WO2001042498A1 - Procede de detection de polymorphisme nucleotidique - Google Patents

Procede de detection de polymorphisme nucleotidique Download PDF

Info

Publication number
WO2001042498A1
WO2001042498A1 PCT/JP2000/008657 JP0008657W WO0142498A1 WO 2001042498 A1 WO2001042498 A1 WO 2001042498A1 JP 0008657 W JP0008657 W JP 0008657W WO 0142498 A1 WO0142498 A1 WO 0142498A1
Authority
WO
WIPO (PCT)
Prior art keywords
base
primer
nucleotide polymorphism
type
chromosome
Prior art date
Application number
PCT/JP2000/008657
Other languages
English (en)
French (fr)
Inventor
Toshiya Aono
Yutaka Takarada
Masaya Segawa
Satoko Yoshiga
Original Assignee
Toyo Boseki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Boseki Kabushiki Kaisha filed Critical Toyo Boseki Kabushiki Kaisha
Priority to JP2001544370A priority Critical patent/JP3937136B2/ja
Priority to EP00979970A priority patent/EP1241266A4/en
Publication of WO2001042498A1 publication Critical patent/WO2001042498A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification

Definitions

  • the present invention relates to a method for detecting a mutation or polymorphism in a nucleic acid sequence, and a primer and a kit for use in the method.
  • the present invention is particularly useful for diagnosis of genetic diseases, nucleotide polymorphism analysis, and the like. Background art
  • Nucleotide polymorphism is considered as one of the side effects of drug metabolism and failure of drug treatment among individuals. Nucleotide polymorphism is also known as a cause of individual differences such as basal metabolism known as a constitution. In addition, nucleotide polymorphisms serve as a genetic driver for many diseases. Therefore, analysis of these polymorphisms is clinically important, and routine phenotyping is particularly recommended for clinical studies in psychiatric patients and suicide applicants (Gram and Brsen, European Consensus Conference on Pharmacogenetics. Commission of the European Communities, Luxembourg, 1990, pp. 87-96: Balant et al., Eur. J. Clin. Pharmacol. 36, 515-554, (1989) ). For the above reasons, it is desirable to identify a causative mutant gene and subsequently to conduct a nucleic acid sequence analysis method for detecting each genotype.
  • nucleic acid sequencing can detect and identify nucleotide polymorphisms contained in nucleic acid sequences.However, preparation of type III nucleic acids, DNA polymerase reaction, polyacrylamide gel electrophoresis, analysis of nucleic acid sequences, etc. It takes a lot of effort and time to do so.
  • the nuclear acid sequencing method can save labor by using an automatic sequencer in recent years, but has a problem that an expensive apparatus is required.
  • a PCR (polymerase chain reaction) method Japanese Patent Publication No. 1986-69060, Japanese Patent Publication No. 4-697957
  • a method for detecting a point mutation in a gene using a gene amplification method such as disclosed in Japanese Patent Application Laid-Open Publication No. HEI 9-163191.
  • a primer for wild-type completely complementary to an end region of an amplification region of a wild-type gene and an end of an amplification region of a mutant gene are used as one of a pair of primers used in the gene amplification method.
  • a primer for wild-type completely complementary to an end region of an amplification region of a wild-type gene and an end of an amplification region of a mutant gene are used.
  • the 3 'end of the mutant primer is a nucleotide complementary to the nucleotide at which the expected point mutation has occurred.
  • the sample gene is subjected to a gene amplification
  • the sample gene is wild-type
  • amplification of the nucleic acid occurs when the wild-type primer is used.
  • the mutant-type primer when used, the 3 ′ end of the primer matches the nucleotide corresponding to the sample gene. Since they are not complementary (mismatch), no elongation reaction occurs and no nucleic acid amplification occurs.
  • the sample gene is mutant, amplification does not occur when the wild-type primer is used, and amplification occurs when the mutant primer is used. Therefore, by examining whether amplification occurs when each primer is used, it is possible to determine whether the sample gene is a wild type or a mutant type, thereby detecting a point mutation in the sample gene. Can be.
  • nucleic acid sequence containing a point mutation may be amplified in advance, and a determination may be made as to whether or not an elongation reaction occurs in each primer using an amplified nucleic acid. This method can be applied to the analysis of nucleotide polymorphisms.
  • the nucleotide polymorphism can be clearly detected by the conventional method, but in the case of point mutation, the primers for the wild-type and the mutant There is only a single base difference, and a certain degree of elongation or amplification when using a mutant primer to extend or amplify a wild-type gene and when using a wild-type primer to extend or amplify a mutant gene Reactions (ie, extension or amplification) often occur, and it is often difficult to make a clear determination.
  • extension or amplification occurs when a mismatched primer as described above is used. It depends on the type of equipment used and other delicate conditions, and the reproducibility is low.
  • An object of the present invention is to solve the above-mentioned problems and to provide a method and a reagent capable of clearly and reproducibly detecting a base polymorphism in a nucleic acid sequence. Disclosure of the invention
  • the present inventors have conducted intensive studies and found that, in the above-mentioned conventional method, when the wild-type primer hybridizes with the mutant gene and when the mutant primer hybridizes with the wild-type gene, By making the second nucleotide from the 3 'end of the primer correspond to the nucleotide polymorphism site, it is possible to completely inhibit the extension or amplification reaction of the mismatched primer without strict control of the reaction conditions. Therefore, they have found that clear judgment can be easily performed, and have completed the present invention.
  • the present invention has the following configuration.
  • Item 1 A method for detecting a single nucleotide polymorphism contained in a nucleic acid sample, the method comprising: (a) adding a wild type to a chromosome or a fragment thereof containing a specific single nucleotide polymorphism site contained in the sample; Primer and one or two mutant primers Simultaneously or separately with a DNA polymerase, (b) detecting a nucleotide polymorphism contained in the nucleic acid sample depending on whether the primer has been extended,
  • a detection method wherein the second base from the 3 'end of each primer corresponds to each nucleotide predicted at the nucleotide polymorphism site.
  • Item 2 A method for detecting a single nucleotide polymorphism contained in a nucleic acid sample, the method comprising:
  • each primer corresponds to each nucleotide expected at the nucleotide polymorphism site
  • At least one base from the 3 'end to the 5' end of each of the primers is replaced with a base in the chromosome or a fragment thereof that is not complementary to a base of a strand to which the primer hybridizes.
  • the detection method according to 1. Item 3. The detection method according to Item 2, wherein the third base at the 3 'end of each of the primers is replaced with a base in the chromosome or a fragment thereof that is not complementary to the base of the strand to which the primer hybridizes. .
  • Item 4. A method for detecting a single nucleotide polymorphism contained in a nucleic acid sample, the method comprising:
  • a wild-type primer and one or two types of mutant-type primers are allowed to act on a chromosome or a fragment thereof containing a specific single nucleotide polymorphism site contained in a sample simultaneously or separately with a DNA polymerase.
  • the second base from the 3 'end of each primer is expected to be a nucleotide polymorphism site.
  • each nucleotide corresponds to each nucleotide
  • At least one base from the 3 'end to the 5' end of each of the primers is replaced with a base in the chromosome or a fragment thereof that is not complementary to the base of the strand to which the primer hybridizes, and Item 2.
  • the detection method according to Item 1 wherein the untargeted base is a different base in each primer.
  • the third base at the 3 ′ end of each of the primers is replaced with a base that is not complementary to a base of the strand to which the primer hybridizes in a chromosome or a fragment thereof, and the base that is not complementary is Item 5.
  • the detection method according to Item 4 wherein different bases are used in the primer.
  • Item 6. The method according to Item 1, wherein the DNA polymerase has: 3 ′ exonuclease activity of the main-chain DNA.
  • DNA polymerase is Pyrococcus sp.
  • Item 2 The method according to Item 1, wherein the method is derived from the K0D1 strain or a hyperthermophilic bacterium.
  • Item 8 The method according to Item 1, comprising a step of amplifying a chromosome containing a specific single nucleotide polymorphism site or a fragment thereof contained in the sample before the step of (a).
  • Item 9. The method according to Item 8, wherein the method for amplifying the chromosome or a fragment thereof is any one selected from the group consisting of PCR, NASBA, LCR, SDA, RCR and TMA.
  • each primer is hybridized using a detection probe specific to the sequence of a product extended from at least one of the group consisting of a primer for wild type and a primer for mutant type.
  • Item 2. The method according to Item 1, wherein the detection is carried out by performing the hybridization.
  • Item 11. The method according to item 10, wherein at least one of the primers or the probe for detection is labeled in advance.
  • At least one of the primers or a probe for detection is labeled with at least one selected from the group consisting of an enzyme, a biotin, a fluorescent substance, a hapten, an antigen, an antibody, a radioactive substance, and a luminophore.
  • the step (a) is performed in a single container, and it is determined whether or not each primer has been extended by determining the sequence of a product extended from at least one of the group consisting of wild-type primers and mutant-type primers.
  • Item 2. The method according to Item 1, wherein the detection is carried out by performing hybridization using a detection probe specific to the protein.
  • Item 14. A method for detecting a single nucleotide polymorphism contained in a nucleic acid sample, the method comprising:
  • a wild-type primer and one or two types of mutant primers are simultaneously or separately acted on a chromosome or a fragment thereof containing a specific single nucleotide polymorphism site contained in a sample together with a DNA polymerase.
  • a detection method wherein the second base from the 3 'end of each primer corresponds to each nucleotide predicted at the nucleotide polymorphism site.
  • Item 15 A method for detecting a single nucleotide polymorphism contained in a nucleic acid sample, the method comprising:
  • a primer for wild-type and a primer for one or two mutants are added to a chromosome or a fragment thereof containing a specific single nucleotide polymorphism site contained in a sample. Simultaneously or separately with DNA polymerase, (b) nucleotide polymorphism contained in the nucleic acid sample depending on whether a chromosome or fragment containing a specific single nucleotide polymorphism site has been amplified or not. Including the step of detecting
  • each primer corresponds to each nucleotide expected at the nucleotide polymorphism site
  • At least one base from the 3 'end to the 5' end of each of the primers is replaced with a base in the chromosome or a fragment thereof that is not complementary to a base of a strand to which the primer hybridizes.
  • the detection method according to 14. Item 16. The item according to item 15, wherein the third base at the 3 ′ end of each primer is substituted with a base in the chromosome or a fragment thereof that is not complementary to a base of a strand to which the primer hybridizes. Detection method.
  • Item 17 A method for detecting a single nucleotide polymorphism contained in a nucleic acid sample, the method comprising:
  • each primer corresponds to each nucleotide expected at the nucleotide polymorphism site
  • At least one base from the 3 'end to the 5' end of each primer is replaced with a base in the chromosome or a fragment thereof that is not complementary to a base of a strand to which the primer hybridizes, and Item 15.
  • the third base at the 3 ′ end of each of the primers is replaced with a base that is not complementary to the base of the strand to which the primer hybridizes in a chromosome or a fragment thereof, and the base that is not complementary is Item 18.
  • Whether a chromosome or fragment containing a specific single nucleotide polymorphism site has been amplified is determined by using a detection probe specific to the sequence of each amplification product using a wild type primer and a Z or mutant type primer.
  • Item 15 The method according to Item 14, wherein the method is used to perform detection by performing hybridization.
  • Item 23 The method according to Item 22, wherein at least one of said primers or a probe for detection is previously labeled.
  • Item in which at least one of the primers or the detection probe is labeled with at least one selected from the group consisting of an enzyme, a biotin, a fluorescent substance, a hapten, an antigen, an antibody, a radioactive substance, and a luminophore.
  • Item 25. Perform step (a) in a single container, and determine whether chromosomes or fragments containing a specific single nucleotide polymorphism site have been amplified using wild-type primers and Z or mutant-type primers Item 15. The method according to Item 14, wherein the detection is carried out by performing hybridization using a detection probe specific to the sequence of each amplified product.
  • Item 26
  • a reagent kit for detecting a single nucleotide polymorphism comprising a wild-type primer and one or two mutant primers, a DNA polymerase and four types of deoxynucleoside triphosphates (dNTPs), The second base from the 3 'end of each primer corresponds to each predicted nucleotide at the nucleotide polymorphism site.
  • dNTPs deoxynucleoside triphosphates
  • a single-nucleotide polymorphism detection reagent kit comprising NA polymerase and four types of deoxynucleoside triphosphates (dNTPs), wherein the second base from the 3 'end of each primer is a base polymorphism site. At least one base from the 3 'end to the 5' end of each primer corresponding to each predicted nucleotide is not complementary to the base of the strand to which the primer hybridizes in a chromosome or a fragment thereof.
  • Item 29 The kit according to Item 26, which is substituted with a base.
  • each of the primers is replaced with a base in the chromosome or a fragment thereof that is not complementary to the base of the strand to which the primer hybridizes, and the non-complementary base is Item 30.
  • Item 3 1. Primers for wild type and one or two mutant primers, D
  • a reagent kit for detecting a single nucleotide polymorphism comprising an NA polymerase, four types of deoxynucleoside triphosphates (dNTPs) and a detection probe, wherein the second base from the 3 'end of each primer is Kits corresponding to each of the nucleotides predicted at the nucleotide polymorphism site. Item 32. Primers for wild type and one or two mutant primers, D
  • a reagent kit for detecting a single nucleotide polymorphism comprising an NA polymerase, four types of deoxynucleoside triphosphates (dNTPs) and a detection probe, wherein the second base from the 3 'end of each primer is At least one base from the 3 'end to the 5' end of each primer corresponding to each predicted nucleotide at the nucleotide polymorphism site is hybridized with the primer in the chromosome or a fragment thereof.
  • dNTPs deoxynucleoside triphosphates
  • each of the primers is replaced with a base in a chromosome or a fragment thereof that is not complementary to a base of a strand to which the primer hybridizes.
  • Item 34 Primers for wild-type and one or two variants, D A reagent kit for detecting a single nucleotide polymorphism comprising an NA polymerase, four types of deoxynucleoside triphosphates (dNTPs) and a detection probe, the second being from the 3 'end of each primer.
  • dNTPs deoxynucleoside triphosphates
  • each of the nucleotides predicted at the nucleotide polymorphism site and at least one base from the third to the 5 ′ end of the 3 ′ end of each primer is the same as the primer in the chromosome or a fragment thereof.
  • 31. The kit according to item 31, wherein is replaced with a base that is not complementary to the base of the hybridizing strand, and the non-complementary base is a different base in each primer.
  • Item 35 The 3rd base at the 3 ′ end of each of the primers is replaced with a base that is not complementary to a base of a strand to which the primer hybridizes in a chromosome or a fragment thereof, and the base that is not complementary is: Item 34.
  • FIG. 1 is a diagram showing extension or amplification in the detection method of the present invention.
  • FIG. 2 shows the positions of the oligonucleotides used in Example 2 of the present invention.
  • the present invention will be described in detail.
  • nucleotide polymorphism refers to the presence of two or more types of bases between individuals at a certain site in a chromosome or a fragment thereof, one of which is a wild type and has a different base from the other. Things are called variants.
  • nucleotide polymorphism site refers to the position of a nucleotide polymorphism where a wild type and a variant exist.
  • a chromosome or a fragment thereof may be simply referred to as a nucleic acid.
  • wild-type nucleic acid refers to a nucleic acid containing a nucleotide polymorphism site, which has a wild-type base.
  • a “mutated nucleic acid” is a nucleic acid containing a nucleotide polymorphism site, wherein at least one, and preferably one, of the wild-type nucleic acids is point-mutated and replaced with another nucleotide.
  • a nucleic acid containing an inserted or deleted sequence in a part of a wild-type nucleic acid Is what it is.
  • mutant nucleic acid refers to a nucleic acid containing a nucleotide polymorphism site, wherein the site is substituted with a base different from a wild-type base. It has been elucidated that the constitutions and the like differ depending on such nucleotide polymorphisms, and the method of the present invention is a method for examining whether a nucleic acid in a sample has such an expected mutation. It is.
  • primer for wild-type means a primer that can hybridize to a wild-type nucleotide polymorphism site.
  • primer for mutant refers to a primer capable of hybridizing to the nucleotide polymorphism site of the mutant.
  • Wild type probe is a probe that specifically detects a product extended or amplified by a wild type primer.
  • the “probe for mutant type” is a probe that specifically detects a product extended or amplified by the primer for mutant type.
  • the chromosome containing a single nucleotide polymorphism site or a fragment thereof contained in a sample is not particularly limited as long as it is a target nucleic acid containing a nucleotide polymorphism site that carries information on a target gene, and includes mitochondria and the like.
  • the target nucleic acid include an Aiu sequence, exons and introns of a gene encoding a protein, and a promoter. More specifically, it includes genes related to various diseases including genetic diseases, drug metabolism, and lifestyle-related diseases (hypertension, diabetes, etc.).
  • hypertension includes the ACE (Angiotensin Converting Enzyme) gene, and diabetes as PPART (peroxisome proliferator-activated receptor j).
  • the primer elongation reaction is carried out using the target nucleic acid as a ⁇ by reacting a single-stranded target nucleic acid with a primer, four types of doxynucleoside triphosphates (dNTPs) and a DNA polymerase.
  • dNTPs doxynucleoside triphosphates
  • the complementary strand of the resulting nucleic acid sequence is synthesized and can be replicated.
  • a method for detecting a nucleotide polymorphism contained in a nucleic acid sample based on whether or not a primer has been extended includes the steps of: detecting a chromosome or a fragment thereof containing a specific single nucleotide polymorphism site in a nucleic acid sample; This is a method for detecting a polymorphism by performing an extension reaction using a wild-type primer and one or two types of mutant-type primers simultaneously or separately.
  • a method for detecting a nucleotide polymorphism contained in a nucleic acid sample based on whether or not a chromosome or a fragment containing the specific single nucleotide polymorphism site has been amplified includes the steps of: Amplification reaction with a reverse primer using a wild-type primer corresponding to a forward primer and one or two types of mutant-type primers simultaneously or separately on a nucleic acid sample containing the chromosome or fragment containing the primer Is a method for detecting polymorphisms by
  • Each primer used in the present invention is designed such that the second nucleotide from the 3 'end of each primer corresponds to the nucleotide of the nucleotide polymorphism sequence. That is, in FIG. 1, when a wild-type base is “G” and a mutant base is “T” at a certain base polymorphism site, and the base on the 3 ′ side of the base polymorphism site is G, The primer for wild-type for elongating or amplifying type nucleic acid is 5 'Gg 3', and the primer for mutant type is 5 'Tg 3'.
  • each primer in the combination of the wild-type primer-Z wild-type nucleic acid and the mutant-type primer-mutant nucleic acid, each primer completely matches the nucleic acid, and thus extension or amplification occurs.
  • the second base from the 3 'end of the primer is not complementary (mismatched), and thus the extension or amplification is performed. Does not occur.
  • the present inventors have found that when a DNA polymerase having a 3 'exonuclease activity is used, if there is a mismatch at the 3' end, the DNA is recognized and removed, but the exonuclease activity is complementary since the 3 'end is complementary. It did not work and found no DNA polymerase reaction.
  • the combination of the wild-type primase mutant nucleic acid and the mutant-type primer wild-type nucleic acid completely inhibits the extension or amplification of the nucleic acid strand, while the wild-type primer Z In the combination of the wild-type nucleic acid and the mutant-type primer Z mutant-type nucleic acid, the nucleic acid strand is extended or amplified. Therefore, according to the method of the present invention, a polymorphism in a target nucleic acid can be clearly detected without generating a false positive unlike the conventional method.
