WO2012063429A1 - リチウム一次電池 - Google Patents

リチウム一次電池 Download PDF

Info

Publication number
WO2012063429A1
WO2012063429A1 PCT/JP2011/006115 JP2011006115W WO2012063429A1 WO 2012063429 A1 WO2012063429 A1 WO 2012063429A1 JP 2011006115 W JP2011006115 W JP 2011006115W WO 2012063429 A1 WO2012063429 A1 WO 2012063429A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
primary battery
lithium primary
battery
volume
Prior art date
Application number
PCT/JP2011/006115
Other languages
English (en)
French (fr)
Inventor
布目 潤
加藤 文生
清水 敏之
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/509,714 priority Critical patent/US8652690B2/en
Priority to JP2012512114A priority patent/JP5830689B2/ja
Publication of WO2012063429A1 publication Critical patent/WO2012063429A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/164Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/168Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/166Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solute

Definitions

  • the present invention relates to a lithium primary battery using iron disulfide as a positive electrode active material (hereinafter, this lithium primary battery is simply referred to as “lithium primary battery” or “battery”).
  • the lithium primary battery has an average discharge voltage of around 1.5V
  • other primary batteries having an average discharge voltage of about 1.5V for example, a manganese dry battery or an alkaline dry battery, hereinafter referred to as “alkaline dry battery etc.”.
  • the theoretical capacity of iron disulfide (positive electrode active material) is about 894 mAh / g
  • the theoretical capacity of lithium (negative electrode active material) is about 3863 mAh / g.
  • the practical value of the lithium primary battery is high as a high-capacity and lightweight primary battery.
  • Lithium primary batteries are generally known to be coin-shaped (or button-shaped) and cylindrical.
  • the coin-type lithium primary battery is suitable for use in a low load discharge region.
  • the solvent of the non-aqueous electrolyte hereinafter sometimes simply referred to as “electrolyte”
  • the solvent of the non-aqueous electrolyte contains propylene carbonate and tetrahydrofuran (THF (tetrahydrofuran)
  • THF tetrahydrofuran
  • Patent Document 2 describes that high-load discharge performance is improved if the solvent of the electrolytic solution contains dioxolane (DIOX) and 1,2-dimethoxyethane (DME (dimethoxyethane)).
  • DIOX dioxolane
  • DME 1,2-dimethoxyethane
  • Lithium primary batteries have medium-load discharge performance equivalent to alkaline batteries. In consideration of providing a lithium primary battery that is highly convenient for users, it is necessary to improve not only high-load discharge performance but also medium-load discharge performance. In general, it is said that it is difficult for a lithium primary battery to increase the utilization factor of the negative electrode in medium load discharge. The reason is as follows. In the lithium primary battery, lithium is eluted as the discharge proceeds, and impurities such as sulfate ions are eluted from the iron disulfide and deposited on the surface of the negative electrode. In the medium load discharge, the discharge is performed up to a region where the depth of discharge is deep (for example, the depth of discharge is 85%). Moreover, since discharge current is not so small in medium load discharge, it becomes difficult to discharge when the reaction area of the negative electrode decreases.
  • the initial voltage of the lithium primary battery (hereinafter sometimes simply referred to as “initial voltage”) is higher than 1.7 V. As high as 1.8V. Although the initial voltage is so high, the voltage of the lithium primary battery (hereinafter sometimes simply referred to as “battery voltage”) is about 1.5 V within a few seconds after the current load is applied to the lithium primary battery. descend.
  • a device dry battery device
  • a device incorporating a semiconductor integrated circuit is sometimes driven by an alkaline battery or the like.
  • the output voltage from the battery is applied to the semiconductor integrated circuit for several tens of milliseconds immediately after that.
  • a voltage per cell higher than 1.65 V for example, 1.8 V
  • the semiconductor integrated circuit may malfunction. Therefore, it is difficult to drive a device equipped with a semiconductor integrated circuit with a lithium primary battery, and devices that can use the lithium primary battery as a drive power source are limited.
  • Patent Document 3 it is described that the initial open circuit voltage decreases if the electrolyte of the coin-type lithium primary battery contains a predetermined amount of isoxazole derivative.
  • the medium-load discharge performance may be degraded.
  • the medium load discharge performance is lowered, it becomes difficult to use a lithium primary battery as an alternative to an alkaline battery or the like.
  • a lithium primary battery capable of reducing the initial voltage while suppressing a decrease in medium load discharge performance.
  • the present invention can reduce the initial voltage without deteriorating the medium-load discharge performance if the composition of the electrolyte solvent is optimized. It is.
  • a non-aqueous solvent is used as a solvent for the electrolyte of the lithium primary battery.
  • a solvent a solvent having low reduction resistance
  • These solvents are considered to be reduced on the negative electrode side to manipulate the surface potential of the positive electrode (lowering the surface potential of the positive electrode), and the reduction product of the solvent (produced by reducing the solvent) on the surface of the positive electrode It is thought to affect the reaction of.
  • PC polycarbonate
  • THF is inferior in reduction resistance compared to DME or the like, it is said that it is reduced on the negative electrode side to form a film on the surface of the positive electrode.
  • THF is likely to be reduced on the negative electrode side immediately after the production of the lithium primary battery through investigations of the prior art and their intensive studies. From this, it was considered that if THF is used as a solvent for the electrolyte solution of the lithium primary battery, the surface voltage of the positive electrode is lowered immediately after the production of the lithium primary battery, and therefore the initial voltage is lowered.
  • THF content the content of THF in the solvent of the electrolytic solution
  • the initial voltage is lowered without lowering the medium-load discharge performance.
  • the initial voltage was lowered without lowering the medium-load discharge performance.
  • the medium-load discharge performance may be lowered.
  • the reason why such an effect is obtained is that the present inventors cannot say that it is because the reduction product of THF prevents the elution of impurities from the positive electrode active material.
  • the solvent of the electrolytic solution contains DIOX and DME as main components, and further contains THF.
  • the content of THF is higher than 0% by volume and not higher than 20% by volume.
  • the present invention mainly aims to improve the voltage (initial voltage) of the lithium primary battery immediately before use by the user without lowering the discharge performance.
  • a lithium primary battery usually passes through a preliminary discharge (sometimes referred to as “initial discharge”) and aging after fabrication and then reaches the user. Therefore, in the present specification, the “initial voltage” is a battery voltage after being used after a predetermined preliminary discharge and aging and before being used, and the “discharge performance” is a predetermined preliminary discharge and aging. It is the discharge performance of the lithium primary battery after.
  • the discharge performance is, for example, discharge capacity or duration.
  • Various conditions for the preliminary discharge and aging are known, but the present inventors consider that even if the conditions for the preliminary discharge and aging are slightly different, the superiority or inferiority of the obtained effect is not affected.
  • the initial voltage is decreased is decreased
  • the initial voltage can be decreased or the like is that the initial voltage is lower than 1.80 V, preferably the initial voltage Is 1.75V or less, more preferably, the initial voltage is 1.65V or less.
  • “suppressing a decrease in medium load discharge performance” or “preventing a decrease in medium load discharge performance” or the like means that the THF content is 0% by volume and the medium load discharge performance is substantially reduced. It is the same.
  • medium load discharge performance is improved” or “medium load discharge performance can be improved” or the like means that the medium load discharge performance is superior to the case where the THF content is 0% by volume. (For example, the discharge capacity is large or the duration is long).
  • medium load discharge performance is reduced or “medium load discharge performance is reduced” or the like means that the medium load discharge performance is inferior to the case where the THF content is 0% by volume (for example, The discharge capacity is small or the duration is short). The same applies to “the high load discharge performance is reduced”.
  • the solvent of the non-aqueous electrolyte contains DIOX and DME as the main components means that the electrolyte solution can be used if there is a small amount of non-aqueous solvents (other non-aqueous solvents such as PC) other than DIOX, DME, and THF. It means that it may be contained in the solvent.
  • the content of other nonaqueous solvents is the DIOX content in the electrolyte solvent (hereinafter referred to as “DIOX content”). It is preferably lower than the lowest content of the DME content (hereinafter referred to as “DME content”) and the THF content in the solvent of the electrolyte solution, It is preferable that the content is lower than the content.
  • the initial voltage can be reduced while suppressing a decrease in medium-load discharge performance, a lithium primary battery excellent in convenience can be provided.
  • 1 is a half sectional view of a lithium primary battery according to an embodiment of the present invention.
  • 2 is a table summarizing the results of Example 1.
  • 10 is a table summarizing the results of Example 2.
  • 10 is a table summarizing the results of Example 3.
  • FIG. 1 is a half sectional view of a lithium primary battery according to this embodiment.
  • the lithium primary battery according to this embodiment includes an electrode group 4 in which a positive electrode 1 and a negative electrode 2 are wound through a separator 3.
  • This electrode group 4 is housed in a battery case 9 together with a non-aqueous electrolyte (not shown, for example, held in the separator 3).
  • An opening 9 a of the battery case 9 is a sealing plate (positive electrode terminal) 10. It is sealed.
  • the positive electrode 1 is connected to the sealing plate 10 via the positive electrode lead 5, and the negative electrode 2 is connected to the bottom surface of the battery case 9 via the negative electrode lead 6.
