WO2001041247A1 - Cellule electrolytique non-aqueuse - Google Patents

Cellule electrolytique non-aqueuse Download PDF

Info

Publication number
WO2001041247A1
WO2001041247A1 PCT/JP2000/008376 JP0008376W WO0141247A1 WO 2001041247 A1 WO2001041247 A1 WO 2001041247A1 JP 0008376 W JP0008376 W JP 0008376W WO 0141247 A1 WO0141247 A1 WO 0141247A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous electrolyte
battery
solvent
lithium
general formula
Prior art date
Application number
PCT/JP2000/008376
Other languages
English (en)
French (fr)
Inventor
Shinichi Kawaguchi
Tadayoshi Takahashi
Nobuharu Koshiba
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2001542415A priority Critical patent/JP3720300B2/ja
Priority to US09/889,215 priority patent/US6641957B1/en
Priority to EP00977985A priority patent/EP1209754B1/en
Publication of WO2001041247A1 publication Critical patent/WO2001041247A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/168Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/109Primary casings; Jackets or wrappings characterised by their shape or physical structure of button or coin shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/166Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solute
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the solvent constituting the non-aqueous electrolyte includes propylene carbonate, ethylene carbonate, butylene carbonate, and sulfolane. Kishetan, tetrahydrofuran, dioxolane, etc. are used alone or as a mixture.
  • L i CIOL i PF 6, L i BF 4, L i CF 3 S_ ⁇ 3, L i N (CFSO 2 ) 2, L i N (C 2 F 5 SO 2 2 ) is used alone or as a mixture.
  • non-aqueous electrolyte components are known to chemically react with the water and electrodes in the battery, as well as the constituent materials of Separet.
  • lithium metal, lithium alloys such as LiAl and LiSn, and carbon materials capable of occluding and releasing lithium, which constitute the negative electrode have high reactivity with the components of the nonaqueous electrolyte, and are chemically reactive.
  • an organic film is formed on the negative electrode surface.
  • Such a phenomenon is particularly likely to occur when the battery is stored in a high temperature environment, for example, at 80 ° C. or higher, or when the charge and discharge cycle of the secondary battery is repeated.
  • Metal oxides, which are frequently used as positive electrode active materials in nonaqueous electrolyte batteries are known to dissolve in nonaqueous electrolytes, and the dissolved substances are deposited on the negative electrode surface to form a film. Is recognized.
  • Japanese Patent Application Laid-Open No. 7-22069 discloses an aromatic dicarboxylic acid ester and the like.
  • these additives are effective for batteries stored at room temperature, they are not effective for batteries stored at high temperatures or repeated charge / discharge cycles.
  • the solvent is a small solvent selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate, and lactone lactone. It is preferable to include at least one kind.
  • FIG. 1 is a longitudinal sectional view showing the configuration of the nonaqueous electrolyte battery of the present invention.
  • the nonaqueous electrolyte contained in the nonaqueous electrolyte battery of the present invention includes a liquid nonaqueous electrolyte and a gel nonaqueous electrolyte.
  • the liquid non-aqueous electrolyte contains an organic solvent as a solvent.
  • the gel-like non-aqueous electrolyte generally comprises the liquid non-aqueous electrolyte and a host polymer holding the same.
  • the present invention is characterized by additives to be added to these non-aqueous electrolytes.
  • the non-aqueous electrolyte has a general formula
  • X! X 4 is each independently a hydrogen atom, F, Cl, Br, I or an alkyl group having 1 to 3 carbon atoms
  • Y ′ is a hydrogen atom, Na, K, R b, Cs, Mg, Ca, Sr or Ba, and i is 1 or 2.
  • phthalimid or a derivative of phthalimid represented by the general formula (2):
  • X 5 to X 8 are each independently a hydrogen atom, F, Cl, Br, I or an alkyl group having 1 to 3 carbon atoms, and Y 2 is a hydrogen atom, Na, K, R b, C s, Mg, Ca, S r or Ba, and j is 1 or 2.
  • Y 3 is a hydrogen atom, Na, K, Rb, Cs, Mg, Ca, Sr or Ba, and k is 1 or 2.
  • It contains at least one additive selected from the group consisting of oral imides and derivatives of oral phthalimides.
  • X 1 to X 4 is an alkyl group and the rest are hydrogen atoms
  • X 2 or X 3 is preferably an alkyl group.
  • X 6 or X 7 is preferably an alkyl group, and particularly preferably X 6 is an alkyl group. preferable.
  • the alkyl group is particularly preferably an ethyl group.
  • the additive when Y ′ to Y 3 are divalent atoms, for example, Mg, Ca, Sr or Ba, the additive has two organic anions.
  • the two organic anions may be the same or different.
  • the compounds represented by the general formulas (1) to (3) react preferentially with the negative electrode over the organic solvent which is a component of the non-aqueous electrolyte, and form phthalimid, fuimilimidine, etc. on the negative electrode surface. It is thought to form a stable film with a structure close to that of, and to suppress the reaction between the organic solvent and the negative electrode. Moreover, the formed film is considered to have good lithium ion conductivity, and hardly increases the internal resistance of the battery unlike the conventional additives.
  • L i C l Rei_4, L i PFL i BF 4, L i CF a SO 3, L i N (CF 3 SO 2) L i N (C 2 F s SO 2) 2, L i N (CF a SO 2) (C 4 F 9 SO 2) , or the like can be used. These may be used alone or in combination of two or more.
  • the concentration of the solute in the non-aqueous electrolyte is preferably in the range of 0.2 to 2.0 mo1 liter.
  • organic solvent constituting the liquid non-aqueous electrolyte examples include organic solvents having a high dielectric constant such as ethylene carbonate, propylene carbonate, butylene carbonate, arptyrolactone, sulfolane, and vinylene carbonate, and dimethyl carbonate, ethyl methyl carbonate, and the like. It is preferable to use a mixture with a low-viscosity organic solvent such as getyl carbonate and 1,2-dimethoxetane. In particular, an organic solvent containing at least one selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate and arbutyrolactone is preferred.
  • gel non-aqueous electrolyte host polymer examples include derivatives based on polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile, polymethyl methacrylate, polysiloxane, and the like.
  • the positive electrode may be manufactured using a material conventionally used for a positive electrode of a nonaqueous electrolyte battery.
  • a material conventionally used for a positive electrode of a nonaqueous electrolyte battery for example, Li Co 2 , L i N i O 2, L i M n 2 ⁇ 4, L i M n OV 2 ⁇ 5, V fi O, 3, M N_ ⁇ 2, WO a, N b 2 ⁇ 5, L i 4/3 T i 5, 3 metal oxides such Rei_4, CF X fluoride atoms represented by (x ⁇ 1), F e S 2, T i S sulfides such as 2, and poly pyromellitic Lumpur, Poria two Li And conductive polymers such as rubber.
  • This positive electrode mixture has a diameter of 2 ton / cm 2
  • a negative electrode mixture was obtained by mixing natural graphite powder as the negative electrode active material and fluororesin as the binder in a weight ratio of 85:15. This negative electrode mixture
  • the battery was charged to 4.2 V at a constant current of 1 mA / cm 2 , and the internal resistance of the battery was measured. After that, charge the batteries in a constant temperature bath at 60 ° C for batteries A1 to D1 and A2 to D2 and battery 1 for 2 months, and 85 ° C for batteries A3 and B3. For 20 days. Then, the internal resistance of the battery after storage was measured. The internal resistance was measured at an alternating current of 1 kHz. Table 4 shows the results.
  • a button-type battery having the structure shown in FIG. 1 was manufactured as follows.
  • Metallic lithium was used for the negative electrode. That is, a rolled lithium plate was punched into a predetermined size and fixed to the inner surface of the negative electrode case 6.
  • the L i CF 3 S 0 3 was dissolved in a proportion of 1 mole l.
  • the obtained non-aqueous electrolyte is treated with additives A1, B1, J1 or 01 shown in Table 1, additives A2, D2, C2 or D2 shown in Table 2, or shown in Table 3.
  • the additive a 3 is also properly B 3, it was added at a rate of 0.1% by weight relative to the total weight of the solvent and the L i CF 3 S_ ⁇ 3.
  • the coin-shaped batteries A 1 ′, B 1 ′, C 1 ′, D 1 ′, A 2 ′, B 2 ′, C 2 ′, D 2 ', A 3' and B 3 ' were prepared.
  • the amount of nonaqueous electrolyte injected into the battery was 16 Omg.
  • a similar battery 2 was produced using a nonaqueous electrolyte containing no additive.
  • the batteries A 1 ′ to D 1 ′ and A 2 ′ to D 2 ′ and the battery 2 After measuring the internal resistance of the batteries, for the batteries A 1 ′ to D 1 ′ and A 2 ′ to D 2 ′ and the battery 2, the batteries A 3 ′ and B 3 'Was stored in a thermostat at 85 ° C for 20 days, and the internal resistance of the battery after storage was measured.
  • the internal resistance is 1 kHz at ⁇ ⁇ O Cn
  • a coin-shaped battery was manufactured.
  • the present invention can be similarly applied to batteries of other shapes such as a cylindrical battery and a rectangular battery.
  • liquid non-aqueous electrolyte has been described in the above embodiments, the present invention can be similarly applied to a battery using a gel non-aqueous electrolyte or a solid polymer electrolyte.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Primary Cells (AREA)

