JP2008234872A - 正極活物質および電池 - Google Patents

正極活物質および電池 Download PDF

Info

Publication number
JP2008234872A
JP2008234872A JP2007069114A JP2007069114A JP2008234872A JP 2008234872 A JP2008234872 A JP 2008234872A JP 2007069114 A JP2007069114 A JP 2007069114A JP 2007069114 A JP2007069114 A JP 2007069114A JP 2008234872 A JP2008234872 A JP 2008234872A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
cobalt
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007069114A
Other languages
English (en)
Inventor
Takanao Ishimatsu
隆尚 石松
Takashi Sato
隆史 佐藤
Takashi Okawa
剛史 大川
Masumi Terauchi
真澄 寺内
Yoshikatsu Yamamoto
佳克 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2007069114A priority Critical patent/JP2008234872A/ja
Publication of JP2008234872A publication Critical patent/JP2008234872A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】充填性に優れており、低温特性、及び高温のサイクル特性に優れた正極活物質および電池を提供する。
【解決手段】正極21Aは、第1の正極活物質と、第2の正極活物質とを、95:5〜70:30の重量比(第1の正極活物質:第2の正極活物質)で混合した混合物よりなる正極活物質を含有する。第1の正極活物質は、例えば、Li、Co、M1、M2、(M1は第1元素、M2は第2元素を表す。)を含有するリチウム複合酸化物と、第1副成分元素と、第2副成分元素と、を含有するものである。第2の正極活物質は、Li、Ni、Co、Mn、A、(AはMg、Alのうちの少なくとも1種である。)を含有するリチウム遷移金属複合酸化物である。
【選択図】図1

