WO2001068515A1 - Verfahren zur reversiblen speicherung von wasserstoff auf der basis von alkalimetallen und aluminium - Google Patents

Verfahren zur reversiblen speicherung von wasserstoff auf der basis von alkalimetallen und aluminium Download PDF

Info

Publication number
WO2001068515A1
WO2001068515A1 PCT/EP2001/002363 EP0102363W WO0168515A1 WO 2001068515 A1 WO2001068515 A1 WO 2001068515A1 EP 0102363 W EP0102363 W EP 0102363W WO 0168515 A1 WO0168515 A1 WO 0168515A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
metals
metal
hydrides
alkali
Prior art date
Application number
PCT/EP2001/002363
Other languages
English (en)
French (fr)
Inventor
Borislav Bogdanovic
Manfred Schwickardi
Original Assignee
Studiengesellschaft Kohle Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Studiengesellschaft Kohle Mbh filed Critical Studiengesellschaft Kohle Mbh
Priority to JP2001567622A priority Critical patent/JP2003527280A/ja
Priority to US10/221,466 priority patent/US6814782B2/en
Priority to EP01931491A priority patent/EP1263676A1/de
Priority to CA002403403A priority patent/CA2403403A1/en
Publication of WO2001068515A1 publication Critical patent/WO2001068515A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present invention relates to a method for the reversible storage of hydrogen, alkali metals or their hydrides and aluminum metal being doped with transition metal catalysts being used as hydrogen storage materials.
  • the disadvantages of the previous method of the SGK are that the preparation and purification of the commercial sodium alanate, the production of Na 3 AIH 6 or Na 2 LiAIH 6 and the subsequent doping in organic solvents are preparative and relatively complex and in most cases easy to use volatile, highly flammable (ether, pentane) and prone to peroxide (ether, THF) solvent required.
  • the starting materials for their production can be used in the form of alkali metal hydrides or alkali metals (in particular NaH or Na), Al powder and dopants.
  • the alanates formed from these starting materials in a hydrogenation step are immediately functional as H 2 stores and have improved storage properties compared to PCT / WO 97/03919.
  • Na and Li alanates can be prepared by mixing the corresponding alkali metal hydrides (or alkali metals) and aluminum in ethers, amines and aliphatic or aromatic hydrocarbons, if appropriate in the presence of catalytic amounts of organoaluminum Compounds reacted with hydrogen under pressure.
  • 3,138,433 (1964) describes, inter alia, a method for the preparation of NaAIH 4 from NaH, Al and hydrogen under pressure in THF, using Ti, Zr, Hf and Th tetrahalides as catalysts; in the only patent example contained therein, however, a yield of NaAIH of max. 21.8% stated.
  • a direct synthesis of Na 3 AIH 6 is possible in 98% yield according to Inorg. Chem. 5 (1966) 1615, by reacting Na and activated Al powder in diglyme in the presence of Et 3 Al with hydrogen under pressure (350 bar).
  • a synthesis of NaAIH 4 from the elements Na, AI and H is also possible in the absence of organic solvents according to Dokl. Akad.
  • the alkali metal alanates prepared by the processes mentioned were not taken into consideration for the purposes of hydrogen storage.
  • the preparation of the storage material according to the present invention is very simple and completely dispenses with organic solvents.
  • the aluminum powder used in the present process is cheaper and easier to handle than the sodium alanate previously used. It was particularly surprising that the hydrogenation of aluminum in the presence of alkali metals or metal hydrides at temperatures well below the melting points of the metal / metal hydride starting materials involved and the metal alianate products, ie in solid form, succeeds (in contrast to the direct synthesis cited above) according to Dymova et al., Dokl. Akad. Nauk SSSR 215 (1974) 1369, English 256 "Direct Synthesis of Alkali Metal Aluminum Hydrides in the Melt").
  • aluminum powder is mixed with powdered sodium hydride and mixed with catalytic amounts of titanium tetrabutylate.
  • the mass obtained in this way can be directly reversible Hydrogen storage can be used. If Al and NaH are used in a molar ratio of 1: 1, NaAIH 4 is obtained in the hydrogenation, while Na 3 AIH 6 is obtained in a molar ratio of 1: 3 after the hydrogenation.
  • Another particular advantage of the present process for the reversible storage of hydrogen is that, by simplifying the previously known method according to PCT / WO 97/03919, the desorption and absorption kinetics could be significantly improved.
  • FIG. 2 shows the course of hydrogenation of a hydrogenation cycle according to the previous method at 170 ° C. and according to the present method at 118 ° C. and illustrates the clearly gained activity.
  • FIG. 3 shows 33 hydrogenation / dehydrogenation cycles of a material according to the present method and prove the reversibility of the new materials.
  • a typical storage material preparation according to the present invention is that aluminum powder, untreated or after briefly heating in vacuo to about 200 ° C., is stirred vigorously with finely powdered sodium hydride under a protective gas (eg argon). Subsequently, with stirring (or possibly with grinding), catalytic amounts of titanium tetra-n-butoxide (0.1 to 10 mol% based on aluminum, preferably 1 to 5 mol%) are added dropwise. In this way, a gray, slightly sticky, but still pourable powder mixture is obtained, which is introduced into an autoclave.
  • the first step is to hydrogenate under pressures between 5 and 150 bar and temperatures between 20 and 200 ° C. The mixture is then dehydrated against elevated pressure or normal pressure at temperatures between 50 and 250 ° C.
  • the aluminum is preferably used in the form of a fine cut (see Examples 1 and 5: surface It. BET measurement 12.2 or 2.0 m 2 / g).
  • the aluminum used can optionally be preactivated by grinding, exposure to ultrasound or chemical activation.
  • sodium hydride or sodium other alkali metal hydrides or alkali metals (in particular Li and K) can be used individually or in combinations.
  • the molar ratio between aluminum and alkali metal can vary between 1: 0.3 and 1: 5. If aluminum and Na or NaH are used in a molar ratio of - 1: 1 or - 1: 3, the hydrogenation gives NaAIH 4 or Na 3 AIH 6 .
  • the alkali metals or their hydrides can optionally be pretreated before use by grinding or exposure to ultrasound.
  • Transition metals or transition metal compounds or alloys of groups 3-11 of the PSE and rare earth metals are used individually or in combinations, which can be bound to elements of groups 14-17 or hydrogen, as catalysts.
  • the transition metal or rare earth metal compounds are preferably used in the form of halides, hydrides, alcoholates, amides or organometallic compounds. Halides, alcoholates and organometallic compounds of titanium, zirconium and rare earth metals are particularly preferred.
  • Example 1 Al and NaH powder mixture doped with titanium tetra-n-butoxide as a reversible hydrogen storage; 33-cycle test
  • the aluminum used was an AI cut (Lunasol) from the Frankfurt bronze paint and sheet metal factory Julius Schopflocher AG with a surface area of 12.2m 2 / g (It. BET measurement).
  • the NaH was finely pulverized in a glass ball mill.
  • the aluminum powder was briefly heated to 200 ° C. at 0.1 mbar (aluminum content according to elementary analysis by H. Kolbe, Mülheim a.d.Ruhr: 91.7% by weight).
  • Fig. 1 shows the course of dehydrogenation (8th cycle, 3.96% by weight H 2 ) compared to the prior art.
  • Fig. 3 shows the dependence of the hydrogen storage capacity (measured using the amount of H 2 released during dehydrogenation) on the number of cycles.
  • the storage material was removed from the autoclave in hydrogenated form and examined by infrared spectroscopy.
  • the IR spectrum shows AIH 4 and AIH 6 bands, in addition to weak CH and CO bands (alcoholate groups).
  • Example 2 Al and NaH powder mixture doped with titanium tetra-n-butylate as a reversible hydrogen storage using untreated aluminum cut
  • the storage material preparation was carried out analogously to Example 1, but the untreated commercial product was used here instead of the aluminum heated in a vacuum.
  • the material was examined in 7 cycles and reached a storage capacity of 3.7% by weight H 2 in the 3rd hydrogenation process and 3.6% by weight H 2 in the 7th hydrogenation step.
  • Example 3 Al and NaH powder mixture doped with ⁇ -TiCI 3 as a reversible hydrogen storage agent
  • the storage material preparation was carried out analogously to Example 1, but the aluminum grinding was not baked in a vacuum, but rather before it was used Mechanically grind in a glass ball mill. Instead of Ti (OBu) 4 were
  • the material was cyclized and reached a capacity of 2.5% by weight H 2 in the 1st hydrogenation and 2.9% by weight in the 5th hydrogenation step (at 135 ° C / ⁇ 140bar)
  • the storage material preparation was carried out analogously to Example 1, but the aluminum grinding was not baked in a vacuum, but was mechanically ground in a glass ball mill before being used.
  • the molar ratio between aluminum and sodium hydride was 1: 2.9.
  • the material reached a capacity of 2.2 wt .-% H 2 and 5.
  • hydrogenation step (at 117 ° C / 35 bar) 1, 5 wt .-% H 2 in the 1st hydrogenation.
  • Example 5 Al and NaH powder mixture doped with titanium tetra-n-butylate as reversible hydrogen storage using spherical Al powder ⁇ 20 ⁇
  • the storage material preparation was carried out analogously to Example 2, with a spherical Al powder ( ⁇ 20 ⁇ ) from Aldrich (surface according to BET measurement: 2.0 m 2 / g) being used in the untreated form instead of the Al grinding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Powder Metallurgy (AREA)