Description

明 細 書 非水電解質電池 技術分野
本発明は、 非水電解質電池に関する。 さらに詳しくは、 本発明は、 電 池の内部抵抗の上昇を抑制する添加剤を含有する非水電解質に関する。 背景技術
近年、 電子機器の小型化、 軽量化が進み、 それに伴って高エネルギー 密度を有する電池への要望も増加している。 そして、 金属リチウムから なる負極を有するリチウム一次電池や、 炭素材料からなる負極を有する リチウムイオン二次電池に関する研究が盛んに行われている。
上記の電池では、 非水電解質を構成する溶媒として、 プロピレン力一 ボネート、 エチレンカーボネー卜、 ブチレンカーボネ一卜、 スルホラン. ァーブチロラク トン、 ジメチルカーボネー卜、 ジェチルカ一ボネート、 1 , 2 _ジメ 卜キシェタン、 テトラヒ ドロフラン、 ジォキソランなどが 単独で、 または混合物として用いられている。 また、 溶媒に溶解する溶 質としては、 L i C I O L i P F 6、 L i B F 4、 L i C F 3S〇3、 L i N ( C F S O 2) 2、 L i N ( C 2 F 5 S O 2) 2 などが単独で、 また は混合物として用いられている。
最近では、 ゲル状の非水電解質や、 固体のポリマー電解質を含むリチ ゥムポリマー電池に関する研究も盛んに行われている。 ゲル状の非水電 解質は、 上述の溶質および溶媒を保持するためのホス 卜ポリマ一を含ん でいる。 固体のポリマー電解質は、 ポリマー自体が溶質の溶媒として機 能する電解質であり、 例えば、 ゲル状の非水電解質に含まれるホス トボ リマーと同様のポリマーが用いられる。
これらの電解質を構成するポリマ一としては、 ポリフッ化ビニリデン、 ポリエチレンオキサイ ド、 ポリアクリロニトリル、 ポリメ夕クリル酸メ チル、 ポリシロキサンなどをベースとする誘導体が用いられている。
このような非水電解質の構成要素は、 電池内の水分や電極、 さらには セパレ一夕の構成材料と化学的に反応することが知られている。 特に、 負極を構成する金属リチウム、 L i A l 、 L i S n等のリチウム合金お よびリチウムを吸蔵 · 放出可能な炭素材料は、 非水電解質の構成要素と の反応性が高く、 化学反応等により、 負極表面上に有機物の被膜を生成 させる。 このような現象は、 特に、 高温、 例えば 8 0 °C以上、 の環境下 において電池を保存したり、 二次電池の充放電サイクルを繰り返した場 合に生じやすい。 非水電解質電池の正極活物質として多用されている金 属酸化物は、 非水電解質に溶解することが知られており、 溶解した物質 が負極表面上に析出して、 被膜を形成する現象も認められる。
これらの被膜は電導性が低いことから、 電池の内部抵抗を上昇させる 一因となっている。 そして、 電池の保存期間が長くなると、 電池の内部 抵抗の上昇による放電時の電圧降下が大きくなり、 充分な放電特性を得 ることができなくなる。 二次電池は、 その充放電サイクルを繰り返すこ とによっても、 同様に電池の内部抵抗が上昇し、 サイクル特性が損なわ れるという問題を有する。
ところで、 負極表面上に被膜を形成する添加剤を非水電解質へ加える ことによって、 電池の内部抵抗の上昇を抑制しょうとする提案がなされ ている。 そのような添加剤として、 例えば特開平 7— 2 2 0 6 9号公報 では、 芳香族ジカルボン酸エステルなどが挙げられている。 しかし、 こ れらの添加剤は、 室温保存時の電池には有効であるが、 高温で保存した り、 充放電サイクルを繰り返す電池には効果がない。 本発明は、 非水電解質電池の高温保存時において、 化学反応により負 極表面上に有機物の被膜が生成するのを防止し、 一次電池および二次電 池の内部抵抗の上昇を抑制し、 さらに二次電池の充放電サイクル特性を 向上させることを目的とする。 発明の開示
本発明は、 金属リチウム、 リチウム合金またはリチウムの吸蔵 ·放出 が可能な材料からなる負極と、 正極と、 溶媒および前記溶媒に溶解した 溶質からなる非水電解質とを有する非水電解質電池であって、 前記非水 電解質が、 一般式 ( 1 ) : 十
Figure imgf000005_0001
(X1〜X4は、 それぞれ独立に水素原子、 F、 C l、 B r、 I または炭 素原子数が 1〜 3のアルキル基であり、 Y 1は、 水素原子、 N a、 K、 R b、 C s、 Mg、 C a、 S rまたは B aであり、 i は 1または 2であ る。 ) で表される化合物、 一般式 ( 2 ) :
Figure imgf000005_0002
(X5〜X8は、 それぞれ独立に水素原子、 F、 C l 、 B r、 I または炭 素原子数が 1〜 3のアルキル基であり、 Y2は、 水素原子、 N a、 K、 R b、 C s、 M g、 C a、 S rまたは B aであり、 j は 1または 2であ る。 ) で表される化合物、 および一般式 ( 3) :
Figure imgf000006_0001
(Y3は、 水素原子、 N a、 K、 R b、 C s、 Mg、 C a、 S rまたは B aであり、 kは 1または 2である。 ) で表される化合物よりなる群か ら選ばれた少なくとも 1種の添加剤を含んでいる非水電解質電池に関す る。
前記非水電解質において、 前記添加剤の含有量は、 前記溶媒および前 記溶質の合計量に対して 0. 0 0 1〜 1 0重量%であることが好ましレ 前記溶質は、 L i P F 6、 L i B F 4、 L i C l 〇4 、 L i C F 3S〇3、 L i A s F 6、 一般式 ( 4 ) :
Figure imgf000006_0002
で表されるリチウム塩、 一般式 ( 5 ) :
Figure imgf000006_0003
で表されるリチウム塩および一般式 ( 6 ) :
L 1 C R V C 2 + 1 Ζ ) 2