Description

この発明は、正極活物質および電池に関する。さらに詳しくは2種類のリチウム複合酸化物を有する正極活物質およびこれを用いた電池に関する。
近年、携帯型電子機器が次々と開発されており、その電源として二次電池が重要な位置を占めるようになっている。特に最近では、二次電池の高容量化および軽量化が求められており、そのような要求に応える二次電池として、電極反応物質にリチウムを用いたリチウムイオン二次電池が実用化されている。
リチウムイオン二次電池の特徴としては、他の電池と比較して酸化還元電位が高い正極と酸化還元電位の低い負極を組み合わせることで、容量が大きい、すなわちエネルギー密度が大きい電池を作製できる点にあり、現在リチウムイオン二次電池の正極活物質として、主流となっているものは、コバルト酸リチウムである。
このコバルト酸リチウムを用いたリチウムイオン二次電池は、平均放電電位が高いという利点があるものの、サイクル特性が良くないことや低温での大出力放電時では、電圧低下が激しく、例えば、寒冷地においてパーソナルコンピュータの電源を入れた際、出力不足により起動しない問題が考えられる。また、近年では、より広い温度範囲における使用や、大電流での使用も求められており、特性に対する要求がより厳しくなっている。
そこで、コバルト酸リチウムのコバルト(Co)を他の元素で置換したり、または他の元素を添加することにより、特性を向上させる試みが多数なされている。例えば、特許文献1には、コバルト(Co)の一部を、アルミニウム(Al)、クロム(Cr)、バナジウム(V)、マンガン(Mn)および鉄(Fe)からなる群のうちの少なくとも1種の第1元素と、マグネシウム(Mg)およびカルシウム(Ca)からなる群のうちの少なくとも1種の第2元素とで置換することにより、高温時における安定性を向上させることができる正極活物質が記載されている。また、特許文献2には、コバルト酸リチウムを合成する際に、ジルコニウム化合物を共沈させて、コバルト酸リチウムの粒子表面にジルコニウム(Zr)を存在させることにより、負荷特性、低温特性および熱安定性を向上させることができる正極活物質が記載されている。
特開2001−319652号公報 特開2004−311408号公報
しかしながら、特許文献1に記載の正極活物質では、高温特性は向上させることができるものの、低温特性については満足できる程度の特性を得ることはできず、サイクル特性についても、さらなる向上が求められていた。また、特許文献2に記載の正極活物質では、熱安定性を向上させることができるものの、近年要求されている程度の特性は得ることができなかった。
したがって、この発明の目的は、充填性に優れており、低温特性および高温におけるサイクル特性に優れた正極活物質および電池を提供することにある。
上述の課題を解決するために、第1の発明は、
第1の正極活物質と、第2の正極活物質とを、95:5〜70:30の重量比(第1の正極活物質:第2の正極活物質)で混合した混合物よりなる正極活物質であって、
第1の正極活物質は、
リチウム(Li)、コバルト(Co)、第1元素および第2元素を含むリチウムコバルト複合酸化物と、第1副成分元素および第2副成分元素と、
を含有するものであり、
第1元素は、アルミニウム(Al)、クロム(Cr)、バナジウム(V)、マンガン(Mn)および鉄(Fe)からなる群のうちの少なくとも1種であり、
第2元素は、マグネシウム(Mg)およびカルシウム(Ca)からなる群のうちの少なくとも1種であり、
第1副成分元素は、チタン(Ti)、ジルコニウム(Zr)およびハフニウム(Hf)からなる群のうちの少なくとも1種であり、
第2副成分元素は、ケイ素(Si)、ゲルマニウム(Ge)およびスズ(Sn)からなる群のうちの少なくとも1種であり、
コバルト(Co)と、第1元素と、第2元素とのモル比は、コバルト(Co)の組成をa、第1元素の組成をb、第2元素の組成をcとすると、それぞれ0.9≦a<1、0.001≦b≦0.05、0.001≦c≦0.05の範囲内であり、
第1の副成分元素の含有量は、コバルト(Co)に対する割合で、0.01mol%以上10mol%以下の範囲内であり、
第2の副成分元素の含有量は、コバルト(Co)に対する割合で、0.01mol%以上10mol%以下の範囲内であり、
第2の正極活物質は、
化1で表されるリチウム遷移金属複合酸化物であること
を特徴とする正極活物質である。
(化1)
LipNi(1-q-r)CoqMnra2
(化1において、Aはマグネシウム(Mg)、アルミニウム(Al)のうちの少なくとも1種である。aは0≦a≦0.10である。p、q、rは、0.05≦p≦1.15、0.4≦q+r≦0.70、0.05≦r≦0.40である。)
第2の発明は、
正極および負極と、電解質と、を備えた電池であって、
正極は、第1の正極活物質と、第2の正極活物質とを、95:5〜70:30の重量比(第1の正極活物質:第2の正極活物質)で混合した混合物よりなる正極活物質を有し、
第1の正極活物質は、
リチウム(Li)、コバルト(Co)、第1元素および第2元素を含むリチウムコバルト複合酸化物と、第1副成分元素および第2副成分元素と、
を含有するものであり、
第1元素は、アルミニウム(Al)、クロム(Cr)、バナジウム(V)、マンガン(Mn)および鉄(Fe)からなる群のうちの少なくとも1種であり、
第2元素は、マグネシウム(Mg)およびカルシウム(Ca)からなる群のうちの少なくとも1種であり、
第1副成分元素は、チタン(Ti)、ジルコニウム(Zr)およびハフニウム(Hf)からなる群のうちの少なくとも1種であり、
第2副成分元素は、ケイ素(Si)、ゲルマニウム(Ge)およびスズ(Sn)からなる群のうちの少なくとも1種であり、
コバルト(Co)と、第1元素と、第2元素とのモル比は、コバルト(Co)の組成をa、第1元素の組成をb、第2元素の組成をcとすると、それぞれ0.9≦a<1、0.001≦b≦0.05、0.001≦c≦0.05の範囲内であり、
第1の副成分元素の含有量は、コバルト(Co)に対する割合で、0.01mol%以上10mol%以下の範囲内であり、
第2の副成分元素の含有量は、コバルト(Co)に対する割合で、0.01mol%以上10mol%以下の範囲内であり、
第2の正極活物質は、
化1で表されるリチウム遷移金属複合酸化物であること
を特徴とする電池である。
(化1)
LipNi(1-q-r)CoqMnra2
(化1において、Aはマグネシウム(Mg)、アルミニウム(Al)のうちの少なくとも1種である。aは0≦a≦0.10である。p、q、rは、0.05≦p≦1.15、0.4≦q+r≦0.70、0.05≦r≦0.40である。)
この発明では、第1の正極活物質において、第1元素および第2元素を所定量含むリチウムコバルト複合酸化物を含有すると共に、第1副成分元素および第2副成分元素を所定量含有するようにしたので、結晶構造の安定性をより向上させることができる。よって、電池に用いた場合に、負荷特性および低温特性を向上させることができると共に、高温におけるサイクル特性も向上させることができる。また、第1の正極活物質と、第2の正極活物質とを所定の割合で混合するようにしたので、充填性を向上でき、電池に用いた場合に、低温特性および高温におけるサイクル特性をさらに向上させることができる。
この発明によれば、正極活物質の充填性を向上させることができ、電池に用いた場合に、優れた低温特性および高温におけるサイクル特性を得ることができる。
以下、この発明の実施形態について図面を参照しながら説明する。なお、以下の実施形態の全図においては、同一または対応する部分には同一の符号を付す。
この発明の一実施形態による正極活物質は、第1の正極活物質と、第2の正極活物質とを混合した混合物よりなるものである。
第1の正極活物質は、粒子状であり、リチウム(Li)と、コバルト(Co)とを含むリチウムコバルト複合酸化物を有する。また、リチウム(Li)およびコバルト(Co)に加えて、さらに、アルミニウム(Al)、クロム(Cr)、バナジウム(V)、マンガン(Mn)および鉄(Fe)からなる群のうちの少なくとも1種の第1元素と、マグネシウム(Mg)およびカルシウム(Ca)からなる群のうちの少なくとも1種の第2元素とを含んでいる。第1元素は酸素との結合エネルギーが大きいので、第1元素を含むことによりリチウムが抜けた状態の結晶構造を強固に保持することができ、また、第2元素を含むことにより電子伝導性を向上させることができるからである。
このリチウムコバルト複合酸化物におけるコバルト(Co)と、第1元素と、第2元素とのモル比は、コバルトの組成をa、第1元素の組成をb、第2元素の組成をcとすると、それぞれ0.9≦a<1、0.001≦b≦0.05、0.001≦c≦0.05の範囲内であることが好ましい。コバルト(Co)の含有量が多くなると添加効果が薄れてしまい、少なくなると充放電容量が低下してしまう。第1元素の含有量が多くなると結晶内でのリチウムイオンの拡散が阻害されてしまい、少なくなるとリチウム(Li)が抜けた状態の結晶構造を強固に保持する効果が低くなってしまう。第2元素の含有量が多くなると結晶構造の崩壊が促進されてしまい、少なくなると伝導性向上の効果が低くなってしまう。
また、この正極活物質は、さらに、チタン(Ti)、ジルコニウム(Zr)およびハフニウム(Hf)からなる群のうちの少なくとも1種の第1副成分元素と、ケイ素(Si)、ゲルマニウム(Ge)およびスズ(Sn)からなる群のうちの少なくとも1種の第2副成分元素とを含んでいる。
第1副成分元素の少なくとも一部は、例えば酸素(O)を含有する化合物、または酸素(O)およびリチウム(Li)を含有する化合物などとして、リチウムコバルト複合酸化物の結晶粒界に存在している。例えば正極活物質が第1副成分元素としてジルコニウム(Zr)を含む場合には、第1副成分元素であるジルコニウム(Zr)の少なくとも一部は、例えば酸化ジルコニウムまたはジルコン酸リチウムなどの化合物として、リチウムコバルト複合酸化物の結晶粒界に存在している。これによりリチウムコバルト複合酸化物の結晶構造をより安定化させることができるようになっている。なお、第1副成分元素の一部はリチウムコバルト複合酸化物に固溶していてもよく、また、リチウムコバルト複合酸化物の粒子の表面に存在していてもよい。