Abstract

Verfahren zur reversiblen Speicherung von Wasserstoff, dadurch gekennzeichnet, daß reversible Wasserstoffspeicher-Materialien verwendet werden, die Gemische von Aluminiummetall mit Alkalimetallen und/oder Alkalimetallhydriden und Übergangsmetall- und/oder Seltenerdmetallkatalysatoren enthalten.

Description

Verfahren zur reversiblen Speicherung von Wasserstoff auf der Basis von
Alkalimetallen und Aluminium
Die vorliegende Erfindung betrifft ein Verfahren zur reversiblen Speicherung von Wasserstoff, wobei Alkalimetalle oder ihre Hydride und Aluminiummetall unter Dotierung mit Übergangsmetall-Katalysatoren als Wasserstoffspeicher-Materialien verwendet werden.
Nach der Patentanmeldung der Studiengesellschaft Kohle mbH (SGK) PCT/WO 97/03919 ist ein Verfahren zur reversiblen Speicherung von Wasserstoff bekannt, das als Speichermaterialien die Alkalimetallalanate der allgemeinen Formel M1p(i-x)M2 pxAIH3+p (1) M1 = Na, K; M2 = Li, K; 0<x<~0.8; 1 <p<3 verwendet. Zur Verbesserung der Hydrier-/Dehydrierkinetik werden die Alkalimetallalanate mit Übergangsmetallverbindungen in katalytischen Mengen dotiert. Besondere Verwendung finden die Alanate NaAIH , Na3AIH6 und Na2LiAIH6.
Die Nachteile des bisherigen Verfahrens der SGK bestehen darin, daß die Darstellung und Reinigung des kommerziellen Natriumalanats, die Herstellung von Na3AIH6 oder Na2LiAIH6 und die anschließende Dotierung in organischen Lösemitteln präparativ relativ aufwendig sind und in den meisten Fällen den Einsatz leicht flüchtiger, hochentzündlicher (Ether, Pentan) und zur Peroxidbildung neigender (Ether, THF) Lösemittel erfordert.
Es wurde nun überraschenderweise gefunden, daß an Stelle der übergangsmetalldotierten Alkalimetallalanate als Wasserstoffspeicher die Ausgangsmaterialien zu deren Herstellung in Form von Alkalimetallhydriden oder Alkalimetallen (insbesondere NaH bzw. Na), AI-Pulver und Dotierungsmitteln eingesetzt werden können. Die aus diesen Ausgangsmaterialien in einem Hydrierschritt entstehenden Alanate sind unmittelbar als H2-Speicher funktionsfähig und verfügen über im Vergleich zu PCT/WO 97/03919 verbesserte Speichereigenschaften.
Verfahren zur Herstellung von Alkalimetall-Alanaten aus Alkalimetallhydriden (oder Alkalimetallen), Aluminium und Wasserstoff sind bekannt. Eine Übersicht der Methoden zur Darstellung von NaAIH4, Na3AIH6 und Na2LiAIH6 ist in J. Alloys & Compounds, ... 2000 ..., gegeben. So lassen sich nach der deutschen Patentschrift 1 136 987 (1962) Na- und Li-Alanate herstellen, indem man die entsprechenden Alkalimetallhydride (oder Alkalimetalle) und Aluminium in Ethern, Aminen und aliphatischen oder aromatischen Kohlenwasserstoffen, ggf. in Gegenwart katalytischer Mengen von Organoaluminium-Verbindungen, mit Wasserstoff unter Druck umsetzt. Die US-Patentschrift 3,138,433 (1964) beschreibt u.a. eine Methode zur Darstellung von NaAIH4 aus NaH, AI und Wasserstoff unter Druck in THF, wobei Ti-, Zr-, Hf und Th-Tetrahalogenide als Katalysatoren verwendet werden; in dem einzigen darin vorhandenen Patentbeispiel wird allerdings eine Ausbeute an NaAIH von max. 21.8 % angegeben. Eine Direktsynthese von Na3AIH6 gelingt in 98 %-iger Ausbeute nach Inorg. Chem. 5 (1966) 1615, indem man Na und aktiviertes AI-Pulver in Diglyme in Gegenwart von Et3AI mit Wasserstoff unter Druck (350 bar) umsetzt. Eine Synthese von NaAIH4 aus den Elementen Na, AI und H ist auch in Abwesenheit von organischen Lösemitteln nach Dokl. Akad. Nauk SSSR 215 (1974) 1369, engt. 256 dadurch möglich, daß man den Prozeß in der Schmelze (>175 bar, <280°C) durchführt. Die nach den genannten Verfahren dargestellten Alkalimetall-Alanate wurden für die Zwecke der Wasserstoffspeicherung nicht in Betracht gezogen.
Im Gegensatz dazu ist die Präparation des Speichermaterials nach der vorliegenden Erfindung sehr einfach und verzichtet vollständig auf organische Lösemittel. Das nach dem vorliegenden Verfahren verwendete Aluminium-Pulver ist billiger und einfacher in der Handhabung als das bisher verwendete Natriumalanat. Besonders überraschend war es, daß die Hydrierung von Aluminium in Gegenwart von Alkalimetallen oder -metallhydriden bei Temperaturen deutlich unterhalb der Schmelzpunkte der beteiligten Metall- /Metallhydrid-Edukte und der Metallaianat-Produkte, also in fester Form, gelingt (im Gegensatz zur oben zitierten Direktsynthese nach Dymova et al., Dokl. Akad. Nauk SSSR 215 (1974) 1369, engl. 256 „ Direct Synthesis of Alkali Metal Aluminium Hydrides in the Melt").
