JP2009295290A - 非水電解質二次電池用負極およびこれを含む非水電解質二次電池 - Google Patents

非水電解質二次電池用負極およびこれを含む非水電解質二次電池 Download PDF

Info

Publication number
JP2009295290A
JP2009295290A JP2008144572A JP2008144572A JP2009295290A JP 2009295290 A JP2009295290 A JP 2009295290A JP 2008144572 A JP2008144572 A JP 2008144572A JP 2008144572 A JP2008144572 A JP 2008144572A JP 2009295290 A JP2009295290 A JP 2009295290A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
electrolyte secondary
nonaqueous electrolyte
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008144572A
Other languages
English (en)
Inventor
Kazuhiro Okamura
一広 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008144572A priority Critical patent/JP2009295290A/ja
Publication of JP2009295290A publication Critical patent/JP2009295290A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】放電容量が大きく、かつ低温サイクル特性が従来よりも改善された非水電解質二次電池を提供する。
【解決手段】一般式(1):LixNb1-yy2で表され、1≦x≦2および0≦y≦0.5を満たし、xは、電池の充放電に伴って変化する値であり、Mは、V、Cr、Mn、Fe、Co、Ni、MoおよびWよりなる群から選ばれる少なくとも1種の元素であるリチウムニオブ複合酸化物を活物質として含む非水電解質二次電池用負極。
【選択図】図1