で表されるリチウム塩 (Χ9〜Χ は、 それぞれ独立に F、 C 1、 B rま たは Iであり、 m、 nおよび pは、 それぞれ独立に 1〜 4の整数であり、 Z i〜 Z 3は、 それぞれ独立に C〇または S〇2である) よりなる群から選 ばれた少なくとも 1種であることが好ましい。
前記溶媒は、 エチレンカーボネー卜、 プロピレンカーボネート、 プチ レン力一ボネ一卜およびァ一プチ口ラク トンよりなる群から選ばれた少 なくとも 1種を含むことが好ましい。 図面の簡単な説明
図 1は、 本発明の非水電解質電池の構成を示す縦断面図である 発明を実施するための最良の形態
本発明の非水電解質電池に含まれる非水電解質には、 液状の非水電解 質およびゲル状の非水電解質が含まれる。 液状の非水電解質は、 溶媒と して有機溶媒を含んでいる。 ゲル状の非水電解質は、 一般に、 前記液状 の非水電解質とそれを保持するホストポリマーからなる。 本発明は、 こ れらの非水電解質に添加する添加剤に特徴を有する。
すなわち、 本発明の非水電解質電池において、 非水電解質は、 一般式
( 1 ) :
;十
Figure imgf000007_0001
(X ! X4は、 それぞれ独立に水素原子、 F、 C l 、 B r、 I または炭 素原子数が 1〜 3のアルキル基であり、 Y'は、 水素原子、 N a、 K、 R b、 C s、 M g、 C a、 S rまたは B aであり、 i は 1または 2であ る。 ) で表される化合物 (フタルイミ ドまたはフタルイミ ドの誘導体) 一般式 ( 2 ) :
Figure imgf000007_0002
(X5〜X8は、 それぞれ独立に水素原子、 F、 C l 、 B r、 I または炭 素原子数が 1〜 3のアルキル基であり、 Y2は、 水素原子、 N a、 K、 R b、 C s、 Mg、 C a、 S rまたは B aであり、 j は 1 または 2であ る。 ) で表される化合物 (フタルイミジンまたはフ夕ルイミジンの誘導 体) 、 および一般式 ( 3 ) :
Figure imgf000008_0001
(Y3は、 水素原子、 N a、 K、 R b、 C s、 M g、 C a、 S rまたは B aであり、 kは 1または 2である。 ) で表される化合物 (テトラヒ ド 口フ夕ルイミ ドまたはテトラヒ ド口フタルイミ ドの誘導体) よりなる群 から選ばれた少なく とも 1種の添加剤を含んでいる。
X 〜X 8から選ばれた少なく とも 1つが水素原子以外であり、 残りが 水素原子である場合、 水素原子以外の基は、 アルキル基またはフッ素原 子であることが好ましい。
ここで、 X 1〜X 4のうちの 1つがアルキル基であり、 残りは水素原子 である場合、 X2または X3がアルキル基であることが好ましい。 また、 X 5〜X 8のうちの 1つがアルキル基であり、 残りは水素原子である場合、 X 6または X 7がアルキル基であることが好ましく、 X 6がアルキル基であ ることが特に好ましい。 上記のいずれの場合もアルキル基としては、 特 にェチル基が好ましい。
また、 X '〜Χ 4のうちの 2つがフッ素原子であり、 残りは水素原子で ある場合、 X2および X3がフッ素原子であることが好ましい。 また、 Χ5〜Χ8のうちの 2つがフッ素原子であり、 残りは水素原子である場合、 X fiおよび X 7がフッ素原子であることが好ましい。
一般式 ( 1 ) 〜 ( 3 ) において、 Y '〜 Y 3が 2価の原子、 例えば M g 、 C a 、 S r または B aである場合、 前記添加剤は 2つの有機ァニオンを 有するが、 2つの有機ァニオンは同一であっても異なっていてもよい。 一般式 ( 1 ) 〜 ( 3 ) で表される化合物は、 非水電解質の構成要素で ある有機溶媒よりも優先的に負極と反応して、 負極表面上に、 フタルイ ミ ド、 フ夕ルイミジン等に近い構造を有する安定な被膜を形成し、 有機 溶媒と負極との反応を抑制するものと考えられる。 しかも、 形成された 被膜は、 良好なリチウムイオン導電性を有すると考えられ、 従来の添加 剤のように、 電池の内部抵抗を上昇させることがほとんどない。
一般式 ( 1 ) 〜 ( 3 ) で表される化合物としては、 フタルイミ ド、 2 一ェチルフタルイミ ド、 2 —フルオロフタルイミ ド、 フタルイミ ドカリ ゥム、 2 _ェチルフタルイミ ドカリウム、 2 —フルオロフタルイミ ドカ リウム、 フタルイミジン、 2—ェチルフ夕ルイミジン、 2 —フルオロフ タルイミジン、 フ夕ルイミジンカリウム、 2 —ェチルフ夕ルイミジン力 リウム、 2 _フルオロフタルイミジンカリウム、 テトラヒ ドロフタルイ ミ ド、 テトラヒ ドロフタルイミ ドナトリウム、 テトラヒ ドロフ夕ルイミ ドカリウム、 テトラヒ ドロフタルイミ ドマグネシウム、 テトラヒ ドロフ タルイミ ドカルシウム、 テトラヒ ドロフ夕ルイミ ドス トロンチウム等が 挙げられる。
これらのなかでも、 フタルイミ ド、 2 —ェチルフタルイミ ド、 2—フ ルオロフタルイミ ド、 フタルイミジン、 2 —ェチルフ夕ルイミジン、 2 一フルオロフタルイミジン、 テトラヒ ドロフタルイミ ド、 テトラヒ ドロ フタルイミ ドカリウムは、 負極表面に形成される被膜の安定性に加え、 正極、 負極および非水電解質の溶媒や溶質に対する反応性が低いことか ら、 最も好ましいと言える。 非水電解質において、 前記添加剤の量は、 前記溶媒および前記溶質の 合計量に対して 0. 0 0 1〜 1 0重量%、 さらには 0. 0 0 1〜 1重量
%であることが好ましい。