Nach der vorliegenden Erfindung wird beispielsweise Aluminium-Pulver mit pulverförmigem Natriumhydrid gemischt und mit katalytischen Mengen Titantetrabutylat vermengt. Die so erhaltene Masse kann direkt als reversibler Wasserstoffspeicher verwendet werden. Setzt man AI und NaH im Molverhältnis 1 : 1 ein, so erhält man bei der Hydrierung NaAIH4, während man bei einem Molverhältnis von 1 : 3 nach der Hydrierung Na3AIH6 erhält.
Ein weiterer besonderer Vorteil des vorliegenden Verfahrens zur reversiblen Speicherung von Wasserstoff ist, daß unter Vereinfachung der bisher bekannten Methode nach PCT/WO 97/03919, die Desorptions- und Absorptionskinetik deutlich verbessert werden konnte.
In Figur 1 ist die Wasserstoffdesorption bei 160°C unter Normaldruck nach der vorliegenden Erfindung gegenüber dem bisher bekannten Verfahren der Studiengesellschaft Kohle dargestellt. Zur vollständigen Speicherentladung werden nach dem bisherigen Verfahren - 10 h benötigt, während die Desorption nach der vorliegenden Erfindung nur ~1 h dauert.
Figur 2 stellt den Hydrierverlauf eines Hydrierzyklusses nach dem bisherigen Verfahren bei 170°C und nach dem vorliegenden Verfahren bei 118°C dar und veranschaulicht die deutlich hinzugewonnene Aktivität.
In Figur 3 sind 33 Hydrier-/Dehydrierzyklen eines Materials nach dem vorliegenden Verfahren aufgezeichnet und belegen die Reversibilität der neuen Materialien.
Eine typische Speichermaterial-Vorbereitung nach der vorliegenden Erfindung besteht darin, daß Aluminium-Pulver, unbehandelt oder nach kurzzeitigem Erhitzen im Vakuum auf ca. 200°C, mit feinpulvrigem Natriumhydrid unter Schutzgas (z.B. Argon) intensiv verrührt wird. Anschließend werden unter Rührung (oder evt. unter Vermahlung) katalytische Mengen Titantetra-n-butylat (0,1 bis 10 mol-% bezogen auf Aluminium, vorzugsweise 1 bis 5 mol-%) zugetropft. Auf diese Weise erhält man ein graues, leicht klebriges, jedoch noch schüttfähiges Pulvergemisch, das in einen Autoklaven eingebracht wird. Zunächst wird unter Drücken zwischen 5 und 150 bar und Temperaturen zwischen 20 und 200°C hydriert. Anschließend wird gegen erhöhten Druck oder Normaldruck bei Temperaturen zwischen 50 und 250°C dehydriert und auf diese Weise periodisch in einer geeigneten Druckanlage zyklisiert (Beispiel 1 ). Um eine möglichst gute Hydrierkinetik und hohe Speicherkapazitäten zu erzielen, wird das Aluminium vorzugsweise in Form eines feinen Schliffs eingesetzt (s. Beispiele 1 und 5: Oberflächen It. BET-Messung 12,2 bzw. 2,0 m2/g).
In Abwandlung zu der beschriebenen Speichermaterial-Vorbereitung kann das eingesetzte Aluminium gegebenfalls durch Vermahlung, Einwirkung von Ultraschall oder chemische Aktivierung voraktiviert werden. Anstelle von Natriumhydrid oder Natrium können auch andere Alkalimetallhydride oder Alkalimetalle (insbesondere Li und K) einzeln oder in Kombinationen eingesetzt werden. Das Molverhältnis zwischen Aluminium und Alkalimetall kann zwischen 1 : 0,3 und 1 : 5 variieren. Setzt man Aluminium und Na oder NaH im Molverhältnis - 1 : 1 bzw. - 1 : 3 ein, so erhält man bei der Hydrierung NaAIH4 bzw. Na3AIH6. Die Alkalimetalle oder deren Hydride können ggf. vor ihrer Verwendung durch Vermählen oder Einwirkung von Ultraschall vorbehandelt werden. Als Katalysatoren werden Übergangsmetalle oder Übergangsmetall-Verbindungen bzw. -Legierungen der Gruppen 3 - 11 des PSE und der Seltenerdmetalle einzeln oder in Kombinationen verwendet, die an Elemente der Gruppen 14-17 oder Wasserstoff gebunden sein können. Die Übergangsmetall- bzw. Seltenerdmetallverbindungen werden vorzugsweise in Form von Halogeniden, Hydriden, Alkoholaten, Amiden oder metallorganischen Verbindungen eingesetzt. Besonders bevorzugt sind Halogenide, Alkoholate und metallorganische Verbindungen des Titans, Zirkons und der Seltenerdmetalle.
Die Fortschritte des vorliegenden Verfahrens gegenüber dem bisherigen Verfahren der SGK (PCT /VO 97/03919) ergeben sich aus folgenden Verbesserungen:
Edukte sind kommerziell leicht zugänglich
■ geringere Verfahrenskosten
erheblich vereinfachte Speichermaterial-Präparation
keine Verwendung von organischen Lösemitteln
deutlich verbesserte Hydrier- und Dehydrierkinetik Die Erfindung wird durch die nachfolgenden Beispiele näher erläutert, ohne jedoch auf sie beschränkt zu sein. Sämtliche Versuche wurden in einer Schutzatmosphäre, z.B. Argon, durchgeführt.
Beispiel 1 (mit Titantetra-n-butylat dotiertes AI- und NaH-Pulvergemisch als reversibler Wasserstoffspeicher; 33-Zyklentest)
Das eingesetzte Aluminium war ein AI-Schliff (Lunasol) der Frankfurter Bronzefarben- und Blattmetallfabrik Julius Schopflocher AG mit einer Oberfläche von 12,2m2/g (It. BET-Messung).
Das NaH wurde in einer Glaskugelmühle fein pulverisiert. Das Aluminium-Pulver wurde bei 0,1 mbar kurzzeitig auf 200°C erhitzt (Aluminium-Gehalt It. Elementaranalyse der Fa. H. Kolbe, Mülheim a.d. Ruhr : 91 ,7 Gew.-%).