Description

本発明は、非水電解質二次電池に関し、特にこれに含まれる負極に関する。本発明は、負極の改良により、充放電容量を損なわずに非水電解質二次電池の低温サイクル特性を向上させるものである。
パソコン、携帯電話、デジタルカメラ、カムコーダなどの携帯機器分野に用いる電源として、エネルギー密度の高いリチウムイオン二次電池をはじめとする非水電解質二次電池が広く普及するに至っている。また、環境問題、資源問題から、近い将来に求められる電気自動車の駆動電源としても、エネルギー密度の高い非水電質二次電池の開発が進められている。特に電気自動車の駆動電源としての非水電解質二次電池には、放電容量のみならず、良好なサイクル特性が求められる。また、寒冷地での使用を想定した低温サイクル特性は重要である。
一般的な非水電解質二次電池が具備する正極は、活物質として、コバルト酸リチウムやニッケル酸リチウムなどのリチウム遷移金属複合酸化物を用いており、負極は、黒鉛に代表される炭素材料を用いている。黒鉛は、リチウム金属の充放電電位に対して0〜1.5Vの範囲で平均0.3V程度の貴な充放電電位を有している。
一般に、電極の充放電反応においては、分極という現象が起こる。非水電解質二次電池の負極は、放電の際に貴な電位の方向に分極して、放電電位が高くなる。逆に、充電の際には、負極は卑な電位の方向に分極し、充電電位は低くなる。分極の程度は、充放電電流が大きいほど大きくなり、反応温度が低いときも大きくなる。
先述のように、炭素材料を活物質として含む負極は、リチウム金属の充放電電位に対して平均0.3V程度の貴な充放電電位を有する。充電の際の分極が大きくなると、負極の充電電位は低下して、リチウム金属の充放電電位に近づいてゆく。負極の充電電位がリチウム金属の充放電電位に等しくなると、負極本来の充電反応、すなわち炭素材料中にリチウムが挿入する反応と共に、炭素材料の表面に金属リチウムが析出する反応が起こる。
析出した金属リチウムは、化学的な活性が高く、非水電解質との接触表面で化学反応を起こして別の物質となる。ここで生じた物質は、後の放電反応において活性を示さないため、電池の放電容量が減少することになる。すなわち、負極材料の表面に金属リチウムが析出するような充放電サイクルを繰り返すと、電池のサイクル特性が損なわれることになる。
このようなサイクル特性の低下は、充電の際の分極が大きくなるときに顕著になる。すなわち、大電流で電池を充電するときや、低温下で電池を充電するとき、サイクル特性の低下は顕著になる。通常、制御機構を用いることで、過大な充電電流が流れないようにすることができるが、温度は環境に依存するため、制御が困難である。
上述のように、低温環境下におけるサイクル特性の低下の原因としては、低温での充電反応の際の分極が大きくなり、負極の充電電位がリチウム金属の充放電電位に等しくなり、負極材料の表面に金属リチウムが析出することが挙げられる。また、析出した金属リチウムが不活性な別の物質になってしまうことも、サイクル特性の低下の原因として挙げられる。
上記のような低温でのサイクル特性の低下は、従来の一般的な炭素材料よりも、充電電位が高い材料を負極に用いるとで、改善できると考えられる。このような材料として、例えば特許文献1のLi4Nb617が挙げられる。この材料の充電電位は、1.0〜2.5Vの範囲で平均1.7Vであり、放電容量は150mAh/g程度である。しかし、非水電解質二次電池の高容量化に対する要求は高まってきており、更に大きな放電容量を有する材料が望まれている。
なお、非特許文献1には、LiNbO2中のリチウムの拡散挙動について、核磁気共鳴装置を用いて分析した結果が報告されている。LiNbO2は、酸素の六配位構造を有するNbO6の層と、酸素の六配位構造を有するLiO6の層と、が交互に積層した層状化合物である。
特開2001−052701号公報 The Journal of Physical Chemistry, Vol.97, No.27, 1993, 7102-7107
本発明は、上記に鑑み、できる限り大きな放電容量を有する負極を備えており、かつ低温サイクル特性が従来よりも改善された非水電解質二次電池を提供することを目的の1つとする。
本発明は、リチウムニオブ複合酸化物を含む活物質を含み、リチウムニオブ複合酸化物は、一般式(1):LixNb1-yy2で表され、一般式(1)は、1≦x≦2および0≦y≦0.5を満たし、xは、電池の充放電に伴って変化する値であり、Mは、V、Cr、Mn、Fe、Co、Ni、MoおよびWよりなる群から選ばれる少なくとも1種の元素である、非水電解質二次電池用負極に関する。
本発明の負極の好ましい一態様において、活物質は、一般式(1)で表されるリチウムニオブ複合酸化物に加え、リチウムの吸蔵および放出が可能な炭素材料を含む。リチウムの吸蔵および放出が可能な炭素材料は、リチウムニオブ複合酸化物と混合して用いることが好ましい。
リチウムニオブ複合酸化物と炭素材料との合計に占める炭素材料の重量分率は、0.01以上、0.5以下であることが好ましい。
本発明の負極の好ましい一態様において、Mは、一般式(2):Mn1-zzで表される。ただし、0≦z≦0.5であり、Lは、V、Cr、Fe、Co、Ni、MoおよびWよりなる群から選ばれる少なくとも1種の元素である。
本発明は、また、正極と、上記の負極と、非水電解質と、を具備する非水電解質二次電池に関する。
なお、LiNbO2、すなわち一般式(1)においてy=0の場合の複合酸化物は、公知の物質であるが、LiNbO2を電極活物質として用いることを検討した報告例は見られない。