第1副成分元素の含有量は、リチウムコバルト複合酸化物のコバルト(Co)に対する割合(第1副成分元素/コバルト)で、0.01mol%以上10mol%以下の範囲内であることが好ましい。第1副成分元素の含有量が少ないと十分な効果を得ることができず、多いと容量が低下してしまうからである。
また、第2副成分元素の少なくとも一部は、例えば酸素(O)を含有する化合物、または酸素(O)およびリチウム(Li)を含有する化合物などとして、リチウムコバルト複合酸化物の結晶粒界に存在している。例えば正極活物質が第2副成分元素としてスズ(Sn)を含む場合には、第2副成分元素であるスズ(Sn)の少なくとも一部は、例えば酸化スズまたはスズ酸リチウムなどの化合物として、リチウムコバルト複合酸化物の結晶粒界に存在している。これによりリチウムコバルト複合酸化物の結晶構造をより安定化させることができるようになっている。なお、第2副成分元素の一部はリチウムコバルト複合酸化物に固溶していてもよく、また、リチウムコバルト複合酸化物の粒子の表面に存在していてもよい。
第2副成分元素の含有量は、リチウムコバルト複合酸化物のコバルト(Co)に対する割合(第2副成分元素/コバルト)で、0.01mol%以上10mol%以下の範囲内であることが好ましい。第2副成分元素の含有量が少ないと十分な効果を得ることができず、多いと容量が低下してしまうからである。
リチウムコバルト複合酸化物の化学式は、例えば化Iで表される。
(化I)
LixCoaM1bM2c2
(化Iにおいて、M1は第1元素、M2は第2元素を表し、x、a、bおよびcはそれぞれ0.9≦x≦1.1、0.9≦a<1、0.001≦b≦0.05、0.001≦c≦0.05、a+b+c=1の範囲内の値である。)
第1の正極活物質は、例えば、硫酸コバルトなどのコバルト化合物と、第1副成分元素を含む化合物と、第2副成分元素を含む化合物とを溶解させた酸性溶液に、炭酸水素ナトリウムなどのアルカリ溶液を加えて、炭酸コバルトなどのコバルト化合物と共に第1副成分元素および第2副成分元素を共沈させたのち、この炭酸コバルトなどのコバルト化合物と、炭酸リチウムなどのリチウム化合物と、第1元素を含む化合物と、第2元素を含む化合物とを混合し、焼成することにより得ることができる。
第2の正極活物質は、化IIで表されるリチウム遷移金属複合酸化物である。
(化II)
LipNi(1-q-r)CoqMnra2
(化2において、Aはマグネシウム(Mg)、アルミニウム(Al)のうちの少なくとも1種である。aは0≦a≦0.10である。p、q、rは、0.05≦p≦1.15、0.40≦q+r≦0.70、0.05≦r≦0.40である。)
第2の正極活物質は、化IIにおいて、0.40≦q+r≦0.60であるものがより好ましい。より高容量が得られるからである。
第1の正極活物質と、第2の正極活物質との混合重量比は、95:5〜70:30である。第2の正極活物質の割合を上記範囲より、少なくすると、第2の正極活物質を加えることによる効果が小さいからである。また、第2の正極活物質の割合を上記範囲より、多くすると、充填性が低下するからである。
第1の正極活物質の粒径は、平均粒径で5μm〜25μmが好ましい。平均粒径が25μmを超えると、負荷特性が著しく低下するからであり、また、25μmを超えるものは製造し難いからである。第2の正極活物質の粒径は、平均粒径で1μm〜15μmが好ましい。平均粒径が15μmを超えると、負荷特性が著しく低下するからであり、また、25μmを超えるものは製造し難いからである。
また、第1の正極活物質の平均粒径と、第2の正極活物質の平均粒径との粒径比(「第1の正極活物質の平均粒径/第2の正極活物質の平均粒径」)は、(第1の正極活物質の平均粒径/第2の正極活物質の平均粒径)>1.6が好ましく、15>(第1の正極活物質の平均粒径/第2の正極活物質の平均粒径)≧1.67であることがより好ましく、5≧(第1の正極活物質の平均粒径/第2の正極活物質の平均粒径)≧1.67であることが特に好ましい。第1の正極活物質と、第2の正極活物質との粒径差が小さすぎると、充填性が低下し、また、第1の正極活物質と、第2の正極活物質との粒径差が大きすぎても、充填性が低下し、電池に用いた場合に、容量が低下してしまうからである。
この発明の一実施形態による正極活物質では、第1の正極活物質において、第1元素および第2元素を所定量含むリチウムコバルト複合酸化物を含有すると共に、第1副成分元素および第2副成分元素を所定量含有するようにしたので、結晶構造の安定性をより向上させることができる。よって、電池に用いた場合に、負荷特性および低温特性を向上させることができると共に、高温におけるサイクル特性も向上させることができる。また、第1の正極活物質と、第2の正極活物質とを所定の割合で混合するようにしたので、充填性を向上でき、電池に用いた場合に、低温特性および高温におけるサイクル特性をさらに向上させることができる。
次に、この発明の一実施形態による正極活物質を用いた二次電池の第1の例について説明する。
図1は、この発明の一実施形態による正極活物質を用いた二次電池の第1の例の一構成例を示す断面図である。この二次電池は、例えば、非水電解質二次電池であり、また例えば、リチウムイオン二次電池である。この二次電池では、一対の正極および負極当たりの完全充電状態における開回路電圧が例えば4.20Vまたは4.20Vを越えて設定される。4.20Vを越えて設定される開回路電圧の範囲は、例えば4.25V以上4.60V以下または4.25V以上6.00V以下である。
この二次電池は、いわゆる円筒型といわれるものであり、ほぼ中空円柱状の電池缶11の内部に、帯状の正極21と帯状の負極22がセパレータ23を介して巻回された巻回電極体20を有している。電池缶11は、例えばニッケル(Ni)のめっきがされた鉄(Fe)により構成されており、一端部が閉鎖され他端部が開放されている。電池缶11の内部には、巻回電極体20を挟むように巻回周面に対して垂直に一対の絶縁板12、13がそれぞれ配置されている。
電池缶11の開放端部には、電池蓋14と、この電池蓋14の内側に設けられた安全弁機構15および熱感抵抗(PTC:Positive Temperature Coefficient)素子16が、ガスケット17を介してかしめられることにより取り付けられており、電池缶11の内部は密閉されている。電池蓋14は、例えば、電池缶11と同様の材料により構成されている。安全弁機構15は、熱感抵抗素子16を介して電池蓋14と電気的に接続されており、内部短絡あるいは外部からの加熱などにより電池の内圧が一定以上となった場合にディスク板15Aが反転して電池蓋14と巻回電極体20との電気的接続を切断するようになっている。熱感抵抗素子16は、温度が上昇すると抵抗値の増大により電流を制限し、大電流による異常な発熱を防止するものである。ガスケット17は、例えば、絶縁材料により構成されており、表面にはアスファルトが塗布されている。
巻回電極体20は、例えば、センターピン24を中心に巻回されている。巻回電極体20の正極21にはアルミニウム(Al)などよりなる正極リード25が接続されており、負極22にはニッケル(Ni)などよりなる負極リード26が接続されている。正極リード25は安全弁機構15に溶接されることにより電池蓋14と電気的に接続されており、負極リード26は電池缶11に溶接され電気的に接続されている。
図2は、図1に示した巻回電極体20の一部を拡大して表す断面図である。巻回電極体20は、正極21と負極22とをセパレータ23を介して積層し、巻回したものである。
正極21は、例えば、正極集電体21Aと、この正極集電体21Aの両面に設けられた正極活物質層21Bとを有している。正極集電体21Aは、例えば、アルミニウム箔などの金属箔により構成されている。
正極活物質層21Bは、第1の実施形態による正極活物質と、必要に応じて炭素材料などの導電剤およびポリフッ化ビニリデンあるいはポリテトラフルオロエチレンなどの結着剤とを含んでいる。これによりこの二次電池では、正極活物質の結晶構造がより安定し、負荷特性および低温特性を向上させることができると共に、高温におけるサイクル特性を向上させることができるようになっている。なお、化1に示したリチウムの組成xは、組み立て時、すなわち完全放電時のものである。
正極活物質層21Bの体積密度は2.0g/cm3以上4.0g/cm3以下の範囲内であることが好ましい。体積密度が小さいと単位体積当たりの容量が小さくなってしまい、大きいと電解液の浸透性が低下し、負荷特性および低温特性が低下してしまうからである。
負極22は、例えば、正極21と同様に、負極集電体22Aと、この負極集電体22Aの両面に設けられた負極活物質層22Bとを有している。負極集電体22Aは、例えば、銅箔などの金属箔により構成されている。
負極活物質層22Bは、例えば、負極活物質として、リチウムを吸蔵および放出することが可能な負極材料のいずれか1種または2種以上を含んで構成されており、必要に応じて導電剤および結着剤を含んでいてもよい。
リチウムを吸蔵および放出することが可能な負極材料としては、例えば、黒鉛、難黒鉛化性炭素あるいは易黒鉛化炭素などの炭素材料が挙げられる。炭素材料には、いずれか1種を単独で用いてもよく、2種以上を混合して用いてもよく、また、平均粒子径の異なる2種以上を混合して用いてもよい。
リチウムを吸蔵および放出することが可能な負極材料としては、また、リチウムと合金を形成可能な金属元素または半金属元素を構成元素として含む材料が挙げられる。具体的には、リチウムと合金を形成可能な金属元素の単体、合金、あるいは化合物、またはリチウムと合金を形成可能な半金属元素の単体、合金、あるいは化合物、またはこれらの1種あるいは2種以上の相を少なくとも一部に有する材料が挙げられる。