  • the present invention provides a wild-type primer and a mutant-type primer in which, in addition to the above-mentioned primers, one more mismatched portion is introduced (see FIG. 1 for wild-type primer 2 and mutant-type primer). See primer 2). That is, used in the present invention
  • the wild-type and mutant primers are designed so that the second nucleotide from the 3 ′ end of each primer corresponds to the nucleotide at the nucleotide polymorphism site, and At least one base from the 3rd to the 5 'end is designed to be a base that is not complementary to the base of the strand ("lower strand" in Fig. 1) to which the primer hybridizes in a chromosome or a fragment thereof.
  • the primer for wild type 2 and the primer for mutation 2 in FIG. 1 the case where the third base from the 3 ′ end of each primer is an artificial mismatch site is shown, and the primer at that position is hybridized.
  • the base of the growing strand (“lower strand” in Fig. 1) is "T”
  • the wild-type primer for extending or amplifying the wild-type nucleic acid is 5'X, Gg 3 '
  • the mutation is mold for primer one has 5 'X 2 Tg 3' ( ⁇ ,, ⁇ 2 is a base other than ⁇ complementary bases T, i.e., T,
  • G or C which may be the same or different.
  • each primer matches at least up to the second sequence from the 3 'end, and thus is extended. Or an amplification reaction takes place.
  • the combination of the wild-type primer Z mutant nucleic acid and the mutant primer Z wild-type nucleic acid there is an artificial mismatch of the second base from the 3 'end of the primer and another base, so that the primer is extended or amplified. No reaction occurs.
  • DNA polymerase having 3 'exonuclease activity has the activity of recognizing and removing mismatches, but since the 3' end is complementary, exonuclease does not work and does not cause an erroneous extension reaction. As a result, it has been found that the binding of the wild-type primer to the mutant nucleic acid and the binding of the mutant primer to the wild-type nucleic acid are more effectively prevented.
  • the second base from the 3 ′ end is a base sequence corresponding to a nucleotide expected at the nucleotide polymorphism site, and further, at least one base from the third base to the 5 ′ end is used.
  • a wild-type primer designed such that three bases are not complementary to the bases of the strand of the chromosome or a fragment thereof to which the primer hybridizes, and the non-complementary bases are different bases in each primer.
  • a mutant type primer that is, primer 2 for wild type and primer for mutant In Mer 2, it means that ⁇ , ⁇ 2 have different bases.
  • a primer is designed so that the second base from the 3 ′ end is a nucleotide expected at the nucleotide polymorphism site, and the wild-type primer is a base corresponding to the base of the wild-type nucleic acid, and The primer for mutation forms a base corresponding to the base of the mutant nucleic acid.
  • the primer for wild type is Primers for ⁇ other than ⁇ and ⁇ and mutants should be designed as C or G other than ⁇ and ⁇ .
  • AAG DGT GT C CTTTC The use of such a primer further prevents the wild-type primer from binding to the mutant nucleic acid, and also prevents the mutant primer from binding to the wild-type nucleic acid.
  • the base polymorphism site and the site of the artificial mismatch further differ by another nucleotide, resulting in a difference of two nucleotides, resulting in more accurate detection. Became possible.
  • the length of the primer in the present invention is 13 to 35 bases, preferably 16 to 30 bases, and at least one artificial mismatch site is present in the primer.
  • the position is not particularly limited as long as it is any one of the 3 'end to the 3' end to the 5 'end, but is preferably a position close to the 3' end 3rd, more preferably 3 'end Third force from end S preferred.
  • the strands which the wild type primer and the mutant type primer hybridize may be either the upper strand or the lower strand.
  • the method for extending the primer can be basically performed using a conventional method.
  • a single-stranded denatured chromosome containing a specific nucleotide polymorphism site or a fragment thereof, together with four types of deoxynucleoside triphosphates (dNTPs) and DNA polymerase, together with a wild-type primer By using one or two types of mutant primers simultaneously or separately, the primers are extended with the target nucleic acid as type II.
  • the reaction can be performed according to the method described in Molecular Cloning, A Laboratory Manual (Sambrook et al., 1989). In the method for detecting a nucleotide polymorphism based on whether or not the primer has been extended, if the target nucleic acid is not contained in an amount sufficient for detection, a nucleic acid fragment containing the polymorphic sequence is shown below. It is also possible to pre-amplify by amplification reaction.
  • the method for amplifying a chromosome or a fragment containing a specific nucleotide polymorphism site in the present invention can also be basically performed using a conventional method, and usually, a specific nucleotide polymorphism modified into a single strand.
  • a primer for wild type and a primer for one or two mutants are added to a chromosome or a fragment thereof containing the type site together with four types of deoxynucleoside triphosphates (dNTPs), a DNA polymerase and a reverse primer. Simultaneously or by using them separately, the target nucleic acid is amplified as type III between the forward primer (wild-type primer or mutant-type primer) and the reverse primer.
  • dNTPs deoxynucleoside triphosphates
  • nucleic acid amplification method examples include PCR, NASBA (Nucleic acid sequence-based amplification method; Nature, Vol. 350, p. 91 (1991)), LCR (International Publication No. 89/12696, and JP-A-2-2934). ), SDA (Strand Displacement Amplif ication: Nucleic acid research Vol. 20, pp. 1691 (1992)), RCR (International Publication 90Z1069), TMA (Transcription J. Clin. Microbiol. Vol. 31, Vol. 3, pp. 270 (1993)).
  • the PCR method repeats a cycle consisting of three steps of denaturation, annealing, and extension in the presence of the target nucleic acid, four types of deoxynucleoside triphosphates, a pair of primers, and a thermostable DNA polymerase.
  • This is a method of exponentially amplifying the region of the target nucleic acid sandwiched between the pair of primers. That is, in the denaturation step, the nucleic acid of the sample is denatured, and in the subsequent annealing step, each primer is hybridized to a region on the single-stranded target nucleic acid complementary to each primer.
  • a DNA strand complementary to each single-stranded target nucleic acid that becomes a ⁇ shape by the action of DNA polymerase is extended to obtain double-stranded DNA.
  • one double-stranded DNA is amplified to two double-stranded DNAs. Therefore, if this cycle is repeated n times, the region of the sample DNA sandwiched between the pair of primers is theoretically amplified 2 n times. Since the amplified DNA region exists in a large amount, it can be easily detected by a method such as electrophoresis. Therefore, the use of the gene amplification method makes it possible to detect a very small amount (even a single molecule) of target nucleic acid, which was previously undetectable. .
  • a wild-type primer capable of amplifying a wild-type nucleic acid, and a mutant nucleic acid are amplified.
  • the gene amplification method is carried out using the possible primers for the mutant type separately or simultaneously.
  • target nucleic acid When a target nucleic acid is extended or amplified using a wild-type primer, the target nucleic acid is extended or amplified if the target nucleic acid is wild-type, but not extended or amplified if the mutant nucleic acid is used. Conversely, when the target nucleic acid is extended or amplified using the primer for the mutant type, the target nucleic acid is extended or amplified if the target nucleic acid is a mutant type, but not extended or amplified if the target nucleic acid is a wild type.
  • the target nucleic acid is It can be clearly identified whether it is a mutant or a mutant.
  • higher organisms including humans have one father-derived gene and one mother-derived gene for one type of gene.
  • the sample gene is a wild type homozygous, a mutant type homozygous, or both heterozygous. That is, in the case of heterozygous, both the wild-type nucleic acid (wild-type gene) and the mutant nucleic acid (mutant gene) are present, so that both the wild-type primer and the mutant-type primer are used.
  • An extension or amplification reaction occurs.
  • the wild-type primer and the mutant-type primer may be allowed to act together with the DNA polymerase in a single container. That is, a wild-type primer and a mutant-type primer are simultaneously allowed to act on a nucleic acid contained in one sample together with a DNA polymerase to perform an extension or amplification reaction. By hybridizing the probe for the mutant type to the extended or amplified product, it is possible to examine whether the target nucleic acid is wild type or mutant type.
  • the primer of the present invention it is not necessary to control the conditions such as temperature and concentration at the time of extension or amplification reaction very strictly, and more accurate detection can be performed even when the reaction is performed under milder conditions. It becomes possible.
  • the temperature at which the primer is annealed to the target nucleic acid is often required to be controlled with an accuracy of ⁇ 0.1 in the conventional methods. If it does, it will not be affected by the accuracy of the detection result even if the error is more than that.
  • DNA polymerase used for the extension reaction or the amplification reaction of the present invention DNA polymerase usually used for the reaction can be used.
  • a double-stranded DNA having 3 ′ exonuclease activity is preferred.
  • DNA polymerase derived from Thermus aquat icus which is often used in amplification reactions, does not have 3 'exonuclease activity. This is because the amplification reaction is continued even when the complementary strand cannot be synthesized, and the possibility that the amplified nucleic acid fragment contains an unexpected mutation cannot be denied.
  • a DNA polymerase derived from Pyrococcus sp. K0D1 strain or Hyperthermophiic ic archaebacterium which has excellent extension reaction accuracy, is preferable. Extension or amplification conditions
  • the conditions for extension or amplification differ depending on the sequence of the DNA polymerase-primer used, but are not particularly limited as long as they are generally used. According to the present invention, as described above, the temperature at which each primer is annealed to the target nucleic acid does not need to be controlled with an accuracy of ⁇ 0.1, and can be performed even if there is an error of ⁇ it: or more. . Detection
  • the method for detecting a nucleotide polymorphism from the product obtained by the above-mentioned extension reaction or amplification reaction is not particularly limited, and may be a commonly used method, for example, sequencing of a base sequence, hybridization or restriction enzyme. It can be performed more preferably by the use.
  • each primer is labeled in advance with an enzyme, a biotin, a fluorescent substance, a hapten, an antigen, an antibody, a radioactive substance, a luminophore, or the like, and an extension or amplification reaction is performed.
  • the detection can be performed later by detecting the label.
  • the reverse primer may be labeled.
  • the following detection probes may be labeled.
  • they may be labeled with one or more labeling agents.
  • Examples of the enzyme include alkaline phosphatase and peroxidase.
  • fluorescent substance examples include FITC, 6-FAM, HEX, TET, TAMRA, texal Red, Cy3, Cy5, and the like.
  • haptens examples include biotin.
  • Radioactive substances include 32 P, 35 S and the like.
  • luminophore examples include ruthenium.
  • Antigens include digoxigenin, and antibodies include anti-digoxigenin.
  • the label may be attached to any position of the primer as long as it does not affect the extension reaction of the primer. Preferably, it is the 5 'site.
  • a probe for wild-type detection and a probe for mutant-type detection capable of specifically capturing the product extended and amplified by the primer for wild-type and the primer for mutation are prepared according to a known method. Then, bind to a solid phase such as a microplate. Next, the extended or amplified product is denatured and added to a microtiter plate bound with the detection probe. The product extended and amplified by the wild-type primer binds only to the wild-type detection probe and does not bind to the mutant-type detection probe. In addition, the product extended and amplified by the mutant primer binds only to the mutant detection probe and does not bind to the wild type detection probe. Thereafter, by detecting the label bound to the primer, the nucleotide polymorphism of the chromosome or the DNA fragment contained in the sample can be detected.
  • the probe for detecting wild type or the probe for detecting mutant type may be the same, or may be specific to an extension or amplification product of a primer for wild type or a primer for mutant type, respectively.
  • the wild-type detection probe or the mutation-type detection probe is designed to specifically hybridize to the nucleotide polymorphism site and the artificial mismatch site. Since two base differences are observed, it is possible to more clearly detect the respective extended Z amplification products as compared with the case where only the base polymorphism site is different. Therefore, it is easy to perform an extended Z amplification reaction simultaneously with both primers without dividing the sample into two types, one for wild type and one for mutant type, and to measure separately with a probe for wild type detection and a probe for mutant type detection.
  • a wild-type primer and a mutant-type primer are simultaneously allowed to act on a nucleic acid contained in one sample together with a DNA polymerase to perform an extension or amplification reaction.
  • the resulting product is then denatured, split into two, and hybridized to wild-type and mutant probes.
  • the target nucleic acid can be determined to be wild type or mutant type.
  • the labeling can be performed in a single plate well.
  • the length of the detection probe is not particularly limited, but is about 10 to 100 bases, preferably about 15 to 50 bases, and more preferably about 18 to 35 bases.
  • the conditions for the detection method are not particularly limited, and the detection can be performed, for example, according to the method described in the Journal of the Japan Society of Clinical Laboratory Automation, Vol. 20, p. 728 (1995). Kit
  • the kit includes a primer comprising a wild-type primer, one or two types of mutation-type primers, a DNA polymerase and four types of deoxynucleoside triphosphates (dnTP).
  • the kit includes a polymorphism detection reagent kit, and includes a wild-type primer and one or two mutant primers.
  • each primer corresponds to each nucleotide expected at the nucleotide polymorphism site
  • each primer corresponds to each nucleotide expected at the nucleotide polymorphism site, and at least one base from the 3' end to the 5 'end of each primer has The primer in the chromosome or fragment thereof has been replaced with a base that is not complementary to the base of the hybridizing strand, or
  • each primer corresponds to each nucleotide predicted at the nucleotide polymorphism site, and at least one base from the 3' end to the 5 'end of each primer is
  • the primer in the chromosome or fragment thereof is replaced with a base that is not complementary to the base of the hybridizing strand, and the base that is not complementary is different in each primer
  • a reverse primer When detection is performed by amplification, a reverse primer may be further included.
  • the kit of the present invention may further include a detection probe.
  • the detection probe used in the present invention may be one that can detect both the wild type and the mutant type.
  • a probe for detecting each type is provided for detecting the wild type and the mutant type, respectively. Is good.
  • each detection probe preferably contains a nucleotide polymorphism site.
  • each primer used for extension or amplification is not complementary to bases of the strand to which the primer hybridizes in a chromosome or a fragment thereof.
  • the probe for detecting wild type or the probe for detecting mutant type is an extension or amplification product of the primer for wild type or the primer for mutant type. Is preferably designed so that can be specifically detected.
  • the nucleotide polymorphism site and the site of the artificial mismatch further differ by one more nucleotide, so that more specific detection becomes possible.
  • each primer or detection probe may be labeled in advance with an enzyme, a biotin, a fluorescent substance, a hapten, an antigen, an antibody, a radioactive substance, a luminophore, or the like as described above.
  • the combination of the wild-type primer / mutant nucleic acid and the mutant primer Z wild-type nucleic acid completely inhibits the elongation of the nucleic acid strand, while the wild-type primer Z wild-type nucleic acid
  • the combination of the primer for mutation and the Z-mutated nucleic acid causes extension of the nucleic acid chain. Therefore, according to the method of the present invention, a nucleotide polymorphism in a target nucleic acid can be clearly detected without generating a false positive unlike the conventional method.
  • Example 1 Detection of base polymorphism in ACE (Angiotens in Converting Enzyme) gene (1) Synthesis of primer for detecting polymorphism of ACE gene No. 2350 An oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 1 (hereinafter, primer 11) and a nucleotide shown in SEQ ID NO: 2 by the phosphoramidite method using DNA synthesizer 392 manufactured by PerkinElmer Co., Ltd.
  • Oligonucleotide having a base sequence (hereinafter referred to as Primer-1) and oligonucleotide having a base sequence represented by SEQ ID NO: 3 (hereinafter referred to as Primer-13) and an oligonucleotide having a base sequence represented by SEQ ID NO: 4
  • An oligonucleotide (hereinafter, referred to as Primer-5) and an oligonucleotide having the base sequence shown in SEQ ID NO: 5 (hereinafter, referred to as Primer-5) were synthesized. Synthesis was performed according to the manual, and deprotection of various oligonucleotides was performed overnight with ammonia water at 55. Oligonucleotide purification was carried out using a PC column manufactured by Pink Elmer Inc.
  • Primer 1 has the sequence of the wild-type nucleic acid of the human ACE gene, its 3 ′ end is a nucleotide polymorphism site and has a wild-type nucleotide (A), and primer 2 is the mutant type of the human ACE gene.
  • primer 3 has a sequence of a wild-type nucleic acid of the human ACE gene.
  • the second from the end is the nucleotide polymorphism site and has a wild-type nucleotide sequence (A)
  • the primer 4 has the sequence of the mutant nucleic acid of the human ACE gene, and the second from the 3 'end is the base. It is a polymorphic site and has a mutant nucleotide (G).
  • Primer 5 is a reverse primer paired with any of primers 1-4.
  • the obtained PCR product was subjected to agarose gel electrophoresis according to a conventional method, and ethidium bromide staining was performed to detect the band of the amplification product. As a result, the results shown in Table 2 below were obtained.
  • the genotype of the sample was determined by the KODplus DNA polymerase and the primer (primer 3 and primer 14) containing the nucleotide polymorphism sequence at the 3 'end of the primer. The judgment was clear.
  • Oligo 6 and Oligo 7 have a common nucleotide sequence (not including polymorphic sites) in wild type (G) / mutant (T), and oligo 6 has a sense strand, Oligo 7 is the antisense strand, both of which are used as primers for extension / amplification reactions (sequences homologous to the human ADD gene).
  • Oligo 8 SEQ ID NO: 8
  • Oligo 9 SEQ ID NO: 9
  • Oligo 8 was the wild type (G) and Oligo 9 was the mutant ( Used for detection of T) (oligo 8: sequence homologous to the wild-type sequence of human ADD gene nucleotide polymorphism (Gly460Trp), oligo 9: sequence mutated to the nucleotide polymorphism of human ADD gene (Gly460Trp) Homologous sequence).
  • Oligo 10 (SEQ ID NO: 10) has a nucleotide sequence of wild type (G) at the second position from the 3 'end, and an artificial mismatch (A-T) at the third position, and oligo 11 (SEQ ID NO: 11).
  • Oligo 12 SEQ ID NO: 12
  • oligo 13 SEQ ID NO: 13
  • Oligos 8, 9, 12, and 13 have a 5'-terminal introduced with a linker having a linker arm at the 5-position by a synthesis method disclosed in Japanese Patent Publication No. 60-500717.
  • Oligo 8, 9, 12, 13 respectively 50mM borate buffer (pH 10.0), was prepared in 2.5 pmol / ml of a solution of 100MMMgCl 2, polystyrene microplates (Microfluor B, Dynatech Corp.), a 1 100 1 per well was dispensed and left at room temperature for about 15 hours to allow it to bind to the inner surface of the micro tie plate. After that, the cells were replaced with 0.1 pmol dNTP, 0.5 PVP (polyvinylpyrrolidone), and 5XSSC, and blocking for suppressing nonspecific reaction was performed at room temperature for about 2 hours. Finally, it was washed with 1XSSC and dried.
  • 1XSSC 50mM borate buffer
  • each amplification reaction solution Dilute each amplification reaction solution in (a) 10-fold, denature the amplified DNA in the amplification reaction solution with 0.3 N NaOH, and add amplification reaction solution 201 to 200 mM citrate monophosphate buffer for each sample. (pH 6.0), 2% SDS (sodium dodecyl sulfate), 750 mM NaCK 0.
  • the micro probe It was thrown into the plate. Liquid paraffin was overlaid to prevent evaporation and shaken at 55 for 30 minutes.
  • the amplified ADD gene fragment is specifically captured on the microtiter plate by the immobilized probe.
  • dioxane compound which is a luminescent substrate of alkaline phosphatase (trade name: Lumiphos480; Lumigen) 50 After injecting 1 and keeping the mixture at 37 for 15 minutes, the luminescence was measured with a photon counter (Hamamatsu Photonics) in a dark room (unit: kilocount / second, kcps).
  • T / T Mutant homozygous As described above, a polymorphic base is added to the second base from the 3 'end of the primer, and a primer containing an artificial mutation is used alone or mixed as the third base. The genotype could be clearly determined by using two detection oligos that were specific to each amplification product and differed by two bases from each other. Industrial applicability
  • the present invention provides a method for clearly and easily detecting a base polymorphism in a target nucleic acid.
  • the results can be obtained with good reproducibility even if the conditions of the gene amplification method are not so strict, and the judgment results do not differ depending on the type of the model.
  • it has become possible to discriminate between homozygotes and heterozygotes, which has been difficult with conventional methods.

