WO2001023519A1 - Procede de mise en culture d'algues permettant de produire des pigments phototropes, des acides gras fortement insatures ou des polysaccharides a forte concentration - Google Patents

Procede de mise en culture d'algues permettant de produire des pigments phototropes, des acides gras fortement insatures ou des polysaccharides a forte concentration Download PDF

Info

Publication number
WO2001023519A1
WO2001023519A1 PCT/JP2000/006611 JP0006611W WO0123519A1 WO 2001023519 A1 WO2001023519 A1 WO 2001023519A1 JP 0006611 W JP0006611 W JP 0006611W WO 0123519 A1 WO0123519 A1 WO 0123519A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
algae
peripheral wall
transparent material
cylindrical
Prior art date
Application number
PCT/JP2000/006611
Other languages
English (en)
French (fr)
Inventor
Seishiro Hirabayashi
Alexander Prilutsky
Hisato Sadamatsu
Original Assignee
Micro Gaia Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micro Gaia Co., Ltd. filed Critical Micro Gaia Co., Ltd.
Priority to AU73213/00A priority Critical patent/AU7321300A/en
Priority to US09/831,905 priority patent/US6579714B1/en
Priority to IL14342100A priority patent/IL143421A0/xx
Priority to EP00961223A priority patent/EP1138757A4/en
Publication of WO2001023519A1 publication Critical patent/WO2001023519A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/46Means for fastening
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • C12M31/02Means for providing, directing, scattering or concentrating light located outside the reactor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus

Definitions

  • the present invention relates to a method for producing algae containing a polyunsaturated fatty acid, a photosynthetic pigment, and an alga capable of producing a polysaccharide or a polysaccharide, and culturing the algae containing these in an algal body. More specifically, algae capable of producing polyunsaturated fatty acids, photosynthetic pigments, and / or polysaccharides are cultured in a specific culture device at a high concentration under light irradiation in a culture medium under aeration conditions. The present invention relates to a method for efficiently producing algae containing these polyunsaturated fatty acids, photosynthetic pigments, and polysaccharides in high concentrations in the algae. Background art
  • Algae absorbs carbon dioxide and biosynthesizes useful substances by photosynthesis.In this case, it is important that cultivation of algae is performed efficiently, so a cultivation device for efficient photosynthesis is necessary. It is. For this reason, improvement of culture equipment and development of new culture equipment are being carried out.
  • algae culture devices for example, a culture pond, a raceway type culture device, a tubular type culture device, a liquid film formation culture device, and the like have been widely known.
  • a culture pond or cultivation tank is made outside in a culture pond, and a culture solution is put into the tank to form a pond in which microalgae such as chlorella are cultured using sunlight.
  • this type requires a pond surface area of, for example, 300 000 m 2 , and is usually large.
  • the liquid depth cannot be more than 15 cm, and extensive cultivation of algae requires vast land.
  • the concentration of the culture solution cannot be increased, there is a problem that when the culture is recovered from the solution, the culture must be recovered from an enormous amount of the low concentration culture solution.
  • the culture pond must be agitated to facilitate the photosynthesis of the algae, but a large amount of energy is required to agitate the low-concentration liquid. Furthermore, since the culture pond is open and open, foreign substances such as dust and dirt are easily mixed into the liquid, and microorganisms or other algae floating in the air are mixed into the pond and propagate. Therefore, there is also a problem that a high-purity, high-quality culture cannot be obtained. Also, since the culture pond is outdoors, its temperature fluctuates due to climate change, and it is very difficult to maintain a constant pond temperature. In particular, there is a drawback that the temperature in winter falls depending on the area.
  • a raceway-type culture device is a device in which the inside of a culture tank is divided by a straightening plate to form a circuit for the culture solution, and the algae are cultured by a method in which the culture solution is circulated by a circulation means. .
  • This method is an improvement of the culture solution method, but as in the culture method using a culture pond, the rate of photosynthesis of algae decreases with the progress of culture. For this reason, there is also a problem that the utilization efficiency of carbon dioxide is low.
  • Japanese Utility Model Application No. 5-430900 Japanese Utility Model Application No. 5-430900
  • the tubular culture device is a device for culturing algae and the like using a culture tank composed of a light-transmitting tube. Cultivation of algae using this device eliminates contamination of the culture solution by various bacteria and can increase the culture concentration.Therefore, algae are separated from the culture solution and useful substances produced by the algae are collected. This is a very advantageous method in some cases.
  • the liquid film forming culture device has a light-transmissive dome-shaped lid on the upper surface of the culture tank, and ejects the culture solution from below onto the inner surface of the top of the dome-shaped lid, so that the liquid film of the culture solution is formed on the inner surface of the lid. Is formed, and the liquid film is irradiated with light (Japanese Patent Application Laid-Open No. 8-318159).
  • this proposed method requires a circulating pump to keep the liquid film formed, is not suitable for mass culture, and has problems such as the inability to use sunlight.
  • the panel-type cultivation device is a device that cultivates algae by installing a thin box-shaped device using two resin panel plates at an angle.
  • This device itself is, for example, a closed type like a tuber type culturing device, and has an advantage that there is no contamination of the culture solution due to contamination of various bacteria and garbage.
  • a problem arises in that oxygen gas generated with the progress of nutrients is dissolved in the culture solution and accumulates in the device, and this oxygen inhibits the photosynthesis of algae.
  • the sun's altitude and the angle of light that strikes the device surface change with time from sunrise to sunset, so the total amount of sunlight received per installation area is not sufficient. .
  • Japanese Patent Application Laid-Open No. 10-304867 discloses a method for easily designing a panel-type culture apparatus having an optimal light environment. In other words, a method was found in which the relationship between the amount of transmitted light and the substance production activity and the relationship between the amount of transmitted light and the optical path length of the reactor could be combined to easily design the optical path length of the culture apparatus. Proposed.
  • Algae accumulate useful substances in the body by photosynthesis, and it is a major problem how to make algae photosynthesize efficiently.
  • Possible factors for efficient photosynthesis include enlargement of the light receiving area of the culture device, efficient stirring of the culture solution, adjustment of the thickness or depth of the culture solution, and algae adhering to the inner surface of the culture device. Easy removal and cleaning, temperature control, prevention of bacteria and other algae and contaminants.
  • the problem of the light-receiving area depends on how large the light-receiving area is and how efficiently light is applied to the culture solution.
  • the surface area is determined by the surface of the culture tank or culture pond, so increasing the surface area can be achieved only by increasing the size of the culture tank or pond. There is no means.
  • Agitation of the culture solution is indispensable to uniformly irradiate the culture pond with light.
  • the means is, for example, by stirring or moving the solution with a pump, or by mechanical stirring in a tank pond. There are many things.
  • the photosynthetic rate differs depending on the type of algae, it is necessary to change the depth of the culture solution between slow and fast ones, and also to change the depth according to the target culture concentration.
  • the thickness of the culture solution is different from the algal type and purpose. It must be freely adjustable according to conditions such as culture concentration. Removal and washing of algae adhering to the inner surface of the culture device is not a problem in outdoor open culture ponds and culture tanks.However, in a closed culture device, the attached algae do not pass light. However, this removal and cleaning must be performed. At the stage when the culture is completed, the inner surface of the device must be cleaned and the attached structure must be easily removed for the next culture.
  • Temperature control is very important, especially in closed systems, as the temperature of the solution will rise too much in the summertime and cultivation problems will occur.
  • One solution to this problem is to mix cold water into the culture, but the culture must be diluted and a large amount of the diluted culture must be handled in the next step of collecting the culture. Therefore, this method is industrially very disadvantageous.
  • the culture device is usually either a device for outdoor use or a device for indoor use. For this reason, when an outdoor device is used indoors, there arises a problem that light utilization efficiency is low, and on the other hand, there is a problem that an indoor device cannot be used outdoors. There is a need for a simple-structured culture device that can be cultured indoors and outdoors under normal culture conditions.
  • Agitation of the culture solution is an absolutely necessary operation for uniformly culturing the culture. This is because (1) there is a difference in cultivation rate between the surface layer and the deep part of the liquid medium. (2) Gases such as air and carbon dioxide must be evenly distributed over the liquid medium, that is, the entire culture solution. Therefore, (3) light must be evenly distributed to the algae to be cultured, and (2) algae that easily form colonies during culture are prevented from settling and accumulating at the bottom of the liquid, and are redispersed in the culture solution. In order to make sure that
  • the present invention improves the disadvantages of the conventional culture method as described above, and provides a safe culture.
  • Fish feed, photosynthetic pigments for food additives, and unsaturated fatty acids used in medicine, health foods, etc. are used to cultivate algae that produce polysaccharides at high yields and at low cost.
  • Another object of the present invention is to provide a method for producing an algae containing a photosynthetic pigment and Z or a polysaccharide at a high concentration in an algal body efficiently and without being contaminated by impurities or the like.
  • a medium is filled in a void space composed of an inner transparent material and an outer transparent material, and air or carbon dioxide gas is inserted from the bottom and light is emitted under aeration conditions.
  • Irradiation causes algae to perform photosynthesis, thereby producing a large amount of polyunsaturated fatty acids, photosynthetic pigments and / or polysaccharides in the algae, and producing algae containing these.
  • high-concentration culture can be achieved without being contaminated by other algae, garbage, germs and the like.
  • the present invention provides a highly unsaturated culture by culturing algae capable of producing highly unsaturated fatty acids, photosynthetic dyes, and polysaccharides in a culture medium under light irradiation and aeration under culture using a culture apparatus.
  • the culturing apparatus is selected from those having a dome shape, a conical shape or a cylindrical shape
  • the dome-shaped culture device comprises an outer hemispherical dome made of a transparent material, an inner hemispherical dome made of a transparent material, and a bottom connecting both lower ends of the dome, and a top portion of the outer hemispherical dome.
  • a cylindrical opening is provided, and a member for introducing air and Z or carbon dioxide gas and a member for discharging a culture solution are provided at the bottom.
  • the conical culture device comprises an outer conical peripheral wall made of a transparent material, a transparent inner conical peripheral wall, and a bottom connecting the lower ends of both peripheral walls, and a cylindrical opening is provided at the top of the outer conical peripheral wall.
  • a member for introducing air and / or carbon dioxide and a member for discharging culture solution are provided at the bottom.
  • the cylindrical culture device comprises an outer cylindrical peripheral wall having an upper wall made of a transparent material, an inner cylindrical peripheral wall having an upper wall made of a transparent material, and a bottom portion connecting the lower ends of both peripheral walls.
  • a cylindrical opening is provided at the center of the upper wall of the outer cylindrical peripheral wall, and a member for introducing air and Z or carbon dioxide gas and a culture solution are provided at the bottom.
  • a method comprising using a device provided with a discharge member.
  • algae capable of producing polyunsaturated fatty acids, photosynthetic pigments and / or polysaccharides are cultured in a culture medium at a high concentration under light irradiation and aeration under culture conditions using a culture apparatus, whereby polyunsaturated fatty acids and Z or
  • the culture device comprises a culture device main body and a gas discharge device, and
  • the culturing apparatus body is a dome-shaped, conical or cylindrical culturing apparatus, and the dome-shaped culturing apparatus includes an outer hemispherical dome made of a transparent material, an inner hemispherical dome made of a transparent material, and both domes.
  • a bottom portion connecting the lower ends of the outer hemispherical dome, and a cylindrical opening is provided at the top of the outer hemispherical dome, and a culture solution discharging member is provided at the bottom.
  • the conical culture apparatus comprises an outer conical peripheral wall made of a transparent material, an inner conical peripheral wall made of a transparent material, and a bottom connecting the lower ends of the two peripheral walls.
  • a cylindrical opening is formed at the top of the outer conical peripheral wall.
  • a culture medium discharging member is provided on the bottom portion,
  • the cylindrical culture device comprises an outer cylindrical peripheral wall having an upper wall made of a transparent material, an inner cylindrical peripheral wall having an upper wall made of a transparent material, and a bottom portion connecting lower ends of both peripheral walls, A cylindrical opening is provided at the center of the upper wall of the outer cylindrical peripheral wall, and a culture solution discharging member is provided at the bottom.
  • the gas discharge device is composed of two opposed rectangular substrates, a bubble guide member and a discharge nozzle which are opened downward in a U-shaped cross section or an inverted U-shaped cross section, and the bubble guide member is formed of the rectangular substrate.
  • an inclined wall on the upper surface of the bubble guide member forms an upper wall that is bent substantially horizontally at the upper end and extends, and the inclined wall and the upper It has a side wall that hangs down from both side ends, and the force of the lower end of each side wall is joined at the two upper side surfaces of the rectangular substrate, and the discharge nozzle is punched in the lower part of the inclined wall.
  • the method is characterized by using a device that is attached to the rotation itself through the provided through hole.
  • the culture is characterized in that the transparent material is at least one selected from acrylic resin, polycarbonate, polypropylene, polyethylene, and polyvinyl chloride.
  • the device is used.
  • a watering member may be provided outside the cylindrical opening, and a watering receiver may be provided on the outer periphery of the bottom.
  • An artificial light source may be provided in the space of the conical peripheral wall or the inner cylindrical peripheral wall.
  • the algae culture apparatus used in the present invention is the algae culture apparatus described in the international patent application of the present inventors (PCIII / 3P99 / 018585), and is described below. You.
  • the algae culture device used in the present invention is a culture device selected from any of a dome shape, a conical shape and a cylindrical shape, and the dome-shaped culture device is an outer hemisphere made of a transparent material. It consists of a dome and an inner hemispheric dome made of a transparent material, and a bottom connecting the lower ends of both domes.
  • a cylindrical opening is provided at the top of the outer hemisphere dome, and air and Z or carbon dioxide gas are provided at the bottom.
  • a dome-shaped member is provided with an introduction member and a culture solution discharge member, and, if necessary, a watering member outside the cylindrical opening and a watering receiver on the outer periphery of the bottom.
  • the conical culture device comprises an outer conical peripheral wall made of a transparent material, an inner conical peripheral wall made of a transparent material, and a bottom connecting the lower ends of the two peripheral walls, and a cylindrical opening is provided at the top of the outer conical peripheral wall.
  • the bottom is provided with a member for introducing air and Z or carbon dioxide gas and a member for discharging the culture solution, and, if necessary, a watering member outside the cylindrical opening and a watering receiver around the bottom.
  • the device is characterized by being installed,
  • the cylindrical culture device comprises an outer cylindrical peripheral wall having an upper wall made of a transparent material, an inner cylindrical peripheral wall having an upper wall made of a transparent material, and a bottom portion connecting the lower ends of both peripheral walls,
  • a cylindrical opening is provided at the center of the upper wall of the outer cylindrical peripheral wall, a member for introducing air and Z or carbon dioxide gas and a member for discharging culture solution are provided at the bottom, and air, Z or carbon dioxide is provided at the bottom.
  • a gas introduction member and a culture medium discharge member are provided, and a water sprinkling member is provided outside the cylindrical opening if necessary.