このような金属元素あるいは半金属元素としては、例えば、スズ(Sn)、鉛(Pb)、アルミニウム、インジウム(In)、ケイ素(Si)、亜鉛(Zn)、アンチモン(Sb)、ビスマス(Bi)、カドミウム(Cd)、マグネシウム、ホウ素(B)、ガリウム(Ga)、ゲルマニウム(Ge)、ヒ素(As)、銀(Ag)、ジルコニウム、イットリウム(Y)またはハフニウム(Hf)が挙げられる。中でも、長周期型周期表における14族の金属元素あるいは半金属元素が好ましく、特に好ましいのはケイ素あるいはスズである。ケイ素およびスズはリチウムを吸蔵および放出する能力が大きく、高いエネルギー密度を得ることができるからである。
ケイ素(Si)の合金としては、例えば、ケイ素(Si)以外の第2の構成元素として、スズ(Sn)、ニッケル(Ni)、銅(Cu)、鉄(Fe)、コバルト(Co)、マンガン(Mn)、亜鉛(Zn)、インジウム(In)、銀(Ag)、チタン(Ti)、ゲルマニウム(Ge)、ビスマス(Bi)、アンチモン(Sb)およびクロム(Cr)からなる群のうちの少なくとも1種を含むものが挙げられる。スズ(Sn)の合金としては、例えば、スズ(Sn)以外の第2の構成元素として、ケイ素(Si)、ニッケル(Ni)、銅(Cu)、鉄(Fe)、コバルト(Co)、マンガン(Mn)、亜鉛(Zn)、インジウム(In)、銀(Ag)、チタン(Ti)、ゲルマニウム(Ge)、ビスマス(Bi)、アンチモン(Sb)およびクロム(Cr)からなる群のうちの少なくとも1種を含むものが挙げられる。
ケイ素(Si)の化合物あるいはスズ(Sn)の化合物としては、例えば、酸素(O)あるいは炭素(C)を含むものが挙げられ、ケイ素(Si)またはスズ(Sn)に加えて、上述した第2の構成元素を含んでいてもよい。
セパレータ23は、電気的に安定であると共に、正極活物質、負極活物質あるいは溶媒に対して化学的に安定であり、かつ電気伝導性を有していなければどのようなものを用いてもよい。例えば、高分子の不織布、多孔質フィルム、ガラスあるいはセラミックスの繊維を紙状にしたものを用いることができ、これらを複数積層して用いてもよい。特に、多孔質ポリオレフィンフィルムを用いることが好ましく、これをポリイミド、ガラスあるいはセラミックスの繊維などよりなる耐熱性の材料と複合させたものを用いてもよい。
電解液は、電解質塩と、この電解質塩を溶解する溶媒とを含んでいる。電解質塩としては、例えば、LiClO4、LiPF6、LiBF4、LiN(SO2CF32、LiN(SO2252、あるいはLiAsF6などのリチウム塩が挙げられる。電解質塩にはいずれか1種を用いてもよいが、2種以上を混合して用いてもよい。
溶媒としては、例えば、γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトンあるいはε−カプロラクトンなどのラクトン系溶媒、炭酸エチレン、炭酸プロピレン、炭酸ブチレン、炭酸ビニレン、炭酸ジメチル、炭酸エチルメチルあるいは炭酸ジエチルなどの炭酸エステル系溶媒、1,2−ジメトキシエタン、1−エトキシ−2−メトキシエタン、1,2−ジエトキシエタン、テトラヒドロフランあるいは2−メチルテトラヒドロフランなどのエーテル系溶媒、アセトニトリルなどのニトリル系溶媒、スルフォラン系溶媒、リン酸類、リン酸エステル溶媒、またはピロリドン類などの非水溶媒が挙げられる。溶媒は、いずれか1種を単独で用いてもよく、2種以上を混合して用いてもよい。
次に、この二次電池の製造方法の一例について説明する。正極21は、以下のようにして作製する。まず、正極活物質と、導電剤と、結着剤とを混合して正極合剤を調製し、この正極合剤をN−メチル−2−ピロリドンなどの溶剤に分散させて正極合剤スラリーとする。次いで、この正極合剤スラリーを正極集電体21Aに塗布し、溶剤を乾燥させた後、ロールプレス機などにより圧縮成型して正極活物質層21Bを形成し、正極21を得る。
負極22は、以下のようにして作製する。まず、負極活物質と、結着剤とを混合して負極合剤を調製し、この負極合剤をN−メチル−2−ピロリドンなどの溶剤に分散させて負極合剤スラリーとする。次いで、この負極合剤スラリーを負極集電体22Aに塗布し溶剤を乾燥させたのち、ロールプレス機などにより圧縮成型して負極活物質層22Bを形成し、負極22を得る。
次に、正極集電体21Aに正極リード25を溶接などにより取り付けると共に、負極集電体22Aに負極リード26を溶接などにより取り付ける。その後、正極21と負極22とをセパレータ23を介して巻回し、正極リード25の先端部を安全弁機構15に溶接すると共に、負極リード26の先端部を電池缶11に溶接して、巻回した正極21および負極22を一対の絶縁板12、13で挟み、電池缶11の内部に収納する。正極21および負極22を電池缶11の内部に収納したのち、電解質を電池缶11の内部に注入し、セパレータ23に含浸させる。その後、電池缶11の開口端部に電池蓋14、安全弁機構15および熱感抵抗素子16を、ガスケット17を介してかしめることにより固定する。以上により、図1に示した二次電池が作製される。
この発明の一実施形態による正極活物質を用いた二次電池の第1の例では、充電を行うと、例えば、正極21からリチウムイオンが放出され、電解液を介して負極22に吸蔵される。一方、放電を行うと、例えば、負極22からリチウムイオンが放出され、電解液を介して正極21に吸蔵される。
次に、この発明の一実施形態による正極活物質を用いた二次電池の第2の例について説明する。図3は、この発明の一実施形態による正極活物質を用いた二次電池の第2の例の一構成例を示す斜視図である。この二次電池は、正極リード31および負極リード32が取り付けられた電池素子30をフィルム状の外装部材41の内部に収納した構成を有している。この二次電池では、一対の正極および負極当たりの完全充電状態における開回路電圧が例えば4.20Vまたは4.20Vを越えて設定される。4.20Vを越えて設定される開回路電圧の範囲は、例えば4.25V以上4.60V以下または4.25V以上6.00V以下である。
正極リード31および負極リード32は、それぞれ例えば短冊状であり、外装部材41の内部から外部に向かい例えば同一方向にそれぞれ導出されている。正極リード31は、例えばアルミニウムなどの金属材料により構成されており、負極リード32は、例えばニッケル(Ni)などの金属材料により構成されている。
外装部材41は、例えば、絶縁層、金属層および最外層をこの順に積層しラミネート加工などにより貼り合わせた構造を有している。外装部材41は、例えば、絶縁層の側を内側として、各外縁部が融着あるいは接着剤により互いに密着されている。
絶縁層は、例えば、ポリエチレン、ポリプロピレン、変性ポリエチレン、変性ポリプロピレンあるいはこれらの共重合体などのポリオレフィン樹脂により構成されている。水分透過性を低くすることができ、気密性に優れているからである。金属層は、箔状あるいは板状のアルミニウム、ステンレス、ニッケルあるいは鉄などにより構成されている。最外層は、例えば絶縁層と同様の樹脂により構成されていてもよいし、ナイロンなどにより構成されていてもよい。破れや突き刺し等に対する強度を高くすることができるからである。外装部材41は、絶縁層、金属層および最外層以外の他の層を備えていてもよい。
外装部材41と正極リード31および負極リード32との間には、正極リード31および負極リード32と、外装部材41の内側との密着性を向上させ、外気の侵入を防止するための密着フィルム42が挿入されている。密着フィルム42は、正極リード31および負極リード32に対して密着性を有する材料により構成され、例えば、正極リード31および負極リード32が上述した金属材料により構成される場合には、ポリエチレン、ポリプロピレン、変性ポリエチレンあるいは変性ポリプロピレンなどのポリオレフィン樹脂により構成されることが好ましい。
図4は、図3に示した電池素子30のIV−IV線に沿った断面図である。電池素子30は、正極33と負極34とをセパレータ35および電解質36を介して積層し、巻回したものであり、最外周部は保護テープ37により保護されている。
正極33は、例えば、正極集電体33Aと、この正極集電体33Aの両面に設けられた正極活物質層33Bとを有している。負極34は、例えば、負極集電体34Aと、この負極集電体34Aの両面に設けられた負極活物質層34Bとを有している。正極集電体33A、正極活物質層33B、負極集電体34A、負極活物質層34Bおよびセパレータ35の構成はそれぞれ、上述の第1の例における正極集電体21A、正極活物質層21B、負極集電体22A、負極活物質層22Bおよびセパレータ23と同様である。
電解質36は、電解液と、この電解液を保持する高分子化合物を含む保持体とを含有しており、いわゆるゲル状となっている。電解液(すなわち溶媒および電解質塩など)の構成は、上述した第1の例における電解液と同様である。
高分子化合物は、溶媒を吸収してゲル化するものであればよく、例えば、ポリフッ化ビニリデンあるいはビニリデンフルオロライドとヘキサフルオロプロピレンとの共重合体などのフッ素系高分子化合物、ポリエチレンオキサイドあるいはポリエチレンオキサイドを含む架橋体などのエーテル系高分子化合物、ポリアクリロニトリル、ポリプロピレンオキサイドあるいはポリメチルメタクリレートを繰返し単位として含むものなどが挙げられる。高分子化合物には、いずれか1種を単独で用いてもよく、2種以上を混合して用いてもよい。
特に、酸化還元安定性の点からは、フッ素系高分子化合物が望ましく、中でも、ビニリデンフルオライドとヘキサフルオロプロピレンとを成分として含む共重合体が好ましい。更に、この共重合体は、モノメチルマレイン酸エステルなどの不飽和二塩基酸のモノエステル、三フッ化塩化エチレンなどのハロゲン化エチレン、炭酸ビニレンなどの不飽和化合物の環状炭酸エステル、またはエポキシ基含有アクリルビニルモノマーなどを成分として含んでいてもよい。より高い特性を得ることができるからである。