Description

明細書 塩基多型の検出方法 技術分野
本発明は、 核酸配列の変異または多型の検出方法並びにそれに用いられるブラ イマ一及び検出用キットに関する。 本発明は、 遺伝病の診断、 塩基多型解析等に 際して特に有用である。 背景技術
遺伝子の塩基多型は、 個体間において、 薬物代謝における副作用および薬物で の治療失敗の原因の一つとして考えられている。 また、 塩基多型は、 体質として 知られる基礎代謝等の個人差の原因としても知られている。 さらに、 塩基多型は 多数の疾患の遺伝マ一力一としての働きもする。 それゆえ、 これら塩基多型の解 析は、 臨床的に重要であり、 ルーチンの表現型分類は精神医学患者および自殺志 願者を対象とした臨床研究に特に推奨される (Gram および Brsen, European Consensus Conference on Pharmacogenetics. Commission of the European Communities, Luxembourg, 1990, 第 8 7〜9 6頁: Balant ら、 Eur. J. Clin. Pharmacol. 第 36巻、 第5 5 1〜5 54頁、 (1989))。 上記のような理由から、 原因となる変異型遺伝子の同定と、 それに続くそれぞれの遺伝子型の検出用の核 酸配列分析法が所望される。
従来の核酸配列分析技術としては、 例えば核酸配列決定法 (sequencing) があ る。 核酸配列決定法は核酸配列中に含まれる塩基多型を検出、 同定することがで きるが、 铸型核酸の調製、 DNAポリメラ一ゼ反応、 ポリアクリルアミドゲル電 気泳動、 核酸配列の解析等を行うため、 多大な労力と時間が必要である。 また核 酸配列決定法は、 近年の自動シークェンサ一を用いることで省力化は行うことが できるが、 高価な装置が必要であるという問題がある。
一方、 遺伝子の点突然変異により引き起こされる遺伝病が種々知られており、 それらの中には、 遺伝子のどの部位がどのように点突然変異することにより遺伝 病が引き起こされるかわかっているものも少なくない。
このような予想される点突然変異を検出する方法として、 従来より、 P C R (polymerase chain reac t i on)法 (特公平 4一 6 7 9 6 0号公報、 特公平 4— 6 7 9 5 7号公報) などの遺伝子増幅法を利用した遺伝子の点突然変異の検出方法 が知られている。 この方法では、 遺伝子増幅法に用いる一対のプライマーのうち の一方のプライマーとして、 野生型遺伝子の増幅領域の端部領域に完全に相補的 な野生型用プライマーと、 変異型遺伝子の増幅領域の端部領域に完全に相補的な 変異型用プライマーとを用いる。 変異型用プライマーは、 その 3 ' 末端が予想さ れる点突然変異を起こしたヌクレオチドに相補的なヌクレオチドになっている。 このような野生型及び変異型用プライマーをそれぞれ別個に用いて試料遺伝子を 遺伝子増幅法に供する。
試料遺伝子が野生型であれば、 野生型用プライマーを用いた場合には核酸の増 幅が起きるが、 変異型用プライマーを用いた場合には、 プライマーの 3 ' 末端が 試料遺伝子の対応ヌクレオチドと相補的ではない (ミスマッチ) ので、 伸長反応 が起きず、 核酸の増幅は起きない。 一方、 試料遺伝子が変異型であれば、 逆に、 野生型用プライマーを用いた場合には増幅が起きず、 変異型用プライマーを用い た場合に増幅が起きる。 従って、 各プライマーを用いた場合に増幅が起きるか否 かを調べることにより、 試料遺伝子が野生型か変異型かを判別することができ、 それによつて試料遺伝子中の点突然変異を検出することができる。
また点突然変異を含む核酸配列を予め増幅しておき、 各プライマ一において増 幅核酸を用いて伸長反応が起きるか否かでの判定を行ってもかまわない。 この方 法を塩基多型の分析に応用することも可能である。
上記のような原理によれば、 従来法により明確に塩基多型の検出が行えるよう に思われるが、 実際には、 点突然変異の場合には野生型用プライマーと変異型用 プライマーとはわずか 1塩基の相違があるのみであり、 変異型用プライマーを用 いて野生型遺伝子を伸長もしくは増幅した場合、 及び野生型用プライマ一を用い て変異型遺伝子を伸長もしくは増幅した場合にも、 ある程度の反応 (即ち、 伸長 もしくは増幅)が起きることが多く、明確な判定が困難となる場合が少なくない。 また、 上述のようなミスマッチのプライマーを用いた場合に伸長または増幅が起 きるか否かは、 用いる機器の種類やその他の微妙な条件によって左右され、 再現 性も低い。 従って、 ミスマッチのプライマーを用いた場合に反応が完全に起こら ないようにするためには、 反応時の温度条件等を極めて厳密に制御する必要があ り、 かなり困難な作業になる。 しかも、 Taq ポリメラ一ゼのように 3 ' ェキソヌ クレアーゼ活性が欠損した D NAポリメラーゼを用いて伸長反応を実施した場合、 伸長反応時に取り込みエラーがあってもそれを校正することができず、 新たなェ ラ一を含んだ伸長反応を行う場合がある。
一方、 正確な伸長反応が可能である 3 ' ェキソヌクレアーゼ活性を有する D N
Aポリメラーゼを用いた場合の条件設定は、 更に困難である。 特に、 プライマー の 3 ' 末端の配列がミスマッチの場合、 本来伸長反応が起こらないことを期待し ているにもかかわらず、 校正機能によりミスマッチの塩基が削除され、 伸長反応 が起こってしまう可能性がある。
本発明の目的は、 上記のような課題を解決して、 明確にかつ再現性よく核酸配 列中の塩基多型を検出することができる方法及びそのための試薬を提供すること である。 発明の開示
本発明者らは、 上記事情に鑑み、 鋭意研究の結果、 上記の従来法において、 野 生型用プライマーが変異型遺伝子とハイブリダィズする際及び変異型用プライマ 一が野生型遺伝子とハイブリダィズする際に、 プライマーの 3 ' 末端から 2番目 のヌクレオチドを塩基多型部位に対応させることにより、 厳密な反応条件の制御 を行わなくとも、 ミスマッチのプライマーの伸長または増幅反応を完全に阻害す ることができ、 したがって容易に明確な判定が可能となることを見出し、 本発明 を完成させるに至った。
すなわち、 本発明は以下のような構成からなる。 項 1 . 核酸試料中に含まれる一塩基多型を検出する方法であって、 該方法が、 (a) 試料中に含まれる特定の一塩基多型部位を含む染色体又はその 断片に、 野生型用プライマー及び 1種又は 2種の変異型用プライマー を同時に又は別々に、 D N Aポリメラーゼと共に作用させる工程、 (b) 該プライマーが伸長されたか否かによって、 その核酸試料中に含 まれる塩基多型を検出する工程を含み、
該各プライマーの 3 ' 末端より 2番目の塩基が塩基多型部位の予想され る各ヌクレオチドに対応する、 検出方法。 項 2 . 核酸試料中に含まれる一塩基多型を検出する方法であって、 該方法が、
(a) 試料中に含まれる特定の一塩基多型部位を含む染色体又はその 断片に、 野生型用プライマー及び 1種又は 2種の変異型用プライマー を同時に又は別々に、 D N Aポリメラーゼと共に作用させる工程、
(b) 該プライマーが伸長されたか否かによって、 その核酸試料中に含 まれる塩基多型を検出する工程を含み、
該各プライマーの 3 ' 末端より 2番目の塩基が塩基多型部位の予想され る各ヌクレオチドに対応し、
該各プライマーの 3 ' 末端の 3番目から 5 ' 末端までの少なくとも 1つ の塩基が、 染色体又はその断片中の該プライマーがハイプリダイズする鎖 の塩基と相補的でない塩基に置換されている、 項 1に記載の検出方法。 項 3 . 該各プライマーの 3 ' 末端の 3番目の塩基が、 染色体又はその断片中の 該プライマーがハイプリダイズする鎖の塩基と相補的でない塩基に置換さ れている項 2に記載の検出方法。 項 4 . 核酸試料中に含まれる一塩基多型を検出する方法であって、 該方法が、
(a) 試料中に含まれる特定の一塩基多型部位を含む染色体又はその 断片に、 野生型用プライマー及び 1種又は 2種の変異型用プライマー を同時に又は別々に、 D NAポリメラーゼと共に作用させる工程、
(b) 該プライマ一が伸長されたか否かによって、 その核酸試料中に含 まれる塩基多型を検出する工程を含み、
該各プライマーの 3 ' 末端より 2番目の塩基が塩基多型部位の予想され る各ヌクレオチドに対応し、
該各プライマーの 3' 末端の 3番目から 5' 末端までの少なくとも 1つ の塩基が、 染色体又はその断片中の該プライマーがハイプリダイズする鎖 の塩基と相補的でない塩基に置換され、 且つ該相補的でない塩基は、 各プ ライマーにおいて異なる塩基とする、 項 1に記載の検出方法。 項 5. 該各プライマーの 3' 末端の 3番目の塩基が、 染色体又はその断片中の 該プライマーがハイブリダィズする鎖の塩基と相補的でない塩基に置換さ れ、且つ該相補的でない塩基は、各プライマーにおいて異なる塩基とする、 項 4に記載の検出方法。 項 6. DN Aポリメラーゼが、 :本鎖 DN Aの 3' ェキソヌクレアーゼ活性を 有する項 1に記載の方法。 項 7. DNAポリメラーゼが、 ピロコッカス ·スピ一シーズ (Pyrococcus sp.)
K0D1 株もしくはハイパーサーモフィ リック ' ァ一力エバクテリゥム (Hyper thermophi 1 ic archaebacterium) 由来である項 1に記載の方法。 項 8. (a)の工程の前に、 試料中に含まれる特定の一塩基多型部位を含む染色体 又はその断片を増幅させる工程を含む、 項 1に記載の方法。 項 9. 染色体又はその断片を増幅させる方法が、 PCR、 NASBA、 LCR、 SDA、 RCRおよび TMAからなる群から選ばれたいずれかの方法であ る項 8に記載の方法。 項 10. 該各プライマーが伸長されたか否かを、野生型用プライマー及び 変異型用プライマーからなる群のすくなくとも 1種から伸長した産物の配 列に特異的な検出用プローブを用いてハイブリダィゼーションを行うこと によって検出する、 項 1に記載の方法。 項 1 1 . 該各プライマーの少なくとも 1つまたは検出用プローブが、予め 標識されている項 1 0に記載の方法。 項 1 2 . 該各プライマーの少なくとも 1つまたは検出用プローブが、酵素、 ピオチン、 蛍光物質、 ハプテン、 抗原、 抗体、 放射性物質および発光団か らなる群から選ばれる少なくとも 1種によって標識されている項 1 0に記 載の方法。 項 1 3 . (a)工程を単一の容器で行い、 該各プライマーが伸長されたか否 かを、 野生型用プライマー及び変異型用プライマーからなる群のすくなく とも 1種から伸長した産物の配列に特異的な検出用プローブを用いて八ィ ブリダイゼーシヨンを行うことによつて検出する、 項 1に記載の方法。 項 1 4 . 核酸試料中に含まれる一塩基多型を検出する方法であって、該方 法が、
(a) 試料中に含まれる特定の一塩基多型部位を含む染色体又はその 断片に、 野生型用プライマ一及び 1種又は 2種の変異型用プライマー を同時に又は別々に、 D NAポリメラーゼと共に作用させる工程、
(b) 特定の一塩基多型部位を含む染色体又は断片が増幅されたか否 かによつて、 その核酸試料中に含まれる塩基多型を検出する工程を含 み、
該各プライマーの 3 ' 末端より 2番目の塩基が塩基多型部位の予想され る各ヌクレオチドに対応する、 検出方法。 項 1 5 . 核酸試料中に含まれる一塩基多型を検出する方法であって、該方 法が、
(a) 試料中に含まれる特定の一塩基多型部位を含む染色体又はその 断片に、 野生型用プライマー及び 1種又は 2種の変異型用プライマー を同時に又は別々に、 D N Aポリメラ一ゼと共に作用させる工程、 (b) 特定の一塩基多型部位を含む染色体又は断片が増幅されたか否 かによつて、 その核酸試料中に含まれる塩基多型を検出する工程を含 み、
該各プライマーの 3 ' 末端より 2番目の塩基が塩基多型部位の予想され る各ヌクレオチドに対応し、
該各プライマーの 3 ' 末端の 3番目から 5 ' 末端までの少なくとも 1つ の塩基が、 染色体又はその断片中の該プライマーがハイプリダイズする鎖 の塩基と相補的でない塩基に置換されている、 項 1 4に記載の検出方法。 項 1 6 . 該各プライマーの 3 ' 末端の 3番目の塩基が、 染色体又はその断 片中の該プライマーがハイプリダイズする鎖の塩基と相補的でない塩基に 置換されている項 1 5に記載の検出方法。 項 1 7 . 核酸試料中に含まれる一塩基多型を検出する方法であって、 該方 法が、
(a) 試料中に含まれる特定の一塩基多型部位を含む染色体又はその 断片に、 野生型用プライマー及び 1種又は 2種の変異型用プライマー を同時に又は別々に、 D N Aポリメラーゼと共に作用させる工程、
(b) 特定の一塩基多型部位を含む染色体又は断片が増幅されたか否 かによつて、 その核酸試料中に含まれる塩基多型を検出する工程を含 み、
該各プライマーの 3 ' 末端より 2番目の塩基が塩基多型部位の予想され る各ヌクレオチドに対応し、
