WO2004042057A1 - 遺伝子変異検出法 - Google Patents

遺伝子変異検出法 Download PDF

Info

Publication number
WO2004042057A1
WO2004042057A1 PCT/JP2003/014204 JP0314204W WO2004042057A1 WO 2004042057 A1 WO2004042057 A1 WO 2004042057A1 JP 0314204 W JP0314204 W JP 0314204W WO 2004042057 A1 WO2004042057 A1 WO 2004042057A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
labeled
probe
hybridization
mutation
Prior art date
Application number
PCT/JP2003/014204
Other languages
English (en)
French (fr)
Inventor
Yoichi Matsubara
Shigeo Kure
Original Assignee
Daiichi Pure Chemicals Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Pure Chemicals Co., Ltd. filed Critical Daiichi Pure Chemicals Co., Ltd.
Priority to CA2506654A priority Critical patent/CA2506654C/en
Priority to DE60321961T priority patent/DE60321961D1/de
Priority to AU2003277612A priority patent/AU2003277612A1/en
Priority to JP2004549640A priority patent/JP4425142B2/ja
Priority to EP03810655A priority patent/EP1580269B1/en
Priority to US10/533,750 priority patent/US20060127907A1/en
Publication of WO2004042057A1 publication Critical patent/WO2004042057A1/ja
Priority to NO20052692A priority patent/NO338640B1/no
Priority to US12/119,141 priority patent/US9677127B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5308Immunoassay; Biospecific binding assay; Materials therefor for analytes not provided for elsewhere, e.g. nucleic acids, uric acid, worms, mites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances

Definitions

  • the present invention relates to a method for detecting a base sequence, and more particularly to a method for detecting a mutation in a gene by detecting a base sequence including a base sequence including a mutation site such as a point mutation.
  • the TaqMan method, invader assay, DNA microarray (DNA chip), and TOF-MASS method using a mass spectrometer which were recently developed to respond to human genome
  • the SSCP, chemical cleavage, and DHPLC methods which are widely used as screening methods for gene mutations, are effective for rough screening of unknown gene mutations, but they are well-known. Is not suitable for reliable detection of
  • point mutation detection using the sequence method is complicated and expensive, and the detection of known mutations is inevitably overspec.
  • all of the above methods are special tests performed in genetic analysis laboratories, and it is extremely difficult to perform them quickly at the clinical site (beadside).
  • An object of the present invention is to provide a simple and quick method for detecting a gene mutation.
  • the present inventors have found that, when specific primers and probes are used under specific conditions, nucleic acid amplification and hybridization can be performed in a single reaction system, and furthermore, the nucleic acid formed by hybridization can be used. We have found that hybrids can be easily detected, and based on this finding, have completed the present invention.
  • the present invention provides the following.
  • a method for detecting a base sequence comprising the steps of: hybridizing a hybridization probe; and detecting a hybrid formed by hybridization.
  • At least one of the primers used for amplifying the DNA is labeled with a first labeling substance so that the amplified DNA is labeled with the first labeling substance, and the hybridization protocol is used for the amplification. Labeled with the labeling substance of No. 2 and contained in the reaction solution where DNA amplification is performed. The base sequence of the hybridization probe is set so as not to inhibit the amplification of DNA.
  • the above method, wherein the detection of is performed by affinity chromatography utilizing the first labeling substance and the second labeling substance.
  • reaction solution in which the mutation site is a point mutation and the DNA is amplified is used to enhance the specificity of the hybridization between the amplified DNA and the labeled hybridization probe.
  • the method according to (1) further comprising an unlabeled oligonucleotide having a sufficient amount of a base sequence which differs from the base sequence of the labeled hybridization probe by one base at the position of the point mutation.
  • a primer for amplifying DNA containing a nucleotide sequence to be detected including a mutation site using DNA polymerase, and a hybridization probe having a nucleotide sequence complementary to the nucleotide sequence to be detected.
  • a test piece for affinity chromatography
  • At least one of the primers used for amplifying the DNA is labeled with a first labeling substance so that the amplified DNA is labeled with the first labeling substance, and the hybridization probe is labeled with the second labeling substance.
  • the base sequence of the hybridization probe is set so as not to inhibit the amplification of the DNA, and the test piece is composed of the DNA amplified using the first labeling substance and the DNA amplified using the second labeling substance.
  • the mutation site is a point mutation, and further comprises an unlabeled oligonucleotide having a base sequence that differs from the base sequence of the labeled hybridization probe by one base at the position of the point mutation, and Kitt.
  • FIG. 1 is an explanatory diagram of the principle of the detection method of the present invention (when normal DNA is used as a sample).
  • FIG. 2 is an explanatory diagram of the principle of the detection method of the present invention (when a mutant DNA is used as a sample).
  • FIG. 3 is an explanatory diagram of an operation of an example of the detection method of the present invention.
  • FIG. 4 shows the detection results (photographs of chromatograms) when a 17-mer hybridization probe was used.
  • FIG. 5 shows the detection results (photographs of chromatograms) when a competitive probe was added using a 17-mer hybridization probe.
  • FIG. 6 shows the detection results (photographs of the chromatograms) when the hybridization probes of various lengths were used and the competitive probe was added.
  • FIG. 7 shows the detection results (photograph of chromatogram) when a competitive probe was added using a 12-mer hybridization probe.
  • FIG. 8 shows detection results (photographs of chromatograms) of various mutations.
  • FIG. 9 shows detection results (photographs of chromatograms) of various mutations.
  • the detection method of the present invention comprises the steps of: amplifying a DNA containing a nucleotide sequence to be detected including a mutation site using a DNA polymerase; amplifying the DNA and a nucleotide sequence complementary to the nucleotide sequence to be detected.
  • At least one of the primers used to amplify the DNA The probe is labeled with the first labeling substance so as to be labeled with the first labeling substance, and the hybridization probe is labeled with the second labeling substance and included in the reaction solution in which the DNA amplification is performed.
  • the base sequence of the hybridization probe is set so as not to inhibit the amplification of DNA, and the detection of the hybrid is performed using the first labeling substance and the second labeling substance. (I) characterized in that it is performed by chromatography. The following describes each process.
  • the DNA amplification is not particularly limited as long as it is performed using DNA polymerase, and an amplification method including a step of synthesizing DNA using DNA polymerase can be used.
  • Examples of the method for amplifying DNA include the PCR method, TMA method, NASBA method, LAMP method and the like.
  • a primer When DNA is synthesized by DNA polymerase, a primer is required. Primers are set by a known method depending on the method of amplification and the nucleotide sequence to be detected. In the present invention, at least one of the primers used for the amplification of DNA is labeled with the first labeling substance such that the amplified DNA is labeled with the first labeling substance.
  • a primer pair is used. By labeling at least one of them, the amplified DNA is labeled.
  • the primer working in the DNA synthesis step is labeled
  • the amplified DNA is labeled by labeling at least one inner primer. It was done.
  • the labeling of the primer is performed so as not to inhibit the synthesis reaction of DNA. Such labeling can be performed according to a known method, and usually shows the 5 'end of the primer.
  • the labeling substance to be used for labeling may be any substance as long as it has a substance that binds biospecifically thereto.
  • Combinations of such a labeling substance and a substance that binds biospecifically thereto include an antigen and an antibody, an enzyme and an inhibitor, a sugar chain and a lectin, a hormone and a receptor, a metal binding protein and a metal element. .
  • PCR method is described in Molecular Cloning: A Laboratory Manual (3rd ed.), Volume 2, Chapter 8, pp. 8.1-8.126, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2001. Methods and Applications, 1, 25-33 (1991), and for the LAMP method, reference can be made to Nucleic Acids Research, Vol. 28, No. 12, pp. I-vii (2000).
  • a type II specimen DNA can be prepared from a test sample by an ordinary method.
  • the sequence to be detected is appropriately selected according to the amplification method so that the sequence to be detected including the mutation site is specifically amplified.
  • the mutation site included in the sequence to be detected is usually a site known as a gene mutation or a gene polymorphism.
  • the mutation site may be a point mutation or a mutation such as insertion or deletion.
  • Gene mutations and gene polymorphisms to be detected by the detection method of the present invention include g727t mutation and medium-chain acyl COA dehydration frequently observed in Japanese patients with glycogenosis la type.
  • A985g mutation (Lys329Glu mutation) frequently found in Caucasian patients with enzyme deficiency
  • gl691t mutation (Ser564Ile mutation) of GLDC gene frequently found in Finnish patients with hyperglycinemia
  • drug metabolizing enzyme gene CYP2C19 Gene polymorphism CYP2 C19 * 2, g681a
  • aldehyde dehydrogenase 2 gene polymorphism (E487K), which determines individual differences in alcohol metabolism, cystic fibrosis transmembrane regulatory protein gene deltaF508 deletion mutation, T 1277insTATC insertion mutation of HEXA gene in Zach's disease, 5382insC insertion mutation of BRCA1 gene of breast cancer, 6174delT deletion mutation of BRCA
  • Glycogenosis type la is caused by abnormalities of glucose-6-phosphatase in the glycogen metabolic pathway, and is mainly an inborn abnormality of glucose metabolism in which a large amount of glycogen is accumulated in the liver, and takes the form of autosomal recessive transmission. Hypoglycemia, hepatomegaly, short stature, renal impairment, high Lipidemia, hyperuricemia, etc. are seen.
  • the g727t mutation in this enzyme gene is a high frequency mutation that accounts for about 90% of the disease mutations in the present case, and causes abnormal mRNA splicing.
  • the diagnosis of this disease involved measurement of enzyme activity using liver tissue, but the advent of genetic diagnosis has made liver biopsy unnecessary.
  • the number of carriers of this mutation in the Japanese population is about 1 in 200.
  • Non-ketotic hyperglycinemia is caused by abnormal glycine-cleaving system enzymes, and congenital amino acid metabolism disorders (autosomal recessive inheritance) that cause severe neurological symptoms including convulsions during neonatal period. is there.
  • the gl69It mutation in the GLDC gene among glycine-cleaving enzymes is frequently found (about 70% of the mutant genes). This mutation results in the amino acid substitution Ser564Ile.
  • Medium-chain acyl-CoA dehydrogenase deficiency is caused by abnormalities in enzymes that play an important role in the fatty acid / oxidation pathway (medium-chain acyl-CoA dehydrogenase, MCAD), and causes hunger, hypoglycemia during infection, and impaired consciousness. It is caused by congenital organic acid metabolism disorder (autosomal recessive inheritance). It is known to be often misdiagnosed as sudden infant death syndrome or acute encephalopathy (Rye syndrome).
  • the a985g mutation in this enzyme gene is a high frequency mutation that accounts for about 90% of the causative mutations in Caucasian cases, and causes the amino acid substitution Lys329Ghi. In addition, a high percentage of carriers in the Caucasian population (1 in 40 in the UK) have the mutation. In Europe and the United States, genetic diagnosis that detects this a985g mutation is widely used to diagnose this disease.
  • the CYP2C19 gene plays an important role in the metabolism of omeprazole (a gastric acid secretion inhibitor).
  • the SNP polymorphism CYP2C19 * 2 on this gene causes splicing defects due to the 681G> A mutation in exon 5, and thus reduces the metabolic activity of these drugs. In patients with such polymorphisms (poor metabolizers), it is necessary to reduce the dose before administration, and it would be clinically advantageous to be able to determine the genotype before administration. About 23% of the genes in the Japanese population have this polymorphism.
  • Aldehyde dehydrogenase 2 gene polymorphism (Glu487Lys) is an SNP commonly found in Oriental people and determines individual differences in alcohol metabolism.
  • Enzymes with genetic polymorphisms are less active and slow down the metabolism of acetoaldehyde from alcohol, resulting in a constitution that is "weak to alcohol.” About 30% of the Japanese population is heterozygous for this polymorphism, About 5% are homozygotes.
  • Hybridization of the amplified DNA with a hybridization probe having a nucleotide sequence complementary to the nucleotide sequence to be detected is the same as in the normal hybridization except that a specific hybridization probe is used. It can be done in the same way as.
  • the hybridization probe used in the present invention is labeled with a second labeling substance and contained in a reaction solution in which DNA amplification is performed.
  • the base sequence of the hybridization probe is Set so as not to inhibit amplification.
  • the second labeling substance is the same as that described for the first labeling substance except that a substance different from the first labeling substance is used.
  • the labeling of the hybridization probe can be performed by a known method so as not to hinder the hybridization.
  • the labeling of the hybridization probe is preferably performed at the 3, terminal end. This is to prevent the extension of the oligonucleotide chain length during the DNA amplification reaction. When the chain length increases, the Tm value increases, and even if there is a mismatch, hybridization may occur.
  • the setting of the base sequence of the hybridization probe so as not to inhibit the amplification of DNA is usually performed so that the hybridization of the hybridization probe does not occur under the conditions of DNA amplification.
  • the hybridization can be performed by setting the length of the probe and the like.
  • the base sequence of the hybridization probe used in the present invention is set so as not to inhibit the amplification of DNA, it can be included from the beginning in the reaction solution in which DNA amplification is performed. For this reason, the reaction solution after the completion of the DNA amplification can be hybridized by keeping the amplified DNA and the hybridization probe as they are, as they are.
  • the chain length of the hybridization probe and the conditions for hybridization are appropriately set according to the method used for DNA amplification.
  • DNA polymerase In the amplification of the DNA to be used, the amplification is performed under a temperature condition suitable for exerting the activity of the DNA polymerase. Therefore, the chain length is set so as not to cause hybridization at this temperature.
  • the temperature at which hybridization occurs is not particularly limited as long as the amplification of DNA is not hindered, but it is preferable that the produced hybrid does not dissociate at room temperature.
  • the Tam of the probe is 25 to 40 ° C (preferably 30 to 3 ° C) compared to the Tm value of the primer. 5 ° C).
  • the probe is usually 10 to 13 mer. This is considerably shorter than 15- to 25-mer (see Non-Patent Document 2) conventionally used as a probe for allele-specific oligonucleotide hybridization.
  • longer-chain probes have been widely used because of the need to create probes with specificity based on combinations of four bases in the whole genome sequence (3 billion base pairs). Had the logic that they needed at least 4 to the 15th power.
  • this is the case where hybridization is performed for the whole genome sequence, and when targeting DNA fragments of several hundred bases amplified by PCR, such length and specificity are not considered necessary. As a result, the specificity of hybridization is sufficiently maintained.
  • the hybridization probe In applying the detection method of the present invention to detection of any gene mutation or polymorphism, it is necessary to make the hybridization probe an optimal chain length. This can be determined by routine experiments, as described in the examples below. In the detection method of the present invention, since an extremely short probe is usually used, a dramatic difference in the formation of a judgment line is recognized due to a difference in the length of one base. If a false positive appears or a weak positive reaction is observed, it is preferable to create a probe shorter or longer than the probe designed based on the Tm value and select the optimal probe. In this case, since the Tm value differs between the normal nucleotide sequence probe and the mutant nucleotide sequence probe due to base substitution even for the same chain length, the optimal chain length should be set independently for each.
  • the nucleotide sequence of the hybridization probe is such that the mutation site is near the center. It is preferable to set so that:
  • Hybridization is usually carried out by raising the temperature until the double-stranded DNA is denatured and then gradually lowering the temperature. Therefore, hybridization can be performed only by changing the temperature of the reaction solution after the amplification of DNA, and other operations are not required.
  • the temperature conditions for hybridization are programmed in addition to the temperature conditions required for DNA amplification, so that the sample can be thermally cycled. Once set, amplification and hybridization can be performed as a series of reactions.
  • Using a short probe set up as described above has the following three advantages. 1) The difference between Tm values with and without a single base mismatch can be increased as compared to long probes, and the specificity of the probes can be relatively increased. 2) Conventionally, the hybridization temperature of the probe is 37 to 65 ° C, but in the detection method of the present invention, it can be set as low as 25 ° C, so that a series of subsequent operations can be performed at room temperature. it can. 3) Since short probes have low Tm values and do not hybridize during the PCR reaction, they do not affect the PCR reaction even if they are mixed in the PCR reaction solution in advance.
  • the hybrid formed by the hybridization has both the first labeling substance and the second labeling substance. Hybridization is detected by affinity chromatography using the first labeling substance and the second labeling substance.
  • Affinity chromatography can be performed with test strips configured for it.
  • the detection of a hybrid by affinity chromatography using two types of labeling substances can be performed according to a known method, and a test piece used in such a method can also be configured according to a conventional method.
  • An example of such a test strip is the reaction of a hybrid with a substance that specifically binds to the first label, which has bound a visible label (eg, gold colloid) when collected. Then, the test piece is configured to move on a chromatographic carrier on which a substance that specifically binds to the second labeling substance is immobilized, and to observe the visible labeling substance accumulated at the immobilized site.
  • a test piece itself has been used for a method for easily detecting a specific gene, etc. (J. Clin. Microbiol. 38: 2525-2529, 2000).
  • the first labeling substance is digoxigenin
  • the second labeling substance is piotin
  • the labeling substance visible when accumulated is gold.
  • This antibody (complex ) A complex holding site with a pad that holds, a sample application site to which a reaction solution containing the hybrid is applied, and streptavidin immobilized with streptavidin linearly perpendicular to the direction of chromatographic solvent movement
  • a site, an antibody-fixing site on which an antibody against the anti-digoxigenin antibody is immobilized, and an absorption site provided with a pad for absorbing the chromatography solvent are provided in this order in the direction of movement of the chromatography solvent (usually a buffer solution). How to use the test piece of this example will be described. Apply the reaction solution containing the hybrid to the sample application site, immerse the immersion site in the chromatographic solvent, remove the test piece from the chromatographic solvent, and allow to stand.
  • the chromatographic solvent moves the chromatographic carrier by capillary action, and upon reaching the complex holding site, the chromatographic solvent containing the complex moves.
  • this chromatographic solvent reaches the sample application site, the digoxigenin of the hybrid in the applied reaction solution and the anti-digoxigenin antibody of the complex are bound to form a hybrid having gold colloids, and the chromatographic medium further increases the chromatographic medium.
  • Move on the carrier When the hybrid reaches the streptavidin-immobilized site, the hybrid is accumulated at the streptavidin-immobilized site due to the binding of biotin and streptavidin, and a visible signal appears if a hybrid is present.
  • the mutation site is a point mutation
  • An unlabeled oligonucleotide having a base sequence that differs from the base sequence of the labeled hybridization probe by one base at the position of the point mutation and being unlabeled (hereinafter, also referred to as “competitive prop”) is further added. It is preferable to include it in the reaction solution for performing DNA amplification.
  • the competitive probe is set in the same manner as the hybridisation probe except that it differs from the hybridizing probe by one base at the position of the point mutation.
  • the competitive probe may be different in length than the hybridization probe.
  • the amount sufficient to increase the specificity of the hybridization between the amplified DNA and the labeled hybridization probe varies depending on conditions such as the nucleotide sequence to be detected and the nucleotide sequence of the hybridization probe. However, in general, it is considered that the amount may be equivalent to 5 times (molar ratio) the hybridization probe. However, if the number of positive reactions is significantly reduced, it may be best to omit the competitive probe after confirming that no false positive reactions occur. Since the chain length of the hybridization probe and the presence or absence of the competing probe have a significant effect on the formation of the judgment line, it is considered that the optimum reaction conditions can be found relatively easily.
  • the specificity of the hybridization probe can be increased, and nonspecific hybridization can be suppressed.
  • different labeling substances are used for the labeling of a hybridization probe for detecting a normal nucleotide sequence and a hybridization probe for detecting a mutant nucleotide sequence, and a reaction system for detecting a normal nucleotide sequence and a mutant nucleotide sequence are used.
  • the two reaction systems for detection may be integrated into one. That is, the hybridization probe for detecting a normal nucleotide sequence and the hybridization probe for detecting a mutant nucleotide sequence have different labels, and are mixed at a ratio of 1: 1 to compete with each other to form a reaction system. It can be put together.
  • a substance that specifically binds to each label The genotype is determined by performing affinity chromatography on the complex with the visible label when accumulated.
  • the detection method of the present invention has the following advantages.
  • Versatility Based on allele-specific oligonucleotide hybridization, which has been widely used for many years as a detection method, it can be used not only for point mutation, but also for base sequences such as insertion and deletion. Accommodates a wide range of accompanying mutations.
  • Rapidness After completion of amplification and hybridization reactions that can be performed by the thermal cycler, genotyping can be performed within 10 minutes. By using a cabling lysate PCR amplification device for nucleic acid amplification, it is possible to complete the entire process within one hour if there is a DNA sample.
  • the genotype can be determined with the naked eye, so no equipment such as a gel electrophoresis device or fluorescence detection device is required.
  • the thermal cycler which performs a PCR reaction, is a general-purpose clinical testing device used for infectious disease tests, etc., and has already been installed in many hospitals. Moreover, the reaction operation is simple and does not require special skills. The above advantages can also be obtained when a nucleic acid amplification reaction other than PCR (TMA, NASBA S LAMP, etc.) is used.
  • Figure 1 shows the reaction when normal DNA was used as a sample.
  • Reaction system 1 is a system to which a hybridization probe for detecting a normal base sequence is added
  • reaction system 2 is a system to which a hybridization probe for detecting a mutant base sequence is added.
  • solid circles indicate normal bases
  • solid triangles indicate mutant bases
  • Dig indicates digoxigenin labeling
  • B indicates biotin labeling
  • GP indicates gold particles.
  • the gene site (point to be detected) including the point mutation site is amplified by PCR.
  • the pair of PCR primers used at this time use one whose 5 'end is labeled with digoxigenin in advance.
  • oligonucleotide combinations one for detecting a normal nucleotide sequence and one for detecting a mutant nucleotide sequence.
  • One of the combinations for detecting a normal nucleotide sequence has a point mutation in the normal nucleotide sequence.
  • An oligonucleotide (normal probe) having a site at the center and biotin-labeled at the three ends, and the other is an unlabeled competitor oligonucleotide (mutation probe) having a point mutation site in the mutant base sequence at the center. is there.
  • one is an oligonucleotide (mutation probe) having a point mutation site in the mutant base sequence at the center and a 3 ′ end labeled with biotin, and the other is a normal base.
  • Both oligonucleotides are designed to have the opposite strand to the digoxigenin-labeled PCR primer.
  • the composition of the PCR reaction solution is, for example, 50 to 100 ng of sample DNA, 10 mM Tris-HCl (pH 8.3), 50 mM KC1, 1.5 mM MgCl 2 , 250 zM each of dNTP, 1 zM PCR forward primer ( 5, end labeled with digoxigenin), 1 ⁇ M PCR reverse primer, 600 nM hybridization probe (3, end labeled with biotin), 3 ⁇ M competitive unlabeled oligonucleotide, 1.25 U Taq DNA polymerase, The reaction volume is 20 ⁇ 1.
  • PCR conditions include, for example, first heating at 94 ° C for 2 minutes, repeating a cycle of 98 ° C for 10 seconds—55 ° C for 30 seconds—72 ° C for 30 seconds 35 times, then 72 ° C for 3 minutes, 98 ° C3 Min, 65 ° C 1 minute, 55 ° C
  • an oligonucleotide having a base sequence completely complementary to the base sequence of the PCR product labeled with digoxigenin hybridizes.
  • an oligonucleotide for detecting a normal nucleotide sequence is combined with DNA having a normal nucleotide sequence, a hybrid of a PCR product labeled with digoxigenin and an oligonucleotide labeled with biotin is formed (Fig. 1). , Reaction system 1).
  • This solution (5 ⁇ 1) was used for affinity chromatography test strips such as DNA Detection test strip (Roche, # 965-484), on which streptavidin was immobilized and in which gold colloid-labeled anti-digoxigenin antibody was retained so that it could be developed.
  • Spot on the sample application site immerse the lower end in the buffer for 5 seconds, leave at room temperature for 5 minutes to develop the buffer, and the gold colloid-labeled anti-digoxigenin antibody will be digoxigenin-labeled PCR product-hybrid of biotin-labeled oligonucleotide The hybrid is further captured by streptavidin immobilized on the test piece, and the formation of a red line can be visually detected.
  • the DNA to be sampled and the reaction reagent are mixed in a PCR tube, and the DNA is heated and cooled according to the program in a thermal cycler to perform DNA amplification and hybridization (step 1). Take 5 ⁇ 1 of the reaction solution, spot it on the specimen at the site where the sample is applied, immerse the lower end of the specimen in the buffer, and leave it at room temperature (Step 2). Five minutes later, judgment is made based on the presence or absence of the genotyping line (step 3). Whether affinity chromatography has been completed normally can be confirmed by the presence or absence of a control line.
  • the detection method of the present invention is a method that can quickly and easily determine the presence or absence of a gene mutation without using a special device, and is suitable for outpatient clinics in hospitals and for performing genetic tests in bedside. I have. In other words, it enables genetic diagnosis as point-of-care and care. Specifically, it can determine gene polymorphisms of drug metabolizing enzymes, including CYP2C19, to determine on-the-spot whether a drug is appropriate for the patient, and to help adjust the prescribed amount. It is. In this case, it is an important advantage that the inspection result can be obtained in a short time.
  • the kit of the present invention comprises a primer for amplifying a DNA containing a nucleotide sequence to be detected including a mutation site using a DNA polymerase, and a hybridase having a nucleotide sequence complementary to the nucleotide sequence to be detected.
  • a kit comprising a sample probe and an affinity chromatography test piece,
  • the first labeling substance is labeled with the first labeling substance
  • the hybridization probe is labeled with the second labeling substance
  • the base sequence of the hybridization probe is:
  • the test strip is set so as not to inhibit the amplification of DNA, and the test strip must be able to detect the hybrid between the amplified DNA and the hybridization probe using the first labeling substance and the second labeling substance. It is characterized by.
  • the kit of the present invention can be used to carry out the detection method of the present invention.
  • the primer, the hybridization probe, and the test specimen for affinity chromatography are as described above for the detection method of the present invention.
  • the kit of the present invention has an unlabeled oligonucleotide having a base sequence that differs from the base sequence of the labeled hybridization probe by one base at the position of the point mutation. (Competitive probe). This oligonucleotide is as described above for the detection method of the present invention.
  • composition of the PCR reaction solution was as follows: sample DNA 50-100 ng, 10 mM Tris-HCl (pH 8.3), 50 mM KCK 1.5 mM MgC, 250 M each dNTP, 1 M PCR forward primer, 1 j PCR reverse primer (5, end labeled with digoxigenin), 600 nM hybridization probe (3, end labeled with piotin), predetermined concentration of competitive unlabeled oligonucleotide, 1.25 U Taq MA polymerase, reaction volume 20 ⁇ ⁇ ⁇ 1.
  • PCR conditions are as follows: first heat at 94 ° C for 2 minutes, repeat 35 cycles of 98 ° C for 10 seconds and 55 ° C for 30 seconds and 72 ° C for 30 seconds, then 72 ° C for 3 minutes and 98 ° C for 3 minutes , 65 ° C for 1 minute, 55 ° C for 1 minute, 45 ° C for 1 minute, 35 ° C for 1 minute, and 25 ° C for 1 minute.
  • test strip DNA Detection Test Strip, Roche, # 965-484, affinity test strip with streptavidin immobilized and gold colloid-labeled anti-digoxigenin antibody expandable
  • the sample was spotted on the sample application site, and the lower end was immersed in the buffer for 5 seconds, and left at room temperature for 5 minutes to develop the buffer. After standing, the presence or absence of the genotyping line was visually determined.
  • the labeling hybridization probe was a 17-mer, and detection was performed without adding a competitive probe to the reaction solution.
  • the DNA to be tested is a homozygote of the g727 allele (normal DNA) and a homozygote of the t727 allele (mutant DNA).
  • the hybridization probes for detecting the normal base sequence and those for detecting the mutant base sequence are used.
  • Fig. 4 shows the results.
  • Wt and Mut for DNA indicate normal DNA and mutant DNA, respectively
  • Wt and Mut for hybridization probe indicate for normal base detection and mutant base sequence detection, respectively (see Fig. 5 below). The same is true for 7).
  • the addition of the competing probe significantly reduced false positive reactions. That is, in the reaction system of the probe for detecting the mutant base sequence with respect to the normal DNA (Fig. 5, lanes 6 to 8) and the reaction system of the probe for detecting the normal base sequence with respect to the mutant DNA (the same, lanes 10 to 12). Only a slight red reaction line was observed. No difference was observed in the inhibitory effect of the false-positive reaction at any of the addition amounts, and the false-positive reaction could not be completely suppressed even by addition of a 50-fold amount. On the other hand, the addition of a 25- to 50-fold amount suppressed the original positive reaction and tended to make the reaction line slightly thinner. 4, 15 and 16).
  • the length of the hybridizing probe and the competing probe was set to 12 mer (Table 3), the amount of the competing probe added was set to 5 times, and normal DNA (g727 allele homozygote), carrier Detection was performed as described above for DNA (heterozygote of the g727 allele and t727 allele) and patient DNA (homozygote of the t727 allele).
  • Figure 7 shows the results.
  • Biotin-labeled oligonucleotide for detection of normal nucleotide sequence (GSD727-AS0-W12-Bio) 5'-GCTGAACAGGAA-Biotin-3 '(SEQ ID NO: 19)
  • the hyperglycinemia gl691t mutation of GLDC gene, the g681a of drug metabolizing enzyme gene CYP2C19, and the Glu4 87Lys polymorphism point mutation of aldehyde dehydrogenase 2 The point mutation was detected by the detection method.
  • the length of the PCR primers that amplify the nucleotide sequence containing the site of each point mutation was adjusted so that amplification could be performed at an annealing temperature of 55 ° C in the PCR reaction.
  • the hybridization probe was designed to have a Tm value of 35 to 40 ° C. As a result, the chain length was 10mer to 15iner.
  • Table 4 shows the nucleotide sequences of the primers, the hybridization probes and the competitive probes. Table 4
  • Biotin-labeled oligonucleotide for detection of normal nucleotide sequence Bio-MCAD985-W13
  • Biotin-labeled oligonucleotide for detection of normal nucleotide sequence Bio-S564I-W13
  • Biotin-labeled oligonucleotide for detection of mutant base sequence (Bio-S564I-M) 5'-GACGAAATGTTCA-Biotin-3 '(SEQ ID NO: 33)
  • CYP2C19 gene Primer and probe for detection of CYP2C19 * 2 polymorphism PCR-based primer (CYP2C19-P1)
  • Biotin-labeled oligonucleotide for detection of normal nucleotide sequence Bio-CYP2C19-W
  • Unlabeled competitive oligonucleotide for detecting polymorphic nucleotide sequence (CYP2C19-W) 5'-TCCCGGGAAC-3 '(SEQ ID NO: 40)
  • Biotin-labeled oligonucleotide for detection of normal nucleotide sequence Bio-ALDH2-PW2
  • Biotin-labeled oligonucleotide for detecting polymorphic nucleotide sequences Bio-ALDH2-PM2
  • the time required for genotyping after the reaction in the thermal cycler was completed was within 10 minutes.
  • this test piece was dried as it was, it was possible to visually determine it even after at least two years when it was stored at room temperature.
  • DeltaF508 deletion mutation of cystic fibrosis transmembrane regulatory protein gene 1277insTATC insertion mutation of HEXA gene of Tizax disease, 5382insC insertion mutation of BRCA1 gene of breast cancer, 6174delT deletion mutation of BRCA2 gene of breast cancer, thrombosis coagulation system Regarding the G1691A point mutation of the factor V gene, the mutation was detected by the detection method of the present invention.
  • the chain length of the PCR primers that amplify the nucleotide sequence containing the site of each mutation was adjusted so that amplification could be performed at an annealing temperature of 55 ° C in the PCR reaction.
  • the hybridization probe was designed to have a Tm value of 35 to 40 ° C. As a result, the chain length was 10mer to 15mer.
  • Table 5 shows the nucleotide sequences of the primer, the hybridization probe and the competitive probe. Since 1) to 4) were all mutations of base deletion or insertion, no competitive probe was used. In 3) to 5), since heterozygotes also show symptoms, there is no need to clinically check for the presence of a gene having a normal nucleotide sequence. Was. Table 5
  • the time required for genotyping after the reaction in the thermal cycler was completed was within 10 minutes.
  • this test piece was dried as it was, it was possible to visually determine it even after at least two years when it was stored at room temperature.
  • the design and reaction conditions of the primer, the hybridization probe and the competitive probe require slight adjustment according to the individual gene mutation, It was shown that mutations containing can be detected simply and quickly and the genotype of the sample DNA can be determined. Therefore, it is recognized that the detection method of the present invention has versatility. Industrial applicability
  • identification of a pathogenic gene mutation and detection of a polymorphism of a disease-related gene and a drug metabolizing enzyme gene can be performed simply, quickly, and reliably without using any special equipment or device other than a normal thermal cycler. It can be performed.
  • the detection method of the present invention is considered to be a technique that enables detection on a bedside and facilitates order-made medical treatment.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