次に、この二次電池の第2の例の製造方法の一例について説明する。まず、例えば、正極集電体33Aに正極活物質層33Bを形成し正極33を作製する。正極活物質層33Bは、例えば、正極活物質の粉末と導電剤と結着剤とを混合して正極合剤を調製したのち、この正極合剤をN−メチル−2−ピロリドンなどの溶剤に分散させてペースト状の正極合剤スラリーとし、この正極合剤スラリーを正極集電体33Aに塗布し乾燥させ、圧縮成型することにより形成する。また、例えば、正極33と同様にして、負極集電体34Aに負極活物質層34Bを形成し負極34を作製する。次いで、正極集電体33Aに正極リード31を取り付けると共に、負極集電体34Aに負極リード32を取り付ける。
続いて、電解液と、高分子化合物とを、混合溶剤を用いて混合し、この混合溶液を正極活物質層33Bの上、および負極活物質層34Bの上に塗布し、混合溶剤を揮発させて、電解質36を形成する。次いで、正極33、セパレータ35、負極34、およびセパレータ35を順に積層して巻回し、最外周部に保護テープ37を接着して電池素子30を形成したのち、外装部材41の間に挟み込み、外装部材41の外周縁部を熱融着する。その際、正極リード31および負極リード32と外装部材41との間には密着フィルム42を挿入する。これにより図3、4に示した二次電池が得られる。
また、電解質36を正極33および負極34の上に形成したのちに巻回するのではなく、正極33および負極34をセパレータ35を介して巻回し、外装部材41の間に挟み込んだのち、電解液と高分子化合物のモノマーとを含む電解質組成物を注入し、外装部材41の内部でモノマーを重合させるようにしてもよい。
この二次電池では、充電を行うと、例えば、正極33からリチウムイオンが放出され、電解質36を介して負極34に吸蔵される。一方、放電を行うと、例えば、負極34からリチウムイオンが放出され、電解質36を介して正極33に吸蔵される。
次に、この発明の一実施形態による正極活物質を用いた二次電池の第3の例について説明する。この二次電池の第3の例は、二次電池の第2の例において、ゲル状の電解質36に代えて電解液を用いるものである。この場合、電解液はセパレータ35に含浸される。電解液としては、上述の第1の例と同様のものを用いることができる。
このような構成を有する二次電池は、例えば以下のようにして作製することができる。ゲル状の電解質36の形成を省略する以外は、上述の第2の例と同様にして正極33および負極34を巻回して電池素子30を作製し、この電池素子30を外装部材41の間に挟み込んだのち、電解液を注入して外装部材41を密閉する。
以下、実施例によりこの発明を具体的に説明するが、この発明はこれらの実施例のみに限定されるものではない。
<実施例1−1>
第1の正極活物質を以下に説明するようにして作製した。まず、硫酸コバルトと硫酸ジルコニウムと硫酸スズを純水に溶解し、炭酸水素ナトリウム溶液を加えて、炭酸コバルトと共にジルコニウムおよびスズを共沈させた。その際、硫酸コバルトと硫酸ジルコニウムと硫酸スズとの混合比を調整して、コバルト(Co)に対するジルコニウム(Zr)の割合を0.01mol%とし、コバルト(Co)に対するスズ(Sn)の割合を0.01mol%とした。
次に、ジルコニウム(Zr)およびスズ(Sn)を共沈させた炭酸コバルトと、炭酸リチウムと、水酸化アルミニウムと、炭酸マグネシウムとを混合し、焼成した。以上により、第1の正極活物質を得た。その際、リチウム:コバルト:アルミニウム:マグネシウムのモル比、すなわち化Iにおけるx:a:b:cが0.962:0.98:0.01:0.01となるように混合した。
得られた第1の正極活物質について、原子吸光分析法により定量分析を行ったところ、ほぼ目的とする組成の物質が得られていることが確認された。また、粒径をレーザ回折法によりを測定したところ、平均粒径は5μmであった。
第2の正極活物質は、以下に説明するようにして、作製した。まず、硝酸ニッケルと、硝酸コバルトと、硝酸マンガンとを純水に溶解し、ニッケル(Ni)、コバルト(Co)、マンガン(Mn)のモル比(Ni:Co:Mn)が0.50:0.20:0.30となるように混合し、十分に攪拌しながらアンモニア水を滴下して複合水酸化物を得た。次に、これを水酸化リチウムと混合し、酸素気流中、900℃で10時間焼成した後に粉砕し、これにより第2の正極活物質を得た。
得られた第2の正極活物質粉末を原子吸光スペクトルにより分析したところ、LiNi0.50Co0.20Mn0.302の組成が確認された。また、レーザ回折法により粒径を測定したところ、平均粒径は1μmであった。
次に、上述のようにして作製した第1の正極活物質と、第2の正極活物質とを、重量比(第1の正極活物質:第2の正極活物質)で、95:5となるように混合して、実施例1−1の正極活物質を得た。
<実施例1−2>
第1の正極活物質と、第2の正極活物質とを重量比で85:15となるように混合した点以外は、実施例1−1と同様にして、実施例1−2の正極活物質を得た。
<実施例1−3>
第1の正極活物質と、第2の正極活物質とを重量比で70:30となるように混合した点以外は、実施例1−1と同様にして、実施例1−3の正極活物質を得た。
<実施例2−1>
製造条件を変えて、第1の正極活物質の平均粒径が15μmになるようにした。製造条件を変えて、第2の正極活物質の平均粒径が5μmになるようにした。以上の点以外は、実施例1−1と同様にして、実施例2−1の正極活物質を得た。
<実施例2−2>
第1の正極活物質と、第2の正極活物質とを重量比で85:15となるように混合した点以外は、実施例2−1と同様にして、実施例2−2の正極活物質を得た。
<実施例2−3>
第1の正極活物質と、第2の正極活物質とを重量比で70:30となるように混合した点以外は、実施例2−1と同様にして、実施例2−3の正極活物質を得た。
<実施例3−1>
製造条件を変えて、第1の正極活物質の平均粒径が25μmになるようにした。製造条件を変えて、第2の正極活物質の平均粒径が5μmになるようにした。以上の点以外は、実施例1−1と同様にして、実施例3−1の正極活物質を得た。
<実施例3−2>
第1の正極活物質と、第2の正極活物質とを重量比で85:15となるように混合した点以外は、実施例3−1と同様にして、実施例3−2の正極活物質を得た。
<実施例3−3>
第1の正極活物質と、第2の正極活物質とを重量比で70:30となるように混合した点以外は、実施例3−3の正極活物質を得た。
<実施例4−1>
製造条件を変えて、第1の正極活物質の平均粒径が25μmになるようにした。製造条件を変えて、第2の正極活物質の平均粒径が15μmになるようにした。以上の点以外は、実施例1−1と同様にして、実施例4−1の正極活物質を得た。
<実施例4−2>
第1の正極活物質と、第2の正極活物質とを重量比で85:15となるように混合した点以外は、実施例4−1と同様にして、実施例4−2の正極活物質を得た。
<実施例4−3>
第1の正極活物質と、第2の正極活物質とを重量比で70:30となるように混合した点以外は、実施例4−1と同様にして、実施例4−3の正極活物質を得た。
<比較例1−1>
第2の正極活物質を加えないようにした点以外は、実施例1−1と同様にして、比較例1−1の正極活物質を得た。
<比較例1−2>
製造条件を変えて、第1の正極活物質の平均粒径が15μmになるようにした点以外は、比較例1−1と同様にして、比較例1−2の正極活物質を得た。
<比較例1−3>
製造条件を変えて、第1の正極活物質の平均粒径が25μmになるようにした点以外は、比較例1−1と同様にして、比較例1−3の正極活物質を得た。
<比較例2−1>
第1の正極活物質と、第2の正極活物質とを重量比で60:40となるように混合した点以外は、実施例1−1と同様にして、比較例2−1の正極活物質を得た。
<比較例2−2>
製造条件を変えて、第1の正極活物質の平均粒径が15μmになるようにした。製造条件を変えて、第2の正極活物質の平均粒径が5μmになるようにした。以上の点以外は、比較例2−1と同様にして、比較例2−2の正極活物質を得た。
<比較例2−3>
製造条件を変えて、第1の正極活物質の平均粒径が25μmになるようにした。製造条件を変えて、第2の正極活物質の平均粒径が5μmになるようにした。以上の点以外は、比較例2−1と同様にして、比較例2−3の正極活物質を得た。
<比較例2−4>
製造条件を変えて、第1の正極活物質の平均粒径が25μmになるようにした。製造条件を変えて、第2の正極活物質の平均粒径が15μmになるようにした。以上の点以外は、比較例2−1と同様にして、比較例2−4の正極活物質を得た。
<比較例3−1>
製造条件を変えて、第1の正極活物質の平均粒径が15μmになるようにした。第1の正極活物質と、第2の正極活物質とを重量比で85:15となるように混合した。以上の点以外は、実施例1−1と同様にして、比較例3−1の正極活物質を得た。
<比較例3−2>
製造条件を変えて、第1の正極活物質の平均粒径が25μmになるようにした点以外は、比較例3−1と同様にして、比較例3−2の正極活物質を得た。
<比較例4−1>
製造条件を変えて、第2の正極活物質の平均粒径が5μmになるようにした。第1の正極活物質と、第2の正極活物質とを重量比で85:15となるように混合した。以上の点以外は、実施例1−1と同様にして、比較例4−1の正極活物質を得た。
<比較例4−2>
製造条件を変えて、第2の正極活物質の平均粒径が15μmになるようにした点以外は、比較例4−1と同様にして、比較例4−2の正極活物質を得た。
<比較例4−3>
製造条件を変えて、第1の正極活物質の平均粒径が15μmになるようにした。製造条件を変えて、第2の正極活物質の平均粒径が15μmになるようにした。以上の点以外は、比較例4−1と同様にして、比較例4−3の正極活物質を得た。
<比較例5−1>
製造条件を変えて、第1の正極活物質において、コバルトに対するジルコニウムの割合を0mol%とし、コバルトに対するスズの割合を0mol%とした。第1の正極活物質の平均粒径が15μmになるようにした。製造条件を変えて、第2の正極活物質の平均粒径が5μmになるようにした。以上の点以外は、実施例1−1と同様にして、比較例5−1の正極活物質を得た。
<比較例5−2>
製造条件を変えて、第1の正極活物質の平均粒径が25μmになるようにした点以外は、比較例5−1と同様にして、比較例5−2の正極活物質を得た。
<比較例5−3>