該各プライマーの 3 ' 末端の 3番目から 5 ' 末端までの少なくとも 1つ の塩基が、 染色体又はその断片中の該プライマーがハイプリダイズする鎖 の塩基と相補的でない塩基に置換され、 且つ該相補的でない塩基は、 各プ ライマーにおいて異なる塩基とする、 項 1 4に記載の検出方法。 項 18. 該各プライマーの 3' 末端の 3番目の塩基が、 染色体又はその断 片中の該プライマ一が八イブリダィズする鎖の塩基と相補的でない塩基に 置換され、 且つ該相補的でない塩基は、 各プライマーにおいて異なる塩基 とする、 項 17に記載の検出方法。 項 19. DNAポリメラ一ゼがニ本鎖DNAの3'ェキソヌクレア一ゼ活 性を有する項 14に記載の方法。 項 20. DNAポリメラ一ゼが、ピロコッカス 'スピーシ一ズ(Pyrococcus sp.) K0D1 株もしくはハイパーサーモフィリック 'ァ一力エバクテリウム (Hyper thermophi lie archaebacter ium) 由来である項 14に記載の方法。 項 21. 染色体又はその断片を増幅させる方法が、 PCR、 NASBA、 LCR、 SDA、 RCRおよび TMAからなる群から選ばれたいずれかの 方法である項 14に記載の方法。 項 22. 特定の一塩基多型部位を含む染色体又は断片が増幅されたか否 かを、 野生型用プライマー及び Z又は変異型用プライマーを用いた各増幅 産物の配列に特異的な検出用プローブを用いてハイプリダイゼーションを 行うことによって検出する、 項 14に記載の方法。 項 23. 該各プライマーの少なくとも 1つ又は検出用プローブが、予め標 識されている項 22に記載の方法。 項 24. 該各プライマーの少なくとも 1つ又は検出用プローブが、酵素、 ピオチン、 蛍光物質、 ハプテン、 抗原、 抗体、 放射性物質および発光団か らなる群から選ばれる少なくとも 1種によって標識されている項 22に記 載の方法。 項 25. (a)工程を単一の容器で行い、 特定の一塩基多型部位を含む染色 体又は断片が増幅されたか否かを、 野生型用プライマー及び Z又は変異型 用プライマ一を用いた各増幅産物の配列に特異的な検出用プローブを用い てハイブリダィゼ一シヨンを行うことによって検出する、 項 14に記載の 方法。 項 26. 野生型用プライマー及び 1種又は 2種の変異型用プライマー、 D N Aポリメラーゼ及び 4種類のデォキシヌクレオシド三リン酸(dNTP) を含む一塩基多型検出用試薬キットであって、 該各プライマーの 3' 末端 より 2番目の塩基が、 塩基多型部位の予想される各ヌクレオチドに対応す る十ッ卜。 項 27. 野生型用プライマー及び 1種又は 2種の変異型用プライマー、 D
N Aポリメラーゼ及び 4種類のデォキシヌクレオシド三リン酸( d N T P ) を含む一塩基多型検出用試薬キットであって、 該各プライマーの 3' 末端 より 2番目の塩基が、塩基多型部位の予想される各ヌクレオチドに対応し、 該各プライマーの 3' 末端の 3番目から 5' 末端までの少なくとも 1つの 塩基が、 染色体又はその断片中の該プライマーがハイプリダイズする鎖の 塩基と相補的でない塩基に置換されている、 項 26に記載のキッ卜。 項 28. 該各プライマーの 3' 末端の 3番目の塩基が、 染色体又はその断 片中の該プライマーがハイブリダィズする鎖の塩基と相補的でない塩基に 置換されている、 項 27に記載のキット。 項 29. 野生型用プライマー及び 1種又は 2種の変異型用プライマー、 D
N Aポリメラーゼ及び 4種類のデォキシヌクレオシド三リン酸(dNTP) を含む一塩基多型検出用試薬キットであって、 該各プライマーの 3' 末端 より 2番目の塩基が、塩基多型部位の予想される各ヌクレオチドに対応し、 該各プライマーの 3' 末端の 3番目から 5' 末端までの少なくとも 1つの 塩基が、 染色体又はその断片中の該プライマーがハイブリダィズする鎖の 塩基と相補的でない塩基に置換され、 且つ該相補的でない塩基は、 各ブラ イマ一において異なる塩基とした、 項 26に記載のキット。 項 30. 該各プライマーの 3' 末端の 3番目の塩基が、 染色体又はその断 片中の該プライマーがハイブリダィズする鎖の塩基と相補的でない塩基に 置換され、 且つ該相補的でない塩基は、 各プライマーにおいて異なる塩基 とした、 項 29に記載のキット。 項 3 1. 野生型用プライマー及び 1種又は 2種の変異型用プライマー、 D
NAポリメラーゼ、 4種類のデォキシヌクレオシド三リン酸 (dNTP) 及び検出用プローブを含む一塩基多型検出用試薬キッ卜であって、 該各プ ライマーの 3' 末端より 2番目の塩基が、 塩基多型部位の予想される各ヌ クレオチドに対応するキッ卜。 項 32. 野生型用プライマー及び 1種又は 2種の変異型用プライマ一、 D
NAポリメラーゼ、 4種類のデォキシヌクレオシド三リン酸 (dNTP) 及び検出用プローブを含む一塩基多型検出用試薬キッ卜であって、 該各プ ライマーの 3' 末端より 2番目の塩基が、 塩基多型部位の予想される各ヌ クレオチドに対応し、 該各プライマーの 3' 末端の 3番目から 5' 末端ま での少なくとも 1つの塩基が、 染色体又はその断片中の該プライマーがハ イブリダィズする鎖の塩基と相補的でない塩基に置換されている、 項 31 に記載のキット。 項 33. 該各プライマーの 3' 末端の 3番目の塩基が、 染色体又はその断 片中の該プライマーがハイブリダィズする鎖の塩基と相補的でない塩基に 置換されている、 項 32に記載のキット。 項 34. 野生型用プライマー及び 1種又は 2種の変異型用プライマー、 D N Aポリメラ一ゼ、 4種類のデォキシヌクレオシド三リン酸 (d N T P ) 及び検出用プローブを含む一塩基多型検出用試薬キッ卜であって、 該各プ ライマ一の 3 ' 末端より 2番目の塩基が、 塩基多型部位の予想される各ヌ クレオチドに対応し、 該各プライマーの 3 ' 末端の 3番目から 5 ' 末端ま での少なくとも 1つの塩基が、 染色体又はその断片中の該プライマーがハ イブリダイズする鎖の塩基と相補的でない塩基に置換され、 且つ該相補的 でない塩基は、 各プライマーにおいて異なる塩基とした、 項 3 1に記載の キッ卜。 項 3 5 . 該各プライマーの 3 ' 末端の 3番目の塩基が、 染色体又はその断 片中の該プライマーがハイブリダィズする鎖の塩基と相補的でない塩基に 置換され、 且つ該相補的でない塩基は、 各プライマーにおいて異なる塩基 とした、 項 3 4に記載のキッ卜。 図面の簡単な説明
図 1は、 本発明の検出方法における伸長または増幅を示す図である。
図 2は、 本発明の実施例 2で使用したオリゴヌクレオチドの位置を示す。 以下、 本発明を詳細に説明する。
本発明において、 「塩基多型」 とは、染色体またはその断片中のある部位におい て、 個体間で 2種以上の塩基が存在することをいい、 一方を野生型、 それとは異 なる塩基を有するものを変異型という。 また 「塩基多型部位」 とは、 野生型と変 異型が存在している塩基多型の位置をいう。
本発明において、染色体又はその断片を単に核酸ということがある。「野生型核 酸」 とは、 塩基多型部位を含む核酸であって、 該部位が野生型の塩基を有するも のを意味する。 「変異型核酸」 とは、塩基多型部位を含む核酸であって、野生型核 酸のうち少なくとも 1つ、 好ましくは 1つのヌクレオチドが点突然変異して他の ヌクレオチドに置換されているものや、 野生型核酸の一部に挿入、 欠失配列等を 含む核酸のことであり、 どの部位のヌクレオチドカ変異しているかが解明されて いるものである。 より好ましくは、 「変異型核酸」 とは、 塩基多型部位を含む核酸 であって、 該部位が野生型の塩基とは異なる塩基で置換されているものをいう。 このような塩基多型により体質等が異なっていることが解明されてきており、 本 発明の方法は試料中の核酸がこのような予想される変異を有しているか否かを検 査する方法である。
「野生型用プライマー」 とは、 野生型の塩基多型部位にハイブリダィズするこ とができるプライマーを意味する。 また、 「変異型用プライマ一」 とは、変異型の 塩基多型部位にハイブリダイズすることができるプライマーを意味する。
「野生型用プローブ」 とは、 野生型用プライマーによって伸長または増幅した 産物を特異的に検出するプローブである。 また、 「変異型用プローブ」 とは、 変異 型用プライマーによって伸長または増幅した産物を特異的に検出するプローブで ある。
試料中に含まれる特定の一塩基多型部位を含む染色体又はその断片は、 目的の 遺伝子の情報を担う塩基多型部位を含む標的核酸であれば、 特に制限されず、 ミ トコンドリア等も含まれる。 該標的核酸の例としては、 Aiu 配列、 蛋白質をコー ドする遺伝子のェキソンやイントロン、 プロモーターなどが例示できる。 より具 体的には、 遺伝病を含む各種疾患、 薬物代謝、 生活習慣病 (高血圧、 糖尿病等) に関連する遺伝子が挙げられる。 例えば、 高血圧として A C E (Angi o tens i n I Conver t ing Enzyme) 遺伝子、 糖尿病と して P P A R T ( perox i some pro l i ferator-ac t ivated receptor j ) が挙げられる。
核酸を複製する場合、 一本鎖に変性した標的核酸にプライマー、 4種類のデォ キシヌクレオシド三リン酸 (d N T P ) と D N Aポリメラーゼを作用させること で、 標的核酸を铸型としてプライマー伸長反応が起こり核酸配列の相補鎖が合成 されて複製できる。
本発明において、 プライマーが伸長されたか否かによって、 その核酸試料中に 含まれる塩基多型を検出する方法とは、 核酸試料中の特定の一塩基多型部位を含 む染色体又はその断片に、 野生型用プライマーと、 1種又は 2種の変異型用ブラ ィマーを同時又はそれぞれ別々に用いて伸長反応を行うことにより多型を検出す る方法である。 また、 特定の一塩基多型部位を含む染色体又は断片が増幅されたか否かによつ て、 その核酸試料中に含まれる塩基多型を検出する方法とは、 特定の一塩基多型 部位を含む染色体又は断片を含む核酸試料に、 フォワードプライマーに相当する 野生型用プライマー及び 1種又は 2種の変異型用プライマーを同時にまたはそれ ぞれ別々に用いて、 リバースプライマ一と共に増幅反応を行うことにより多型を 検出する方法である。
本発明に用いられる各プライマーは、 各プライマーの 3 ' 末端から 2番目のヌ クレオチドが塩基多型配列のヌクレオチドと対応するように設計されている。 即ち、 図 1において、 ある塩基多型部位において野生型の塩基が " G"、 変異型 の塩基が "T" であり、 塩基多型部位の 3 ' 側の塩基が Gの場合には、 野生型核 酸を伸長または増幅するための野生型用プライマーは 5' Gg 3'、変異型用プ ライマーは 5' Tg 3' となる。 このように設計した場合、 野生型用プライマ 一 Z野生型核酸及び変異型用プライマーノ変異型核酸の組合せにおいて、 各ブラ イマ一は核酸と完全に一致する為伸長または増幅は起こる。 一方、 野生型用ブラ イマーノ変異型核酸及び変異型用プライマー Z野生型核酸の組合せにおいてはプ ライマーの 3 ' 末端より 2番目の塩基が相補的でない (ミスマッチしている) た め、 伸長または増幅が起こらない。 特に、 本発明者らは、 3 ' ェキソヌクレア一 ゼ活性を有する D N Aポリメラーゼを用いた場合、 3 ' 末端にミスマッチがあれ ば、 認識 除去するが、 3 ' 末端は相補的な為ェキソヌクレアーゼ活性は働かず、 また D N Aポリメラーゼ反応も起こらないことを見出した。
このように、 本発明の方法では、 野生型用プライマーノ変異型核酸及び変異型 用プライマーノ野生型核酸の組合せでは核酸鎖の伸長または増幅が完全に阻害さ れ、 一方、 野生型用プライマー Z野生型核酸及び変異型用プライマー Z変異型核 酸の組合せでは、 核酸鎖の伸長または増幅が起きる。 したがって、 本発明の方法 によれば、 従来法のように偽陽性を生じることなく、 標的核酸中の多型を明確に 検出することができる。
本発明は、 上述したようなプライマーに加えて、 ミスマッチの部分を更にもう 1力所導入した野生型用プライマー及び変異型用プライマーを提供する (図 1中 の野生型用プライマー 2及び変異型用プライマー 2を参照)。即ち、本発明に用い られる上記野生型用及び変異型用プライマーは、 各プライマーの 3 ' 末端から 2 番目のヌクレオチドが、塩基多型部位のヌクレオチドと対応するように設計され、 さらに、 該各プライマーの 3 ' 末端の 3番目から 5 ' 末端までの少なくとも 1つ の塩基が、 染色体又はその断片中の該プライマーがハイブリダィズする鎖 (図 1 中 "下鎖") の塩基と相補的でない塩基になるように設計してもよい (以下この部 位を 「人為的ミスマッチ部位」 という。)。 図 1中の野生型用プライマ一 2及び変 異型用プライマー 2においては、 各プライマーの 3 ' 末端から 3番目の塩基が人 為的ミスマッチ部位である場合を示しており、 該位置のプライマーがハイブリダ ィズする鎖 (図 1中 "下鎖") の塩基が "T"である場合に、 野生型核酸を伸長ま たは増幅するための野生型用プライマーは 5' X,Gg 3'、 変異型用プライマ 一は 5' X2Tg 3' (Χ,, Χ2 は Τの相補塩基である Α以外の塩基、 即ち、 T、
G、 Cのいずれかであって、 同一または相異なっていてもよい。) となる。
このように設計した場合、 野生型用プライマ一 Z野生型核酸及び変異型用ブラ イマ一 Z変異型核酸の組合せにおいて、 各プライマ一は少なくとも 3 ' 末端から 2番目の配列までは一致する為伸長または増幅反応は起こる。 一方、 野生型用プ ライマー Z変異型核酸及び変異型用プライマー Z野生型核酸の組合せにおいては、 プライマーの 3 ' 末端より 2番目の塩基、 さらにもう 1塩基の人為的ミスマッチ があるため伸長または増幅反応が起こらない。 3 ' ェキソヌクレアーゼ活性を有 する D NAポリメラーゼはミスマッチを認識除去する活性を有するが、 3 ' 末端 は相補的な為ェキソヌクレアーゼも働かず、誤った伸長反応を起こすことがない。 このことにより、 野生型用プライマーが変異型核酸と結合すること、 及び変異型 用プライマーが野生型核酸と結合することが、 より効果的に妨げられることを見 出した。
更に、 本発明のプライマ一は、 3 ' 末端から 2番目の塩基は塩基多型部位の予 想されるヌクレオチドに対応する塩基配列であり、 更に、 3番目力 ら 5 ' 末端ま での少なくとも 1つの塩基が、 染色体又はその断片の該プライマーがハイプリダ ィズする鎖の塩基と相補的でなく、 且つ該相補的でない塩基は、 各々のプライマ 一において異なる塩基とする様設計された野生型用プライマー及び変異型用ブラ イマ一であってもよい。 即ち、 図 1の野生型用プライマー 2及び変異型用プライ マー 2において Χ,, Χ2が相異なる塩基を有する場合を意味する。