前記溶質としては、 例えば L i C l 〇4、 L i P F L i B F 4、 L i C F a S O 3 , L i N ( C F 3 S O 2) L i N ( C 2 F s S O 2) 2、 L i N ( C F a S O 2) ( C 4 F 9 S O 2) などを用いることができる。 これ らは単独で用いてもよく、 2種以上を混合して用いてもよい。 溶質の非 水電解質における濃度は、 0. 2〜 2. 0 mo 1ノリ ッ トルの範囲が 好ましい。
液状の非水電解質を構成する有機溶媒としては、 エチレンカーボネ一 卜、 プロピレンカーボネート、 ブチレンカーボネート、 ァープチロラク トン、 スルホラン、 ビニレンカーボネートなどの誘電率の高い有機溶媒 と、 ジメチルカーボネート、 ェチルメチルカーボネート、 ジェチルカ一 ボネート、 1 , 2—ジメ トキシェタンなどの低粘度な有機溶媒とを混合 して用いることが好ましい。 特に、 エチレンカーボネート、 プロピレン カーボネー ト、 ブチレンカーボネートおよびァーブチロラク トンよりな る群から選ばれた少なく とも 1種を含む有機溶媒が好ましい。
ゲル状の非水電解質のホス トポリマーとしては、 ポリフッ化ビニリデ ン、 ポリエチレンオキサイ ド、 ポリアクリロニトリル、 ポリメタクリル 酸メチル、 ポリシロキサンなどをベースとする誘導体が挙げられる。 上述した非水電解質を所定の正極および負極と組み合わせることによ り、 高温での長期保存時における電池の内部抵抗の上昇が起こりにくい 一次電池や、 高温で優れた充放電サイクル特性を有する二次電池が得ら れる。
正極は、 従来から非水電解質電池の正極に用いられている材料を用い て作製すればよい。 正極の材料としては、 例えば、 L i C o〇2、 L i N i O 2, L i M n 2〇 4、 L i M n O V 25、 V fi O , 3、 M n〇 2、 WO a , N b 25、 L i 4/3T i 5,3〇4等の金属酸化物、 C F X ( x≤ 1 ) で表されるフッ化炭素、 F e S 2、 T i S 2等の硫化物、 およびポリ ピロ ール、 ポリア二リ ン等の導電性ポリマーを挙げることができる。
負極も従来から非水電解質電池の負極に用いられている材料を用いて 作製すればよい。 負極の材料としては、 金属リチウムや、 L i A l 、 L i S i 、 L i S n、 L i N i S i 、 L i P bなどのリチウム合金、 リ チウムを吸蔵 · 放出することが可能な黒鉛、 コークス等の炭素材料、 S i 〇、 S n〇、 F e 23、 W02、 N b 25、 L i 4/3T i 5/3〇4等の 金属酸化物、 L i 。.4 C o Nなどの窒化物を挙げることができる。
次に、 本発明を実施例に基づいて具体的に説明する。 実施例 1
図 1に本実施例で用いたコイン形電池の縦断面図を示す。 2、 6はそ れぞれステンレス鋼製の正極ケース、 負極ケースであり、 5はポリプロ ピレン製の絶縁パッキングである。 1は正極であり、 4は負極である。
3はポリプロピレン製の不織布からなるセパレー夕である。 この電池の 寸法は、 外径 2 0 mm、 高さ 2. 5 mmである。
正極活物質としての L i C o〇2粉末、 導電剤としての炭素粉末および 結着剤としてのフッ素樹脂を 8 0 : 1 0 : 1 0の重量比で混合した後、 乾燥して正極合剤を得た。 この正極合剤を 2 t o n/ c m2で直径
1 6 mm、 厚さ 0. 9 mmのペレツ トに加圧成形した後、 水分 1 %以下 の乾燥雰囲気中で 2 5 0 °Cで乾燥し、 正極とした。
一方、 負極活物質としての天然黒鉛粉末、 結着剤としてのフッ素樹脂 を 8 5 : 1 5の重量比で混合して負極合剤を得た。 この負極合剤を
2 t o n / c m2で直径 1 6 mm, 厚さ 0. 9 mmのぺレッ トに加圧成形 した後、 水分 1 %以下の乾燥雰囲気中で 1 1 0 °cで乾燥し、 負極とした。 エチレンカーボネートとジェチルカ—ボネートとを 5 : 5の体積比で 混合し、 非水電解質の溶媒とした。 この溶媒に、 溶質として L i P F eを 1. 0モルノリッ トルの割合で溶解した。 得られた非水電解質には、 表 1に示す添加剤 A 1、 B l、 (: 1 もしくは0 1、 表 2に示す A 2、 D 2、 C 2もしくは D 2、 または表 3に示す A 3もしくは B 3を、 前記溶媒と L i P F 6との合計重量に対して 0 · 1重量%の割合で添加した。
表 1
Figure imgf000012_0001
表 2
Figure imgf000013_0002
表 3
Figure imgf000013_0001
得られた添加剤を含む非水電解質、 正極および負極を用いて、 先述した コイン形の電池 A 1、 B l、 C l、 D l、 A 2、 B 2、 C 2、 D 2、 A 3および B 3を作製した。 電池内に注入する非水電解質の量は 1 0 0 m gとし 7こ。
また、 比較例として、 添加剤を含まない非水電解質を用いて、 同様の 電池 1 を作製した。
次に、 各電池について、 以下の評価を行った。
電池を 1 mA/ c m2の定電流で 4. 2 Vまで充電し、 電池の内部抵抗 を測定した。 その後、 充電状態の電池を、 電池 A 1〜D 1および A 2〜 D 2ならびに電池 1については 6 0 °Cの恒温槽中で 2月間、 電池 A 3お よび B 3については 8 5°Cの恒温槽中で 2 0日間保存した。 そして、 保 存後の電池の内部抵抗を測定した。 内部抵抗は 1 k H zの交流で測定し た。 結果を表 4に示す。
表 4
Figure imgf000014_0001
一方、 1 m AZ c m2の定電流で 3. 0〜 4. 2 Vの電圧範囲で、 電池 の充放電サイクルを 1 0 0回繰り返し、 その後、 電池の内部抵抗を測定 した。 結果を表 4に示す。
