素子
TWI473122B (zh) 2011-01-21 2015-02-11 Murata Manufacturing Co Semiconductor ceramics and semiconductor ceramic components
JP5510479B2 (ja) * 2012-03-03 2014-06-04 株式会社村田製作所 Ntcサーミスタ用半導体磁器組成物
DE102012110849A1 (de) * 2012-11-12 2014-05-15 Epcos Ag Temperaturfühler und Verfahren zur Herstellung eines Temperaturfühlers
DE102014107450A1 (de) 2014-05-27 2015-12-03 Epcos Ag Elektronisches Bauelement
US10126165B2 (en) * 2015-07-28 2018-11-13 Carrier Corporation Radiation sensors
CN113744942B (zh) * 2020-05-29 2023-11-21 东电化电子元器件(珠海保税区)有限公司 包括电阻器的电气部件以及包括该电气部件的电气电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02276203A (ja) * 1989-04-18 1990-11-13 Matsushita Electric Ind Co Ltd 積層型サーミスタの製造方法
JPH04247603A (ja) * 1991-02-04 1992-09-03 Murata Mfg Co Ltd Ntcサーミスタ素子の製造方法
US5500996A (en) * 1990-09-21 1996-03-26 Siemens Aktiengesellschaft Method for manufacturing a thermistor having a negative temperature coefficient in multi-layer technology
JPH097803A (ja) * 1995-06-15 1997-01-10 Ooizumi Seisakusho:Kk 高温用ガラス封止型サーミスタ