例えば、 その 3 ' 末端から 2番目の塩基が塩基多型部位の予想されるヌクレオ チドになるようにプライマーを設計し、 野生型用プライマ一は野生型核酸の該塩 基に対応する塩基、 及び変異型用プライマーは変異型核酸の該塩基に対応する塩 基を配置させる。 さらに、 各プライマーの 3 ' 末端の 3番目から 5 ' 末端までの 塩基の中のある位置において、 プライマーがハイブリダイズする鎖の核酸配列中 の塩基が Τである場合、 例えば、 野生型用プライマーは、 Α以外の Τ、 変異型用 プライマーは、 Α及び Τ以外の Cまたは Gと設計する。 この人為的ミスマッチの 組み合わせは以下の通りである。
表 1 人為的ミスマッチを
設計する部位の塩基
A G c T
(7°ライマ-がハイプリダイス'する
鎖の塩基 (図 1中下鎖) )
野生型用プライマ-中の塩基 G C A A T G A T C G c T 変異型用フ'ライマ-中の塩基 C G C G A A T A A C G G
A A G 丁 G T c C T T T C このようなプライマーを使用すれば、 野生型用プライマーが変異型核酸と結合 すること、 及び変異型用プライマーが野生型核酸と結合することがより妨げられ るとともに、 下記の検出のためのプローブにおいても、 野生型検出用プローブと 変異型検出用プローブ間において、 塩基多型部位と人為的ミスマッチの部位で更 にもう一塩基異なる結果、 2塩基異なることとなり、 より正確な検出が可能とな つた。
本発明におけるプライマ一の長さとしては、 1 3〜3 5塩基、 好ましくは、 1 6〜3 0塩基であり、 上記人為的ミスマッチ部位は、 該プライマ一中に少なくと も 1つ存在する。 また、 その位置は、 3 ' 末端の 3番目から 5 ' 末端までのいず れかであれば、 特に限定されないが、 好ましくは、 3 ' 末端の 3番目に近い位置、 より好ましくは、 3 ' 末端から 3番目力 S好ましい。 野生型用プライマー及び変異 型用プライマーが八イブリダィズする鎖は、 上鎖または下鎖どちらでもよい。
差替え用紙 (規則 26) 3' 末端から 3番目に人為的ミスマッチを用いた場合、 伸長反応を期待しない 核酸配列を铸型とした時には、 塩基多型部位と併せて 2塩基連続のミスマッチと なり、 伸長反応が強く阻害される。 一方、 他の部分に用いた場合は、 プライマー の非連続的な 2力所のミスマッチにより铸型へのハイブリダイゼ一シヨンそのも のが妨げられ、 結果として伸長反応を抑制できる。
本発明における、 プライマーの伸長方法は、 基本的には、 従来の方法を用いて 行うことができる。 通常、 一本鎖に変性させた特定の塩基多型部位を含む染色体 又はその靳片に、 4種類のデォキシヌクレオシド三リン酸 (dNTP) 及び DN Aポリメラ一ゼと共に、 野生型用プライマーと、 1種又は 2種の変異型用プライ マーを同時又はそれぞれ別個に用いて作用させることで、 標的核酸を铸型として プライマーが伸長する。
該 ί申長反 、ίま、 Molecular Cloning, A Laboratory Manual (Sambrookら、 19 89)に記載の方法に従って行うことができる。 また、該プライマーが伸長された か否かによって塩基多型を検出する方法において、 標的核酸が検出するのに十分 な量が含まれていない場合、 前記多型配列を含む核酸断片を以下に示す増幅反応 によって、 予め増幅しておくことも可能である。
本発明における、 特定の塩基多型部位を含む染色体又は断片の増幅方法も、 基 本的には、 従来の方法を用いて行うことができ、 通常、 一本鎖に変性させた特定 の塩基多型部位を含む染色体又はその断片に、 4種類のデォキシヌクレオシド三 リン酸 (dNTP) 及び DNAポリメラーゼ及びリバースプライマ一と共に、 野 生型用プライマーと、 1種又は 2種の変異型用プライマーを同時又はそれぞれ別 個に用いて作用させることで、 標的核酸を铸型としてフォワードプライマー (野 生型用プライマーまたは変異型用プライマー) とリバースプライマーの間で増幅 される。
核酸増幅方法としては、 PCR、 NASBA (Nucleic acid sequence-based amplification method; Na t u r e 第 350巻、第 91頁(1991))、 LCR (国 際公開 89/12696号公報、 特開平 2— 2934号公報)、 SDA (Strand Displacement Ampl i f icat ion: Nucleic acid research 第 20巻、 第 1691頁 (1992))、 RCR (国際公開 90Z 1069号公報)、 TMA (Transcription mediated ampl i f i cat i on method; J. Cl in. Microbiol . 第 3 1巻、 第 3 2 7 0 頁(1993) ) などが挙げられる。
なかでも P C R法は、 標的核酸、 4種類のデォキシヌクレオシド三リン酸、 一 対のプライマ一及び耐熱性 D N Aポリメラ一ゼの存在下で、変性、アニーリング、 伸長の 3工程からなるサイクルを繰り返すことにより、 上記一対のプライマーで 挟まれる標的核酸の領域を指数関数的に増幅させる方法である。 すなわち、 変性 工程で試料の核酸を変性し、 続くアニーリング工程において各プライマーと、 そ れぞれに相補的な一本鎖標的核酸上の領域とをハイブリダィズさせ、 続く伸長ェ 程で、 各プライマーを起点として D NAポリメラーゼの働きにより铸型となる各 一本鎖標的核酸に相補的な D N A鎖を伸長させ、 二本鎖 D NAとする。 この 1サ ィクルにより、 1本の二本鎖 D NAが 2本の二本鎖 D NAに増幅される。従って、 このサイクルを n回繰り返せば、 理論上上記一対のプライマーで挟まれた試料 D NAの領域は 2 n倍に増幅される。 増幅された D N A領域は大量に存在するので、 電気泳動等の方法により容易に検出できる。 よって、 遺伝子増幅法を用いれば、 従来では検出不可能であった、 極めて微量 (1分子でも可) の標的核酸をも検出 することが可能であり、 最近非常に広く用いられている技術である。
本発明の特定の一塩基多型部位を含む染色体又は断片が増幅されたか否かによ つて塩基多型を検出する方法では、 野生型核酸を増幅できる野生型用プライマー と、 変異型核酸を増幅できる変異型用プライマーをそれぞれ別個又は同時に用い て遺伝子増幅法を行う。
野生型用プライマーを用いて標的核酸を伸長または増幅反応を行った場合、 標 的核酸が野生型であれば伸長または増幅されるが、 変異型では伸長または増幅さ れない。 逆に、 変異型用プライマーを用いて標的核酸を伸長または増幅反応を行 つた場合、 標的核酸が変異型であれば伸長または増幅されるが、 野生型であれば 伸長または増幅されない。 従って、 一つの試料を二つに分け、 一方は野生型用プ ライマーを用い、 他方は変異型用プライマーを用い、 伸長または増幅反応が起つ たか否かを調べることにより、 標的核酸が野生型であるか変異型であるかを明確 に知ることができる。特に、 ヒトを始め、 高等生物は、 1種類の遺伝子について、 父親由来の遺伝子と母親由来の遺伝子をそれぞれ 1つずつ有しているが、 この方 法によれば、 試料遺伝子が野生型のホモか、 変異型のホモか、 あるいは、 両方の ヘテロかを区別することもできる。すなわち、ヘテロの場合には、野生型核酸(野 生型遺伝子) と変異型核酸 (変異型遺伝子) が共に存在するから野生型用プライ マーを用いた場合も変異型用プライマーを用いた場合も伸長または増幅反応が起 さる。
また、 本発明の伸長工程及び増幅工程において、 単一の容器中で野生型用ブラ イマ一及び変異型用プライマーを、 D N Aポリメラーゼと共に作用させてもよい。 即ち、 1つの試料中に含まれる核酸に野生型用プライマー及び変異型用プライマ 一を同時に D NAポリメラ一ゼと共に作用させ、 伸長または増幅反応を行い、 以 下に示すように野生型用プローブ及び変異型用プローブを伸長または増幅された 産物にハイブリダィズさせることによって、 標的核酸が野生型か変異型を調べる ことができる。
本発明のプライマーを使用することにより、 伸長又は増幅反応時の温度、 濃度 等の条件を極めて厳密に制御する必要がなくなり、 より緩和な条件で反応を行つ ても、 より正確な検出を行うことが可能となる。
例えば、 伸長又は増幅反応において、 プライマーを標的核酸にァニールさせる 温度は、 これまでの方法では、 ± 0 . 1 の精度で制御する必要がある場合も少 なくなかったが、 本発明のプライマーを使用した場合土 i t:以上の誤差があって も検出結果の正確性には影響を受けない。
D N Aポリメラーゼ
本発明の伸長反応又は増幅反応に使用される D NAポリメラーゼとしては、 通 常該反応に使用される D N Aポリメラ一ゼが使用できる。
好ましくは、二本鎖 D N Aの 3 'ェキソヌクレアーゼ活性を有するものがよい。 増幅反応によく用いられるサーマス ·ァクエティカス (Thermus aquat icus) 由 来の D NAポリメラ一ゼ等は、 3 ' ェキソヌクレアーゼ活性を持たないため、 増 幅反応を行った場合、 正確に铸型配列の相補鎖を合成できなかった時もそのまま 増幅反応を続けるため、 増幅核酸断片に予想外の変異を含有する可能性が否定で きないためである。 より好ましくは、 伸長反応の正確性が優れているピロコッカス ·スピ一シーズ (Pyrococcus sp. ) K0D1株もしくはハイパーサーモフィリック .ァ一力エバクテ リウム (Hyperthermophi 1 ic archaebacterium) 由来の DNAポリメラ一ゼがよい。 伸長または増幅条件
伸長または増幅の条件としては、 使用する DN Aポリメラ一ゼゃプライマーの 配列によっても異なるが、 通常されている条件であれば特に限定されない。 本発 明によれば、 上述のごとく、 各プライマーを標的核酸にァニールさせる温度は、 ±0. 1での精度で制御する必要はなく、 ± it:以上の誤差があっても行うこと ができる。 検出
上記伸長反応又は増幅反応によって得られた産物から、 塩基多型を検出する方 法としては、 特に制限はなく通常採用されている方法、 例えば塩基配列の配列決 定、 ハイブリダィゼ一シヨンや制限酵素の利用によるもの等により好ましく行い 得る。
例えば、 ハイブリダィゼーシヨンを利用する場合、 該各プライマーを、 予め酵 素、 ピオチン、 蛍光物質、 ハプテン、 抗原、 抗体、 放射性物質および発光団など によつて標識しておき、 伸長又は増幅反応後に該標識を検出することによって、 行うことができる。 または、 リバースプライマ一を標識しておいてもよい。 また は、 下記に示される検出用プローブを標識しておいてもよい。 または、 それらは 1種または 2種以上の標識剤で標識されていてもよい。
酵素としては、 アルカリフォスファタ一ゼ、 ペルォキシダーゼなどが挙げられ る。
蛍光物質としては、 F I TC, 6 -FAM, HEX, TET, TAMRA, テ キサスレッド、 Cy 3、 Cy 5などが挙げられる。
ハプテンとしては、 ピオチンなどが挙げられる。
放射性物質としては、 32 P、 35 Sなどが挙げられる。
発光団としては、 ルテニウムなどが挙げられる。 抗原としてはジゴキシゲニン、 抗体としては抗ジゴキシゲニンが挙げられる。 該標識は、 プライマーの伸長反応に影響を与えることがなければプライマーの どの位置に結合させてもよい。 好ましくは、 5 '部位である。
具体的には、 野生型用プライマー及び変異型用プライマーによって伸長、 増幅 された産物を特異的に捕捉することができる野生型検出用プロ一ブ及び変異型検 出用プローブを、 公知の方法に従い、 マイクロ夕イタ一プレートなどの固相に結 合させる。 次に、 伸長又は増幅した産物を変性させ、 該検出用プローブが結合し たマイクロタイ夕一プレートに添加する。 野生型用プライマーによって伸長、 増 幅された産物は野生型検出用プローブにのみ結合し、 変異型検出用プローブには 結合しない。 また、 変異型用プライマーによって、 伸長、 増幅された産物は変異 型検出用プローブにのみ結合し、野生型検出用プローブには結合しない。その後、 プライマーに結合している標識を検出することによって、 試料に含まれている染 色体又は D N A断片の塩基多型を検出することができる。
野生型検出用プローブまたは変異型検出用プローブは、 同じものであっても、 野生型用プライマ一または変異型用プライマーの伸長または増幅産物にそれぞれ 特異的であってもよい。
本発明の方法では、 塩基多型部位に加えて、 人為的ミスマッチの部位において も野生型用プライマーと変異型用プライマーで異なっている場合には、 野生型検 出用プローブまたは変異型検出用プローブは、 塩基多型部位及び人為的ミスマツ チ部位に特異的にハイブリダイズすることができるように設計することが好まし レ^ このことにより、 野生型検出用プローブ及び変異型検出用プローブ間におい て 2塩基の相違が見られることとなるため、 塩基多型部位のみ相違している場合 と比較して、より明確にそれぞれの伸長 Z増幅産物を検出することが可能である。 したがって、 試料を野生型用、 変異型用の 2つに分けることなく両プライマーで 同時に伸長 Z増幅反応を行い、 特異的に野生型検出用プローブと変異型検出用プ ローブで測り分けることも容易である。 具体的には、 1つの試料中に含まれる核 酸に野生型用プライマー及び変異型用プライマ一を同時に D N Aポリメラーゼと 共に作用させ、 伸長または増幅反応を行う。 その後、 得られた産物を変性させ、 2つに分け、 野生型用プローブ及び変異型用プローブにハイブリダィズさせるこ とによって、 標的核酸が野生型か変異型を調べることができる。 野生型用プライ マーと変異型用プライマーに異なる標識を用いた場合には、 1つのプレートのゥ エルで行うことができる。