表 4において、 添加剤を加えた電池は、 いずれも添加剤を含まない電 池 1に比べて内部抵抗が安定しており、 高温での保存および充放電サイ クルの繰り返しによる内部抵抗の上昇が小さくなつている。
また、 上記添加剤のなかでも添加剤 D 1、 D 2を添加した電池が、 最 も良好な結果を示している。
実施例 2
本実施例においても図 1に示される構造のボタン形電池を以下のよう にして作製した。
4 0 0 °Cで加熱処理した電解二酸化マンガン、 導電剤としての炭素粉 末、 結着剤としてのフッ素樹脂を 8 0 : 1 0 : 1 0の重量比で混合し、 正極合剤を得た。 この正極合剤を 2 t o n/ c m2で直径 1 6mmのペレ ッ 卜に加圧成形した後、 水分 1 %以下の乾燥雰囲気中で 2 5 0 °Cで乾燥 し、 正極とした。
負極には、 金属リチウムを用いた。 すなわち、 リチウムの圧延板を所 定の寸法に打ち抜き、 これを負極ケース 6の内面に固定した。
プロピレンカーボネートと 1, 2—ジメ トキシェタンとを 5 : 5の体 積比で混合し、 非水電解質の溶媒とした。 この溶媒に、 溶質として
L i C F 3S 03を 1モル リ ッ トルの割合で溶解した。 得られた非水電 解質に、 表 1に示す添加剤 A 1、 B l、 じ 1 もしくは0 1、 表 2に示す 添加剤 A 2、 D 2、 C 2もしくは D 2、 または表 3に示す添加剤 A 3も しくは B 3を、 前記溶媒と L i C F 3 S〇3との合計重量に対して 0. 1 重量%の割合で添加した。 得られた非水電解質、 正極および負極を用いて、 先述したコイン形の 電池 A 1 ' 、 B 1 ' 、 C 1 ' 、 D 1 ' 、 A 2 ' 、 B 2 ' 、 C 2 ' 、 D 2 ' 、 A 3 ' および B 3 ' を作製した。 電池内に注入する非水電解質 の量は 1 6 O mgとした。
また、 比較例として、 添加剤を含まない非水電解質を用いて、 同様の 電池 2を作製した。
次に、 各電池について、 以下の評価を行った。
電池の内部抵抗を測定した後、 電池 A 1 ' 〜D 1 ' および A 2 ' 〜 D 2 ' ならびに電池 2については、 6 0 °Cの恒温槽中で 2月間、 電池 A 3 ' および B 3 ' については、 8 5 °Cの恒温槽中で 2 0 日間保存した, そして、 保存後の電池の内部抵抗を測定した。 内部抵抗は 1 k H zの交 ο 〇O Cn
流で測定した。 結果を表 5に示す。 0O 0 C 表 5 電池内部抵抗( Ω)
電池 添加剤
保存刖 保存後
電池 A1' A1 10.1 11.4
電池 Β B1 9.1
電池 c C1 8.6 9.2
電池 D1' D1 8.4 8.9
電池 A2' A2 11.3
電池 B2' B2 9.8
電池 C2' C2 9.2 9.5
電池 D2' D2 8.9 9.1
電池 A3' A3 10.5
電池 B3' B3 9.8
電池 2 なし 8.2
Figure imgf000016_0001
表 5において、 添加剤を加えた電池は、 いずれも添加剤を含まない電 池 2に比べて内部抵抗が安定しており、 高温での保存による内部抵抗の 上昇が小さくなつている。 実施例 3
添加剤 D 1の前記溶媒と L i C F 3 S 03との合計重量に対する添加割 合を、 0. 0 0 0 5〜 1 5重量%としたこと以外、 実施例 2における電 池 D 1 ' と同様の電池を作製した。 そして、 実施例 2の電池 D 1 ' と同 様の評価を行った。 結果を表 6に示す。
表 6
Figure imgf000017_0001
添加剤 D 2の前記溶媒と L i C F 3 S O 3との合計重量に対する添加割 合を、 0. 0 0 0 5〜 1 5重量%としたこと以外、 実施例 2における電 池 D 2 ' と同様の電池を作製した。 そして、 実施例 2の電池 D 2 ' と同 様の評価を行った。 結果を表 7に示す。 表 7
Figure imgf000018_0001
添加剤 A 3の前記溶媒と L i C F 3S 03との合計重量に対する添加割 合を、 0. 0 0 0 5 1 5重量%としたこと以外、 実施例 2における電 池 A 3 ' と同様の電池を作製した。 そして、 実施例 2の電池 A 3 ' と同 様の評価を行った。 結果を表 8に示す。
表 8
Figure imgf000018_0002
表 6 8において、 添加剤の溶媒と L i C F 3 S O 3との合計量に対す る添加割合が、 0. 0 0 1〜 1 0. 0重量%の範囲で、 特に、 内部抵抗 の上昇が抑制されている。
添加剤の溶媒と L i C F 3S 03との合計量に対する添加割合が
0. 0 0 1重量%未満の場合、 内部抵抗の上昇を抑制する効果はあまり 発揮されていない。 一方、 添加割合が 1 0. 0重量%以上の場合、 添加 剤自体による内部抵抗の上昇が見られる。 また、 添加割合が 0. 0 1〜 1. 0重量%の範囲の場合に、 最も良好な結果が見られる。 尚、 D l、 D 2および A 3以外の添加剤を用い、 同様の評価を行った場合にも、 同 様の傾向が認められた。
実施例 3では、 一次電池について本発明の効果を説明したが、 二次電 池の場合には、 高温保存時の内部抵抗の上昇を抑制する効果に加え、 充 放電サイクル特性を向上させる効果も認められた。
上記各実施例では、 コイン形の電池を作製したが、 本発明は、 円筒形 電池、 角形電池など、 他の形状の電池にも同様に適用可能である。
以上の実施例では、 液状の非水電解質について説明したが、 ゲル状の 非水電解質や固体のポリマ一電解質を用いた電池においても本発明は同 様に適用可能である。 産業上の利用の可能性
本発明によれば、 高温での長期保存時において内部抵抗の上昇が起こ りにくい非水電解質電池を得ることができ、 二次電池においては、 さら に充放電サイクル特性が向上する。