一般式(1):LixNb1-yy2、1≦x≦2、0≦y≦0.5(ただしxは、電池の充放電に伴って変化する値であり、Mは、V、Cr、Mn、Fe、Co、Ni、MoおよびWよりなる群から選ばれる少なくとも1種の元素である)で表されるリチウムニオブ複合酸化物の充放電電位は、金属リチウムの充放電電位に対して平均1.3〜1.8Vであり、放電容量は150mAh/g以上である。よって、本発明によれば、放電容量が大きく、かつ低温サイクル特性が従来よりも改善された非水電解質二次電池を提供することができる。
以下、本発明の非水電解質二次電池用負極および非水電解質二次電池について、リチウム二次電池に基づいて説明する。
本発明の非水電解質二次電池用負極は、一般式(1):LixNb1-yy2で表されるリチウムニオブ複合酸化物を活物質として含む。ここで、一般式(1)は、1≦x≦2および0≦y≦0.5を満たす。ただし、xは、電池の充放電に伴って変化する値である。Mは、V、Cr、Mn、Fe、Co、Ni、MoおよびWよりなる群から選ばれる少なくとも1種の元素である。
元素M、すなわちV、Cr、Mn、Fe、Co、Ni、MoおよびWのうちでは、特にMn、Co、CrおよびMoが好ましい。
Mn、CoおよびCrは、低温でのサイクル特性の改善において特に有効である。
Mn、CrおよびMoは、放電容量の向上において特に有効である。
Mは、少なくともMnを含むことが好ましい。この場合、Mは、一般式(2):Mn1-zzで表される。ただし、zは0≦z≦0.5を満たすことが好ましい。z値が大きすぎると、Mnを添加することによる効果が十分に得られなくなる。Lは、V、Cr、Fe、Co、Ni、MoおよびWよりなる群から選ばれる少なくとも1種の元素である。
元素Mの含有量を規定するyの範囲は、0≦y≦0.5を満たせばよいが、元素Mの添加効果を十分に得る観点から、0.25≦y≦0.5を満たすことが好ましい。yが大きくなりすぎると、低温でのサイクル特性が著しく低下する。また、放電容量も著しく減少する。
一般式(1)で表されるリチウムニオブ複合酸化物の平均粒径(体積基準の粒度分布におけるメディアン径)は、0.5〜200μmが好適である。平均粒径は、例えばレーザ回折式の粒度分布測定装置により求めることができる。通常、複合酸化物の一次粒子は、凝集して二次粒子を形成している。よって、粒度分布測定装置で求められる平均粒径は、少量の一次粒子と二次粒子との混合物の平均粒径であると考えられる。
負極の活物質は、一般式(1)で表されるリチウムニオブ複合酸化物の他に、リチウムの吸蔵および放出が可能な炭素材料を含むことができる。このような炭素材料とリチウム二オブ複合酸化物とを併用することにより、低温でのサイクル特性が更に良好となり、活物質の単位重量あたりの放電容量も増加する傾向がある。これは、炭素材料により活物質の電気伝導性が向上するためと思われる。
リチウムの吸蔵および放出が可能な炭素材料としては、黒鉛、易黒鉛化炭素、難黒鉛化炭素などが挙げられるが、これらのうちでは、黒鉛が好ましい。黒鉛は、天然黒鉛で人造黒鉛でもよい。黒鉛は、活物質として機能するだけでなく、負極の電気伝導性を確保する導電材としても機能する。
リチウムの吸蔵および放出が可能な炭素材料の平均粒径(体積基準の粒度分布におけるメディアン径)は、0.5〜200μmが好適であり、2〜20μmが更に好適である。ここでも平均粒径は、例えばレーザ回折式の粒度分布測定装置により求めることができる。
一般式(1)で表されるリチウムニオブ複合酸化物と上記の炭素材料との合計に占める炭素材料の重量分率は、0.01(1重量%)以上、0.5(50重量%)以下が好ましく、0.1〜0.4が更に好ましく、0.25程度が特に好ましい。炭素材料の重量分率が0.01(1重量%)未満では、炭素材料を用いることによる効果が極めて小さくなる。一方、重量分率が0.5(50重量%)を超えると、低温サイクル特性を向上させるリチウムニオブ複合酸化物の重量分率が減少する。よって、低温でのサイクル特性の改善効果が小さくなる。また、放電容量の小さな炭素材料の比率が増大することにより、活物質の単位重量あたりの放電容量が減少する場合がある。
負極活物質を含む負極合剤を、適当な分散媒とともに混合すると、負極合剤ペーストが得られる。負極合剤は、活物質の他に、任意成分として結着剤、導電材などを含むことができる。分散媒としては、N−メチル−2−ピロリドンなどの有機溶媒や水などを用いることができる。ペーストの経時安定性や合剤の分散性を向上させるために、負極合剤ペーストに界面活性剤などの添加剤を加えることも有効である。負極合剤ペーストを、銅箔などの金属箔からなる集電体の表面に塗布し、塗膜を乾燥後、圧延することにより、負極合剤層を有する負極が得られる。
負極の結着剤には、ポリテトラフルオロエチレン(PTFE)、PTFEの変性体、ポリフッ化ビニリデン(PVDF)、PVDFの変性体、フッ素ゴムなどの含フッ素樹脂、ポリプロピレン、ポリエチレンなどの熱可塑性樹脂、変性アクリロニトリルゴム粒子(日本ゼオン(株)製の「BM−500B(商品名)」等)を用いることができる。PTFEやBM−500Bは、増粘剤であるカルボキシメチルセルロース(CMC)、ポリエチレンオキシド(PEO)、変性アクリロニトリルゴム(日本ゼオン(株)製の「BM−720H(商品名)」等)などと併用することが好ましい。
負極の導電材としては、例えば、カーボンブラック、アセチレンブラック、ケッチェンブラックなどを用いることができる。