検出用プローブの長さとしては、特に制限されないが、 1 0 ~ 1 0 0塩基程度、 好ましくは、 1 5〜5 0塩基程度、 より好ましくは、 1 8〜3 5塩基程度である。 検出方法の条件も特に限定されず、 例えば、 日本臨床検査自動化学会会誌、 第 2 0巻、 第 7 2 8頁 (1 9 9 5年) に記載の方法に従って行うことができる。 キッ卜
本発明において、 キットとしては、 野生型用プライマー及び 1種又は 2種の変 異型用プライマ一、 D NAポリメラ一ゼ及び 4種類のデォキシヌクレオシド三リ ン酸 (d NT P ) を含む塩基多型検出用試薬キットを含むものであり、 野生型用 プライマー及び 1種又は 2種の変異型用プライマーにおいて、
•該各プライマーの 3 ' 末端より 2番目の塩基が、 塩基多型部位の予想される各 ヌクレオチドに対応する、
*該各プライマーの 3 ' 末端より 2番目の塩基が、 塩基多型部位の予想される各 ヌクレオチドに対応し、 該各プライマーの 3 ' 末端の 3番目から 5 ' 末端までの 少なくとも 1つの塩基が、 染色体又はその断片中の該プライマーがハイブリダィ ズする鎖の塩基と相補的でない塩基に置換されている、 または
·該各プライマーの 3 ' 末端より 2番目の塩基が、 塩基多型部位の予想される各 ヌクレオチドに対応し、 該各プライマーの 3 ' 末端の 3番目から 5 ' 末端までの 少なくとも 1つの塩基が、 染色体又はその断片中の該プライマーがハイブリダィ ズする鎖の塩基と相補的でない塩基に置換され、 且つ該相補的でない塩基は、 各 プライマーにおいて異なる
という特徴を有する。
増幅によって検出する場合には、 更に、 リバースプライマ一を含んでいてもよ い。
また、 検出の際に、 プローブを使用する場合には、 本発明のキットは更に、 検 出用プローブを含んでいてもよい。 本発明で使用する検出用プローブは、 野生型と変異型を共に検出できるもので あってもよいが、 好ましくは、 野生型と変異型を各々検出するために各型検出用 プローブを用意するのがよい。 その場合、 各検出用プローブは塩基多型部位を含 むことが好ましい。
更に、 伸長または増幅に用いる該各プライマーの 3 ' 末端の 3番目から 5 ' 末 端までの少なくとも 1つの塩基が、 染色体又はその断片中の該プライマ一がハイ ブリダィズする鎖の塩基と相補的でない塩基に置換され、 且つ該相補的でない塩 基は、 各プライマーにおいて異なる場合には、 野生型検出用プローブまたは変異 型検出用プローブは、 野生型用プライマーまたは変異型用プライマーの伸長また は増幅産物を特異的に検出することができるように設計することが好ましい。 こ のことにより、 その検出用プローブ間においては、 塩基多型部位と人為的ミスマ ツチの部位で更にもう一塩基異なることとなるため、 より特異的な検出が可能と なる。
また、 該各プライマーまたは検出用プローブは、 予め上述したような酵素、 ビ ォチン、 蛍光物質、 ハプテン、 抗原、 抗体、 放射性物質および発光団などによつ て標識されていてもよい。
このように、 本発明の方法では、 野生型用プライマー/変異型核酸及び変異型 用プライマー Z野生型核酸の組合せでは核酸鎖の伸長が完全に阻害され、 一方、 野生型用プライマー Z野生型核酸及び変異型用プライマー Z変異型核酸の組合せ では核酸鎖の伸長が起きる。 したがって、 本発明の方法によれば、 従来法のよう に偽陽性を生じることなく、 標的核酸中の塩基多型を明確に検出することができ る。 実施例
以下、 実施例に基づき本発明をより具体的に説明する。 もっとも、 本発明は下 記実施例に限定されるものではない。 実施例 1 A C E (Angiotens in Conver t ing Enzyme) 遺伝子の塩基多型検出 ( 1 ) A C E遺伝子 2 3 5 0番の多型を検出するプライマーの合成 パーキンエルマ一社製 DN Aシンセサイザー 3 92型を用いて、 ホスホアミダ ィト法にて、配列番号 1に示される塩基配列を有するオリゴヌクレオチド(以下、 プライマ一 1と示す) および配列番号 2に示される塩基配列を有するオリゴヌク レオチド (以下、 プライマ一 2と示す) および配列番号 3に示される塩基配列を 有するオリゴヌクレオチド (以下、 プライマ一 3と示す) および配列番号 4に示 される塩基配列を有するオリゴヌクレオチド (以下、 プライマ一 4と示す) およ び配列番号 5に示される塩基配列を有するオリゴヌクレオチド (以下、 プライマ —5と示す) を合成した。 合成はマニュアルに従い、 各種オリゴヌクレオチドの 脱保護はアンモニア水で 5 5で、 一夜実施した。 オリゴヌクレオチドの精製はパ 一キンエルマ一社〇 PCカラムにて実施した。
プライマー 1はヒト AC E遺伝子の野生型核酸の配列を有し、 その 3 ' 末端が 塩基多型部位であって野生型のヌクレオチド (A) を有し、 プライマー 2はヒト AC E遺伝子の変異型核酸の配列を有し、 その 3 ' 末端が塩基多型部位であって 変異型のヌクレオチド (G) を有し、 プライマー 3はヒ卜 AC E遺伝子の野生型 核酸の配列を有し、 3 ' 末端から 2番目が塩基多型部位であって野生型のヌクレ ォチド配列 (A) を有し、 プライマー 4はヒト AC E遺伝子の変異型核酸の配列 を有し、 3 ' 末端から 2番目が塩基多型部位であって変異型のヌクレオチド (G) を有する。 プライマ一 5はプライマ一 1〜 4のいずれとも対になるリバースプラ イマ一である。
(2) P CR法による AC E遺伝子多型の解析
ヒ卜白血球からフエノール ·クロロフオルム法により抽出した 3種類の DNA 溶液 (野生型のホモ (Aホモ)、 変異型のホモ (Gホモ)、 ヘテロ型) をサンプル として使用して、 下記試薬を添加して、 下記条件によりヒト AC E遺伝子多型を 解析した。
(a) 試薬及び増幅条件
以下の試薬を含む 2 5 1溶液を調製した。
プライマ— 1〜4のいずれか 5 pmo l
プライマ一 5 5 pmo 1
X 1 0緩衝液 2. 5 1 2mM dNTP 2. 5 1
25mM Mg S〇4 1 n 1
KODplus DNAポリメラーゼ 0. 2U
抽出された各 DNA溶液 l O Ong
増幅条件
94%: - 2分
94t 15秒、 55°C ' 30秒、 68で、 30秒 (35サイクル)
68 · 2分
(b) 検出
得られた P C R産物を常法に従ってァガロースゲル電気泳動に供し、 ェチジゥ ムブロマイド染色して増幅産物のバンドを検出した。 その結果、 下記表 2に示す ような結果が得られた。
表 2
Figure imgf000026_0001
+:増幅した
一:増幅しなかった 上記のように、 KODplus DNAポリメラ一ゼとプライマ一の 3 ' 末端から 番目の部位に塩基多型配列を含むプライマ一(プライマー 3及びプライマ一 4 ) によって試料の遺伝子型を明確に判定することができた。
差替え用紙 (規則 26) 実施例 2 ADD (Alpha Adducin) 遺伝子の塩基多型 (Gly460T卬)の検出
(1) ADD遺伝子のェキソン 10、 246番目の多型を検出するプライマーの合成 パーキンエルマ一社製 DNAシンセサイザ一 392型を用いて、 ホスホアミダイト 法にて、 配列番号 6〜 1 3に示される塩基配列を有するオリゴヌクレオチド (以 下、 オリゴ 6〜13と示す) を合成した。 合成はマニュアルに従い、 各種オリゴヌ クレオチドの脱保護はアンモニア水で 55で、 一夜実施した。 オリゴヌクレオチド の精製はパーキンエルマ一社 0PCカラムにて実施した。
オリゴ 6 (配列番号 6) 及びオリゴ 7 (配列番号 7) は野生型(G)/変異型(T)で 共通のヌクレオチド配列 (多型部位を含まない)を有し、 オリゴ 6がセンス鎖、 ォ リゴ 7がアンチセンス鎖であり、 いずれも伸長/増幅反応のプライマーとして使 用される (ヒト ADD遺伝子と相同な配列)。 オリゴ 8 (配列番号 8) 及びオリゴ 9 (配列番号 9)はオリゴ 6とオリゴ 7による増幅産物をそれぞれ検出するための プローブとして使用され、 オリゴ 8は野生型 (G)、 オリゴ 9は変異型(T)の検出に 使用される (オリゴ 8 :ヒト ADD遺伝子の塩基多型(Gly460Trp)の野生型配列と相 同な配列、 オリゴ 9:ヒト ADD遺伝子の塩基多型(Gly460Trp)の変異型配列と相同 な配列)。 オリゴ 10 (配列番号 1 0) は 3'末端から 2番目に野生型(G)のヌクレオ チド配列、 および 3番目に人為的ミスマッチ (A—T)を有し、 オリゴ 11 (配列番号 1 1) は 3'末端から 2番目に変異型(T)のヌクレオチド配列、および 3番目に人為 的ミスマッチ (A→C)を有し、 それぞれオリゴ 7と組み合わせて増幅反応のプライ マーとして使用される。 オリゴ 12 (配列番号 1 2) とオリゴ 13 (配列番号 1 3) はそれぞれオリゴ 10とオリゴ 7およびオリゴ 11 とオリゴ 7の増幅産物を検出す るためのセンス鎖のプローブとして使用される。 なお、 オリゴ 7、 10、 11は必要 により標識して使用される。 また、 オリゴ 8、 9、 12および 13は 5'末端には特表 昭 60-500717号公報に開示された合成法により 5位にリンカーアームを有するゥ リジンが導入されている。
(2) PCR法およびハイブリダィゼーシヨン法による ADD遺伝子多型の解析 ① PCR法による増幅反応
ヒト白血球からフエノール ·クロロフオルム法により抽出した 3種類の DNA溶 液(野生型のホモ(Gホモ、 G/G)、変異型のホモ (Tホモ、 T/T)、 ヘテロ型(G/T)) をサンプルとして使用して、 下記試薬を添加して、 下記条件によりヒト ADD遣伝 子多型を解析した。
(a) 試薬及び増幅条件
以下の試薬を含む 25 1溶液を調製した。
KOD DNAポリメラーゼ反応液
オリゴ 6、 10および Zまたは 11のいずれか 5 pmol
オリゴ 7 (5'をピオチンにより標識) 5 pmol
X 10緩衝液 2.5 zl
2mM dNTP 2.5 ^ 1
25 M MgS04 1.2 l
KOD- plus DNAポリメラ一ゼ 0.2 U
抽出 DNA溶液 100 ng
増幅条件
94で · 5分
94で · 15秒、 6(TC · 30秒、 68 :、 30秒 (35サイクル)
68 · 2分
(b) ハイブリダィゼ一シヨン法による検出
オリゴ 8、 9、 12、 13を各々 50mMホウ酸緩衝液 (pH10.0)、 100mMMgCl2の溶液の 2.5 pmol/mlに調製し、 ポリスチレン製マイクロプレート(MicroFLUOR B、 ダイナ テック社製)に、 1ゥエルあたり 100 1ずつ分注し、 15時間程度室温に放置する ことで、 マイクロタイ夕一プレート内面に結合させた。 その後、 0.1 pmol dNTP、 0.5 PVP (ポリビニルピロリドン)、 5XSSCに置換して、 非特異反応を抑えるため のブロッキングを室温で 2時間程度行った。 最後に 1XSSCで洗浄して乾燥させ た。
(a)の各増幅反応液を 10倍に希釈し、 0.3N NaOHで増幅反応液中の増幅された DNAを変性させ、 各サンプルごとに増幅反応液 20 1 を 200mMクェン酸一リン酸 緩衝液 (pH6.0)、 2% SDS (ドデシル硫酸ナトリウム)、 750mM NaCK 0. \% NaN3 の溶液 100 zlに加えて、上記の検出用捕捉プローブが結合したマイクロ夕イタ一 プレートに投入した。蒸発を防ぐため流動パラフィンを重層し、 55でで 30分間振 盪させた。 これによつて、 増幅された ADD遺伝子断片が固定化されたプローブに よって特異的にマイクロタイ夕一プレートに捕捉される。
次に、 2 X SSC (pH7. 0)、 \% SDS に置換し同様に蒸発を防ぐため、 流動パラフィ ンを重層し、 55 で 20分間振盪させた。 その後、 アルカリフォスファタ一ゼを標 識したストレプトアビジン (DAK0製: D0396) を 50mM 卜リス一塩酸緩衝液 (pH7. 5)、 1¾ BSAの溶液で 2000倍に希釈した溶液 lOO i 1 と置換し、 37でで 15分間振邀さ せた。 これによつて、 捕捉された D NAのピオチンにアルカリ性ホスファターゼ 標識したストレプトアビジンが特異的に結合した。 250 1 の 50mM 卜リス—塩酸 緩衝液 (pH7. 5)、 0. 025¾ Tween20溶液で 3回洗浄後、 アルカリ性ホスファタ一ゼ の発光基質であるジォキセ夕ン化合物 (商品名: Lumiphos480; Lumigen社) 50 1を注入し、 37でで 15分間保温後に暗室中でホトンカウンター (浜松ホトニクス 社) で発光量を測定した(単位 ki locount/second, kcps)。
これらの工程はすべて、 DNA プローブ自動測定システム (日本臨床検査自動化 学会会誌 第 20巻、 第 728頁 (1995年) を参照) により自動で行われ、 所要時 間は約 2. 5時間であった。
表 3
Figure imgf000030_0001
(kcps)
G/G:野生型ホモ
G/T:ヘテロ型
T/T:変異型ホモ 上記のように、 プライマーの 3'末端から 2番目の塩基に多型塩基、 および 3番 目に人為的な変異を含むプライマ一 2 種を単独または混合して増幅し、 それぞれ の増幅産物に特異的で、 相互に 2塩基の相違のある 2種の検出用オリゴを使用す ることで遺伝子型を明確に判定することができた。 産業上の利用の可能性
上述したように、 本発明により、 標的核酸中の塩基多型を明確にまた簡便に検 出できる方法が提供される。 本発明の方法では、 偽陽性が生じないので、 遺伝子 増幅法の条件をそれほど厳密にしなくても再現性良く結果が得られ、 機種の違い 等によって判定結果が異なることはなくなつた。 また、 本発明の方法によれば、 従来法では困難であったホモ接合とヘテロ接合の識別も可能になった。 差替え用紙 (規貝 ϋ26)