753mg (31 ,4mmol) des pulverisierten Natriumhydrids wurden mit 980mg (33,3mmol) des im Vakuum erhitzten Aluminium-Schliffs durch Rühren mit einem Magnetrührkern unter Argon intensiv vermengt. Dann wurde das gerührte Pulver langsam aus einer feinen Tropfspitze mit 0,21 ml (0,62mmol = 1 ,9mol-% bezogen auf AI) Titantetra-n-butylat versetzt und noch kurzzeitig weiter gerührt. 1850mg des erhaltenen grauen, leicht klebrigen, jedoch schüttfähigen Materials wurden in einen Autoklav (-40 ml Volumen) mit Glaseinsatz gegeben. Der Autoklav war mit einer Innentemperaturfühlung, einer elektrischen Heizung mit Rampenfunktion, einem elektrischen Druckumformer und einem Mehrkanalschreiber ausgestattet. Um die Eignung des Materials als reversibler Wasserstoffspeicher zu testen, wurde es einer Serie von 33 Hydrier-/Rehydrierzyklen (Zyklentest) unterworfen (siehe Tabelle 1 ). Der Zyklentest wurde in einem sog. offenen System durchgeführt, d.h., daß bei jeder Hydrierung frischer Wasserstoff (99,9%) einem Wasserstoffdruckbehälter entnommen wurde und bei jeder Dehydrierung Wasserstoff gegen Normaldruck desorbiert wurde. Tabelle 1
Zyklentest (Beispiel 1)
ZyklenTemp. End- Zeit Gew.- Zyklen- Temp. End- Zeit Gew.- zahl [°C] druck3' [h] % H2 zahl [°C] drucka) [h] % H2
[bar] [bar]
Figure imgf000007_0001
a) Zur Ermittlung des Anfangsdrucks müssen zum Enddruck pro Gew.-% H2 -4 bar addiert werden. b) siehe Abb. 2 c) siehe Abb. 1 Hydrierung: Die Hydrierungen wurden bei Temperaturen zwischen 103 und 165°C, in der Mehrzahl bei ~120°C, bei abnehmendem Wasserstoffdruck im Autoklaven durchgeführt (siehe Abb. 2; 7. Zyklus).
Dehydrierung: Die Probe wurde schnell von Raumtemperatur auf 160°C erhitzt und bei dieser Temperatur bis zum Ende der Wasserstoffentwicklung konstant gehalten. Der zeitliche Verlauf der Wasserstoffentwicklung wurde mit Hilfe einer automatischen Gasbürette (Chem. Ing. Tech., 55 (1983) S.156) zusammen mit der Innentemperatur der Probe aufgezeichnet. Abb. 1 stellt den Dehydrierverlauf (8. Zyklus, 3,96 Gew.-% H2) im Vergleich zum bisherigen Stand der Technik dar.
Die Abhängigkeit der Wasserstoffspeicherkapazität (gemessen anhand der bei der Dehydrierung abgegeben H2-Menge) von der Zyklenzahl zeigt die Abb. 3.
Nach insgesamt 34 Hydriervorgängen wurde das Speichermaterial in hydrierter Form aus dem Autoklaven entnommen und infrarotspektroskopisch untersucht. Das IR-Spektrum zeigt AIH4- und AIH6-Banden, neben schwachen CH- und C-O- Banden (Alkoholat-Gruppen).
Beispiel 2 (mit Titantetra-n-butylat dotiertes AI- und NaH-Pulvergemisch als reversibler Wasserstoffspeicher unter Verwendung von unbehandeltem Aluminium-Schliff)
Die Speichermaterial-Präparation erfolgte analog Beispiel 1 , jedoch wurde anstelle des im Vakuum ausgeheizten Aluminiums hier das unbehandelte kommerzielle Produkt eingesetzt. Das Material wurde in 7 Zyklen untersucht und erreichte im 3. Hydriervorgang eine Speicherkapazität von 3,7 Gew.-% H2 und im 7. Hydrierschritt 3,6 Gew.-% H2.
Beispiel 3 (mit ß-TiCI3 dotiertes AI- und NaH-Pulvergemisch als reversibler W asse rstof f sp e i ch e r)
Die Speichermaterial-Präparation erfolgte analog Beispiel 1 , jedoch wurde der Aluminium-Schliff nicht im Vakuum ausgeheizt, sondern vor seiner Verwendung in einer Glaskugelmühle mechanisch vermählen. Anstelle Ti(OBu)4 wurden
2 mol-% ß-TiCI3 zur Dotierung eingesetzt.
Das Material wurde zyklisiert und erreichte bei der 1. Hydrierung eine Kapazität von 2,5 Gew.-% H2 und im 5. Hydrierschritt (bei 135°C / ~140bar) 2,9 Gew.-%
H2.
Beispiel 4 (mit Titantetra-n-butylat dotiertes AI- und NaH-Pulvergemisch [Molverh. = 1 2,9] zur Herstellung von NasAIHε als reversibler
Wasserstoffspeicher)
Die Speichermaterial-Präparation erfolgte analog Beispiel 1 , jedoch wurde der Aluminium-Schliff nicht im Vakuum ausgeheizt, sondern vor seiner Verwendung in einer Glaskugelmühle mechanisch vermählen. Das Molverhältnis zwischen Aluminium und Natriumhydrid betrug 1 : 2,9. Das Material erreichte bei der 1. Hydrierung eine Kapazität von 2,2 Gew.-% H2 und im 5. Hydrierschritt (bei 117°C/35bar) 1 ,5 Gew.-% H2.
Beispiel 5 (mit Titantetra-n-butylat dotiertes AI- und NaH-Pulvergemisch als reversibler Wasserstoff -Speicher unter Verwendung von kugelförmigem AI-Pulver ~20μ)
Die Speichermaterial-Präparation erfolgte analog Beispiel 2, wobei anstelle des AI-Schliffs ein kugelförmiges AI-Pulver (~20μ) der Fa. Aldrich (Oberfläche It. BET- Messung: 2.0m2/g) in unbehandelter Form eingesetzt wurde. Das Material erreichte bei der 1. Hydrierung (165°C/150bar) eine Kapazität von 0,9 Gew.-% H2 und im 2. Hydrierschritt (165 bis 182°C/150bar) 1 ,5 Gew.-% H2.