 DNAの増幅に用いるプライマーの少なくとも一つが、増幅されたDNAが第1の標識物質により標識されるように第1の標識物質により標識されており、ハイブリダイゼーションプローブが第2の標識物質により標識されるとともに、DNAの増幅が行われる反応液に含まれており、ハイブリダイゼーションプローブの有する塩基配列が、DNAの増幅を阻害しないように設定されており、ハイブリッドの検出が第1の標識物質および第2の標識物質を利用してアフィニティークロマトグラフィーにより行われることにより、DNAの増幅のためのプライマーおよびハイブリダイゼーションプローブを含む一つの反応系で、DNAの増幅およびハイブリダイゼーションを順次行い、反応液中のハイブリッドをアフィニティークロマトグラフィーにより検出する。

Description

明細書
遺伝子変異検出法 技術分野
本発明は、 塩基配列の検出方法に関し、 より詳しくは、 点変異などの変異部位 を含む塩基配列を含む塩基配列を検出することにより遺伝子の変異を検出する方 法に関する。
ゲノム上に数多く存在する遺伝子多型は、 疾病への感受性や、 薬剤代謝の個人 差などに深く関連していると考えられている。 これらの遺伝子多型の検出は、 い わゆるオーダ一メイ ド医療にとって必須であり、 ゲノム科学の臨床応用における 最重要研究課題のひとつに挙げられている。 なかでも、 遺伝子多型マーカ一とし て SNP (single nucleotide polymorphism, 一塩基置換による遺伝子多型) は最 近とみに注目を浴びており、 国際的にも巨額の研究費が投じられている。 また一 方、 分子遺伝学研究の進歩によって、 様々な遺伝性疾患における遺伝子変異がデ —夕ベースに蓄積されてきている。 これを用い、 すでに病因であることが明らか にされている既知の遺伝子変異をスクリーニングすることによって、 遺伝病の診 断や臨床病型の予測をおこなうことが可能となってきている。 特に、 特定集団内、 あるいは人種を超えて高頻度に存在する遺伝子変異の場合、 その診断的価値は高 い。
以上のような遺伝子多型や遺伝子変異には、 塩基置換、 欠失、 挿入、 繰り返し 配列数の相違などがあるが、 その中で圧倒的に多数を占めているのが、 一塩基置 換による点変異である。 ヒトゲノム研究の成果を臨床の場に還元していくために は、 この点変異の簡便かつ迅速な検出法が不可欠である。
これまで点変異の検出法として、 様々な手法が考案されてきた (Cotton RGH. Mutation Detection, pp.1-198, Oxford University Prese, Oxford, 1997参照) 。 代表的な 方法としては、 対立遺伝子特異的ォリゴヌクレオチドハイプリダイゼーション (allele specific oligonucleotide hybridization, A S 0 ) 法、 対立遺伝子特異的増幅 法、 制限酵素消化法、 リガ一ゼ連鎖反応、 ミニシークェンス法などが挙げられる。 これらの手法はいずれも、 DNA増幅後に、 ハイブリダィゼーシヨンや電気泳動を はじめとする煩雑な操作が必要とされる。 一方、 近年ヒトゲノム解析研究に対応 するために開発された、 TaqMan法、 インべ一ダ一アツセィ(invader assay)、 DNA マイクロアレイ (DNAチップ) 、 質量分析計を用いる TOF- MASS法などは、 大量検 体の処理に秀でているものの、 高額の特殊専用機器を必要とし、 臨床検査室レべ ルで簡単に施行できるものではない。 また、 遺伝子変異のスクリーニング法とし て広く用いられている SSCP法、 ケミカルクリ一べッジ(chemical cleavage )法お よび DHPLC法は未知の遺伝子変異の大まかなスクリーニングに威力を発揮するが、 既知変異の確実な検出には不適切である。 さらに、 シークェンス法を用いた点変 異検出は、 操作が複雑でコストも高く、 既知変異の検出にはオーバースペックと いわざるを得ない。 上記のいずれの方法も、 現段階では遺伝子解析実験室でおこ なわれる特殊検査であり、 臨床の現場 (べヅドサイ ド) で迅速に実施することは きわめて困難である。 、
A S 0法に使用されるプローブとしては、 従来は 15〜25merが用いられている (Saiki RK, Erlich HA. Dection of mutations bv hybridization with sequence-specinc oligonucleotide probes. In: Mutation Detection: A Practical Approach, pp.113-129, IRL Press, Oxford, 1998参照) 。 また、 ハイブリダィゼ一シヨンにおいて、 標識プロ一 ブに競合するオリゴヌクレオチドを用いてプローブの特異性を増強させることが 幸艮告されている (Nozari G, Rahbar S, Wallace RB. Discrimination among the transcripts of the alleic human β -globin genes β , β s and β c using oligodeoxynucleotide hybridization probes. Gene 43:23-28, 198o麥照) 。 発明の開示
本発明は、 遺伝子の変異の簡便かつ迅速な検出法を提供することを目的とする。 本発明者らは、 特定のプライマーおよびプロ一プを特定の条件で用いると、 一 つの反応系で核酸の増幅とハイブリダイゼーシヨンを行うことができ、 しかもハ ィブリダイゼーシヨンにより形成したハイブリヅドを容易に検出できるという知 見を得、 この知見に基づき、 本発明を完成するに至った。 本発明は、 以下のものを提供する。
(1) DN Aポリメラーゼを用いて、 変異部位を含む検出対象塩基配列を含む DNAの増幅を行う工程、 増幅された DNAと、 検出対象塩基配列に相補的であ る塩基配列を有するハイプリダイゼーシヨンプロ一プとをハイプリダイズさせる 工程、 および、 ハイプリダイゼーシヨンにより形成されたハイプリッドを検出す る工程を含む塩基配列の検出方法であって、
DNAの増幅に用いるプライマ一の少なくとも一つは、 増幅された DNAが第 1の標識物質により標識されるように第 1の標識物質により標識されており、 ハ ィプリダイゼーションプロ一プは第 2の標識物質により標識されるとともに、 D N Aの増幅が行われる反応液に含まれており、 ハイプリダイゼ一シヨンプローブ の有する塩基配列は、 DN Aの増幅を阻害しないように設定されており、 ハイブ リッドの検出は第 1の標識物質および第 2の標識物質を利用してァフィ二ティー クロマトグラフィーにより行われる前記方法。
(2) 変異部位が点変異であり、 DN Aの増幅が行われる反応液が、 増幅され た D N Aと標識されたハイブリダイゼーシヨンプローブとのハイプリダイゼーシ ョンの特異性を高めるのに十分な量の、 標識されたハイプリダイゼーシヨンプロ ープの塩基配列と点変異の位置で 1塩基異なる塩基配列を有しかつ標識されてい ないオリゴヌクレオチドをさらに含む (1) の方法。
(3) DNAの増幅が PCRによる増幅である (1) または (2) の方法。
(4) DN Aポリメラ一ゼを用いて、 変異部位を含む検出対象塩基配列を含む D N Aの増幅を行うためのプライマーと、 検出対象塩基配列に相補的である塩基 配列を有するハイブリダィゼ一シヨンプローブと、 ァフィ二ティークロマトグラ フィー用試験片とを含むキットであって、
DNAの増幅に用いるプライマーの少なくとも一つは、 増幅された DNAが第 1の標識物質により標識されるように第 1の標識物質により標識されており、 ハ ィプリダイゼ一シヨンプローブは第 2の標識物質により標識され、 ハイプリダイ ゼーシヨンプローブの有する塩基配列は、 D N Aの増幅を阻害しないように設定 されており、 試験片は第 1の標識物質および第 2の標識物質を利用して増幅され た DNAとハイブリダイゼ一シヨンプローブとのハイブリヅドを検出できるもの W
4
である前言 3キヅト。
( 5 ) 変異部位が点変異であり、 標識されたハイプリダイゼーシヨンプローブ の塩基配列と点変異の位置で 1塩基異なる塩基配列を有しかつ標識されていない オリゴヌクレオチドをさらに含む (4 ) のキヅト。
( 6 ) プライマ一が P C R用プライマーである (4 ) または (5 ) のキット。 図面の簡単な説明
図 1は、 本発明の検出法の原理 (正常 DNAを検体とした場合) の説明図である。 図 2は、 本発明の検出法の原理 (変異 DNAを検体とした場合) の説明図である。 図 3は、 本発明の検出法の一例の操作の説明図である。
図 4は、 17merのハイプリダイゼーシヨンプローブを用いた場合の検出結果 (クロマトグラムの写真) を示す。
図 5は、 17merのハイブリダィゼ一シヨンプローブを用い、 競合プローブを添 加した場合の検出結果 (クロマトグラムの写真) を示す。
図 6は、 種々の長さのハイブリダィゼーシヨンプローブを用い、 競合プローブ を添加した場合の検出結果 (クロマトグラムの写真) を示す。
図 7は、 12merのハイブリダィゼ一シヨンプローブを用い、 競合プローブを添 加した場合の検出結果 (クロマトグラムの写真) を示す。
図 8は、 種々の変異に関する検出結果 (クロマトグラムの写真) を示す。
図 9は、 種々の変異に関する検出結果 (クロマトグラムの写真) を示す。 発明を実施するための最良の形態
< 1 >本発明の検出法
本発明の検出法は、 D N Aポリメラーゼを用いて、 変異部位を含む検出対象塩 基配列を含む D NAの増幅を行う工程、 増幅された D NAと、 検出対象塩基配列 に相補的である塩基配列を有するハイプリダイゼーシヨンプローブとをハイプリ ダイズさせる工程、 および、 ハイブリダィゼーシヨンにより形成されたハイプリ ッ ドを検出する工程を含む塩基配列の検出方法であって、
D N Aの増幅に用いるプライマーの少なくとも一つは、 増幅された D N Aが第 1の標識物質により標識されるように第 1の標識物質により標識されており、 ノヽ ィブリダイゼ一ションプローブは第 2の標識物質により標識されるとともに、 D . NAの増幅が行われる反応液に含まれており、 ハイプリダイゼ一シヨンプローブ の有する塩基配列は、 DNAの増幅を阻害しないように設定されており、 ハイブ リヅドの検出は第 1の標識物質および第 2の標識物質を利用してァフィ二ティ一 クロマトグラフィーにより行われることを特徴とする。 以下、 各工程毎に説明す
(1) DNAの増幅
DNAの増幅は、 DN Aポリメラ一ゼを用いて行われるものであれば、 特に制 限されず、 DN Aポリメラーゼを用いて DNAを合成する段階を含む増幅方法を 用いることができる。 DN Aの増幅の方法の例としては、 PCR法、 TMA法、 NASBA法、 LAMP法などが挙げられる。
D N Aポリメラ一ゼにより D N Aを合成する場合には、 プライマ一が必要とな る。 プライマーは、 増幅の方法および検出対象塩基配列に依存して公知の方法に より設定される。 本発明においては、 DN Aの増幅に用いるプライマーの少なく とも一つは、 増幅された D N Aが第 1の標識物質により標識されるように第 1の 標識物質により標識される。
例えば、 増幅が PCR法により行われる場合、 プライマー対が用いられるが、 少なくともその一方を標識することにより、 増幅された D N Aが標識されたもの となる。 また、 NA SB A法および TMA法により行われる場合には、 DNA合 成段階に働くプライマ一を、 LAMP法の場合には、 片方のインナ一プライマー を少なくとも標識することにより増幅された D N Aが標識されたものとなる。 プライマ一の標識は、 DN Aの合成反応を阻害しないように行われる。 このよ うな標識は公知の方法に従って行うことができ、 通常にはプライマ一の 5' 末端 がネ示 れる。
標識に用いられる標識物質は、 それに対して生体特異的に結合する物質が存在 するものであればよい。 このような標識物質と、 それに対して生体特異的に結合 する物質の組み合わせとしては、 抗原と抗体、 酵素と阻害剤、 糖鎖とレクチン、 ホルモンと受容体、 金属結合蛋白質と金属元素が挙げられる。 具体的には、 ジゴ キシゲニンと抗ジゴキシゲニン抗体、 ピオチンとストレプトアビジンなどの組み 合わせが挙げられる。 これらの組み合わせにおいて、 いずれが標識物質となって もよいが、 通常には、 分子量の小さい方が、 標識物質として用いられる。
用いられるプライマーや D N Aの増幅の条件は、 採用する増幅方法および検出 対象配列に基づいて適したものが設定される。 例えば、 P C R法については、 Molecular Cloning: A Laboratory Manual (3rd ed.), Volume 2, Chapter 8, pp. 8.1-8.126, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2001、 N A S B A法につい ては、 PCR Methods and Applications, 1, 25-33 (1991)、 L AM P法については、 Nucleic Acids Research, Vol. 28, No. 12, pp. i-vii (2000)をそれそれ参照できる。
増幅において、 錶型となる検体 D NAは、 検査試料から通常の方法により調製 できる。
検出対象配列は、 変異部位を含む検出対象配列が特異的に増幅されるように、 増幅の方法に合わせて適宜選択される。 検出対象配列が含む変異部位は、 通常に は、 遺伝子変異および遺伝子多型として知られている部位である。 変異部位は、 点変異でもよいし、 揷入、 欠失などの変異でもよい。
本発明の検出法の検出対象となる遺伝子変異および遺伝子多型の一般的な例と しては、 糖原病 la型の日本人患者で高頻度に認められる g727t変異、 中鎖ァシル C oA脱水素酵素欠損症の白人患者で高頻度に認められる a985g変異 (Lys329Glu変異) 、 高グリシン血症のフィンランド人患者で高頻度に認められる GLDC遺伝子の gl691t 変異 (Ser564Ile変異) 、 薬剤代謝酵素遺伝子 CYP2C19における遺伝子多型 (CYP2 C19*2, g681a) 、 アルコール代謝の個人差を決定するアルデヒド脱水素酵素 2の 遺伝子多型 (E487K) 、 嚢胞性線維症膜貫通型調節蛋白質遺伝子の deltaF508欠失 変異、 ティザックス病の HEXA遺伝子の 1277insTATC挿入変異、 乳癌の BRCA1遺伝子 の 5382insC挿入変異、 乳癌の BRCA2遺伝子の 6174delT欠失変異、 血栓症凝固系第 V因子遺伝子の G1691A点変異などが挙げられるが、 本発明の検出法の検出対象は これらの例に限定されない。 ' 糖原病 la型はグリコーゲン代謝経路におけるグルコース- 6-ホスファターゼの 異常によって生じ、 主として肝臓に大量のグリコーゲンが蓄積する先天性糖代謝 異常症で、 常染色体劣性遣伝形式をとる。 低血糖、 肝腫大、 低身長、 腎障害、 高 脂質血症、 高尿酸血症などが見られる。 この酵素遺伝子における g727t変異は、 曰本人症例における病囟変異の約 90%を占める高頻度変異であり、 mRNAのスプラ イシング異常を生じる。 ごく最近まで、 本症診断には、 肝臓組織を用いた酵素活 性測定が行われていたが、 遺伝子診断の出現によって肝生検が不要となった。 本 変異の日本人集団における保因者数は、 約 200人に 1人である。