Claims

請求の範囲 核酸試料中に含まれる一塩基多型を検出する方法であって、 該方法が、
(a) 試料中に含まれる特定の一塩基多型部位を含む染色体又はその 断片に、 野生型用プライマー及び 1種又は 2種の変異型用プライマー を同時に又は別々に、 D N Aポリメラ一ゼと共に作用させる工程、
(b) 該プライマ一が伸長されたか否かによって、その核酸試料中に含 まれる塩基多型を検出する工程を含み、
該各プライマーの 3 ' 末端より 2番目の塩基が塩基多型部位の予想され る各ヌクレオチドに対応する、 検出方法。 核酸試料中に含まれる一塩基多型を検出する方法であって、 該方法が、
(a) 試料中に含まれる特定の一塩基多型部位を含む染色体又はその 断片に、 野生型用プライマー及び 1種又は 2種の変異型用プライマー を同時に又は別々に、 D N Aポリメラーゼと共に作用させる工程、
(b) 該プライマーが伸長されたか否かによって、 その核酸試料中に含 まれる塩基多型を検出する工程を含み、
該各プライマーの 3 ' 末端より 2番目の塩基が塩基多型部位の予想され る各ヌクレオチドに対応し、
該各プライマ一の 3 ' 末端の 3番目から 5 ' 末端までの少なくとも 1つ の塩基が、 染色体又はその断片中の該プライマーがハイプリダイズする鎖 の塩基と相補的でない塩基に置換されている、請求項 1に記載の検出方法。 該各プライマーの 3 ' 末端の 3番目の塩基が、 染色体又はその断片中の該 プライマーがハイプリダイズする鎖の塩基と相補的でない塩基に置換され ている請求項 2に記載の検出方法。 核酸試料中に含まれる一塩基多型を検出する方法であって、 該方法が、
(a) 試料中に含まれる特定の一塩基多型部位を含む染色体又はその 断片に、 野生型用プライマー及び 1種又は 2種の変異型用プライマー を同時に又は別々に、 DN Aポリメラーゼと共に作用させる工程、 (b) 該プライマーが伸長されたか否かによって、その核酸試料中に含 まれる塩基多型を検出する工程を含み、
該各プライマーの 3' 末端より 2番目の塩基が塩基多型部位の予想され る各ヌクレオチドに対応し、
該各プライマーの 3' 末端の 3番目から 5' 末端までの少なくとも 1つ の塩基が、 染色体又はその断片中の該プライマーがハイブリダィズする鎖 の塩基と相補的でない塩基に置換され、 且つ該相補的でない塩基は、 各プ ライマーにおいて異なる塩基とする、 請求項 1に記載の検出方法。 該各プライマーの 3' 末端の 3番目の塩基が、 染色体又はその断片中の該 プライマーがハイブリダィズする鎖の塩基と相補的でない塩基に置換され、 且つ該相補的でない塩基は、 各プライマーにおいて異なる塩基とする、 請 求項 4に記載の検出方法。
6. DN Aポリメラ一ゼが、 二本鎖 DN Aの 3' ェキソヌクレアーゼ活性を有 する請求項 1に記載の方法。 7. DNAポリメラーゼが、 ピロコッカス ·スピ一シーズ (Pyrococcus sp.)
K0D1 株もしくはハイパーサ一モフィ リック . ァ一力エバクテリゥム (Hyper t he rmophi 1 ic archaebacterium)由来である請求項 1に記載の方法。
8. (a)の工程の前に、試料中に含まれる特定の一塩基多型部位を含む染色体又 はその断片を増幅させる工程を含む、 請求項 1に記載の方法。 染色体又はその断片を増幅させる方法が、 PCR、 NASBA、 LCR、 SDA、 RCRおよび TMAからなる群から選ばれたいずれかの方法であ る請求項 8に記載の方法。
1 0 . 該各プライマーが伸長されたか否かを、 野生型用プライマ一及び変異型 用プライマーからなる群のすくなくとも 1種から伸長した産物の配列に特 異的な検出用プローブを用いてハイブリダィゼ一ションを行うことによつ て検出する、 請求項 1に記載の方法。
1 1 . 該各プライマーの少なくとも 1つまたは検出用プローブが、 予め標識さ れている請求項 1 0に記載の方法。 1 2 . 該各プライマーの少なくとも 1つまたは検出用プローブが、 酵素、 ピオ チン、 蛍光物質、 ハプテン、 抗原、 抗体、 放射性物質および発光団からな る群から選ばれる少なくとも 1種によって標識されている請求項 1 0に記 載の方法。 1 3 . (a)工程を単一の容器で行い、 該各プライマーが伸長されたか否かを、 野 生型用プライマー及び変異型用プライマ一からなる群のすくなくとも 1種 から伸長した産物の配列に特異的な検出用プローブを用いてハイブリダィ ゼ一シヨンを行うことによって検出する、 請求項 1に記載の方法。
4 . 核酸試料中に含まれる一塩基多型を検出する方法であって、 該方法が、
(a) 試料中に含まれる特定の一塩基多型部位を含む染色体又はその 断片に、 野生型用プライマー及び 1種又は 2種の変異型用プライマー を同時に又は別々に、 D N Aポリメラ一ゼと共に作用させる工程、
(b) 特定の一塩基多型部位を含む染色体又は断片が増幅されたか否 かによつて、 その核酸試料中に含まれる塩基多型を検出する工程を含 み、
該各プライマーの 3 ' 末端より 2番目の塩基が塩基多型部位の予想され る各ヌクレオチドに対応する、 検出方法。
1 5 . 核酸試料中に含まれる一塩基多型を検出する方法であって、 該方法が、
(a) 試料中に含まれる特定の一塩基多型部位を含む染色体又はその 断片に、 野生型用プライマー及び 1種又は 2種の変異型用プライマー を同時に又は別々に、 D N Aポリメラ一ゼと共に作用させる工程、
(b) 特定の一塩基多型部位を含む染色体又は断片が増幅されたか否 かによつて、 その核酸試料中に含まれる塩基多型を検出する工程を含 み、
該各プライマーの 3 ' 末端より 2番目の塩基が塩基多型部位の予想され る各ヌクレオチドに対応し、
該各プライマーの 3 ' 末端の 3番目から 5 ' 末端までの少なくとも 1つ の塩基が、 染色体又はその断片中の該プライマーがハイプリダイズする鎖 の塩基と相補的でない塩基に置換されている、 請求項 1 4に記載の検出方 法。 1 6 . 該各プライマーの 3 ' 末端の 3番目の塩基が、 染色体又はその断片中の 該プライマーがハイブリダィズする鎖の塩基と相補的でない塩基に置換さ れている請求項 1 5に記載の検出方法。
1 7 . 核酸試料中に含まれる一塩基多型を検出する方法であって、 該方法が、 (a) 試料中に含まれる特定の一塩基多型部位を含む染色体又はその 断片に、 野生型用プライマ一及び 1種又は 2種の変異型用プライマー を同時に又は別々に、 D N Aポリメラーゼと共に作用させる工程、 (b) 特定の一塩基多型部位を含む染色体又は断片が増幅されたか否 かによつて、 その核酸試料中に含まれる塩基多型を検出する工程を含 み、
該各プライマーの 3 ' 末端より 2番目の塩基が塩基多型部位の予想され る各ヌクレオチドに対応し、
該各プライマーの 3 ' 末端の 3番目から 5 ' 末端までの少なくとも 1つ の塩基が、 染色体又はその断片中の該プライマーがハイプリダイズする鎖 の塩基と相補的でない塩基に置換され、 且つ該相補的でない塩基は、 各プ ライマーにおいて異なる塩基とする、 請求項 14に記載の検出方法。
18. 該各プライマーの 3' 末端の 3番目の塩基が、 染色体又はその断片中の 該プライマーがハイブリダイズする鎖の塩基と相補的でない塩基に置換さ れ、且つ該相補的でない塩基は、各プライマーにおいて異なる塩基とする、 請求項 17に記載の検出方法。
19. DNAポリメラ一ゼがニ本鎖 DNAの 3 ' ェキソヌクレアーゼ活性を有 する請求項 14に記載の方法。
20. DNAポリメラーゼが、 ピロコッカス ·スピ一シーズ (Pyrococcus sp.) K0D1 株もしくはハイパーサーモフィリック ·ァ一力エバクテリゥム (Hyperthermophi 1 ic arc aebacter ium)由来である請求項 14に記載の方 法。
21. 染色体又はその断片を増幅させる方法が、 PCR、 NASBA、 LCR、 SDA、 RCRおよび TM Aからなる群から選ばれたいずれかの方法であ る請求項 14に記載の方法。
22. 特定の一塩基多型部位を含む染色体又は断片が増幅されたか否かを、 野 生型用プライマー及び 又は変異型用プライマーを用いた各増幅産物の配 列に特異的な検出用プロ一ブを用いてハイブリダイゼーシヨンを行うこと によって検出する、 請求項 14に記載の方法。
23. 該各プライマーの少なくとも 1つ又は検出用プローブが、 予め標識され ている請求項 22に記載の方法。
24. 該各プライマーの少なくとも 1つ又は検出用プローブが、 酵素、 ビォチ ン、 蛍光物質、 ハプテン、 抗原、 抗体、 放射性物質および発光団からなる 群から選ばれる少なくとも 1種によって標識されている請求項 22に記載 の方法。
25. (a)工程を単一の容器で行い、 特定の一塩基多型部位を含む染色体又は断 片が増幅されたか否かを、 野生型用プライマー及び Z又は変異型用プライ マーを用いた各増幅産物の配列に特異的な検出用プローブを用いて八イブ リダイゼ一シヨンを行うことによつて検出する、請求項 14に記載の方法。 26. 野生型用プライマー及び 1種又は 2種の変異型用プライマー、 DNAポ リメラ一ゼ及び 4種類のデォキシヌクレオシド三リン酸 (dNTP) を含 む一塩基多型検出用試薬キットであって、 該各プライマーの 3' 末端より 2番目の塩基が、 塩基多型部位の予想される各ヌクレオチドに対応するキ ッ卜。
27. 野生型用プライマー及び 1種又は 2種の変異型用プライマー、 DNAポ リメラーゼ及び 4種類のデォキシヌクレオシド三リン酸 (dNTP) を含 む一塩基多型検出用試薬キットであって、 該各プライマーの 3' 末端より 2番目の塩基力 塩基多型部位の予想される各ヌクレオチドに対応し、 該 各プライマーの 3' 末端の 3番目から 5' 末端までの少なくとも 1つの塩 基が、 染色体又はその断片中の該プライマーがハイブリダィズする鎖の塩 基と相補的でない塩基に置換されている、 請求項 26に記載のキット。
28. 該各プライマーの 3' 末端の 3番目の塩基が、 染色体又はその断片中の 該プライマーがハイブリダィズする鎖の塩基と相補的でない塩基に置換さ れている、 請求項 27に記載のキット。
29. 野生型用プライマー及び 1種又は 2種の変異型用プライマー、 DNAポ リメラーゼ及び 4種類のデォキシヌクレオシド三リン酸 (dNTP) を含 む一塩基多型検出用試薬キットであって、 該各プライマーの 3' 末端より 2番目の塩基が、 塩基多型部位の予想される各ヌクレオチドに対応し、 該 各プライマーの 3' 末端の 3番目から 5' 末端までの少なくとも 1つの塩 基が、 染色体又はその断片中の該プライマーがハイプリダイズする鎖の塩 基と相補的でない塩基に置換され、 且つ該相補的でない塩基は、 各プライ マーにおいて異なる塩基とした、 請求項 26に記載のキット。
30. 該各プライマーの 3' 末端の 3番目の塩基が、 染色体又はその断片中の 該プライマーがハイブリダィズする鎖の塩基と相補的でない塩基に置換さ れて、 且つ該相補的でない塩基は、 各プライマーにおいて異なる塩基とし た、 請求項 29に記載のキット。
31. 野生型用プライマー及び 1種又は 2種の変異型用プライマー、 DNAポ リメラーゼ、 4種類のデォキシヌクレオシド三リン酸 (dNTP) 及び検 出用プローブを含む一塩基多型検出用試薬キットであって、 該各プライマ 一の 3' 末端より 2番目の塩基が、 塩基多型部位の予想される各ヌクレオ チドに対応するキット。
32. 野生型用プライマー及び 1種又は 2種の変異型用プライマー、 DNAポ リメラーゼ、 4種類のデォキシヌクレオシド三リン酸 (dNTP) 及び検 出用プローブを含む一塩基多型検出用試薬キッ卜であって、 該各プライマ 一の 3' 末端より 2番目の塩基が、 塩基多型部位の予想される各ヌクレオ チドに対応し、 該各プライマーの 3' 末端の 3番目から 5' 末端までの少 なくとも 1つの塩基が、 染色体又はその断片中の該プライマーがハイプリ ダイズする鎖の塩基と相補的でない塩基に置換されている、 請求項 31に 記載のキット。
33. 該各プライマーの 3' 末端の 3番目の塩基が、 染色体又はその断片中の 該プライマーがハイブリダィズする鎖の塩基と相補的でない塩基に置換さ れている、 請求項 32に記載のキット。
34. 野生型用プライマー及び 1種又は 2種の変異型用プライマー、 DNAポ リメラーゼ、 4種類のデォキシヌクレオシド三リン酸 (dNTP) 及び検 出用プローブを含む一塩基多型検出用試薬キッ卜であって、 該各プライマ 一の 3' 末端より 2番目の塩基が、 塩基多型部位の予想される各ヌクレオ チドに対応し、 該各プライマ一の 3' 末端の 3番目から 5' 末端までの少 なくとも 1つの塩基が、 染色体又はその断片中の該プライマーがハイプリ ダイズする鎖の塩基と相補的でない塩基に置換され、 且つ該相補的でない 塩基は、 各プライマーにおいて異なる塩基とした、 請求項 31に記載のキ ッ卜。
35. 該各プライマーの 3' 末端の 3番目の塩基が、 染色体又はその断片中の 該プライマーがハイブリダィズする鎖の塩基と相補的でない塩基に置換さ れて、 且つ該相補的でない塩基は、 各プライマーにおいて異なる塩基とし た、 請求項 34に記載のキット。
PCT/JP2000/008657 1999-12-10 2000-12-07 Procede de detection de polymorphisme nucleotidique WO2001042498A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001544370A JP3937136B2 (ja) 1999-12-10 2000-12-07 塩基多型の検出方法
EP00979970A EP1241266A4 (en) 1999-12-10 2000-12-07 METHOD FOR DETECTING NUCLEIC ACID POLYMORPHISMS

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP11/351837 1999-12-10
JP35183799 1999-12-10
JP2000/208794 2000-07-10
JP2000208794 2000-07-10

Publications (1)

Publication Number Publication Date
WO2001042498A1 true WO2001042498A1 (fr) 2001-06-14

Family

ID=26579490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/008657 WO2001042498A1 (fr) 1999-12-10 2000-12-07 Procede de detection de polymorphisme nucleotidique

Country Status (3)

Country Link
EP (1) EP1241266A4 (ja)
JP (1) JP3937136B2 (ja)
WO (1) WO2001042498A1 (ja)

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002046393A1 (fr) * 2000-12-07 2002-06-13 Toyo Boseki Kabushiki Kaisha Procede d'identification de polymorphisme nucleotidique
JP2004113035A (ja) * 2002-09-24 2004-04-15 Toyobo Gene Analysis:Kk 遺伝子多型解析を用いたIgA腎症診断およびIgA腎症診断用キット
JPWO2002064833A1 (ja) * 2001-02-15 2004-06-17 タカラバイオ株式会社 塩基置換の検出方法
WO2005075638A1 (ja) * 2004-02-03 2005-08-18 National Institute For Materials Science 遺伝子検出電界効果デバイスおよびこれを用いた遺伝子多型解析方法
JP2005287499A (ja) * 2004-03-08 2005-10-20 Toyobo Co Ltd 塩基多型の同定方法
WO2006082685A1 (ja) * 2005-02-01 2006-08-10 Kyoto University 一塩基多型の検出方法
JP2006271290A (ja) * 2005-03-30 2006-10-12 Toyobo Co Ltd 新規オリゴヌクレオチドプライマー及びそれを用いた点突然変異の検出方法
JP2007006863A (ja) * 2005-07-04 2007-01-18 Toyobo Co Ltd チトクロームp4502c9遺伝多型の検出方法
WO2007020708A1 (ja) * 2005-08-19 2007-02-22 Matsushita Electric Industrial Co., Ltd. Dnaが有する標的塩基を判別する方法およびそれに用いられるアレル特異性プライマー
WO2007105673A1 (ja) 2006-03-13 2007-09-20 Wako Pure Chemical Industries, Ltd. 変異遺伝子の検出方法
US7285387B2 (en) 2005-10-07 2007-10-23 Matsushita Electric Industrial Co., Ltd. Discrimination method of target base in DNA, and allele specific primer used in the method of the same
US7309574B2 (en) 2005-08-15 2007-12-18 Matsushita Electric Industrial Co., Ltd. Discrimination method of target base in DNA, and allele specific primer used in the method of the same
US7320866B2 (en) 2006-06-05 2008-01-22 Matsushita Electric Industrial Co., Ltd. Discrimination method of target base in DNA, and allele specific primer used in the method of the same
WO2008026582A1 (en) 2006-09-01 2008-03-06 Osaka University Dna fragment used in the form attached to 5'-terminus of primer for use in amplification reaction of nucleic acid, and use thereof
US7348150B1 (en) 2006-06-05 2008-03-25 Matsushita Electric Industrial Co., Ltd. Discrimination method of target base in DNA, and allele specific primer used in the method of the same
US7351539B2 (en) 2006-06-05 2008-04-01 Matsushita Electric Industrial Co., Ltd. Discrimination method of target base in DNA, and allele specific primer used in the method of the same
US7396648B2 (en) 2006-06-05 2008-07-08 Matsushita Electric Industrial Co., Ltd. Discrimination method of target base in DNA, and allele specific primer used in the method of the same
WO2009098998A1 (ja) * 2008-02-05 2009-08-13 Olympus Corporation 核酸検出方法及び核酸検出用キット
JP2010279264A (ja) * 2009-06-03 2010-12-16 Tottori Univ Egfr遺伝子変異検出プライマーセット、それを含むegfr遺伝子変異検出キット、およびそれを用いてegfr遺伝子変異検出を行うための核酸増幅装置
US7888013B2 (en) * 2004-08-27 2011-02-15 National Institute For Materials Science Method of analyzing DNA sequence using field-effect device, and base sequence analyzer
WO2011118603A1 (ja) * 2010-03-24 2011-09-29 凸版印刷株式会社 競合プライマーによる標的塩基配列の検出方法
JP2013513360A (ja) * 2009-12-11 2013-04-22 エフ.ホフマン−ラ ロシュ アーゲー 核酸の対立遺伝子特異的増幅
WO2013133402A1 (ja) * 2012-03-08 2013-09-12 株式会社古河電工アドバンストエンジニアリング 核酸中の一塩基多型の検出方法
US8858782B2 (en) 2010-06-30 2014-10-14 Life Technologies Corporation Ion-sensing charge-accumulation circuits and methods
US8936763B2 (en) 2008-10-22 2015-01-20 Life Technologies Corporation Integrated sensor arrays for biological and chemical analysis
US8994076B2 (en) 2009-05-29 2015-03-31 Life Technologies Corporation Chemically-sensitive field effect transistor based pixel array with protection diodes
US9039888B2 (en) 2006-12-14 2015-05-26 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US9080968B2 (en) 2013-01-04 2015-07-14 Life Technologies Corporation Methods and systems for point of use removal of sacrificial material
US9109251B2 (en) 2004-06-25 2015-08-18 University Of Hawaii Ultrasensitive biosensors
US9110015B2 (en) 2010-09-24 2015-08-18 Life Technologies Corporation Method and system for delta double sampling
US9270264B2 (en) 2012-05-29 2016-02-23 Life Technologies Corporation System for reducing noise in a chemical sensor array
JP2016533708A (ja) * 2013-10-09 2016-11-04 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft ヒトezh2遺伝子中の変異を検出するための方法及び組成物
US9618475B2 (en) 2010-09-15 2017-04-11 Life Technologies Corporation Methods and apparatus for measuring analytes
US9671363B2 (en) 2013-03-15 2017-06-06 Life Technologies Corporation Chemical sensor with consistent sensor surface areas
WO2017170644A1 (ja) * 2016-03-31 2017-10-05 積水メディカル株式会社 遺伝子変異検出法
WO2017191720A1 (ja) 2016-05-06 2017-11-09 公立大学法人名古屋市立大学 C型肝炎ウイルス排除後の肝細胞癌発症の予測
US9823217B2 (en) 2013-03-15 2017-11-21 Life Technologies Corporation Chemical device with thin conductive element
US9835585B2 (en) 2013-03-15 2017-12-05 Life Technologies Corporation Chemical sensor with protruded sensor surface
US9841398B2 (en) 2013-01-08 2017-12-12 Life Technologies Corporation Methods for manufacturing well structures for low-noise chemical sensors
US9927393B2 (en) 2009-05-29 2018-03-27 Life Technologies Corporation Methods and apparatus for measuring analytes
US9951382B2 (en) 2006-12-14 2018-04-24 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US9960253B2 (en) 2010-07-03 2018-05-01 Life Technologies Corporation Chemically sensitive sensor with lightly doped drains
US9970984B2 (en) 2011-12-01 2018-05-15 Life Technologies Corporation Method and apparatus for identifying defects in a chemical sensor array
US9989489B2 (en) 2006-12-14 2018-06-05 Life Technnologies Corporation Methods for calibrating an array of chemically-sensitive sensors
US9995708B2 (en) 2013-03-13 2018-06-12 Life Technologies Corporation Chemical sensor with sidewall spacer sensor surface
US10077472B2 (en) 2014-12-18 2018-09-18 Life Technologies Corporation High data rate integrated circuit with power management
US10379079B2 (en) 2014-12-18 2019-08-13 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
JP2019170322A (ja) * 2018-03-29 2019-10-10 国立大学法人東北大学 塩基多型の検出方法
US10451585B2 (en) 2009-05-29 2019-10-22 Life Technologies Corporation Methods and apparatus for measuring analytes
US10458942B2 (en) 2013-06-10 2019-10-29 Life Technologies Corporation Chemical sensor array having multiple sensors per well
JP2020503838A (ja) * 2017-11-16 2020-02-06 ゼノプランコリア インコーポレーテッドGenoplan Korea Inc. 核酸の対立形質特異的プライマー及びそれを用いた遺伝子型判別方法
US10605767B2 (en) 2014-12-18 2020-03-31 Life Technologies Corporation High data rate integrated circuit with transmitter configuration
US10641729B2 (en) 2010-06-30 2020-05-05 Life Technologies Corporation Column ADC
US10655175B2 (en) 2013-05-09 2020-05-19 Life Technologies Corporation Windowed sequencing
US11307166B2 (en) 2010-07-01 2022-04-19 Life Technologies Corporation Column ADC
US11339430B2 (en) 2007-07-10 2022-05-24 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006129811A (ja) * 2004-11-08 2006-05-25 Hitachi Ltd 試料核酸の分析方法、分析装置および分析キット
US20210079456A1 (en) 2017-07-26 2021-03-18 Sekisui Medical Co., Ltd. Method for detecting mutant gene