  • a sprinkling receiver is provided on the outer periphery.
  • the gas discharge device for use in the algae culture device consists of two opposing rectangular substrates, a U-shaped cross section or an inverted U-shaped cross section, and a bubble guide member and a discharge nozzle that are open downward.
  • the bubble guiding member is provided to be inclined with respect to the upper side surface of the rectangular substrate, and the inclined wall on the upper surface thereof is bent almost horizontally at the upper end to form an extending upper wall. And a side wall hanging down from both ends of the upper wall, and lower ends of both side walls are joined to an upper surface of the rectangular substrate,
  • the discharge nozzle is a device characterized by being rotatably mounted through a through hole formed in a lower portion of the inclined wall, wherein the discharge nozzle is provided with a rectangular substrate facing the substrate as necessary. At least one of them is bent in the same direction at the front end and the Z or rear end, and a weight adjusting means is provided on at least one of the rectangular substrates.
  • the present invention provides a culture using a culture device in which the above-described culture device and a gas discharge device are combined.
  • any material can be used as long as it is transparent, has excellent light transmission, weather resistance, and UV resistance, such as acrylic resin, polycarbonate, polypropylene, polyethylene, and polychloride. Materials such as vinyl and glass may be mentioned, but synthetic resins are preferred in terms of processing ease and the like, and acrylic resins are particularly preferred because of their ability to have the above properties.
  • the inner material and the outer material can be made of the same transparent material, and different transparent materials, for example, the outer hemispherical dome is made of acryl resin, and the inner hemispherical dome is made of polyvinyl chloride. You can also. Alternatively, different materials may be laminated.
  • the gas to be introduced into the culture device must contain carbon dioxide in its components, but it may be a mixture of carbon dioxide in air to increase the concentration of carbon dioxide, or the air and carbon dioxide may be separated. May be introduced into the apparatus.
  • the gas is introduced into the culture using an introduction member or a gas ejection device, and possibly both.
  • Carbon dioxide is most preferably mixed with air.
  • the air mixed with carbon dioxide rises while stirring the culture, the carbon dioxide is separated into the culture.
  • the air works to remove oxygen generated by the culture from the culture solution.
  • the introduction of carbon dioxide alone in culture the rate of introduction because low Kunar, the c cylindrical openings distributed velocity tends to inevitably be slow carbon dioxide into the culture medium, injected into the culture medium It has the effect of dispersing the air, unused carbon dioxide gas and generated oxygen into the atmosphere, but foreign substances such as dust easily enter the open openings.
  • the opening may be formed integrally with the outer hemispherical dome, the outer conical peripheral wall, or the upper wall of the outer cylindrical peripheral wall, or may be formed by fixing a separately formed one.
  • the dome-shaped, conical-shaped, or cylindrical-shaped culturing device used as the culturing device body may be one in which the outer member and the inner member are integrally formed, or one is integrally formed, and the other is divided into two or four.
  • a member obtained by appropriately dividing the member may be assembled, or a member obtained by dividing both of the members may be assembled.
  • the method of making the device should be determined based on the size and shape of the culture device.
  • the material and structure of the sprinkling receiver are not limited as long as it is a member capable of receiving a water flow that is sprinkled and falls on the outer surface of the apparatus.
  • the material include a metal material and a plastic material.
  • the structure of the sprinkling receiver may be formed separately from the culture device main body, or the lower end portion of the outer member of the culture device may extend in the outer peripheral horizontal direction, and the tip portion may be bent upward.
  • the sprinkling receiver may be formed by extending the lower end of the inner member of the culture apparatus in the outer peripheral horizontal direction and bending the tip thereof upward. Good.
  • the sprinkling receiver is constituted by a member formed separately from the culture device main body.
  • a tubular member having a large number of gas discharge holes may be used, or a member provided with a gas discharge hole at the bottom may be used. Good.
  • the gas introduced into the culture solution from this introduction member is Therefore, it is not necessary to agitate the culture medium mechanically because the culture gas is agitated as the gas rises.Therefore, according to this method, cell destruction by mechanical agitation or shear stress Can be prevented from occurring.
  • oxygen gas generated by photosynthesis can be released more efficiently and faster than the culture solution.
  • a supply member for example, a supply hole provided in the bottom
  • a culture solution is supplied through the supply member
  • the second method is to supply the culture solution from the top cylindrical opening.
  • Providing various kinds of supply members and introduction members in the apparatus complicates the apparatus, and at the same time, causes a problem of contamination when trying to change the type of microalgae to be cultivated.
  • the second method is the most preferable.
  • both the outer member and the inner member of the culture device are made of transparent materials, if an artificial light source is provided in the inner space of the culture device, the cultivation power can be maintained at night in the field culture.
  • efficient continuous culture can be realized by using two artificial light sources inside and outside the culture device.
  • the dome-shaped culture device has a small occupied area but a large surface area, and therefore has a large light receiving area.
  • the culture solution is stirred very well.
  • this device is made of plastic, it can be easily formed by vacuum forming and can be manufactured at the lowest cost.
  • dome-shaped culture device is the most preferred as an algae culture device.
  • the gas discharge device used in the present invention discharges gas such as air obliquely downward toward the bottom of the culture device, the gas discharge device moves forward while bouncing in the device as if the force hops. This action vigorously agitates the culture and releases it. The culture is agitated as the gas elevates the culture. In particular, when the algae to be cultured easily form colonies, the colonies are destroyed by the gas discharged from the gas discharge device, and the algae are dispersed in the culture solution, thereby improving the culture efficiency.
  • the gas discharge device is usually composed of plastic, but is provided with a weight adjusting means to adjust the weight of the device.
  • FIG. 1 is a cross-sectional view of a dome-shaped culture device.
  • FIG. 2 is a partial schematic diagram showing a state during culture by the dome-shaped culture device shown in FIG.
  • FIG. 3 is a front view of the dome-shaped culture device shown in FIG.
  • FIG. 4 is an explanatory diagram showing a mass culture system of algae using the dome-shaped culture device shown in FIGS. 1 to 3.
  • FIG. 5 is a sectional view of a conical culture device of the present invention.
  • FIG. 6 is a front view of the conical culture device of FIG.
  • FIG. 7 is a cross-sectional view of the cylindrical culture device of the present invention.
  • FIG. 8 is a front view of the cylindrical culture device of FIG.
  • FIG. 9 is a perspective view of a gas discharge device.
  • FIG. 10 is a side view of the gas discharge device of FIG.
  • FIG. 11 is a plan view of the gas discharge device of FIG.
  • FIG. 12 is a cross-sectional view of the gas discharge device of FIG.
  • FIG. 13 is an enlarged sectional view of a discharge nozzle of the gas discharge device of FIG.
  • FIG. 14 is an explanatory cross-sectional view showing a state when the gas discharge device discharges gas into the culture solution.
  • FIG. 15 is an explanatory cross-sectional view of a culture device in which a dome-shaped culture device itself and a gas discharge device are combined.
  • FIG. 16 is a partially cutaway top view of FIG.
  • FIG. 17 is an explanatory cross-sectional view of a culture device in which a conical culture device itself and a gas discharge device are combined.
  • FIG. 18 is an explanatory cross-sectional view of a culture device in which a cylindrical culture device itself and a gas discharge device are combined.
  • FIG. 19 is a perspective view showing another example of the gas discharge device of the present invention.
  • FIG. 20 is a perspective view showing another example of the gas discharge device of the present invention.
  • FIG. 21 is a perspective view showing still another example of the gas discharge device of the present invention.
  • FIG. 22 is a sectional view taken along the line XX ′ in FIG. Detailed Description of the Preferred Embodiment
  • FIG. 1 to 3 show a dome-shaped culture device 1.
  • FIG. 3 is a front view of the dome-shaped culturing apparatus 1.
  • a cylindrical opening 4 is provided at the top of the outer hemispherical dome 8, and the dome 8 is cooled outside the cylindrical opening 4.
  • a sprinkling member 3 is provided, and a sprinkling receiver 11 for water sprinkled from the sprinkling member 3 is provided below the dome 8, and the device 1 is supported by a plurality of fixing members 16. ing.
  • a gas introduction member 6 and a culture solution discharge member 7 are attached to the bottom 14 of the culture device.
  • FIG. 1 is a sectional view of the device 1.
  • This device 1 is composed of an outer hemispherical dome 8, an inner hemispherical dome 9, and a bottom portion 14 connecting the lower ends of both domes.
  • a cylindrical opening 4 is provided as a separate member, and a watering member 3 is provided outside the cylindrical opening 4, and cooling water 15 is supplied from the watering member 3 to the dome 8. Water is sprinkled on the surface, and falls while covering the surface of the dome 8 in a film form to reach the sprinkler receiver 11.
  • the temperature of the culture solution 5 is controlled by the cooling water 15 (see FIG. 2).
  • the dome 8, the dome 9, the bottom part 14, the cylindrical opening 4, and the sprinkler receiver 11 are each made of a transparent material.
  • Acryl resin is used as a transparent material.
  • a metal material such as stainless steel can be conveniently used.
  • the cooling water is drained from the sprinkling receiver 11 through a drainage member (not shown). The drained water is stored and reused as cooling water.
  • a gas introduction member 6 for supplying air and / or carbon dioxide to the culture solution 5 and a discharge member 7 for extracting the culture solution 5 from the culture device 1 are attached to the bottom portion 14.
  • a plurality of gas injection pipes 10 each having a large number of injection holes formed in the upper surface of the pipe are arranged, and constitute a part of the gas introduction member 6.
  • the gas supplied by the gas introducing member 6 is most preferably air mixed with carbon dioxide gas, but may be air alone.
  • An artificial light source 2 is provided inside the inner hemispheric dome.
  • the artificial light source 2 allows algae to perform photosynthesis even during outdoor culture at night. In addition, it is possible to allow algae to perform photosynthesis even in the case of indoor culture. Furthermore, in the case of indoor culture, photosynthesis can be performed simultaneously from the outside and inside of the culture device by an artificial light source, and in this case, the depth or thickness of the culture solution can be increased.
  • FIG. 2 schematically shows the state during culture. The gas bubbles 12 released from the gas injection pipe 10 into the culture solution 5 rise in the culture solution 5 along the inner wall of the outer hemispherical dome 8 due to its buoyancy.
  • the upward movement of the bubbles 12 promotes the rise of the culture solution, and at the same time, the carbon dioxide gas contained in the bubbles 12 is supplied to the culture solution, and oxygen generated by algae photosynthesis is taken into the bubbles. Bubbles 12 are released to the atmosphere at the surface of the culture solution.
  • the culture solution flow 17 rising along the inner wall of the dome 8 descends along the wall of the inner hemispherical dome 9.
  • the gas such as air supplied to the culture solution from the vicinity of the bottom not only supplies the carbon dioxide gas to the culture solution but also takes in the generated oxygen and releases it to the atmosphere. Are simultaneously and uniformly stirred. In the summer, when the temperature of the culture solution rises too much and cultivation becomes difficult,
  • the cooling water 1 b is supplied to the surface of the outer hemispherical dome 8 by 3 so that the temperature of the culture solution can be adjusted.
  • the water used for cooling is collected via the sprinkler receiver 11 and reused.
  • Algae rapidly undergo photosynthesis in the daytime under sunlight, proliferate and proliferate, and produce and accumulate useful substances such as proteins, polysaccharides, fatty acids, pigments, vitamins, and polysaccharides in the body. In this case, such photosynthesis does not take place, so that those synthesized during the day can be consumed by the energy consumption of the algae itself. % Of the weight is lost, resulting in a large loss.
  • photosynthesis can be performed by an artificial light source to compensate for the loss.
  • An artificial light source with enough light to perform the minimum photosynthesis is sufficient, but even more photosynthesis can be performed.
  • the artificial light source include a fluorescent lamp, an incandescent lamp, and a halogen lamp.
  • the culture is performed from both the outside and the inside of the culture apparatus 1 using an artificial light source.
  • the use of the artificial light source 2 enables efficient continuous culture for 24 hours.
  • the temperature, liquid level, pH, and dissolved oxygen (D 0 ) Must be constantly measured and these values must be kept within the optimal range. Therefore, it is desirable to mount these sensors in the apparatus, and it is preferable to install them through the cylindrical opening 4 at the top or the dome 8 or the dome 9 through one or both of them. Mounting on the dome complicates the equipment and requires time for cleaning and the like. Therefore, it is most preferable to install the dome through the cylindrical opening 4.
  • the dome-shaped culture device 1 can change the capacity of the space formed between the two domes and the distance between the domes by arbitrarily combining two types of hemispherical domes having different radii. . This means that the amount of culture solution and the thickness or depth of the culture solution can be freely set. Furthermore, since algae adhere to the surface of the device that comes into contact with the culture solution, when removing the attached matter and cleaning, remove the outer hemispherical dome 8 of the combined two types of hemispherical domes. Each can be washed, or both can be removed and washed elsewhere.
  • the outer hemispherical dome it is very convenient to assemble the outer hemispherical dome into two parts, for example.
  • the two types of domes do not need to be integrally molded, but may be divided into a plurality and assembled.
  • the shape of the hemispherical dome may be a hemispherical dome shape obtained by cutting a spherical shape at an appropriate position, but from the viewpoints of light utilization and light reception, a hemispherical dome shape Is most preferred.
  • the size of the dome can be, for example, from about 50 cm in diameter to about 200 cm in diameter, but any size suitable for the type of algae to be cultured, culture conditions and purpose of culture can be used. And a culture device.
  • the interval between the two types of domes depends on the type of algae, culture conditions and culture purpose, but may be set so as to obtain the maximum photosynthetic efficiency. Usually, it is preferably 2.5 cm to 10 cm, more preferably about 5 cra.
  • an outer hemispherical dome 8 with a radius of about 50 cm, an inner hemispherical dome with a radius of about 45 cm, and a dome-shaped culture device 1 with a dome spacing of 5 cm were assembled.At the top of the dome 8 A cylindrical opening 4 with a diameter of 6 ci was formed separately from the dome 8.
  • the algae Spirulina platencis (Spirulina platencis) was cultured using this culture device.
  • the culture concentration was 10 to 20 g / L (liter), and the productivity was 2.0 to 5.0 g ZLZ days. We were able to.
  • the culture concentration is 0.3 to 0.5 g ZL, and the productivity is 0.1 to 0.2 g / L Z day. Then, it was found that the productivity was improved about 10 times as compared with the conventional culture method.
  • Hematococcus pluvialis which produces the red pigment astaxanthin
  • Haematococcus Pluviaris can be cultured at a high concentration of 5 g to 10 L to produce alga bodies (paymas) containing 4% to 8% of the pigment astaxanthin. It turned out to be. It is extremely difficult to culture Haematococcus Pluviaris, which produces this red pigment, using a conventional pond system.
  • the marine algae Nannocholoropsis Oculata could be cultured at a high concentration of about 5 to 10 g / L. In the conventional method, the limit is 0.2 to 0.4 gZL.