非ケトーシス型高グリシン血症はグリシン解裂系酵素の異常によって生じ、 新 生児期にけいれんをはじめとする重篤な神経症状を呈する先天性ァミノ酸代謝異 常症 (常染色体劣性遺伝) である。 フィンランド人患者では、 グリシン解裂系酵 素のうち GLDC遺伝子に gl69It変異が高頻度 (変異遺伝子の約 70%) に認められる。 本変異はアミノ酸置換 Ser564Ileを生じる。
中鎖ァシル CoA脱水素酵素欠損症は脂肪酸/?酸化経路において重要な役割を担 う酵素 (medium-chain acyl-CoA dehydrogenase, MCAD) の異常によって生じ、 空腹 ·感染時の低血糖 ·意識障害をひきおこす先天性有機酸代謝異常症 (常染色 体劣性遺伝) である。 しばしば、 乳幼児突然死症候群や急性脳症 (ライ症候群) と誤診されることが知られている。 本酵素遺伝子における a985g変異は白人症例 における病因変異の約 90%を占める高頻度変異であり、 アミノ酸置換 Lys329Ghi をひきおこす。 また、 本遺伝子変異の保因者は、 白人集団で高率 (英国では 40人 に 1人) に認められる。 欧米では、 この a985g変異を検出する遺伝子診断が本症 の診断に広く用いられている。
CYP2C19遺伝子は、 オメプラゾ一ル (胃酸分泌抑制剤) などの代謝に重要な役 割を果たしている。 本遺伝子上の SNP多型である CYP2C19*2は、 ェキソン 5の 681G >A変異によってスプライシング異常を生じるため、 これらの薬剤の代謝活性を低 下させる。 このような多型を持つ人 (poor metabolizer) では、 投薬にあたって 減量するする必要があり、 投薬前に予め遺伝子型を決定できれば、 臨床的に有利 である。 日本人集団における遺伝子の約 23%に、 この遺伝子多型が認められる。 アルデヒド脱水素酵素 2の遺伝子多型 (Glu487Lys) は、 東洋人に多く認めら れる SNPで、 アルコール代謝の個人差を決定する。 遺伝子多型を有する酵素は活 性が低く、 アルコールから生じるァセトアルデヒドの代謝が遅くなるため、 「酒 に弱い」 体質となる。 日本人集団では約 30%がこの遺伝子多型のへテロ接合子、 約 5 %がホモ接合子である。
( 2 ) ハイブリダィゼ一シヨン
増幅された D N Aと、 検出対象塩基配列に相補的である塩基配列を有するハイ プリダイゼ一シヨンプローブとのハイブリダイゼ一シヨンは、 特定のハイブリダ ィゼーションプローブが使用される他は、 通常のハイブリダイゼーシヨンと同様 に行えばよい。
本発明で使用されるハイブリダィゼ一シヨンプロ一ブは、 第 2の標識物質によ り標識され、 D N Aの増幅が行われる反応液に含まれており、 ハイブリダィゼ一 シヨンプローブの有する塩基配列は、 D N Aの増幅を阻害しないように設定され る。
第 2の標識物質は、 第 1の標識物質と異なる物質が用いられる他は、 第 1の標 識物質について説明したのと同様である。 ハイプリダイゼ一シヨンプロ一ブの標 識は、 ハイブリダイゼ一シヨンを妨げないように公知の方法により行うことがで きる。 ハイブリダィゼ一シヨンプローブの標識は、 3, 末端に行うことが好まし レ、。 これにより D N Aの増幅反応中のオリゴヌクレオチドの鎖長の進展を防止す るためである。 鎖長の進展があった場合は Tm値が上昇し、 たとえミスマッチがあ つてもハイブリダィズしてしまうおそれがある。
ハイブリダイゼ一シヨンプロ一ブの塩基配列を、 D N Aの増幅を阻害しないよ うに設定することは、 通常には、 ハイブリダィゼーシヨンプローブのハイブリダ ィゼ一シヨンが D N Aの増幅の条件では生じないようにハイブリダィゼーシヨン プローブの鎖長などを設定することにより行うことができる。
本発明で使用されるハイプリダイゼーシヨンプローブの塩基配列は、 D N Aの 増幅を阻害しないように設定されるので、 D N Aの増幅が行われる反応液に最初 から含ませておくことができる。 このため、 D N Aの増幅が終了した反応液を、 そのまま、 増幅された D N Aとハイプリダイゼーシヨンプローブとがハイプリダ ィズするような条件におくことにより、 これらをハイプリダイズさせることがで きる。
ハイブリダイゼ一ションプローブの鎖長や、 ハイブリダイズさせるときの条件 は、 D NAの増幅に用いる方法に応じて適宜設定される。 D N Aポリメラ一ゼを 用いる D N Aの増幅では、 D N Aポリメラーゼの活性が発揮されるのに適した温 度条件で増幅が行われるので、 この温度でハイプリダイゼ一シヨンが生じないよ うに鎖長が設定される。 また、 ハイブリダィゼーシヨンが起こる温度は、 D N A の増幅を妨げない限り、 特に限定されないが、 生成したハイブリッドが室温で解 離しないものであることが好ましい。
D N Aの増幅を阻害しないように塩基配列を設定する条件として具体的には、 プライマーの Tm値に比べて、 プロ一ブの Ta^直が 2 5〜4 0 °C (好ましくは 3 0〜 3 5 °C) 低くなるように設定することが挙げられる。
例えば、 P C R法の通常の条件を考慮すると、 プローブは、 通常には、 lOmer 〜13merとなる。 これは、 アレル特異的オリゴヌクレオチドハイブリダィゼーシ ヨンのプローブとして、 従来用いられている 15mer〜25mer (上記非特許文献 2参 照) に比較してかなり短いものである。 これまで、 より長い鎖長のプローブが多 用されてきた背景には、 全ゲノム配列 (30億塩基対) の中で、 4種塩基の組み合 わせによる特異性を持ったプローブを作成するためには、 少なくとも 4の 15乗く らいが必要であるという論理があった。 しかしながら、 これは全ゲノム配列を対 象にハイブリダイゼ一ションを行う場合であり、 PCR増幅された数百塩基の DNA断 片を標的とする場合は、 これほどの長さと特異性は要求されないと考えられるの で、 ハイプリダイゼーションの特異性は十分に維持される。
本発明の検出法を、 任意の遺伝子変異や多型の検出に応用するにあたっては、 ハイプリダイゼーシヨンプローブを最適の鎖長にすることが必要である。 これは、 後述の実施例に記載されているように定型的な実験により決定することが可能で ある。 本発明の検出法では、 通常、 極めて短いプローブを用いることから、 1塩 基長の差によつて劇的な判定線形成の違いが認められる。 偽陽性の出現や微弱な 陽性反応が認められた場合には、 Tm値をもとに設計したプローブよりも短いプロ ーブあるいは長いプローブを作成し、 最適のものを選択することが好ましい。 こ の際、 正常塩基配列プローブと変異塩基配列プローブでは、 同じ鎖長でも塩基置 換によって Tm値が異なるため、 それぞれに最適な鎖長を独立して設定すべきであ る。
ハイプリダイゼーシヨンプローブの塩基配列は、 変異部位がその中央付近とな るように設定することが好ましい。
ハイブリダィゼ一シヨンは、 通常には、 温度を二本鎖 D N Aが変性するまで上 昇させ、 徐々に低下させることによって行なわれる。 従って、 D N Aの増幅が終 わった反応液の温度を変化させる操作のみでハイブリダィゼーシヨンを行うこと ができ、 その他の操作が不要である。 プログラム可能なサ一マルサイクラ一によ り D N Aの増幅を行う場合には、 D N Aの増幅に必要な温度条件に加えて、 ハイ ブリダイゼ一ションの温度条件もプログラムしておくことにより、 試料をサーマ ルサイクラ一にセットした後は、 一連の反応として、 増幅およびハイブリダィゼ ーシヨンを行うことができる。
上述のように設定された短いプロ一ブを使用することによって、 以下の 3つの 利点が生じる。 1 ) 一塩基のミスマッチがある場合とない場合の Tm値の差を、 長 いプローブに比べて大きくすることができ、 プローブの特異性を比較的に増加さ せることができる。 2 ) プローブのハイプリダイゼーシヨン温度は、 従来、 37〜 65°Cであるが、 本発明の検出方法では、 25°Cと低く設定できるため、 その後の一 連の操作を室温で行うことができる。 3 ) 短いプローブは Tm値が低く、 PCR反応 中はハイブリダィゼ一シヨンしないため、 PCR反応液中にあらかじめ混和してお いても PCR反応に影響を及ぼさない。 これによつて、 PCR 熱変性 ハイブリダィ ゼーシヨンを、 途中で、 試薬の添加などの操作を新たに加えることなく、 一連の 反応として行うことができる。 これらの利点は、 P C R法と同様に DNAポリメラ ーゼの伸長反応を利用する他の D N A増幅法においても同様に得られる。
( 3 ) ハイプリヅド検出
ハイブリダイゼーシヨンにより形成されたハイブリッドは、 第 1の標識物質お よび第 2の標識物質の両方を有している。 ハイブリツドの検出は第 1の標識物質 および第 2の標識物質を利用してァフィ二ティークロマトグラフィーにより行わ れる。
ァフィ二ティ一クロマトグラフィーは、 そのために構成された試験片により行 うことができる。 2種の標識物質を利用してァフィ二ティークロマトグラフィー によりハイプリッドを検出することは公知の方法に従って行うことができ、 この ような方法で使用される試験片も通常の方法に従って構成することができる。 このような試験片の例としては、 集積したときに可視的な標識物質 (例えば金 コロイ ド) を結合した、 第 1の標識物質に対して特異的に結合する物質と、 ハイ プリツドとを反応させ、 第 2の標識物質に対して特異的に結合する物質を固定し たクロマト担体上を移動させ、 その固定部位に集積した可視的な標識物質を観察 できるように構成された試験片が挙げられる。 このような試験片自体は、 これま でにも特定遺伝子を簡便に検出する方法などに用いられている(J. Clin. Microbiol. 38: 2525-2529, 2000)。
以下、 第 1の標識物質がジゴキシゲニン、 第 2の標識物質がピオチン、 集積し たときに可視的な標識物質が金コ口ィ ドである場合を例にとって具体的な例を説 明する。 クロマト担体のストリップに、 クロマト溶媒に浸潰されることによりク 口マト溶媒を供給する浸漬部位、 クロマト溶媒中に、 金コロイ ドを結合した抗ジ ゴキシゲニン抗体を遊離し得るようにこの抗体 (複合体) を保持するパッドを付 与した複合体保持部位、 ハイブリッドを含む反応液を適用する試料適用部位、 ス トレブトアビジンをクロマト溶媒の移動方向に対して垂直に線状に固定したスト レプトアビジン固定部位、 抗ジゴキシゲニン抗体に対する抗体を固定した抗体固 定部位、 および、 クロマト溶媒を吸収するパッドを付与した吸収部位が、 クロマ ト溶媒 (通常には緩衝液) の移動方向においてこの順に設けられる。 この例の試 験片の使用方法について説明する。 ハイブリツドを含む反応液を試料適用部位に 適用し、 浸漬部位をクロマト溶媒に浸漬した後、 クロマト溶媒から試験片を取り 上げ静置する。 クロマト溶媒は、 クロマト担体を毛細管現象により移動し、 複合 体保持部位に達すると複合体を含むクロマト溶媒が移動する。 このクロマト溶媒 が試料適用部位に達すると適用された反応液中のハイプリッドの有するジゴキシ ゲニンと複合体の抗ジゴキシゲニン抗体が結合し、 金コロイ ドを有するハイプリ ッドが形成され、 クロマト媒体によりさらにクロマト担体上を移動する。 ハイブ リッドがストレブトアビジン固定部位に達すると、 ピオチンとストレブトァビジ ンとの結合により、 このハイブリヅドがストレブトァビジン固定部位に集積され るので、 ハイブリッドが存在すれば、 可視的な信号が現れる。 ストレブトァビジ ン固定部位を通過した複合体は、 抗体固定部位に集積され、 クロマトグラムが正 常に進んだことを示す可視的な信号が現れる。 さらに移動したクロマト溶媒は、 吸収部位に吸収 ·保持される。
本発明の検出法において、 変異部位が点変異である場合には、 ハイブリダィゼ —シヨンプロ一ブと共に、 増幅された D N Aと標識されたハイプリダイゼーショ ンプローブとのハイブリダイゼーションの特異性を高めるのに十分な量の、 標識 されたハイプリダイゼ一シヨンプローブの塩基配列と点変異の位置で 1塩基異な る塩基配列を有しかつ標識されていないオリゴヌクレオチド (以下、 「競合プロ ープ」 ともいう) をさらに D N Aの増幅を行う反応液に含ませることが好ましい。 競合プローブは、 ハイプリダイゼ一シヨンプローブと点変異の位置で 1塩基異 なる他は、 ハイプリダイゼーシヨンプローブと同様に設定される。 競合プローブ はハイプリダイゼーシヨンプローブと長さが異なっていてもよい。
増幅された D N Aと標識されたハイプリダイゼーシヨンプローブとのハイプリ ダイゼ一シヨンの特異性を高めるのに十分な量は、 検出対象塩基配列、 ハイプリ ダイゼーシヨンプローブの塩基配列などの条件により変化するが、 通常には、 ハ ィプリダイゼ一シヨンプローブの等量〜 5倍量 (モル比) を基本としてよいと思 われる。 しかしながら、 陽性反応を著しく減ずるときは、 偽陽性反応が出現しな いことを確認したうえで競合プローブを省略する方が最適の結果が得られる場合 がある。 ハイブリダイゼーションプローブの鎖長と競合プローブの有無が判定線 の形成に著しい影響を及ぼすことから、 比較的容易に至適反応条件を見出すこと ができるものと考えられる。
ハイプリダイゼ一シヨンに際して、 非標識の競合ォリゴヌクレオチドを加える ことによりハイプリダイゼーションプローブの特異性を増し、 非特異的なハイブ リダイゼ一ションを抑制することができる。
本発明の検出法においては、 正常塩基配列検出用ハイプリダイゼ一シヨンプロ —ブと変異塩基配列検出用ハイプリダイゼーシヨンプローブの標識に異なる標識 物質を用い、 正常塩基配列検出用の反応系と変異塩基配列検出用の反応系の 2つ を 1つに統合してもよい。 すなわち、 正常塩基配列検出用ハイプリダイゼーショ ンプローブと変異塩基配列検出用ハイプリダイゼーシヨンプローブに異なった標 識をしておき、 1 : 1の比で混合して互いに競合させながら反応系を一つにまと めることが可能である。 反応後、 それぞれの標識に対して特異的に結合する物質 と、 集積したときに可視的な標識との複合体でァフィ二ティ一クロマトグラフィ 一を行って遺伝子型を判定する。