  • An upper insulating plate 7 is provided on the electrode group 4, and a lower insulating plate 8 is provided below the electrode group 4.
  • the positive electrode 1 has a positive electrode current collector and a positive electrode mixture layer.
  • the positive electrode current collector is a foil or a substrate (for example, aluminum foil) made of a conductive material, and has a predetermined thickness.
  • the positive electrode mixture layer is provided on the surface of the positive electrode current collector, and has iron disulfide (positive electrode active material), a conductive agent, and a binder.
  • Iron disulfide may be one obtained by pulverizing natural ore (pyrite) or industrially synthesized one. In either case, impurities such as sulfate ions are eluted from the positive electrode active material into the electrolyte.
  • the conductive agent those commonly used in the field of lithium primary batteries can be used, and may be graphite powder (for example, natural graphite) or a mixture of graphite powder and carbon black (for example, acetylene black).
  • the binder those commonly used in the field of lithium primary batteries can be used, and it is preferable that the binder is polyvinylidene fluoride (PVDF (poly (vinylidene) fluoride)) as described later, but a fluorine-based resin other than PVDF ( For example, it may be PTFE (polytetrafluoroethylene) or FEP (fluorinated ethylene-propylene) copolymer) or SBR (styrene-butadiene rubber). These materials may be used alone, or two or more of the above materials may be mixed and used.
  • PVDF polyvinylidene fluoride
  • FEP fluorinated ethylene-propylene copolymer
  • SBR styrene-butad
  • the contents of the positive electrode active material, the conductive agent and the binder in the positive electrode mixture layer are not particularly limited.
  • the conductive agent may be contained in an amount of 2 parts by mass or more and 7 parts by mass or less with respect to 100 parts by mass of the positive electrode active material
  • the binder is 1 part by mass or more and 6 parts by mass or less with respect to 100 parts by mass of the positive electrode active material. It only has to be included.
  • the negative electrode 2 may be one commonly used in the field of lithium primary batteries, and may be a foil made of lithium, or a foil made of a lithium alloy containing a predetermined amount of at least one metal such as aluminum, magnesium or tin. It may be. However, if the negative electrode 2 is made of a lithium alloy, the strength of the negative electrode 2 can be obtained. Moreover, if the negative electrode 2 is made of a lithium alloy containing at least one of magnesium and tin, it is possible to prevent impurities that have dissolved out of the positive electrode active material into the electrolyte from being deposited on the surface of the negative electrode 2.
  • separator 3 a separator that is commonly used in the field of lithium primary batteries can be used, as long as it has a large ion permeability and has a predetermined mechanical strength and insulation.
  • the separator 3 may be, for example, a polyolefin nonwoven fabric, woven fabric, or microporous membrane.
  • the non-aqueous electrolyte contains a non-aqueous solvent and a solute.
  • the non-aqueous solvent contains DIOX and DME as main components.
  • the non-aqueous solvent further contains THF, and the content of THF is higher than 0% by volume and not higher than 20% by volume. Thereby, an initial voltage falls, without causing the fall of medium load discharge performance.
  • DIOX and DME are unlikely to be reduced immediately after the production of the battery. Therefore, if the THF content is 0% by volume, the solvent of the electrolytic solution is difficult to be reduced immediately after the battery is manufactured. Therefore, immediately after the production of the battery, the surface potential of the positive electrode 1 is unlikely to decrease, and the phenomenon that the reduction product of the solvent adheres to the surface of the positive electrode 1 hardly occurs. Therefore, it is difficult to reduce the initial voltage.
  • the THF content is higher than 0% by volume, THF is reduced immediately after the battery is produced, and the reduction product of THF adheres to the surface of the positive electrode 1.
  • the potential of the reduction product of THF is lower than the potential of the positive electrode 1 before the reduction product of THF is attached. Therefore, when the reduction product of THF adheres to the surface of the positive electrode 1, the surface potential of the positive electrode 1 is lowered, and thus the initial voltage of the lithium primary battery is lowered.
  • the initial voltage is 1.75 V or less, in most dry battery devices, when a dry battery device having a semiconductor integrated circuit is driven by a lithium primary battery, the semiconductor integrated circuit malfunctions. Can be prevented.
  • the initial voltage is 1.65 V or lower, the initial voltage is lower than the standard voltage of an alkaline battery or the like, and thus a dry battery device including a semiconductor integrated circuit can be driven with no problem with a lithium primary battery.
  • the amount of the reduction product of THF increases, so that the amount of the reduction product of THF adhering to the surface of the positive electrode 1 increases. If the content of THF is 20% by volume or less, the amount of the reduction product of THF is not so large, so the reduction product of THF adheres to the surface of the positive electrode 1 and the impurities are eluted from the positive electrode active material. It is thought to prevent. Therefore, at the end of discharge of medium load discharge, the reduction of the reaction area of the positive electrode 1 due to the reduction product of THF is prevented, and impurities are prevented from eluting from the positive electrode active material and adhering to the negative electrode 2.
  • the reduction product of THF not only prevents the elution of impurities from the positive electrode active material, but also significantly reduces the reaction area of the positive electrode 1. Therefore, since the reaction area of the positive electrode 1 is reduced at the end of the middle load discharge, the degree of polarization is greater than when the THF content is 0% by volume. Therefore, the medium load discharge performance is degraded.
  • the THF content is preferably 1% by volume or more and 10% by volume or less. More preferably, the content of THF is 1% by volume or more and 8% by volume or less. Thereby, the effect by THF can fully be acquired and the fall of high load discharge performance can be prevented.
  • the amount of THF reduced on the negative electrode 2 side immediately after fabrication of the battery is less than when the THF content is 1% by volume or more. For this reason, the amount of the reduction product of THF adhering to the surface of the positive electrode 1 immediately after the production of the battery is reduced. Therefore, the surface potential of the positive electrode 1 does not decrease so much, and the initial voltage of the lithium primary battery may not be sufficiently reduced immediately after the battery is manufactured.
  • the amount of the reduction product of THF increases as compared with the case where the THF content is 8% by volume or less, and the reduction product of THF adhering to the positive electrode 1 increases. The amount also increases. Therefore, the initial voltage is lowered. However, the reaction area of the positive electrode 1 may be reduced due to an increase in the amount of the reduction product of THF, leading to a decrease in the migration rate of lithium ions. As a result, the high-load discharge performance may be deteriorated, and the medium-load discharge performance may not be improved. However, even if the THF content exceeds 8% by volume, if it is 10% by volume or less, there is little possibility of causing a decrease in high-load discharge performance, and an improvement in medium-load discharge performance is practically sufficient.
  • the content of THF is more preferably 5% by volume or more. If the content of THF is less than 5% by volume, the amount of the reduced product of THF adhering to the surface of the positive electrode 1 is reduced immediately after the battery is manufactured, and the surface potential of the positive electrode 1 is not so lowered. There is a possibility that the initial voltage of the lithium primary battery is unlikely to decrease immediately after the production of the battery.
  • the content ratio of DIOX and the content ratio of DME are not particularly limited. Considering that the content of THF is higher than 0% by volume and 20% by volume or less, and that the solvent of the non-aqueous electrolyte contains DIOX and DME as main components, the content of DIOX and What is necessary is just to determine the content rate of DME.
  • the DIOX content is preferably 40% by volume to 80% by volume, and more preferably 50% by volume to 70% by volume.
  • DIOX is used for the purpose of preventing impurities from eluting from the positive electrode active material into the electrolyte
  • DME is used for the purpose of increasing the conductivity of lithium ions. Therefore, if the DIOX content is low (less than 40% by volume), it is difficult to prevent the elution of impurities from the positive electrode active material, and thus there is a possibility that the medium-load discharge performance cannot be improved. Therefore, the meaning that the solvent of the electrolytic solution contains THF may be lost (the effect of THF may not be obtained).
  • the DIOX content is too high (over 80% by volume), the DME content is low (less than 20% by volume), which may lead to a decrease in the migration rate of lithium ions in the non-aqueous electrolyte. is there. That is, the high load discharge performance may be deteriorated.
  • the solvent of the non-aqueous electrolyte may be composed of DIOX, DME, and THF.
  • DMI 3,5-dimethylisoxazole
  • the DMI addition rate (hereinafter referred to as “DMI addition rate”) with respect to the solvent of the non-aqueous electrolyte is preferably 0.5% by mass or less, and 0.05% by mass or more and 0.5% by mass or less. More preferably. Thereby, the effect by THF can fully be acquired and the fall of high load discharge performance can be prevented.
  • DMI is easily reduced on the negative electrode 2 side immediately after the production of the lithium primary battery. Therefore, as the DMI addition rate increases, the surface potential of the positive electrode 1 further decreases. However, as the addition rate of DMI increases, a reduction product of DMI is deposited on the surface of the positive electrode 1 to reduce the reaction area of the positive electrode 1. Further, when the addition rate of DMI increases, the internal resistance increases, which may lead to a decrease in the movement speed of lithium ions. Thus, DMI acts in the same way as THF in terms of lowering the initial voltage, but acts differently from THF in terms of suppressing decline in discharge performance (battery 2 in FIG. 2). Based on these, the DMI addition rate may be determined.