製造条件を変えて、第1の正極活物質の平均粒径が25μmになるようにした。製造条件を変えて、第2の正極活物質の平均粒径が15μmになるようにした。以上の点以外は、比較例5−1と同様にして、比較例5−3の正極活物質を得た。
<比較例6−1>
第1の正極活物質と、第2の正極活物質とを重量比で98:2となるように混合するようにした点以外は、実施例1−1と同様にして、比較例6−1の正極活物質を得た。
<比較例6−2>
製造条件を変えて、第1の正極活物質の平均粒径が15μmになるようにした。製造条件を変えて、第2の正極活物質の平均粒径が5μmになるようにした。以上の点以外は、比較例6−1と同様にして、比較例6−2の正極活物質を得た。
<比較例6−3>
製造条件を変えて、第1の正極活物質の平均粒径が25μmになるようにした。製造条件を変えて、第2の正極活物質の平均粒径が5μmになるようにした。以上の点以外は、比較例6−1と同様にして、比較例6−3の正極活物質を得た。
<比較例6−4>
製造条件を変えて、第1の正極活物質の平均粒径が25μmになるようにした。製造条件を変えて、第2の正極活物質の平均粒径が15μmになるようにした。以上の点以外は、比較例6−1と同様にして、比較例6−4の正極活物質を得た。
次に、実施例1−1〜実施例4−3および比較例1−1〜比較例6−4の正極活物質について、充填性を評価するため、15φの金型に正極活物質試料1mgを入れ、2tの圧力を加えて錠剤にし、この錠剤について体積密度を算出した。
また、実施例1−1〜実施例4−3、比較例1−1〜比較例6−4の正極活物質を用いて、以下に説明するようにして、電池を作製して、容量、低温特性、50℃サイクル特性の評価を行った。
まず、正極活物質92質量%と、結着剤である粉末状ポリフッ化ビニリデン3質量%と、導電剤である粉末状黒鉛5質量%とを、溶剤であるN−メチル−2−ピロリドンを用いて混練し、正極合剤スラリーを作製した。次いで、正極合剤スラリーをアルミニウム箔よりなる正極集電体33Aの両面に均一に塗布し、乾燥させたのち、減圧状態において乾燥させた。続いて、ロールプレス機で圧縮成型して正極活物質層33Bを形成し、正極33を作製した。そののち、正極33の端部にアルミニウムリボンよりなる正極リード31を溶接した。
また、負極活物質であるメソフェーズ系球状黒鉛90質量%と、結着剤である粉末状ポリフッ化ビニリデン10質量%とを、溶剤であるN−メチル−2−ピロリドンを用いて混練し、負極合剤スラリーを作製した。次いで、負極合剤スラリーを銅箔よりなる負極集電体34Aの両面に均一に塗布し、乾燥させたのち、減圧状態において乾燥させた。続いて、ロールプレス機で圧縮成型して負極活物質層34Bを形成し、負極34を作製した。そののち、負極34の端部にニッケルリボンよりなる負極リード32を溶接した。
次に、炭酸エチレン(EC)を12.5重量%と、炭酸エチルメチル(EMC)を12.5重量%と、電解質塩であるLiPF6を5重量%とを混合して可塑剤を調整した。これに対して分子量が600000であるブロック共重合ポリ(ビニリデンフルオライド−co−ヘキサフルオロプロピレン)を10重量%と、炭酸ジエチルを60重量%とを混合して溶解させた。次に、これを正極33および負極34の両面に均一に塗布して含浸させた。そして、常温で8時間放置することによって炭酸ジエチルを気化させて除去し、ゲル状の電解質36を作製した。
次に、上述したようにしてゲル状の電解質36が形成された正極33および負極34と、多孔質ポリエチレンフィルムよりなるセパレータ35とを、負極34、セパレータ35、正極33、セパレータ35の順に積層してから、この積層体を平板の芯に巻き付け多数巻回した後、最外周部に保護テープ37を接着して電池素子30を作製した。
最後に、このようにして作製した電池素子30を、アルミニウム箔をポリオレフィンフィルムで挟んだアルミラミネートフィルムよりなる外装部材41の間に挟み込み、外装部材41の外周縁部を熱融着した。その際、正極リード31および負極リード32と外装部材41との間には密着フィルム42を挿入した。以上により、目的とする二次電池を作製した。
上述のようにして得られた各実施例および各比較例の二次電池について充放電試験を行い、放電容量(容量)、低温特性および50℃におけるサイクル特性を評価した。
23℃において上限電圧4.2V、電流1Cで充電時間の総計が3時間に達するまで定電流定電圧充電を行ったのち、23℃において電流0.2C、終止電圧3Vで定電流放電を行った時の放電容量を測定した。
低温特性は、23℃において電流0.5C、終止電圧3Vで定電流放電を行った時の放電容量と、−20℃において電流0.5C、終止電圧3Vで定電流放電を行った時の放電容量とから、式1により求めた。その際、充電は、23℃において上限電圧4.2V、電流1Cで充電時間の総計が3時間に達するまで定電流定電圧充電を行った。なお、0.5Cは理論容量を2時間で放電しきる電流値である。
(式1)
低温特性(%)=(−20℃での放電容量/23℃での放電容量)×100(%)
50℃におけるサイクル特性は、50℃において上限電圧4.2V、電流1Cで充電時間の総計が3時間に達するまで定電流定電圧充電を行ったのち、50℃において電流1C、終止電圧3Vで定電流放電を行い、1サイクル目の放電容量と、300サイクル目の放電容量とから、式2により求めた。
(式2)
サイクル特性(%)
=(300サイクル目の放電容量/1サイクル目の放電容量)×100(%)
体積密度の算出結果、並びに容量、低温特性および50℃サイクル特性の測定結果を表1に示す。
Figure 2008234872
表1に示すように、実施例1−1〜実施例4−3の正極活物質では、充填性が優れており、電池に用いた場合に、高容量であり、且つ低温特性および50℃サイクル特性が優れていた。
比較例1−1〜比較例1−3では、第2の正極活物質を加えていないので、実施例と比べると、充填性が低下し、低温特性も若干低下した。
また、比較例2−1〜比較例2−4では、第2の正極活物質の混合割合が多いので、実施例と比べると、充填性が低下した。
さらに、比較例3−1〜比較例3−2では、第1の正極活物質と、第2の正極活物質との粒径の差が大きいので、実施例と比べると、充填性、低温特性、50℃サイクル特性が低下した。
さらに、比較例4−1〜比較例4−3では、第2の正極活物質の粒径が、第1の正極活物質の粒径に比べて、大きいまたは同じであるので、実施例と比べると、充填性が低下した。
さらに、比較例5―1〜比較例5−3では、第1の正極活物質を、ジルコニウム(Zr)およびスズ(Sn)を含まないものにしたので、実施例と比べると、低温特性、50℃サイクル特性が低下した。
さらに、比較例6−1〜比較例6−4では、第2の正極活物質の混合割合が少ないので、実施例と比べると、充填性、低温特性、50℃サイクル特性が若干低下した。
以上、この発明の実施形態および実施例について具体的に説明したが、この発明は、上述の実施形態および実施例に限定されるものではなく、この発明の技術的思想に基づく各種の変形が可能である。
例えば、上述の実施形態および実施例において挙げた数値はあくまでも例に過ぎず、必要に応じてこれと異なる数値を用いてもよい。
また、上述の実施形態および実施例の各構成は、本発明の主旨を逸脱しない限り、互いに組み合わせることが可能である。
また、上述の実施形態および実施例では、電解質36として電解液またはゲル状の電解質を用いる場合について説明したが、他の電解質を用いるようにしてもよい。他の電解質としては、イオン伝導性を有する固体電解質、固体電解質と電解液とを混合したもの、あるいは固体電解質とゲル状の電解質とを混合したものが挙げられる。
なお、固体電解質には、例えば、イオン伝導性を有する高分子化合物に電解質塩を分散させた高分子固体電解質、またはイオン伝導性ガラスあるいはイオン性結晶などよりなる無機固体電解質を用いることができる。高分子固体電解質の高分子化合物としては、例えば、ポリエチレンオキサイドあるいはポリエチレンオキサイドを含む架橋体などのエーテル系高分子化合物、ポリメタクリレートなどのエステル系高分子化合物、アクリレート系高分子化合物を単独あるいは混合して、または共重合させて用いることができる。また、無機固体電解質としては、窒化リチウムあるいはリン酸リチウムなどを含むものを用いることができる。
また、上述の実施形態および実施例では、電池素子が巻回されている場合について説明したが、正極と負極とをセパレータおよび電解質を介して積層したカード型の電池素子を備える場合、または、2以上の正極と負極とをセパレータおよび電解質を介して交互に積層した積層型の電池素子を備える場合、または、正極と負極とをセパレータおよび電解質層を介して積層しつづら折りにした電池素子を備える場合についても、本発明を同様に適用することができる。
さらに、上述の実施形態および実施例では、円筒型およびフィルム状の外装部材41を用いる場合について説明したが、この発明は、例えば角型、コイン型あるいはボタン型の二次電池にも適用することができる。その場合も、同様の効果を得ることができる。加えて、二次電池に限らず一次電池にも適用することができる。
この発明の一実施形態による正極活物質を用いた二次電池の第1の例の一構成例を示す斜視図である。 図1に示した巻回電極体の断面図である。 この発明の一実施形態による正極活物質を用いた二次電池の第2の例の一構成例を示す斜視図である。 図3に示した電池素子のIV−IV線に沿った断面図である。
符号の説明
11・・・電池缶、12、13・・・絶縁板、14・・・電池蓋、15・・・安全弁機構、16・・・熱感抵抗素子、17・・・ガスケット、20・・・巻回電極体、21、33・・・正極、21A、33A・・・正極集電体、21B、33B・・・正極活物質層、22、34・・・負極、22A、34A・・・負極集電体、22B、34B・・・負極活物質層、23、35・・・セパレータ、24・・・センターピン、25、31・・・正極リード、26、32・・・負極リード、30・・・電池素子、36・・・電解質、37・・・保護テープ、41・・・外装部材、42・・・密着フィルム