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1337929A (en) 1972-05-04 1973-11-21 Standard Telephones Cables Ltd Thermistors
US4146957A (en) * 1977-01-17 1979-04-03 Engelhard Minerals & Chemicals Corporation Thick film resistance thermometer
JPS5823921B2 (ja) * 1978-02-10 1983-05-18 日本電気株式会社 電圧非直線抵抗器
US4324702A (en) * 1979-11-02 1982-04-13 Matsushita Electric Industrial Co., Ltd. Oxide thermistor compositions
JPS56164514A (en) * 1980-05-21 1981-12-17 Nippon Electric Co Method of producing laminated porcelain capacitor
US4712085A (en) * 1984-10-30 1987-12-08 Tdk Corporation Thermistor element and method of manufacturing the same
JPS62137804A (ja) * 1985-12-12 1987-06-20 株式会社村田製作所 負特性積層チップ型サーミスタ
DE3625265A1 (de) 1986-07-25 1988-02-04 Basf Ag Umhuellte passive keramische bauelemente fuer die elektronik
US4786888A (en) 1986-09-20 1988-11-22 Murata Manufacturing Co., Ltd. Thermistor and method of producing the same
DE3733192C1 (de) * 1987-10-01 1988-10-06 Bosch Gmbh Robert PTC-Temperaturfuehler sowie Verfahren zur Herstellung von PTC-Temperaturfuehlerelementen fuer den PTC-Temperaturfuehler
DE3725455A1 (de) 1987-07-31 1989-02-09 Siemens Ag Elektrisches vielschichtbauelement mit einem gesinterten, monolithischen keramikkoerper und verfahren zur herstellung des elektrischen vielschichtbauelementes
JPH01171201A (ja) * 1987-12-25 1989-07-06 Okazaki Seisakusho:Kk 薄膜抵抗測温体および測温体
JPH01225307A (ja) * 1988-03-05 1989-09-08 Murata Mfg Co Ltd 積層セラミックコンデンサの製造方法
JPH01253204A (ja) * 1988-03-31 1989-10-09 Matsushita Electric Ind Co Ltd 積層形チップサーミスタ
US4951028A (en) * 1989-03-03 1990-08-21 Massachusetts Institute Of Technology Positive temperature coefficient resistor
JP2863189B2 (ja) * 1989-03-22 1999-03-03 松下電器産業株式会社 ガラス封入形正特性サーミスタ
US4953273A (en) * 1989-05-25 1990-09-04 American Technical Ceramics Corporation Process for applying conductive terminations to ceramic components
US5160912A (en) * 1989-06-19 1992-11-03 Dale Electronics, Inc. Thermistor
JPH03157902A (ja) * 1989-11-16 1991-07-05 Murata Mfg Co Ltd ノイズフイルタ
JP2833242B2 (ja) * 1991-03-12 1998-12-09 株式会社村田製作所 Ntcサーミスタ素子
US5355112A (en) * 1992-02-07 1994-10-11 Murata Mfg., Co., Ltd. Fixed resistor
JP2888020B2 (ja) * 1992-02-27 1999-05-10 株式会社村田製作所 負特性積層サーミスタ
JP2882951B2 (ja) * 1992-09-18 1999-04-19 ローム株式会社 チップ型電子部品における端子電極の形成方法
DE4420657A1 (de) 1994-06-14 1995-12-21 Siemens Matsushita Components Sinterkeramik für hochstabile Thermistoren und Verfahren zu ihrer Herstellung
JP3687696B2 (ja) 1996-02-06 2005-08-24 株式会社村田製作所 半導体磁器組成物とそれを用いた半導体磁器素子
DE19622112A1 (de) * 1996-06-01 1997-12-04 Philips Patentverwaltung Indiumhaltiger, oxidkeramischer Thermistor
US5936513A (en) * 1996-08-23 1999-08-10 Thermometrics, Inc. Nickel-iron-manganese oxide single crystals
JP3393524B2 (ja) * 1997-03-04 2003-04-07 株式会社村田製作所 Ntcサーミスタ素子
JPH1154301A (ja) 1997-08-07 1999-02-26 Murata Mfg Co Ltd チップ型サーミスタ
JP3286906B2 (ja) * 1997-10-21 2002-05-27 株式会社村田製作所 負の抵抗温度特性を有する半導体セラミック素子
US6514453B2 (en) * 1997-10-21 2003-02-04 Nanoproducts Corporation Thermal sensors prepared from nanostructureed powders
JP3381780B2 (ja) * 1997-10-24 2003-03-04 株式会社村田製作所 サーミスタの製造方法
TW412755B (en) * 1998-02-10 2000-11-21 Murata Manufacturing Co Resistor elements and methods of producing same
JPH11307069A (ja) * 1998-04-21 1999-11-05 Murata Mfg Co Ltd 電子部品および二次電池パック
JP2000082603A (ja) * 1998-07-08 2000-03-21 Murata Mfg Co Ltd チップ型サ―ミスタおよびその製造方法
US6411192B1 (en) * 1998-12-28 2002-06-25 Lansense, Llc Method and apparatus for sensing and measuring plural physical properties, including temperature
US6549136B2 (en) * 2001-09-13 2003-04-15 Lansense, Llc Sensing and switching circuit employing a positive-temperature-coefficient sensing device
US20030062984A1 (en) * 2001-09-28 2003-04-03 Ishizuka Electronics Corporation Thin film thermistor and method of adjusting reisistance of the same
US7161463B2 (en) * 2001-12-14 2007-01-09 Shin-Etsu Polymer Co., Ltd. Organic NTC composition, organic NTC device and production method of the same
JP4378941B2 (ja) * 2002-12-09 2009-12-09 株式会社村田製作所 電子部品の製造方法
TWI260670B (en) * 2003-05-28 2006-08-21 Futaba Denshi Kogyo Kk Conductive sintered compact for fixing electrodes in electronic device envelope
US7669313B2 (en) * 2005-07-11 2010-03-02 Texas Instruments Incorporated Method for fabricating a thin film resistor semiconductor structure
JP2007281400A (ja) * 2006-04-04 2007-10-25 Taiyo Yuden Co Ltd 表面実装型セラミック電子部品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02276203A (ja) * 1989-04-18 1990-11-13 Matsushita Electric Ind Co Ltd 積層型サーミスタの製造方法
US5500996A (en) * 1990-09-21 1996-03-26 Siemens Aktiengesellschaft Method for manufacturing a thermistor having a negative temperature coefficient in multi-layer technology
JPH04247603A (ja) * 1991-02-04 1992-09-03 Murata Mfg Co Ltd Ntcサーミスタ素子の製造方法
JPH097803A (ja) * 1995-06-15 1997-01-10 Ooizumi Seisakusho:Kk 高温用ガラス封止型サーミスタ