  • the DMI addition rate exceeds 0.5 mass%, there is a possibility that the medium-load discharge performance cannot be improved, and the significance that the solvent of the electrolytic solution contains THF may be lost (FIG. 4). Battery 41). Moreover, if the addition rate of DMI is less than 0.05 mass%, the initial voltage may not be further reduced.
  • phthalimide hereinafter referred to as “FIM”
  • the addition rate of FIM is preferably 0.5% by mass or less. More preferably, it is 0.05 mass% or more and 0.5 mass% or less.
  • both DMI and FIM may be added to the solvent of the non-aqueous electrolyte.
  • the sum of the DMI addition rate and the FIM addition rate may be 0.5% by mass or less, and more preferably 0.05% by mass to 0.5% by mass.
  • the solute of the non-aqueous electrolyte may be a lithium salt, such as lithium iodide (LiI) or lithium borofluoride, or a lithium salt containing an imide bond such as LiTSFI (Lithium bis (trifluoromethanesulfonyl) imide). It may be. However, if the solute is LiI, the medium load discharge performance is remarkably improved, and the high load discharge performance is further improved. The reason is considered as follows.
  • the binder for the positive electrode 1 is preferably PVDF.
  • PVDF is easily swollen by an organic solvent. Therefore, when PVDF is used as the binder of the positive electrode 1, the state in which the reduction product of THF or DMI adheres to the surface of the positive electrode 1 is maintained as compared with the case where other materials are used as the binder of the positive electrode 1. easy. As a result, the initial voltage further decreases.
  • the solvent of the electrolytic solution contains DIOX and DME as main components, and further contains THF. Moreover, the content rate of THF is higher than 0 volume% and is 20 volume% or less. Thereby, an initial voltage falls and it can prevent the fall of medium load discharge performance.
  • THF is selected, and the content of THF is higher than 0% by volume and not more than 20% by volume, which means that the initial voltage is reduced and the medium load discharge performance is prevented from being lowered. It is possible to simultaneously obtain effects that contradict conventional expectations.
  • the present embodiment may have the following configuration.
  • the solvent of the non-aqueous electrolyte may contain a small amount of additives other than DMI and FIM, and the non-aqueous electrolyte may be a lithium salt other than LiI (for example, a small amount of LiTSFI or the like may be contained as a solute.
  • the solvent of the non-aqueous electrolyte contains DIOX and DME as main components. If the solvent of the non-aqueous electrolyte does not contain at least one of DIOX and DME as a main component, at least one of the medium load discharge performance and the high load discharge performance is significantly reduced (battery 3 in FIG. 2).
  • the injection amount of the non-aqueous electrolyte may be appropriately set according to the size of the lithium primary battery, and is not limited to the numerical values in the examples described later.
  • the concentration of the solute in the non-aqueous electrolyte may be set as appropriate according to the use of the lithium primary battery, and is not limited to the numerical values in the examples described later.
  • the constituent elements of the lithium primary battery other than the non-aqueous electrolyte are not limited to those described in the above embodiment and the examples described later, and may be set as appropriate.
  • the sizes of the positive electrode 1, the negative electrode 2, and the separator 3 are not limited to the numerical values in the examples described later.
  • the configurations (material, thickness, size, etc.) of the positive electrode lead 5, the negative electrode lead 6, the upper insulating plate 7, the lower insulating plate 8, the battery case 9, and the sealing plate 10 are not particularly limited.
  • the type and content of a metal other than lithium (metal that is alloyed with lithium) contained in the negative electrode 2 may be appropriately set as necessary. It is not limited to the numerical value in.
  • the positive electrode current collector may be an expanded metal.
  • the positive electrode mixture may be filled in the opening of the expanded metal.
  • the positive electrode current collector may be an aluminum foil.
  • the lithium primary battery according to this embodiment is compatible with an alkaline battery or the like. That is, the use of the lithium primary battery according to the present embodiment is not limited to the driving power source of the device including the semiconductor integrated circuit.
  • Example 1 In Example 1, the content of THF was optimized. Specifically, lithium primary batteries (batteries 1 to 15) that differ only in the composition of the electrolytic solution are prepared, and initial voltage measurement, medium load discharge test, and high load discharge test are performed on each of the lithium primary batteries. went.
  • a negative electrode 2 made of a lithium alloy containing 200 ppm of aluminum was prepared.
  • the thickness of the negative electrode 2 is set so that the theoretical capacity ratio (theoretical capacity of the negative electrode 2 / theoretical capacity of the positive electrode 1) per unit area of the positive electrode 1 and the negative electrode 2 facing each other is 0.80. did.
  • the thickness of the negative electrode 2 was calculated with the theoretical capacity of iron disulfide being 894 mAh / g.
  • the separator 3 which consists of a 25-micrometer-thick polyethylene microporous film was prepared. Then, the separator 3 was wound between the positive electrode 1 and the negative electrode 2. As a result, an electrode group 4 having an outer diameter of 13.1 mm was obtained. In the produced electrode group 4, the positive electrode lead 5 connected to the positive electrode 1 is drawn out from one end surface of the electrode group 4, and the negative electrode lead 6 connected to the negative electrode 2 is drawn out from the other end surface of the electrode group 4. It was.
  • the electrode group 4 was accommodated in the battery case 9 together with a predetermined amount (2.0 ml) of the electrolyte, the negative electrode lead 6 was connected to the bottom surface of the battery case 9, and the positive electrode lead 5 was connected to the sealing plate 10. And the opening part 9a of the battery case 9 was sealed with the sealing board 10 via the gasket. Thereby, the battery 1 was produced.
  • the battery 1 was subjected to preliminary discharge for 3% of the theoretical capacity of the positive electrode 1 within 6 to 18 hours after the production.
  • the current during the preliminary discharge was set to 15% of the theoretical capacity of the positive electrode 1 (for example, 600 mA for a design of 4000 mAh).
  • the battery after the preliminary discharge was stored at 30 ° C. for 6 days (aging). The same was done for batteries 2-15.
  • the initial voltage is 1.75 V or less, but the medium load discharge performance is less than 100 and the high load discharge performance is less than 95 (batteries 11 to 15). ). This result was the same even when the volume ratio between DIOX and DME was changed (batteries 11 and 12). In addition, in the battery 15, since the content rate of DIOX is less than 40 volume%, medium load discharge performance fell remarkably.
  • the increase amount of the index of the discharge performance is 3 or more (for example, 100 becomes 103 or more) means that the discharge performance is greatly improved.
  • Example 2 In Example 2, the DIOX content and the DME content were optimized.
  • Batteries 16 to 36 shown in FIG. 3 were manufactured according to the same manufacturing method as that of the battery 1 of Example 1 except that the DIOX content and the DME content were different. And after performing preliminary discharge and aging according to the method described in Example 1, initial voltage measurement, medium load discharge test and high load discharge test were performed.
  • Example 3 In Example 3, the solute of the electrolytic solution, the additive to the solvent of the electrolytic solution, and the binder of the positive electrode 1 were optimized. Hereinafter, it demonstrates in order.
  • a battery 37 shown in FIG. 4 was manufactured according to the same manufacturing method as that of the battery 24 except that the solutes of the electrolytic solution were different. Then, according to the method described in Example 1 above, preliminary discharge and aging were performed, and then an initial voltage measurement and a discharge test were performed.
  • the battery 24 was excellent in medium load discharge performance and excellent in high load discharge performance. The reason is as described in the above embodiment.
  • Batteries 38 to 42 shown in FIG. 4 were produced according to the same production method as that of the battery 24 except that DMI was added to the solvent of the electrolytic solution. Further, batteries 43 to 47 shown in FIG. 4 were manufactured according to the same manufacturing method as the battery 24 except that FIM was added to the solvent of the electrolytic solution. Then, according to the method described in Example 1 above, preliminary discharge and aging were performed, and then an initial voltage measurement and a discharge test were performed.
  • the initial voltage further decreased as the DMI addition rate increased.
  • the DMI addition rate exceeds 0.5 mass%, it is difficult to improve the medium-load discharge performance.
  • the FIM addition rate The reason is as described in the above embodiment.
  • the addition ratio of DMI or FIM is 0.05 mass% or more and 0.5 mass% or less also in batteries other than the battery 24 (for example, the batteries 5 to 10 in FIG. 2 and the battery shown in FIG. As a result, the initial voltage further decreased, and the decrease in medium-load discharge performance was suppressed.
  • Batteries 48 and 49 shown in FIG. 4 were produced according to the same production method as the batteries 24 and 38 except that the binder for the positive electrode 1 was PVDF. Then, according to the method described in Example 1 above, preliminary discharge and aging were performed, and then an initial voltage measurement and a discharge test were performed.
  • the initial voltage of the battery 48 was lower than that of the battery 24, and the battery 49 was lower than that of the battery 38. The reason is as described in the above embodiment.
  • the initial voltage of the batteries other than the batteries 24 and 38 (for example, the batteries 5 to 10 in FIG. 2 and the battery shown in FIG. 3) is further reduced if the binder of the positive electrode 1 is PVDF. .
  • the present invention is useful for lithium primary batteries that are compatible with alkaline dry batteries and the like, and is also useful as a battery for driving dry battery equipment equipped with a semiconductor integrated circuit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 初期電圧を低下させると中負荷放電性能の低下を招く。 二硫化鉄を正極活物質とするリチウム一次電池において、非水電解液の溶媒は、DIOXとDMEとを主成分として含んでおり、THFを更に含んでいる。また、THFの含有率は、20体積%以下である。

