TWI473122B - Semiconductor ceramics and semiconductor ceramic components - Google Patents

Semiconductor ceramics and semiconductor ceramic components Download PDF

Info

Publication number
TWI473122B
TWI473122B TW100142114A TW100142114A TWI473122B TW I473122 B TWI473122 B TW I473122B TW 100142114 A TW100142114 A TW 100142114A TW 100142114 A TW100142114 A TW 100142114A TW I473122 B TWI473122 B TW I473122B
Authority
TW
Taiwan
Prior art keywords
semiconductor ceramic
nickel
temperature
semiconductor
shows
Prior art date
Application number
TW100142114A
Other languages
English (en)
Other versions
TW201232570A (en
Inventor
Kiyohiro Koto
Original Assignee
Murata Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co filed Critical Murata Manufacturing Co
Publication of TW201232570A publication Critical patent/TW201232570A/zh
Application granted granted Critical
Publication of TWI473122B publication Critical patent/TWI473122B/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/12Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on oxides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K3/00Thermometers giving results other than momentary value of temperature
    • G01K3/005Circuits arrangements for indicating a predetermined temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/042Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient mainly consisting of inorganic non-metallic substances
    • H01C7/043Oxides or oxidic compounds
    • H01C7/045Perovskites, e.g. titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/40Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials of magnetic semiconductor materials, e.g. CdCr2S4
    • H01F1/401Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials of magnetic semiconductor materials, e.g. CdCr2S4 diluted
    • H01F1/407Diluted non-magnetic ions in a magnetic cation-sublattice, e.g. perovskites, La1-x(Ba,Sr)xMnO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Conductive Materials (AREA)
  • Thermistors And Varistors (AREA)