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KAZUNORI OKANO ET AL.: "Characteristics of selective polymerase chain reaction (PCR) using two-base anchored primers and improvement of its specificity", ELECTROPHORESIS, vol. 19, no. 18, 1998, pages 3071 - 3078, XP002937398 *
KEZYSZTOF LEWANDOWSKI ET AL.: "An alternative method for identifying the factor V gene Leiden mutation", THROMBOSIS RESEARCH, vol. 85, no. 2, 1997, pages 105 - 113, XP002937399 *
MARIA SASVARI-SZEKELY ET AL.: "Rapid genotyping of factor V Leiden mutation using single-tube bidirectional aiiele-specific amplication and automated ultrathin-layer agarose gel electrophoresis", ELECTROPHORESIS, vol. 21, no. 4, March 2000 (2000-03-01), pages 816 - 821, XP002937400 *
See also references of EP1241266A4 *

Cited By (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002046393A1 (fr) * 2000-12-07 2002-06-13 Toyo Boseki Kabushiki Kaisha Procede d'identification de polymorphisme nucleotidique
JPWO2002064833A1 (ja) * 2001-02-15 2004-06-17 タカラバイオ株式会社 塩基置換の検出方法
US7135291B2 (en) 2001-02-15 2006-11-14 Takara Bio Inc. Method of detecting nucleotide polymorphism
JP2004113035A (ja) * 2002-09-24 2004-04-15 Toyobo Gene Analysis:Kk 遺伝子多型解析を用いたIgA腎症診断およびIgA腎症診断用キット
JP4502570B2 (ja) * 2002-09-24 2010-07-14 株式会社東洋紡ジーンアナリシス 遺伝子多型解析を用いたIgA腎症診断およびIgA腎症診断用キット
WO2005075638A1 (ja) * 2004-02-03 2005-08-18 National Institute For Materials Science 遺伝子検出電界効果デバイスおよびこれを用いた遺伝子多型解析方法
US7695907B2 (en) 2004-02-03 2010-04-13 National Institute For Materials Science Gene detection field-effect device and method of analyzing gene polymorphism therewith
JP4706223B2 (ja) * 2004-03-08 2011-06-22 東洋紡績株式会社 塩基多型の同定方法
JP2005287499A (ja) * 2004-03-08 2005-10-20 Toyobo Co Ltd 塩基多型の同定方法
US10563252B2 (en) 2004-06-25 2020-02-18 University Of Hawaii Ultrasensitive biosensors
US9109251B2 (en) 2004-06-25 2015-08-18 University Of Hawaii Ultrasensitive biosensors
US7888013B2 (en) * 2004-08-27 2011-02-15 National Institute For Materials Science Method of analyzing DNA sequence using field-effect device, and base sequence analyzer
JP4752071B2 (ja) * 2005-02-01 2011-08-17 国立大学法人京都大学 一塩基多型の検出方法
JPWO2006082685A1 (ja) * 2005-02-01 2008-06-26 国立大学法人京都大学 一塩基多型の検出方法
WO2006082685A1 (ja) * 2005-02-01 2006-08-10 Kyoto University 一塩基多型の検出方法
JP2006271290A (ja) * 2005-03-30 2006-10-12 Toyobo Co Ltd 新規オリゴヌクレオチドプライマー及びそれを用いた点突然変異の検出方法
JP2007006863A (ja) * 2005-07-04 2007-01-18 Toyobo Co Ltd チトクロームp4502c9遺伝多型の検出方法
US7309574B2 (en) 2005-08-15 2007-12-18 Matsushita Electric Industrial Co., Ltd. Discrimination method of target base in DNA, and allele specific primer used in the method of the same
US7297496B2 (en) 2005-08-19 2007-11-20 Matsushita Electric Industrial Co., Ltd. Discrimination method of target base in DNA, and allele specific primer used in the method of the same
WO2007020708A1 (ja) * 2005-08-19 2007-02-22 Matsushita Electric Industrial Co., Ltd. Dnaが有する標的塩基を判別する方法およびそれに用いられるアレル特異性プライマー
US7285387B2 (en) 2005-10-07 2007-10-23 Matsushita Electric Industrial Co., Ltd. Discrimination method of target base in DNA, and allele specific primer used in the method of the same
JP5239853B2 (ja) * 2006-03-13 2013-07-17 和光純薬工業株式会社 変異遺伝子の検出方法
WO2007105673A1 (ja) 2006-03-13 2007-09-20 Wako Pure Chemical Industries, Ltd. 変異遺伝子の検出方法
US7351539B2 (en) 2006-06-05 2008-04-01 Matsushita Electric Industrial Co., Ltd. Discrimination method of target base in DNA, and allele specific primer used in the method of the same
US7348150B1 (en) 2006-06-05 2008-03-25 Matsushita Electric Industrial Co., Ltd. Discrimination method of target base in DNA, and allele specific primer used in the method of the same
US7320866B2 (en) 2006-06-05 2008-01-22 Matsushita Electric Industrial Co., Ltd. Discrimination method of target base in DNA, and allele specific primer used in the method of the same
US7396648B2 (en) 2006-06-05 2008-07-08 Matsushita Electric Industrial Co., Ltd. Discrimination method of target base in DNA, and allele specific primer used in the method of the same
WO2008026582A1 (en) 2006-09-01 2008-03-06 Osaka University Dna fragment used in the form attached to 5'-terminus of primer for use in amplification reaction of nucleic acid, and use thereof
US10502708B2 (en) 2006-12-14 2019-12-10 Life Technologies Corporation Chemically-sensitive sensor array calibration circuitry
US10203300B2 (en) 2006-12-14 2019-02-12 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US9404920B2 (en) 2006-12-14 2016-08-02 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US10633699B2 (en) 2006-12-14 2020-04-28 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US10415079B2 (en) 2006-12-14 2019-09-17 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US9951382B2 (en) 2006-12-14 2018-04-24 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US9989489B2 (en) 2006-12-14 2018-06-05 Life Technnologies Corporation Methods for calibrating an array of chemically-sensitive sensors
US9039888B2 (en) 2006-12-14 2015-05-26 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US11339430B2 (en) 2007-07-10 2022-05-24 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
JP5530185B2 (ja) * 2008-02-05 2014-06-25 オリンパス株式会社 核酸検出方法及び核酸検出用キット
US8530165B2 (en) 2008-02-05 2013-09-10 Olympus Corporation Nucleic acid detection method for determining if one or more analyte nucleotides are present in a nucleic acid
WO2009098998A1 (ja) * 2008-02-05 2009-08-13 Olympus Corporation 核酸検出方法及び核酸検出用キット
US8936763B2 (en) 2008-10-22 2015-01-20 Life Technologies Corporation Integrated sensor arrays for biological and chemical analysis
US9964515B2 (en) 2008-10-22 2018-05-08 Life Technologies Corporation Integrated sensor arrays for biological and chemical analysis
US8994076B2 (en) 2009-05-29 2015-03-31 Life Technologies Corporation Chemically-sensitive field effect transistor based pixel array with protection diodes
US10809226B2 (en) 2009-05-29 2020-10-20 Life Technologies Corporation Methods and apparatus for measuring analytes
US9927393B2 (en) 2009-05-29 2018-03-27 Life Technologies Corporation Methods and apparatus for measuring analytes
US10451585B2 (en) 2009-05-29 2019-10-22 Life Technologies Corporation Methods and apparatus for measuring analytes
US11768171B2 (en) 2009-05-29 2023-09-26 Life Technologies Corporation Methods and apparatus for measuring analytes
JP2010279264A (ja) * 2009-06-03 2010-12-16 Tottori Univ Egfr遺伝子変異検出プライマーセット、それを含むegfr遺伝子変異検出キット、およびそれを用いてegfr遺伝子変異検出を行うための核酸増幅装置
JP2013513360A (ja) * 2009-12-11 2013-04-22 エフ.ホフマン−ラ ロシュ アーゲー 核酸の対立遺伝子特異的増幅
JP2016013137A (ja) * 2009-12-11 2016-01-28 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 核酸の対立遺伝子特異的増幅
JP5842811B2 (ja) * 2010-03-24 2016-01-13 凸版印刷株式会社 競合プライマーによる標的塩基配列の検出方法
WO2011118603A1 (ja) * 2010-03-24 2011-09-29 凸版印刷株式会社 競合プライマーによる標的塩基配列の検出方法
US10481123B2 (en) 2010-06-30 2019-11-19 Life Technologies Corporation Ion-sensing charge-accumulation circuits and methods
US10641729B2 (en) 2010-06-30 2020-05-05 Life Technologies Corporation Column ADC
US8858782B2 (en) 2010-06-30 2014-10-14 Life Technologies Corporation Ion-sensing charge-accumulation circuits and methods
US11307166B2 (en) 2010-07-01 2022-04-19 Life Technologies Corporation Column ADC
US9960253B2 (en) 2010-07-03 2018-05-01 Life Technologies Corporation Chemically sensitive sensor with lightly doped drains
US9618475B2 (en) 2010-09-15 2017-04-11 Life Technologies Corporation Methods and apparatus for measuring analytes
US9958414B2 (en) 2010-09-15 2018-05-01 Life Technologies Corporation Apparatus for measuring analytes including chemical sensor array
US9958415B2 (en) 2010-09-15 2018-05-01 Life Technologies Corporation ChemFET sensor including floating gate
US9110015B2 (en) 2010-09-24 2015-08-18 Life Technologies Corporation Method and system for delta double sampling
US10598723B2 (en) 2011-12-01 2020-03-24 Life Technologies Corporation Method and apparatus for identifying defects in a chemical sensor array
US10365321B2 (en) 2011-12-01 2019-07-30 Life Technologies Corporation Method and apparatus for identifying defects in a chemical sensor array
US9970984B2 (en) 2011-12-01 2018-05-15 Life Technologies Corporation Method and apparatus for identifying defects in a chemical sensor array
JP5401634B1 (ja) * 2012-03-08 2014-01-29 株式会社古河電工アドバンストエンジニアリング 核酸中の一塩基多型の検出方法
US9057105B2 (en) 2012-03-08 2015-06-16 Furukawa Electric Advanced Engineering Co., Ltd. Method for detecting single nucleotide polymorphism in nucleic acid
WO2013133402A1 (ja) * 2012-03-08 2013-09-12 株式会社古河電工アドバンストエンジニアリング 核酸中の一塩基多型の検出方法
US9985624B2 (en) 2012-05-29 2018-05-29 Life Technologies Corporation System for reducing noise in a chemical sensor array
US10404249B2 (en) 2012-05-29 2019-09-03 Life Technologies Corporation System for reducing noise in a chemical sensor array
US9270264B2 (en) 2012-05-29 2016-02-23 Life Technologies Corporation System for reducing noise in a chemical sensor array
US9852919B2 (en) 2013-01-04 2017-12-26 Life Technologies Corporation Methods and systems for point of use removal of sacrificial material
US9080968B2 (en) 2013-01-04 2015-07-14 Life Technologies Corporation Methods and systems for point of use removal of sacrificial material
US9841398B2 (en) 2013-01-08 2017-12-12 Life Technologies Corporation Methods for manufacturing well structures for low-noise chemical sensors
US10436742B2 (en) 2013-01-08 2019-10-08 Life Technologies Corporation Methods for manufacturing well structures for low-noise chemical sensors
US9995708B2 (en) 2013-03-13 2018-06-12 Life Technologies Corporation Chemical sensor with sidewall spacer sensor surface
US9835585B2 (en) 2013-03-15 2017-12-05 Life Technologies Corporation Chemical sensor with protruded sensor surface
US9671363B2 (en) 2013-03-15 2017-06-06 Life Technologies Corporation Chemical sensor with consistent sensor surface areas
US9823217B2 (en) 2013-03-15 2017-11-21 Life Technologies Corporation Chemical device with thin conductive element
US10422767B2 (en) 2013-03-15 2019-09-24 Life Technologies Corporation Chemical sensor with consistent sensor surface areas
US11028438B2 (en) 2013-05-09 2021-06-08 Life Technologies Corporation Windowed sequencing
US10655175B2 (en) 2013-05-09 2020-05-19 Life Technologies Corporation Windowed sequencing
US10458942B2 (en) 2013-06-10 2019-10-29 Life Technologies Corporation Chemical sensor array having multiple sensors per well
US10260102B2 (en) 2013-10-09 2019-04-16 Roche Molecular Systems, Inc. Methods and compositions for detecting mutation in the human EZH2 gene
JP2016533708A (ja) * 2013-10-09 2016-11-04 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft ヒトezh2遺伝子中の変異を検出するための方法及び組成物
US10605767B2 (en) 2014-12-18 2020-03-31 Life Technologies Corporation High data rate integrated circuit with transmitter configuration
US10379079B2 (en) 2014-12-18 2019-08-13 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US10077472B2 (en) 2014-12-18 2018-09-18 Life Technologies Corporation High data rate integrated circuit with power management
US11536688B2 (en) 2014-12-18 2022-12-27 Life Technologies Corporation High data rate integrated circuit with transmitter configuration
WO2017170644A1 (ja) * 2016-03-31 2017-10-05 積水メディカル株式会社 遺伝子変異検出法
US11702688B2 (en) 2016-03-31 2023-07-18 Sekisui Medical Co., Ltd. Method for detecting gene mutation
JPWO2017170644A1 (ja) * 2016-03-31 2018-04-05 積水メディカル株式会社 遺伝子変異検出法
WO2017191720A1 (ja) 2016-05-06 2017-11-09 公立大学法人名古屋市立大学 C型肝炎ウイルス排除後の肝細胞癌発症の予測
JP2020503838A (ja) * 2017-11-16 2020-02-06 ゼノプランコリア インコーポレーテッドGenoplan Korea Inc. 核酸の対立形質特異的プライマー及びそれを用いた遺伝子型判別方法
JP2019170322A (ja) * 2018-03-29 2019-10-10 国立大学法人東北大学 塩基多型の検出方法

Also Published As

Publication number Publication date
EP1241266A4 (en) 2004-11-17
JP3937136B2 (ja) 2007-06-27
EP1241266A1 (en) 2002-09-18

Similar Documents

Publication Publication Date Title
WO2001042498A1 (fr) Procede de detection de polymorphisme nucleotidique
US20030148301A1 (en) Method of detecting nucleotide polymorphism
JP3421036B2 (ja) Dna配列の解析のための化学的方法
WO2004042057A1 (ja) 遺伝子変異検出法
US7919611B2 (en) Nucleotide primer set and nucleotide probe for detecting genotype of N-acetyltransferase-2 (NAT2)
JP4228041B2 (ja) 塩基多型の検出方法
EP1300473B1 (en) Method of detecting nucleotide polymorphism
WO2002046393A1 (fr) Procede d'identification de polymorphisme nucleotidique
JP4491276B2 (ja) 標的dna配列において一塩基変異多型の存在を検出する方法及びキット
WO2001048244A2 (en) Detection of single nucleotide polymorphisms
WO2006064745A1 (ja) 塩基多型の同定方法
JP2005245272A (ja) アルコール脱水素酵素遺伝子多型の簡易検出方法および検出用試薬
EP4155418A1 (en) Single nucleic acid for real-time detection for snp analysis of apoe gene and detection method using the same
JP4706223B2 (ja) 塩基多型の同定方法
JP2005245273A (ja) アルデヒド脱水素酵素遺伝子多型の簡易検出方法および検出用試薬
JP2002034598A (ja) 塩基多型を検出する方法
JP4310675B2 (ja) 塩基多型の同定方法
JP5017947B2 (ja) 複数の塩基多型の同定方法
CN115873926A (zh) 用于分析ApoE基因的SNP的实时检测用单核酸及利用其的检测方法
JP2001095574A (ja) 塩基多型を検出する方法
JP2002209584A (ja) 塩基多型を検出する方法
JP2002209583A (ja) 多型頻度を解析する方法
JP2005027519A (ja) ヒトチトクロームp4502a6遺伝子多型の簡易検出方法および検出用試薬
JP2002034599A (ja) 1塩基多型を検出する方法
Broeckel et al. Single-Nucleotide Polymorphisms: Testing DNA Variation for Disease Association

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 544370

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2000979970

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000979970

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10149262

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2000979970

Country of ref document: EP