Description

リチウム一次電池
 本発明は、二硫化鉄を正極活物質とするリチウム一次電池(以下では、このリチウム一次電池を単に「リチウム一次電池」又は「電池」と記す)に関する。
 リチウム一次電池は、平均放電電圧が1.5V付近であるため、平均放電電圧が1.5V程度である他の一次電池(例えばマンガン乾電池又はアルカリ乾電池等,以下では「アルカリ乾電池等」と記す。)との互換性を有している。よって、リチウム一次電池の実用価値は高い。また、二硫化鉄(正極活物質)の理論容量は約894mAh/gであり、リチウム(負極活物質)の理論容量は約3863mAh/gである。このように、リチウム一次電池では正極活物質の理論容量及び負極活物質の理論容量が共に高いため、高容量且つ軽量な一次電池としてもリチウム一次電池の実用価値は高い。
 リチウム一次電池には、一般に、コイン形(又はボタン形)と円筒形とが知られている。コイン形のリチウム一次電池は、低負荷放電領域での使用に適している。特許文献1には、非水電解液(以下では単に「電解液」と記すことがある。)の溶媒が炭酸プロピレンとテトラヒドロフラン(THF(tetrahydrofuran))とを含んでいれば低温での閉路電圧の低下を抑制できると記載されている。
 円筒形リチウム一次電池では、正極と負極とがセパレータを介して捲回されているので、正極と負極とが互いに対向する面積はアルカリ乾電池等よりも大きい。従って、円筒型リチウム一次電池は高負荷放電領域での使用に適している。特許文献2には、電解液の溶媒がジオキソラン(DIOX(dioxolane))と1,2-ジメトキシエタン(DME(dimethoxyethane))とを含んでいれば高負荷放電性能が向上すると記載されている。
 リチウム一次電池は、中負荷放電性能がアルカリ乾電池等と同等である。利用者にとって利便性の高いリチウム一次電池を提供することを考えれば、高負荷放電性能の向上のみならず中負荷放電性能の向上も必要である。一般に、リチウム一次電池では、中負荷放電での負極の利用率を上げることが難しいと言われている。その理由は、次に示す通りである。リチウム一次電池では、放電が進むにつれて、リチウムが溶出し、また、硫酸イオン等の不純物が二硫化鉄から溶出して負極の表面上に析出する。中負荷放電では、放電深度が深い領域まで放電されるため(例えば放電深度は85%)、その放電末期では、負極の反応面積の減少を招く。また、中負荷放電では、放電電流がそれほど小さくないため、負極の反応面積が減少すると放電され難くなる。
 ところで、リチウム一次電池では、残存酸素が正極中の炭素材(導電剤)の表面で還元されて電位が生じていると考えられており、よって、リチウム一次電池の正極では、混成電位が発生していると考えられている。そのため、二硫化鉄はリチウム金属に対して約1.7Vの電位を示すにも関わらず、リチウム一次電池の初期電圧(以下では単に「初期電圧」と記すことがある)は1.7Vよりも高く1.8V程度である。初期電圧はこのように高いが、リチウム一次電池の電圧(以下では単に「電池電圧」と記すことがある)はリチウム一次電池に電流負荷が掛かってから約数秒の間で1.5V程度までに低下する。そのため、アルカリ乾電池等で駆動可能な機器(乾電池用機器)をリチウム一次電池で問題なく駆動可能であると考えられていた。ところが、近年では、例えばデジタルスチルカメラに代表されるように、半導体集積回路が内蔵された機器をアルカリ乾電池等で駆動する場合がある。このような機器の電源をオンにすると、その直後から数十ミリ秒の間では、電池からの出力電圧が半導体集積回路に印加される。このとき、規格電圧が1.65V以下である電池(つまりアルカリ乾電池等)で駆動させることを想定した機器の半導体集積回路に1セルあたりの電圧が1.65Vよりも高い電圧(例えば1.8V)が印加されると、その半導体集積回路が誤作動を起こす場合がある。そのため、半導体集積回路が搭載された機器をリチウム一次電池で駆動させることは難しく、リチウム一次電池を駆動電源として使用可能な機器は制限される。
 なお、特許文献3には、コイン形リチウム一次電池の電解液が所定量のイソオキサゾール誘導体を含んでいれば初期開路電圧が低下すると記載されている。
特開昭57-174870号公報 米国特許第5,290,414号 特開昭59-181464号公報(米国出願番号479,744号)
 特許文献3に記載の技術を用いると、中負荷放電性能の低下を招くことがある。中負荷放電性能が低下すると、アルカリ乾電池等の代替としてリチウム一次電池を使用することが難しくなる。
 本発明では、中負荷放電性能の低下を抑制しつつ初期電圧を低下可能なリチウム一次電池を提供する。
 本発明は、正極活物質に二硫化鉄を用いたリチウム一次電池において、電解液の溶媒の組成を最適化すれば中負荷放電性能の低下を伴うことなく初期電圧を低下させることができるというものである。
 リチウム一次電池の電解液の溶媒には、非水溶媒が用いられている。種々ある非水溶媒の中には、リチウム一次電池内の電気化学反応により還元され易い溶媒(耐還元性の低い溶媒)が存在する。これらの溶媒は負極側で還元されて正極の表面電位を操作する(正極の表面電位を下げる)と考えられ、溶媒の還元生成物(溶媒が還元されて生成されたもの)が正極の表面での反応に影響を及ぼすと考えられる。具体的には、PC(polycarbonate)又はTHFは、DME等に比べて耐還元性に劣るので、負極側で還元されて正極の表面上に被膜を生成すると言われている。本発明者等は、先行技術の調査及び自らの鋭意検討により、THFがリチウム一次電池の作製直後から負極側で還元され易いことを確認した。このことから、THFをリチウム一次電池の電解液の溶媒として用いれば、リチウム一次電池の作製直後から正極の表面電位が低下するので初期電圧が低下すると考えた。
 しかし、THF等のように耐還元性の低い溶媒を電解液の溶媒として使用すると、その溶媒の還元生成物が正極の表面に付着する等の理由から、放電性能が低下すると言われている。また、THFを電解液の溶媒として使用すると高負荷放電性能が低下することが知られており、このことから、THFを電解液の溶媒として使用すると中負荷放電性能が低下すると予想される。
 ところが、今般、電解液の溶媒中におけるTHFの含有率(以下では「THFの含有率」と記す)を最適化すれば、中負荷放電性能の低下を伴うことなく初期電圧が低下する、場合によっては中負荷放電性能を向上させつつ初期電圧が低下することが分かった。これは、THFを電解液の溶媒として使用すると高負荷放電性能が低下するという技術常識から予想される領域を遙かに超えており、また、耐還元性の低い溶媒を電解液の溶媒として使用すると中負荷放電性能が低下する恐れがあるという技術常識からは予想もつかないことである。また、このような効果が得られた理由として、本発明者等は、断言できないが、THFの還元生成物が正極活物質からの不純物の溶出を防止するからであると考えている。
 更に、電解液の溶質の材料を最適化すれば、初期電圧が更に低下し、且つ、中負荷放電性能が更に向上することが分かった。
 つまり、本発明に係るリチウム一次電池では、電解液の溶媒は、DIOXとDMEとを主成分として含んでおり、THFを更に含んでいる。THFの含有率は、0体積%よりも高く20体積%以下である。
 ここで、本発明は、主に、放電性能の低下を伴うことなく使用者が使用する直前のリチウム一次電池の電圧(初期電圧)の改善を図るものである。リチウム一次電池は、通常、作製後、予備放電(「初期放電」と呼ばれることもある)及びエージングを経て、使用者の手元に亘る。従って、本明細書では、「初期電圧」は所定の予備放電及びエージングが行われた後であって使用される前の電池電圧であり、「放電性能」は所定の予備放電及びエージングが行われた後のリチウム一次電池の放電性能である。放電性能は、例えば、放電容量又は持続時間である。なお、予備放電及びエージングの条件はそれぞれ種々知られているが、本発明者等は予備放電及びエージングの条件が多少異なっても得られる効果の優劣に影響を与えないと考えている。
 本明細書では、「初期電圧が低下する」、「初期電圧の低下」又は「初期電圧の低下が図れる」等とは、初期電圧が1.80Vよりも低くなることであり、好ましくは初期電圧が1.75V以下であることであり、より好ましくは初期電圧が1.65V以下であることである。
 本明細書では、「中負荷放電性能の低下を抑制する」又は「中負荷放電性能の低下を防止する」等とは、THFの含有率が0体積%である場合と中負荷放電性能が略同一であることである。
 本明細書では、「中負荷放電性能が向上する」又は「中負荷放電性能の向上が図れる」等とは、THFの含有率が0体積%である場合よりも中負荷放電性能が優れている(例えば、放電容量が大きい又は持続時間が長い)ことである。