Description

半導體陶瓷及半導體陶瓷元件
本發明係關於一種半導體陶瓷及利用其構成之半導體陶瓷元件,尤其是可用作溫度感測器之半導體陶瓷元件。
近來,藉由溫度感測器測得之溫度感測精度之提高成為當務之急。尤其是Li離子電池或CPU(central processing unit,中央處理器)等於動作中易成為高溫狀態,並且於高溫狀態下動作會變得不穩定。因此,準確感測機器內之溫度之必要增高,故需要高精度之溫度感測器。
作為溫度感測器,使用Pt之感測器、或者使用Mn、Ni、Co、Fe等過渡金屬元素氧化物之NTC(Negative Temperature Coefficient,負溫度係數)熱敏電阻廣為人知。然而,前者之感測器由於使用作為貴金屬之Pt,故存在昂貴之缺點。另一方面,後者之NTC熱敏電阻由於相對於溫度之電阻變化較小,故存在溫度檢測精度較低之缺點。
又,另一方面,如非專利文獻1或專利文獻1所記載般,作為可實現急劇之電阻變化者,已知有利用金屬-絕緣體轉變之元件。
於非專利文獻1中,選擇La、Pr、Nd、Sm及Y作為稀土類元素R,且記載有關於稀土類元素R與鈦之鈣鈦礦結構氧化物(RTiO3 )、或者使鹼土類元素之Ca固溶於RTiO3 中而成之RCaTiO3 的電特性及磁特性。如該非專利文獻1之FIG.5所示,RTiO3 以大約100 K(-173℃)前後之低溫區域為分界點而使材料系統之磁性狀態急劇變化(稱為金屬-絕緣體轉變),顯示所謂強關聯電子系統之行為。又,關於電特性,亦表示於FIG. 1及FIG. 8中,且電阻溫度曲線於50~150 K附近變化。
於專利文獻1中,記載有使於大約65℃下產生金屬-絕緣體轉變之氧化釩(VO2 )之薄膜形成於基板上而構成之溫度感測器。
然而,關於上述非專利文獻1所記載者,顯示金屬-絕緣體轉變之溫度較低,為-223℃~-123℃,僅於極低溫度區域內顯示優異之磁性溫度特性及電阻溫度特性。因此,於一般消費者在現實中使用電氣設備之溫度(例如-25℃~+85℃。以下,記為「實際使用溫度」)下,無法利用上述特性。
另一方面,專利文獻1所記載者係使用於實際使用溫度之範圍內之65℃下顯示急劇之金屬-絕緣體轉變之VO2 薄膜。然而,已知若對VO2 單晶給予65~70℃左右之熱變化,則晶體會分散瓦解,因此明確VO2 本身具有非常脆之缺點。因此,存在VO2 難以用於電子零件之問題。又,於專利文獻1中,使用薄膜形成法而製作VO2 薄膜,故亦存在生產率較差之問題。
[先前技術文獻] [專利文獻]
[專利文獻1]日本專利特表2009-511899號公報
[非專利文獻]
[非專利文獻1]T. Katsufuji,Y. Taguchi and Y. Tokura,「Transport and magnetic properties of a Mott-Hubbard system whose bandwidth and band filling are both controllable: R1-xCaxTiO3+y/2」,Phys. Rev. B 56(1997)10145
因此,本發明之目的在於提供一種半導體陶瓷及使用其構成之半導體陶瓷元件,該半導體陶瓷於實際使用溫度下產生金屬-絕緣體轉變,並且具有充分之強度,因此易於處理。
本發明之半導體陶瓷之特徵在於:其包含含有稀土類元素、鎳、鈦之鈣鈦礦型或燒綠石型氧化物,且上述鎳之一部分作為金屬鎳而存在。
上述金屬鎳較佳為分散於該半導體陶瓷中。