Claims

求 の 範 囲
1. 金属リチウム、 リチウム合金またはリチウムの吸蔵, 放出が可能な 材料からなる負極と、 正極と、 溶媒および前記溶媒に溶解した溶質から なる非水電解質とを有する非水電解質電池であって、
前記非水電解質が、 一般式 ( 1 ) :
Figure imgf000020_0001
(X' X4は、 それぞれ独立に水素原子、 F、 C l 、 B r、 I または炭 素原子数が 1〜 3のアルキル基であり、 Y 1は、 水素原子、 N a、 K、 R b、 C s、 M g、 C a、 S rまたは B aであり、 i は 1または 2であ る。 ) で表される化合物、 一般式 ( 2 ) :
Figure imgf000020_0002
(X5〜X8は、 それぞれ独立に水素原子、 F、 C l 、 B r、 I または炭 素原子数が 1〜 3のアルキル基であり、 Y2は、 水素原子、 N a、 K、 R b、 C s、 M g、 C a、 S rまたは B aであり、 j は 1または 2であ る。 ) で表される化合物、 および一般式 ( 3 ) :
Figure imgf000021_0001
(Y3は、 水素原子、 N a、 K、 R b、 C s、 M g、 C a、 S rまたは B aであり、 kは 1 または 2である。 ) で表される化合物よりなる群か ら選ばれた少なくとも 1種の添加剤を含んでいる非水電解質電池。
2. 前記非水電解質において、 前記添加剤の含有量が、 前記溶媒および 前記溶質の合計量に対して 0. 0 0 1〜 1 0重量%である請求の範囲第 1項記載の非水電解質電池。
3. 前記溶質が、 L i P F 6、 L i B F4、 L i C 1 04
L i C F 3 S O a, L i A s F —般式 (4) :
L ΐ N ( CmX 2 m+l Zつ 2
で表されるリチウム塩、 一般式 ( 5 ) :
Figure imgf000021_0002
で表されるリチウム塩および一般式 ( 6 ) :
L i C R (C PX 2p+ 1 Z 3) 2
で表されるリチウム塩 (Χ9〜Χ ''は、 それぞれ独立に F、 C 1 、 B rま たは Iであり、 m、 nおよび pは、 それぞれ独立に 1〜 4の整数であり、 Z '〜Z 3は、 それぞれ独立に COまたは S〇2である) よりなる群から選 ばれた少なくとも 1種である請求の範囲第 1項記載の非水電解質電池。
4. 前記溶媒が、 エチレンカーボネート、 プロピレンカーボネート、 ブ チレンカーボネートおよびァープチロラク トンよりなる群から選ばれた 少なく とも 1種を含む請求の範囲第 1項記載の非水電解質電池。
PCT/JP2000/008376 1999-11-29 2000-11-28 Cellule electrolytique non-aqueuse WO2001041247A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001542415A JP3720300B2 (ja) 1999-11-29 2000-11-28 非水電解液電池
US09/889,215 US6641957B1 (en) 1999-11-29 2000-11-28 Non-aqueous electrolyte cell
EP00977985A EP1209754B1 (en) 1999-11-29 2000-11-28 Non-aqueous electrolyte cell