Claims

Patentansprüche
1 . Verfahren zur reversiblen Speicherung von Wasserstoff, dadurch gekennzeichnet, daß reversible Wasserstoffspeicher-Materialien verwendet werden, die Gemische von Aluminiummetall mit Alkalimetallen und/oder Alkalimetallhydriden und Übergangsmetall- und/oder Seltenerdmetallkatalysatoren enthalten.
2. Verfahren nach Anspruch 1 , wobei als Alkalimetalle Li-, Na- und/oder K- Metall verwendet werden.
3. Verfahren nach den Ansprüchen 1 und 2, wobei als Alkalimetallhydride LiH, NaH und/oder KH eingesetzt werden.
4. Verfahren nach Anspruch 3, wobei als Alkalimetallhydrid NaH eingesetzt wird.
5. Verfahren nach den Ansprüchen 1 bis 4, wobei das Molverhältnis zwischen Aluminium und Alkalimetall von 1 : 0,3 bis 1 : 5 beträgt.
6. Verfahren nach Anspruch 5, wobei zur Bildung von MAIH4 Aluminium und M oder MH bevorzugt im Molverhältnis - 1 : 1 eingesetzt werden (M = Li, Na und/oder K).
7. Verfahren nach Anspruch 5, wobei zur Bildung von M3AIH6 Aluminium und M oder MH bevorzugt im Molverhältnis - 1 : 3 eingesetzt werden (M = Li, Na und/oder K).
8. Verfahren nach den Ansprüchen 1 bis 7, wobei die Alkali- und Erdalkalimetalle oder deren Hydride als feinteilige Pulver eingesetzt werden.
9. Verfahren nach Anspruch 8, wobei die Alkalimetalle oder deren Hydride vor ihrer Verwendung durch Vermählen oder Einwirkung von Ultraschall vorbehandelt werden.
10. Verfahren nach Anspruch 1 , wobei Aluminium als feinteiliges Pulver, vorzugsweise als feiner Aluminium-Schliff, eingesetzt wird.
11. Verfahren nach Anspruch 10, wobei das Aluminium vor seiner Verwendung durch Erhitzen im Vakuum, Anwendung von Ultraschall, Vermahlung oder chemische Aktivierung gegebenfalls vorbehandelt wird.
12. Verfahren nach den Ansprüchen 1 bis 11 , wobei als Katalysatoren Übergangsmetalle und/oder Übergangsmetall-Verbindungen oder - Legierungen der Gruppen 3 bis 11 des PSE und der Seltenerdmetalle zugesetzt werden.
13. Verfahren nach Anspruch 12, wobei die Metalle der Übergangsmetalloder Seltenerdmetall-Katalysatoren an Elemente der Gruppen 14 -17 des PSE oder Wasserstoff gebunden sind.
14. Verfahren nach Anspruch 13, wobei die Übergangsmetall- oder Seltenerdmetall-Katalysatoren in Form von Halogeniden, Hydriden, Alkoholaten, Amiden, metallorganischen Verbindungen und/oder intermetallischen Verbindungen oder deren Hydriden eingesetzt werden.
15. Verfahren nach Anspruch 14, wobei Titan und Zirkon als Übergangsmetalle eingesetzt werden.
16. Verfahren nach den Ansprüchen 12 bis 15, wobei die Übergangsmetalle oder deren Verbindungen in Mengen von 0,1 bis 10 mol-% bezogen auf Aluminium, bevorzugt in Mengen von 1 bis 5 mol-%, eingesetzt werden.
17. Verfahren nach den Ansprüchen 1 bis 16, dadurch gekennzeichnet, daß alle Komponenten des Gemisches vor der ersten Hydrierung mechanisch vermengt, verrührt oder vermählen werden.
18. Verfahren nach Anspruch 1 , wobei die Hydrierungen bei Drücken zwischen 5 und 150 bar und Temperaturen zwischen 20 und 200°C erfolgen.
19. Verfahren nach Anspruch 1 , wobei die Dehydrierungen bei Temperaturen zwischen 50 und 250°C erfolgen.
PCT/EP2001/002363 2000-03-16 2001-03-02 Verfahren zur reversiblen speicherung von wasserstoff auf der basis von alkalimetallen und aluminium WO2001068515A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001567622A JP2003527280A (ja) 2000-03-16 2001-03-02 アルカリ金属およびアルミニウムを基礎とする水素を可逆的に貯蔵する方法
US10/221,466 US6814782B2 (en) 2000-03-16 2001-03-02 Method for reversibly storing hydrogen on the basis of alkali metals and aluminum
EP01931491A EP1263676A1 (de) 2000-03-16 2001-03-02 Verfahren zur reversiblen speicherung von wasserstoff auf der basis von alkalimetallen und aluminium
CA002403403A CA2403403A1 (en) 2000-03-16 2001-03-02 Method for reversibly storing hydrogen on the basis of alkali metals and aluminium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10012794.0 2000-03-16
DE10012794A DE10012794A1 (de) 2000-03-16 2000-03-16 Verfahren zur reversiblen Speicherung von Wasserstoff auf der Basis von Alkalimetallen und Aluminium