本發明亦關於使用上述半導體陶瓷而構成之半導體陶瓷元件。本發明之半導體陶瓷元件之特徵在於具備包含上述半導體陶瓷之元件本體、以及隔著該元件本體之至少一部分而形成之至少1對電極。
本發明之半導體陶瓷元件例如可有利地用作溫度感測器,該溫度感測器係以根據於-25℃~+85℃之溫度、即實際使用溫度範圍內產生之電阻變化而檢測溫度之方式構成。
根據本發明之半導體陶瓷,已知於成為實際使用溫度範圍內之0℃~+80℃附近之溫度範圍內顯示急劇之電阻變化(CTR特性)。因此,使用該半導體陶瓷構成之半導體陶瓷元件可有利地用作溫度感測器,該溫度感測器係以根據於實際使用溫度範圍內所產生之電阻變化而檢測溫度之方式構成。
又,根據本發明之半導體陶瓷,由於於塊體狀態而並非薄膜狀態下保持穩定之特性,故具有充分之強度,因此易於處理,又,生產率較高。因此,使用該半導體陶瓷,可以低成本製造實用之半導體陶瓷元件。
已知,本發明之半導體陶瓷之上述特性係藉由使半導體陶瓷中之鎳之一部分作為金屬鎳存在而引起。關於特性之表現之明確之機制尚未明確,但作如下推測。
例如,不含鎳而含有稀土類元素及鈦之氧化物未表現出上述CTR特性。另一方面,由於金屬鎳顯示出金屬傳導,故亦未顯示出CTR特性。因此,可推測上述CTR特性係藉由金屬鎳與含有稀土類元素及鈦之氧化物之間的相互作用之結果而表現。
即,眾所周知,金屬鎳係強磁性體,且相鄰自旋朝向同一方向排列,就整體而言為具有大磁矩之物質。可推測:由於該大磁矩會對構成含有稀土類元素及鈦之氧化物之原子之自旋造成影響,故電特性受到影響,從而表現出CTR特性。
參照圖1,對本發明之一實施形態之半導體陶瓷元件1進行說明。
半導體陶瓷元件1具備包含半導體陶瓷之元件本體2、以及分別形成於元件本體2之相對向之主面上之1對電極3及4。
構成元件本體2之半導體陶瓷包含含有稀土類元素、鎳、鈦之鈣鈦礦型或燒綠石型氧化物。並且,於半導體陶瓷中,上述鎳之一部分作為金屬鎳而存在。此種金屬鎳較佳為使鈣鈦礦型或燒綠石型氧化物中所含之鎳還原而獲得者,故分散於半導體陶瓷中。
根據後述實驗例而明確,半導體陶瓷元件1可有利地用作以根據於實際使用溫度範圍內產生之電阻變化而檢測溫度之方式構成之溫度感測器。
為了製造此種半導體陶瓷元件1,例如實施以下步驟。
首先,於氧化鈦及氧化鎳中以特定之比率調配稀土類元素,添加分散劑及純水,利用磨碎機、球磨機等混合‧粉碎機進行數小時之濕式混合‧粉碎。
將以上述方式獲得之原料粉末乾燥後,於650~1300℃之溫度下進行預燒,繼而,添加分散劑及純水後,利用磨碎機、球磨機等混合‧粉碎機進行數小時之濕式混合‧粉碎。
繼而,於預燒後之原料粉末中添加分散劑、純水及水系黏合劑,利用磨碎機、球磨機等混合‧粉碎機進行數小時之濕式混合‧粉碎,然後將其乾燥。
繼而,藉由對上述乾燥後之原料粉末實施例如擠壓成形而獲得未煅燒之元件本體。
然後,藉由對該未煅燒之元件本體實施脫脂及煅燒步驟而獲得經燒結之元件本體2。將該煅燒步驟之煅燒環境設為例如包含氮氣與氫氣之混合氣體環境或包含氬氣與氫氣之混合氣體環境,將氧分壓控制於特定值以下,藉此使未煅燒之元件本體所含之氧化鎳之一部分還原而成為金屬鎳。
對上述煅燒環境進行詳細說明,根據熱力學可知,若於例如1300℃下且將煅燒爐內之氧分壓設為大約10-9 MPa以下,則使氧化鎳還原成金屬鎳。上述情況例如記載於「F. D. Richardson and J. H. E. Jeffes,「The Thermodynamics of Substances of Interest in Iron and Steel Making from 0℃ to 2400℃」,JOURNAL OF THE IRON AND STEEL INSTITUTE,(1948),p.261」中。