  • FIG. 4 shows a system in which a large number of closed field culture devices according to the present invention can be arranged to culture algae simultaneously and in large quantities.
  • Algae may be cultured, or individual devices may be cultured separately with different types, and each device is equipped with various sensors.
  • the culture conditions can be controlled. For this reason, even if the type of algae cultured in each device is different, it is very effective because various culture conditions of each device can be controlled independently.
  • the individual devices are arranged to some extent densely, the light utilization ratio or the light receiving area per occupied area is large, so that it is very convenient, suitable for mass culture, and the productivity is extremely high.
  • FIG. 5 and 6 show a conical culture device 21.
  • FIG. 6 is a front view of the conical culture device 21.
  • a cylindrical opening 24 is provided, and outside the opening 24.
  • a gas introduction member 26 and a culture solution discharge member 27 are attached to the bottom 34 of the device 21.
  • FIG. 5 is a sectional view of the device 21.
  • This device 21 is composed of an outer conical peripheral wall 28 made of a transparent material, an inner conical peripheral wall 29 made of a transparent material, and a bottom 34 connecting the lower ends of both peripheral walls.
  • a cylindrical opening is formed at the top of the outer conical peripheral wall 28.
  • a mouth 24 is provided separately, and a watering member 23 is provided outside the opening 24. Cooling water is sprayed from the watering member 23 onto the surface of the peripheral wall 28, and It falls while covering the surface in a film form and reaches the sprinkler receiver 31. The temperature of the culture solution 25 is controlled by the cooling water.
  • the peripheral wall 28, the peripheral wall 29, the bottom 34, the cylindrical opening 24, and the sprinkler receiver 31 are each made of a transparent material such as acrylic resin.
  • Cooling water is drained from the sprinkling receiver 31 through a drainage member (not shown).
  • a gas inlet member 26 for supplying air and / or carbon dioxide gas to the culture solution 25 and a discharge member 27 for extracting the culture solution 25 from the device 21 are attached to the bottom 34.
  • a plurality of gas inlets are drilled gas inlet tube 3 0 plurality arranged on the tube top, and c constitute a part of the gas introducing member 2 6, the peripheral wall 2
  • An artificial light source 22 is provided in the space inside 9 so that photosynthesis can be continuously performed during the night of outdoor culture.
  • FIG. 7 and 8 show a culture apparatus 41 having a cylindrical shape.
  • FIG. 8 is a front view of the cylindrical culture device 41, and an outer cylindrical peripheral wall 48 having an upper wall 57 made of a transparent material is provided with a cylindrical opening 44 near the center of the upper wall.
  • a watering member 43 for cooling the upper wall 57 and the peripheral wall 48 is provided outside the opening portion 44, and a cooling water sprayed from the watering member 43 is provided below the peripheral wall 48.
  • a receiver 51 is provided, and the device 41 is supported by a plurality of fixing members 56.
  • a gas introduction member 46 and a culture solution discharge member 47 are attached to the bottom 54 of the device 41.
  • FIG. 7 is a sectional view of the device 41.
  • the device 41 is composed of an outer cylindrical peripheral wall 48 having an upper wall 57, an inner cylindrical peripheral wall 49 having an upper wall 58, and a bottom 54 connecting the lower ends of both peripheral walls.
  • a cylindrical opening 44 is provided near the center of the upper wall 57, and a watering member 43 is provided outside the opening 44. The water is sprayed on 57 and reaches the watering receiver 51 while covering the surface of the peripheral wall 48 as a film.
  • the temperature of the culture solution 45 is controlled by cooling water.
  • Perimeter wall 48, Perimeter wall 49, Upper wall 57, Upper wall 58, Cylindrical opening 4 4 and Sprinkler receiver 5 1 is made of a transparent material such as acrylic resin. Cooling water is drained from the sprinkling receiver 51 through a drainage member (not shown). bottom
  • a gas introduction member 46 for supplying gas to the culture solution and a discharge member 47 for extracting the culture solution 45 from the device 41 are attached to 54.
  • a plurality of gas injection pipes 50 each having a large number of gas injection ports formed on the upper surface of the pipes are provided, and constitute a part of the gas introduction member 46.
  • an artificial light source 42 is provided in an inner space formed by the upper wall 58 and the peripheral wall 49 so that photosynthesis can be performed even at night.
  • FIG. 9 to 12 show a perspective view, a side view, a plan view, and a cross-sectional view of the gas discharge device 100, respectively, and FIG. 13 shows an enlarged cross-sectional view of the discharge nozzle of the gas discharge device. .
  • the gas discharge device 100 is composed of opposing rectangular substrates 101, 101 ', a bubble guide member 102 having a U-shaped cross section and opened downward, and a discharge nozzle 103.
  • the bubble guide member 102 is inclined with respect to the upper side surface 107, 107 'of the rectangular substrate, and the inclined wall 104 on the upper surface and the upper end thereof extend substantially horizontally.
  • upper and lower walls 105, 106, and 106 'and 106' that are suspended from both ends of the inclined wall 104 and the upper wall 105.
  • the lower end of 106 ′ is joined to the upper side surface 107, 107 ′ of the double-sided substrate 101, 100 ⁇ .
  • the double-sided substrate is fixed by fixing members 108 and 108 '.
  • the discharge nozzle 103 is rotatably provided through a through hole 109 formed in a lower portion of the inclined wall 104.
  • Nozzle 1 0 3 Sutotsuno the outer peripheral portion of the nozzle 1 0 3 so as not to slip out from the through hole 1 0 9 0 - 1 1 0, 1 1 0, is provided at a position facing the through holes 1 0 9 teeth's ing.
  • dome-shaped, triangular pyramid-shaped or cylindrical-shaped the inner and outer ends of the bottom are concentric circles. It has a circular shape with the center of the disk rounded out. As shown in FIG. 11, the front and rear ends of the rectangular substrate 101, 100 are bent in the same direction so that the hollow bottom can be easily moved.
  • the inclination angle of the inclined wall 104 is 45 with respect to the upper surface of the rectangular substrate. Or 6 It should be designed to be 0 °.
  • FIG. 14 is an explanatory diagram showing a state in which gas is discharged into a culture solution by a gas discharge device.
  • Gas such as air containing L, and air mixed with carbon dioxide gas flows from a gas supply device (not shown) provided separately from the culture device to the discharge nozzle 103 via the gas introduction pipe 111. Is released from the tip toward the bottom 112 of the culture device. The released gas 1 1 3 hits the bottom 1 1 2 and becomes bubbles 1 1 4 and rises inside the bubble guide member 1 0 2, that is, along the inclined wall 10 4 and the upper wall 10 5. Then, it is fed into the culture solution 115 from the end of the upper wall 105. The sent air bubbles 1 1 4 rise in the liquid and are released to the atmosphere on the culture liquid surface.
  • the carbon dioxide is absorbed into the culture, while the bubbles or dissolved oxygen generated by the photosynthesis of the algae are incorporated into the gas. Since the bubbles 114 push the liquid upward at the same time as it rises in the culture solution, the convection of the liquid is generated.
  • the gas and bubbles 114 discharged from the tip of the discharge nozzle 103 generate buoyancy in the gas discharge device itself and also generate propulsion in the direction indicated by the arrow. Therefore, the gas discharge device 100 moves in a state of being lifted in the direction of the arrow. When it moves, the operation of landing on the bottom by the weight of the device 100 and then floating and moving forward is repeated, and this operation causes the culture solution to be greatly stirred.
  • the operation of this gas ejection device in the culture medium is similar to the operation of moving forward while jumping.
  • the member forming the gas ejection device 100 is usually made of plastic, but plastic itself is buoyant in the culture medium and is often very light.Therefore, a plastic with a high specific gravity is added to plastic. Either molded to give a certain amount of weight, or artificial stone-like formed by laminating a layer of rock powder or filler powder bonded to synthetic resin such as epoxy resin on rectangular substrates 101, 100 Object, or a rectangular substrate 101, 101 'with a lower part made of artificial stone-like material and a plastic upper part, or an arbitrary opposing surface of a square substrate 101, 101 mm At this point, a metal weight such as lead can be attached and detached so that the overall weight of the gas discharge device 100 can be adjusted. Most preferred.
  • FIG. 15 is a sectional explanatory view of a culture device 150 in which a gas discharge device 100 ′ and a dome-shaped culture device main body 151 are combined
  • FIG. 16 is a top view thereof. Shows a partially cut-out version.
  • the culture device main body 15 1 is composed of an outer hemispherical dome 15 3, an inner hemispherical dome 15 2, and a bottom 15 4 connecting the lower ends of both domes.
  • the top of 53 is provided with a cylindrical opening 155, and the description of other members is omitted.
  • These materials are all transparent materials, for example acrylic resin.
  • the gas discharge device 100 ′ to which the gas inlet tube 157 is connected is inserted through the cylindrical opening portion 150 of the culture device main body 151 and placed on the bottom portion 154.
  • the gas inlet tube 157 is made of a material such as polyurethane, silicone, or synthetic rubber, and is in contact with the surface of the inner hemispherical dome 152.
  • the device 100 ′ moves forward in the direction indicated by the arrow while jumping in the culture solution. At this time, the culture solution is sufficiently stirred by the discharged gas and the movement of the gas discharge device.
  • the gas introduction tube 157 connected as shown in FIG. 16 is formed on the surface of the inner hemispherical dome 15 2.
  • the device 100 ′ will make a circular motion on the bottom 154 while rubbing, ie washing. That is, the gas guide tube 157 serves to prevent algae from adhering to the surface of the dome 152 and to clean the surface.
  • FIG. 17 is an explanatory cross-sectional view of a culture device 160 formed by combining a gas discharge device 100 ′ and a conical culture device main body 161.
  • the culture device main body 16 1 has an outer conical peripheral wall 16 3 made of a transparent material, an inner conical peripheral wall 16 2 made of a transparent material, and a bottom part 16 4 connecting the lower ends of both peripheral walls. And a cylindrical opening 165 made of a transparent material is provided at the bottom of the peripheral wall 163.
  • an outer conical peripheral wall 16 3 made of a transparent material
  • an inner conical peripheral wall 16 2 made of a transparent material
  • a bottom part 16 4 connecting the lower ends of both peripheral walls.
  • a cylindrical opening 165 made of a transparent material is provided at the bottom of the peripheral wall 163.
  • the gas discharge device 100 ′ to which the gas introduction pipe 167 is connected is inserted through the cylindrical opening 165 and placed on the bottom 164.
  • the device 100 repeats the forward movement while jumping in the culture solution. This movement is as described in the culture device of FIGS. 15 and 16.
  • FIG. 18 is an explanatory cross-sectional view of a culture device 170 in which a gas discharge device 100 ′ ′′ and a cylindrical culture device main body 17 1 are combined.
  • the culture device main body 17 1 has an outer cylindrical peripheral wall 17 3 having an upper wall made of a transparent material, an inner cylindrical peripheral wall 17 2 having an upper wall made of a transparent material, and lower ends of both peripheral walls.
  • a cylindrical opening 175 made of a transparent material is provided at the center of the upper wall of the outer cylindrical peripheral wall 173 which comprises a bottom part 174 connecting the parts.
  • the description of the other members is omitted.
  • the gas discharge device 100 ′ ′′ to which the gas introduction pipe 177 is connected is inserted through the cylindrical opening 175 and placed on the bottom 174.
  • the device 100 ′ ′′ When a gas such as air is supplied to the gas ejection device 100 ′ ′′, the device 100 ′ ′′ repeatedly moves forward while jumping in the culture solution. This movement is as described in the culture device of FIGS. 15 and 16.
  • FIG. 19 is a perspective view showing another embodiment of the gas discharge device used in the present invention.
  • This gas discharging device 200 is different from the structure of the gas discharging device 100 shown in FIG. 9 in that one of the opposed rectangular substrates 201 and 201 ′ has one of the rectangular substrates 201.
  • the force is different in that the length is shorter than that of the other rectangular substrate 20 ⁇ and the front and rear ends are not bent. The other points are the same.
  • reference numeral 202 denotes a bubble guide member
  • reference numeral 203 denotes a discharge nozzle
  • reference numeral 211 denotes a gas introduction pipe
  • reference numeral 201 denotes a rectangular substrate
  • reference numeral 204 denotes an inclined wall
  • reference numeral 205 denotes an upper wall
  • Reference numeral 206 denotes a side wall
  • reference numerals 208 and 208' denote fixing members.
  • FIG. 20 is a perspective view showing another embodiment of the gas discharge device used in the present invention.
  • This gas discharging device 300 is different from the structure of the gas discharging device 100 shown in FIG. 9 in that the front and rear ends of the opposing rectangular substrates 301 and 301 ′ are both formed. They differ in that they are not folded, but are otherwise the same.
  • 302 is a bubble guiding member
  • 303 is a discharge nozzle
  • 310 is a gas guide tube
  • 310, 30 3 are square substrates
  • Reference numeral 304 denotes an inclined wall
  • reference numeral 304 denotes an upper wall
  • reference numeral 303 denotes a side wall
  • reference numerals 307 and 307 ' denote upper side surfaces of a rectangular substrate
  • reference numerals 308 and 308' denote fixing members.
  • a weight (not shown) serving as a weight adjusting means is detachably attached to the rectangular substrates 301 and 301 '.
  • FIG. 21 is a perspective view showing still another practical example of the gas discharge device used in the present invention.
  • FIG. 22 is a sectional view taken along the line XX ′ of the gas discharge device in FIG.
  • the gas discharge device 400 includes an opposing rectangular substrate 401, 401 ′, a cross-section inverted U-shaped, downwardly opened, bubble-shaped air guiding member 402, and a gas conducting member.
  • the inlet pipe 4 1 1 is connected to a discharge nozzle 4 0 3 connected thereto, and the bubble guide member 4 0 2 is provided to be inclined with respect to the upper side 4 0 7, 4 7 ′ of the rectangular substrate portion, and the upper surface thereof is provided.
  • the upper end of the semi-circular inclined wall 4 0 4 is bent almost horizontally while maintaining the semi-circular shape to form an upper wall 4 0 5 extending from the side end of the semi-circular shape.
  • the discharge nozzle 403 is rotatably provided through a through-hole 409 formed in a semicircular top below the inclined wall 404 of the bubble guide member 402 having an inverted U-shaped cross section.
  • the two stoppers 4 10 and 4 10 ′ are located opposite to each other with the stoppers 4 10 and 4 10 ′ interposed therebetween so as not to fall out of the through hole 409.
  • the end formed by the upper wall 405 and both side walls is open, and the rectangular substrates 401, 401 'are fixed by the fixing members 408, 408'. .
  • the two rectangular substrates are not bent at the front end and the rear end, but the front and rear ends of the two rectangular substrates may be bent in the same direction. However, even if only one rectangular substrate has a structure bent at the front end and z or at the rear end, it is similarly used.
  • a weight (not shown) serving as a weight adjusting means is detachably attached to the square substrates 401 and 40 ⁇ .