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 015, no. 040 (E - 1028) 30 January 1991 (1991-01-30) *
PATENT ABSTRACTS OF JAPAN vol. 017, no. 019 (E - 1306) 13 January 1993 (1993-01-13) *
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 05 30 May 1997 (1997-05-30) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010258482A (ja) * 2001-12-04 2010-11-11 Epcos Ag 負の温度係数を有する電気デバイス
WO2012031963A3 (de) * 2010-09-09 2012-09-07 Epcos Ag Widerstandsbauelement und verfahren zur herstellung eines widerstandsbauelements
US8947193B2 (en) 2010-09-09 2015-02-03 Epcos Ag Resistance component and method for producing a resistance component
WO2012059401A3 (de) * 2010-11-03 2012-08-30 Epcos Ag Keramisches vielschichtbauelement und verfahren zur herstellung eines keramischen vielschichtbauelements

Also Published As

Publication number Publication date
EP1277215B1 (de) 2009-06-24
ATE434823T1 (de) 2009-07-15
US20070175019A1 (en) 2007-08-02
US7215236B2 (en) 2007-05-08
CN1426588A (zh) 2003-06-25
JP2003532284A (ja) 2003-10-28
EP1277215A1 (de) 2003-01-22
US20040172807A1 (en) 2004-09-09
DE50114953D1 (de) 2009-08-06
JP2012064960A (ja) 2012-03-29
AU6205001A (en) 2001-11-07
DE10120253A1 (de) 2001-11-29
US7524337B2 (en) 2009-04-28

Similar Documents

Publication Publication Date Title
EP1277215B1 (de) Elektrisches bauelement, verfahren zu dessen herstellung und dessen verwendung
DE4329312C2 (de) Thermistor-Temperaturfühler
EP0189087B1 (de) Spannungsabhängiger elektrischer Widerstand (Varistor)
EP2917712B1 (de) Temperaturfühler und verfahren zur herstellung eines temperaturfühlers
DE3538458C2 (de)
EP3108482B1 (de) Ntc-bauelement und verfahren zu dessen herstellung
EP1451833B1 (de) Elektrisches bauelement mit einem negativen temperaturkoeffizienten
DE3930623A1 (de) Verfahren zur herstellung eines monolitischen keramik-kondensators
WO2002089160A2 (de) Elektrisches vielschichtbauelement und verfahren zu dessen herstellung
EP1774543B1 (de) Elektrisches bauelement und verfahren zur herstellung eines elektrischen bauelements
DE2321478A1 (de) Thermistor und verfahren zu seiner herstellung
EP1497838B1 (de) Verfahren zur herstellung eines ptc-bauelements
DE10018377C1 (de) Keramisches Vielschichtbauelement und Verfahren zur Herstellung
DE112022001724T5 (de) Sauerstoffsensorelement und verfahren zu seiner herstellung
DE3936103C2 (de) Anordnung zum Befestigen eines Drahtes an einem Festelektrolytelement
DE19635276C2 (de) Elektro-keramisches Vielschichtbauelement und Verfahren zu seiner Herstellung
WO2002091408A1 (de) Keramisches vielschichtbauelement und verfahren zur herstellung
DE2554464C3 (de) Elektrischer Widerstand
DE10110680A1 (de) Elektrisches Bauelement
DE10026260B4 (de) Keramisches Bauelement und dessen Verwendung sowie Verfahren zur galvanischen Erzeugung von Kontaktschichten auf einem keramischen Grundkörper
DE4331381C1 (de) Verfahren zur Herstellung von elektrischen Vielschichtwiderstandselementen
DE10057084B4 (de) Chip-Thermistoren und Verfahren zum Herstellen derselben
DE7712411U1 (de) Metallschichtwiderstand
DE8501077U1 (de) Spannungsabhängiger elektrischer Widerstand (Varistor)
DE3011672A1 (de) Temperatursensor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN CZ HU ID IN JP KR MX NO RU UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001935992

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 579314

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 018085652

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2001935992

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10240300

Country of ref document: US