 本明細書では、「中負荷放電性能が低下する」又は「中負荷放電性能の低下を招く」等とは、THFの含有率が0体積%である場合よりも中負荷放電性能が劣る(例えば、放電容量が小さい又は持続時間が短い)ことである。なお、「高負荷放電性能が低下する」についても同様である。
 「非水電解液の溶媒は、DIOX及びDMEを主成分として含む」とは、DIOX、DME及びTHF以外の非水溶媒(その他の非水溶媒、例えばPC等)が少量であれば電解液の溶媒に含まれても良いことを意味している。しかし、その他の非水溶媒の含有率(その他の非水溶媒が2種類以上存在するときにはその含有率の合計)は、電解液の溶媒中におけるDIOXの含有率(以下では「DIOXの含有率」と記す)、電解液の溶媒中におけるDMEの含有率(以下では「DMEの含有率」と記す)及びTHFの含有率のうち最も低い含有率よりも低いことが好ましく、多くの場合はTHFの含有率よりも低いことが好ましい。
 本発明によれば、中負荷放電性能の低下を抑制しつつ初期電圧の低下が図れるので、利便性に優れたリチウム一次電池を提供できる。
本発明の一実施形態に係るリチウム一次電池の半断面図である。 実施例1の結果をまとめた表である。 実施例2の結果をまとめた表である。 実施例3の結果をまとめた表である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下に示す実施形態に限定されない。また、本発明の効果を奏する範囲を逸脱しない範囲で、以下の実施形態における構成を適宜変更することが可能である。
 図1は、本実施形態に係るリチウム一次電池の半断面図である。
 図1に示すように本実施形態に係るリチウム一次電池は、正極1と負極2とがセパレータ3を介して捲回された電極群4を備えている。この電極群4は非水電解液(図示せず,例えばセパレータ3に保持されている)とともに電池ケース9内に収容されており、電池ケース9の開口部9aは封口板(正極端子)10で封じられている。正極1は正極リード5を介して封口板10に接続されており、負極2は負極リード6を介して電池ケース9の底面に接続されている。また、電極群4の上には上部絶縁板7が設けられており、電極群4の下には下部絶縁板8が設けられている。
 正極1は、正極集電体と正極合剤層とを有している。正極集電体は、導電性材料からなる箔又は基板(例えばアルミニウム箔)であり、所定の厚みを有している。正極合剤層は、正極集電体の表面上に設けられており、二硫化鉄(正極活物質)と導電剤と結着剤とを有している。二硫化鉄は、天然鉱石(黄鉄鉱)が粉砕されたものであっても良いし、工業的に合成されたものであっても良い。どちらの場合であっても、硫酸イオン等の不純物が正極活物質から電解液へ溶出する。導電剤は、リチウム一次電池の分野で常用されるものを使用でき、黒鉛粉末(例えば天然黒鉛)であっても良いし、黒鉛粉末とカーボンブラック(例えばアセチレンブラック)との混合物であっても良い。結着剤は、リチウム一次電池の分野で常用されるものを使用でき、後述するようにポリフッ化ビニリデン(PVDF(poly(vinylidene fluoride)))であることが好ましいが、PVDF以外のフッ素系樹脂(例えばPTFE(polytetrafluoroethylene)又はFEP(fluorinated ethylene-propylene)共重合体)であっても良いし、SBR(styrene-butadiene rubber)であっても良い。これらの材料を単独で用いても良いし、上記材料の2つ以上を混合して用いても良い。
 正極合剤層における正極活物質、導電剤及び結着剤の含有量は特に限定されない。例えば、導電剤は正極活物質100質量部に対して2質量部以上7質量部以下含まれていれば良く、結着剤は正極活物質100質量部に対して1質量部以上6質量部以下含まれていれば良い。
 負極2は、リチウム一次電池の分野で常用されるものを使用でき、リチウムからなる箔であっても良いし、所定量のアルミニウム、マグネシウム又はスズ等の少なくとも1つの金属を含むリチウム合金からなる箔であっても良い。しかし、負極2がリチウム合金からなれば、負極2の強度を得ることができる。また、負極2がマグネシウム及びスズの少なくとも一方を含むリチウム合金からなれば、正極活物質から電解液中に溶け出した不純物が負極2の表面上に析出することを防止できる。
 セパレータ3は、リチウム一次電池の分野で常用されるものを使用でき、大きなイオン透過度を有するとともに、所定の機械的強度及び絶縁性を兼ね備えていれば良い。セパレータ3は、例えば、ポリオレフィンの不織布、織布又は微多孔膜であれば良い。
 非水電解液は、非水溶媒と溶質とを含んでいる。非水溶媒は、DIOXとDMEとを主成分として含んでいる。非水溶媒はTHFを更に含み、THFの含有率は0体積%より高く20体積%以下である。これにより、中負荷放電性能の低下を招くことなく初期電圧が低下する。
 DIOX及びDMEは、電池の作製直後において還元され難い。そのため、THFの含有率が0体積%であれば、電解液の溶媒は電池の作製直後において還元され難い。よって、電池の作製直後において、正極1の表面電位は低下し難く、また、溶媒の還元生成物が正極1の表面上に付着されるという現象は起こり難い。従って、初期電圧の低下を図ることは難しい。
 THFの含有率が0体積%より高くなると、THFが電池の作製直後から還元され、THFの還元生成物は正極1の表面上に付着する。THFの還元生成物の電位は、THFの還元生成物が付着する前の正極1の電位よりも低い。そのため、THFの還元生成物が正極1の表面上に付着すると正極1の表面電位は低下し、よって、リチウム一次電池の初期電圧が低下する。初期電圧が1.75V以下であれば、半導体集積回路を備えた乾電池用機器をリチウム一次電池で駆動させようとしたときにその半導体集積回路が誤作動を起こすことを殆んどの乾電池用機器において防止できる。初期電圧が1.65V以下であれば、初期電圧がアルカリ乾電池等の規格電圧以下となるので、半導体集積回路を備えた乾電池用機器をリチウム一次電池で何の問題もなく駆動させることができる。
 THFの含有率が高くなるにつれて、初期電圧の低下幅は大きくなる。しかし、THFの含有率が高くなるにつれて、THFの還元生成物の量が増えるので、正極1の表面上に付着するTHFの還元生成物の量が増える。THFの含有率が20体積%以下であれば、THFの還元生成物の量がそれほど多くないので、THFの還元生成物は正極1の表面上に付着して正極活物質からの不純物の溶出を防止すると考えられる。よって、中負荷放電の放電末期においては、THFの還元生成物による正極1の反応面積の極端な低下が防止され、また、不純物が正極活物質から溶出して負極2に付着することが防止される。従って、中負荷放電の放電末期では、正極1及び負極2の両極の反応面積がある程度確保されるので、分極の度合いが緩和され、その結果、電池電圧の急激な低下が防止される。これにより、中負荷放電性能の低下が抑制され、場合によっては中負荷放電性能が向上する。
 一方、THFの含有率が20体積%を超えると、正極1の表面上に付着するTHFの還元生成物の量が更に増加する。そのため、THFの還元生成物は、正極活物質からの不純物の溶出を防止するだけでなく、正極1の反応面積を著しく低下させる。よって、中負荷放電の放電末期では、正極1の反応面積の低下を招くので、THFの含有率が0体積%である場合よりも分極の度合いは大きくなる。従って、中負荷放電性能の低下を招く。
 従来、電解液の溶媒にTHFを添加すると、高負荷放電性能の低下を招くと言われている。しかし、上述のように、THFの含有率を最適化すれば、中負荷放電性能の低下を防止できる。その理由として、断言できないが、次のように考えている。上述のように、中負荷放電では、放電深度が高負荷放電よりも深いため、負極の反応面積の低下による影響を受け易い。しかし、電解液の溶媒にTHFを添加すると、正極1からの不純物が負極2上に析出することを防止できるため、中負荷放電性能が改善される。もう一つの理由は、中負荷放電では、放電電流が高負荷放電よりも少ない。よって、内部抵抗の増大に起因してリチウムイオンの移動速度が低下したとき、高負荷放電領域で使用できなくても中負荷放電領域で使用できる場合がある。
 THFの含有率は、1体積%以上10体積%以下であることが好ましい。THFの含有率が1体積%以上8体積%以下であるとさらに好ましい。これにより、THFによる効果を充分に得ることができ、高負荷放電性能の低下を防止できる。
 THFの含有率が1体積%未満であれば、THFの含有率が1体積%以上である場合に比べて、電池の作製直後において負極2側で還元されるTHFの量は少ない。そのため、電池の作製直後において、正極1の表面上に付着するTHFの還元生成物の量が少なくなる。よって、正極1の表面電位がそれほど低下せず、電池の作製直後においてリチウム一次電池の初期電圧が低下が十分ではない場合がある。
