WO2020158169A1 - 非水電解質二次電池およびこれに用いる電解液 - Google Patents

非水電解質二次電池およびこれに用いる電解液 Download PDF

Info

Publication number
WO2020158169A1
WO2020158169A1 PCT/JP2019/047076 JP2019047076W WO2020158169A1 WO 2020158169 A1 WO2020158169 A1 WO 2020158169A1 JP 2019047076 W JP2019047076 W JP 2019047076W WO 2020158169 A1 WO2020158169 A1 WO 2020158169A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolytic solution
lithium
mass
negative electrode
electrolyte secondary
Prior art date
Application number
PCT/JP2019/047076
Other languages
English (en)
French (fr)
Inventor
倫久 岡崎
祐 石黒
泰子 野崎
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201980090394.5A priority Critical patent/CN113439360B/zh
Priority to JP2020569411A priority patent/JP7458033B2/ja
Priority to US17/424,224 priority patent/US20220109186A1/en
Publication of WO2020158169A1 publication Critical patent/WO2020158169A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention mainly relates to improvement of an electrolytic solution for a non-aqueous electrolyte secondary battery.
  • Non-aqueous electrolyte secondary batteries especially lithium-ion secondary batteries
  • have high voltage and high energy density they are expected to be used as small-scale consumer applications, power storage devices, and power sources for electric vehicles.
  • lithium bis(fluorosulfonyl)imide the capacity may drop significantly if the charge/discharge cycle of the battery is repeated at high temperature for a long time.
  • one aspect of the present invention relates to a non-aqueous electrolyte secondary battery that has a positive electrode, a negative electrode, and an electrolytic solution, and the electrolytic solution contains lithium bis(fluorosulfonyl)imide and 1,4-dioxane.
  • Another aspect of the present invention relates to an electrolytic solution for a non-aqueous electrolyte secondary battery, which contains lithium bis(fluorosulfonyl)imide and 1,4-dioxane.
  • a non-aqueous electrolyte secondary battery having excellent long-term cycle characteristics at high temperature can be obtained.
  • FIG. 1 is a schematic perspective view of a non-aqueous electrolyte secondary battery according to an embodiment of the present invention with a part cut away.
  • the non-aqueous electrolyte secondary battery according to the present invention has a positive electrode, a negative electrode, and an electrolytic solution, and the electrolytic solution contains lithium bis(fluorosulfonyl)imide:LiN(SO 2 F) 2 and 1,4-dioxane.
  • Lithium bis(fluorosulfonyl)imide (hereinafter, also referred to as LFSI) is a coating film which has excellent lithium ion conductivity and suppresses the decomposition reaction of the electrolytic solution on the surface of the positive electrode and the negative electrode alone or together with other electrolytic solution components ( Hereinafter, it is also referred to as an LFSI coating).
  • LFSI coating suppresses a decrease in the capacity retention rate in the early stage of the charge/discharge cycle.
  • 1,4-dioxane has a function of suppressing the excessive reaction of LFSI on the surface of the positive electrode.
  • the positive electrode contains a positive electrode material or a positive electrode active material that can contain an alkali component, such as a composite oxide containing lithium and nickel, the effect of suppressing the excessive reaction of LFSI becomes remarkable.
  • 1,4-dioxane is adsorbed on the surface of the positive electrode material and forms a protective layer that inhibits the reaction of LFSI on the positive electrode surface (for example, the reaction between LFSI and an alkaline component).
  • a protective layer that inhibits the reaction of LFSI on the positive electrode surface (for example, the reaction between LFSI and an alkaline component).
  • the inactivation of the LFSI coating is suppressed and the decrease in capacity is also suppressed. That is, the capacity retention rate is improved when the charge/discharge cycle of the battery is repeated for a long period of time.
  • the protective layer derived from 1,4-dioxane can maintain a stable structure even at high temperature by coordinating lithium ions with oxygen atoms in 1,4-dioxane.
  • the content of 1,4-dioxane in the electrolytic solution is, for example, 5% by mass or less based on the mass of the electrolytic solution.
  • the content of 1,4-dioxane contained in the electrolytic solution may be 2% by mass or less and 1.5% by mass or less based on the mass of the electrolytic solution.
  • the electrolytic solution before being poured into the battery or the electrolytic solution recovered from the battery at the initial stage of use may contain, for example, 0.01% by mass or more of 1,4-dioxane with respect to the mass of the electrolytic solution, The content of 1,4-dioxane may be 0.1% by mass or more.
  • 1,4-dioxane is gradually consumed during repeated discharge cycles. Therefore, when the electrolytic solution contained in the battery distributed in the market is analyzed, it is possible that most of 1,4-dioxane is consumed. Even in such a case, 1,4-dioxane above the detection limit may remain.
  • LFSI and an LFSI coating derived from 1,4-dioxane are formed at least on the surface of the positive electrode. Even if 1,4-dioxane cannot be detected from the electrolyte in the battery, at least the positive electrode has a coating derived from LFSI and 1,4-dioxane on the surface thereof, the embodiment is included in the present invention. ..
  • the electrolytic solution may further contain lithium hexafluorophosphate:LiPF 6 .
  • the ratio of LFSI to the total of LFSI and LiPF 6 may be, for example, 0.5% by mass or more and 50% by mass or less, and may be 1% by mass or more and 25% by mass or less.
  • the electrolytic solution may further contain lithium difluorophosphate: LiPO 2 F 2 .
  • the content of lithium difluorophosphate with respect to the mass of the electrolytic solution may be, for example, 2% by mass or less, and may be 1.5% by mass or less. It is considered that lithium difluorophosphate has a function of forming a good-quality coating on the surface layer of the positive electrode active material alone or together with other electrolytic solution components and suppressing an excessive side reaction of the electrolytic solution components. Therefore, lithium difluorophosphate contributes to improving the cycle characteristics of the battery.
  • the ratio of LFSI to the total of LFSI, LiPF 6 and lithium difluorophosphate may be, for example, 0.5% by mass or more and 50% by mass or less, and may be 1% by mass or more and 25% by mass or less.
  • the electrolytic solution may further contain lithium fluorosulfonate: LiSO 3 F.
  • the content of lithium fluorosulfonate with respect to the mass of the electrolytic solution may be, for example, 2% by mass or less, and may be 1.5% by mass or less.
  • Lithium fluorosulfonate mainly acts on the negative electrode and can reduce the irreversible capacity of the negative electrode.
  • the negative electrode contains a silicate phase and silicon particles dispersed in the silicate phase
  • lithium fluorosulfonate is used for producing Li 4 SiO 4 in the silicate phase. Therefore, the lithium ions released from the positive electrode active material are less likely to be captured by the silicate phase, and the irreversible capacity is reduced.
  • the electrolytic solution before being injected into the battery or the electrolytic solution recovered from the battery at the beginning of use may contain, for example, 10 ppm or more of lithium difluorophosphate or lithium fluorosulfonate each with respect to the mass of the electrolytic solution.
  • the content of lithium difluorophosphate or lithium fluorosulfonate may be 100 ppm or more.
  • Lithium difluorophosphate and lithium fluorosulfonate are gradually consumed during repeated charge/discharge cycles. Therefore, when the electrolytic solution contained in the battery distributed in the market is analyzed, it is possible that most of the lithium fluorophosphate and/or lithium fluorosulfonate is consumed. Even in such a case, lithium fluorophosphate and/or lithium fluorosulfonate exceeding the detection limit may remain.
  • the electrolytic solution may further contain another salt in addition to the above-mentioned lithium salt, but the proportion of the total amount of LFSI and LiPF 6 in the lithium salt is preferably 80 mol% or more, more preferably 90 mol% or more.
  • the total concentration of LFSI and LiPF 6 in the electrolytic solution may be, for example, 1 mol/liter or more and 2 mol/liter or less, and may be 1 mol/liter or more and 1.5 mol/liter or less. This makes it possible to obtain an electrolytic solution having excellent ionic conductivity and a suitable viscosity.
  • the lithium salt is usually dissociated and present in the electrolytic solution as anions and lithium ions, but a part thereof may be present in the electrolytic solution in the state of an acid bonded with hydrogen, and is present in the state of the lithium salt. You may. That is, the amount of the lithium salt may be calculated as the total amount of the anion derived from the lithium salt, the acid having hydrogen bonded to the anion, and the lithium salt.
  • the content of 1,4-dioxane and various lithium salts in the electrolytic solution is measured, for example, by using the electrolytic solution by gas chromatography-mass spectrometry (GC-MS), nuclear magnetic resonance (NMR), ion chromatography, or the like. obtain.
  • GC-MS gas chromatography-mass spectrometry
  • NMR nuclear magnetic resonance
  • ion chromatography or the like.
  • the non-aqueous electrolyte secondary battery includes, for example, the following negative electrode, positive electrode, and electrolytic solution.
  • the negative electrode includes, for example, a negative electrode current collector and a negative electrode mixture layer formed on the surface of the negative electrode current collector and containing a negative electrode active material.
  • the negative electrode mixture layer can be formed by applying a negative electrode slurry in which the negative electrode mixture is dispersed in a dispersion medium onto the surface of the negative electrode current collector and drying it. The coating film after drying may be rolled if necessary.