Claims (8)

  1. 第1の正極活物質と、第2の正極活物質とを、95:5〜70:30の重量比(第1の正極活物質:第2の正極活物質)で混合した混合物よりなる正極活物質であって、
    上記第1の正極活物質は、
    リチウム(Li)、コバルト(Co)、第1元素および第2元素を含むリチウムコバルト複合酸化物と、第1副成分元素および第2副成分元素と、
    を含有するものであり、
    上記第1元素は、アルミニウム(Al)、クロム(Cr)、バナジウム(V)、マンガン(Mn)および鉄(Fe)からなる群のうちの少なくとも1種であり、
    上記第2元素は、マグネシウム(Mg)およびカルシウム(Ca)からなる群のうちの少なくとも1種であり、
    上記第1副成分元素は、チタン(Ti)、ジルコニウム(Zr)およびハフニウム(Hf)からなる群のうちの少なくとも1種であり、
    上記第2副成分元素は、ケイ素(Si)、ゲルマニウム(Ge)およびスズ(Sn)からなる群のうちの少なくとも1種であり、
    コバルト(Co)と、上記第1元素と、上記第2元素とのモル比は、コバルト(Co)の組成をa、上記第1元素の組成をb、上記第2元素の組成をcとすると、それぞれ0.9≦a<1、0.001≦b≦0.05、0.001≦c≦0.05の範囲内であり、
    上記第1の副成分元素の含有量は、コバルト(Co)に対する割合で、0.01mol%以上10mol%以下の範囲内であり、
    上記第2の副成分元素の含有量は、コバルト(Co)に対する割合で、0.01mol%以上10mol%以下の範囲内であり、
    上記第2の正極活物質は、
    化1で表されるリチウム遷移金属複合酸化物であること
    を特徴とする正極活物質。
    (化1)
    LipNi(1-q-r)CoqMnra2
    (化1において、Aはマグネシウム(Mg)、アルミニウム(Al)のうちの少なくとも1種である。aは0≦a≦0.10である。p、q、rは、0.05≦p≦1.15、0.4≦q+r≦0.70、0.05≦r≦0.40である。)
  2. 上記リチウムコバルト複合酸化物は、化2で表されること
    を特徴とする請求項1記載の正極活物質。
    (化2)
    LixCoaM1bM2c2
    (化1において、M1は第1元素、M2は第2元素を表し、x、a、bおよびcはそれぞれ0.9≦x≦1.1、0.9≦a<1、0.001≦b≦0.05、0.001≦c≦0.05、a+b+c=1の範囲内の値である。)
  3. 上記第1の正極活物質において、上記第1副成分元素および上記第2副成分元素の少なくとも一部は、化合物として、上記リチウムコバルト複合酸化物の結晶粒界に存在することを特徴とする請求項1記載の正極活物質。
  4. 上記第1の正極活物質の平均粒径は、5μm〜25μmであり、
    上記第2の正極活物質の平均粒径は、1μm〜15μmであり、
    (第1の正極活物質の平均粒径/第2の正極活物質の平均粒径)>1.6であること
    を特徴とする請求項1記載の正極活物質。
  5. 正極および負極と、電解質と、を備えた電池であって、
    上記正極は、第1の正極活物質と、第2の正極活物質とを、95:5〜70:30の重量比(第1の正極活物質:第2の正極活物質)で混合した混合物よりなる正極活物質を有し、
    上記第1の正極活物質は、
    リチウム(Li)、コバルト(Co)、第1元素および第2元素を含むリチウムコバルト複合酸化物と、第1副成分元素および第2副成分元素と、
    を含有するものであり、
    上記第1元素は、アルミニウム(Al)、クロム(Cr)、バナジウム(V)、マンガン(Mn)および鉄(Fe)からなる群のうちの少なくとも1種であり、
    上記第2元素は、マグネシウム(Mg)およびカルシウム(Ca)からなる群のうちの少なくとも1種であり、
    上記第1副成分元素は、チタン(Ti)、ジルコニウム(Zr)およびハフニウム(Hf)からなる群のうちの少なくとも1種であり、
    上記第2副成分元素は、ケイ素(Si)、ゲルマニウム(Ge)およびスズ(Sn)からなる群のうちの少なくとも1種であり、
    コバルト(Co)と、上記第1元素と、上記第2元素とのモル比は、コバルト(Co)の組成をa、上記第1元素の組成をb、上記第2元素の組成をcとすると、それぞれ0.9≦a<1、0.001≦b≦0.05、0.001≦c≦0.05の範囲内であり、
    上記第1の副成分元素の含有量は、コバルト(Co)に対する割合で、0.01mol%以上10mol%以下の範囲内であり、
    上記第2の副成分元素の含有量は、コバルト(Co)に対する割合で、0.01mol%以上10mol%以下の範囲内であり、
    上記第2の正極活物質は、
    化1で表されるリチウム遷移金属複合酸化物であること
    を特徴とする電池。
    (化1)
    LipNi(1-q-r)CoqMnra2
    (化1において、Aはマグネシウム(Mg)、アルミニウム(Al)のうちの少なくとも1種である。aは0≦a≦0.10である。p、q、rは、0.05≦p≦1.15、0.4≦q+r≦0.70、0.05≦r≦0.40である。)
  6. 上記リチウムコバルト複合酸化物は、化2で表されること
    を特徴とする請求項5記載の電池。
    (化2)
    LixCoaM1bM2c2
    (化1において、M1は第1元素、M2は第2元素を表し、x、a、bおよびcはそれぞれ0.9≦x≦1.1、0.9≦a<1、0.001≦b≦0.05、0.001≦c≦0.05、a+b+c=1の範囲内の値である。)
  7. 上記第1の正極活物質において、上記第1副成分元素および上記第2副成分元素の少なくとも一部は、化合物として、上記リチウムコバルト複合酸化物の結晶粒界に存在することを特徴とする請求項5記載の電池。
  8. 上記第1の正極活物質の平均粒径は、5μm〜25μmであり、
    上記第2の正極活物質の平均粒径は、1μm〜15μmであり、
    (第1の正極活物質の平均粒径/第2の正極活物質の平均粒径)>1.6であること
    を特徴とする請求項5記載の電池。
JP2007069114A 2007-03-16 2007-03-16 正極活物質および電池 Pending JP2008234872A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007069114A JP2008234872A (ja) 2007-03-16 2007-03-16 正極活物質および電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007069114A JP2008234872A (ja) 2007-03-16 2007-03-16 正極活物質および電池