 THFの含有率が8体積%を超えると、THFの含有率が8体積%以下である場合に比べて、THFの還元生成物の量が増大し、正極1に付着するTHFの還元生成物の量も増加する。よって、初期電圧は低下する。しかし、THFの還元生成物の量の増加に起因して正極1の反応面積が低下し、リチウムイオンの移動速度の低下を招くことがある。これにより、高負荷放電性能の低下を招く恐れがあり、また、中負荷放電性能の向上が図れない恐れがある。ただし、THFの含有率が8体積%を超えても10体積%以下であれば、高負荷放電性能の低下を招くおそれは小さく、中負荷放電性能の向上も実用的に十分である。
 また、THFの含有率は5体積%以上であることがより好ましい。THFの含有率が5体積%未満であると、電池の作製直後において、正極1の表面上に付着するTHFの還元生成物の量が少なくなって、正極1の表面電位がそれほど低下せず、電池の作製直後においてリチウム一次電池の初期電圧が低下し難いおそれがある。
 DIOXの含有率及びDMEの含有率は特に限定されない。THFの含有率が0体積%よりも高く20体積%以下であること、及び、非水電解液の溶媒がDIOX及びDMEを主成分として含んでいること等を考慮して、DIOXの含有率及びDMEの含有率を決めれば良い。しかし、DIOXの含有率は、40体積%以上80体積%以下であることが好ましく、50体積%以上70体積%以下であれば更に好ましい。また、DMEの含有率は、20体積%以上60体積%以下であることが好ましく、25体積%以上45体積%以下であれば更に好ましい。最も好ましくは、DIOX:DME=3:2(体積比)である。これにより、THFによる効果を充分に得ることができ、また、高負荷放電性能の低下を防止できる。
 一般に、DIOXは不純物が正極活物質から電解液に溶出することを防止するという目的で使用されており、DMEはリチウムイオンの伝導度を高めるという目的で使用されている。そのため、DIOXの含有率が低ければ(40体積%未満)、正極活物質からの不純物の溶出が防止され難く、よって、中負荷放電性能の向上を図れない恐れがある。従って、電解液の溶媒がTHFを含んでいるという意義が没却される恐れがある(THFによる効果が得られない場合がある。)。一方、DIOXの含有率が高くなりすぎると(80体積%超)、DMEの含有率が低くなるので(20体積%未満)、非水電解液中におけるリチウムイオンの移動速度の低下を招くことがある。つまり、高負荷放電性能の低下を招くことがある。
 なお、非水電解液の溶媒は、DIOX、DME及びTHFからなっても良い。
 非水電解液の溶媒には、3,5-ジメチルイソオキサゾール(3,5-dimethylisoxazole以下では「DMI」と記す)が添加されていることが好ましい。非水電解液の溶媒に対するDMIの添加率(以下では「DMIの添加率」と記す)は、0.5質量%以下であることが好ましく、0.05質量%以上0.5質量%以下であれば更に好ましい。これにより、THFによる効果を充分に得ることができ、高負荷放電性能の低下を防止できる。
 DMIは、リチウム一次電池の作製直後から負極2側で還元され易い。そのため、DMIの添加率が増加するにつれて、正極1の表面電位が更に低下する。しかし、DMIの添加率が増加するにつれて、DMIの還元生成物が正極1の表面上に析出して正極1の反応面積を低下させる。また、DMIの添加率が増加すると、内部抵抗が増大するので、リチウムイオンの移動速度の低下を招くことがある。このように、DMIは、初期電圧の低下という点ではTHFと同様に作用するが、放電性能の低下の抑制という点ではTHFとは異なるように作用する(図2の電池2)。これらを踏まえてDMIの添加率を決定すれば良い。DMIの添加率が0.5質量%を超えると、中負荷放電性能の向上を図れない恐れがあり、電解液の溶媒がTHFを含んでいるという意義が没却されることがある(図4の電池41)。また、DMIの添加率が0.05質量%未満であれば、初期電圧の更なる低下が図れないことがある。
 同様の理由から、非水電解液の溶媒にはフタルイミド(phthalimide,以下では「FIM」と記す)が添加されていることが好ましく、FIMの添加率は0.5質量%以下であることが好ましく0.05質量%以上0.5質量%以下であることが更に好ましい。なお、非水電解液の溶媒にはDMI及びFIMの両方が添加されていても良い。この場合には、DMIの添加率とFIMの添加率との合計が0.5質量%以下であれば良く0.05質量%以上0.5質量%以下であれば更に好ましい。
 非水電解液の溶質は、リチウム塩であれば良く、ヨウ化リチウム(LiI)又はホウフッ化リチウム等であっても良いし、LiTSFI(Lithium bis(trifluoromethanesulfonyl)imide)等のイミド結合を含むリチウム塩であっても良い。しかし、溶質がLiIであれば、中負荷放電性能が著しく向上し、高負荷放電性能も更に向上する。その理由としては、次に示すことが考えられる。
 LiIが非水電解液の溶媒中で解離すると、ヨウ化物イオンが生成される。このヨウ化物イオンは電池内に混入された僅かな水と反応することがあり、この反応により、正極活物質から溶出した不純物が負極2の表面で反応不活性な生成物として付着して負極2等に悪影響を及ぼすことを防止できると考えられる。このように考えられる理由は、この不純物が負極2の表面上で反応不活性な物質に変化する反応に、水が関与していると考えられるためである。よって、溶媒中にヨウ化リチウムが存在すると、この不純物による負極2等への悪影響が低減されるので、中負荷放電性能が著しく向上する。
 正極1の結着剤はPVDFであることが好ましい。これにより、正極1の表面電位は更に低下する。その理由としては、断言できないが、次に示すことが考えられる。PVDFは、有機溶媒に膨潤され易い。そのため、PVDFを正極1の結着剤として用いれば、他の材料を正極1の結着剤として用いる場合に比べて、THF又はDMIの還元生成物が正極1の表面に付着する状態を維持し易い。これにより、初期電圧が更に低下する。
 以上説明したように、本実施形態では、電解液の溶媒は、DIOX及びDMEを主成分として含み、THFを更に含む。また、THFの含有率は、0体積%よりも高く20体積%以下である。これにより、初期電圧が低下し、中負荷放電性能の低下を防止できる。耐還元性の低い溶媒の中でもTHFを選択し、且つ、THFの含有率を0体積%よりも高く20体積%以下としたからこそ、初期電圧の低下と中負荷放電性能の低下の防止という、従来の予想から相反する効果を同時に得ることができる。
 本実施形態は、以下に示す構成を有していても良い。
 上記実施形態に記載の効果が得られるのであれば、非水電解液の溶媒は、DMI及びFIM以外の添加剤を少量含んでいても良いし、非水電解液は、LiI以外のリチウム塩(例えばLiTSFI等)を溶質として少量含んでいても良い。
 非水電解液の溶媒はDIOX及びDMEを主成分として含んでいることが前提である。非水電解液の溶媒がDIOX及びDMEの少なくとも一方を主成分として含んでいなければ、中負荷放電性能及び高負荷放電性能の少なくとも一方の著しい低下を招く(図2の電池3)。
 非水電解液の注入量は、リチウム一次電池の大きさ等に応じて適宜設定すれば良く、後述の実施例における数値に限定されない。
 非水電解液における溶質の濃度は、リチウム一次電池の用途等に応じて適宜設定すれば良く、後述の実施例における数値に限定されない。
 非水電解液以外のリチウム一次電池の構成要素は、上記実施形態及び後述の実施例の記載に限定されず、適宜設定すれば良い。例えば、正極1、負極2及びセパレータ3の各大きさは、後述の実施例における数値に限定されない。また、正極リード5、負極リード6、上部絶縁板7、下部絶縁板8、電池ケース9及び封口板10の各構成(材料、厚み、大きさ等)は、特に限定されない。また、負極2がリチウム合金からなる場合、負極2に含まれるリチウム以外の金属(リチウムと合金化される金属)の種類及び含有量は、必要に応じて適宜設定すれば良く、後述の実施例における数値に限定されない。
 正極集電体はエキスパンドメタルであっても良く、この場合には正極合剤はエキスパンドメタルの開口部に充填されていれば良い。また、正極集電体はアルミニウム箔であっても良い。
 本実施形態に係るリチウム一次電池は、アルカリ乾電池等と互換可能である。つまり、本実施形態に係るリチウム一次電池の用途は、半導体集積回路を備えた装置の駆動用電源に限定されない。
 (実施例1)
 実施例1では、THFの含有率を最適化させた。具体的には、電解液の組成のみが異なるリチウム一次電池(電池1~15)を作製し、そのリチウム一次電池のそれぞれに対して、初期電圧の測定、中負荷放電試験及び高負荷放電試験を行った。
 [単3形リチウム一次電池の作製]
 (1)電池1