  • culture device A dome-type algae culture device
  • the first aspect of the present invention is a method for producing an algal body (biomass) by a high-concentration culture method of algae using the culture apparatus A.
  • high-concentration culture of algal bodies refers to the structure of the culture device, the capacity of the culture device, the type of algae used, the initial algal concentration, the type of culture solution, the composition of the culture medium, the pH of the culture medium, Additives that control plant growth, such as culture temperature, amount of light irradiated to the culture vessel, irradiation time, culture time, aeration composition (air and a mixture of air and carbon dioxide), aeration rate, and plant growth hormone It depends on the presence or absence of a scavenger for removing active oxygen, and is not particularly limited.
  • the culture concentration is 1 g to 10 g / L (liter), preferably 3 g to 6 g ZL, more preferably It means culturing in the range of 5 g to 6 g ZL.
  • Examples of the algae capable of producing photosynthetic pigments, polyunsaturated fatty acids and / or polysaccharides which can be preferably used in the present invention, and which can be cultured at a high concentration include, for example, "Biological Diversity of Algae" Can be given as an example.
  • cyanobacteria are prokaryotes that carry out oxygen-evolving photosynthesis, and are classified into the following orders and families.
  • Prokaryotic green algae are oxygen-producing prokaryotic photosynthetic organisms, which are classified into the following orders and families.
  • the order of Prochloronida includes Prochloraceae (Prochloraceae) and Prochlorotrichaceae.
  • the gray algae which has single-cell or colony resistance, cooperates with blue-green algae in cells instead of leaf colonies to perform photosynthesis, and is classified into the following orders and families.
  • For the order Cyanophorales for the order Cyanophorales, for the order Gloeochaetales, for the family Glaucosphaeraceae (for example, Glaucosaceae, Glaucocyslaus, Glaucocylaus, etc.)
  • Rhodophyta Prhodophyceae
  • Rhodophyceae Rhodophyceae
  • Ushikenori subclass Bostophycidae
  • Umizoumen subclasses Nemaliophycidae; a is c
  • the order of Porphyridiales includes Porphyridiaceae (Porphyridiaceae), Cyanidiaceae and Goniotrichiaceae, and Erythropeltidales.
  • the order of the Acrochaetiales of the subfamily Azochamenidae is Acrochaetiaceae (Acrochaetiaceae)
  • the order of the Danores (Palraariales) is the family Rhodophysemataceae and the order of the family Phalamariaceae, (Nemaliales) is, for example, Nemaliaceae.
  • Cryptophyceae are unicellular flagellates and are known to grow in freshwater, brackish water, and seawater, and are classified into the following orders and families. Cryptomonas eyes
  • Cryptomonadidae Crypto marauder adaceae
  • Tocrisis Cryptochrys i daceae
  • Goniomonas Gonio awaken adaceae
  • Power tabreris Catablepharidaceae
  • Hemicelmidaceae Hemiselmidaceae
  • Dinoflagellate is known to grow in freshwater, brackish water and seawater, and is classified into the following orders and families.
  • Order Noctilucales Prologentorume (ProrocentralesA Dinophysiales), Dried munodidia (Gymnodiniales), Peritiniales (Peridiniales), Gonyaulacales (Blastordidines) ) And sessile dinoflagellate Algae (Phytodiniales).
  • the golden algae of the phylum Unepiphyta are classified into the following orders and families.
  • Ochhro marsaceae (Dynobryaceae), Hikarimo (Chlomulinaceae), Chrysamoeva's (Chsamoebaceae), Rhizochrys (Rhizochrysi daceae) ⁇
  • Phaeothamniales Phaeothamniaceae (Phaeothamniaceae) ⁇
  • the yellow-green algae are a monophytic group of variegated plants whose main habitat is freshwater, and are classified into the following eyes. Chloramoebales, Rhizochloridales, Miscococcales, Tribonematales and Vaucheriales.
  • Chlorella and Spirulina are particularly preferably used.
  • Dunaliella As the algae to be cultured in the present invention, various types of algae can be used as described above, but the algae are most preferable in view of the size and the cultivation of culture. it can.
  • the above spirulina is spirulina (Cyanophyceae, Nostocidae, uremoceae), genus Spirulina, filamentous, planktonic algae. More specifically, Spirulina's platensis (Spirulina Platensis;), Spirulina maxima, Spirulina gayitrelli, Spirulina spirulina, Spirulina siamise, Spirulina irumea ] 'or), Spirulina Subsalsa, Spirulina princeps, Spirulina Laxissima, Spirulina Curta, Spirulina, preferably Spirulina ir There are Spirulina's Platensis, Spirulina Maxima, Spirulina's Gay Torelli, and Spirulina Siamise, which are readily available.
  • the method of the present invention for culturing the algae at a high concentration using the culture apparatus A will be described below.
  • the culture concentration is usually 1 g to 10 g / L (liter), preferably 3 g to 10 g ZL, more preferably 5 g or less. This means culturing in the range of 10 gZL.
  • the conventional culture method on a practical scale has an initial algal culture concentration of 0.05 to 0.1 gZL (liter) and a final (harvest) culture concentration of 0.5 to 0.5 gL. 8 gZL.
  • a culture with a culture concentration of 1.0 gZL or more is called a high concentration culture.
  • high-concentration cultures are used in the range of 1.0 to 10.0 OgZL (liter). Defined as enclosure. By reducing the light path of the biodome, 10 gZL can be achieved.
  • the culture device can be arbitrarily selected from the various culture devices described in the specification filed by the present inventors (PCT / JP99 / 1585). Preferably, it has a dome structure.
  • the capacity of the culture device is not particularly limited, but is usually 60 to 150 liters, preferably 80 to 120 liters (L) for maintenance.
  • the initial algal culture concentration of the algae to be used depends on the type of medium, the composition of the medium, the pH of the medium, the cultivation temperature, the amount of light applied to the culture vessel, the irradiation time, and the composition of the aeration (air, mixed gas of air and carbon dioxide).
  • the ratio varies depending on the amount of ventilation, etc., and is not particularly limited, but is usually preferably in the range of 0.03 to 0.5 gZL.
  • the medium varies depending on the type of algae, but a freshwater, seawater, diluted seawater, brackish water, or an artificial medium can be used, or a medium prepared according to a known method can be used.
  • the pH of the medium varies depending on the type of the medium to be used, the type of algae and the like, and is not particularly limited, but is usually in the range of pH 5.5 to 9.0, preferably in the range of pH 7.0 to pH 80. Specifically, for Spirulina, the pH is 8 to 11, preferably 8.5 to 10, and for Hematococcus, the pH is 6.0 to 8.5, preferably, 6.5 to 7.5. The pH is 6.5 to 8.5, preferably around 7.0 to 8.0 for Busis * kiurata.
  • the culture temperature varies depending on the type of algae and is not particularly limited, but is usually an appropriate temperature of 15 to 35.
  • a temperature range of 25 to 35 is preferable, in the case of Hematococcus, a temperature range of 20 to 28 is preferable, and in a case of Nannochlorobsis' Okiurata, a temperature range of 25 to 30 is preferable.
  • the amount of sunlight varies depending on the type of algae used, and is not particularly limited. For example, when spirulina is cultured at a culture volume of 120 liters, the amount is about 18 megajoules.
  • the sunshine time varies depending on the type of algae to be cultured, the culture temperature, and is particularly limited. Usually, however, 10 to 14 hours are preferred.
  • the amount of aeration varies depending on the capacity of the culture vessel, air, a mixed gas of air and carbon dioxide (carbon dioxide concentration: 2.0%), and is not particularly limited.
  • a culture capacity of 120 liters 120 liters
  • 20 liters to 30 liters of Z 20 liters to 30 liters of Z, preferably 25 liters to 30 liters of Z.
  • the culture period is about 10 days, preferably within 10 days.
  • the obtained alga bodies can be isolated by a conventional method, for example, by filtering, centrifuging, washing and drying the alga bodies in the culture solution.
  • the second aspect of the present invention is a method for producing a photosynthetic pigment-rich algae by a high-concentration culture method using the culture apparatus A.
  • high-concentration culture of photosynthetic pigment-containing alga bodies refers to the structure of the culture apparatus, the capacity of the culture apparatus, the type of algae used, the initial algal culture concentration, the type of culture solution, the composition of the culture medium, and the culture medium. pH, culture temperature, amount of light irradiated to the culture vessel, irradiation time, culture time, air composition (air and mixed gas of air and carbon dioxide), air flow, cyst formation method, plant growth hormone, plant growth
  • the culture concentration is usually 1 g to 10 g ZL, preferably 3 g to 10 g ZL. Culture is performed in the range of 5 g to 10 g ZL, and the resulting photosynthetic pigment content is 0.8% to 9%, preferably 4% to 9%, more preferably 7 to 9%, based on dry matter. % Range.
  • the photosynthetic pigments include astaxanthin, antaxanthin, aloxanthin, violaxanthin, echinenone, osquilaxanthin, carotene, canthaxanthin, cryptoxanthin, crocoxanthin, siphonaxanthin, siphonine, zeaxanthin, diadinoxanthin, Carotenoid dyes such as diatoxanthin, dinoxanthine, neoxanthine, neofucoxanthin, fucoxanthin, plasinoxanthin, heteroxanthine, boqueriaxanthin, boukerianxanthin ester, myxoxanthin, myxoxanthol, monadxanthin, rutin, etc.
  • Phycoerythrin, phycoerythrin, phycoerythrin, phycoerythrin, phycoerythrin, phycocynin, phycoerycin Anin And chloroplasts (a, b, cl, c2, c3, d), chloroplasts such as peridinin and the like.
  • the algae suitable for the production of photosynthetic pigments among the algae capable of culturing the algal bodies at a high concentration, those algae which mainly produce photosynthetic pigments are preferable.
  • those algae which mainly produce photosynthetic pigments are preferable.
  • cyanobacterium cyanobacteria chlorophyll a, c-phycocyanine, c-phycoerythrin, arophycocynin,
  • Prokaryotic green plants such as myxoxanthophyll and osquilaxanthin
  • Prokaryotic green algae include chlorophynole (a, b), yS-force rotene and zeaxanthin
  • gray plant phyla gray algae include chlorofinolea a, phycocynan, and arophycosia.
  • Hairy plant phylum (yellow plant phylum)
  • chlorofinole (a, cl, c2, c3), ⁇ -carotene, zeaxanthin, cryptoxanthin, anteraxanthin, violaxanthin, fucoxanthin, neofucoxanthin, Diatoxanthin, Diadinoxanthi Chlorophyllone (a, c1, c2), ⁇ -Rikuorin, Boqueriaxanthin, diatoxanthin, heteroxanthine, neoxanthine, etc.
  • Chlorophyll a ⁇ -potassin, canthaxanthin, antelaki In Raffid Algae, such as Santin, Violaxanthin, Boqueriaxanthin, and Neoxanthine, Chlorofinole (a, cl, c2), ⁇ -cadane, Diade Inoxanthin, Bouqueria Xanthis heteroxanthine, Dinoxanthin, Neoxanthin In diatoms such as xanthine, fucoxanthin, zeaxanthin, and violaxanthin, chlorophyll (a, cl, c2, c3); 0-carotene, echinenone, canthaxanthin, fucoxanthin, neofucoxanthin, diatoxanthine, diaxanthin In brown algae such as dinoxanthine and neoxanthine, chlorophenol (a, c1, c2, c3), 3-caroten
  • Chloralagonion plant phyla such as marten, zeaxanthin, echinenone, diadinoxanthine, and neoxanthine.
  • the photosynthetic pigments contained in the various algae can be produced in high yield and high purity by culturing them in an appropriate medium using the algal culture apparatus of the present inventors.
  • the algae producing astaxanthin used in the present invention preferably Hematococcus punolehi / squirrel (Haematococcus pluvialis), Hematococcus ⁇ lacustris (Haematococcus lacustris), a green algae belonging to the order Clostridium
  • Chlorella fusca Chlorella fusca
  • Chlorella zofingiensis can include chlorellas such as Chlorella homospphaera, and senedesmus (Squidamo) .Algae that produce 9-carotene and zeaxanthin include spirulina, platensis, and spirulina. Maxir, Spirulina's subsalsa, and more preferably Spirulina platensis.
  • green algae can contain astaxanthin (2 mg / g) in a nutrient-deficient environment, for example, Haematococcus is cultured in an N-deficient environment.
  • Photosynthetic pigments can be produced by cystification and pigmentation of algae. Conditions for cyst formation and coloring are as follows: (1) Increase light intensity. For example strong light (50, 000 to 150, 000 lux), (2) medium P0 4 - P a depleting. (3) Medium N (nitrogen), for example, N0 3 - depleting N
  • Addition of a cell division inhibitor for example, addition of vinblastine, which acts as a cell division inhibitor, increases the content of astaxanthin.
  • a further effect can be expected by combining one or more conditions, preferably two or three methods, with each of the above conditions for cyst formation and coloring.
  • N deficiency may be mentioned as preferred examples of the combination, such as P0 4 deprivation.
  • Chlorella dicenedesmus a green algae
  • astaxanthin 1.5 mg
  • chlorella or senedesmus a green algae that biosynthesizes astaxanthin
  • a medium containing 0.2 to 1 M of one or more of sodium and potassium salts a green algae containing a high amount of astaxanthin (4 to 1).
  • OmgZg How to do it has been reported.
  • Algae suitable for collecting photosynthetic pigments include chlorella, spinorelina, donariella, genus Nannochloropsis (eg, Nannochloropsis 0culata), genus Trastochytrium (eg, Thraustochyrium aureun, createcotinium (eg, Crypthecodinium Cohnii) and genus Isochrysis (eg, Isochrysis Galbana).
  • Donaliella (Chlorophyceae)
  • the genus Donaliella of the order Oligophyta contains a large amount of beta-carotene in the algae, and is preferably formed of Donaliella salina (Dimaliella salina) or Dunaliella bardawil, Nariella tiliolecta (Dunaliella tertiolecta).
  • a polysaccharide (polysaccharide) useful as a pharmaceutical raw material can be efficiently produced.
  • the polysaccharide in the present invention means a water-insoluble or water-soluble polysaccharide having a molecular weight of 10,000 or more. Specifically, they are a homoglycan composed of one kind of monosaccharide (single polysaccharide) and a heteroglycan composed of two or more kinds of monosaccharides (complex polysaccharide).
  • homoglycans include glucans such as cellulose, starch, glycogen, caronine, laminaran, and dextran; fructans such as inulin and levan; galacturonans such as mannan, xylan and pectin; and alginic acid.
  • N-acetylglucosamine polymers such as mannuronans and chitin; and guaran, mannan,.
  • Diheterodaricans such as phosphorus, chondroitin sulfate, and ianoleronic acid, fucoidan, agarose, etc. are obtained by algae culture.