本発明の検出法は、 次のような利点を有する。 ( 1 ) 汎用性:検出法として長 年にわたって汎用されてきたアレル特異的オリゴヌクレオチドハイプリダイゼ一 シヨンを基にしているため、 点変異はもちろんのこと、 挿入 ·欠失などの塩基配 列を伴う広範な変異の検出に対応できる。 (2 ) 迅速性:サーマルサイクラ一に より実施できる増幅およびハイブリダイゼ一ションの反応が終わつてから、 遺伝 子型の判定まで 1 0分以内に実施することができる。 核酸増幅にキヤビラリー夕 ィプの PCR増幅装置を用いることにより、 DNA検体があれば 1時間以内に全工程を 終了することも可能である。 (3 ) 簡便性: PCR反応後は、 肉眼で遺伝子型を判 定することができるため、 ゲル電気泳動装置や蛍光検出装置などの機器を必要と しない。 PCR反応を行うサ一マルサイクラ一は、 感染症検査などに用いられる汎 用臨床検査機器であり、 すでに多くの病院に設置されている。 また、 反応操作は 簡便であり、 特殊な技能を要しない。 上記の利点は、 PCR以外の核酸増幅反応 (T MA、 NASBAS LAMPなど) を用いた場合にも得られる。
本発明の検出法の原理を、 P C Rの場合を例として、 図 1〜3を参照してさら に詳しく説明する。
図 1は正常 DNAを検体として用いた場合の反応を示す。 反応系 1は正常塩基配 列検出用ハイブリダイゼーションプローブを添加した系で、 反応系 2は変異塩基 配列検出用ハイブリダィゼーシヨンプローブを添加した系である。 図中、 黒丸は 正常塩基、 黒三角は変異塩基、 Digはジゴキシゲニン標識、 Bはピオチン標識、 GP は金粒子を意味する。
まず、 点変異箇所を含む遺伝子部位 (検出対象配列) を P C Rによって増幅す る。 このときに用いる 1対の P C Rプライマ一のうちの一方は、 その 5, 端をあ らかじめジゴキシゲニンで標識したものを用いる。 P C R反応液中には、 通常の 成分に加えて、 さらに 2種のオリゴヌクレオチド (ハイプリダイゼ一シヨンプロ —ブおよび競合プローブ) を混和しておく。 このオリゴヌクレオチドの組み合わ せには、 正常塩基配列検出用のものと変異塩基配列検出用のものの 2種類が存在 する。 正常塩基配列検出用の組み合わせでは、 その一方が正常塩基配列の点変異 部位を中央部にもち、 かつ 3, 端をビォチン標識したオリゴヌクレオチド (正常 プローブ) であり、 他方が、 変異塩基配列の点変異部位を中央部にもつ非標識の 競合オリゴヌクレオチド (変異プローブ) である。 変異塩基配列検出用の組 合 わせでは、 その一方が、 変異塩基配列の点変異部位を中央部にもち、 かつ 3 ' 端 をピオチン標識したオリゴヌクレオチド (変異プローブ) であり、 他方が正常塩 基配列の点変異部位を中央部にもつ非標識の競合ォリゴヌクレオチド (正常プロ ーブ) である。 いずれのオリゴヌクレオチドも、 ジゴキシゲニンで標識した P C Rプライマーとは逆鎖になるように設計する。
P C R反応液の組成は、 例えば、 検体 D N A 50〜100 ng、 10 mM Tris-HCl (p H 8.3 )、 50 mM KC1、 1.5 mM MgCl 2、 各 250 zMの dNTP、 1 zM PCRフォワードブラ イマ一 (5, 端をジゴキシゲニン標識) 、 1〃M PCRリバ一スプライマ一、 600 nM ハイブリダィゼ一シヨンプローブ (3, 端をピオチン標識) 、 3〃M競合非標識 オリゴヌクレオチド、 1.25 U Taq DNAポリメラ一ゼとし、 反応液量は 20〃1とす る。 P C Rの条件は、 例えば、 まず 94°Cで 2分間加熱し、 98°C10秒— 55°C30秒— 72°C30秒のサイクルを 35回繰り返した後、 72°C 3分、 98°C 3分、 65°C 1分、 55°C
1分、 45°C 1分、 35°C 1分、 25°C 1分とする。 サイクルを繰り返した後のこの過 程で、 ジゴキシゲニンで標識された PCR産物の持つ塩基配列に完全に相補的な塩 基配列を有するオリゴヌクレオチドがハイブリダィズする。 例えば、 正常塩基配 列を持つ D N Aに対して正常塩基配列検出用のオリゴヌクレオチドを組み合わせ た場合は、 ジゴキシゲニンで標識された PCR産物とピオチンで標識されたオリゴ ヌクレオチドのハイブリッドが形成される (図 1、 反応系 1 ) 。 この溶液 5〃1 を DNA Detection test strip (ロシュ社、 #卜 965- 484) などの、 ストレプトアビ ジンが固定され、 金コロイ ド標識抗ジゴキシゲニン抗体を展開可能に保持するァ フィニティークロマト試験片の試料適用部位にスポットし、 下端をバッファーに 5秒間浸し、 室温のままで 5分間放置してバッファーを展開すると、 金コロイ ド 標識抗ジゴキシゲニン抗体がジゴキシゲ二ン標識 PCR産物—ピオチン標識オリゴ ヌクレオチドのハイプリッドに結合し、 このハイプリヅ ドがさらに試験片に固定 されたストレブトアビジンに捕捉され、 赤いラインを形成するのを肉眼的にとら えることができる。 一方、 正常塩基配列を持つ D N Aに対して変異塩基配列検出 用のオリゴヌクレオチドを組み合わせた場合は、 ジゴキシゲニンで標識された PC R産物と非標識オリゴヌクレオチドのハイプリッドが形成される。 この溶液を試 験片の試料適用部位にスポットしてバッファーで展開すると、 金コロイ ド標識抗 ジゴキシゲニン抗体がジゴキシゲニン標識 PCR産物一非標識ォリゴヌクレオチド のハイプリヅドに結合するものの、 このハイプリヅドは試験片上のストレプトァ ビジンに捕捉されないため、 赤いラインを形成しない (図 1、 反応系 2 ) 。 以上 のように 2種類の反応系のそれぞれにおける赤いラインの形成を肉眼的に観察す ることにより、 検体となる DNAの遺伝子型を判定することが可能となる。 変異塩 基配列を持つ DNAにおいても、 同様の反応原理である (図 2 ) 。
この態様の操作手順を図 3に示す。 まず、 検体とする DNAと反応試薬を PCRチュ —ブ内で混和し、 サーマルサイクラ一でプログラムに従い過熱 '冷却を行って DN Aの增幅およびハイブリッド形成を行う (ステップ 1 ) 。 反応液から 5〃1をとつ て、 試験片の試料適用部位にスポットし、 試験片の下端をバッファーに浸した後、 室温に放置する (ステップ 2 ) 。 5分後、 遺伝子型判定ラインの有無によって判 定を行う (ステップ 3 ) 。 ァフィ二ティ一クロマトグラフィーが正常に完了した か否かはコントロールラインの有無によって確認できる。
本発明の検出法は、 遺伝子変異の有無を迅速かつ簡便に、 そして特別な装置を 用いずに確実に判定できる方法であり、 病院の外来診療やべッドサイ ドで遺伝子 検査を行うのに適している。 すなわち、 ポイント ·ォプ,ケアとしての遺伝子診 断を可能にするものである。 具体的には、 CYP2C19をはじめとする薬物代謝酵素 の遺伝子多型を判定し、 ある薬剤がその患者にとって適切かどうかをその場で判 定したり、 処方量の調整に役立てたりすることが可能である。 この場合、 短時間 に検査結果が得られることが重要な利点となる。
< 2 >本発明のキット
本発明のキッ トは、 D N Aポリメラ一ゼを用いて、 変異部位を含む検出対象塩 基配列を含む D N Aの増幅を行うためのプライマーと、 検出対象塩基配列に相補 的である塩基配列を有するハイプリダイゼ一シヨンプローブと、 ァフィ二ティ一 クロマトグラフィー用試験片とを含むキッ卜であって、
D N Aの増幅に用いるプライマーの少なくとも一つは、 増幅された D N Aが第 1の標識物質により標識されるように第 1の標識物質により標識されており、 ハ ィプリダイゼーシヨンプロ一プは第 2の標識物質により標識され、 ハイプリダイ ゼーシヨンプローブの有する塩基配列は、 D N Aの増幅を阻害しないように設定 されており、 試験片は第 1の標識物質および第 2の標識物質を利用して増幅され た D N Aとハイプリダイゼ一シヨンプローブとのハイプリッドを検出できるもの であることを特徴とする。 本発明のキットは、 本発明の検出法を実施するために 使用できる。
プライマ一、 ハイプリダイゼーシヨンプロ一ブ、 および、 ァフィ二ティーク口 マトグラフィ一用試験片は、 本発明の検出法に関し上記に説明した通りである。 本発明のキットは、 変異部位が点変異である場合には、 標識されたハイブリダ ィゼ一シヨンプローブの塩基配列と点変異の位置において 1塩基異なる塩基配列 を有しかつ標識されていないオリゴヌクレオチド (競合プロ一ブ) をさらに含む ことが好ましい。 このオリゴヌクレオチドは、 本発明の検出法に関し上記に説明 したとおりである。 実施例
次に、 実施例を挙げて本発明を詳細に説明するが、 下記実施例は本発明につい て具体的な認識を得る一助としてのみ挙げたものであり、 これによつて本発明の 範囲が何ら限定されるものではない。
実施例 1 糖原病 la型 g727t変異の検出
( 1 ) 反応系および操作手順
糖原病 la型 g727t変異の検出のため、 変異部位の周辺の既知の塩基配列に基づ き、 表 1に示すプライマーを調製した。 表 1
糖原病 la型 g727t変異検出用のプライマ一およびプローブ
PCRフォワードプライマ一(G6P- E5- IF- Dig)
5, -D ig-CCCAAATCCTTCCTATCTCTCACAG-35 (配列番号 1 )
PCR Uバースプラィマ一(G6P-E5- 1R(20) )
5' -TGCTGGAGTTGAGAGCCAGC-35 (配列番号 2 ) また、 プローブの鎖長の検討のため、 ハイブリダィゼ一シヨンプローブおよび 競合プローブとして表 2に示すォリゴヌクレオチドを調製した。 表 2
1 ) 正常塩基配列検出用ピオチン標識ォリゴヌクレオチド
17mer: 5' -AAGCTGAACAGGAAGAA-Biotin-35 (配列番号 3 )
15mer: 55 -AGCTGAACAGGAAGA-Biotin-3' (配列番号 4 )
13mer : 5' -GCTGAACAGGAAG-Biotin-3' (配列番号 5 )
llmer: 5' -CTGAACAGGAA-Biotin-35 (配列番号 6 )
2 ) 正常塩基配列検出用非標識競合ォリゴヌクレオチド
17mer: 5' -AAGCTGAAAAGGAAGAA-35 (配列番号 7 )
15mer: 5' -AGCTGAAAAGGAAGA-3' (配列番号 8 )
13mer: 5' -GCTGAAAAGGAAG-3' (配列番号 9 )
llmer: 5' -CTGAAAAGGAA-3' (配列番号 1 0 )
3 ) 変異塩基配列検出用ピオチン標識ォリゴヌクレオチド
17mer: 5' -AAGCTGAAAAGGAAGAA-Biotin-35 (配列番号 1 1 )
15mer: 5' -AGCTGAAAAGGAAGA-Biotin-35 (配列番号 1 2 )
13mer: 55 -GCTGAAAAGGAAG-Biotin-3' (配列番号 1 3 )
llmer: 5' -CTGAAAAGGAA-Biotin-3' (配列番号 1 4 )
4 ) 変異塩基配列検出用非標識競合ォリゴ
17mer: 5' -AAGCTGAACAGGAAGAA-3' (配列番号 1 5 )
15mer: 55 -AGCTGAACAGGAAGA-35 (配列番号 1 6 )
13mer: 5' -GCTGAACA6GAAG-35 (配列番号 1 7 )
llmer : 5' -CTGAACAGGAA-35 (配列番号 1 8 )
P C R反応液の組成は、 検体 D N A 50-100 ng、 10 mM Tris-HCl (pH 8. 3)、 50 mM KCK 1.5 mM MgC , 各 250〃Mの dNTP、 1〃M PCRフォワードプライマ一、 1 j PCRリバースプライマー (5, 端をジゴキシゲニン標識) 、 600 nMハイプリ ダイゼーシヨンプローブ (3, 端をピオチン標識) 、 所定濃度の競合非標識オリ ゴヌクレオチド、 1.25 U Taq MAポリメラーゼとし、 反応液量は 20〃1とした。 P C Rの条件は、 まず 94°Cで 2分間加熱し、 98°C10秒一 55°C30秒一 72°C30秒のサ イクルを 35回繰り返した後、 72°C 3分、 98°C 3分、 65°C 1分、 55°C 1分、 45°C 1 分、 35°C 1分、 25°C 1分とした。
この溶液 5〃1を試験片 (DNA Detection Test Strip、 ロシュ社、 # 965- 484、 ストレプトアビジンが固定され、 金コロイ ド標識抗ジゴキシゲニン抗体を展開可 能に保持するァフィ二ティーク口マト試験片) の試料適用部位にスポットし、 下 端をバッファーに 5秒間浸し、 室温のままで 5分間放置してバッファーを展開し た。 放置後、 遺伝子型判定線の有無を肉眼的に判定した。
( 2 ) 非標識オリゴヌクレオチドによる競合の検討
標識ハイプリダイゼーシヨンプローブを 17merとし、 競合プローブを反応液中 に添加せずに検出を行った。 検体とする D N Aは g727アレルのホモ接合子 (正常 DNA) と t727アレルのホモ接合子 (変異 DNA) を用い、 ハイプリダイゼーシヨンプ ローブとしては正常塩基配列検出用のものと変異塩基配列検出用のものを用いた。 結果を図 4に示す。 図中、 DNAに関する Wtおよび Mutはそれそれ正常 DNAおよび変 異 DNAを示し、 ハイブリダィゼ一シヨンプロ一ブに関する Wtおよび Mutはそれそれ 正常塩基検出用および変異塩基配列検出用を示す (以下の図 5〜 7においても同 様である) 。
いずれの組み合わせでも赤い反応ラインが認められる偽陽性が出現し、 遺伝子 型を決定することができなかった (図 4、 レーン 1〜4 ) 。
競合プローブ(17mer )を反応液中にハイブリダイゼーシヨンプローブの 5〜 5 0倍量 (モル濃度) 添加して同様の実験を行った。 結果を図 5に示す。
競合プローブの添加により偽陽性の反応が著しく減少した。 すなわち、 正常 DN Aに対する変異塩基配列検出用プローブの反応系 (図 5、 レーン 6〜8 ) および 変異 DNAに対する正常塩基配列検出用プローブの反応系 (同、 レーン 1 0〜1 2 ) において、 ごくわずかな赤い反応ラインを認めるのみであった。 偽陽性反応の抑 制効果はいずれの添加量においても差異を認めず、 5 0倍量の添加でも偽陽性の 反応を完全に抑制することはできなかった。 一方、 2 5〜5 0倍量の添加では、 本来の陽性反応を抑制しやや反応ラインが薄くなる傾向を認めた (同、 レーン 3、 4、 1 5および 1 6 ) 。
( 3 ) ハイプリダイゼーションプローブの鎖長の検討