 まず、二硫化鉄(正極活物質)とケッチェンブラック(導電剤)とPTFE(結着剤)とを94.0:3.5:2.5(質量比)で混合して、正極合剤を作製した。この正極合剤をアルミ箔(正極集電体)の両面上に塗布して乾燥させた後、圧延した。これにより、幅が44mmであり、極板の長さが220mmであり、厚さが0.145mmである正極1が得られた。
 次に、アルミニウムを200ppm含むリチウム合金からなる負極2を用意した。このとき、正極1及び負極2のうち互いに対向する部分の単位面積当たりの理論容量比(負極2の理論容量/正極1の理論容量)が0.80となるように負極2の厚さを設定した。なお、二硫化鉄の理論容量を894mAh/gとして負極2の厚みを算出した。また、厚み25μmのポリエチレン微多孔膜からなるセパレータ3を用意した。そして、セパレータ3を正極1と負極2とで挟んで捲回した。これにより、外径が13.1mmである電極群4が得られた。作製された電極群4では、正極1に接続された正極リード5は電極群4の一端面から引き出されており、負極2に接続された負極リード6は電極群4の他端面から引き出されていた。
 続いて、DIOX:DME=3:2(体積比)となるようにDIOXとDMEとを混合して溶媒を調製した。この混合溶媒にLiIを溶解させて、LiIの濃度が1.0mol/Lである電解液を作製した。
 続いて、電極群4を所定量(2.0ml)の電解液とともに電池ケース9に収容し、負極リード6を電池ケース9の底面に接続し、正極リード5を封口板10に接続した。そして、ガスケットを介して封口板10で電池ケース9の開口部9aを封止した。これにより、電池1が作製された。
 (2)電池2~15
 電解液の溶媒の組成が異なる(図2参照)ことを除いては上記電池1の作製方法と同様の方法に従って、電池2~15を作製した。なお、図2中の「3Me2Ox」は、3-Methyl-2-oxazolidoneである。また、電池5~11及び13では、(DIOX):(DME)=3:2(体積比)である。
 [予備放電及びエージング]
 電池1に対して、その作製後6時間から18時間の間に、正極1の理論容量の3%分の予備放電を行った。予備放電時の電流は、正極1の理論容量の15%(例えば4000mAhの設計であれば600mA)とした。予備放電後の電池を30℃で6日間保管した(エージング)。同様のことを電池2~15に対しても行った。
 [初期電圧の測定]
 エージング後の電池1~15に対して、ツルガ電子製MODEL3455を用いて20℃で電池電圧を測定した。測定結果を図2の「初期電圧」に示す。
 [放電試験]
 (1)中負荷放電試験
 エージング後の電池1~15に対して、20℃の雰囲気下で、100mAの定電流で放電させて閉路電圧が0.9Vに至るまでの放電容量(mAh)を測定した。そして、電池1の放電容量に対する各電池の放電容量の割合を求めた。算出結果を図2の「放電性能」の「中負荷」に示す。
 (2)高負荷放電試験
 エージング後の電池1~15に対して、20℃の雰囲気下で、1000mAの定電流で放電させて閉路電圧が1.1Vに至るまでの放電容量(mAh)を測定した。そして、電池1の放電容量に対する各電池の放電容量の割合を求めた。算出結果を図2の「放電性能」の「高負荷」に示す。
 [結果と考察]
 結果を図2に示す。初期電圧が1.75V以下であり、中負荷放電性能(指数)が100以上であり、高負荷放電性能(指数)が95以上である電池を好ましい電池と見なした。
 図2から分かるように、THFの含有率が0体積%であれば、初期電圧は低下しなかった(電池1)。DMIを電解液の溶媒に添加すると、初期電圧は1.75V以下となったが、放電性能も低下した(電池2)。この結果から、特許文献3に記載の技術では放電性能の低下を引き起こすことが確認された。3Me2Oxを含む電解液の溶媒にDMIを添加すると、初期電圧は殆ど低下しなかったが、放電性能が低下した(電池3~4)。特に、電池3では、DIOXの含有率が0体積%であるため、中負荷放電性能が著しく低下した。
 また、THFの含有率が20体積%を超えると、初期電圧は1.75V以下となったが、中負荷放電性能は100未満となり、高負荷放電性能は95未満となった(電池11~15)。この結果は、DIOXとDMEとの体積比を変更した場合であっても同様であった(電池11と12)。なお、電池15では、DIOXの含有率が40体積%未満であるので、中負荷放電性能が著しく低下した。
 一方、THFの含有率が0体積%よりも高く20体積%以下であれば、初期電圧が1.75V以下となり、中負荷放電性能が向上し、高負荷放電性能は95以上であった(電池5~10)。また、THFの含有率が5体積%以上10体積%以下であれば、中負荷放電性能は著しく向上し、高負荷放電性能は97以上であった。これらの理由は上記実施形態で説明した通りである。ここで、放電性能の指数の増加量が3以上であること(例えば100が103以上になること)は、放電性能が非常に向上していることを意味している。
 (実施例2)
 実施例2では、DIOXの含有率及びDMEの含有率を最適化させた。
 [実験方法]
 DIOXの含有率及びDMEの含有率が異なることを除いては上記実施例1の上記電池1と同様の作製方法に従って、図3に示す電池16~36を作製した。そして、上記実施例1に記載の方法に従って、予備放電及びエージングを行ってから、初期電圧の測定、中負荷放電試験及び高負荷放電試験を行った。
 [結果と考察]
 結果を図3に示す。初期電圧が1.75V以下であり、中負荷放電性能(指数)が100以上であり、高負荷放電性能(指数)が95以上である電池を好ましい電池と見なした。
 図3に示すように、DIOXの含有率が40体積%未満であれば中負荷放電性能の向上を図ることは難しく、DMEの含有率が20体積%未満であれば高負荷放電性能が低下した。この理由は、上記実施形態で説明した通りである。
 THFの含有率が同一であってもDIOXの含有率又はDMEの含有率が異なると、初期電圧は若干異なった。この理由としては、DIOX及びDMEがTHFの還元反応に影響を及ぼしているからであると考えている。
 THFの含有率が同一であってもDIOXの含有率又はDMEの含有率が異なると、放電性能は異なった。この理由は、DIOXが中負荷放電性能に影響を与え易く、DMEが高負荷放電性能に影響を与え易いためであると考えられる。
 (実施例3)
 実施例3では、電解液の溶質、電解液の溶媒に対する添加剤及び正極1の結着剤を最適化させた。以下、順に説明する。
 [電解液の溶質]
 電解液の溶質が異なることを除いては上記電池24と同様の作製方法に従って図4に示す電池37を作製した。そして、上記実施例1に記載の方法に従って、予備放電及びエージングを行ってから、初期電圧の測定及び放電試験を行った。
 図4に示すように、電池24の方が、中負荷放電性能に非常に優れ、また、高負荷放電性能に優れた。その理由は、上記実施形態で説明した通りである。
 [電解液の溶媒に対する添加剤]
 電解液の溶媒にDMIを添加したことを除いては上記電池24と同様の作製方法に従って図4に示す電池38~42を作製した。また、電解液の溶媒にFIMを添加したことを除いては上記電池24と同様の作製方法に従って図4に示す電池43~47を作製した。そして、上記実施例1に記載の方法に従って、予備放電及びエージングを行ってから、初期電圧の測定及び放電試験を行った。
 図4に示すように、DMIの添加率が高くなるにつれて、初期電圧が更に低下した。しかし、DMIの添加率が0.5質量%を超えると、中負荷放電性能の向上を図ることは難しかった。FIMの添加率についても同様のことが言えた。その理由は、上記実施形態で説明した通りである。
 なお、詳細を省略するが、電池24以外の電池(例えば図2の電池5~10及び図3に示す電池)においてもDMI又はFIMの添加率を0.05質量%以上0.5質量%以下とすれば、初期電圧が更に低下し、中負荷放電性能の低下が抑制された。
 [正極1の結着剤]
 正極1の結着剤をPVDFとしたことを除いては上記電池24及び38と同様の作製方法に従って図4に示す電池48及び49を作製した。そして、上記実施例1に記載の方法に従って、予備放電及びエージングを行ってから、初期電圧の測定及び放電試験を行った。
 図4に示すように、初期電圧は、電池48の方が電池24よりも低く、電池49の方が電池38よりも低かった。その理由は、上記実施形態で説明した通りである。
 なお、詳細を省略するが、電池24及び38以外の電池(例えば図2の電池5~10及び図3に示す電池)においても正極1の結着剤をPVDFとすれば初期電圧が更に低下した。
 以上説明したように、本発明は、アルカリ乾電池等と互換可能なリチウム一次電池について有用であり、半導体集積回路を備えた乾電池用機器の駆動用電池としても有用である。
 1   正極
 2   負極
 3   セパレータ
 4   電極群
 5   正極リード
 6   負極リード
 7   上部絶縁板
 8   下部絶縁板
 9   電池ケース
 9a  開口部
 10   封口板