  • the negative electrode mixture layer may be formed on one surface or both surfaces of the negative electrode current collector.
  • the negative electrode mixture contains a negative electrode active material as an essential component, and may contain a binder, a conductive agent, a thickener, etc. as optional components.
  • the negative electrode active material includes a material that electrochemically absorbs and desorbs lithium ions.
  • a carbon material, a Si-containing material, or the like can be used as the material that electrochemically absorbs and releases lithium ions.
  • Examples of the Si-containing material include silicon oxide (SiO x : 0.5 ⁇ x ⁇ 1.5), a composite material containing a silicate phase, and silicon particles dispersed in the silicate phase.
  • carbon materials examples include graphite, graphitizable carbon (soft carbon), and non-graphitizable carbon (hard carbon). Of these, graphite is preferable because of its excellent charge/discharge stability and small irreversible capacity.
  • Graphite means a material having a graphite type crystal structure, and includes natural graphite, artificial graphite, graphitized mesophase carbon particles and the like. The carbon materials may be used alone or in combination of two or more.
  • the silicate phase is a composite oxide phase containing silicon, oxygen, an alkali metal and the like.
  • the composite material in which the silicate phase is a lithium silicate phase containing silicon, oxygen and lithium is also referred to as “LSX”.
  • LSX occludes lithium ions by the alloying of silicon with lithium. High capacity can be expected by increasing the content of silicon particles.
  • the composition of the lithium silicate phase is preferably represented by Li y SiO z (0 ⁇ y ⁇ 8, 0.5 ⁇ z ⁇ 6). More preferably, a composition formula represented by Li 2u SiO 2+u (0 ⁇ u ⁇ 2) can be used.
  • the crystallite size of the silicon particles dispersed in the lithium silicate phase is, for example, 5 nm or more.
  • Silicon particles have a particulate phase of silicon (Si) simple substance.
  • Si silicon
  • the crystallite size of silicon particles is calculated by the Scherrer's formula from the half width of the diffraction peak attributed to the Si(111) plane of the X-ray diffraction (XRD) pattern of silicon particles.
  • LSX and a carbon material may be used in combination. Since the volume of LSX expands and contracts with charge and discharge, when the ratio of LSX in the negative electrode active material increases, poor contact between the negative electrode active material and the negative electrode current collector tends to occur with charge and discharge. On the other hand, by using LSX in combination with a carbon material, it becomes possible to achieve excellent cycle characteristics while imparting a high capacity of silicon particles to the negative electrode.
  • the proportion of LSX in the total of LSX and carbon material is preferably, for example, 3 to 30 mass %. This makes it easier to achieve both higher capacity and improved cycle characteristics.
  • the negative electrode current collector metal foil, mesh, net, punching sheet, etc. are used.
  • the material of the negative electrode current collector include stainless steel, nickel, nickel alloys, copper and copper alloys.
  • the positive electrode includes, for example, a positive electrode current collector and a positive electrode mixture layer formed on the surface of the positive electrode current collector.
  • the positive electrode mixture layer can be formed by applying a positive electrode slurry in which a positive electrode mixture is dispersed in a dispersion medium onto the surface of the positive electrode current collector and drying it. The coating film after drying may be rolled if necessary.
  • the positive electrode mixture layer may be formed on one surface or both surfaces of the positive electrode current collector.
  • the positive electrode mixture contains a positive electrode active material as an essential component, and may contain a binder, a conductive agent and the like as optional components.
  • the positive electrode active material includes a material that electrochemically absorbs and releases lithium ions.
  • a material which electrochemically absorbs and desorbs lithium ions a layered compound having a rock salt type crystal structure containing lithium and a transition metal, a spinel compound containing lithium and a transition metal, a polyanion compound, and the like are used. Among them, the layered compound is preferable.
  • the layered compound examples include Li a CoO 2 , Li a NiO 2 , Li a MnO 2 , Li a Co b Ni 1-b O 2 , Li a Co b M 1-b O c, and Li a Ni b M 1-b.
  • O c a composite oxide containing lithium and nickel and represented by the general formula: Li a Ni b M 1 -b O 2 is preferable because it exhibits a high capacity.
  • the larger the amount of nickel in the composite oxide the higher the alkalinity of the composite oxide and the higher the reactivity with LFSI.
  • the electrolytic solution contains 1,4-dioxane, the reaction of LFSI is inhibited, so that the excess reaction of LFSI is suppressed.
  • M is a metal and/or semimetal other than Li and Ni, and satisfies 0.95 ⁇ a ⁇ 1.2 and 0.6 ⁇ b ⁇ 1.
  • the numerical value of a is a numerical value in the positive electrode active material in a completely discharged state, and increases or decreases due to charging and discharging. From the viewpoint of obtaining a higher capacity, the above general formula preferably satisfies 0.8 ⁇ b ⁇ 1, and more preferably 0.9 ⁇ b ⁇ 1 or 0.9 ⁇ b ⁇ 0.98.
  • M is not particularly limited, at least one selected from the group consisting of Na, Mg, Sc, Y, Mn, Fe, Co, Cu, Zn, Al, Cr, Pb, Sb and B is preferable.
  • M may be, for example, at least one selected from the group consisting of Mn, Fe, Co, Cu, Zn, and Al, and particularly contains at least one selected from the group consisting of Mn, Co, and Al. Is preferred.
  • a metal foil for example, is used as the positive electrode current collector, and examples of the material include stainless steel, aluminum, aluminum alloys, titanium and the like.
  • a resin material for example, a fluororesin such as polytetrafluoroethylene or polyvinylidene fluoride (PVDF); a polyolefin resin such as polyethylene or polypropylene; a polyamide resin such as an aramid resin; a polyimide, a polyamideimide, etc.
  • PVDF polytetrafluoroethylene or polyvinylidene fluoride
  • a polyolefin resin such as polyethylene or polypropylene
  • a polyamide resin such as an aramid resin
  • a polyimide a polyamideimide, etc.
  • Polyimide resin such as polyacrylic acid, polyacrylic acid salt (for example, lithium polyacrylate), polymethyl acrylate, ethylene-acrylic acid copolymer; vinyl resin such as polyacrylonitrile, polyvinyl acetate; polyvinylpyrrolidone Examples thereof include polyether sulfone; rubber-like materials such as styrene-butadiene copolymer rubber (SBR). These may be used alone or in combination of two or more. Above all, the acrylic resin exhibits a high degree of binding force to the Si-containing material.
  • the Si-containing material has a large expansion and contraction during charge and discharge, so the internal resistance is likely to increase and the cycle characteristics are likely to deteriorate.
  • an acrylic resin is used as the binder and LFSI is included in the electrolytic solution, increase in internal resistance and deterioration in cycle characteristics are significantly suppressed. This is because when the negative electrode containing the acrylic resin is made to contain the electrolytic solution containing LFSI, the swelling of the acrylic resin is suppressed, the high binding force of the acrylic resin is maintained, and the negative electrode active material particles and the negative electrode active material particles are activated. This is because an increase in contact resistance between the material particles and the negative electrode current collector is suppressed.
  • the acrylic resin may be, for example, 1.5 parts by mass or less per 100 parts by mass of the negative electrode active material, and may be 0.4 parts by mass or more and 1.5 parts by mass or less.
  • carbon blacks such as acetylene black; conductive fibers such as carbon fibers and metal fibers; fluorocarbons; metal powders such as aluminum; conductive whiskers such as zinc oxide and potassium titanate; oxidation.
  • conductive metal oxides such as titanium; organic conductive materials such as phenylene derivatives. These may be used alone or in combination of two or more.
  • the thickener examples include carboxymethyl cellulose (CMC) and its modified products (including salts such as Na salt), cellulose derivatives such as methyl cellulose (such as cellulose ether); and benzene of a polymer having a vinyl acetate unit such as polyvinyl alcohol.
  • CMC carboxymethyl cellulose
  • its modified products including salts such as Na salt
  • cellulose derivatives such as methyl cellulose (such as cellulose ether)
  • benzene of a polymer having a vinyl acetate unit such as polyvinyl alcohol.
  • the dispersion medium is not particularly limited, and examples thereof include water, alcohol, N-methyl-2-pyrrolidone (NMP) and the like.
  • the electrolytic solution usually contains a lithium salt, a solvent and an additive.
  • the electrolyte may include various additives. 1,4-dioxane is classified as a solvent or an additive.
  • the total amount of the lithium salt and the solvent preferably accounts for 90% by mass or more, more preferably 95% by mass or more of the electrolytic solution.
  • the solvent is a cyclic carbonic acid ester, a cyclic carboxylic acid ester, a chain carbonic acid ester and a chain carboxylic acid ester, and an electrolytic solution component which is liquid at 25° C. and is contained in the electrolytic solution in an amount of 3% by mass or more.
  • One or more solvents may be used in any combination.
  • cyclic carbonic acid ester examples include propylene carbonate (PC), ethylene carbonate (EC), fluoroethylene carbonate (FEC), vinylene carbonate (VC), vinyl ethylene carbonate (VEC), and the like.