ハイブリダィゼーシヨンプロ一ブおよび競合プロ一ブとして 17mer、 15mer、 13 mer、 llmerのものを使用して検討を行った。 ここでは、 競合プローブの反応液添 加量をハイブリダィゼーシヨンプローブの 3 0倍に固定した。 結果を図 6に示す。 正常 DNAに対する変異塩基配列検出用プローブの反応系において、 15merではわ ずかな偽陽性が出現し (図 6、 レーン 4 ) 、 13merと llmerでは消失した (同、 レ ーン 5および 6 ) 。 変異 MAに対する正常塩基配列検出用プロープの反応系では、 15mer、 13mer、 llmerのいずれにおいても偽陽性は消失した (同、 レーン 7〜9 ) 。 しかしながら、 llmerでは本来の陽性反応が減弱する傾向を認めた (同、 レーン 3および 1 2 ) 。
以上の検討に基づいて、 ハイプリダイゼ一シヨンプローブおよび競合プローブ の鎖長を 12mer (表 3 ) とし、 競合プローブの添加量を 5倍として、 正常 DNA (g7 27アレルのホモ接合子) 、 保因者 DNA (g727アレルと t727アレルのヘテロ接合子) 、 患者 DNA (t727アレルのホモ接合子) を対象に、 上記のように検出を行った。 結 果を図 7に示す。
遺伝子型と完全に一致する結果が得られ、 十分な陽性の反応ラインが観察され た (図 7、 レーン 1および 4並びに 5および 6 ) —方、 偽陽性はまったく認めら れなかった (レーン 2および 3 ) 表 3
正常塩基配列検出用ピオチン標識ォリゴヌクレオチド(GSD727- AS0- W12-Bio) 5' -GCTGAACAGGAA-Biotin-3' (配列番号 1 9 )
正常塩基配列検出用非標識競合ォリゴヌクレオチド(GSD727-AS0- M12)
5' -GGTGAAAAGGAA-35 (配列番号 2 0 )
変異塩基配列検出用ビォチン標識ォリゴヌクレオチド(GSD727- ASO- M12-Bio) 55 -GCTGAAAAGGAA-Biotin-35 (配列番号 2 1 )
変異塩基配列検出用非標識競合ォリゴヌクレオチド(GSD727- AS0-W12)
5' -GCTGAACAGGAA-3' (配列番号 2 2 ) 実施例 2 中鎖ァシル CoA脱水素酵素欠損症の a985g変異、 高グリシン血症 GLDC 遺伝子の gl691t変異、 薬剤代謝酵素遺伝子 CYP2C19の g681a、 アルデヒド脱水素酵 素 2の Glu487Lys多型の点変異の検出
中鎖ァシル CoA脱水素酵素欠損症の a985g変異、 高グリシン血症 GLDC遺伝子の gl 691t変異、 薬剤代謝酵素遺伝子 CYP2C19の g681a、 アルデヒド脱水素酵素 2の Glu4 87Lys多型の点変異について、 本発明の検出法による点変異の検出を行った。 それそれの点変異の存在部位を含む塩基配列を増幅する PCRプライマーは、 PCR 反応におけるァニール温度が 55°Cで増幅が行えるように、 鎖長を調節した。 また、 ハイブリダィゼ一シヨンプロ一ブは、 Tm値が 35〜40°Cとなるように設計した。 結 果として、 鎖長は、 10mer〜15inerとなった。 プライマ一、 ハイブリダィゼ一ショ ンプロープぉよび競合プロ一ブの塩基配列を表 4に示す。 表 4
1 ) 中鎖ァシル CoA脱水素酵素欠損症遺伝子 a985g変異検出用のプライマ一および プロ一ブ
PCRフォワードプライマ一(Dig- MCAD- F1 ):
5, -Dig-CTTTTTAATTCTAGCACCAAGCAATATC-3' (配列番号 2 3 )
PCRリバースブラィマ一(Dig- MCAD-R1 ):
5, -D ig-TCCAAGTATCTGCACAGCAT-35 (配列番号 2 4 )
正常塩基配列検出用ピオチン標識ォリゴヌクレオチド(Bio- MCAD985- W13)
5' -GCAATGAAAGTTG-Biotin-3' (配列番号 2 5 )
正常塩基配列検出用非標識競合ォリゴヌクレオチド(MCAD985-M13)
5' -GCAATGGAAGTTG-3' (配列番号 2 6 )
変異塩基配列検出用ピオチン標識ォリゴヌクレオチド(Bio- MCAD985- M12) 55 -AACTTCCATTGC-Biotin-3' (配列番号 2 7 )
変異塩基配列検出用非標識競合ォリゴヌクレオチド(MCAD985-W12)
55 -AACTTTCATTGC-3' (配列番号 2 8 ) 表 4 (続き)
2 ) GLDC遺伝子 gl691t変異検出用のプライマ一およびプローブ
PCRフォワードプライマ一(Dig- GLDC-F )
5' -Dig-GTCTCTTGGTCCTACCTAATA-35 (配列番号 2 9 )
PCRリバ一スプライマ一( GLDC- R )
55 -TTAGTGAAGCTAGAACACTG-35 (配列番号 3 0 )
正常塩基配列検出用ピオチン標識ォリゴヌクレオチド(Bio-S564I- W13)
5' -GACGAACTGTTCA-Biotin-3' (配列番号 3 1 )
正常塩基配列検出用非標識競合ォリゴヌクレオチド(S564I-M13)
5' -GACGAAATGTTCA-3' (配列番号 3 2 )
変異塩基配列検出用ピオチン標識ォリゴヌクレオチド(Bio- S564I - M) 5' -GACGAAATGTTCA-Biotin-3' (配列番号 3 3 )
変異塩基配列検出用非標識競合ォリゴヌクレオチド(S564I-W)
55 -GACGAACTGTTCA-3' (配列番号 3 4 )
3 ) CYP2C19遺伝子 CYP2C19*2多型検出用のプライマーおよびプロ一ブ PCRフォヮ一ドプライマ一(CYP2C19- P1 )
5' -AATTACAACCAGAGCTTGGC-35 (配列番号 3 5 )
PCRリバースプラィマー(Dig- CYP2C19- P2)
5' -Dig-AATATCACTTTCCATAAAAGCAAG-35 (配列番号 3 6 )
正常塩基配列検出用ビォチン標識ォリゴヌクレオチド(Bio- CYP2C19 - W)
5' -TCCCGGGAAC-Biotiii-3' (配列番号 3 7 )
正常塩基配列検出用非標識競合ォリゴヌクレオチド(CYP2C19 - M)
5' -TTCCCAGGAAC-3' (配列番号 3 8 ) '
多型塩基配列検出用ピオチン標識ォリゴヌクレオチド(Bio-CYP2C19 - M) 5' -TTCCCAGGAAC-Biotin-35 (配列番号 3 9 )
多型塩基配列検出用非標識競合ォリゴヌクレオチド(CYP2C19- W) 5' -TCCCGGGAAC-3' (配列番号 4 0 )
表 4 (続き)
4 ) アルデヒド脱水素酵素 2遺伝子多型検出用のプライマ一およびプローブ
PCRフォヮ一ドプライマ一 (Dig- ALDH2- AF )
53 -D ig-CAAATTACAGGGTCAACTGCTATGA-3' (配列番号 4 1 )
PCRリバースブラィマ一(Dig- ALM2- AR2 )
5' -D ig-AGCAGGTCCTGAACTTCCAGCAG-35 (配列番号 4 2 )
正常塩基配列検出用ピオチン標識ォリゴヌクレオチド(Bio- ALDH2- PW2 )
5, -B iot in-ATACACTGAAGTGA-B iot in-3' (配列番号 4 3 )
正常塩基配列検出用非標識競合ォリゴヌクレオチド(ALDH2- CM2)
5' -ATACACTAAAGTGA-3' (配列番号 4 4 )
多型塩基配列検出用ピオチン標識ォリゴヌクレオチド(Bio- ALDH2- PM2 )
5' -Biotin-ATACACTAAAGTGAA-Biotin-3' (配列番号 4 5 )
多型塩基配列検出用非標識競合ォリゴヌクレオチド(ALDH2- CW2)
5' -ATACACTGAAGTGAA-3' (配列番号 4 6 ) 上記プライマ一およびプローブを用いることの他の PCRの条件やプロ一ブの濃 度等の条件は、 上記のいずれの変異の検出においてもすべて実施例 1と同じであ つた。
これらの条件下で、 検出を行ったところ、 全ての検出系において正しい遺伝子 型の判定が可能であった (図 8の a、 b、 cおよび d ) 。 アルデヒド脱水素酵素 2の Glu487Lys多型検出においては、 変異塩基配列を検出するための反応系にお いて反応ラインが薄いため、 競合非標識ォリゴヌクレオチドを反応系に混和しな いようにしたところ、 十分な反応ラインの形成が観察された。 いずれの反応にお いても、 偽陽性は認められなかった。
サーマルサイクラ一における反応が終了してから、 遺伝子型判定までに要する 時間は 1 0分以内であった。 また、 この試験片をそのまま乾燥させたものは、 室 温に保存した場合、 少なくとも 2年後でも肉眼的な判定が可能であった。
以上の結果から、 本発明の検出法によって、 プライマ一ならびにハイブリダィ ゼ一シヨンプロ一ブぉよび競合プロ一ブの設計および反応条件は、 個々の遺伝子 変異に応じて若干の調整が必要であるものの、 5つの遺伝子における各変異 ·多 型を、 簡便 *迅速に検出し、 検体 DNAの遺伝子型を確定できることが示された。 従って、 本発明の検出法は汎用性を持つものであると認められる。 実施例 3 嚢胞性線維症膜貫通型調節蛋白質遺伝子の deltaF508欠失変異、 テ ィザックス病の HEXA遺伝子の 1277insTATC挿入変異、 乳癌の BRCA1遺伝子の 5382in sC挿入変異、 乳癌の BRCA2遺伝子の 6174delT欠失変異、 血栓症凝固系第 V因子遺 伝子の G1691A点変異の検出
嚢胞性線維症膜貫通型調節蛋白質遺伝子の deltaF508欠失変異、 ティザックス 病の HEXA遺伝子の 1277insTATC挿入変異、 乳癌の BRCA1遺伝子の 5382insC挿入変異、 乳癌の BRCA2遺伝子の 6174delT欠失変異、 血栓症凝固系第 V因子遺伝子の G1691A 点変異について、 本発明の検出法による変異の検出を行った。
それぞれの変異の存在部位を含む塩基配列を増幅する PCRプライマーは、 PCR反 応におけるァニール温度が 55°Cで増幅が行えるように、 鎖長を調節した。 また、 ハイブリダィゼ一シヨンプローブは、 Tm値が 35〜40°Cとなるように設計した。 結 果として、 鎖長は、 10mer〜15merとなった。 プライマ一、 ハイプリダイゼーショ ンプローブおよび競合プローブの塩基配列を表 5に示す。 なお、 1 )〜4 ) はい ずれも塩基の欠失又は挿入の変異であるため、 競合プローブは用いなかった。 ま た、 3 ) ~ 5 ) は、 ヘテロ接合子でも症状を示すため、 臨床的には正常塩基配列 を持つ遺伝子の有無を調べる必要がないので、 正常塩基配列検出用プロ一プは用 いなかった。 表 5
1 ) 嚢胞性線維症膜貫通型調節蛋白質遺伝子 deltaF508欠失変異検出用のブラ イマ一およびプロ一ブ
PCRフォヮ一ドプライマ一
5, -ATTATGCCTGGCACCATTAAAG-3' (配列番号 4 7 )
PCRリバースプライマー
5' -Dig-CATTCACAGTAGCTTACCCA-3' (配列番号 4 8 )
正常塩基配列検出用ピオチン標識ォリゴヌクレオチド
5, -AATATCATTGGTGTT-Biotin-3' (配列番号 4 9 )
変異塩基配列検出用ビォチン標識ォリゴヌクレオチド
5' -TATCATCTTTGGTG-Biotin-3' (配列番号 5 0 ) 表 5 (続き)
2 ) ティザヅクス病の HEXA遺伝子の 1277insTATC挿入変異検出用のプライマーお よびプローブ
PCRフォワードプライマ一
5' -CCAGGAATCTCCTCAGCTTTGTGT-3' (配列番号 5 1 )
PCRリバースプライマ一
5' -Dig-AGCCTCCTTTGGTTAGCAAGG-35 (配列番号 5 2 )
正常塩基配列検出用ピオチン標識ォリゴヌクレオチド
5' -TATATCTATCCTATG-Biotin-3' (配列番号 5 3 )
変異塩基配列検出用ピオチン標識ォリゴヌクレオチド
5' -GTATATCCTATGG-Biotin-35 (配列番号 5 4 )
3 ) 乳癌の BRCA1遺伝子の 5382insC揷入変異検出用のプライマーおよびプローブ
PCRフォヮ一ドプライマ一
55 -CTTTCAGCATGATTTTGAAGTC-3' (配列番号 5 5 )
PCRリバ一スプライマ一
55 -Dig-GGGAGTGGAATACAGAGTGG-35 (配列番号 5 6 )
変異塩基配列検出用ピオチン標識ォリゴヌクレオチド
5' -AGAATCCCCAGGA-Biotin-35 (配列番号 5 7 )
4 ) 乳癌の BRCA2遺伝子の 6174delT欠失変異検出用のブラィマーおよびプローブ
PCRフォヮ一ドプライマ一
5, -GATGAATGTAGCACGCATTC-35 (配列番号 5 8 )
PCRリバースプライマ一
5' -Dig-TCTTGTGAGCTGGTCTGAA-3' (配列番号 5 9 )
変異塩基配列検出用ビォチン標識ォリゴヌクレオチド
5' -ACAGCAAGGGAAAAT-Biotin-35 (配列番号 6 0 )
5 ) 血栓症凝固系第 V因子遺伝子の G1691A変異検出用のプライマーおよびプロ一 ブ.
PCRフォワードプライマー
5' -GGTTCCAAGTAGAATATTTAAAGAA-3' (配列番号 6 1 )
PCRリバースプライマー
5' -D ig-CCATTATTTAGCCAGGAGACCT-35 (配列番号 6 2 )
変異塩基配列検出用ピオチン標識ォリゴヌクレオチド
5' -ACAGGCAAGGAA-Biotin-35 (配列番号 6 3 )
変異塩基配列検出用非標識競合ォリゴヌクレオチド
5' -ACAGGCGAGGAA-35 (配列番号 6 4 ) 上記プライマ一およびプローブを用いることの他の PCRの条件やプローブの濃 度等の条件は、 上記のいずれの変異の検出においてもすべて実施例 1と同じであ つた o
これらの条件下で、 検出を行ったところ、 全ての検出系において遺伝子型の判 定が可能であった (図 9 ) 。 いずれの反応においても、 偽陽性は認められなかつ た。
サーマルサイクラ一における反応が終了してから、 遺伝子型判定までに要する 時間は 1 0分以内であった。 また、 この試験片をそのまま乾燥させたものは、 室 温に保存した場合、 少なくとも 2年後でも肉眼的な判定が可能であった。
以上の結果から、 本発明の検出法によって、 プライマ一ならびにハイブリダィ ゼーシヨンプローブおよび競合プローブの設計および反応条件は、 個々の遺伝子 変異に応じて若干の調整が必要であるものの、 挿入,欠失変異を含む変異を、 簡 便 -迅速に検出し、 検体 DNAの遺伝子型を確定できることが示された。 従って、 本発明の検出法は汎用性を持つものであると認められる。 産業上の利用可能性
本発明によれば、 通常のサーマルサイクラ一以外に特殊な機器や装置を用いず に、 簡便 ·迅速 ·確実に、 病因遺伝子変異の同定や、 疾患関連遺伝子および薬剤 代謝酵素遺伝子の多型の検出を行うことができる。 本発明の検出法は、 ベッドサ ィ ドでの検出を可能にし、 オーダ一メイ ド医療を容易にする手法であると考えら れる。