Claims (8)

  1.  二硫化鉄を正極活物質とする正極と、リチウムを負極活物質とする負極と、前記正極と前記負極とがセパレータを介して捲回された電極群と、非水電解液とを備えたリチウム一次電池であって、
     前記非水電解液の溶媒は、ジオキソランと1,2-ジメトキシエタンとを主成分として含み、テトラヒドロフランを更に含んでおり、
     前記溶媒中のテトラヒドロフランの含有率は、0体積%よりも高く20体積%以下であるリチウム一次電池。 
  2.  請求項1に記載のリチウム一次電池であって、
     前記溶媒中のテトラヒドロフランの含有率は、1体積%以上10体積%以下であるリチウム一次電池。
  3.  請求項2に記載のリチウム一次電池であって、
     前記溶媒中のテトラヒドロフランの含有率は、1体積%以上8体積%以下であるリチウム一次電池。
  4.  請求項1から3のいずれか一つに記載のリチウム一次電池であって、
     前記溶媒中のジオキソランの含有率は40体積%以上80体積%以下である、又は、前記溶媒中の1,2-ジメトキシエタンの含有率は20体積%以上60体積%以下であるリチウム一次電池。
  5.  請求項4に記載のリチウム一次電池であって、
     前記非水電解液の溶媒は、ジオキソランと1,2-ジメトキシエタンとテトラヒドロフランとからなるリチウム一次電池。
  6.  請求項1から5の何れか1つに記載のリチウム一次電池であって、
     前記非水電解液は、ヨウ化リチウムを含むリチウム一次電池。
  7.  請求項1から6の何れか1つに記載のリチウム一次電池であって、
     前記溶媒は、3,5-ジメチルイソオキサゾール及びフタルイミドの少なくとも一方を0.05質量%以上0.50質量%以下含むリチウム一次電池。
  8.  請求項1から7の何れか1つに記載のリチウム一次電池であって、
     前記正極の結着剤は、ポリフッ化ビニリデンであるリチウム一次電池。
PCT/JP2011/006115 2010-11-12 2011-11-01 リチウム一次電池 WO2012063429A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/509,714 US8652690B2 (en) 2010-11-12 2011-11-01 Lithium primary battery
JP2012512114A JP5830689B2 (ja) 2010-11-12 2011-11-01 リチウム一次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-254115 2010-11-12
JP2010254115 2010-11-12

Publications (1)

Publication Number Publication Date
WO2012063429A1 true WO2012063429A1 (ja) 2012-05-18

Family

ID=46050598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006115 WO2012063429A1 (ja) 2010-11-12 2011-11-01 リチウム一次電池

Country Status (3)

Country Link
US (1) US8652690B2 (ja)
JP (1) JP5830689B2 (ja)
WO (1) WO2012063429A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014164862A (ja) * 2013-02-22 2014-09-08 Fdk Tottori Co Ltd リチウム電池の製造方法
JP2015149140A (ja) * 2014-02-05 2015-08-20 Fdk株式会社 リチウム一次電池用非水系有機電解液、およびリチウム一次電池
WO2020012718A1 (ja) * 2018-07-12 2020-01-16 パナソニックIpマネジメント株式会社 リチウム一次電池

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11111590B2 (en) 2018-09-18 2021-09-07 Uchicago Argonne, Llc Lithium metal synthesis
US11201324B2 (en) 2018-09-18 2021-12-14 Uchicago Argonne, Llc Production of lithium via electrodeposition
US11296354B2 (en) 2018-09-28 2022-04-05 Uchicago Argonne, Llc Lithium metal recovery and synthesis
CN114023984A (zh) * 2021-08-30 2022-02-08 上海空间电源研究所 一种适用于低温锂钴一次电池的开路电压降低方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07254414A (ja) * 1993-12-02 1995-10-03 Eveready Battery Co Inc ヨウ化リチウム−エーテル電解質を有する非水系電池
JPH07254435A (ja) * 1993-12-02 1995-10-03 Eveready Battery Co Inc リチウム系溶質を含むDIOX、DME 及び3Me2Oxの溶媒混合物を使用するLi/FeS2 電池
JPH1154132A (ja) * 1997-08-04 1999-02-26 Sanyo Electric Co Ltd 非水系電解液電池
WO2001041247A1 (fr) * 1999-11-29 2001-06-07 Matsushita Electric Industrial Co., Ltd. Cellule electrolytique non-aqueuse
JP2005141998A (ja) * 2003-11-05 2005-06-02 Sony Corp リチウム/二硫化鉄一次電池
JP2007066826A (ja) * 2005-09-02 2007-03-15 Sony Corp リチウム/二硫化鉄一次電池
JP2008305705A (ja) * 2007-06-08 2008-12-18 Sony Corp 非水電解液およびこれを用いた非水電解液電池
WO2010014194A1 (en) * 2008-07-28 2010-02-04 Eveready Battery Company, Inc. Thf-based electrolyte for low temperature performance in primary lithium batteries

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174870A (en) 1981-04-20 1982-10-27 Hitachi Maxell Ltd Organic electrolyte cell
US4489144A (en) 1983-03-28 1984-12-18 Union Carbide Corporation Isoxazole derivative additive in organic electrolytes of nonaqueous cells employing solid cathodes
US5290414A (en) 1992-05-15 1994-03-01 Eveready Battery Company, Inc. Separator/electrolyte combination for a nonaqueous cell
US6255021B1 (en) 1997-08-04 2001-07-03 Sanyo Electric Co., Ltd. Lithium battery including storage stabilized dioxolane-containing electrolyte

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07254414A (ja) * 1993-12-02 1995-10-03 Eveready Battery Co Inc ヨウ化リチウム−エーテル電解質を有する非水系電池
JPH07254435A (ja) * 1993-12-02 1995-10-03 Eveready Battery Co Inc リチウム系溶質を含むDIOX、DME 及び3Me2Oxの溶媒混合物を使用するLi/FeS2 電池
JPH1154132A (ja) * 1997-08-04 1999-02-26 Sanyo Electric Co Ltd 非水系電解液電池
WO2001041247A1 (fr) * 1999-11-29 2001-06-07 Matsushita Electric Industrial Co., Ltd. Cellule electrolytique non-aqueuse
JP2005141998A (ja) * 2003-11-05 2005-06-02 Sony Corp リチウム/二硫化鉄一次電池
JP2007066826A (ja) * 2005-09-02 2007-03-15 Sony Corp リチウム/二硫化鉄一次電池
JP2008305705A (ja) * 2007-06-08 2008-12-18 Sony Corp 非水電解液およびこれを用いた非水電解液電池
WO2010014194A1 (en) * 2008-07-28 2010-02-04 Eveready Battery Company, Inc. Thf-based electrolyte for low temperature performance in primary lithium batteries

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014164862A (ja) * 2013-02-22 2014-09-08 Fdk Tottori Co Ltd リチウム電池の製造方法
JP2015149140A (ja) * 2014-02-05 2015-08-20 Fdk株式会社 リチウム一次電池用非水系有機電解液、およびリチウム一次電池
WO2020012718A1 (ja) * 2018-07-12 2020-01-16 パナソニックIpマネジメント株式会社 リチウム一次電池

Also Published As

Publication number Publication date
JPWO2012063429A1 (ja) 2014-05-12
US8652690B2 (en) 2014-02-18
US20120308901A1 (en) 2012-12-06
JP5830689B2 (ja) 2015-12-09

Similar Documents

Publication Publication Date Title
JP5830689B2 (ja) リチウム一次電池
JP3643825B2 (ja) リチウム2次電池用有機電解液及びこれを使用したリチウム2次電池
JP4837614B2 (ja) リチウム二次電池
EP2367230B1 (en) Electrolyte solution for rechargeable lithium battery, and rechargeable lithium battery including the same
CN100583541C (zh) 电池
CN101483256A (zh) 非水电解质二次电池及其制造方法
JP2005149750A (ja) 非水電解質二次電池
JP4873889B2 (ja) リチウム一次電池
JP2008226537A (ja) 非水電解質二次電池及びその製造方法
US9742027B2 (en) Anode for sodium-ion and potassium-ion batteries
JP2020525999A (ja) リチウム−硫黄電池の寿命改善方法
WO2023179384A1 (zh) 正极片及锂离子电池
US10283810B2 (en) Lithium-ion battery
JP2011060655A (ja) リチウム電池
JP5435622B2 (ja) フィルム外装型非水系電解質二次電池
JP2003163029A (ja) 非水電解質二次電池
WO2017130245A1 (ja) リチウム電池
WO2020158169A1 (ja) 非水電解質二次電池およびこれに用いる電解液
WO2020158223A1 (ja) 非水電解質二次電池およびこれに用いる電解液
WO2018000493A1 (zh) 一种锂-二硫化铁电池
JP2017126488A (ja) 非水電解液二次電池用非水電解液及び非水電解液二次電池
JP2007294654A (ja) 電気化学キャパシタ
JP2003115298A (ja) 非水電解質電池
JP2015144104A (ja) 非水電解質二次電池
JP2020077576A (ja) リチウムイオン二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012512114

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13509714

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11839388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11839388

Country of ref document: EP

Kind code of ref document: A1