Publications (1)

Publication Number Publication Date
WO2001068515A1 true WO2001068515A1 (de) 2001-09-20

Family

ID=7634936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/002363 WO2001068515A1 (de) 2000-03-16 2001-03-02 Verfahren zur reversiblen speicherung von wasserstoff auf der basis von alkalimetallen und aluminium

Country Status (6)

Country Link
US (1) US6814782B2 (de)
EP (1) EP1263676A1 (de)
JP (1) JP2003527280A (de)
CA (1) CA2403403A1 (de)
DE (1) DE10012794A1 (de)
WO (1) WO2001068515A1 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003053848A1 (de) * 2001-12-21 2003-07-03 Studiengesellschaft Kohle Mbh Reversible speicherung von wasserstoff mit hilfe von dotierten alkalimetallaluminiumhydriden
JP2004123517A (ja) * 2002-09-11 2004-04-22 Masao Watanabe 摩擦腐食反応を利用した水素ガス製造方法
US6793909B2 (en) * 2002-01-29 2004-09-21 Sandia National Laboratories Direct synthesis of catalyzed hydride compounds
WO2005032709A2 (en) * 2003-09-30 2005-04-14 General Electric Company Hydrogen storage compositions and methods of manufacture thereof
DE10332438A1 (de) * 2003-07-16 2005-04-14 Studiengesellschaft Kohle Mbh In porösen Matrizen eingekapselte Materialien für die reversible Wasserstoffspeicherung
EP1550634A2 (de) * 2003-12-29 2005-07-06 General Electric Company Zusammensetzungen und Methoden zur Wasserstoffspeicherung und Zurückgewinnung
US7029517B2 (en) 2003-11-06 2006-04-18 General Electric Company Devices and methods for hydrogen storage and generation
US7094387B2 (en) 2002-11-01 2006-08-22 Washington Savannah River Company Llc Complex hydrides for hydrogen storage
JP2008024590A (ja) * 2002-09-11 2008-02-07 Hydro-Device Co Ltd 水素発生材料および該材料の製造方法
DE102008063895B3 (de) * 2008-12-19 2010-06-10 Gkss-Forschungszentrum Geesthacht Gmbh Verfahren zur Aktivierung oder Regeneration eines Wasserstoffspeichermaterials
CN108083986A (zh) * 2016-11-22 2018-05-29 中国科学院大连化学物理研究所 有机-无机杂化材料及其制备和在储氢中的应用

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030165423A1 (en) * 2002-01-29 2003-09-04 Gross Karl J. Direct synthesis of hydride compounds using a titanium aluminate dopant
US7011768B2 (en) * 2002-07-10 2006-03-14 Fuelsell Technologies, Inc. Methods for hydrogen storage using doped alanate compositions
US7384574B2 (en) * 2003-07-17 2008-06-10 Westinghouse Savannah River Co. Hydrogen storage material and process using graphite additive with metal-doped complex hydrides
US7115247B2 (en) * 2003-09-30 2006-10-03 General Electric Company Hydrogen storage compositions and methods of manufacture thereof
US20070014683A1 (en) * 2003-09-30 2007-01-18 General Electric Company Hydrogen storage composition, and associated article and method
US7666388B2 (en) * 2003-10-02 2010-02-23 National University Of Singapore Multi-metal-nitrogen compounds for use in hydrogen storage materials
DE102004002120A1 (de) * 2004-01-14 2005-08-18 Gkss-Forschungszentrum Geesthacht Gmbh Metallhaltiger, wasserstoffspeichernder Werkstoff und Verfahren zu seiner Herstellung
JP4762579B2 (ja) * 2004-03-24 2011-08-31 太平洋セメント株式会社 水素貯蔵材料およびその製造方法、水素吸蔵方法
US7887781B2 (en) * 2004-09-23 2011-02-15 GM Global Technology Operations LLC Methods of storing hydrogen in hydrogen storage systems
DE102004061286B4 (de) * 2004-12-14 2021-09-16 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Wasserstoff speicherndes Kompositmaterial sowie eine Vorrichtung zur reversiblen Speicherung von Wasserstoff
CA2529427C (en) * 2004-12-17 2011-03-15 University Of New Brunswick Synthesis, recharging and processing of hydrogen storage materials using supercritical fluids
DE102005003623A1 (de) * 2005-01-26 2006-07-27 Studiengesellschaft Kohle Mbh Verfahren zur reversiblen Speicherung von Wasserstoff
US7837976B2 (en) * 2005-07-29 2010-11-23 Brookhaven Science Associates, Llc Activated aluminum hydride hydrogen storage compositions and uses thereof
DE102005037772B3 (de) 2005-08-10 2006-11-23 Forschungszentrum Karlsruhe Gmbh Verfahren zur Herstellung eines Wasserstoff-Speichermaterials
US20070092395A1 (en) * 2005-10-03 2007-04-26 General Electric Company Hydrogen storage material and method for making
US20070178042A1 (en) * 2005-12-14 2007-08-02 Gm Global Technology Operations, Inc. Sodium Alanate Hydrogen Storage Material
NO330070B1 (no) * 2006-01-26 2011-02-14 Inst Energiteknik Hydrogenlagringssystem, fremgangsmate for reversibel hydrogenlagring og fremstilling av materiale derfor samt anvendelse
WO2007106513A2 (en) * 2006-03-13 2007-09-20 University Of Utah Research Foundation Hydrogen storage in a combined mxaih6/m'y(nh2)z system and a methods of making and using the same
EP2160351B1 (de) * 2007-05-15 2013-11-20 Shell Internationale Research Maatschappij B.V. Verfahren zur herstellung von ti-dotierten hydriden
KR100924471B1 (ko) 2007-11-01 2009-11-03 한국에너지기술연구원 기계적 가공을 이용한 알루미늄 하이드라이드계 고체 수소저장 물질의 제조 방법
DE102007054843B4 (de) * 2007-11-16 2012-04-12 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Wasserstoff speichernde Kompositmaterialien
DE102008034666B4 (de) * 2008-07-22 2021-02-25 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Verfahren zur Aktivierung von Metallhydridpartikeln oder von Partikeln von Metallen, die Metallhydridvorläufer sind
KR100984718B1 (ko) * 2008-08-11 2010-10-01 한화케미칼 주식회사 수소 저장물질로써 아릴 또는 알킬을 포함하는 유기-전이 금속 하이드라이드의 보다 개선된 제조방법
DE102008047222A1 (de) * 2008-09-12 2010-04-15 Studiengesellschaft Kohle Mbh Wasserstoffspeicher
JP4905993B2 (ja) * 2008-09-18 2012-03-28 株式会社日本製鋼所 水素貯蔵材料の特性改善方法
US20100233076A1 (en) * 2008-09-18 2010-09-16 Ford Global Technologies, Llc Hydrogen Storage Materials
US8790616B2 (en) * 2010-04-09 2014-07-29 Ford Global Technologies, Llc Hybrid hydrogen storage system and method using the same
US8418841B2 (en) * 2010-05-14 2013-04-16 Ford Global Technologies, Llc Method of enhancing thermal conductivity in hydrogen storage systems
WO2012014225A2 (en) 2010-07-26 2012-02-02 Council Of Scientific & Industrial Research An improved process for the storage delivery of hydrogen using catalyst
US20180162881A1 (en) 2015-04-02 2018-06-14 Albemarle Germany Gmbh Highly reactive metal hydrides, process for their preparation and use
RU2672170C1 (ru) * 2018-08-10 2018-11-12 Юлия Алексеевна Щепочкина Сплав