因此,將氧分壓設為例如10-10 MPa以下而進行煅燒處理,藉此於所獲得之元件本體2中,可使含有稀土類元素及鈦之氧化物(其中,推測一部分鎳固溶於該氧化物中)與金屬鎳共存。
繼而,對燒結後之元件本體2實施研磨步驟而調整形狀後,於其各主面上形成例如以Ag、Ag-Pd、Au、Pt等貴金屬為主成分之電極糊膜,繼而藉由實施電鍍處理而形成電極3及4。
以上述方式,可獲得半導體陶瓷元件1。
然後,根據實驗例對本發明之半導體陶瓷元件進行具體說明。
(1)試料之製作
首先,於氧化鈦及氧化鎳中,以鑭系元素/Ti/Ni=0.5/0.25/0.25(莫耳%)之比例調配作為稀土類元素之鑭系元素,添加聚羧酸銨系分散劑及純水,利用於球磨機進行數小時之濕式混合‧粉碎。再者,於該實驗例中,選擇原子序數為57之La(鑭)、原子序數為66之Dy(鏑)及原子序數為68之Er(鉺)作為鑭系元素。
將以上述方式獲得之原料粉末乾燥後,於1200℃之溫度下進行預燒,繼而添加聚羧酸銨系分散劑及純水後,利用球磨機進行數小時之濕式粉碎。
然後,於預燒後之原料粉末中添加聚羧酸銨系分散劑、純水及作為水系黏合劑之聚乙烯醇系黏合劑,並利用球磨機進行數小時之濕式混合‧粉碎,繼而將其乾燥。
繼而,對上述乾燥後之原料粉末實施壓力約為1000 kg/cm2 之擠壓成形,藉此獲得直徑約10 mm、厚度約2.5 mm之圓板狀之未煅燒之元件本體。
繼而,對該未煅燒之元件本體實施脫黏合劑步驟後,一方面將升溫速度及降溫速度調整至3.3~10℃/分,一方面以最高溫度1300℃實施煅燒步驟,藉此獲得燒結後之元件本體。將該煅燒步驟之煅燒環境設為包含氮氣及氫氣之混合氣體環境,將氧分壓設為10-10 MPa以下。燒結後之元件本體係直徑約8.5 mm、厚度約2.2 mm之圓板狀。
繼而,對燒結後之元件本體實施研磨步驟而調整形狀後,於其各主面上形成以Ag為主成分之電極糊膜,然後藉由實施電鍍處理而形成電極,從而獲得成為試料之半導體陶瓷元件。
(2) XRD(X-ray diffractometer,X光繞射)分析
於構成成為試料之半導體陶瓷元件之元件本體的半導體陶瓷中,由於確認氧化鎳之一部分被還原而成為金屬鎳,故對半導體陶瓷實施XRD分析。
於圖2至圖4中表示XRD分析結果。再者,圖2表示使用鑭系元素中之La之情形,圖3表示使用鑭系元素中之Dy之情形,圖4表示使用鑭系元素中之Er之情形。
如圖2所示,於La-Ti-Ni系中檢測出鈣鈦礦構造之LaTiO3 (固溶鎳)及金屬鎳。
如圖3所示,於Dy-Ti-Ni系中檢測出燒綠石構造之Dy2 Ti2 O7 (固溶鎳)及金屬鎳。
如圖4所示,於Er-Ti-Ni系中檢測出燒綠石構造之Er2 Ti2 O7 (固溶鎳)及金屬鎳。
即,半導體陶瓷之晶體結構根據鑭系元素之離子半徑而分為鈣鈦碘結構與燒綠石結構,但可確認所有試料均生成金屬鎳。
(3)電特性之評價
對於構成成為各試料之半導體陶瓷元件之元件本體的半導體陶瓷,要求有電阻溫度特性。再者,將測定溫度範圍設為-170℃~+250℃而實施4端子測定。作為測定器,使用KEITHLEY製造之型號為2430者。
圖5至圖7之(A)係表示於實驗例中所獲得之半導體陶瓷之電阻溫度特性之圖,(B)係於(A)之特性圖上添加斜率之標識而成者。再者,圖5表示使用鑭系元素中之La之情形,圖6表示使用鑭系元素中之Dy之情形,圖7表示使用鑭系元素中之Er之情形。