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP33713099 1999-11-29
JP33713199 1999-11-29
JP11/337131 1999-11-29
JP11/337130 1999-11-29
JP2000/325310 2000-10-25
JP2000325310 2000-10-25

Publications (1)

Publication Number Publication Date
WO2001041247A1 true WO2001041247A1 (fr) 2001-06-07

Family

ID=27340815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/008376 WO2001041247A1 (fr) 1999-11-29 2000-11-28 Cellule electrolytique non-aqueuse

Country Status (7)

Country Link
US (1) US6641957B1 (ja)
EP (1) EP1209754B1 (ja)
JP (1) JP3720300B2 (ja)
KR (1) KR100414718B1 (ja)
CN (1) CN1174515C (ja)
TW (1) TW475295B (ja)
WO (1) WO2001041247A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001319657A (ja) * 2000-05-10 2001-11-16 Mitsubishi Chemicals Corp リチウム二次電池用正極材料、リチウム二次電池用正極及びリチウム二次電池
JP2003217662A (ja) * 2001-11-15 2003-07-31 Nec Corp 二次電池用電解液の製造方法、二次電池の製造方法および二次電池
JP2005108520A (ja) * 2003-09-29 2005-04-21 Sanyo Electric Co Ltd 非水電解質二次電池
JP2006173096A (ja) * 2004-11-18 2006-06-29 Matsushita Electric Ind Co Ltd 有機電解質電池
JP2006236889A (ja) * 2005-02-28 2006-09-07 Matsushita Electric Ind Co Ltd 非水電解液一次電池
WO2012029387A1 (ja) * 2010-09-02 2012-03-08 日本電気株式会社 二次電池
WO2012063429A1 (ja) * 2010-11-12 2012-05-18 パナソニック株式会社 リチウム一次電池
JP2015149140A (ja) * 2014-02-05 2015-08-20 Fdk株式会社 リチウム一次電池用非水系有機電解液、およびリチウム一次電池
WO2020026525A1 (ja) * 2018-08-02 2020-02-06 パナソニックIpマネジメント株式会社 リチウム一次電池
JPWO2021149310A1 (ja) * 2020-01-20 2021-07-29
WO2022153357A1 (ja) * 2021-01-12 2022-07-21 日本電信電話株式会社 リチウム二次電池とその製造方法
WO2023162917A1 (ja) * 2022-02-22 2023-08-31 パナソニックIpマネジメント株式会社 リチウム一次電池
WO2024043273A1 (ja) * 2022-08-24 2024-02-29 パナソニックIpマネジメント株式会社 リチウム一次電池

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040253520A1 (en) * 2003-05-13 2004-12-16 Wensley C. Glen Polyimide matrix electrolyte and improved batteries therefrom
US20040229127A1 (en) 2003-05-13 2004-11-18 Wensley C. Glen Polyimide matrix electrolyte
US6936377B2 (en) * 2003-05-13 2005-08-30 C. Glen Wensley Card with embedded IC and electrochemical cell
US7390336B2 (en) * 2003-07-29 2008-06-24 Solicore, Inc. Polyimide-based lithium metal battery
US20050048369A1 (en) * 2003-08-28 2005-03-03 Matsushita Electric Industrial Co., Ltd. Negative electrode for non-aqueous electrolyte secondary battery, production method thereof and non-aqueous electrolyte secondary battery
CN100376057C (zh) * 2004-07-07 2008-03-19 比亚迪股份有限公司 一种非水电解液锂离子二次电池
WO2006012575A2 (en) 2004-07-22 2006-02-02 Solicore, Inc. Improved battery tab and packaging design
CN1321994C (zh) * 2005-09-23 2007-06-20 南开大学 1,2,3,6-四氢酞酰亚胺类化合物及其制备和用途
JP4396675B2 (ja) * 2006-06-16 2010-01-13 ソニー株式会社 非水電解質二次電池
CN110707310B (zh) * 2019-10-29 2021-01-12 昆山宝创新能源科技有限公司 负极材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261435A (ja) * 1997-03-18 1998-09-29 Fujitsu Ltd リチウム二次電池用イオン伝導体及びそれを用いたリチウム二次電池
US5888672A (en) * 1997-02-12 1999-03-30 Gustafson; Scott D. Polyimide battery
JP2000294273A (ja) * 1999-04-02 2000-10-20 Mitsui Chemicals Inc 非水電解液およびそれを用いた二次電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3660163A (en) * 1970-06-01 1972-05-02 Catalyst Research Corp Solid state lithium-iodine primary battery
US4310392A (en) 1979-12-31 1982-01-12 Bell Telephone Laboratories, Incorporated Electrolytic plating
JPH0945588A (ja) * 1995-08-02 1997-02-14 Toyama Yakuhin Kogyo Kk 電解コンデンサの駆動用電解液

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5888672A (en) * 1997-02-12 1999-03-30 Gustafson; Scott D. Polyimide battery
JPH10261435A (ja) * 1997-03-18 1998-09-29 Fujitsu Ltd リチウム二次電池用イオン伝導体及びそれを用いたリチウム二次電池
JP2000294273A (ja) * 1999-04-02 2000-10-20 Mitsui Chemicals Inc 非水電解液およびそれを用いた二次電池