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997003919A1 (de) * 1995-07-19 1997-02-06 Studiengesellschaft Kohle Mbh Verfahren zur reversiblen speicherung von wasserstoff
WO2000007930A1 (en) * 1998-08-06 2000-02-17 University Of Hawaii Novel hydrogen storage materials and method of making by dry homogenation

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD63767A (de) *
DE1282615B (de) * 1960-02-10 1968-11-14 Metallgesellschaft Ag Verfahren zur Herstellung von Alkali- oder Erdalkalimetallaluminiumhydriden
US3138433A (en) * 1960-04-06 1964-06-23 Metal Hydrides Inc Method for preparing metal aluminum hydrides
US3290123A (en) * 1960-04-06 1966-12-06 Metal Hydrides Inc Method for preparing sodium aluminum hydride
US3210150A (en) * 1960-04-07 1965-10-05 Ventron Corp Method for preparing metal aluminum hydrides
US3222122A (en) * 1962-01-19 1965-12-07 Metal Hydrides Inc Compacted aluminum-containing hydrides
US3387933A (en) * 1962-03-30 1968-06-11 Hercules Inc Preparation of metal hydrides
US3298800A (en) * 1963-05-03 1967-01-17 Metal Hydrides Inc Method for preparing metal aluminum hydrides
DE1909732A1 (de) * 1968-06-21 1970-02-19 Grosse Aristid Victor Verfahren und Vorrichtung zur Herstellung und Lagerung von Wasserstoff
US3755555A (en) * 1969-09-16 1973-08-28 N Eliseeva Production of alkali hydridoaluminates
DE2018765A1 (de) * 1970-04-18 1971-10-28 Dynamit Nobel Ag, 5210 Troisdorf Verfahren zur Herstellung von Natriumaluminiumhydrid
US3734863A (en) * 1971-06-11 1973-05-22 Us Navy Hydrogen generating compositions
US3931395A (en) * 1973-02-23 1976-01-06 The United States Of America As Represented By The Secretary Of The Navy Process for generating hydrogen gas
DE3536797A1 (de) * 1985-10-16 1987-04-16 Studiengesellschaft Kohle Mbh Verfahren zur herstellung von halogen-magnesium-alanat und dessen verwendung
US4790985A (en) * 1986-10-16 1988-12-13 Ethyl Corporation Synthesis of sodium aluminum hydride
JPS63222001A (ja) * 1987-03-10 1988-09-14 Babcock Hitachi Kk 水素ガス発生剤
CA2218271A1 (en) * 1997-10-10 1999-04-10 Mcgill University Method of fabrication of complex alkali mental hydrides
CA2220503A1 (en) * 1997-11-07 1999-05-07 Leszek Zaluski Hydrogen storage composition
US6471935B2 (en) * 1998-08-06 2002-10-29 University Of Hawaii Hydrogen storage materials and method of making by dry homogenation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997003919A1 (de) * 1995-07-19 1997-02-06 Studiengesellschaft Kohle Mbh Verfahren zur reversiblen speicherung von wasserstoff
WO2000007930A1 (en) * 1998-08-06 2000-02-17 University Of Hawaii Novel hydrogen storage materials and method of making by dry homogenation