  • polysaccharides obtained from algae are, for example, that sulfated polysaccharides from brown algae have anticoagulant and blood purifying activities (lipoprotein lipase activity), antitumor activity, and fucosterols extracted from brown algae. Increases plasminogen activator production in vascular endothelial cells.
  • Algae suitable for the production of polysaccharides include cyanobacteria, red algae, haptoalgae, euphoria, yellow green algae, diatoms, brown algae, green algae, and axle algae.
  • Chlorella genus such as Chlorella vulgaris
  • Nostoc genus such as Nostoc Commune.
  • Polysaccharides can be separated by a conventional method from cultured algae, for example, a method of extracting polysaccharides by destroying algal cells separated from algae culture and then performing an enzymatic reaction. it can. If necessary, after cell disruption, the fat-soluble components in the cells can be treated with a water-miscible organic solvent to remove the polysaccharides after removal.
  • the culture solution of the photosynthetic pigment-containing algae of the present invention may be a known culture medium or a culture medium based on a known method. .
  • the structure of the culture device In high-concentration culture of photosynthetic pigment-containing alga bodies, the structure of the culture device, the capacity of the culture device, the type of algae used, the initial algal culture concentration, the type of culture solution, the composition of the medium, the pH of the medium, the culture temperature, Light intensity, irradiation time, culture time, composition of aeration (air and mixed gas of air and carbon dioxide), aeration rate, method of cyst formation, presence or absence of additives such as plant growth hormone that control plant growth, etc.
  • the culture concentration is usually 1 g to 10 g ZL, preferably 3 g to 10 g ZL, more preferably 5 g to 10 g ZL.
  • the content of photosynthetic pigments obtained by culturing in the range of 10 g ZL is 0.8% to 9%, preferably 4% to 9%, more preferably 7 to 9% based on dry matter.
  • water, artificial culture solution, natural fresh water, brackish water, and seawater, or those appropriately diluted can be used.
  • marine algae for example, the advantage is that deep water, which can be obtained from the deep sea at low temperature, eutrophication, and aseptic conditions, can be used as it is, and it can be cultured while controlling the temperature using the low temperature of deep water. There is. Further, a culture solution can be prepared and used by appropriately diluting the deep water. Furthermore, if necessary, potassium nitrate, ninthium phosphate, dipotassium phosphate, boric acid, magnesium chloride, manganese chloride, sodium molybdate, zinc sulfate, copper sulfate, and iron sulfate can be added.
  • the culture device A can culture these algae at a high concentration, at a high light L and at a utilization efficiency.
  • the culture temperature varies depending on the type of algae to be cultured and the like, and is not particularly limited, but is usually 15 to 35, preferably 20 to 30 and more preferably 2 ⁇ ) 2 to 25.
  • the amount of sunshine varies depending on the type of algae used and is not particularly limited, but is usually 500 to 100,000 lux, preferably 5,000 to 100,000 lux, more preferably 75 lux. , 000 to 100,000 lux.
  • the cultivation time varies depending on the type of algae to be cultured, the cultivation temperature, the amount of sunlight (light amount) and the like, and is not particularly limited, but is usually 7 to 14 days, preferably about 10 days.
  • it if it is attempted to produce the same amount as that of the culture method of the present invention using the conventional method for culturing sulpirina, it usually takes one to several weeks, and the production method of the present invention is significantly improved in terms of time. You can see that it is.
  • a known technique for increasing the amount of photosynthetic pigments can also be used.
  • a method in which green algae (Haematococcus pluvial is) are cultured at a high temperature in order to improve the production ability of astaxanthin and a large amount of astaxanthin is accumulated can be applied.
  • the production of astaxanthin is three times as large as that in 20 ⁇ , and when acetic acid is supplied at that time, carotenoid is synthesized twice as much as when no acetic acid is supplied.
  • the photosynthetic pigments obtained by the production method of the present invention are obtained by isolating, washing, and drying the alga in the culture solution by filtration or centrifugation, etc., according to a conventional method. Then, extract with an appropriate organic solvent, for example, a highly polar solvent such as methanol, ethanol, or acetone, or a combination of at least one of these solvents with hexane or methylene chloride. Can be separated and purified.
  • the method for recovering the desired photosynthetic pigments from the algal cells is not particularly limited, and can be performed according to a known method.
  • carotenoid pigments photosynthetic pigments
  • the cell walls of Hematococcus plavialis are destroyed under high pressure by turbulence, dried, extracted with an organic solvent, and extracted with an astaxanthin carotenoid.
  • a method of obtaining a dye can be used.
  • Algae can be extracted after crushing the cell wall by using a suitable organic solvent according to a conventional method.
  • the third aspect of the present invention is a method for producing algal bodies containing polyunsaturated fatty acids by a high-concentration culturing method of alga that can produce polyunsaturated fatty acids using the culturing apparatus A.
  • the culture concentration is usually 1 g to 10 g L, preferably 3 g to 10 g ZL, more preferably 5 g to 10 g ZL.
  • the content of the polyunsaturated fatty acids obtained by culturing in the above range is 0.8% to 9%, preferably 4% to 9%, more preferably 7 to 9% per dry matter.
  • the polyunsaturated fatty acids obtained by high-concentration culture of algae are not particularly limited, but are usually fatty acids having 18 to 22 carbon atoms having 4 to 6 unsaturated bonds. Means Specifically, docosahexaenoic acid (DHA) with 6 unsaturated bonds and 22 carbon atoms, eicosapentaenoic acid (EPA) with 5 unsaturated bonds and 20 carbon atoms, and 4 unsaturated bonds And arachidonic acid (ARA) having 20 carbon atoms.
  • DHA docosahexaenoic acid
  • EPA eicosapentaenoic acid
  • ARA arachidonic acid
  • a method for producing polyunsaturated fatty acids (DHA) by a conversion reaction using Mortierella bacteria Japanese Patent Application Laid-Open No. Sho 63-185,389
  • a polyunsaturated fatty acid produced by a microorganism capable of producing arachidonic acid Production method of fortified fats and oils Japanese Patent Application Laid-Open No. 1-308492
  • production method of lipid containing polyunsaturated fatty acids from marine microorganisms Japanese Patent Application Publication No.
  • etinosporan A method for producing polyunsaturated fatty acids using bacteria belonging to the genus Echinosporangium (Japanese Patent Application Laid-Open No. Hei 2-323878). A method for obtaining polyunsaturated fatty acids from a culture of Echinosporangium Transversal ie ATCC 16960, 18036 (European Publication No. 355,977), bacteria, and fungi Thraustosi Thorium (Trraustochytrium), Gentmoftra, Japonochytrium (Japonochytrium) sp. ATCC 28207 (Japanese Unexamined Patent Publication No. 1-199588) have been reported.
  • algae suitable for producing polyunsaturated fatty acid-containing algae by high-concentration culture using the culture apparatus A of the present invention algae that produce polyunsaturated fatty acids can be arbitrarily selected from the algae.
  • Isocrysis galvana which produces polyunsaturated fatty acids (DHA), Nannochloropsis oculata and Monodasu which produce polyunsaturated fatty acids (EPA).
  • Subteranas Monodus subterraneus
  • one or more of the above algae can be used in combination.
  • the above Isochrysis Galbana belongs to the marine algae Hapto algae.
  • Kaetceros Grasilis which belongs to the Thornoy algae
  • Isocrisis Galva, Na specifically, Isocrisis Galva'na LB 2307, LB 9807, Kaetoselos Grasilis 2375, Kaetose Mouth S. Calcitrans CCAL 1315, Cryptomonas Subisees LB 2423, Pavlova Ruteli LB 1293, Crycospora and Power Noreterrae LB1004, LB2167. These algae can be used alone or in combination of two or more.
  • EP A a planktonic unicellular alga Monodus (Enodidae), Eustigmatopceae, and Nannnochloropsis oculata, which are rich in EP A, are preferable.
  • 0 culture conditions is a method based on preparation of algal cells in the above (biomass).
  • the photoenvironment in the culture solution can be optimized by a simple method by using the culture apparatus A, so that the culture speed can be further increased by continuous irradiation or discontinuous irradiation.
  • algae can be produced with high purity and high yield by high-concentration culture.
  • known plant growth hormones such as auxin, gibberellins, cytokinin and the like can be added to the medium to promote the growth of algae such as euglena. .
  • the polyunsaturated fatty acids obtained by the production method of the present invention can be obtained by isolating, washing, and drying alga bodies in a culture solution by filtration or centrifugation according to a conventional method. After crushing according to the procedure, use a suitable organic solvent, for example, methanol, ethanol, acetone, etc., and extract with a solvent or one or more of these solvents in combination with hexane, methylene chloride, etc. It can be separated and purified by chromatography, HPLC and the like.
  • the initial algal culture concentration of Isochrysis Galbana (0.3 g ZL) and the following culture conditions [culture volume, 120 liters, composition of medium (Table 1), culture temperature 15 to 25, sunshine intensity and sunshine duration 14.3 megajoules (12.5 hours), M is 30 liters of mixed gas of air and carbon dioxide (carbon dioxide concentration 2.0%), pH of culture medium
  • the alga Isochrysis Galbana was cultured under 7.0 to 8.0 for a culture period of 10 days.
  • pH Used in the range of 7.5 to 8.0.
  • Example 2 Using the culture apparatus, the culture conditions of Example 1, except replacing ZnC 1 2 of medium composition on Z n S 0 4 ⁇ 7 H 2 0 8. 4 m gZL, F e C 1 3 ⁇ 4 H 2 O the F e CI 3. 6 H 2 0 2. instead of 77 GZL, by culturing algae Isokurishisu-galvanometer Ichina (Isochrysis galbana), highly unsaturated fatty acid such by 5. 0 g / L as the culture density ( A high content of algal cells (biomass) containing 7.5% (DHA) per dry matter was obtained.
  • Isokurishisu-galvanometer Ichina Isochrysis galbana
  • highly unsaturated fatty acid such by 5. 0 g / L as the culture density ( A high content of algal cells (biomass) containing 7.5% (DHA) per dry matter was obtained.
  • the initial algal culture concentration (0.5 gZL), the culture conditions shown below (culture volume 120 liters, medium composition (Table 2), culture temperature 25 to 35, sunshine 18 megajoules Zm 2 and sunshine Time 14.5 hours, air flow rate is a mixture of air and carbon dioxide, carbon dioxide concentration 2.0%) for 25 liters, medium pH is 8.5 to 10.0, culture period is 10 days)
  • the algae Spirulina platencis were cultured under the algae. As a result, it was possible to achieve a productivity of 2.0 to 5.0 gZL / day at a culture concentration of 10 to 20 gZL. The productivity was about 10 times that of the conventional culture method of Comparative Example 1 below.
  • Example 1 Under the culture conditions of Example 1 described above, the culture was performed by changing the culture vessel to the conventional culture pond method, and the culture concentration of Spirulina 'platensis was 0.3 to 0.5 norritol, and the productivity was 0.1 to 0. 2 gZLZ days.
  • Example 4 Production of Astaxanthin by Heterococcus pluvialis Using the culture device A, the initial algal culture concentration (0.5 g / L) and the following culture conditions (culture volume 80 liters, medium composition ( Table 3), culture temperature 25 to 30, daylight 17.5 megajoules Zm 2 , daylight 13.5 hours, aeration (mixed gas of air and carbon dioxide, carbon dioxide concentration 2.0%, 25 liters) Haematococcus Pluviaris was cultured under the conditions of pH 7.5 to 8.5, culture days of 10 minutes (Z, min.), The aeration was stopped, and the precipitated algal cells were collected.
  • the medium was then cultured under high light for 4 days.As a result, the algae containing a high concentration of 4% to 8% of the dye astaxanthin was obtained by culturing at a high concentration of 5 g to 10 g / L. Body (biomass) was obtained.
  • Haematococcus Pluvialis (Haematococcus Pluvialis) was cultured by replacing the culture vessel with the conventional culture pond method.
  • Example 5 Production of EP A by Nannochloropsis okyuura overnight culture method Using the culture device A, the initial algal culture concentration (0.4 g / L) of Nannochloropsis Okiura (Nannnochloropsis Oculata), below It culture conditions (the culture volume 120 liters, medium composition (Attachment 5), culture temperature 25 not shown in 30, amount of sunlight and sunshine time 16.3 megajoules Roh m 2, 13. 5 hours, and aeration (air A mixture of carbon dioxide, carbon dioxide concentration 2.0%), 30 liters, medium pH 7.0 to 8.0, culture days 10 days) under the marine algae nannochlorobsis' Okiyura overnight ( Nannnochloropsis Oculata).
  • It culture conditions the culture volume 120 liters, medium composition (Attachment 5), culture temperature 25 not shown in 30, amount of sunlight and sunshine time 16.3 megajoules Roh m 2, 13. 5 hours, and aeration (air A mixture of carbon dioxide, carbon dioxide concentration 2.0%), 30 liters, medium
  • algal cells biomass containing 10% of polyunsaturated fatty acids (EPA) per dry matter could be obtained by high concentration culture of 8 gZL.
  • EPA polyunsaturated fatty acids
  • Example 6 Production of EPA by Nannochlorobsis occura overnight culturing method Using culturing apparatus A, Nannochlorobsis occura overnight was cultured under the same culture conditions as in Example 5.
  • algal cells biomass containing 8% of polyunsaturated fatty acids (EPA) on a dry matter basis were obtained by high concentration culture of 3 gZL.
  • EPA polyunsaturated fatty acids
  • the culture concentration of biomass was within the range of 0.2 to 0.4 gZL in this method.
  • the initial algal culture concentration of snow algae (Paietochloris inciss) 0.5 gZL, and the following culture conditions (culture volume 120 liters, medium composition (Table 5), culture temperature about 25, daylight 15 megagrams)
  • the culture was performed at 30 liters of Joule Zm 2 , aeration rate (mixed gas of air and carbon dioxide, carbon dioxide concentration 2.0%), medium pH 7, and culture time 2 weeks.
  • aeration rate mixed gas of air and carbon dioxide, carbon dioxide concentration 2.0%)
  • medium pH 7, and culture time 2 weeks As a result, algal cells could be cultured up to a final biomass concentration of 0.5 gZL.
  • the algal cells were collected by filtration and dried to obtain those containing 6.5% by weight (w / w%) arachidonic acid per dry weight.
  • the arachidonic acid amount is an amount obtained by converting triarachidonyl glyceride, arachidonic acid monoester, and arachidonic acid diester contained in algal
  • the initial algal culture concentration of Nostoc Cofflnmne 0.5 g / L as the algae and the following culture conditions (culture volume 120 liters, medium composition (Table 6), culture temperature 25, light intensity 7-10 megajoules, medium pH 7.6-7.8, culture period 2 weeks].
  • algal cells were obtained at a final biomass concentration of 4 to 5 g / L.
  • the resulting biomass was extracted with hot water to yield 10-15% polysaccharides per dry weight. Analysis of the extracted polysaccharides revealed 4% ⁇ -i, 3-glucan per dry weight. Table 6
  • Nannochloropsis for example, Nannochloropsis oculata
  • ⁇ sim is useful as a bait for breeding “ ⁇ sim”, which is a feed for fry for aquaculture.