如圖5所示,La-Ti-Ni系係於+10℃~+70℃下電阻溫度特性曲線變得陡峭。
如圖6所示,Dy-Ti-Ni系係於+30℃~+80℃下電阻溫度特性曲線變得陡峭。
如圖7所示,Er-Ti-Ni系係於+0℃~+70℃下電阻溫度特性曲線變得陡峭。
再者,已知鑭系元素具有隨著原子序數之增大而離子半徑減小之性質,但價數通常為+3價較穩定。為了調查鑭系元素之添加效果,藉由調查離子半徑不同者之物性,可類推出全體鑭系元素之添加效果。因此,於該實驗例中,僅使用La、Dy及Er作為鑭系元素,但調查該等La、Dy及Er而獲得之物性結果,係作為於自原子序數為57之La至原子序數為68之Er的鑭系元素、進而自原子序數為57之La至原子序數為71之Lu的所有鑭系元素中加上Sc及Y之所有稀土類元素所共通者而獲得。
根據以上而確認:藉由包含含有稀土類元素、鎳、鈦之鈣鈦礦型或燒綠石型氧化物且鎳之一部分作為金屬鎳而存在之半導體陶瓷,可實現於實際使用溫度範圍內之0℃~+80℃下電阻溫度特性曲線變得陡峭之特性(CTR特性)。
再者,為了進行比較,對於使用La、Dy及Er之各氧化物作為鑭系元素並且不含鎳之鑭系元素-Ti-O氧化物,亦評價電阻溫度特性。於圖8中,表示其電阻溫度特性。
根據圖8可知,於使用不含鎳之鑭系元素-Ti-O氧化物之情形時,至少於實際使用溫度區範圍內之0℃~+80℃下,未表現出電阻溫度特性曲線變得陡峭之特性。
(4)磁特性之評價
為了獲取表示氧化物與金屬於本發明之半導體陶瓷中共存之情況的資料,作為補充,亦對半導體陶瓷之磁特性進行評價。
由於不考慮金屬鎳於試料表面之偏析狀態,故而對以上述方式獲得之元件本體之整面進行研磨,以使得厚度自大約2.2 mm至成為大約1.3 mm,直徑自大約8.5 mm至成為大約6.0 mm。可認為,由該試料所獲得之磁特性表示陶瓷內部之金屬鎳狀態。
於進行磁特性之評價時,於室溫(25℃)下測定施加最大16 kOe之磁場H時之磁化M。作為測定器,使用東榮工業股份有限公司製造之溫度變化測定用振動試料型磁力計(VSM-5-15型)。
圖9至圖11之(A)係表示本發明之半導體陶瓷之磁特性之圖,(B)係擴大(A)之一部分而成者。再者,圖9表示使用作為稀土類元素之鑭系元素中之La之情形,圖10表示使用鑭系元素中之Dy之情形,圖11表示使用鑭系元素中之Er之情形。
如圖9至圖11所示,作為磁特性而獲得表示強磁性體之滯後曲線(於H=0時,M≠0)。因此,可認為本發明之半導體陶瓷係強磁性體,且作為該強磁性體之性質係由金屬鎳產生。又,根據磁特性之結果,金屬鎳係並非於陶瓷表面偏析之狀態,可推測出其係於陶瓷內部共存之情形。
為了證實上述情況,進而亦需要金屬鎳單體之磁特性、及不含鎳之鑭系元素-Ti-O氧化物之磁特性。再者,用以求得金屬鎳單體之磁特性之試料係設為直徑大約3.6 mm、厚度大約1.0 mm之圓板狀,用以求得不含鎳之鑭系元素-Ti-O氧化物之磁特性之試料係設為直徑大約6.0 mm、厚度大約1.3 mm之圓板狀。
於圖12中,表示金屬鎳單體之磁特性。金屬鎳通常為強磁性體,若測定金屬鎳單體之磁特性,則如圖12所示般獲得表示強磁性體之滯後曲線(於H=0時,M≠0)。
另一方面,於圖13至圖15中,表示不含鎳之鑭系元素-Ti-O氧化物之磁特性。再者,圖13表示使用鑭系元素中之La之情形,圖14表示使用鑭系元素中之Dy之情形,圖15表示使用鑭系元素中之Er之情形。
自本發明之半導體陶瓷中不添加鎳之組成的鑭系元素-Ti-O氧化物係如圖13至圖15所示,於磁場H為「0」時磁化M亦成為「0」,不描繪滯後曲線。因此,可知鑭系元素-Ti-O氧化物並非強磁性體。