  • chain carbonic acid ester examples include diethyl carbonate (DEC), ethylmethyl carbonate (EMC), dimethyl carbonate (DMC) and the like.
  • chain carboxylic acid esters examples include methyl formate, ethyl formate, methyl acetate, ethyl acetate, methyl propionate and the like.
  • methyl acetate has low viscosity and high stability, and can improve the low temperature characteristics of the battery.
  • the content of methyl acetate in the electrolytic solution may be, for example, 3% by mass or more and 20% by mass or less.
  • cyclic carboxylic acid esters examples include ⁇ -butyrolactone (GBL) and ⁇ -valerolactone (GVL).
  • a polymer that exhibits a solid state alone at 25°C is not included in the electrolyte component even when the content in the electrolyte is 3% by mass or more. Such a polymer functions as a matrix for gelling the electrolytic solution.
  • the electrolytic solution may contain, in addition to the lithium salt described above, another salt.
  • Other salts include LiClO 4 , LiAlCl 4 , LiB 10 Cl 10 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiN(CF 3 SO 2 ) 2 , LiN(CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiN(C 2 F 5 SO 2 ) 2 , LiCl, LiBr, LiI and the like.
  • One or more lithium salts may be used in any combination.
  • the separator has high ion permeability and has appropriate mechanical strength and insulation properties.
  • a microporous thin film, woven cloth, non-woven cloth, or the like can be used.
  • polyolefin such as polypropylene and polyethylene is preferable.
  • An example of the structure of a non-aqueous electrolyte secondary battery is a structure in which an electrode group in which a positive electrode and a negative electrode are wound via a separator and a non-aqueous electrolyte are housed in an outer casing.
  • the wound electrode group other forms of electrode group may be applied, such as a laminated electrode group in which a positive electrode and a negative electrode are laminated via a separator.
  • the non-aqueous electrolyte secondary battery may be in any form such as a cylindrical type, a square type, a coin type, a button type, and a laminated type.
  • FIG. 1 is a schematic perspective view in which a part of a prismatic non-aqueous electrolyte secondary battery according to an embodiment of the present invention is cut away.
  • the battery includes a bottomed prismatic battery case 4, an electrode group 1 and a nonaqueous electrolyte (not shown) housed in the battery case 4.
  • the electrode group 1 has a long strip-shaped negative electrode, a long strip-shaped positive electrode, and a separator interposed therebetween.
  • the electrode group 1 is formed by winding the negative electrode, the positive electrode, and the separator around a flat plate-shaped winding core and extracting the winding core.
  • One end of the negative electrode lead 3 is attached to the negative electrode current collector of the negative electrode by welding or the like.
  • One end of the positive electrode lead 2 is attached to the positive electrode current collector of the positive electrode by welding or the like.
  • the other end of the negative electrode lead 3 is electrically connected to the negative electrode terminal 6 provided on the sealing plate 5 via the gasket 7.
  • the other end of the positive electrode lead 2 is electrically connected to the battery case 4 which also serves as a positive electrode terminal.
  • the opening of the battery case 4 is sealed with a sealing plate 5.
  • the structure of the non-aqueous electrolyte secondary battery may be cylindrical, coin-shaped, button-shaped or the like having a metal battery case, and is provided with a laminated sheet battery case which is a laminate of a barrier layer and a resin sheet.
  • a laminated battery may be used.
  • Lithium silicate (Li 2 Si 2 O 5 ) having an average particle size of 10 ⁇ m and raw material silicon (3N, average particle size 10 ⁇ m) were mixed at a mass ratio of 45:55.
  • the mixture was filled in a pot (SUS, volume: 500 mL) of a planetary ball mill (Fritsch, P-5), 24 SUS balls (diameter 20 mm) were placed in the pot, the lid was closed, and in an inert atmosphere. The mixture was milled for 50 hours at 200 rpm.
  • the powdery mixture was taken out in an inert atmosphere and fired at 800° C. for 4 hours in an inert atmosphere with a pressure applied by a hot press to obtain a sintered body (LSX) of the mixture. It was
  • the LSX was crushed and passed through a 40 ⁇ m mesh, and then the obtained LSX particles were mixed with coal pitch (manufactured by JFE Chemical Co., MCP250), and the mixture was fired at 800° C. in an inert atmosphere to obtain LSX.
  • the surface of the particles was coated with conductive carbon to form a conductive layer.
  • the coating amount of the conductive layer was 5% by mass with respect to the total mass of the LSX particles and the conductive layer.
  • a sieve was used to obtain LSX particles having a conductive layer and having an average particle diameter of 5 ⁇ m.
  • LSX particles having a conductive layer and graphite were mixed at a mass ratio of 3:97 and used as a negative electrode active material.
  • the negative electrode active material, lithium polyacrylate, and styrene-butadiene rubber (SBR) were mixed at a mass ratio of 97.5:1:1.5, water was added, and then a mixer (Primix Inc., TK Hibismix) and stirred to prepare a negative electrode slurry.
  • the negative electrode slurry was applied to the surface of the copper foil, the coating film was dried, and then rolled to form a negative electrode having a negative electrode mixture layer with a density of 1.5 g/cm 3 formed on both surfaces of the copper foil. It was made.
  • Lithium nickel composite oxide LiNi 0.8 Co 0.18 Al 0.02 O 2
  • acetylene black and polyvinylidene fluoride were mixed at a mass ratio of 95:2.5:2.5, and N was mixed.
  • NMP -methyl-2-pyrrolidone
  • the mixture was stirred using a mixer (TK Hibismix manufactured by Primix Co., Ltd.) to prepare a positive electrode slurry.
  • the positive electrode slurry was applied to the surface of the aluminum foil, the coating film was dried, and then rolled to obtain a positive electrode having a positive electrode material mixture layer with a density of 3.6 g/cm 3 formed on both sides of the aluminum foil. It was made.
  • a mixed solvent containing ethylene carbonate (EC), dimethyl carbonate (DMC) and methyl acetate (MA) in a volume ratio of 20:70:10 was used.
  • LFSI and LiPF 6 were dissolved in the mixed solvent at the ratios shown in Table 1.
  • the electrolytic solution was made to contain 1,4-dioxane in the contents shown in Table 1, and lithium difluorophosphate and lithium fluorosulfonate were each contained in an amount of 1% by mass.
  • a tab was attached to each electrode, and the positive electrode and the negative electrode were spirally wound with a separator interposed therebetween so that the tab was located at the outermost peripheral portion, to prepare an electrode group.
  • the electrode group was inserted into an aluminum laminate film outer package, vacuum-dried at 105° C. for 2 hours, and then a non-aqueous electrolyte was injected to seal the opening of the outer package, and the batteries of Examples 1 to 3 were obtained.
  • A1 to A3 and batteries B1 to B3 of Comparative Examples 1 to 3 were obtained.
  • Table 1 shows the relative values of the capacity maintenance ratios of the batteries A2 to A3 and B1 to B3 when the capacity maintenance ratio of the battery A1 is 100.
  • the battery was taken out and disassembled, and the components of the electrolytic solution were analyzed by gas chromatography-mass spectrometry (GCMS).
  • GCMS gas chromatography-mass spectrometry
  • the GCMS measurement conditions used for the analysis of the electrolytic solution are as follows.
  • Examples 4 to 6 An electrolytic solution was prepared in the same manner as in Example 1 except that the amounts of lithium difluorophosphate and lithium fluorosulfonate were changed as shown in Table 1, to prepare batteries A4 to A6 of Examples 4 to 6, It evaluated similarly to the above. With respect to the components of the electrolytic solution taken out from the battery after 400 cycles, lithium fluorosulfonate was not detected in Examples 4 and 5 and lithium difluorophosphate was detected in Example 6 by gas chromatography mass spectrometry (GCMS). However, the other results were almost the same as in Example 1. Table 2 shows the relative values of the capacity maintenance ratios of the batteries A4 to A6 when the capacity maintenance ratio of the battery A1 is 100.
  • GCMS gas chromatography mass spectrometry
  • a battery B4 of Comparative Example 4 was prepared in the same manner as in Example 1 except that lithium bis(trifluoromethylsulfonyl)imide (LTFSI) was used instead of LFSI in the preparation of the electrolytic solution. The same charging/discharging conditions as above were repeated 100 times. The ratio of the discharge capacity at the 100th cycle to the discharge capacity at the first cycle was determined as the capacity retention rate. Table 3 shows the relative value of the capacity maintenance ratio of the battery B4 when the capacity maintenance ratio at the 100th cycle of the battery A1 is 100.
  • LTFSI lithium bis(trifluoromethylsulfonyl)imide
  • Example 7 In the preparation of the negative electrode, except that LSX was not used and graphite, carboxymethyl cellulose, and styrene-butadiene rubber (SBR) were mixed in a mass ratio of 97.5:1:1.5 to prepare a negative electrode slurry.
  • a battery A7 of Example 7 was prepared in the same manner as in Example 1, and the capacity retention ratio at the 100th cycle was evaluated in the same manner as in Comparative Example 4.
  • Table 3 shows the relative value of the capacity maintenance ratio of the battery A7 when the capacity maintenance ratio at the 100th cycle of the battery A1 is 100.
  • non-aqueous electrolyte secondary battery having excellent long-term cycle characteristics at high temperature.
  • INDUSTRIAL APPLICABILITY The non-aqueous electrolyte secondary battery according to the present invention is useful as a main power source for mobile communication devices, portable electronic devices and the like.