Claims

請求の範囲
1 . D N Aポリメラーゼを用いて、 変異部位を含む検出対象塩基配列を含む D NAの増幅を行う工程、 増幅された D NAと、 検出対象塩基配列に相補的であ る塩基配列を有するハイプリダイゼーシヨンプローブとをハイプリダイズさせる 工程、 および、 ハイプリダイゼ一シヨンにより形成されたハイブリッドを検出す る工程を含む塩基配列の検出方法であって、
D N Aの増幅に用いるブラィマ一の少なくとも一つは、 増幅された D N Aが第 1の標識物質により標識されるように第 1の標識物質により標識されており、 ハ ィブリダイゼ一シヨンプロ一ブは第 2の標識物質により標識されるとともに、 D N Aの増幅が行われる反応液に含まれており、 ハイプリダイゼ一シヨンプローブ の有する塩基配列は、 D N Aの増幅を阻害しないように設定されており、 ハイブ リッドの検出は第 1の標識物質および第 2の標識物質を利用してァフィ二ティ一 クロマトグラフィーにより行われる前記方法。
2 . 変異部位が点変異であり、 D N Aの増幅が行われる反応液が、 増幅され た D N Aと標識されたハイプリダイゼーシヨンプローブとのハイブリダイゼ一シ ョンの特異性を高めるのに十分な量の、 標識されたハイブリダイゼ一シヨンプロ 一プの塩基配列と点変異の位置で 1塩基異なる塩基配列を有しかつ標識されてい ないォリゴヌクレオチドをさらに含む請求項 1記載の方法。
3 . D N Aの増幅が P C I こよる増幅である請求項 1または 2記載の方法。
4 . D N Aポリメラ一ゼを用いて、 変異部位を含む検出対象塩基配列を含む D N Aの増幅を行うためのプライマ一と、 検出対象塩基配列に相補的である塩基 配列を有するハイプリダイゼーションプローブと、 ァフィ二ティークロマトグラ フィ一用試験片とを含むキッ卜であって、
D N Aの増幅に用いるプライマーの少なくとも一つは、 増幅された D N Aが第 1の標識物質により標識されるように第 1の標識物質により標識されており、 ハ ィプリダイゼーシヨンプローブは第 2の標識物質により標識され、 ハイプリダイ ゼ一シヨンプローブの有する塩基配列は、 D N Aの増幅を阻害しないように設定 されており、 試験片は第 1の標識物質および第 2の標識物質を利用して増幅され た D NAとハイブリダイゼ一ションプローブとのハイブリヅドを検出できるもの である前言 3キヅ ト。
5 . 変異部位が点変異であり、 標識されたハイブリダィゼ一シヨンプローブ の塩基配列と点変異の位置で 1塩基異なる塩基配列を有しかつ標識されていない オリゴヌクレオチドをさらに含む請求項 4記載のキット。
6 . プライマーが P C R用プライマ一である請求項 4または 5記載のキヅト。
PCT/JP2003/014204 2002-11-07 2003-11-07 遺伝子変異検出法 WO2004042057A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA2506654A CA2506654C (en) 2002-11-07 2003-11-07 Method of detecting gene mutation
DE60321961T DE60321961D1 (de) 2002-11-07 2003-11-07 Verfahren zum genmutationsnachweis
AU2003277612A AU2003277612A1 (en) 2002-11-07 2003-11-07 Method of detecting gene mutation
JP2004549640A JP4425142B2 (ja) 2002-11-07 2003-11-07 遺伝子変異検出法
EP03810655A EP1580269B1 (en) 2002-11-07 2003-11-07 Method of detecting gene mutation
US10/533,750 US20060127907A1 (en) 2002-11-07 2003-11-07 Method of detecting gene mutation
NO20052692A NO338640B1 (no) 2002-11-07 2005-06-06 Fremgangsmåte for påvisning av genmutasjon ved amplifisering av DNA med et mutasjonssete ved hjelp av DNA-polymerase, hybridisering og påvisning av en hybrid som dannes ved affinitetskromatografi.
US12/119,141 US9677127B2 (en) 2002-11-07 2008-05-12 Method of detecting gene mutation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-323419 2002-11-07
JP2002323419 2002-11-07

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10533750 A-371-Of-International 2003-11-07
US12/119,141 Continuation US9677127B2 (en) 2002-11-07 2008-05-12 Method of detecting gene mutation

Publications (1)

Publication Number Publication Date
WO2004042057A1 true WO2004042057A1 (ja) 2004-05-21

Family

ID=32310418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014204 WO2004042057A1 (ja) 2002-11-07 2003-11-07 遺伝子変異検出法

Country Status (11)