因此,如上所述,可確認本發明之半導體陶瓷係強磁性體,且該強磁性體之性質係由金屬鎳產生。
(5)金屬鎳之分散狀態之評價
為了對本發明之半導體陶瓷中之金屬鎳之分散狀態進行評價,用掃描型電子顯微鏡(SEM:Scanning Electron Microscope)進行能量分散形X射線分光(EDX:Energy Dispersive X-ray Spectrometer)分析。作為分析機器,使用JEOL製造之JSM-6390A。
圖16(A)表示使用作為稀土類元素之鑭系元素中之La之情形時的SEM照片,(B)表示Ni之EDX照片。根據圖16(A)及(B)而確認,鎳為點狀偏析之情形。其大小較小,為0.3 μm~2.0 μm。觀察SEM之圖像,亦可於圖像中觀察到白色之反差之點狀物體,已確認其為金屬鎳。又,由鎳所產生之反差,亦於點狀以外之部分表現出。因此,可認為一部分之鎳固溶於陶瓷中。
根據以上,可明確金屬鎳以0.3 μm~2.0 μm之尺寸之點狀形態分散於陶瓷中。又,可知一部分鎳固溶於陶瓷中。再者,於使用Dy之情形及使用Er之情形時,均可確認鎳為點狀偏析之情形。
1...半導體陶瓷元件
2...元件本體
3...電極
4...電極
圖1係表示本發明之一實施形態之半導體陶瓷元件1之外觀的立體圖。
圖2係表示於實驗例中獲得之半導體陶瓷之XRD分析結果之圖,且表示使用鑭系元素中之La作為稀土類元素之情形。
圖3係表示於實驗例中獲得之半導體陶瓷之XRD分析結果之圖,且表示使用鑭系元素中之Dy作為稀土類元素之情形。
圖4係表示於實驗例中獲得之半導體陶瓷之XRD分析結果之圖,且表示使用鑭系元素中之Er作為稀土類元素之情形。
圖5(A)係表示於實驗例中獲得之半導體陶瓷之電阻溫度特性之圖,圖5(B)係於(A)之特性圖上添加斜率之標識而成者,且表示使用鑭系元素中之La作為稀土類元素之情形。
圖6(A)係表示於實驗例中獲得之半導體陶瓷之電阻溫度特性之圖,圖6(B)係於(A)之特性圖上添加斜率之標識而成者,且表示使用鑭系元素中之Dy作為稀土類元素之情形。
圖7(A)係表示於實驗例中獲得之半導體陶瓷之電阻溫度特性之圖,圖7(B)係於(A)之特性圖上添加斜率之標識而成者,且表示使用鑭系元素中之Er作為稀土類元素之情形。
圖8係表示作為比較例之鑭系元素(La、Dy、Er)-Ti-O之電阻溫度特性之圖。
圖9(A)係表示本發明之半導體陶瓷之磁特性之圖,圖9(B)係擴大(A)之一部分而成者,且表示作為稀土類元素而使用鑭系元素中之La之情形。
圖10中,(A)係表示本發明之半導體陶瓷之磁特性之圖,(B)係擴大(A)之一部分而成者,且表示使用鑭系元素中之Dy作為稀土類元素之情形。
圖11中,(A)係表示本發明之半導體陶瓷之磁特性之圖,(B)係擴大(A)之一部分而成者,且表示使用鑭系元素中之Er作為稀土類元素之情形。
圖12(A)係表示作為比較例之金屬鎳單體之磁特性之圖,圖12(B)係擴大(A)之一部分而成者。
圖13(A)係表示作為比較例之La-Ti-O之磁特性之圖,圖13(B)係擴大(A)之一部分而成者。
圖14(A)係表示作為比較例之Dy-Ti-O之磁特性之圖,圖14(B)係擴大(A)之一部分而成者。
圖15(A)係表示作為比較例之Er-Ti-O之磁特性之圖,圖15(B)係擴大(A)之一部分而成者。
圖16(A)係本發明之半導體陶瓷之SEM照片,圖16(B)係本發明之半導體陶瓷之Ni之EDX照片,且表示使用鑭系元素中之La作為稀土類元素之情形。