Abstract

正極、負極および電解液を有し、電解液が、リチウムビス(フルオロスルホニル)イミドおよび1,4-ジオキサンを含む、非水電解質二次電池。

Description

非水電解質二次電池およびこれに用いる電解液
 本発明は、主として、非水電解質二次電池用電解液の改良に関する。
 非水電解質二次電池、特にリチウムイオン二次電池は、高電圧かつ高エネルギー密度を有するため、小型民生用途、電力貯蔵装置および電気自動車の電源として期待されている。電池の長寿命化が求められる中、電解液にリチウムビス(フルオロスルホニル)イミドを添加することが提案されている(特許文献1、2)。
国際公開第2014/157591号 国際公開第2016/009994号
 しかし、リチウムビス(フルオロスルホニル)イミドを用いると、高温で長期的に電池の充放電サイクルを繰り返すと、容量が大きく低下することがある。
 以上に鑑み、本発明の一側面は、正極、負極および電解液を有し、前記電解液が、リチウムビス(フルオロスルホニル)イミドおよび1,4-ジオキサンを含む、非水電解質二次電池に関する。
 本発明の他の側面は、リチウムビス(フルオロスルホニル)イミドおよび1,4-ジオキサンを含む、非水電解質二次電池用電解液に関する。
 本発明によれば、高温での長期サイクル特性に優れた非水電解質二次電池を得ることができる。
本発明の一実施形態に係る非水電解質二次電池の一部を切欠いた概略斜視図である。
 本発明に係る非水電解質二次電池は、正極、負極および電解液を有し、電解液は、リチウムビス(フルオロスルホニル)イミド:LiN(SO2F)2および1,4-ジオキサンを含む。
 リチウムビス(フルオロスルホニル)イミド(以下、LFSIとも称する。)は、単独もしくは他の電解液成分とともに、正極および負極表面に、リチウムイオン伝導性に優れ、かつ電解液の分解反応を抑制する被膜(以下、LFSI被膜とも称する。)を形成する。LFSI被膜により、充放電サイクルの初期における容量維持率の低下が抑制される。
 一方、例えば40℃~60℃の高温で、長期的に電池の充放電サイクルを繰り返すと、LFSIが正極表面で過剰に反応し、LFSI被膜が不活性化して抵抗が大きくなり、容量が大きく低下することがある。
 1,4-ジオキサンは、正極表面でのLFSIの過剰反応を抑制する作用を有する。中でも、正極がリチウムとニッケルとを含む複合酸化物のようにアルカリ成分を含み得る正極材料もしくは正極活物質を含む場合、LFSIの過剰反応を抑制する効果が顕著になる。
 1,4-ジオキサンは、正極材料表面に吸着し、LFSIの正極表面での反応(例えばLFSIとアルカリ成分との反応)を阻害する保護層を形成するものと考えられる。その結果、LFSI被膜の不活性化が抑制され、容量の低下も抑制されるものと推測される。すなわち、長期的に電池の充放電サイクルを繰り返した場合の容量維持率が改善する。1,4-ジオキサンに由来する保護層は、1,4-ジオキサン中の酸素原子にリチウムイオンが配位することで、高温でも安定した構造を維持できるものと考えられる。
 電解液における1,4-ジオキサンの含有量は、電解液の質量に対して、例えば5質量%以下である。電解液に含ませる1,4-ジオキサンを5質量%以下とすることで、1,4-ジオキサン自身による正極表面の抵抗の上昇が抑制される。電解液における1,4-ジオキサンの含有量は、電解液の質量に対して2質量%以下でもよく、1.5量%以下でもよい。
 長期的に電池の充放電サイクルを繰り返す場合でも1,4-ジオキサンの効果を持続させるには、電池に注液する前の電解液もしくは使用初期の電池から回収された電解液が十分量の1,4-ジオキサンを含有していることが必要である。電池に注液する前の電解液もしくは使用初期の電池から回収された電解液は、例えば電解液の質量に対して0.01質量%以上の1,4-ジオキサンを含有していればよく、1,4-ジオキサンの含有量は0.1質量%以上でもよい。
 一方、1,4-ジオキサンは、放電サイクルを繰り返す間に、次第に消費される。よって、市場に流通する電池内に含まれる電解液を分析すると、1,4-ジオキサンのほとんどが消費されている場合もあり得る。このような場合でも、検出限界以上の1,4-ジオキサンが残存し得る。
 1,4-ジオキサンが消費されると、その結果として、少なくとも正極表面には、LFSIおよび1,4-ジオキサンに由来するLFSI被膜が形成される。仮に、電池内の電解液から1,4-ジオキサンが検出できない場合でも、少なくとも正極がその表面にLFSIおよび1,4-ジオキサンに由来する被膜を有する場合、その実施形態は本発明に包含される。
 電解液は、更にヘキサフルオロリン酸リチウム:LiPF6を含んでもよい。このとき、LFSIとLiPF6との合計に対するLFSIの割合は、例えば0.5質量%以上、50質量%以下であればよく、1質量%以上、25質量%以下でもよい。電解液にLiPF6を含ませることで、LFSI被膜の品質が向上し、長期サイクル試験における容量維持率をより顕著に向上させることができる。
 電解液は、更にジフルオロリン酸リチウム:LiPO22を含んでもよい。電解液の質量に対してジフルオロリン酸リチウムの含有量は、例えば、2質量%以下であればよく、1.5質量%以下でもよい。ジフルオロリン酸リチウムは、単独もしくは他の電解液成分とともに、正極活物質の表層に良質な被膜を形成し、電解液成分の過剰な副反応を抑制する作用を有すると考えられる。よって、ジフルオロリン酸リチウムは、電池のサイクル特性の向上に寄与する。
 LFSIとLiPF6とジフルオロリン酸リチウムとの合計に対するLFSIの割合は、例えば0.5質量%以上、50質量%以下であればよく、1質量%以上、25質量%以下でもよい。
 電解液は、更にフルオロスルホン酸リチウム:LiSO3Fを含んでもよい。電解液の質量に対してフルオロスルホン酸リチウムの含有量は、例えば、2質量%以下であればよく、1.5質量%以下でもよい。フルオロスルホン酸リチウムは、主に負極に作用し、負極の不可逆容量を低減させ得る。中でも、負極が、シリケート相とシリケート相内に分散したシリコン粒子とを含む場合、フルオロスルホン酸リチウムは、シリケート相内において、LiSiOの生成に利用される。このため、正極活物質から放出されたリチウムイオンがシリケート相で捕捉され難くなり、不可逆容量が低減される。
 電池に注液する前の電解液もしくは使用初期の電池から回収された電解液は、例えば電解液の質量に対してそれぞれ10ppm以上のジフルオロリン酸リチウムまたはフルオロスルホン酸リチウムを含有していればよく、ジフルオロリン酸リチウムまたはフルオロスルホン酸リチウムの含有量はそれぞれ100ppm以上でもよい。
 ジフルオロリン酸リチウムおよびフルオロスルホン酸リチウムは、充放電サイクルを繰り返す間に次第に消費される。よって、市場に流通する電池内に含まれる電解液を分析すると、フルオロリン酸リチウムおよび/またはフルオロスルホン酸リチウムのほとんどが消費されている場合もあり得る。このような場合でも、検出限界以上のフルオロリン酸リチウムおよび/またはフルオロスルホン酸リチウムが残存し得る。
 電解液は、既に述べたリチウム塩に加え、更に別の塩を含み得るが、リチウム塩に占めるLFSIとLiPF6との合計量の割合は、80mol%以上が好ましく、90mol%以上がより好ましい。LFSIとLiPF6との割合を上記範囲に制御することで、長期サイクル特性により優れた電池を得やすくなる。
 より具体的には、電解液におけるLFSIとLiPF6との合計の濃度は、例えば、1mol/リットル以上2mol/リットル以下であればよく、1mol/リットル以上1.5mol/リットル以下でもよい。これにより、イオン伝導性に優れ、適度の粘性を有する電解液を得ることができる。
 リチウム塩は、通常、解離してアニオンとリチウムイオンとして電解液中に存在するが、一部は、水素と結合した酸の状態で電解液中に存在してもよく、リチウム塩の状態で存在してもよい。すなわち、リチウム塩の量は、リチウム塩に由来するアニオンと、当該アニオンに水素が結合した酸と、リチウム塩との合計量として算出すればよい。
 電解液における1,4-ジオキサンおよび各種リチウム塩の含有量は、例えば、電解液をガスクロマトグラフィー質量分析(GC-MS)、核磁気共鳴(NMR)、イオンクロマトグラフィー等を用いることにより測定し得る。
 次に、本発明の実施形態に係る非水電解質二次電池について詳述する。非水電解質二次電池は、例えば、以下のような負極と、正極と、電解液とを備える。
 [負極]
 負極は、例えば、負極集電体と、負極集電体の表面に形成され、かつ負極活物質を含む負極合剤層とを具備する。負極合剤層は、負極合剤を分散媒に分散させた負極スラリーを、負極集電体の表面に塗布し、乾燥させることにより形成できる。乾燥後の塗膜を、必要により圧延してもよい。負極合剤層は、負極集電体の一方の表面に形成してもよく、両方の表面に形成してもよい。
 負極合剤は、負極活物質を必須成分として含み、任意成分として、結着剤、導電剤、増粘剤などを含むことができる。負極活物質は、電気化学的にリチウムイオンを吸蔵および放出する材料を含む。電気化学的にリチウムイオンを吸蔵および放出する材料としては、炭素材料、Si含有材料などを用い得る。Si含有材料としては、シリコン酸化物(SiO:0.5≦x≦1.5)、シリケート相とシリケート相内に分散したシリコン粒子とを含有する複合材料などが挙げられる。
 炭素材料としては、黒鉛、易黒鉛化炭素(ソフトカーボン)、難黒鉛化炭素(ハードカーボン)などが例示できる。中でも、充放電の安定性に優れ、不可逆容量が少ない黒鉛が好ましい。黒鉛とは、黒鉛型結晶構造を有する材料を意味し、天然黒鉛、人造黒鉛、黒鉛化メソフェーズカーボン粒子などが含まれる。炭素材料は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 負極活物質の中でも、シリケート相とシリケート相内に分散したシリコン粒子とを含有する複合材料は、シリコン粒子の含有量を任意に選択し得るため、高容量を達成しやすい。ここで、シリケート相とは、ケイ素、酸素、アルカリ金属等を含む複合酸化物相である。以下、シリケート相がケイ素、酸素およびリチウムを含むリチウムシリケート相である複合材料を「LSX」とも称する。LSX中のシリコン粒子の含有量が高いほど負極容量が大きくなる。LSXは、シリコンがリチウムと合金化することによってリチウムイオンを吸蔵する。シリコン粒子の含有量を多くすることで、高容量を期待できる。リチウムシリケート相は、好ましくは、組成式がLiSiO(0<y≦8、0.5≦z≦6)で表される。より好ましくは、組成式がLi2uSiO2+u(0<u<2)で表されるものを用いることができる。
 リチウムシリケート相内に分散しているシリコン粒子の結晶子サイズは、例えば5nm以上である。シリコン粒子は、ケイ素(Si)単体の粒子状の相を有する。シリコン粒子の結晶子サイズを5nm以上とする場合、シリコン粒子の表面積を小さく抑えることができるため、不可逆容量の生成を伴うシリコン粒子の劣化を生じにくい。シリコン粒子の結晶子サイズは、シリコン粒子のX線回折(XRD)パターンのSi(111)面に帰属される回析ピークの半値幅からシェラーの式により算出される。
 負極活物質として、LSXと炭素材料とを組み合わせて用いてもよい。LSXは、充放電に伴って体積が膨張収縮するため、負極活物質に占めるその比率が大きくなると、充放電に伴って負極活物質と負極集電体との接触不良が生じやすい。一方、LSXと炭素材料とを併用することで、シリコン粒子の高容量を負極に付与しながら優れたサイクル特性を達成することが可能になる。LSXと炭素材料との合計に占めるLSXの割合は、例えば3~30質量%が好ましい。これにより、高容量化とサイクル特性の向上を両立し易くなる。
 負極集電体としては、金属箔、メッシュ体、ネット体、パンチングシートなどが使用される。負極集電体の材質としては、ステンレス鋼、ニッケル、ニッケル合金、銅、銅合金などが例示できる。
 [正極]
 正極は、例えば、正極集電体と、正極集電体の表面に形成された正極合剤層とを具備する。正極合剤層は、正極合剤を分散媒に分散させた正極スラリーを、正極集電体の表面に塗布し、乾燥させることにより形成できる。乾燥後の塗膜を、必要により圧延してもよい。正極合剤層は、正極集電体の一方の表面に形成してもよく、両方の表面に形成してもよい。
 正極合剤は、正極活物質を必須成分として含み、任意成分として、結着剤、導電剤などを含むことができる。正極活物質は、電気化学的にリチウムイオンを吸蔵および放出する材料を含む。電気化学的にリチウムイオンを吸蔵および放出する材料としては、リチウムと遷移金属とを含む岩塩型結晶構造の層状化合物、リチウムと遷移金属とを含むスピネル化合物、ポリアニオン化合物などが用いられる。中でも層状化合物が好ましい。
 層状化合物としては、LiaCoO2、LiaNiO2、LiaMnO2、LiaCobNi1-b2、LiaCob1-bc、LiaNib1-bcなどが挙げられる。中でもリチウムとニッケルとを含み、一般式:LiNi1-bで表される複合酸化物は、高容量を発現する点で好ましい。ただし、複合酸化物におけるニッケル量が多いほど、複合酸化物のアルカリ性が高くなり、LFSIとの反応性が高まる。これに対し、電解液に1,4-ジオキサンが含まれる場合、LFSIの反応が阻害されるため、LFSIの過剰反応は抑制される。
 ここで、Mは、LiおよびNi以外の金属および/または半金属であり、0.95≦a≦1.2、かつ0.6≦b≦1を満たす。aの数値は、完全放電状態の正極活物質における数値であり、充放電により増減する。より高容量を得る観点からは、上記一般式が0.8≦b≦1を満たすことが好ましく、0.9≦b<1もしくは0.9≦b≦0.98を満たすことが更に好ましい。
 Mは、特に限定されないが、Na、Mg、Sc、Y、Mn、Fe、Co、Cu、Zn、Al、Cr、Pb、SbおよびBよりなる群から選択された少なくとも1種が好ましい。Mは、例えば、Mn、Fe、Co、Cu、ZnおよびAlよりなる群から選択された少なくとも1種であればよく、中でもMn、CoおよびAlよりなる群から選択された少なくとも1種を含むことが好ましい。
 正極集電体としては、例えば金属箔が使用され、材質としては、例えば、ステンレス鋼、アルミニウム、アルミニウム合金、チタンなどが例示できる。
 各電極の結着剤としては、樹脂材料、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン(PVDF)などのフッ素樹脂;ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂;アラミド樹脂などのポリアミド樹脂;ポリイミド、ポリアミドイミドなどのポリイミド樹脂;ポリアクリル酸、ポリアクリル酸塩(例えばポリアクリル酸リチウム)、ポリアクリル酸メチル、エチレン-アクリル酸共重合体などのアクリル樹脂;ポリアクリロニトリル、ポリ酢酸ビニルなどのビニル樹脂;ポリビニルピロリドン;ポリエーテルサルフォン;スチレン-ブタジエン共重合ゴム(SBR)などのゴム状材料などが例示できる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。中でもアクリル樹脂は、Si含有材料に対して高度な結着力を発揮する。
 なお、Si含有材料は充放電時の膨張収縮が大きいため、内部抵抗が増大し易く、サイクル特性も低下し易くなる。これに対し、結着剤にアクリル樹脂を用い、電解液にLFSIを含ませることにより、内部抵抗の増大およびサイクル特性の低下が大幅に抑制される。これは、アクリル樹脂を含む負極にLFSIを含む電解液を含ませる場合、アクリル樹脂の膨潤が抑制され、アクリル樹脂の高度な結着力が維持されるとともに、負極活物質粒子同士の間や負極活物質粒子と負極集電体との間での接触抵抗の増大が抑制されるためである。アクリル樹脂は、例えば負極活物質100質量部あたり1.5質量部以下であればよく、0.4質量部以上1.5質量部以下であってもよい。
 導電剤としては、アセチレンブラックなどのカーボンブラック類;炭素繊維や金属繊維などの導電性繊維類;フッ化カーボン;アルミニウムなどの金属粉末類;酸化亜鉛やチタン酸カリウムなどの導電性ウィスカー類;酸化チタンなどの導電性金属酸化物;フェニレン誘導体などの有機導電性材料などが例示できる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 増粘剤としては、例えば、カルボキシメチルセルロース(CMC)およびその変性体(Na塩などの塩も含む)、メチルセルロースなどのセルロース誘導体(セルロースエーテルなど);ポリビニルアルコールなどの酢酸ビニルユニットを有するポリマーのケン化物;ポリエーテル(ポリエチレンオキシドなどのポリアルキレンオキサイドなど)などが挙げられる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 分散媒としては、特に制限されないが、例えば、水、アルコール、N-メチル-2-ピロリドン(NMP)などが例示できる。
 [電解液]
 電解液は、通常、リチウム塩、溶媒および添加剤を含む。電解液には、様々な添加剤が含まれ得る。1,4-ジオキサンは溶媒もしくは添加剤に分類される。電解液において、リチウム塩と溶媒との合計量は電解液の90質量%以上、更には95質量%以上を占めることが好ましい。
 溶媒とは、環状炭酸エステル、環状カルボン酸エステル、鎖状炭酸エステルおよび鎖状カルボン酸エステルならびに25℃で液状を呈するとともに電解液中に3質量%以上含まれる電解液成分である。溶媒は、1種以上を任意の組み合わせで用いればよい。
 環状炭酸エステルとしては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、フルオロエチレンカーボネート(FEC)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)などが挙げられる。
 鎖状炭酸エステルとしては、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)などが挙げられる。
 鎖状カルボン酸エステルとしては、ギ酸メチル、ギ酸エチル、酢酸メチル、酢酸エチル、プロピオン酸メチルなどが挙げられる。中でも酢酸メチルは、低粘度で安定性が高く、電池の低温特性を向上させ得る。電解液中の酢酸メチルの含有量は、例えば3質量%以上、20質量%以下であればよい。
 環状カルボン酸エステルとしては、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)などが挙げられる。
 なお、25℃で単独で固体状態を呈するポリマーは、電解液中での含有量が3質量%以上である場合にも電解液成分には含まない。このようなポリマーは、電解液をゲル化させるマトリックスとして機能する。
 添加剤としては、1,4-ジオキサンの他に、カルボン酸、アルコール、1,3-プロパンサルトン、メチルベンゼンスルホネート、シクロヘキシルベンゼン、ビフェニル、ジフェニルエーテル、フルオロベンゼンなどが挙げられる。
 電解液は、既に述べたリチウム塩に加え、更に別の塩を含み得る。別の塩としては、LiClO4、LiAlCl4、LiB10Cl10、LiBF4、LiSbF6、LiAsF6、LiCF3SO3、LiCF3CO2、LiN(CF3SO22、LiN(CF3SO2)(C49SO2)、LiN(C25SO22、LiCl、LiBr、LiIなどが挙げられる。リチウム塩は、1種以上を任意の組み合わせで用いればよい。
 [セパレータ]
 正極と負極との間には、セパレータを介在させることが望ましい。セパレータは、イオン透過度が高く、適度な機械的強度および絶縁性を備えている。セパレータとしては、微多孔薄膜、織布、不織布などを用いることができる。セパレータの材質としては、ポリプロピレン、ポリエチレンなどのポリオレフィンが好ましい。
 非水電解質二次電池の構造の一例としては、正極および負極がセパレータを介して巻回されてなる電極群と、非水電解質とが外装体に収容された構造が挙げられる。巻回型の電極群の代わりに、正極および負極がセパレータを介して積層されてなる積層型の電極群など、他の形態の電極群が適用されてもよい。非水電解質二次電池は、例えば円筒型、角型、コイン型、ボタン型、ラミネート型など、いずれの形態であってもよい。
 図1は、本発明の一実施形態に係る角形の非水電解質二次電池の一部を切欠いた概略斜視図である。
 電池は、有底角形の電池ケース4と、電池ケース4内に収容された電極群1および非水電解質(図示せず)とを備えている。電極群1は、長尺帯状の負極と、長尺帯状の正極と、これらの間に介在するセパレータとを有する。電極群1は、負極、正極およびセパレータは、平板状の巻芯を中心にして捲回され、巻芯を抜き取ることにより形成される。
 負極の負極集電体には、負極リード3の一端が溶接などにより取り付けられている。正極の正極集電体には、正極リード2の一端が溶接などにより取り付けられている。負極リード3の他端は、ガスケット7を介して封口板5に設けられた負極端子6に電気的に接続される。正極リード2の他端は、正極端子を兼ねる電池ケース4に電気的に接続される。電極群1の上部には、電極群1と封口板5とを隔離するとともに負極リード3と電池ケース4とを隔離する樹脂製の枠体が配置されている。電池ケース4の開口部は、封口板5で封口される。
 非水電解質二次電池の構造は、金属製の電池ケースを具備する円筒形、コイン形、ボタン形などでもよく、バリア層と樹脂シートとの積層体であるラミネートシート製の電池ケースを具備するラミネート型電池でもよい。
 以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 <実施例1~3および比較例1~3>
 [LSXの調製]
 二酸化ケイ素と炭酸リチウムとを原子比:Si/Liが1.05となるように混合し、混合物を950℃空気中で10時間焼成することにより、式:Li2Si25(u=0.5)で表わされるリチウムシリケートを得た。得られたリチウムシリケートは平均粒径10μmになるように粉砕した。
 平均粒径10μmのリチウムシリケート(Li2Si25)と、原料シリコン(3N、平均粒径10μm)とを、45:55の質量比で混合した。混合物を遊星ボールミル(フリッチュ社製、P-5)のポット(SUS製、容積:500mL)に充填し、ポットにSUS製ボール(直径20mm)を24個入れて蓋を閉め、不活性雰囲気中で、200rpmで混合物を50時間粉砕処理した。
 次に、不活性雰囲気中で粉末状の混合物を取り出し、不活性雰囲気中、ホットプレス機による圧力を印加した状態で、800℃で4時間焼成して、混合物の焼結体(LSX)を得た。
 その後、LSXを粉砕し、40μmのメッシュに通した後、得られたLSX粒子を石炭ピッチ(JFEケミカル株式会社製、MCP250)と混合し、混合物を不活性雰囲気で、800℃で焼成し、LSX粒子の表面を導電性炭素で被覆して導電層を形成した。導電層の被覆量は、LSX粒子と導電層との総質量に対して5質量%とした。その後、篩を用いて、導電層を有する平均粒径5μmのLSX粒子を得た。
 [負極の作製]
 導電層を有するLSX粒子と黒鉛とを3:97の質量比で混合し、負極活物質として用いた。負極活物質と、ポリアクリル酸リチウムと、スチレン-ブタジエンゴム(SBR)とを、97.5:1:1.5の質量比で混合し、水を添加した後、混合機(プライミクス社製、T.K.ハイビスミックス)を用いて攪拌し、負極スラリーを調製した。次に、銅箔の表面に負極スラリーを塗布し、塗膜を乾燥させた後、圧延して、銅箔の両面に、密度1.5g/cm3の負極合剤層が形成された負極を作製した。
 [正極の作製]
 リチウムニッケル複合酸化物(LiNi0.8Co0.18Al0.02)と、アセチレンブラックと、ポリフッ化ビニリデンとを、95:2.5:2.5の質量比で混合し、N-メチル-2-ピロリドン(NMP)を添加した後、混合機(プライミクス社製、T.K.ハイビスミックス)を用いて攪拌し、正極スラリーを調製した。次に、アルミニウム箔の表面に正極スラリーを塗布し、塗膜を乾燥させた後、圧延して、アルミニウム箔の両面に、密度3.6g/cm3の正極合剤層が形成された正極を作製した。
 [非水電解液の調製]
 溶媒には、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)および酢酸メチル(MA)を20:70:10の体積比で含む混合溶媒を用いた。混合溶媒には、表1に示す割合でLFSIとLiPF6とを溶解させた。また、電解液に表1に示す含有量の1,4-ジオキサンを含ませるとともに、ジフルオロリン酸リチウムおよびフルオロスルホン酸リチウムをそれぞれ1質量%ずつ含ませた。
 [非水電解質二次電池の作製]
 各電極にタブをそれぞれ取り付け、タブが最外周部に位置するように、セパレータを介して正極および負極を渦巻き状に巻回することにより電極群を作製した。電極群をアルミニウムラミネートフィルム製の外装体内に挿入し、105℃で2時間真空乾燥した後、非水電解液を注入し、外装体の開口部を封止して、実施例1~3の電池A1~A3と、比較例1~3の電池B1~B3を得た。
 [評価]
 作製後の各電池について、25℃の環境下で、0.3It(1620mA)の電流で電圧が4.2Vになるまで定電流充電を行い、その後、4.2Vの定電圧で電流が0.05Itになるまで定電圧充電した。20分の休止の後、0.5It(2700mA)の電流で電圧が2.5Vになるまで定電流放電を行った。この充放電を2回繰り返した。
 次に、環境温度を45℃に変更したこと以外、上記と同じ充放電条件で、充放電を400サイクル繰り返した。1サイクル目の放電容量に対する400サイクル目の放電容量の割合を、容量維持率として求めた。表1には、電池A1の容量維持率を100としたときの電池A2~A3、B1~B3の容量維持率の相対値を示す。
 400サイクル後、電池を取り出して分解し、電解液の成分をガスクロマトグラフィー質量分析法(GCMS)により分析したところ、電池A1、A2の電解液中にはLiPF6が仕込み量とほぼ同量含まれ、LFSI、1,4-ジオキサン、ジフルオロリン酸リチウムおよびフルオロスルホン酸リチウムが存在することも確認された。
 電解液の分析に用いたGCMSの測定条件は以下の通りである。
 装置:島津製作所製、GC17A、GCMS-QP5050A
 カラム:アジレントテクノロジー社製、HP-1(膜厚1.0μm×長さ60m)
 カラム温度:50℃→110℃(5℃/min,12min hold)→250℃(5℃/min,7min hold)→300℃(10℃/min,20min hold)
 スプリット比:1/50
 線速度:29.2cm/s
 注入口温度:270℃
 注入量:0.5μL
 インターフェース温度:230℃
 質量範囲:m/z=50~95(SCANモード)
Figure JPOXMLDOC01-appb-T000001
 <実施例4~6>
 ジフルオロリン酸リチウムおよびフルオロスルホン酸リチウムの量を表1に示すように変化させたこと以外、実施例1と同様に電解液を調製し、実施例4~6の電池A4~A6を作製し、上記と同様に評価した。400サイクル後の電池から取り出した電解液の成分をガスクロマトグラフィー質量分析法(GCMS)において、実施例4,5ではフルオロスルホン酸リチウムが検出されず、実施例6ではジフルオロリン酸リチウムが検出されなかったが、その他は実施例1と概ね同じ結果であった。表2に、電池A1の容量維持率を100としたときの電池A4~A6の容量維持率の相対値を示す。
Figure JPOXMLDOC01-appb-T000002
 <比較例4>
 電解液の調製において、LFSIを用いず、その代わりに、リチウムビス(トリフルオロメチルスルホニル)イミド(LTFSI)を用いたこと以外、実施例1と同様に比較例4の電池B4を作製し、上記と同じ充放電条件で充放電回数を100サイクル繰り返した。1サイクル目の放電容量に対する100サイクル目の放電容量の割合を、容量維持率として求めた。表3に、電池A1の100サイクル目の容量維持率を100としたときの電池B4の容量維持率の相対値を示す。
 <実施例7>
 負極の作製において、LSXを用いず、黒鉛と、カルボキシメチルセルロースと、スチレン-ブタジエンゴム(SBR)とを、97.5:1:1.5の質量比で混合して負極スラリーを調製したこと以外、実施例1と同様に実施例7の電池A7を作製し、比較例4と同様に100サイクル目の容量維持率を評価した。表3に、電池A1の100サイクル目の容量維持率を100としたときの電池A7の容量維持率の相対値を示す。
Figure JPOXMLDOC01-appb-T000003
 本発明によれば、高温での長期サイクル特性に優れた非水電解質二次電池を提供することができる。本発明に係る非水電解質二次電池は、移動体通信機器、携帯電子機器などの主電源に有用である。
 1 電極群
 2 正極リード
 3 負極リード
 4 電池ケース
 5 封口板
 6 負極端子
 7 ガスケット

Claims (7)

  1.  正極、負極および電解液を有し、
     前記電解液が、リチウムビス(フルオロスルホニル)イミドおよび1,4-ジオキサンを含む、非水電解質二次電池。
  2.  前記電解液が、更にヘキサフルオロリン酸リチウムを含み、
     前記リチウムビス(フルオロスルホニル)イミドと前記ヘキサフルオロリン酸リチウムとの合計に対する前記リチウムビス(フルオロスルホニル)イミドの割合が、5質量%以上50質量%以下である、請求項1に記載の非水電解質二次電池。
  3.  前記電解液が、更にジフルオロリン酸リチウムを含み、
     前記電解液の質量に対して前記ジフルオロリン酸リチウムの含有量が、2質量%以下である、請求項1または2に記載の非水電解質二次電池。
  4.  前記電解液における前記リチウムビス(フルオロスルホニル)イミドと前記ヘキサフルオロリン酸リチウムとの合計の濃度が、1mol/リットル以上2mol/リットル以下である、請求項1~3のいずれか1項に記載の非水電解質二次電池。
  5.  前記電解液が、更にフルオロスルホン酸リチウムを含み、
     前記電解液の質量に対して前記フルオロスルホン酸リチウムの含有量が、2質量%以下である、請求項1~4のいずれか1項に記載の非水電解質二次電池。
  6.  前記負極が、シリケート相と、前記シリケート相内に分散したシリコン粒子と、を含む、請求項1~5のいずれか1項に記載の非水電解質二次電池。
  7.  リチウムビス(フルオロスルホニル)イミドおよび1,4-ジオキサンを含む、非水電解質二次電池用電解液。
PCT/JP2019/047076 2019-01-31 2019-12-02 非水電解質二次電池およびこれに用いる電解液 WO2020158169A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980090394.5A CN113439360B (zh) 2019-01-31 2019-12-02 非水电解质二次电池及其中使用的电解液
JP2020569411A JP7458033B2 (ja) 2019-01-31 2019-12-02 非水電解質二次電池およびこれに用いる電解液
US17/424,224 US20220109186A1 (en) 2019-01-31 2019-12-02 Non-aqueous electrolyte secondary cell and electrolytic solution used in same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019016391 2019-01-31
JP2019-016391 2019-01-31

Publications (1)

Publication Number Publication Date
WO2020158169A1 true WO2020158169A1 (ja) 2020-08-06

Family

ID=71840402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047076 WO2020158169A1 (ja) 2019-01-31 2019-12-02 非水電解質二次電池およびこれに用いる電解液

Country Status (4)

Country Link
US (1) US20220109186A1 (ja)
JP (1) JP7458033B2 (ja)
CN (1) CN113439360B (ja)
WO (1) WO2020158169A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112239519A (zh) * 2020-09-30 2021-01-19 氟金(上海)新材料有限公司 含碳酸锂离子共聚物及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116398A (ja) * 2003-10-09 2005-04-28 Nec Corp 非水電解液二次電池
JP2014049292A (ja) * 2012-08-31 2014-03-17 Tdk Corp リチウムイオン二次電池用非水電解液及びリチウムイオン二次電池
CN108808092A (zh) * 2018-09-04 2018-11-13 四川华昆能源有限责任公司 一种活性电解液及制备方法和用途
JP2020017479A (ja) * 2018-07-27 2020-01-30 トヨタ自動車株式会社 リチウムイオン電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140020959A (ko) * 2011-04-11 2014-02-19 미쓰비시 가가꾸 가부시키가이샤 플루오로술폰산리튬의 제조 방법, 플루오로술폰산리튬, 비수계 전해액, 및 비수계 전해액 2 차 전지
WO2014163055A1 (ja) * 2013-04-01 2014-10-09 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス
JP6833511B2 (ja) * 2014-09-03 2021-02-24 三洋電機株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池
KR101775762B1 (ko) * 2014-09-26 2017-09-06 주식회사 엘지화학 비수성 전해액 및 이를 포함하는 리튬 이차 전지
KR102553839B1 (ko) * 2015-12-24 2023-07-10 삼성전자주식회사 리튬이차전지
CN107887645B (zh) * 2016-09-30 2020-07-10 比亚迪股份有限公司 一种锂离子电池非水电解液和锂离子电池
KR20180057301A (ko) * 2016-11-22 2018-05-30 주식회사 엘지화학 리튬이차전지용 전해질 및 이를 포함하는 리튬이차전지
CN106848404B (zh) * 2017-02-22 2019-03-29 中航锂电(洛阳)有限公司 一种锂离子电池电解液用功能添加剂、锂离子电池电解液及锂离子电池
CN108767310A (zh) * 2018-05-24 2018-11-06 中航锂电(洛阳)有限公司 一种锂离子电池电解液、锂离子电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116398A (ja) * 2003-10-09 2005-04-28 Nec Corp 非水電解液二次電池
JP2014049292A (ja) * 2012-08-31 2014-03-17 Tdk Corp リチウムイオン二次電池用非水電解液及びリチウムイオン二次電池
JP2020017479A (ja) * 2018-07-27 2020-01-30 トヨタ自動車株式会社 リチウムイオン電池
CN108808092A (zh) * 2018-09-04 2018-11-13 四川华昆能源有限责任公司 一种活性电解液及制备方法和用途

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112239519A (zh) * 2020-09-30 2021-01-19 氟金(上海)新材料有限公司 含碳酸锂离子共聚物及其制备方法

Also Published As

Publication number Publication date
CN113439360A (zh) 2021-09-24
JPWO2020158169A1 (ja) 2021-12-02
CN113439360B (zh) 2024-03-01
US20220109186A1 (en) 2022-04-07
JP7458033B2 (ja) 2024-03-29

Similar Documents

Publication Publication Date Title
JP5899442B2 (ja) 非水電解質二次電池用負極およびそれを用いた非水電解質二次電池
JP2009277597A (ja) 非水電解質二次電池
JP2012104290A (ja) 非水電解質電池用正極活物質、非水電解質電池用正極および非水電解質電池
JP2006134770A (ja) 正極および電池
JP2007220630A (ja) 正極活物質および電池
JP2007317534A (ja) 非水電解質二次電池
JP2010129471A (ja) 正極活物質および非水電解質電池
JP2008262768A (ja) リチウムイオン二次電池
JP2008234872A (ja) 正極活物質および電池
JP2010123331A (ja) 非水電解質二次電池
US20120082896A1 (en) Nonaqueous electrolyte secondary battery
JP2009164013A (ja) 負極および電池
JP2008305688A (ja) 非水電解質二次電池用負極およびそれを用いた非水電解質二次電池
CN111052486B (zh) 非水电解质二次电池
WO2020158169A1 (ja) 非水電解質二次電池およびこれに用いる電解液
JP7454796B2 (ja) 非水電解質二次電池およびこれに用いる電解液
JP7182198B2 (ja) 非水電解質二次電池、電解液及び非水電解質二次電池の製造方法
WO2020158299A1 (ja) 非水電解質二次電池およびこれに用いる電解液
JP2010135115A (ja) 非水電解質二次電池
JP2010027386A (ja) 非水電解質二次電池用負極およびこれを含む非水電解質二次電池
WO2021131240A1 (ja) 非水電解質二次電池
JP2003346904A (ja) 非水電解質二次電池
JP2012018916A (ja) 非水電解質および非水電解質電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912312

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020569411

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912312

Country of ref document: EP

Kind code of ref document: A1