  • Algae of the genus phaeodactylum for example, phaeodactylum tricornutum
  • alga of the genus Cheatoceros for example, Cheatoceros gracilis is a two-shelled prawn, Useful as a crustacean feed.
  • changes in these algae due to changes in the seasons and the environment are left to a halt, and to compensate for this, conventionally, algae were cultured in open ponds (reservoirs) and supplemented.
  • the pond was also affected by natural changes, so it was difficult to stably secure algae, and it was also difficult to obtain only the required specific species efficiently.
  • culture device A the initial algal culture concentration of 0.3 gZL of phaeodactylum tricornutum as algae and the following cultivation conditions [culture volume 120 liters, medium composition (artificial seawater, 8), culture temperature 26, light intensity 5 megajoules, medium pH 7.5 to 8.5, culture period 2 weeks].
  • alga bodies were obtained at a final biomass concentration of 5 gZL.
  • composition of stock solution 1 and stock solution 2 can be found in Tables 9 and 10, respectively.
  • the culture apparatus of the present inventors By using the culture apparatus of the present inventors, it was possible to provide a method for obtaining algal bodies (biomass) with high purity and high yield.
  • the obtained biomass can obtain algal bodies containing photosynthetic pigments and Z or polyunsaturated fatty acids and poly or polysaccharides at a high concentration. For this reason, photosynthetic pigments and Z or highly unsaturated fatty acids and poly or polysaccharides can be easily produced with a relatively simple apparatus.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Clinical Laboratory Science (AREA)
  • Molecular Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

明 細 書 光合成色素類、 高度不飽和脂肪酸類、 多糖類産生藻類の高濃度培養方法 技術分野
本発明は、高度不飽和脂肪酸、光合成色素およびノまたは多糖類の産生能を有 する藻類を培養してこれらを藻体内に含有する藻類を製造する方法に関する。よ り詳しくは、高度不飽和脂肪酸、光合成色素および または多糖類の産生能を有 する藻類を特定の培養装置を用 ヽて、培養基中で光照射下通気条件下で高濃度培 養することにより藻体内にこれらの高度不飽和脂肪酸 ·光合成色素 ·多糖類を高 濃度で含有する藻類を効率よく製造する方法に関するものである。 背景技術
天然由来の藻類から安全な養魚用飼料、食品添加物用の光合成色素類および医 薬、健康食品などに用いられる不飽和脂肪酸類、 あるいは多糖類を高収率かつ安 価に産生する藻類の培養方法の開発が望まれているものの、培養方法が限定され ているためにクロレラとかスピルリナなどごく限られたものだけに注目が集ま り、 効率よく培養する方法力確立されていないのが現状である。
藻類は、 二酸化炭素を吸収し光合成作用により有用物質を生合成するもので、 この場合藻類の培養が効率よく行われることが重要であるから、光合成を効率よ く行われるための培養装置が必要である。 このため、培養装置の改良、新しい培 養装置の開発が行われている。
従来より、藻類の培養装置として、たとえば培養池、レースウェイ型培養装置、 チューブラ型培養装置、液膜形成培養装置などが広く知られている。培養池は屋 外にたとえばコンクリート製の培養池または培養槽を作り、この槽に培養液を入 れて池を形成し、この中でクロレラのような微細藻類を太陽光を利用して培養す る。 しかし、 この形式のものは、たとえば 3 0 0 0 m2 という池の表面積を必要と するから、 通常巨大なものとなってしまう。
また、 この形式により微細藻類を培養した場合、培養が進行するにつれて培養 液中の藻類の濃度が高くなり、液が緑色に濃く染まってしまい、太陽光が培養池 の底部にまで到達しない。 このような現象から、藻類の培養濃度を低くしない限 り、 藻類の光合成効率が全体として低下する問題が生じる。
このため、液の深さを 1 5 cm以上にすることができないし、藻類を大量培養す るためには広大な土地が必要である。また培養液の濃度を高くすることができな いため、培養物を液から回収する場合、膨大な量の低濃度の培養液から培養物を 回収しなければならないという問題が生じている。
一方、 培養池を撹拌して藻類が光合成するのを容易にしなければならないが、 低濃度のぼう犬な液量を撹拌するために多量のエネルギーが必要となる。さらに、 培養池は屋外でしかも開放されているため、ほこり、 ごみなどの夾雑物が液に混 入しやすく、 また、空気中に浮遊する微生物とか別の藻類が池に混入し、繁殖す ることから、純度の高い、高品質の培養物が得られないという問題も生じている。 また、培養池は、屋外であるため気候の変動により温度が上下し、池の温度を 一定に維持すること力、'非常に困難である。特に地域により冬季は温度が下がり過 ぎるという欠点がある。
このような事情から、培養池を利用した藻類の培養は、高 P H、塩分濃度が高 いなどの特殊な条件下で生育することが可能なクロレラ、 スピルリナ、 ドナリエ ラという藻類にしか適用できないという欠点がある。
レースウェイ型培養装置は、培養槽の内部を整流板で区切って、培養液の巡回 路を形成したものであつて、この巡回路に培養液を循環手段により巡回させる方 法により藻類を培養する。 この方式は培養液の方式を改良したものではあるが、 培養池による培養法と同様に培養の進行に伴つて藻類の光合成速度が低下する ため光の効率的な利用ができな L、。このために炭酸ガスの利用効率が低 t、という 問題も生じる。光の効率的な利用を達成するため、太陽光を光ファイバ一を介し て液に照射するなどの提案もされている (実開平 5— 4 3 9 0 0 )。
しかし、 この方式を利用して藻類の培養を行う場合、機械的な撹拌により液を 巡回させるため、藻類の細胞が破壊されるとかシアーストレス(剪断応力により 藻類が切断され、細胞の活性が低下して増殖速度が遅くなる現象)が生じるなど の欠点を避けることができない。 チューブラ型培養装置は、光透過性のチュ一ブからなる培養槽を用 、て藻類な どを培養する装置である。 この装置を利用して藻類を培養すると、雑菌などによ る培養液の汚染がなく、培養濃度も高くすることができるので、培養液から藻類 を分離し、藻類が産生する有用物質を回収する場合にはきわめて有利な方法であ る。
しかしながら、長期間藻類を培養すると、藻類がチューブ内壁に付着し、 チュ ーブを透過する光の量力極端に低下する。このような現象から効率的な藻類の培 養が困難であるとともにチューブ内壁に付着した藻類を除去することが容易で はない。
このような問題を解決するためにチューブ内に洗浄用ボールを挿入し、このボ ールを常に培養液ともに循環させてチューブの内壁を洗浄する方法が提案され ている (特開平 6— 9 0 7 3 9 )。 しかし、 この方法によってもチューブの内壁 のよごれ、藻類の付着をうまく取り除き続けることはできないし、 ボールを回収 し洗浄しなければならないし、また、常にボールをチューブ内に循環させなけれ ばならないなどの問題が多い。 さらに、 この方式による藻類の培養の問題は、 チ ュ一ブ内で培養が行われるため、藻類が光合成によってはき出す酸素ガスがチュ ーブ内に滞留し、 この酸素が逆に藻類の光合成を阻害する作用 (光合成阻害)を 起こすことである。 このため、光合成で発生する酸素による培養への悪影響を抑 えるための装置上の工夫も提案されている (特開平 9— 1 2 1 8 3 5 )。
液膜形成培養装置は、培養槽の上面に光透過性のドーム状蓋体を設け、培養液 をドーム状蓋体の頂部の内面に下方から噴出させて、蓋体内面に培養液の液膜を 形成させ、 この液膜に光を照射するものである (特開平 8— 3 8 1 5 9 )。
しかし、 この提案された方式では、液膜を形成させ続けるためには循環ポンプ が必要であるとともに大量培養には適していなし、し、太陽光の利用ができないな どの問題がある。
また、パネル型培養装置は, 二枚の樹脂パネル板を用いた薄型箱状装置を傾斜 して設置し、 藻類を培養するものである。
この装置自体は、 たとえばチュ一ブラ型培養装置と同じように密閉型であり, 雑菌ゃゴミなどの混入による培養液の汚染がないという利点がある。 しかし、培 養の進行に伴って発生する酸素ガスが培養液に溶存するとともに装置内にたま つてしまうという問題が生じ、 この酸素が藻類の光合成を阻害する。
また、屋外に装置を設置する場合、 日の出から日没まで時間とともに太陽高度 と太陽光の装置表面への光のあたる角度が変化するため、設置面積あたりの太陽 光の受光総量が十分でな 、。
そして、 特開平 10— 304867号は最適な光環境を有するパネル型培養装置を簡 便に設計する方法を開示している。すなわち、透過光量と物質生産活性との関係 を、透過光量とリアクタ一光路長との関係を組み合わせることにより培養装置の 光路長を簡便に設計できる方法を見出し、この方法により設計された培養装置が 提案されている。
しかし、 上述の基本的な問題は解決されていない。
藻類は、光合成によって体内に有用な物質を蓄積するので、藻類にいかに効率 よく光合成を行わせるかが大きな問題となる。光合成を効率よく行わせる要因と して考えられるものは、培養装置の受光面積の拡大、培養液の効率的撹拌、培養 液の厚さあるいは深さの調整、培養装置の内部表面に付着する藻類の除去洗浄の 容易性、 温度制御、 雑菌'ほかの藻類および夾雑物の混入の防止などがある。 受光面積の問題は、 いかに受光面積を大きくとり、 またいかに光を効率的に培 養液にあてるかによつて左右される。
たとえば、培養槽、 培養池の場合、 その表面積は、培養槽ゃ培養池の表面によ つて決まるから、表面積を大きくするためには槽ゃ池の大きさを大きくすること のみによって達成でき、 代わりの手段がない。
培養液の撹拌は、培養池に光を均一に照射するためには不可欠であって、通常 その手段は、 たとえばポンプによる液の撹拌とか移動によるもの、 あるいは槽' 池などでの機械的撹拌によるものが多い。
しかし、 このような機械的撹拌は、藻類の細胞の破壊とかシァ一ストレスの原 因となるので好ましくない。
藻類の種類により光合成速度が異なるため、遅いものと速いものとでは培養液 の深さを変えてやる必要があり、また目的とする培養濃度に応じてその深さを変 えてやる必要がある。このように培養液の厚さある 、は深さは藻類の種類と目的 とする培養濃度などの条件に応じて自由に調整できるものでなければならない。 培養装置の内側表面に付着する藻類の除去 ·洗浄は、屋外での開放型の培養池 や培養槽ではあまり問題とならないしかし、密閉型の培養装置では、付着した藻 類が光を通さなくなるため、 この除去 ·洗浄をどうしても行う必要がある。 そし て培養が終了した段階で、 つぎの培養を行うために、 装置の内側表面を洗浄し、 付着物を容易に除去できる装置構造となっていなければならない。
温度制御は特に密閉系の装置では夏期に液の温度が上昇しすぎて培養のトラ ブルが発生するため非常に重要である。この解決策の 1つとして培養液に冷水を 混入する方法があげられるが、培養液が希釈されつぎの工程の培養物の回収で希 釈された大量の培養液を取り扱わなければならない。このためこの方法は工業的 に非常に不利となる。
また、培養装置は、通常屋外で使用するための装置であるか、 あるいは屋内で 使用するための装置のいずれかである。 このため、屋外用の装置を屋内で使用す ると光の利用効率が低いという問題が生じ、一方屋内用の装置を屋外では使用で きないという問題が生じている。簡単な構造の培養装置で、屋内でも屋外でも通 常の培養条件により培養できるもの力、'必要となってきている。
培養液の撹拌は、培養を均一に行わせるためにはどうしても必要な操作である。 これは、①液体培地の表面層部分と深層部分とでは培養速度に差が生じるため、 ②空気とか二酸化炭素などのガスを液体培地、すなわち培養液の全体にわたつて 均一に分配しなければならないため、③培養すべき藻類に光を均一に分配しなけ ればならないため、④培養中にコロニーを形成しやすい藻類が沈でんして液底部 にたまるのを防ぐとともに培養液中に再分散されるようにするため、などの目的 からである。
このような培養液を常時撹拌するとともに、この培養液に必要な空気ある t、は 炭酸ガスなどを供給する必要がある。 し力、し、従来のこのような培養方法は上述 した色々な問題点があり、 培養方法としてはいまいちであった。
発明の開示
本発明は、上述したような従来の培養方法の欠点を改善するもので、安全な養 魚用飼料、食品添加物用の光合成色素類および医薬、健康食品などに用いられる 不飽和脂肪酸類、 ある 、は多糖類を高収率かつ安価に産生する藻類を培養して、 高度不飽和脂肪酸、光合成色素および Zまたは多糖類を藻体内に高濃度で含有す る藻類を効率よくしかも不純物などに汚染されない状態で製造する方法を提供 することを目的とする。
上記課題を解決するために、本発明では培地を内側透明材料と外側透明材料に よつて構成される空隙空間に充填して、底部より空気ある 、は炭酸ガスを挿入し て通気条件下で光照射して藻類に光合成を行わせて、高度不飽和脂肪酸、光合成 色素および/または多糖類を藻体内に多量に産生させ、これらを含有する藻類を 製造するものである。 このようにすることにより別の藻類やゴミ、雑菌などに汚 染されず、 高濃度培養を達成することができる。
すなわち、本発明は、高度不飽和脂肪酸、光合成色素およびノまたは多糖類の 産生能を有する藻類を培養装置を用いて培地中で光照射下かつ通気条件下で高 濃度培養することにより高度不飽和脂肪酸および Zまたは光合成色素および, または多糖類を含有する藻類を製造する方法において、前記培養装置がドーム形 状、円錐形状または円筒形状のいずれかの形状のものから選ばれるものであって、 該ドーム形状の培養装置は、透明な材料よりなる外側半球状ドーム、透明な材 料よりなる内側半球状ドームおよび両ドームの下端部を連結する底部よりなり、 かつ該外側半球状ドームの頂部には円筒開口部が設けられるとともに該底部に は空気および Zまたは炭酸ガスの導入部材および培養液の排出部材が設けられ ているものであり、
該円錐形状の培養装置は、透明な材料よりなる外側円錐周壁、透明な内側円錐 周壁および両周壁の下端部を連絡する底部よりなり、かつ該外側円錐周壁の頂部 には円筒開口部が設けられるとともに該底部には空気および/または炭酸ガス の導入部材および培養液の排出部材が設けられているものであり、
または、該円筒形状の培養装置は、透明な材料よりなる上壁を有する外側筒状周 壁、透明な材料よりなる上壁を有する内側筒状周壁および両周壁の下端部を連絡 する底部よりなり、かつ該外側筒状周壁の上壁中央部には円筒開口部が設けられ るとともに該底部には空気および Zまたは炭酸ガスの導入部材および培養液の 排出部材が設けられた装置を使用することを特徴とする方法である。
また、高度不飽和脂肪酸、光合成色素および または多糖類の産生能を有する 藻類を培養装置を用いて培地中で光照射下かつ通気条件下で高濃度培養するこ とにより高度不飽和脂肪酸および Zまたは光合成色素および Zまたは多糖類を 多量に含有する藻類を製造する方法において、前記培養装置が、培養装置本体と ガス吐出装置からなり、 かつ
培養装置本体はドーム形状、 円錐形状または円筒形状の培養装置であって、 該ドーム形状の培養装置は、透明な材料よりなる外側半球状ドーム、透明な材 料よりなる内側半球状ドームおよび両ドームの下端部を連結する底部よりなり、 かつ、該外側半球状ドームの頂部には円筒開口部が設けられるとともに該底部に は培養液の排出部材が設けられているものであり、
該円錐形状の培養装置は、透明な材料よりなる外側円錐周壁、透明な材料より なる内側円錐周壁および両周壁の下端部を連結する底部よりなり、かつ該外側円 錐周壁の頂部には円筒開口部が設けられるとともに該底部には培養液の排出部 材が設けられているものであり、
または該円筒形状の培養装置は、透明な材料よりなる上壁を有する外側筒状周 壁、透明な材料よりなる上壁を有する内側筒状周壁および両周壁の下端部を連結 する底部よりなり、かつ該外側筒状周壁の上壁中央部には円筒開口部が設けられ るとともに該底部には培養液の排出部材が設けられているものであり、
該ガス吐出装置は、対向する 2つの方形基板、断面コ字状または断面逆 U字状 で下方に開放された気泡誘導部材ぉよび吐出ノズルょり構成され、該気泡誘導部 材は該方形基板の上側面に対して傾斜して設けられるとともに該気泡誘導部材 の上面の傾斜壁が上端部においてほぼ水平に折り曲げられて延在する上壁を形 成し、かつ該傾斜壁および該上壁の両側端より垂下される側壁を有し、かつ両側 壁の下端部のそれぞれ力、'該方形基板の 2つの該上側面で接合されており、該吐出 ノズルは、該傾斜壁の下方部に穿設された貫通孔を貫通して回転自体に取り付け られた装置を使用することを特徴とする方法である。
さらに、 透明な材料がアクリル樹脂、 ポリカーボネート、 ポリプロピレン、 ポ リエチレン、ポリ塩化ビニルから選ばれる 1種以上であることを特徴とする培養 装置を使用するものである。
ここで、上述した培養装置において、培養液の温度制御の目的で、 円筒開口部 の外側に散水部材、底部の外周に散水受器をそれぞれ設けてもよいし、 さらに内 側半球状ドーム、内側円錐周壁または内側筒状周壁の空間に人工光源を設けても よい。
本発明に使用する藻類培養装置は本発明者らの国際特許出願(P C Ύ/ 3 P 9 9 / 0 1 5 8 5 )に記載されている藻類培養装置であり、以下に記載するもので める。
本発明の培養に使用する装置を以下に説明する。
本発明で使用する藻類の培養装置は、 ドーム形状、円錐形状または円筒形状の いずれかの形状のものから選ばれる培養装置であって、 ドーム形状の培養装置は、 透明な材料よりなる外側半球状ドームと透明な材料よりなる内側半球状ドーム、 および両ドームの下端部を連結する底部よりなり、外側半球状ドームの頂部には 円筒開口部が設けられ、底部には空気および Zまたは炭酸ガスの導入部材および 培養液の排出部材が設けられるとともに、必要に応じて円筒開口部の外側に散水 用部材が、また底部外周に散水受器が配設されていることを特徴とするドーム形 状の培養装置であり、
円錐形状の培養装置は、透明な材料よりなる外側円錐周壁と透明な材料よりなる 内側円錐周壁、および両周壁の下端部を連結する底部よりなり、外側円錐周壁の 頂部には円筒開口部が設けられ、底部には空気および Zまたは炭酸ガスの導入部 材および培養液の排出部材が設けられるとともに、必要に応じて円筒開口部の外 側に散水部材が、また底部外周に散水受器が配設されていることを特徴とする装 置であり、
また、 円筒形状の培養装置は、透明な材料よりなる上壁を有する外側筒状周壁 と透明な材料よりなる上壁を有する内側筒状周壁、および両周壁の下端部を連結 する底部よりなり、外側筒状周壁の上壁中央部には円筒開口部が設けられ、底部 には空気および Zまたは炭酸ガスの導入部材ぉよび培養液の排出部材が設けら れ、底部には空気および Zまたは炭酸ガスの導入部材および培養液の排出用部材 が設けられるとともに、必要に応じて円筒開口部の外側に散水部材が、 また底部 外周に散水受器が配設されていることを特徴とする装置である。
また、藻類の培養装置に使用するためのガス吐出装置は、対向する 2つの方形 基板、断面コ字状あるいは断面逆 U字状で、下方に開放された気泡誘導部材およ び吐出ノズルより構成され、気泡誘導部材は方形基板の上側面に対して傾斜して 設けられ、その上面の傾斜壁がその上端部においてほぼ水平に折り曲げられて延 在する上壁を形成しているとともに、傾斜壁および上壁の両側端より垂下される 側壁を有し、 かつ両側壁の下端部が方形基板の上側面で接合されており、
吐出ノズルは、傾斜壁の下方部に穿設された貫通孔を貫通して回転自在に取り つけられたものであることを特徴とする装置であって、必要に応じて対向する方 形基板のうち、少なくとも一方が先端部および Zまたは後端部において同一方向 に折り曲げられており、 また、少なくともいずれか一方の方形基板に重量調節手 段が設けられていることを特徴とするものである。
また、本発明は、上述の培養装置とガス吐出装置とを組み合わせた培養装置を 使用して培養するものである。
培養装置で使用する透明な材料としては、透明で光透過性に優れ、耐候性、対 紫外線性のある材料であれば何でも使用でき、 たとえば、 アクリル樹脂、 ポリ力 ーボネート、 ポリプロピレン、 ポリエチレン、 ポリ塩化ビニル、 ガラスなどの材 料があげられるが、加工のしゃすさなどの点から合成樹脂がよく、特にアクリル 樹脂は上記の特性を有すること力、ら最も好まし 、材料である。
この場合、 内側の材料と外側の材料を同じ透明な材料で構成することができ、 また、相違する透明な材料、例えば外側半球状ドームをァクリル樹脂、内側半球 状ドームをポリ塩化ビニルで構成することもできる。あるいは相違する材料を積 層したものであってもよい。
培養装置に導入するガスとしては、その成分中に炭酸ガスを含むものでなけれ ばならないが、空気に炭酸ガスを混入して炭酸ガス濃度を高めたものでもよいし、 また空気と炭酸ガスを別々に装置に導入してもよい。 この場合、ガスは導入部材 またはガス吐出装置、 場合により両方を用いて培養液に導入される。
炭酸ガスは一番好ましいのは空気と混合して使用するのがよい。炭酸ガスを混 合した空気が、培養液を撹拌しながら上昇していく際、炭酸ガスは培養液中に分 散 ·吸収されるとともに、空気は培養により発生する酸素を培養液より取り去る 働きをする。 そして、炭酸ガスを単独で培養液に導入すると、導入する割合が低 くなるため、培養液中への炭酸ガスの分散速度がどうしても遅くなる傾向がある c 円筒開口部は、培養液に注入された空気や未使用の炭酸ガスや発生する酸素を 大気中に放散する作用を有するが、開放された開口部では、 ゴミなどの夾雑物が 入りやすい。 このような物質の混入を防止するため、 フィルタ一部材を開口部に 設けるとか、蓋部材を開口部に設けて、 フィルタ一部材と同様の作用をもたせる ことが好ましい。
この開口部は、外側半球状ドーム、外側円錐周壁、 あるいは外側筒状周壁の上 壁と一体で成形してもよいし、別体で成形したものを固着したものであつてもよ い。
培養装置本体として使用するドーム形状、 円錐形状、あるいは円筒形状の培養 装置は、外側部材と内側部材をそれぞれ一体で形成したものでもよいし、一方を 一体で形成し、他方を 2分割とか 4分割など適宜分割した部材を組み立てたもの であってもよいし、両方を分割した部材を組み立てたものであってもよい。培養 装置の大きさと形状により装置の作り方を決定すればよ t、。
さらに、散水受器は、散水され装置外表面を落下する水流を受けることができ る部材であれば、 その材料と構造は問わない。材料としては、金属材料とかブラ スチック材料があげられる。
また散水受器の構造としては、培養装置本体とは別体で成形したものであって もよいし、培養装置外側部材の下端部を外周水平方向に延在させ、その先端部を 上方に折り曲げて受器を構成したものであつてもよいし、また培養装置内側部材 の下端部を外周水平方向に延在させ、その先端部を上方に折り曲げて散水受器を 構成したものであってもよい。
好ましいのは培養装置本体とは別体で成形した部材で散水受器を構成するこ とである。
また、底部に設けられる空気およびノまたは炭酸ガスの導入部材としては、ガ ス吐出孔を多数穿設した管状部材を使用してもよいし、底部にガス吐出孔を設け たものであってもよい。 この導入部材から培養液に導入されたガスは、培養液中 を上昇するガスの上昇に伴つて培養液が撹拌されることとなるのでわざわざ機 械的に培養液を撹拌する必要がないしたがって、この方法によれば機械的な撹拌 による細胞の破壊とかシアーストレスの発生を防止することができる。
またガスの上昇に伴って、光合成により発生する酸素ガスを培養液より効率的 に早く放出させることができる。
培養液を培養装置に供給する方法としては 2つある。その 1つは底部に供給部 材(たとえば、底部に設けられた供給孔) を設け、 この供給部材を通して培養液 を供耠する方法である。
2番目の方法は頂部の円筒開口部から培養液を供給する方法である。装置に各 種の供給部材ゃ導入部材を設けることは、装置の複雑化を招き、 それと同時に培 養する微細藻の種類を変更しょうとする場合にコンタミネーシヨンの問題が生 じる。
そこで第 2番目の方法が一番好ましいものである。
培養装置の外側の部材も、内側の部材もともに透明な材料より構成されている ので、培養装置の内側空間に人工光源を設ければ、野外培養においては夜間も培 養力可能となる。また室内培養においては培養装置の内側と外側の 2つの人工光 源によつて効率的な連続培養を実現することができる。
ドーム形状の培養装置は、専有面積は小さいが表面積は大きいので、受光面積 が大きい。 そして、 この装置では、 培養液の撹拌がきわめて良好に行われる。 また、 この装置は、 プラスチックで形成する場合、真空成形により容易に成形で き、 一番安価に作製することができる。
このような理由から、 ドーム形状の培養装置が藻類培養装置として一番好まし いものである。
培養条件を制御'監視するため温度センサー、 液面レベルセンサー、 p Hセン サ一、溶存酸素量センサ一などの各種センサ一を培養装置に設けることが好まし い。 このセンサーは、 円筒開口部あるいは装置の外壁を介して設けられる。 本発明で使用するガス吐出装置は、空気などのガスを培養装置の底部に向けて 斜め下方に放出するので、装置内で力エルが飛び跳ねるようにピョンピョン跳び はねながら、前進する。 この動作により培養液が激しく撹拌されるとともに、放 出されたガスが培養液を上昇する際に培養液を撹拌する。 とくに、培養する藻類 がコロニーを形成しやすい場合には、ガス吐出装置から吐出されるガスによって コロニーが破壊され、 培養液中に藻類が分散され、 培養効率が向上する。
ガス吐出装置は通常ブラスチックによつて構成されるが、重量調節手段を設け て、 装置の重さを調節する。
このような培養装置を使用して藻類を培養するため、①雑菌とか夾雑物が混入 せず、②培養液の温度制御が容易で、③培養液を機械的に撹拌しなくても液の撹 拌ができるので藻類の細胞が破壊されたり、 シアーストレスが生じず、④培養濃 度を高くすることができ、⑤装置の洗浄が容易で、⑥発生する酸素により培養が 阻害されず、 さらに⑦光の利用効率が高いなどの利点を有するものである。 さら に培養装置でガス吐出装置を使用する場合、この装置を使用して培養液に必要な ガスを供給するため、装置が移動運動をして液を撹拌するとともに、吐出される ガスによっても液が撹拌され、供給されるガスと培養液との接触がきわめて良好 となり、 培養効率が上昇するなどの利点がある。 図面の簡単な説明
第 1図は、 培養装置のドーム形状のものの断面図である。
第 2図は、第 1図で示されたドーム形状の培養装置による培養時の様子を示す 部分的模式図である。
第 3図は、 第 1図で示されたドーム形状の培養装置の正面図である。
第 4図は、第 1図ないし第 3図で示されるドーム形状の培養装置を利用した藻 類の大量培養システムを示す説明図である。
第 5図は、 この発明の円錐形状の培養装置の断面図である。
第 6図は、 第 5図の円錐形状の培養装置の正面図である。
第 7図は、 この発明の円筒形状の培養装置の断面図である。
第 8図は、 第 7図の円筒形状の培養装置の正面図である。
第 9図は、 ガス吐出装置の斜視図である。
第 10図は、 第 9図のガス吐出装置の側面図である。
第 11図は、 第 9図のガス吐出装置の平面図である。 第 12図は、 第 9図のガス吐出装置の断面図である。
第 13図は、 第 9図のガス吐出装置の吐出ノズルの拡大断面図である。
第 14図は、 ガス吐出装置がガスを培養液中に吐出したときの様子を示す断面 説明図である。
第 15図は、 ドーム形状の培養装置自体とガス吐出装置とを組み合わせた培養 装置の断面説明図である。
第 16図は、 第 15図の一部切り欠き上面図である。
第 17図は、 円錐形状の培養装置自体とガス吐出装置とを組み合わせた培養装 置の断面説明図である。
第 18図は、 円筒形状の培養装置自体とガス吐出装置を組み合わせた培養装置 の断面説明図である。
第 19図は、 本発明のガス吐出装置の他の例を示す斜視図である。
第 20図は、 本発明のガス吐出装置の別の例を示す斜視図である。
第 21図は、 本発明のガス吐出装置のさらに別の例を示す斜視図である。 第 22図は、 第 21図における X— X' 断面図である。 好適な実施例の詳細な説明