Claims (4)

  1. 一種半導體陶瓷,其包含含有稀土類元素、鎳及鈦之鈣鈦礦型或燒綠石型氧化物,且上述鎳之一部分作為金屬鎳而存在。
  2. 如請求項1之半導體陶瓷,其中上述金屬鎳係分散於該半導體陶瓷中。
  3. 一種半導體陶瓷元件,其具備包含如請求項1或2之半導體陶瓷之元件本體、及隔著上述元件本體之至少一部分而形成之至少1對電極。
  4. 如請求項3之半導體陶瓷元件,其可用作以根據於-25℃~+85℃之溫度範圍內產生之電阻變化而感測溫度之方式構成之溫度感測器。
TW100142114A 2011-01-21 2011-11-17 Semiconductor ceramics and semiconductor ceramic components TWI473122B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011010503 2011-01-21

Publications (2)

Publication Number Publication Date
TW201232570A TW201232570A (en) 2012-08-01
TWI473122B true TWI473122B (zh) 2015-02-11

Family

ID=46515713

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100142114A TWI473122B (zh) 2011-01-21 2011-11-17 Semiconductor ceramics and semiconductor ceramic components

Country Status (4)

Country Link
US (1) US9318684B2 (zh)
JP (1) JP5737299B2 (zh)
TW (1) TWI473122B (zh)
WO (1) WO2012099089A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012110822A1 (de) * 2012-11-12 2014-05-15 Epcos Ag Temperatursensorsystem und Verfahren zur Herstellung eines Temperatursensorsystems
KR101686879B1 (ko) * 2015-06-24 2016-12-19 (주)엑센 산화물 반도체 가스센서 및 그 제조방법
CN106784617B (zh) * 2016-12-15 2020-05-05 宁德时代新能源科技股份有限公司 一种锂离子电池正极极片,其制备方法及使用该极片的电池
JP7047912B2 (ja) * 2018-07-10 2022-04-05 株式会社村田製作所 電子素子
JP7311997B2 (ja) 2019-03-29 2023-07-20 日立Astemo株式会社 位置検出装置
CN112939602B (zh) * 2021-02-25 2023-04-18 中国科学院新疆理化技术研究所 一种钛酸盐体系负温度系数热敏电阻材料及制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3996168A (en) * 1973-02-19 1976-12-07 Siemens Aktiengesellschaft Ceramic electrical resistor
US7215236B2 (en) * 2000-04-25 2007-05-08 Epcos Ag Electric component, method for the production thereof and use of the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015461A (en) * 1989-06-26 1991-05-14 Exxon Research & Engineering Company Novel high surface area oxide compositions with a pyrochlore structure, methods for their preparation, and conversion processes utilizing same
JPH0558821A (ja) * 1991-08-28 1993-03-09 Tosoh Corp チオカーバメートアミド誘導体を有効成分とする農園芸用殺菌剤
JPH0658821A (ja) * 1992-08-06 1994-03-04 Nec Corp 温度センサー
JP4487439B2 (ja) * 2000-05-15 2010-06-23 株式会社村田製作所 積層型半導体セラミック素子およびその製造方法
JP4257419B2 (ja) * 2003-11-07 2009-04-22 独立行政法人産業技術総合研究所 n型熱電変換特性を有する複合酸化物
US7300595B2 (en) 2003-12-25 2007-11-27 Tdk Corporation Method for filling concave portions of concavo-convex pattern and method for manufacturing magnetic recording medium
WO2005064698A1 (ja) * 2003-12-26 2005-07-14 National Institute Of Advanced Industrial Science And Technology 熱電発電装置
US7597817B1 (en) * 2004-04-21 2009-10-06 Intematix Corporation Magnetic doped perovskite oxides
KR100744551B1 (ko) 2005-10-12 2007-08-01 한국전자통신연구원 급격한 mit 소자를 이용한 온도센서 및 그 센서를포함한 경보기
JP4970318B2 (ja) * 2007-06-12 2012-07-04 Tdk株式会社 積層型ptcサーミスタ及びその製造方法
CN101849309A (zh) * 2007-07-05 2010-09-29 康宁股份有限公司 用于sofc系统的绝缘体