Publications (1)

Publication Number Publication Date
JP2008234872A true JP2008234872A (ja) 2008-10-02

Family

ID=39907452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007069114A Pending JP2008234872A (ja) 2007-03-16 2007-03-16 正極活物質および電池

Country Status (1)

Country Link
JP (1) JP2008234872A (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086277A1 (ja) 2010-12-20 2012-06-28 三洋電機株式会社 非水電解質二次電池用正極及びその正極を用いた非水電解質二次電池
WO2013025328A2 (en) 2011-08-16 2013-02-21 Tiax Llc Polycrystalline metal oxide, methods of manufacture thereof, and articles comprising the same
US8703339B2 (en) 2009-06-05 2014-04-22 Samsung Sdi Co., Ltd. Positive active material and positive electrode for rechargeable lithium battery and rechargeable lithium battery including the positive electrode
CN104396061A (zh) * 2012-06-21 2015-03-04 Agc清美化学股份有限公司 锂离子二次电池用正极活性物质及其制造方法
JP2015528181A (ja) * 2012-08-03 2015-09-24 エルジー・ケム・リミテッド 二次電池用正極活物質及びそれを含むリチウム二次電池
KR20190008637A (ko) 2017-07-17 2019-01-25 주식회사 엘지화학 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR20190027613A (ko) 2017-09-07 2019-03-15 주식회사 엘지화학 리튬 이차전지용 양극재 및 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR20190090722A (ko) 2018-01-25 2019-08-02 주식회사 엘지화학 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
US10501335B1 (en) 2019-01-17 2019-12-10 Camx Power Llc Polycrystalline metal oxides with enriched grain boundaries
CN111342042A (zh) * 2016-08-01 2020-06-26 宁德新能源科技有限公司 正极材料及其制备方法、正极极片及锂离子电池
US10950857B2 (en) 2019-01-17 2021-03-16 Camx Power Llc Polycrystalline metal oxides with enriched grain boundaries
JP2021141064A (ja) * 2020-03-03 2021-09-16 三星エスディアイ株式会社Samsung SDI Co., Ltd. 全固体二次電池用正極、及びそれを含む全固体二次電池
US11158853B2 (en) 2016-04-27 2021-10-26 Camx Power Llc Nanocrystals of polycrystalline layered lithium nickel metal oxides
US11424449B2 (en) 2019-01-25 2022-08-23 Camx Power Llc Stable cathode materials
US11450846B2 (en) 2017-10-19 2022-09-20 Lg Energy Solution, Ltd. Positive electrode material for lithium secondary battery, method of preparing the same, and positive electrode for lithium secondary battery and lithium secondary battery which includes the positive electrode material
US11637275B2 (en) 2017-09-19 2023-04-25 Lg Energy Solution, Ltd. Positive electrode material for lithium secondary battery, method of preparing the same, and positive electrode for lithium secondary battery and lithium secondary battery which include the positive electrode material

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8703339B2 (en) 2009-06-05 2014-04-22 Samsung Sdi Co., Ltd. Positive active material and positive electrode for rechargeable lithium battery and rechargeable lithium battery including the positive electrode
WO2012086277A1 (ja) 2010-12-20 2012-06-28 三洋電機株式会社 非水電解質二次電池用正極及びその正極を用いた非水電解質二次電池
US9437869B2 (en) 2010-12-20 2016-09-06 Sanyo Electric Co., Ltd. Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the positive electrode
JP2017105709A (ja) * 2011-08-16 2017-06-15 ティアックス エルエルシーTiax Llc 多結晶金属酸化物、その製造方法、およびそれを含む物
WO2013025328A2 (en) 2011-08-16 2013-02-21 Tiax Llc Polycrystalline metal oxide, methods of manufacture thereof, and articles comprising the same
WO2013025328A3 (en) * 2011-08-16 2013-07-04 Tiax Llc Polycrystalline metal oxide, methods of manufacture thereof, and articles comprising the same
CN103702942A (zh) * 2011-08-16 2014-04-02 蒂艾克思股份有限公司 多晶金属氧化物、其制备方法以及包括该多晶金属氧化物的制品
JP2014528891A (ja) * 2011-08-16 2014-10-30 ティアックス エルエルシーTiax Llc 多結晶金属酸化物、その製造方法、およびそれを含む物
EP3604230A1 (en) * 2011-08-16 2020-02-05 Tiax Llc Polycrystalline metal oxide, methods of manufacture thereof, and articles comprising the same
US9209455B2 (en) 2011-08-16 2015-12-08 Tiax Llc Polycrystalline metal oxide, methods of manufacture thereof, and articles comprising the same
US9391317B2 (en) 2011-08-16 2016-07-12 Tiax Llc Polycrystalline metal oxide, methods of manufacture thereof, and articles comprising the same
EP3141528A1 (en) * 2011-08-16 2017-03-15 Tiax Llc Polycrystalline metal oxide, methods of manufacture thereof, and articles comprising the same
CN104396061A (zh) * 2012-06-21 2015-03-04 Agc清美化学股份有限公司 锂离子二次电池用正极活性物质及其制造方法
US10424777B2 (en) 2012-06-21 2019-09-24 Sumitomo Chemical Co., Ltd. Cathode active material for lithium ion secondary battery, and method for its production
US9825283B2 (en) 2012-08-03 2017-11-21 Lg Chem, Ltd. Cathode active material for secondary battery and lithium secondary battery comprising the same
JP2015528181A (ja) * 2012-08-03 2015-09-24 エルジー・ケム・リミテッド 二次電池用正極活物質及びそれを含むリチウム二次電池
US11158853B2 (en) 2016-04-27 2021-10-26 Camx Power Llc Nanocrystals of polycrystalline layered lithium nickel metal oxides
US11682762B2 (en) 2016-04-27 2023-06-20 Camx Power Llc Nanocrystals of polycrystalline layered lithium nickel metal oxides
CN111342042A (zh) * 2016-08-01 2020-06-26 宁德新能源科技有限公司 正极材料及其制备方法、正极极片及锂离子电池
KR20190008637A (ko) 2017-07-17 2019-01-25 주식회사 엘지화학 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
US11769877B2 (en) 2017-07-17 2023-09-26 Lg Energy Solution, Ltd. Positive electrode for lithium secondary battery, preparation method thereof, and lithium secondary battery including same
KR20190027613A (ko) 2017-09-07 2019-03-15 주식회사 엘지화학 리튬 이차전지용 양극재 및 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
US11637275B2 (en) 2017-09-19 2023-04-25 Lg Energy Solution, Ltd. Positive electrode material for lithium secondary battery, method of preparing the same, and positive electrode for lithium secondary battery and lithium secondary battery which include the positive electrode material
US11450846B2 (en) 2017-10-19 2022-09-20 Lg Energy Solution, Ltd. Positive electrode material for lithium secondary battery, method of preparing the same, and positive electrode for lithium secondary battery and lithium secondary battery which includes the positive electrode material
KR20190090722A (ko) 2018-01-25 2019-08-02 주식회사 엘지화학 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
US10950857B2 (en) 2019-01-17 2021-03-16 Camx Power Llc Polycrystalline metal oxides with enriched grain boundaries
US10843936B2 (en) 2019-01-17 2020-11-24 Camx Power Llc Polycrystalline metal oxides with enriched grain boundaries
US10793445B2 (en) 2019-01-17 2020-10-06 Camx Power Llc Polycrystalline metal oxides with enriched grain boundaries
US10501335B1 (en) 2019-01-17 2019-12-10 Camx Power Llc Polycrystalline metal oxides with enriched grain boundaries
US11424449B2 (en) 2019-01-25 2022-08-23 Camx Power Llc Stable cathode materials
JP2021141064A (ja) * 2020-03-03 2021-09-16 三星エスディアイ株式会社Samsung SDI Co., Ltd. 全固体二次電池用正極、及びそれを含む全固体二次電池
JP7130911B2 (ja) 2020-03-03 2022-09-06 三星エスディアイ株式会社 全固体二次電池用正極、及びそれを含む全固体二次電池
US11909043B2 (en) 2020-03-03 2024-02-20 Samsung Sdi Co., Ltd. Positive electrode for all-solid secondary battery and all-solid secondary battery including the same

Similar Documents

Publication Publication Date Title
US9985262B2 (en) Battery
JP5568886B2 (ja) 活物質、電池および電極の製造方法
JP2008234872A (ja) 正極活物質および電池
JP5315591B2 (ja) 正極活物質および電池
JP5178111B2 (ja) 非水電解質電池およびパック電池
JP4626568B2 (ja) リチウムイオン二次電池
JP6394743B2 (ja) セパレータおよび電池
JP2010129471A (ja) 正極活物質および非水電解質電池
JP2006134770A (ja) 正極および電池
JP2007194202A (ja) リチウムイオン二次電池
KR101404392B1 (ko) 정극 활물질 및 비수 전해질 2차 전지
JP2006252895A (ja) 電池
JP2009117159A (ja) 正極及びリチウムイオン二次電池
US8841025B2 (en) Positive electrode with heteropoly and phosphorous additives and nonaqueous electrolyte battery
JP2008060033A (ja) 正極活物質、これを用いた正極および非水電解質二次電池、並びに正極活物質の製造方法
JP2010080407A (ja) 正極活物質、正極および非水電解質二次電池に関する。
JP4210892B2 (ja) 二次電池
JP2008282667A (ja) 有機電解質を用いたリチウムイオン2次電池の正極活物質
JP2007103119A (ja) 正極材料、正極および電池
JP2004134207A (ja) 正極活物質及び非水電解質二次電池
JP4240060B2 (ja) 正極活物質および電池
JP4482822B2 (ja) 正極活物質および電池
JP2012074403A (ja) 二次電池
JP5417686B2 (ja) セパレータおよび電池
JP2007335175A (ja) 非水電解質電池の電極合剤層用塗料組成物の製造方法、非水電解質電池用電極及び非水電解質電池