負極の集電体は、負極電位下で安定な金属箔が好ましく、銅箔や銅合金箔が特に好ましい。また、様々な材質のフィルム基材の表面に、負極電位下で安定な金属層を形成し、これを集電体として用いることもできる。集電性を向上させるために、集電体表面に凹凸を設けたり、集電体を穿孔したりしてもよい。
次に、非水電解質二次電池の負極以外の構成要素について説明する。ただし、本発明が以下の構成要素を用いる場合に限定されるわけではない。
正極活物質を含む正極合剤を、適当な分散媒とともに混合すると、正極合剤ペーストが得られる。正極合剤は、活物質の他に、任意成分として結着剤、導電材などを含むことができる。分散媒としては、N−メチル−2−ピロリドンなどの有機溶媒や水などを用いることができる。ペーストの経時安定性や合剤の分散性を向上させるために、正極合剤ペーストに界面活性剤などの添加剤を加えることも有効である。正極合剤ペーストを、アルミニウム箔などの金属箔からなる集電体の表面に塗布し、塗膜を乾燥後、圧延することにより、正極合剤層を有する正極が得られる。
正極活物質には、例えば、リチウム遷移金属複合酸化物、遷移金属ポリアニオン化合物などを用いることができる。リチウム遷移金属複合酸化物としては、コバルト酸リチウム(LiCoO2)、コバルト酸リチウムの変性体、ニッケル酸リチウム(LiNiO2)、ニッケル酸リチウムの変性体、マンガン酸リチウム(LiMnO2ならびにLiMn24)、マンガン酸リチウムの変性体などが挙げられる。これら酸化物のCo、NiもしくはMnの一部を他の遷移金属元素やアルミニウムなどの典型金属、マグネシウムなどのアルカリ土類金属で置換したものを用いることもできる。遷移金属ポリアニオン化合物は、ナシコン構造あるいはオリビン構造を有するマンガン、鉄、コバルト、ニッケルなどのリン酸化合物または硫酸化合物などである。正極活物質は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
正極の結着材および導電材には、例えば、負極の結着材および導電材として列挙したものを任意に用いることができる。
正極の集電体は、正極電位下で安定な金属箔が好ましく、アルミニウム箔が特に好ましい。また、様々な材質のフィルム基材の表面に、正極電位下で安定な金属層を形成し、これを集電体として用いることもできる。集電性を向上させるために、集電体表面に凹凸を設けたり、集電体を穿孔したりしてもよい。
本発明の非水電解質二次電池は、円筒型、角型、シート型などのいずれの構造を有してもよい。正極と負極とを多孔質絶縁層を介して巻回することにより、電極体が形成される。電極体は電池ケースに収容される。正極集電体および負極集電体には、それぞれ正極リードおよび負極リードが接続される。これらのリードを正極端子および負極端子と接続した後、非水電解質を電池ケースに注入し、ケースを密閉することで電池が完成する。
多孔質絶縁層には、微多孔膜や不織布が用いられる。微多孔膜や不織布は、電池の使用環境に耐え得る材料からなり、イオン透過性を有し、正負極間を絶縁する機能を有する。例えば、ポリオレフィン樹脂からなる微多孔膜が用いられる。ポリオレフィン樹脂としては、ポリエチレン、ポリプロピレンなどが用いられる。微多孔膜は、1種の樹脂からなる単層膜であってもよく、2種以上の樹脂からなる多層膜でもよい。微多孔膜は、樹脂とアルミナなどの無機材料との複合層を有するものでもよい。
電池ケースの材質は、特に限定されないが、例えば、アルミニウム合金、ニッケルめっきを施した鉄合金、各種樹脂と金属との積層体などが用いられる。電池ケースの形状は、特に限定されないが、例えば、円筒型もしくは角型の有底缶や袋状ケースが用いられる。
非水電解質は、非水溶媒およびこれに溶解した溶質を含む。
非水溶媒は、特に限定されないが、例えば、カーボネート類、ハロゲン化炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、オキソラン化合物等を用いることができる。特に、エチレンカーボネート(EC)、プロピレンカーボネート(PC)などの高誘電率溶媒と、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)などの低粘性溶媒との混合溶媒が好ましい。これらの溶媒とジメトキシエタン(DME)、テトラヒドロフラン(THF)、γ−ブチロラクトン(GBL)などを併用してもよい。
溶質には、LiPF6、LiBF4、LiClO4およびLiAsF6から選ばれる無機塩、該無機塩の誘導体、LiSO3CF3、LiC(SO3CF32、LiN(SO3CF32、LiN(SO2252およびLiN(SO2CF3)(SO249)から選ばれる有機塩、ならびに該有機塩の誘導体などを用いることができる。溶質の濃度は、通常0.5〜2.0mol/Lの範囲である。
非水電解質二次電池の保存特性、サイクル特性、安全性などを向上させる目的で、種々の添加剤を非水電解質に添加することができる。このような添加剤として、ビニレンカーボネート(VC)、シクロヘキシルベンゼン(CHB)、およびこれらの誘導体が挙げられる。
次に、本発明の負極および非水電解質二次電池について、実施例に基づいてより具体的に説明する。
《実施例1》
(i)正極の作製
正極活物質である日本化学工業(株)製の「セルシードN(商品名)」(ニッケル酸リチウム)3kgと、正極結着剤である呉羽化学(株)製の「#1320(商品名)」(PVDFを12重量%含むNMP溶液)1kgと、導電材であるアセチレンブラック90gと、適量のNMPとを、双腕式練合機にて攪拌し、正極合剤ペーストを調製した。正極合剤ペーストを正極集電体である厚み15μmのアルミニウム箔の両面に、正極リードの接続部を除いて塗布し、乾燥後の塗膜をローラで圧延して、正極合剤層を形成した。その後、円筒型電池(品番18650)の電池缶に挿入可能な幅に極板をスリットし、正極を得た。
(ii)負極の作製
一般式(1):LixNb1-yy2で表されるリチウムニオブ複合酸化物を次の要領で合成した。原料には、いずれも(株)高純度化学研究所製の試薬、具体的には、過酸化リチウム(Li22)、酸化ニオブ(NbO)、酸化バナジウム(V23)、酸化クロム(Cr23)、酸化マンガン(MnO)、酸化鉄(FeO)、酸化コバルト(CoO)、酸化ニッケル(NiO)、酸化モリブデン(MoO2)および酸化タングステン(WO2)を用いた。
これら原料を所定の複合酸化物の金属組成比となるように秤量して混合した後、アルミナ製焼成容器に入れた。これを、真空雰囲気下、1000℃で、24時間加熱して、リチウム二オブ複合酸化物を合成した。得られた複合酸化物を平均粒径10μmに粉砕して、負極活物質として用いた。
負極活物質であるリチウムニオブ複合酸化物の粉末3kgと、負極結着剤である呉羽化学(株)製の「#1320(商品名)」(PVDFを12重量%含むNMP溶液)1kgと、必要に応じて所定量の人造黒鉛(平均粒径4μm)と、適量のNMPとを、双腕式練合機にて攪拌し、負極合剤ペーストを調製した。負極合剤ペーストを負極集電体である厚さ10μmの銅箔の両面に、負極リード接続部を除いて塗布し、乾燥後の塗膜をローラで圧延して、負極合剤層を形成した。その後、円筒型電池(品番18650)の電池缶に挿入可能な幅に極板をスリットし、負極を得た。
(iii)非水電解液の調製
ECとDMCとEMCとを体積比2:3:3で含む非水溶媒の混合物に、溶質としてLiPF6を1mol/Lの濃度で溶解して非水電解質を調製した。非水電解質100重量部あたり、VCを3重量部添加した。
(iv)試験用電池の作製
以下の要領で図1に示すような品番18650の円筒型電池を作製した。
まず、正極リード接続部に正極リード5aの一端を、負極リード接続部に負極リード6aの一端をそれぞれ接続した。その後、正極5と負極6とを、厚み15μmのポリエチレン樹脂製の微多孔膜7を介して巻回し、円筒状の電極体を構成した。この電極体を、上部絶縁リング8aと下部絶縁リング8bで挟まれた状態で、電池缶1に収容した。正極リード5aの他端は、電池蓋2の裏面に、負極リード5bの他端は、電池缶1の内底面に、それぞれ溶接した。
次いで、上記の非水電解質を5g秤量し、これを電池缶内に注入し、電池缶内を133Paに減圧することで、電極体に非水電解質を含浸させた。最後に電池缶の開口部を、周縁に絶縁パッキン3が配された電池蓋2で塞いで、円筒型リチウムイオン二次電池を完成させた。
(v)電池の低温サイクル試験
試験用電池の充放電を、0℃の環境温度下、400mAの定電流で繰り返した。充電終止電圧は4.2V、放電終止電圧は2Vに設定した。充放電の際、放電時間と電流値との積を放電容量(mAh)として求め、サイクルの進行に伴う放電容量の変化を記録した。1サイクル目の放電容量に対する500サイクル目の放電容量の割合を百分率で求め、低温容量維持率とした。
また、1サイクル目の放電容量を電池内の負極に含まれるリチウムニオブ複合酸化物の重量で除して単位重量あたりの放電容量(mAh/g)を算出した。ただし、負極活物質が黒鉛を含む場合は、1サイクル目の放電容量をリチウムニオブ複合酸化物と黒鉛との合計重量で除し、放電容量(mAh/g)を算出した。
電池の充放電電圧は、正極の充放電電位と負極の充放電電位との差である。よって、正極の平均充電電位(3.9V)から電池の平均充電電圧を差し引いて、負極の平均充電電位を算出した。
《実施例1》
原料として、過酸化リチウム(Li22)と酸化ニオブ(NbO)とを用いて、リチウムニオブ複合酸化物であるLiNbO2を合成し、負極活物質とした。
《実施例2〜3および比較例1》
原料として、(Li22)と酸化ニオブ(NbO)と酸化バナジウム(V23)とを用いて、リチウムニオブ複合酸化物であるLiNb0.750.252(実施例2)、LiNb0.50.52(実施例3)およびLiNb0.40.62(比較例1)を合成し、負極活物質とした。
《実施例4〜5および比較例2》
原料として、(Li22)と酸化ニオブ(NbO)と酸化クロム(Cr23)とを用いて、リチウムニオブ複合酸化物であるLiNb0.75Cr0.252(実施例4)、LiNb0.5Cr0.52(実施例5)およびLiNb0.4Cr0.62(比較例2)を合成し、負極活物質とした。
《実施例6〜7および比較例3》
原料として、(Li22)と酸化ニオブ(NbO)と酸化マンガン(MnO)とを用いて、リチウムニオブ複合酸化物であるLiNb0.75Mn0.252(実施例6)、LiNb0.5Mn0.52(実施例7)およびLiNb0.4Mn0.62(比較例3)を合成し、負極活物質とした。
《実施例8〜9および比較例4》
原料として、(Li22)と酸化ニオブ(NbO)と酸化鉄(FeO)とを用いて、リチウムニオブ複合酸化物であるLiNb0.75Fe0.252(実施例8)、LiNb0.5Fe0.52(実施例9)およびLiNb0.4Fe0.62(比較例4)を合成し、負極活物質とした。
《実施例10〜11および比較例5》
原料として、(Li22)と酸化ニオブ(NbO)と酸化コバルト(CoO)とを用いて、リチウムニオブ複合酸化物であるLiNb0.75Co0.252(実施例10)、LiNb0.5Co0.52(実施例11)およびLiNb0.4Co0.62(比較例5)を合成し、負極活物質とした。
《実施例12〜13および比較例6》
原料として、(Li22)と酸化ニオブ(NbO)と酸化ニッケル(NiO)とを用いて、リチウムニオブ複合酸化物であるLiNb0.75Ni0.252(実施例12)、LiNb0.5Ni0.52(実施例13)およびLiNb0.4Ni0.62(比較例6)を合成し、負極活物質とした。
《実施例14〜15および比較例7》
原料として、(Li22)と酸化ニオブ(NbO)と酸化モリブデン(MoO2)とを用いて、リチウムニオブ複合酸化物であるLiNb0.75Mo0.252(実施例14)、LiNb0.5Mo0.52(実施例15)およびLiNb0.4Mo0.62(比較例7)を合成し、負極活物質とした。
《実施例16〜17および比較例8》
原料として、(Li22)と酸化ニオブ(NbO)と酸化タングステン(WO2)とを用いて、リチウムニオブ複合酸化物であるLiNb0.750.252(実施例16)、LiNb0.50.52(実施例17)およびLiNb0.40.62(比較例8)を合成し、負極活物質とした。
《実施例18〜19および比較例9》
原料として、(Li22)と酸化ニオブ(NbO)と酸化マンガン(MnO)と酸化コバルト(CoO)とを用いて、リチウムニオブ複合酸化物であるLiNb0.75Mn0.125Co0.1252(実施例18)、LiNb0.5Mn0.25Co0.252(実施例19)およびLiNb0.4Mn0.3Co0.32(比較例9)を合成し、負極活物質とした。
《比較例10》
負極活物質としてリチウムニオブ複合酸化物の代わりに、平均粒径4μmの黒鉛を用いた。すなわち、負極活物質である黒鉛粉末3kgと、負極結着剤である呉羽化学(株)製の「#1320(商品名)」(PVDFを12重量%含むNMP溶液)1kgと、適量のNMPとを混合して負極合剤ペーストを調製した。
《比較例11》
本発明に係るリチウムニオブ複合酸化物の代わりに、特許文献1で開示されているLi4Nb617を負極活物質として用いた。
《実施例20〜23》
実施例1と同じリチウムニオブ複合酸化物LiNbO2と黒鉛との合計重量に対し、重量分率が0.01(実施例20)、0.25(実施例21)、0.5(実施例22)または0.6(実施例23)となるように黒鉛を加えて負極活物質とした。
《実施例24〜27》
実施例2と同じリチウムニオブ複合酸化物LiNb0.750.252と黒鉛との合計重量に対し、重量分率が0.01(実施例24)、0.25(実施例25)、0.5(実施例26)または0.6(実施例27)となるように黒鉛を加えて負極活物質とした。
《実施例28〜31》
実施例4と同じリチウムニオブ複合酸化物LiNb0.75Cr0.252と黒鉛との合計重量に対し、重量分率が0.01(実施例28)、0.25(実施例29)、0.5(実施例30)または0.6(実施例31)となるように黒鉛を加えて負極活物質とした。
上記実施例および比較例の電池についての低温サイクル試験の結果を表1に示す。
Figure 2009295290
表1の結果から分かるように、負極活物質として黒鉛を用いた一般的な電池(比較例10)および特許文献1に開示されている負極活物質を用いた電池(比較例11)に比べ、いずれの実施例の電池においても、良好な低温サイクル特性が得られ、負極活物質の単位重量あたりの放電容量が大きくなった。また、いずれの実施例の電池においても、負極の平均充電電位は1V以上と高くなった。このことから、低温での充電の際、負極材料の表面に金属リチウムは析出しなかったと考えられる。そのため、実施例の電池は、放電容量の減少が抑制されたものと考えられる。
LiNbO2(実施例1)のNbの一部を元素Mで置換したリチウムニオブ複合酸化物の場合、y≦0.5のときには、負極活物質の単位重量あたりの放電容量が実施例1よりも大きくなった。y=0.5の実施例は、低温サイクル特性が実施例1よりも劣っていたが、y=0.5の実施例であっても、比較例10、11に比べると、良好な結果であった。一方、y=0.6のとき、低温サイクル特性および負極活物質の単位重量あたりの放電容量が大きく損なわれた。よって、yの範囲は0≦y≦0.5を満たす必要がある。
Nbと置換した元素Mの化学的作用については定かではない。しかし、Nbを元素Mで置換することで、負極活物質の単位重量あたりの放電容量と、負極の平均充電電位とが大きくなる傾向がある。このことから、元素Mが何らか充放電反応に寄与しているものと思われる。
リチウムニオブ複合酸化物と黒鉛との混合物を用いた実施例の結果は、黒鉛を加えなかった実施例の結果と比較して良好であった。黒鉛を用いることで、低温サイクル特性は良好となり、負極活物質の単位重量あたりの放電容量も増加する傾向が見られた。しかし、黒鉛の重量分率が0.6になると、低温サイクル特性が低下し、負極活物質の単位重量あたりの放電容量が減少する傾向が見られた。よって、黒鉛の重量分率は0.01以上、0.50以下の範囲が適切であるといえる。
本発明の負極および非水電解質二次電池は、高容量と優れた低温サイクル特性が要求される用途に適しており、特に寒冷地での使用が想定される携帯電話、デジタルカメラ、カムコーダなどの携帯機器分野に用いる電源、電気自動車やハイブリッド自動車の電源として有用である。
非水電解質二次電池の一例の縦断面図である。
符号の説明
1 電池缶
2 電池蓋
3 絶縁パッキン
5 正極
5a 正極リード
6 負極
6a 負極リード
7 微多孔膜
8a 上部絶縁リング
8b 下部絶縁リング

Claims (6)

  1. リチウムニオブ複合酸化物を含む活物質を含み、
    前記リチウムニオブ複合酸化物が、一般式(1):LixNb1-yy2で表され、
    前記一般式(1)は、1≦x≦2および0≦y≦0.5を満たし、
    xは、電池の充放電に伴って変化する値であり、
    Mは、V、Cr、Mn、Fe、Co、Ni、MoおよびWよりなる群から選ばれる少なくとも1種の元素である、非水電解質二次電池用負極。
  2. 前記活物質が、更に、リチウムの吸蔵および放出が可能な炭素材料を含む、請求項1記載の非水電解質二次電池用負極。
  3. 前記リチウムニオブ複合酸化物と前記炭素材料とが混在している、請求項2記載の非水電解質二次電池用負極。
  4. 前記リチウムニオブ複合酸化物と前記炭素材料との合計に占める前記炭素材料の重量分率が、0.01以上、0.5以下である、請求項2または3記載の非水電解質二次電池用負極。
  5. Mが、一般式(2):Mn1-zzで表され、0≦z≦0.5であり、Lは、V、Cr、Fe、Co、Ni、MoおよびWよりなる群から選ばれる少なくとも1種の元素である、請求項1〜4のいずれかに記載の非水電解質二次電池用負極。
  6. 正極と、請求項1〜4のいずれかに記載の負極と、非水電解質とを具備する非水電解質二次電池。
JP2008144572A 2008-06-02 2008-06-02 非水電解質二次電池用負極およびこれを含む非水電解質二次電池 Pending JP2009295290A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008144572A JP2009295290A (ja) 2008-06-02 2008-06-02 非水電解質二次電池用負極およびこれを含む非水電解質二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008144572A JP2009295290A (ja) 2008-06-02 2008-06-02 非水電解質二次電池用負極およびこれを含む非水電解質二次電池

Publications (1)

Publication Number Publication Date
JP2009295290A true JP2009295290A (ja) 2009-12-17

Family

ID=41543316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008144572A Pending JP2009295290A (ja) 2008-06-02 2008-06-02 非水電解質二次電池用負極およびこれを含む非水電解質二次電池

Country Status (1)

Country Link
JP (1) JP2009295290A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2498324A1 (fr) 2011-03-08 2012-09-12 Saft Matériau d'électrode positive pour accumulateur lithium-ion
WO2013140174A3 (en) * 2012-03-23 2014-01-09 Faradion Ltd Metallate electrodes
WO2014156153A1 (ja) 2013-03-27 2014-10-02 株式会社Gsユアサ 非水電解質蓄電素子用活物質
CN104577073A (zh) * 2015-02-03 2015-04-29 东莞市迈科科技有限公司 一种铌基富锰锂正极材料及其制备方法
JP2016066592A (ja) * 2014-09-19 2016-04-28 トヨタ自動車株式会社 負極活物質、ナトリウムイオン電池およびリチウムイオン電池
JP2016103456A (ja) * 2014-11-17 2016-06-02 株式会社Gsユアサ 非水電解質蓄電素子用活物質
CN116404236A (zh) * 2023-05-26 2023-07-07 中南大学 一种铌基低温锂离子电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133247A (ja) * 1998-10-22 2000-05-12 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2000173583A (ja) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2000173585A (ja) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2000173586A (ja) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2001043847A (ja) * 1999-07-15 2001-02-16 Mitsubishi Chemicals Corp 表面改質電極を有する電池およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133247A (ja) * 1998-10-22 2000-05-12 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2000173583A (ja) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2000173585A (ja) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2000173586A (ja) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2001043847A (ja) * 1999-07-15 2001-02-16 Mitsubishi Chemicals Corp 表面改質電極を有する電池およびその製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2498324A1 (fr) 2011-03-08 2012-09-12 Saft Matériau d'électrode positive pour accumulateur lithium-ion
WO2013140174A3 (en) * 2012-03-23 2014-01-09 Faradion Ltd Metallate electrodes
US10115966B2 (en) 2012-03-23 2018-10-30 Faradion Ltd Metallate electrodes
US10756341B2 (en) 2012-03-23 2020-08-25 Faradion Ltd. Metallate electrodes
EP3736890A1 (en) * 2012-03-23 2020-11-11 FARADION Limited Metallate electrodes
WO2014156153A1 (ja) 2013-03-27 2014-10-02 株式会社Gsユアサ 非水電解質蓄電素子用活物質
US9692043B2 (en) 2013-03-27 2017-06-27 Tokyo University Of Science Educational Foundation Administrative Organization Active material for nonaqueous electrolyte energy storage device
JP2016066592A (ja) * 2014-09-19 2016-04-28 トヨタ自動車株式会社 負極活物質、ナトリウムイオン電池およびリチウムイオン電池
JP2016103456A (ja) * 2014-11-17 2016-06-02 株式会社Gsユアサ 非水電解質蓄電素子用活物質
CN104577073A (zh) * 2015-02-03 2015-04-29 东莞市迈科科技有限公司 一种铌基富锰锂正极材料及其制备方法
CN116404236A (zh) * 2023-05-26 2023-07-07 中南大学 一种铌基低温锂离子电池
CN116404236B (zh) * 2023-05-26 2024-03-19 中南大学 一种铌基低温锂离子电池

Similar Documents

Publication Publication Date Title
JP5094084B2 (ja) 非水電解質二次電池
JP2009152188A (ja) 正極活物質、正極および非水電解質二次電池
JP2007317534A (ja) 非水電解質二次電池
JP2007265668A (ja) 非水電解質二次電池用正極及びその製造方法
JP2010123331A (ja) 非水電解質二次電池
JP2009295290A (ja) 非水電解質二次電池用負極およびこれを含む非水電解質二次電池
JP2009123424A (ja) 非水電解質二次電池
JP5279567B2 (ja) 非水電解質二次電池
CN104868168A (zh) 非水电解质二次电池
CN101483262A (zh) 电池
JP2009134970A (ja) 非水電解質電池
JP5782869B2 (ja) 非水電解質二次電池および非水電解質二次電池用集電体
JP6933260B2 (ja) リチウムイオン二次電池用非水電解液およびそれを用いたリチウムイオン二次電池
JP2010027386A (ja) 非水電解質二次電池用負極およびこれを含む非水電解質二次電池
JP5242315B2 (ja) 非水電解質二次電池
CN115411238A (zh) 锂离子二次电池
JP2019061826A (ja) リチウムイオン二次電池
JP2002075460A (ja) リチウム二次電池
JP7182198B2 (ja) 非水電解質二次電池、電解液及び非水電解質二次電池の製造方法
JP2005135603A (ja) 非水二次電池
JP6222389B1 (ja) 非水電解液およびそれを用いた非水電解液電池
JP2004193139A (ja) 非水電解質二次電池
JP2009140647A (ja) 非水電解液二次電池
JP2006344395A (ja) リチウム二次電池用正極及びその利用と製造
JP4082103B2 (ja) 非水電解質二次電池の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130509