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3996168A (en) * 1973-02-19 1976-12-07 Siemens Aktiengesellschaft Ceramic electrical resistor
US7215236B2 (en) * 2000-04-25 2007-05-08 Epcos Ag Electric component, method for the production thereof and use of the same

Also Published As

Publication number Publication date
US9318684B2 (en) 2016-04-19
TW201232570A (en) 2012-08-01
JPWO2012099089A1 (ja) 2014-06-30
US20140159191A1 (en) 2014-06-12
WO2012099089A1 (ja) 2012-07-26
JP5737299B2 (ja) 2015-06-17

Similar Documents

Publication Publication Date Title
TWI473122B (zh) Semiconductor ceramics and semiconductor ceramic components
Maqbool et al. Evolution of phase structure and giant strain at low driving fields in Bi-based lead-free incipient piezoelectrics
Kumar et al. Evidences of magneto-electric coupling in BFO–BT solid solutions
JP5445640B2 (ja) 半導体磁器組成物の製造方法
KR101289808B1 (ko) 반도체 세라믹 및 정특성 서미스터
Amonpattaratkit et al. Influences of PZT addition on phase formation and magnetic properties of perovskite Pb (Fe0. 5Nb0. 5) O3-based ceramics
Kong et al. Preparation of PMN–PT ceramics via a high-energy ball milling process
Das et al. Studies of electrical, magnetic and leakage-current characteristics of double perovskite: Dy2CoMnO6
Walker et al. Robust polarization and strain behavior of sm-modified BiFeO 3 piezoelectric ceramics
Zhou et al. Investigation of structural and electrical properties of B-site complex Ion (Mg 1/3 Nb 2/3) 4+-modified high-Curie-temperature BiFeO 3-BaTiO 3 ceramics
TW200940474A (en) Sintered article and thermo-electric conversion material
Sun et al. Solid-state-growth of lead-free piezoelectric (Na1/2Bi1/2) TiO3-CaTiO3 single crystals and their characterization
JP2015222780A (ja) 圧電セラミックス、その製造方法及び圧電体素子
Jaita et al. Electric field-induced strain response of lead-free Fe2O3 nanoparticles-modified Bi0. 5 (Na0. 80K0. 20) 0.5 TiO3-0.03 (Ba0. 70Sr0. 03) TiO3 piezoelectric ceramics
Zaman et al. Influence of zirconium substitution on dielectric, ferroelectric and field-induced strain behaviors of lead-free 0.99 [Bi 1/2 (Na 0.82 K 0.18) 1/2 (Ti 1− x Zr x) O 3]-0.01 LiSbO 3 ceramics
Varshney et al. Structural, vibrational and magnetic properties of Ti substituted bulk hematite: α-Fe 2− x Ti x O 3
Wongmaneerung et al. Phase formation, dielectric and magnetic properties of bismuth ferrite–lead magnesium niobate multiferroic composites
JP5995096B2 (ja) サーミスタ用金属酸化物材料及びその製造方法並びにサーミスタ素子
Fisher et al. Reactive sintering of (K 0.5 Bi 0.5) TiO 3-BiFeO 3 lead-free piezoelectric ceramics
Park et al. Effect of Al~ 2O~ 3 Addition on the Microstructure and the Electrical Stability of MnNiCoO~ 4 NTC Thermistors
EP3026033A1 (en) Crystal-oriented piezoelectric ceramic, piezoelectric element, and method for manufacturing crystal-oriented piezoelectric ceramic
JP2012254912A (ja) 圧電セラミックスおよび積層型圧電素子
Bartkowska et al. Dielectric relaxation of manganese modified Bi6Fe2Ti3O18 Aurivillius-type ceramics
Sudhakar et al. Structural, magnetic, and electron transport studies on nanocrystalline layered manganite La1. 2Ba1. 8Mn2O7 system
JP2012064840A (ja) 半導体セラミックの製造方法、半導体セラミック、及び正特性サーミスタ

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees