JP2010027386A - 非水電解質二次電池用負極およびこれを含む非水電解質二次電池 - Google Patents

非水電解質二次電池用負極およびこれを含む非水電解質二次電池 Download PDF

Info

Publication number
JP2010027386A
JP2010027386A JP2008187334A JP2008187334A JP2010027386A JP 2010027386 A JP2010027386 A JP 2010027386A JP 2008187334 A JP2008187334 A JP 2008187334A JP 2008187334 A JP2008187334 A JP 2008187334A JP 2010027386 A JP2010027386 A JP 2010027386A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
nonaqueous electrolyte
electrolyte secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008187334A
Other languages
English (en)
Inventor
Kazuhiro Okamura
一広 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008187334A priority Critical patent/JP2010027386A/ja
Publication of JP2010027386A publication Critical patent/JP2010027386A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】放電容量が大きく、かつ低温サイクル特性が従来よりも改善された非水電解質二次電池を提供する。
【解決手段】一般式(1):LixNi1-yy2(式中、Mは、Ti、V、Cr、Mn、FeおよびCoよりなる群から選ばれる少なくとも1種の元素であり、1≦x≦2、0<y≦0.5。)で表されるリチウムニッケル複合酸化物を活物質として含む非水電解質二次電池用負極。
【選択図】図1

Description

本発明は、非水電解質二次電池に関し、特にこれに含まれる負極の改良に関する。
パソコン、携帯電話、デジタルカメラ、カムコーダなどの携帯機器分野に用いる電源として、エネルギー密度の高いリチウムイオン二次電池をはじめとする非水電解質二次電池が広く普及するに至っている。また、環境問題、資源問題から、近い将来に求められる電気自動車の駆動電源としても、エネルギー密度の高い非水電質二次電池の開発が進められている。特に電気自動車の駆動電源としての非水電解質二次電池には、放電容量のみならず、良好なサイクル特性が求められる。また、寒冷地での使用を想定した低温サイクル特性は重要である。
一般的な非水電解質二次電池が具備する正極は、活物質として、コバルト酸リチウムやニッケル酸リチウムなどのリチウム遷移金属複合酸化物を含んでおり、負極は、黒鉛に代表される炭素材料を含んでいる。黒鉛の充放電電位は、金属リチウムの充放電電位を基準にして、0〜1.5Vの範囲にありかつ平均0.3V程度である。
一般に、電極の充放電反応においては、分極という現象が起こる。非水電解質二次電池の負極は、放電の際に貴な電位の方向に分極して、放電電位が高くなる。逆に、充電の際には、負極は卑な電位の方向に分極し、充電電位は低くなる。分極の程度は、充放電電流が大きいほど大きくなり、反応温度が低いときも大きくなる。
先述のように、炭素材料を活物質として含む負極の充放電電位は、金属リチウムの充放電電位を基準にして平均0.3V程度である。充電の際の分極が大きくなると、負極の充電電位は低下して、金属リチウムの充放電電位に近づいてゆく。負極の充電電位が金属リチウムの充放電電位に等しくなると、負極本来の充電反応、すなわち炭素材料中にリチウムが挿入する反応と共に、炭素材料の表面に金属リチウムが析出する反応が起こる。
析出した金属リチウムは、化学的な活性が高く、非水電解質との接触表面で化学反応を起こして別の物質となる。ここで生じた物質は、後の放電反応において活性を示さないため、電池の放電容量が減少することになる。すなわち、負極材料の表面に金属リチウムが析出するような充放電サイクルを繰り返すと、電池のサイクル特性が損なわれることになる。
このようなサイクル特性の低下は、充電の際の分極が大きくなるときに顕著になる。すなわち、大電流で電池を充電するときや、低温下で電池を充電するとき、サイクル特性の低下が顕著になる。通常、制御機構を用いることで、過大な充電電流が流れないようにすることができるが、温度は環境に依存するため、制御が困難である。
上述のように、低温環境下におけるサイクル特性の低下の原因としては、低温での充電反応の際の分極が大きくなり、負極の充電電位が金属リチウムの充放電電位に等しくなり、負極材料の表面に金属リチウムが析出することが挙げられる。また、析出した金属リチウムが不活性な別の物質になってしまうことも、サイクル特性の低下の原因として挙げられる。
上記のような低温でのサイクル特性の低下は、従来の一般的な炭素材料よりも、充電電位が高い材料を負極に用いることで、改善できると考えられる。このような材料として、例えば特許文献1のLi4Nb617が挙げられる。この材料の充電電位は、金属リチウムの充放電電位を基準にして1.0〜2.5Vの範囲にありかつ平均1.7Vであり、放電容量は150mAh/g程度である。しかし、非水電解質二次電池の高容量化に対する要求は高まってきており、更に大きな放電容量を有する材料が望まれている。
特開2001−052701号公報
本発明は、上記に鑑み、できる限り大きな放電容量を有する負極を備えており、かつ低温サイクル特性が従来よりも改善された非水電解質二次電池を提供することを目的とする。
本発明は、リチウムニッケル複合酸化物を含む活物質を含み、リチウムニッケル複合酸化物は、一般式(1):LixNi1-yy2(式中、Mは、Ti、V、Cr、Mn、FeおよびCoよりなる群から選ばれる少なくとも1種の元素であり、1≦x≦2、0<y≦0.5。)で表される、非水電解質二次電池用負極に関する。ただし、NiとMとの合計に対するLiのモル比xは、電池の充放電に伴って変化する。
本発明の負極の好ましい一態様において、活物質は、一般式(1)で表されるリチウムニッケル複合酸化物に加え、リチウムの吸蔵および放出が可能な炭素材料を含む。リチウムの吸蔵および放出が可能な炭素材料は、リチウムニッケル複合酸化物と混合して用いることが好ましい。リチウムニッケル複合酸化物と炭素材料との合計に占める炭素材料の重量分率は、0.01以上、0.5以下であることが好ましい。
本発明は、また、正極と、上記の負極と、非水電解質と、を具備する非水電解質二次電池に関する。
一般式(1):LixNi1-yy2(式中、Mは、Ti、V、Cr、Mn、FeおよびCoよりなる群から選ばれる少なくとも1種の元素であり、1≦x≦2、0<y≦0.5。)で表されるリチウムニッケル複合酸化物の充放電電位は、金属リチウムの充放電電位を基準にして平均1.2〜1.9Vであり、放電容量は150mAh/g以上である。よって、本発明によれば、放電容量が大きく、かつ低温サイクル特性が従来よりも改善された非水電解質二次電池を提供することができる。
以下、本発明の非水電解質二次電池用負極および非水電解質二次電池について、リチウム二次電池に基づいて説明する。
本発明の非水電解質二次電池用負極は、一般式(1):LixNi1-yy2で表されるリチウムニッケル複合酸化物を負極活物質として含む。ここで、一般式(1)は、1≦x≦2および0<y≦0.5を満たす。Mは、Ti、V、Cr、Mn、FeおよびCoよりなる群から選ばれる少なくとも1種の元素である。