Country Link
US (2) US20060127907A1 (ja)
EP (1) EP1580269B1 (ja)
JP (1) JP4425142B2 (ja)
KR (1) KR101078977B1 (ja)
CN (1) CN100343389C (ja)
AT (1) ATE399882T1 (ja)
AU (1) AU2003277612A1 (ja)
CA (1) CA2506654C (ja)
DE (1) DE60321961D1 (ja)
NO (1) NO338640B1 (ja)
WO (1) WO2004042057A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008306935A (ja) * 2007-06-12 2008-12-25 Toyobo Co Ltd 核酸の迅速な検出方法
WO2009034842A1 (ja) * 2007-09-11 2009-03-19 Kaneka Corporation 核酸検出方法、および核酸検出キット
JP2010273660A (ja) * 2009-06-01 2010-12-09 Toppan Printing Co Ltd 部分競合型プローブを用いた標的塩基配列の検出方法
JP2011062088A (ja) * 2009-09-15 2011-03-31 Ihi Corp レジオネラ菌検出方法
WO2019004195A1 (ja) * 2017-06-30 2019-01-03 キヤノン株式会社 クロマトグラフィー用のキット、クロマトグラフィー用の展開液、及びクロマトグラフィー

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8338109B2 (en) 2006-11-02 2012-12-25 Mayo Foundation For Medical Education And Research Predicting cancer outcome
AU2009253675A1 (en) 2008-05-28 2009-12-03 Genomedx Biosciences, Inc. Systems and methods for expression-based discrimination of distinct clinical disease states in prostate cancer
US10407731B2 (en) 2008-05-30 2019-09-10 Mayo Foundation For Medical Education And Research Biomarker panels for predicting prostate cancer outcomes
DE102008028908B3 (de) * 2008-06-18 2009-12-31 IfP Privates Institut für Produktqualität GmbH Nachweis eines Analyten in einem wässrigen Medium
CA2743104C (en) 2008-11-07 2019-11-26 University Of Utah Research Foundation Preferential amplification and detection of minor allele
US10236078B2 (en) 2008-11-17 2019-03-19 Veracyte, Inc. Methods for processing or analyzing a sample of thyroid tissue
GB2477705B (en) 2008-11-17 2014-04-23 Veracyte Inc Methods and compositions of molecular profiling for disease diagnostics
US9495515B1 (en) 2009-12-09 2016-11-15 Veracyte, Inc. Algorithms for disease diagnostics
US9074258B2 (en) 2009-03-04 2015-07-07 Genomedx Biosciences Inc. Compositions and methods for classifying thyroid nodule disease
WO2010129934A2 (en) 2009-05-07 2010-11-11 Veracyte, Inc. Methods and compositions for diagnosis of thyroid conditions
US10446272B2 (en) 2009-12-09 2019-10-15 Veracyte, Inc. Methods and compositions for classification of samples
CN106498076A (zh) 2010-05-11 2017-03-15 威拉赛特公司 用于诊断病状的方法和组合物
CA2858581A1 (en) 2011-12-13 2013-06-20 Genomedx Biosciences, Inc. Cancer diagnostics using non-coding transcripts
EP2885640B1 (en) 2012-08-16 2018-07-18 Genomedx Biosciences, Inc. Prostate cancer prognostics using biomarkers
US20140244556A1 (en) * 2013-02-27 2014-08-28 Abdul Saleh Methods for and apparatus generating automated pharmaco genetics correlation
US11976329B2 (en) 2013-03-15 2024-05-07 Veracyte, Inc. Methods and systems for detecting usual interstitial pneumonia
SG11201506723XA (en) 2013-03-15 2015-09-29 Veracyte Inc Methods and compositions for classification of samples
US20170335396A1 (en) 2014-11-05 2017-11-23 Veracyte, Inc. Systems and methods of diagnosing idiopathic pulmonary fibrosis on transbronchial biopsies using machine learning and high dimensional transcriptional data
CN104531883B (zh) * 2015-01-14 2018-02-02 北京圣谷同创科技发展有限公司 Pkd1基因突变的检测试剂盒及检测方法
JP6757942B2 (ja) * 2016-08-03 2020-09-23 東洋鋼鈑株式会社 ハイブリダイゼーション用バッファー組成物及びハイブリダイゼーション方法
US11414708B2 (en) 2016-08-24 2022-08-16 Decipher Biosciences, Inc. Use of genomic signatures to predict responsiveness of patients with prostate cancer to post-operative radiation therapy
CA3050984A1 (en) 2017-01-20 2018-07-26 Decipher Biosciences, Inc. Molecular subtyping, prognosis, and treatment of bladder cancer
US11873532B2 (en) 2017-03-09 2024-01-16 Decipher Biosciences, Inc. Subtyping prostate cancer to predict response to hormone therapy
AU2018266733A1 (en) 2017-05-12 2020-01-16 Veracyte, Inc. Genetic signatures to predict prostate cancer metastasis and identify tumor aggressiveness
US11217329B1 (en) 2017-06-23 2022-01-04 Veracyte, Inc. Methods and systems for determining biological sample integrity
CN108315408A (zh) * 2018-04-26 2018-07-24 宁波美丽人生医学检验所有限公司 用于检测硝酸甘油药物相关基因的引物组合物及试剂盒

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0332435A2 (en) * 1988-03-10 1989-09-13 Zeneca Limited Method of detecting nucleotide sequences
EP0336731A2 (en) * 1988-04-06 1989-10-11 City Of Hope Method of amplifying and detecting nucleic acid sequences
JPH04144700A (ja) * 1990-10-08 1992-05-19 Toyobo Co Ltd 毒素原性大腸菌検出用オリゴヌクレオチド、毒素原性大腸菌の検出法及び検出用キット
WO1994001447A1 (en) * 1992-07-02 1994-01-20 Eriphyle B.V. Methods of single nucleotide primer extension to detect specific alleles and kits therefor
JPH0779779A (ja) * 1993-09-13 1995-03-28 Toyobo Co Ltd 毒素原性大腸菌検出用オリゴヌクレオチドおよびその用途
US5605794A (en) * 1991-09-06 1997-02-25 Boehringer Mannheim Gmbh Method of detecting variant nucleic acids
US6040166A (en) * 1985-03-28 2000-03-21 Roche Molecular Systems, Inc. Kits for amplifying and detecting nucleic acid sequences, including a probe
WO2003066897A2 (en) * 2002-02-08 2003-08-14 Evotec Technologies Gmbh Specific multiplex analysis of nucleic acids

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5753433A (en) * 1909-12-05 1998-05-19 Boehringer Mannheim Gmbh Method for the sensitive detection of nucleic acids
CA1284931C (en) 1986-03-13 1991-06-18 Henry A. Erlich Process for detecting specific nucleotide variations and genetic polymorphisms present in nucleic acids
US5635347A (en) * 1986-04-30 1997-06-03 Igen, Inc. Rapid assays for amplification products
KR920700360A (ko) * 1989-03-22 1992-02-19 하리크 프리드리히 미끄럼 베어링
NZ240079A (en) * 1990-10-09 1993-07-27 Boehringer Mannheim Gmbh Method for the detection of a nucleic acid or part thereof
US5650277A (en) * 1992-07-02 1997-07-22 Diagenetics Ltd. Method of determining the presence and quantifying the number of di- and trinucleotide repeats
EP0812211A4 (en) * 1994-03-18 1998-12-16 Gen Hospital Corp METHODS OF DETECTING ENHANCED POLYMORPHISMS AND RESTRICTION SITE CLIVES
EP0777749B1 (en) * 1994-08-19 2002-10-30 PE Corporation (NY) Coupled amplification and ligation method
US6090620A (en) * 1995-12-29 2000-07-18 University Of Washington Genes and gene products related to Werner's syndrome
US6613508B1 (en) * 1996-01-23 2003-09-02 Qiagen Genomics, Inc. Methods and compositions for analyzing nucleic acid molecules utilizing sizing techniques
WO1997027332A1 (en) * 1996-01-26 1997-07-31 Innogenetics N.V. Method for detection of drug-induced mutations in the reverse transcriptase gene
US6013440A (en) * 1996-03-11 2000-01-11 Affymetrix, Inc. Nucleic acid affinity columns
DE19730359A1 (de) * 1997-07-15 1999-01-21 Boehringer Mannheim Gmbh Integriertes Verfahren und System zur Amplifizierung und zum Nachweis von Nukleinsäuren
DE19732086C2 (de) * 1997-07-25 2002-11-21 Univ Leipzig Verfahren zur quantitativen Bestimmung von Eubakterien
US5969123A (en) * 1998-03-06 1999-10-19 Millennium Biotherapeutics, Inc. Nucleic acid molecules derived from a brain tissue library
AU2144000A (en) * 1998-10-27 2000-05-15 Affymetrix, Inc. Complexity management and analysis of genomic dna
US7582420B2 (en) * 2001-07-12 2009-09-01 Illumina, Inc. Multiplex nucleic acid reactions

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6040166A (en) * 1985-03-28 2000-03-21 Roche Molecular Systems, Inc. Kits for amplifying and detecting nucleic acid sequences, including a probe
EP0332435A2 (en) * 1988-03-10 1989-09-13 Zeneca Limited Method of detecting nucleotide sequences
EP0336731A2 (en) * 1988-04-06 1989-10-11 City Of Hope Method of amplifying and detecting nucleic acid sequences
JPH04144700A (ja) * 1990-10-08 1992-05-19 Toyobo Co Ltd 毒素原性大腸菌検出用オリゴヌクレオチド、毒素原性大腸菌の検出法及び検出用キット
US5605794A (en) * 1991-09-06 1997-02-25 Boehringer Mannheim Gmbh Method of detecting variant nucleic acids
WO1994001447A1 (en) * 1992-07-02 1994-01-20 Eriphyle B.V. Methods of single nucleotide primer extension to detect specific alleles and kits therefor
JPH0779779A (ja) * 1993-09-13 1995-03-28 Toyobo Co Ltd 毒素原性大腸菌検出用オリゴヌクレオチドおよびその用途
WO2003066897A2 (en) * 2002-02-08 2003-08-14 Evotec Technologies Gmbh Specific multiplex analysis of nucleic acids

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008306935A (ja) * 2007-06-12 2008-12-25 Toyobo Co Ltd 核酸の迅速な検出方法
WO2009034842A1 (ja) * 2007-09-11 2009-03-19 Kaneka Corporation 核酸検出方法、および核酸検出キット
JPWO2009034842A1 (ja) * 2007-09-11 2010-12-24 株式会社カネカ 核酸検出方法、および核酸検出キット
JP2010273660A (ja) * 2009-06-01 2010-12-09 Toppan Printing Co Ltd 部分競合型プローブを用いた標的塩基配列の検出方法
JP2011062088A (ja) * 2009-09-15 2011-03-31 Ihi Corp レジオネラ菌検出方法
WO2019004195A1 (ja) * 2017-06-30 2019-01-03 キヤノン株式会社 クロマトグラフィー用のキット、クロマトグラフィー用の展開液、及びクロマトグラフィー

Also Published As

Publication number Publication date
NO20052692L (no) 2005-06-06
EP1580269B1 (en) 2008-07-02
DE60321961D1 (de) 2008-08-14
US20060127907A1 (en) 2006-06-15
CA2506654C (en) 2014-02-25
KR20050086431A (ko) 2005-08-30
CN100343389C (zh) 2007-10-17
AU2003277612A1 (en) 2004-06-07
NO20052692D0 (no) 2005-06-06
CN1729289A (zh) 2006-02-01
ATE399882T1 (de) 2008-07-15
JPWO2004042057A1 (ja) 2006-03-09
US20080318238A1 (en) 2008-12-25
EP1580269A4 (en) 2006-01-11
JP4425142B2 (ja) 2010-03-03
EP1580269A1 (en) 2005-09-28
CA2506654A1 (en) 2004-05-21
US9677127B2 (en) 2017-06-13
NO338640B1 (no) 2016-09-26
KR101078977B1 (ko) 2011-11-01

Similar Documents

Publication Publication Date Title
WO2004042057A1 (ja) 遺伝子変異検出法
JP3937136B2 (ja) 塩基多型の検出方法
AU700959B2 (en) Immobilized mismatch binding protein for detection or purification of mutations or polymorphisms
JP3421036B2 (ja) Dna配列の解析のための化学的方法
WO1995002068A1 (fr) Methode de discrimination des acides nucleiques et necessaire d&#39;essai a cette fin
WO2005072133A2 (en) Nucleic acid detection
JP2007525998A (ja) 脆弱x症候群などのstrpの検出
AU5346199A (en) Diagnostic methods using serial testing of polymorphic loci
EP2450443A1 (en) Target sequence amplification method, polymorphism detection method, and reagents for use in the methods
JP2000513202A (ja) 核酸の塩基配列決定または遺伝的置換の大量スクリーニング法
KR101360408B1 (ko) 좌심실비대와 연관된 단일염기다형성 및 그의 용도
JP2007068429A (ja) Il−10多型検出による消化器系疾患罹患の判定方法およびそのキット
JP5720564B2 (ja) 遺伝子型の識別方法
JP2982304B2 (ja) 核酸の識別方法及び核酸の識別用検査セット
JP5143450B2 (ja) Hla−bローカスにおける新規アリル
WO2014171698A1 (ko) 제 1 형 근긴장성 이영양증의 진단 방법
JP5860667B2 (ja) Egfrエクソン21l858r遺伝子多型検出用プライマーセット及びその用途
KR101278220B1 (ko) 천식환자에서 비강 폴립 검출용 키트 및 이의 이용
JP5017947B2 (ja) 複数の塩基多型の同定方法
KR20160040677A (ko) B 형 간염의 만성화 소인의 검출 방법
JP5504676B2 (ja) 遺伝子型の識別方法
JP2002209584A (ja) 塩基多型を検出する方法
CN105483280A (zh) 基于AllGlo探针的VKORC1基因多态性检测分型试剂盒及其分型方法
WO2000034515A1 (en) Use of factor x polymorphism in the diagnosis and treatment of factor x and/or factor xa mediated diseases

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004549640

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2506654

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020057008179

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003810655

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038A70393

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057008179

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003810655

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006127907

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10533750

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10533750

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2003810655

Country of ref document: EP