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
E. C. ASHBY ET AL.: "Direct synthesis of complex metal hydrides", INORGANIC CHEMISTRY., vol. 2, no. 3, June 1963 (1963-06-01), AMERICAN CHEMICAL SOCIETY. EASTON., US, pages 499 - 504, XP002171291, ISSN: 0020-1669 *
ZALUSKA A ET AL: "Sodium alanates for reversible hydrogen storage", JOURNAL OF ALLOYS AND COMPOUNDS,ELSEVIER SEQUOIA, LAUSANNE,CH, vol. 298, no. 1-2, February 2000 (2000-02-01), pages 125 - 134, XP004185245, ISSN: 0925-8388 *
ZALUSKI L ET AL: "Hydrogenation properties of complex alkali metal hydrides fabricated by mechano-chemical synthesis", JOURNAL OF ALLOYS AND COMPOUNDS,CH,ELSEVIER SEQUOIA, LAUSANNE, vol. 290, no. 1-2, 30 August 1999 (1999-08-30), pages 71 - 78, XP004183551, ISSN: 0925-8388 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003053848A1 (de) * 2001-12-21 2003-07-03 Studiengesellschaft Kohle Mbh Reversible speicherung von wasserstoff mit hilfe von dotierten alkalimetallaluminiumhydriden
US6793909B2 (en) * 2002-01-29 2004-09-21 Sandia National Laboratories Direct synthesis of catalyzed hydride compounds
JP2004123517A (ja) * 2002-09-11 2004-04-22 Masao Watanabe 摩擦腐食反応を利用した水素ガス製造方法
JP2008024590A (ja) * 2002-09-11 2008-02-07 Hydro-Device Co Ltd 水素発生材料および該材料の製造方法
US7094387B2 (en) 2002-11-01 2006-08-22 Washington Savannah River Company Llc Complex hydrides for hydrogen storage
DE10332438A1 (de) * 2003-07-16 2005-04-14 Studiengesellschaft Kohle Mbh In porösen Matrizen eingekapselte Materialien für die reversible Wasserstoffspeicherung
WO2005032709A2 (en) * 2003-09-30 2005-04-14 General Electric Company Hydrogen storage compositions and methods of manufacture thereof
WO2005032709A3 (en) * 2003-09-30 2005-08-11 Gen Electric Hydrogen storage compositions and methods of manufacture thereof
US7029517B2 (en) 2003-11-06 2006-04-18 General Electric Company Devices and methods for hydrogen storage and generation
EP1550634A3 (de) * 2003-12-29 2005-10-26 General Electric Company Zusammensetzungen und Methoden zur Wasserstoffspeicherung und Zurückgewinnung
US7175826B2 (en) 2003-12-29 2007-02-13 General Electric Company Compositions and methods for hydrogen storage and recovery
EP1550634A2 (de) * 2003-12-29 2005-07-06 General Electric Company Zusammensetzungen und Methoden zur Wasserstoffspeicherung und Zurückgewinnung
DE102008063895B3 (de) * 2008-12-19 2010-06-10 Gkss-Forschungszentrum Geesthacht Gmbh Verfahren zur Aktivierung oder Regeneration eines Wasserstoffspeichermaterials
JP2010142804A (ja) * 2008-12-19 2010-07-01 Gkss Forschungszentrum Geesthacht Gmbh 水素吸蔵材料を活性化または再生する方法
US8815207B2 (en) 2008-12-19 2014-08-26 Gkss-Forschungszentrum Geesthacht Gmbh Method of activating or regenerating a hydrogen storage material
CN108083986A (zh) * 2016-11-22 2018-05-29 中国科学院大连化学物理研究所 有机-无机杂化材料及其制备和在储氢中的应用
CN108083986B (zh) * 2016-11-22 2020-08-04 中国科学院大连化学物理研究所 有机-无机杂化材料及其制备和在储氢中的应用

Also Published As

Publication number Publication date
US20030053948A1 (en) 2003-03-20
EP1263676A1 (de) 2002-12-11
DE10012794A1 (de) 2001-09-20
CA2403403A1 (en) 2002-10-17
JP2003527280A (ja) 2003-09-16
US6814782B2 (en) 2004-11-09

Similar Documents

Publication Publication Date Title
WO2001068515A1 (de) Verfahren zur reversiblen speicherung von wasserstoff auf der basis von alkalimetallen und aluminium
EP0840707B1 (de) Verfahren zur reversiblen speicherung von wasserstoff
EP0490156B1 (de) Verfahren zur Herstellung aktiver, reversibel H2 aufnehmender Magnesiumhydrid-Magnesium-Wasserstoff-Speichersysteme
US7201789B1 (en) Nanocomposites with activated interfaces prepared by mechanical grinding of magnesium hydrides and use for storing hydrogen
DE3247360A1 (de) Verfahren zur herstellung aktiver magnetsiumhdrid-magnesium-wasserstoffspeichersysteme
EP1042218B1 (de) Verfahren zur herstellung nanokristalliner metallhydride
DE3132674C2 (de) Verfahren zur Herstellung von Preßlingen
DE3101832A1 (de) Verfahren zur herstellung poroeser metallhydridkompaktstoffe
DE10297458B4 (de) Verfahren zur Steigerung der Kinetik bei einer Hydrierung bzw. Dehydrierung von MAlH4- und MJH4-Metallhydriden zur reversiblen Wasserstoffspeicherung
EP0685425B1 (de) Verfahren zur Herstellung von Magnesium-hydrid
EP1456117A1 (de) Reversible speicherung von wasserstoff mit hilfe von dotierten alkalimetallaluminiumhydriden
DE112005000668T5 (de) Reversibles Wasserstoffspeichersystem und Verfahren zur Verwendung desselben
DE10332438A1 (de) In porösen Matrizen eingekapselte Materialien für die reversible Wasserstoffspeicherung
DE2314384A1 (de) Dichte siliciumcarbidkoerper und verfahren zu deren herstellung
DE69917178T2 (de) Ternäre Wasserstoffspeichernde Legierung und Verfahren zu deren Herstellung
DE60303043T2 (de) Reaktivmahlverfahren zur herstellung einer wasserstoffspeicherlegierung
DE69929782T2 (de) Mechanische magnesiumlegierung für wasserstoff-wärmespeicherung
DE1467177A1 (de) Dekationisierte,kristalline,zeolithische Molekularsiebe und Verfahren zu ihrer Herstellung
DE1468996C3 (de) Verfahren zur Herstellung von teilweise mit Alkoxygruppen substituierten komplexen Aluminiumhydriden und dabei erhaltene komplexe Aluminiumhydride
DE3687447T2 (de) Verfahren zur herstellung von feinverteilten metallpulvern.
DE69024884T2 (de) Verfahren zur Herstellung von feinem Kupferpulver
DE60029333T2 (de) Herstellungsverfahren für wasserstoffspeicherndes metallpulver
EP1858799A1 (de) Verfahren zur synthese von verbindungen
DE3780852T2 (de) Intermetallische verbindungen, deren hydriden und verfahren zu deren herstellung.
DE69206148T2 (de) Cermets auf Uebergangsmetallboridbasis, ihre Herstellung und Anwendung.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001931491

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10221466

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 567622

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2403403

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 2001931491

Country of ref document: EP