上記一般式(1)で表されるリチウムニッケル複合酸化物は、充電時にリチウムを吸蔵し、放電時にリチウムを放出する。前記複合酸化物に含まれるNiのモル比を比較的高くすることにより、前記複合酸化物は、リチウムのモル比が、NiとMとの合計に対して2程度になるように、リチウムを吸蔵することができる。
元素M、すなわちTi、V、Cr、Mn、FeおよびCoのうちでは、特にV、Mn、およびCoが好ましい。V、MnおよびCoは、低温でのサイクル特性の改善において特に有効である。更にVは、放電容量の向上においても特に有効である。
元素Mの含有量を規定するyの範囲は、0<y≦0.5を満たせばよいが、元素Mの添加効果を十分に得る観点から、0.1≦y≦0.25を満たすことが好ましい。yが大きくなりすぎると、低温でのサイクル特性が著しく低下する。また、放電容量も著しく減少する。
上記一般式(1)で表されるリチウムニッケル複合酸化物の電位は、金属リチウムの充放電電位を基準にして平均1.2〜1.9Vであり、充電末期においても、負極上に金属リチウムが析出することを抑制することができる。また、前記複合酸化物の放電容量は150mAh/g以上と高い。さらに、元素Mを含むことにより、低温でのサイクル特性が改善されている。よって、一般式(1)で表される複合酸化物を負極活物質として用いることにより、放電容量が大きく、かつ低温サイクル特性が従来よりも改善された非水電解質二次電池を提供することができる。
一般式(1)で表されるリチウムニッケル複合酸化物の平均粒径(体積基準の粒度分布におけるメディアン径)は、0.5〜200μmが好適である。平均粒径は、例えばレーザ回折式の粒度分布測定装置により求めることができる。通常、複合酸化物の一次粒子は、凝集して二次粒子を形成している。よって、粒度分布測定装置で求められる平均粒径は、少量の一次粒子と二次粒子との混合物の平均粒径であると考えられる。
負極活物質は、一般式(1)で表されるリチウムニッケル複合酸化物の他に、リチウムの吸蔵および放出が可能な炭素材料を含むことができる。前記リチウムニッケル複合酸化物と、前記炭素材料とは、混在していることが好ましい。このような炭素材料とリチウムニッケル複合酸化物とを併用することにより、低温でのサイクル特性が更に良好となり、負極活物質の単位重量あたりの放電容量も増加する傾向がある。これは、炭素材料により活物質の電気伝導性が向上するためと思われる。
リチウムの吸蔵および放出が可能な炭素材料としては、黒鉛、易黒鉛化炭素、難黒鉛化炭素などが挙げられるが、これらのうちでは、黒鉛が好ましい。黒鉛は、天然黒鉛でも人造黒鉛でもよい。黒鉛は、活物質として機能するだけでなく、負極の電気伝導性を確保する導電材としても機能する。
リチウムの吸蔵および放出が可能な炭素材料の平均粒径(体積基準の粒度分布におけるメディアン径)は、0.5〜200μmが好適であり、2〜20μmが更に好適である。ここでも平均粒径は、例えばレーザ回折式の粒度分布測定装置により求めることができる。
一般式(1)で表されるリチウムニッケル複合酸化物と上記の炭素材料との合計に占める炭素材料の重量分率は、0.01(1重量%)以上、0.5(50重量%)以下が好ましく、0.05〜0.25が更に好ましく、0.1程度が特に好ましい。炭素材料の重量分率が0.01(1重量%)未満では、炭素材料を用いることによる効果が十分に得られないことがある。重量分率が0.5(50重量%)を超えると、低温サイクル特性を向上させるリチウムニッケル複合酸化物の重量分率が減少する。よって、低温でのサイクル特性の十分な改善効果が得られないことがある。また、放電容量の小さな炭素材料の比率が増大することにより、活物質の単位重量あたりの放電容量が減少することがある。
本発明の負極は、例えば、前記複合酸化物を含む負極合剤層と、負極集電体とを含むことができる。このような負極は、例えば、以下のようにして作製することができる。
負極活物質を含む負極合剤を、適当な分散媒とともに混合すると、負極合剤ペーストが得られる。負極合剤は、活物質の他に、任意成分として結着剤、導電材などを含むことができる。分散媒としては、N−メチル−2−ピロリドンなどの有機溶媒や水などを用いることができる。ペーストの経時安定性や合剤の分散性を向上させるために、負極合剤ペーストに界面活性剤などの添加剤を加えることも有効である。負極合剤ペーストを、銅箔などの金属箔からなる負極集電体の表面に塗布し、塗膜を乾燥し、圧延することにより、負極集電体とその上に形成された負極合剤層とを有する負極が得られる。
負極の結着剤には、ポリテトラフルオロエチレン(PTFE)、PTFEの変性体、ポリフッ化ビニリデン(PVDF)、PVDFの変性体、フッ素ゴムなどの含フッ素樹脂、ポリプロピレン、ポリエチレンなどの熱可塑性樹脂、変性アクリロニトリルゴム粒子(日本ゼオン(株)製の「BM−500B(商品名)」等)を用いることができる。PTFEやBM−500Bは、増粘剤であるカルボキシメチルセルロース(CMC)、ポリエチレンオキシド(PEO)、変性アクリロニトリルゴム(日本ゼオン(株)製の「BM−720H(商品名)」等)などと併用することが好ましい。
負極の導電材としては、例えば、カーボンブラック、アセチレンブラック、ケッチェンブラックなどを用いることができる。
負極集電体は、負極電位下で安定な金属箔が好ましく、銅箔や銅合金箔が特に好ましい。また、負極集電体は、様々な材質のフィルム基材と、その表面に形成された、負極電位下で安定な金属層とを含んでもよい。集電性を向上させるために、負極集電体の表面に凹凸を設けたり、負極集電体を穿孔したりしてもよい。
次に、非水電解質二次電池の負極以外の構成要素について説明する。ただし、本発明が以下の構成要素を用いる場合に限定されるわけではない。
正極は、例えば、正極活物質を含む正極合剤層と、正極集電体とを含むことができる。このような正極は、例えば、以下のようにして作製することができる。
正極活物質を含む正極合剤を、適当な分散媒とともに混合すると、正極合剤ペーストが得られる。正極合剤は、活物質の他に、任意成分として結着剤、導電材などを含むことができる。分散媒としては、N−メチル−2−ピロリドンなどの有機溶媒や水などを用いることができる。ペーストの経時安定性や合剤の分散性を向上させるために、正極合剤ペーストに界面活性剤などの添加剤を加えることも有効である。正極合剤ペーストを、アルミニウム箔などの金属箔からなる正極集電体の表面に塗布し、塗膜を乾燥し、圧延することにより、正極集電体とその上に形成された正極合剤層を有する正極が得られる。
正極活物質には、金属リチウムの充放電電位を基準にした電位が、一般式(1)で表されるリチウムニッケル複合酸化物よりも高い材料が用いられる。このような材料としては、例えば、リチウム遷移金属複合酸化物、遷移金属ポリアニオン化合物などを用いることができる。リチウム遷移金属複合酸化物としては、コバルト酸リチウム(LiCoO2)、コバルト酸リチウムの変性体、ニッケル酸リチウム(LiNiO2)、ニッケル酸リチウムの変性体、マンガン酸リチウム(LiMnO2およびLiMn24)、マンガン酸リチウムの変性体などが挙げられる。これら酸化物のCo、NiもしくはMnの一部を他の遷移金属元素やアルミニウムなどの典型金属、マグネシウムなどのアルカリ土類金属で置換したものを用いることもできる。遷移金属ポリアニオン化合物は、マンガン、鉄、コバルト、ニッケルなどを含み、ナシコン構造またはオリビン構造を有するリン酸化合物または硫酸化合物などである。正極活物質は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
なかでも、正極活物質としては、ニッケル酸リチウム(LiNiO2)、ニッケル酸リチウムの変性体等を用いることが好ましい。これらの材料は、充放電容量の大きな活物質である。よって、これらの材料を用いることにより、電池容量を高めることができる。
正極の結着材および導電材には、例えば、負極の結着材および導電材として列挙した材料を任意に用いることができる。
正極集電体は、正極電位下で安定な金属箔が好ましく、アルミニウム箔が特に好ましい。また、正極集電体は、様々な材質のフィルム基材と、その表面に形成された、正極電位下で安定な金属層とを含んでもよい。集電性を向上させるために、正極集電体の表面に凹凸を設けたり、正極集電体を穿孔したりしてもよい。
本発明の非水電解質二次電池は、円筒型、角型、シート型などのいずれの構造を有してもよい。正極と負極とを多孔質絶縁層を介して巻回することにより、電極体が形成される。電極体は電池ケースに収容される。正極集電体および負極集電体には、それぞれ正極リードおよび負極リードが接続される。これらのリードを正極端子および負極端子と接続した後、非水電解質を電池ケースに注入し、ケースを密閉することで電池が完成する。
多孔質絶縁層には、微多孔膜および不織布が用いられる。微多孔膜および不織布は、電池の使用環境に耐え得る材料からなり、イオン透過性を有し、正負極間を絶縁する機能を有する。例えば、ポリオレフィン樹脂からなる微多孔膜が用いられる。ポリオレフィン樹脂としては、ポリエチレン、ポリプロピレンなどが用いられる。微多孔膜は、1種の樹脂からなる単層膜であってもよく、2種以上の樹脂からなる多層膜でもよい。微多孔膜は、樹脂とアルミナなどの無機材料との複合層を有するものでもよい。
電池ケースの材質は、特に限定されないが、例えば、アルミニウム合金、ニッケルめっきを施した鉄合金、各種樹脂と金属との積層体などが用いられる。電池ケースの形状は、特に限定されないが、例えば、電池ケースは、円筒型もしくは角型の有底缶であってもよいし、袋状ケースであってもよい。
非水電解質は、非水溶媒およびこれに溶解した溶質を含む。
非水溶媒は、特に限定されないが、例えば、カーボネート類、ハロゲン化炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、オキソラン化合物等を用いることができる。特に、エチレンカーボネート(EC)、プロピレンカーボネート(PC)などの高誘電率溶媒と、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)などの低粘性溶媒との混合溶媒が好ましい。これらの溶媒とジメトキシエタン(DME)、テトラヒドロフラン(THF)、γ−ブチロラクトン(GBL)などを併用してもよい。
溶質には、LiPF6、LiBF4、LiClO4およびLiAsF6よりなる群から選ばれる無機塩、該無機塩の誘導体、LiSO3CF3、LiC(SO3CF32、LiN(SO3CF32、LiN(SO2252およびLiN(SO2CF3)(SO249)よりなる群から選ばれる有機塩、ならびに該有機塩の誘導体などを用いることができる。溶質の濃度は、通常0.5〜2.0mol/Lの範囲である。
非水電解質二次電池の保存特性、サイクル特性、安全性などを向上させる目的で、種々の添加剤を非水電解質に添加することができる。このような添加剤として、ビニレンカーボネート(VC)、シクロヘキシルベンゼン(CHB)、およびこれらの誘導体が挙げられる。
次に、本発明の負極および非水電解質二次電池について、実施例に基づいてより具体的に説明する。
(i)正極の作製
正極活物質である日本化学工業(株)製の「セルシードN(商品名)」(ニッケル酸リチウム)3kgと、正極結着剤である呉羽化学(株)製の「#1320(商品名)」(PVDFを12重量%含むNMP溶液)1kgと、導電材であるアセチレンブラック90gと、適量のNMPとを、双腕式練合機にて攪拌し、正極合剤ペーストを調製した。正極合剤ペーストを正極集電体である厚み15μmのアルミニウム箔の両面に、正極リードの接続部を除いて塗布し、乾燥後の塗膜をローラで圧延して、正極合剤層を形成した。その後、円筒型電池(品番18650)の電池ケースに挿入可能な幅に極板をスリットし、正極を得た。
(ii)負極の作製
一般式(1):LiNi1-yy2で表されるリチウムニッケル複合酸化物を次の要領で合成した。原料には、いずれも(株)高純度化学研究所製の試薬、具体的には、水酸化リチウム(LiOH)、水酸化ニッケル(Ni(OH)2)、酸化チタン(TiO2)、酸化バナジウム(V23)、酸化クロム(Cr23)、酸化マンガン(MnO)、酸化鉄(FeO)、および酸化コバルト(CoO)を用いた。
これら原料を所定の複合酸化物の金属組成比となるように秤量して混合した。得られた混合物を、アルミナ製焼成容器に入れた。前記容器を、酸素雰囲気下、700℃で、24時間加熱して、リチウムニッケル複合酸化物を合成した。得られた複合酸化物を平均粒径10μmに粉砕して、負極活物質として用いた。
負極活物質であるリチウムニッケル複合酸化物の粉末3kgと、負極結着剤である呉羽化学(株)製の「#1320(商品名)」(PVDFを12重量%含むNMP溶液)1kgと、必要に応じて所定量の人造黒鉛(平均粒径4μm)と、適量のNMPとを、双腕式練合機にて攪拌し、負極合剤ペーストを調製した。負極合剤ペーストを負極集電体である厚さ10μmの銅箔の両面に、負極リード接続部を除いて塗布し、乾燥後の塗膜をローラで圧延して、負極合剤層を形成した。その後、円筒型電池(品番18650)の電池ケースに挿入可能な幅に極板をスリットし、負極を得た。
(iii)非水電解質の調製
ECとDMCとEMCとを体積比2:3:3で含む非水溶媒の混合物に、溶質としてLiPF6を1mol/Lの濃度で溶解して、非水電解質を調製した。得られた非水電解質には、非水電解質100重量部あたり、VCを3重量部添加した。
(iv)試験用電池の作製
以下の要領で図1に示すような品番18650の円筒型電池を作製した。
まず、正極リード接続部に正極リード5aの一端を接続し、負極リード接続部に負極リード6aの一端を接続した。その後、正極5と負極6とを、厚み15μmのポリエチレン樹脂製の微多孔膜7を介して巻回し、円筒状の電極体を構成した。この電極体を、上部絶縁リング8aと下部絶縁リング8bで挟まれた状態で、電池ケース1に収容した。正極リード5aの他端は、電池蓋2の裏面に溶接し、負極リード5bの他端は、電池ケース1の内底面に溶接した。
次いで、上記の非水電解質を5g秤量し、これを電池ケース1内に注入し、電池ケース1内を133Paに減圧することで、電極体に非水電解質を含浸させた。最後に電池ケース1の開口部を、周縁に絶縁パッキン3が配された電池蓋2で塞いで、円筒型リチウムイオン二次電池を完成させた。
(v)電池の低温サイクル試験
試験用電池の充放電を、0℃の環境温度下、400mAの定電流で繰り返した。充電終止電圧は4.2V、放電終止電圧は2Vに設定した。充放電の際、放電時間と電流値との積を放電容量(mAh)として求め、サイクルの進行に伴う放電容量の変化を記録した。1サイクル目の放電容量に対する500サイクル目の放電容量の割合を百分率で求め、低温容量維持率とした。
また、1サイクル目の放電容量を電池内の負極に含まれるリチウムニッケル複合酸化物の重量で除して単位重量あたりの低温放電容量(mAh/g)を算出した。ただし、負極活物質が黒鉛を含む場合は、1サイクル目の放電容量をリチウムニッケル複合酸化物と黒鉛との合計重量で除し、低温放電容量(mAh/g)を算出した。
電池の充放電電圧は、正極の充放電電位と負極の充放電電位との差である。よって、正極の平均充電電位(3.9V vs.Li/Li+)から電池の平均充電電圧を差し引いて、負極の平均充電電位を算出した。
《実施例1〜3および比較例1》
原料として、水酸化リチウム(LiOH)と水酸化ニッケル(Ni(OH)2)と酸化チタン(TiO2)とを用いて、リチウムニッケル複合酸化物であるLiNi0.90Ti0.102(実施例1)、LiNi0.75Ti0.252(実施例2)、LiNi0.5Ti0.52(実施例3)およびLiNi0.4Ti0.62(比較例1)を合成し、負極活物質とした。
《実施例4〜6および比較例2》
原料として、水酸化リチウム(LiOH)と水酸化ニッケル(Ni(OH)2)と酸化バナジウム(V23)とを用いて、リチウムニッケル複合酸化物であるLiNi0.900.102(実施例4)、LiNi0.750.252(実施例5)、LiNi0.50.52(実施例6)およびLiNi0.40.62(比較例2)を合成し、負極活物質とした。
《実施例7〜9および比較例3》
原料として、水酸化リチウム(LiOH)と水酸化ニッケル(Ni(OH)2)と酸化クロム(Cr23)とを用いて、リチウムニッケル複合酸化物であるLiNi0.90Cr0.102(実施例7)、LiNi0.75Cr0.252(実施例8)、LiNi0.5Cr0.52(実施例9)およびLiNi0.4Cr0.62(比較例3)を合成し、負極活物質とした。
《実施例10〜12および比較例4》
原料として、水酸化リチウム(LiOH)と水酸化ニッケル(Ni(OH)2)と酸化マンガン(MnO)とを用いて、リチウムニッケル複合酸化物であるLiNi0.90Mn0.102(実施例10)、LiNi0.75Mn0.252(実施例11)、LiNi0.5Mn0.52(実施例12)およびLiNi0.4Mn0.62(比較例4)を合成し、負極活物質とした。
《実施例13〜15および比較例5》
原料として、水酸化リチウム(LiOH)と水酸化ニッケル(Ni(OH)2)と酸化鉄(FeO)とを用いて、リチウムニッケル複合酸化物であるLiNi0.90Fe0.102(実施例13)、LiNi0.75Fe0.252(実施例14)、LiNi0.5Fe0.52(実施例15)およびLiNi0.4Fe0.62(比較例5)を合成し、負極活物質とした。
《実施例16〜18および比較例6》
原料として、水酸化リチウム(LiOH)と水酸化ニッケル(Ni(OH)2)と酸化コバルト(CoO)とを用いて、リチウムニッケル複合酸化物であるLiNi0.90Co0.102(実施例16)、LiNi0.75Co0.252(実施例17)、LiNi0.5Co0.52(実施例18)およびLiNi0.4Co0.62(比較例6)を合成し、負極活物質とした。
《実施例19〜21および比較例7》
原料として、水酸化リチウム(LiOH)と水酸化ニッケル(Ni(OH)2)と酸化バナジウム(V23)と酸化コバルト(CoO)とを用いて、リチウムニッケル複合酸化物であるLiNi0.900.05Co0.052(実施例19)、LiNi0.750.125Co0.1252(実施例20)、LiNi0.50.25Co0.252(実施例21)およびLiNi0.40.3Co0.32(比較例7)を合成し、負極活物質とした。
《比較例8》
原料として、水酸化リチウム(LiOH)と水酸化ニッケル(Ni(OH)2)とを用いて、リチウムニッケル複合酸化物であるLiNiO2を合成し、負極活物質とした。
《比較例9》
負極活物質としてリチウムニッケル複合酸化物の代わりに、平均粒径4μmの黒鉛を用いた。すなわち、負極活物質である黒鉛粉末3kgと、負極結着剤である呉羽化学(株)製の「#1320(商品名)」(PVDFを12重量%含むNMP溶液)1kgと、適量のNMPとを混合して負極合剤ペーストを調製した。
《比較例10》
本発明に係るリチウムニッケル複合酸化物の代わりに、特許文献1で開示されているLi4Nb617を負極活物質として用いた。
《実施例22〜25》
実施例1と同じリチウムニッケル複合酸化物LiNi0.90Ti0.102と黒鉛との合計重量に対し、重量分率が0.01(実施例22)、0.25(実施例23)、0.5(実施例24)または0.6(実施例25)となるように黒鉛を加えて負極活物質とした。
《実施例26〜29》
実施例4と同じリチウムニッケル複合酸化物LiNi0.900.102と黒鉛との合計重量に対し、重量分率が0.01(実施例26)、0.25(実施例27)、0.5(実施例28)または0.6(実施例29)となるように黒鉛を加えて負極活物質とした。
上記実施例および比較例の電池についての低温サイクル試験の結果を表1に示す。
Figure 2010027386
表1の結果から分かるように、負極活物質として黒鉛を用いた一般的な電池(比較例9)および特許文献1に開示されている負極活物質を用いた電池(比較例10)に比べ、いずれの実施例の電池においても、良好な低温サイクル特性が得られ、負極活物質の単位重量あたりの放電容量が大きくなった。また、いずれの実施例の電池においても、負極の平均充電電位は1V以上と高くなった。このことから、低温での充電の際、負極材料の表面に金属リチウムは析出しなかったと考えられる。そのため、実施例の電池は、放電容量の減少が抑制されたものと考えられる。
LiNiO2(比較例8)のNiの一部を元素Mで置換したリチウムニッケル複合酸化物の場合、y≦0.5のときには、負極活物質の単位重量あたりの放電容量が比較例8よりも大きくなった。しかし、y=0.6のとき、低温サイクル特性および負極活物質の単位重量あたりの放電容量が大きく損なわれた。また、Niの一部を元素Mで置換していないLiNiO2(比較例8)は、比較例9よりも特性が優れているものの、比較例10の特性より劣っている。よって、yの範囲は0<y≦0.5を満たす必要がある。
Niと置換した元素Mの化学的作用については定かではない。しかし、Niを元素Mで置換することで、負極活物質の単位重量あたりの放電容量と、負極の平均充電電位とが大きくなる傾向がある。このことから、元素Mが何らか充放電反応に寄与しているものと思われる。
リチウムニッケル複合酸化物と黒鉛との混合物を用いた実施例の結果は、黒鉛を加えなかった実施例の結果と比較して良好であった。黒鉛を用いることで、低温サイクル特性は良好となり、負極活物質の単位重量あたりの放電容量も増加する傾向が見られた。しかし、黒鉛の重量分率が0.6になると、低温サイクル特性が低下し、負極活物質の単位重量あたりの放電容量が減少する傾向が見られた。よって、黒鉛の重量分率は0.01以上、0.50以下の範囲が適切であるといえる。
本発明の負極および非水電解質二次電池は、高容量と優れた低温サイクル特性が要求される用途に適しており、特に寒冷地での使用が想定される携帯電話、デジタルカメラ、カムコーダなどの携帯機器分野に用いる電源、電気自動車やハイブリッド自動車の電源として有用である。
本発明の一実施形態に係る非水電解質二次電池を概略的に示す縦断面図である。
符号の説明
1 電池ケース
2 電池蓋
3 絶縁パッキン
5 正極
5a 正極リード
6 負極
6a 負極リード
7 微多孔膜
8a 上部絶縁リング
8b 下部絶縁リング

Claims (5)

  1. リチウムニッケル複合酸化物を含む活物質を含み、
    前記リチウムニッケル複合酸化物が、一般式(1):
    LixNi1-yy2
    (式中、Mは、Ti、V、Cr、Mn、FeおよびCoよりなる群から選ばれる少なくとも1種の元素であり、1≦x≦2、0<y≦0.5)
    で表される、非水電解質二次電池用負極。
  2. 前記活物質が、更に、リチウムの吸蔵および放出が可能な炭素材料を含む、請求項1記載の非水電解質二次電池用負極。
  3. 前記リチウムニッケル複合酸化物と前記炭素材料とが混在している、請求項2記載の非水電解質二次電池用負極。
  4. 前記リチウムニッケル複合酸化物と前記炭素材料との合計に占める前記炭素材料の重量分率が、0.01以上、0.5以下である、請求項2または3記載の非水電解質二次電池用負極。
  5. 正極と、請求項1〜4のいずれかに記載の負極と、非水電解質とを具備する非水電解質二次電池。
JP2008187334A 2008-07-18 2008-07-18 非水電解質二次電池用負極およびこれを含む非水電解質二次電池 Pending JP2010027386A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008187334A JP2010027386A (ja) 2008-07-18 2008-07-18 非水電解質二次電池用負極およびこれを含む非水電解質二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008187334A JP2010027386A (ja) 2008-07-18 2008-07-18 非水電解質二次電池用負極およびこれを含む非水電解質二次電池

Publications (1)

Publication Number Publication Date
JP2010027386A true JP2010027386A (ja) 2010-02-04

Family

ID=41733023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008187334A Pending JP2010027386A (ja) 2008-07-18 2008-07-18 非水電解質二次電池用負極およびこれを含む非水電解質二次電池

Country Status (1)

Country Link
JP (1) JP2010027386A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011129269A (ja) * 2009-12-15 2011-06-30 Toyota Central R&D Labs Inc 非水系二次電池用負極活物質、非水系二次電池及び使用方法
JP2011192404A (ja) * 2010-03-11 2011-09-29 Toyota Central R&D Labs Inc 非水系二次電池用負極活物質、非水系二次電池及び使用方法
US20180269473A1 (en) * 2015-09-16 2018-09-20 Robert Bosch Gmbh Active material for a positive electrode of a battery cell, positive electrode, and battery cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011129269A (ja) * 2009-12-15 2011-06-30 Toyota Central R&D Labs Inc 非水系二次電池用負極活物質、非水系二次電池及び使用方法
JP2011192404A (ja) * 2010-03-11 2011-09-29 Toyota Central R&D Labs Inc 非水系二次電池用負極活物質、非水系二次電池及び使用方法
US20180269473A1 (en) * 2015-09-16 2018-09-20 Robert Bosch Gmbh Active material for a positive electrode of a battery cell, positive electrode, and battery cell
US10833319B2 (en) * 2015-09-16 2020-11-10 Robert Bosch Gmbh Active material for a positive electrode of a battery cell, positive electrode, and battery cell

Similar Documents

Publication Publication Date Title
JP3844733B2 (ja) 非水電解質二次電池
JP4714072B2 (ja) リチウム二次電池用陽極及びこれを含むリチウム二次電池
JP4878683B2 (ja) リチウム二次電池
JP4910243B2 (ja) 非水電解質二次電池
JP6219302B2 (ja) 非水電解質二次電池用電極板及びこれを用いた非水電解質二次電池並びにその製造方法
JP2007317534A (ja) 非水電解質二次電池
JP2004342500A (ja) 非水電解質二次電池および電池充放電システム
CN112313817A (zh) 正极材料和二次电池
JP2009129721A (ja) 非水電解質二次電池
JP2010123331A (ja) 非水電解質二次電池
JP4994628B2 (ja) 非水電解質二次電池
JP2009123424A (ja) 非水電解質二次電池
JP7177277B2 (ja) リチウム二次電池用電極
JP5279567B2 (ja) 非水電解質二次電池
JP2009295290A (ja) 非水電解質二次電池用負極およびこれを含む非水電解質二次電池
JP2009004357A (ja) 非水電解液リチウムイオン二次電池
JP2008305688A (ja) 非水電解質二次電池用負極およびそれを用いた非水電解質二次電池
JP5782869B2 (ja) 非水電解質二次電池および非水電解質二次電池用集電体
WO2020158223A1 (ja) 非水電解質二次電池およびこれに用いる電解液
JP6400364B2 (ja) 非水系二次電池用正極活物質及びその製造方法
US20190260080A1 (en) Non-aqueous Electrolyte and Lithium Secondary Battery Including the Same
JP2010027386A (ja) 非水電解質二次電池用負極およびこれを含む非水電解質二次電池
JP6903261B2 (ja) リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP5242315B2 (ja) 非水電解質二次電池
JPWO2019065196A1 (ja) 非水電解質二次電池