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001319657A (ja) * 2000-05-10 2001-11-16 Mitsubishi Chemicals Corp リチウム二次電池用正極材料、リチウム二次電池用正極及びリチウム二次電池
JP4590685B2 (ja) * 2000-05-10 2010-12-01 三菱化学株式会社 リチウム二次電池用正極材料、リチウム二次電池用正極及びリチウム二次電池
JP2003217662A (ja) * 2001-11-15 2003-07-31 Nec Corp 二次電池用電解液の製造方法、二次電池の製造方法および二次電池
JP2005108520A (ja) * 2003-09-29 2005-04-21 Sanyo Electric Co Ltd 非水電解質二次電池
JP2006173096A (ja) * 2004-11-18 2006-06-29 Matsushita Electric Ind Co Ltd 有機電解質電池
JP2006236889A (ja) * 2005-02-28 2006-09-07 Matsushita Electric Ind Co Ltd 非水電解液一次電池
WO2012029387A1 (ja) * 2010-09-02 2012-03-08 日本電気株式会社 二次電池
JP5867396B2 (ja) * 2010-09-02 2016-02-24 日本電気株式会社 二次電池
JPWO2012029387A1 (ja) * 2010-09-02 2013-10-28 日本電気株式会社 二次電池
US9123971B2 (en) 2010-09-02 2015-09-01 Nec Corporation Secondary battery
JPWO2012063429A1 (ja) * 2010-11-12 2014-05-12 パナソニック株式会社 リチウム一次電池
US8652690B2 (en) 2010-11-12 2014-02-18 Panasonic Corporation Lithium primary battery
JP5830689B2 (ja) * 2010-11-12 2015-12-09 パナソニックIpマネジメント株式会社 リチウム一次電池
WO2012063429A1 (ja) * 2010-11-12 2012-05-18 パナソニック株式会社 リチウム一次電池
JP2015149140A (ja) * 2014-02-05 2015-08-20 Fdk株式会社 リチウム一次電池用非水系有機電解液、およびリチウム一次電池
WO2020026525A1 (ja) * 2018-08-02 2020-02-06 パナソニックIpマネジメント株式会社 リチウム一次電池
JPWO2021149310A1 (ja) * 2020-01-20 2021-07-29
WO2021149310A1 (ja) * 2020-01-20 2021-07-29 パナソニックIpマネジメント株式会社 リチウム一次電池およびリチウム一次電池用非水電解液
JP7313021B2 (ja) 2020-01-20 2023-07-24 パナソニックIpマネジメント株式会社 リチウム一次電池およびリチウム一次電池用非水電解液
WO2022153357A1 (ja) * 2021-01-12 2022-07-21 日本電信電話株式会社 リチウム二次電池とその製造方法
WO2023162917A1 (ja) * 2022-02-22 2023-08-31 パナソニックIpマネジメント株式会社 リチウム一次電池
WO2024043273A1 (ja) * 2022-08-24 2024-02-29 パナソニックIpマネジメント株式会社 リチウム一次電池

Also Published As

Publication number Publication date
EP1209754B1 (en) 2011-10-05
JP3720300B2 (ja) 2005-11-24
TW475295B (en) 2002-02-01
EP1209754A1 (en) 2002-05-29
CN1174515C (zh) 2004-11-03
KR20020018646A (ko) 2002-03-08
CN1338129A (zh) 2002-02-27
KR100414718B1 (ko) 2004-01-13
EP1209754A4 (en) 2005-10-05
US6641957B1 (en) 2003-11-04

Similar Documents

Publication Publication Date Title
WO2001041247A1 (fr) Cellule electrolytique non-aqueuse
JP6699876B2 (ja) リチウム−硫黄電池用電解液及びこれを含むリチウム−硫黄電池
JP5516578B2 (ja) 蓄電デバイス
JP5804557B2 (ja) アルカリ金属−硫黄系二次電池
JP5306749B2 (ja) 電気化学デバイス
WO2017122597A1 (ja) 蓄電装置用水系電解液、及び当該水系電解液を含む蓄電装置
US20070281209A1 (en) Nonaqueous electrolyte battery
JP2007207699A (ja) 非水電解液二次電池
WO1998040923A1 (fr) Batterie a electrolyte non aqueux et procede de charge de celle-ci
WO2000079632A1 (fr) Batterie secondaire du type a solution electrolytique non aqueuse
KR101501267B1 (ko) 리튬-설퍼 전지용 양극재, 이의 제조 방법 및 리튬 설퍼 전지
JP6004276B2 (ja) アルカリ金属−硫黄系二次電池
JP2002025611A (ja) 非水電解液二次電池
JP3705774B2 (ja) 非水電解質電池用非水電解質および非水電解質電池
JPH05182689A (ja) 非水電解液二次電池
JP3369947B2 (ja) 非水系電解液電池
JP4415556B2 (ja) 非水電解質電池
JP5068449B2 (ja) リチウム二次電池
JP4139960B2 (ja) 蓄電デバイス
WO2021149310A1 (ja) リチウム一次電池およびリチウム一次電池用非水電解液
JP4127890B2 (ja) 非水電解液電池
JP2003151622A (ja) 非水電解液およびこれを用いた非水電解液二次電池
JP3831547B2 (ja) 非水系電解質二次電池
JP5402216B2 (ja) 非水電解質二次電池
WO2023053295A1 (ja) リチウム2次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00803016.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2001 542415

Country of ref document: JP

Kind code of ref document: A

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 09889215

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020017009336

Country of ref document: KR

Ref document number: 1020017009313

Country of ref document: KR

Ref document number: 1020017009330

Country of ref document: KR

Ref document number: 1020017009314

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000977985

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1020017009313

Country of ref document: KR

Ref document number: 1020017009314

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1020017009313

Country of ref document: KR

Ref document number: 1020017009314

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1020017009336

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1020017009336

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020017009330

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000977985

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020017009330

Country of ref document: KR