本発明で使用する培養装置について図面を用いて説明する。
第 1図ないし第 3図は、 ドーム形状の培養装置 1を示す。
第 3図は、 ドーム形状の培養装置 1の正面図であり、外側半球状ドーム 8の頂 部には円筒開口部 4が設けられ、この円筒開口部 4の外側にはドーム 8を冷却す るための散水部材 3が設けられ、 ドーム 8の下部には散水部材 3から散水された 水の散水受器 1 1力、'設けられており、装置 1は複数の固定部材 1 6により支持さ れている。 そして、 培養装置の底部 1 4には、 ガス導入部材 6と、 培養液の排出 部材 7力取り付けられている。
第 1図は、装置 1の断面図である。 この装置 1は, 外側半球状ドーム 8と、 内 側半球状ドーム 9、および両ドームの下端部を連結する底部 1 4より構成されて いる。そしてドーム 8の頂部には円筒開口部 4力別体で設けられ、 円筒開口部 4 の外側には散水部材 3が設けられ、冷却水 1 5がこの散水部材 3よりドーム 8の 表面に散水され、 ドーム 8の表面を膜状となって覆いながら落下して散水受器 1 1に至るようになつている。
この冷却水 1 5により培養液 5の温度を制御する (第 2図参照)。
ドーム 8、 ドーム 9 , 底部 1 4、 円筒開口部 4、 および散水受器 1 1は, 透明 な材料によりそれぞれ構成されている。透明な材料としてはァクリル樹脂が使用 されている。また散水受器 1 1の材料としてはステンレスなどの金属材料も好都 合に利用できる。 そして散水受器 1 1より冷却水は排水部材(図示せず)をとお つて排水される。 排水された水は貯水され、 冷却水として再び使用される。
底部 1 4には空気および または炭酸ガスを培養液 5に供給するためのガス導 入部材 6、および培養液 5を培養装置 1から抜き取るための排出部材 7が取り付 けられている。底部 1 4の上面には、管上面に多数の注入口が穿設されたガス注 入管 1 0が複数個配設され、ガス導入部材 6の一部を構成している。ガス導入部 材 6により供給されるガスは、炭酸ガスを混入した空気が一番好ましいが、空気 だけでもよい。
内側半球状ドームの内側空間には人工光源 2を設けてある。人工光源 2により、 夜間の屋外培養の場合にも藻類に光合成を行わせることが可能となる。さらに室 内培養の場合にも藻類に光合成を行わせることが可能となる。さらに室内培養の 場合には培養装置の外側と内側から同時に人工光源により光合成を行わせるこ とができ、 この場合には培養液の深さあるいは厚さを大きくすることもできる。 第 2図は培養時の様子を模式的に示したものである。ガス注入管 1 0より培養 液 5に放出されたガスの気泡 1 2は、その浮力により外側半球状ドーム 8の内壁 に沿って培養液 5中を上昇する。この気泡 1 2の上昇の動きは培養液の上昇を促 進するとともに気泡 1 2に含まれる炭酸ガスは培養液に供給され、藻類の光合成 により発生する酸素は気泡に取り込まれる。気泡 1 2は培養液の表面で大気中に 開放される。 ドーム 8の内壁に沿って上昇してきた培養液の流れ 1 7は、 内側半 球状ドーム 9の壁に沿って下降する。
このように、培養液に底部付近から供給される空気などのガスは、培養液に炭 酸ガスを供給する一方で、発生する酸素を取り込んで大気に放出する作用を有す るとともに、 培養液を同時に均一に撹拌するという作用を有するものである。 夏期では培養液の温度が上がりすぎ、培養が困難となるような場合には散水部材
3により冷却水 1 bを外側半球状ドーム 8の表面上に供給し、培養液の温度を調 節することができる。冷却に使用された水は散水受器 1 1を介して回収され、再 度使用される。
屋外培養の場合、夜間にも培養を行うときには、 内側半球状ドーム 9の内側空 間に設けた人工光源 2を使用すると 2 4時間連続培養が可能となる。
藻類は日中太陽光を受けてさかんに光合成を行って、増殖するとともに、体内 に蛋白質、 多糖類、 脂肪酸、色素類、 ビタミン類、多糖類などの有用物質を産生 し、 蓄積するが、夜間においては、 このような光合成が行われないため、 日中に 合成したものなどが、藻類自体のエネルギー消費によって、 たとえば夏期におい ては、日中に比べて最大で藻類の菌体の約 2 0 %もの重量が失われてしまうため、 大きなロスとなる。
そこでこのロスを防止するため人工光源により光合成を行わせてこの分を補 うことができる。 した力つて、最小限の光合成を行わせるだけの光量の人工光源 で十分であるが、 これ以上の光合成を行わせてもさしつかえない。人工光源とし ては、 たとえば蛍光灯、 白熱灯、 ハロゲンランプなどがあげられる。
室内培養の場合には培養装置 1の外側と内側の両方から人工光源を利用して 行う。このように人工光源 2を使用すると 2 4時間効率的な連繞培養が可能とな 培養状況を監視するためには、培養液の温度、液面レベル、 p Hおよび溶存酸 素量( D 0 )を常時測定し、これらの数値を最適範囲内に保つことが必要である。 そこでこれらのセンサーを装置内に取り付けることが望ましく、頂部の円筒開口 部 4を介して設置されるか、 ドーム 8あるいはドーム 9も 、ずれか一方あるいは 両方を介して設けるのがよい。 ドームに取り付けると、装置が複雑化し、洗浄な どに手間がかかるので、 円筒開口部 4を介して設置することが一番好ましい。 このドーム形状の培養装置 1は、半径を異にする二種類の半球状ドームを任意に 組み合わせることにより、 2つのドーム間に形成される空間の容量と、 ドーム間 の距離を変化させることができる。 このことは、培養液量と培養液の厚さあるい は深さを自由に設定できることを意味する。 さらに培養液が接触する装置表面には藻類が付着するため、この付着物を除去 し、洗浄する際には、 この組み合わせた二種類の半球状のドームのうち、外側半 球状ドーム 8を取り外し、それぞれを洗浄することもできるし、両者を取りはず して別の場所で洗浄することもできる。
半球状ドームは、外側半球状ドームはたとえば 2分割したものを組み立てると 非常に便利である。 いずれにせよ、二種類のドームは、 それぞれ一体で成型した ものである必要はなく、複数に分割して成型したものを組み立ててもよいもので のる。
半球状ドームの形状としては、球体状のものを適宜の位置で切断した半球状の ドーム型のものであってもよいが、光の利用率、受光などの観点からみて、半球 状程度のものが一番好ましい。
さらに球体状のものばかりでなく、卵形などの変形した球体状のものも本発明の 対象である。
ドームの大きさとしては、 たとえば直径 5 0 cm程度のものから 2 0 0 cm程度 のものまで使用できるが、培養する藻類の種類と培養条件および培養目的に応じ て適切な大きさのものを任意に選択して培養装置とすればよ 、。
二種類のドームの間隔は、 藻類の種類と培養条件および培養目的にもよるが、 最大の光合成効率が得られるように設定すればよい。 通常は、 好ましくは 2. 5 cmないし 1 0 cm、 より好ましくは 5 cra程度である。
つぎに、 半径約 5 0 cmの外側半球状ドーム 8と半径約 4 5 cmの内側半球状ド ームとドーム間隔 5 cmのドーム形状培養装置 1を組み立て、かつ、 ドーム 8の頂 部にはドーム 8とは別体で成型した直径 6 ciの円筒開口部 4を設けた。
この培養装置を使用して藻類スピルリナ'プラテンシス(Spirulina platencis) を培養したところ、 培養濃度として 1 0ないし 2 0 g / L (リットル)、 生産性 も 2 . 0ないし 5 . 0 g Z L Z日を実現することができた。 一方、従来の培養 池方式の場合には培養濃度が 0 . 3ないし 0 . 5 g Z L、生産性も 0 . 1ないし 0. 2 g/ L Z日である。 そして、 従来の培養方法に比較し生産性が約 1 0倍に 向上することが判明した。
また赤色色素のァスタキサンチンを産生するへマトコッカス ·プルビィァリス (Haematococcus Pluviaris) の培養では、 培養濃度として 5 gないし 1 0 Lの高濃度培養により、色素ァスタキサンチンを 4 %ないし 8 %の高含量を含む 藻体(パ'ィォマス)の生産が可能であることが判明した。 この赤色色素を産生す るへマトコッカス ·プルビィアリス (Haematococcus Pluviaris) の培養は従来 の培養池方式ではきわめて困難である。 またさらに、海洋性藻類のナンノクロロ プシス ·ォキユラ一夕 (Nannocholoropsis Oculata) でも約 5 gないし 1 0 g / Lの高濃度培養が可能であった。従来の方法では 0 . 2ないし 0 . 4 gZ Lが限 度である。
第 4図は、本発明による密閉型野外培養装置を多数配置して、藻類を同時にか つ大量に培養することができるシステムを示したもので、構成する個々の装置に は、 同時に同種類の藻類を入れて培養してもよいし、 あるいは個々の装置には 別々に種類の異なるものを入れて培養してもよいようになっており、個々の装置 には各種のセンサ一が取り付けられ、 培養条件を制御できるようになっている。 このため、個々の装置で培養されている藻類の種類が相違しても、個々の装置 の各種の培養条件を独立して制御できるので非常に有効である。
そして、個々の装置をある程度密に配置しても光の利用率ないし占有面積あたり の光の受光面積が大きいので非常に便利で、大量培養に適し、生産性は非常に高 くなる。
第 5図および第 6図は、 円錐形状の培養装置 2 1を示す。
第 6図は、 円錐形状の培養装置 2 1の正面図であり、透明な材料よりなる外側 円錐周壁 2 8の項部には円筒開口部 2 4が設けられ、この開口部 2 4の外側には 周壁 2 8を冷却するための散水部材 2 3が設けられ、周壁 2 8の下部には散水部 材 2 3から散水された冷却水の散水受器 3 1が設けられ、装置 2 1は複数の固定 部材 3 6により支持されている。
そして、装置 2 1の底部 3 4にはガス導入部材 2 6と、培養液の排出部材 2 7 が取り付けられている。
第 5図は、装置 2 1の断面図である。 この装置 2 1は、透明な材料よりなる外 側円錐周壁 2 8と、透明な材料よりなる内側円錐周壁 2 9および両周壁の下端部 を連結する底部 3 4により構成されている。外側円錐周壁 2 8の頂部には円筒開 口部 2 4が別体で設けられ、開口部 2 4の外側には散水部材 2 3が設けられ、冷 却水がこの散水部材 2 3より周壁 2 8の表面に散水され、周壁 2 8の表面を膜状 となって覆いながら落下して散水受器 3 1に至るようになつている。冷却水によ り培養液 2 5の温度を制御する。
周壁 2 8、 周壁 2 9、底部 3 4、 円筒開口部 2 4および散水受器 3 1は、 ァク リル樹脂のような透明な材料によつてそれぞれ構成されている。
散水受器 3 1から冷却水は排水部材 (図示せず) をとおって排水される。
底部 3 4には、空気およびノまたは炭酸ガスを培養液 2 5に供給するためのガ ス導入部材 2 6および培養液 2 5を装置 2 1から抜き取るための排出部材 2 7 力取り付けられている。底部 3 4の上面には、多数のガス注入口が管上面に穿設 されたガス注入管 3 0複数個配設され、ガス導入部材 2 6の一部を構成している c さらに、周壁 2 9の内側空間には人工光源 2 2が設けられ、屋外培養の夜間の 際に光合成を連続して行うことができるようになっている。
第 7図および第 8図は、 円筒形状の培養装置 4 1を示す。
第 8図は、 円筒形状の培養装置 4 1の正面図であり、透明な材料よりなる上壁 5 7を有する外側筒状周壁 4 8の上壁中央部付近に円筒開口部 4 4が設けられ、 この開口部 4 4の外側には上壁 5 7および周壁 4 8を冷却するための散水部材 4 3が設けられ、周壁 4 8の下部には散水部材 4 3から散水された冷却水の散水 受器 5 1が設けられ、 装置 4 1は複数の固定部材 5 6により支持されている。 そして、装置 4 1の底部 5 4にはガス導入部材 4 6と、培養液の排出部材 4 7が 取り付けられている。
第 7図は、装置 4 1の断面図である。装置 4 1は、上壁 5 7を有する外側筒状 周壁 4 8と上壁 5 8を有する内側筒状周壁 4 9および両周壁の下端部を連結す る底部 5 4により構成されている。そして上壁 5 7の中央部付近には円筒開口部 4 4がー体で設けられ、開口部 4 4の外側には散水部材 4 3が設けられ、冷却水 がこの散水部 4 3より上壁 5 7に散水され、周壁 4 8の表面を膜状となって覆い ながら散水受器 5 1に至るようになつている。
冷却水により培養液 4 5の温度を制御する。
周壁 4 8、周壁 4 9、上壁 5 7、上壁 5 8、 円筒開口部 4 4および散水受器 5 1は、 ァクリノレ樹脂のような透明な材料によってそれぞれ構成されている。 散水受器 5 1から冷却水は排水部材(図示せず)をとおって排水される。底部
5 4にはガスを培養液に供給するだめのガス導入部材 4 6および培養液 4 5を 装置 4 1から抜き取るための排出部材 4 7が取り付けられている。底部 5 4の上 面には、多数のガス注入口が管上面に穿設されたガス注入管 5 0が複数個配設さ れ、 ガス導入部材 4 6の一部を構成している。
さらに、上壁 5 8および周壁 4 9により形成される内側空間には人工光源 4 2 が設けられ、 夜間でも光合成できるようになっている。
第 9図ないし第 12図はガス吐出装置 1 0 0のそれぞれ斜視図、 側面図、 平面 図および断面図を示し、 第 13図はガス吐出装置の吐出ノズルの拡大断面図を示 すものである。
ガス吐出装置 1 0 0は、 対向する方形基板 1 0 1、 1 0 1 '、 断面コ字状で下 方に開放された気泡誘導部材 1 0 2、 および吐出ノズル 1 0 3よりなつており、 気泡誘導部材 1 0 2は、方形基板の上側面 1 0 7、 1 0 7 ' に対して傾斜して設 けられているとともにその上面の傾斜壁 1 0 4およびその上端部がほぼ水平に 延在した上壁 1 0 5を有するとともに、傾斜壁 1 0 4と上壁 1 0 5の両側端部よ り垂下された側壁 1 0 6、 1 0 6 ' を有し、両側壁 1 0 6、 1 0 6 ' の下端部が 両方形基板 1 0 1、 1 0 Γ の上側面 1 0 7、 1 0 7 ' で接合されている。 両方 形基板は固定部材 1 0 8、 1 0 8 ' により固定されている。
吐出ノズル 1 0 3は、傾斜壁 1 0 4の下方部に穿設された貫通孔 1 0 9を貫通 して回転自在に設けられている。ノズル 1 0 3は貫通孔 1 0 9から抜け出さない ようにノズル 1 0 3の外周部にストツノ、0— 1 1 0、 1 1 0, が貫通孔 1 0 9をは さんで対向位置に設けられている。
培養装置本体は、 ドーム形状のもの、三角錐形状のもの、 円筒形状のもののい ずれの形式のものであっても、その底部の内側端と外側端は同心円の円周となつ ているので、 円板の中央部を丸く くりぬいた円形状となっている。 このくりぬか れた円形状の底部を容易に移動できるように、 第 11図にみるように方形基板 1 0 1、 1 0 Γ は先端部分および後端部分が同一方向に曲げられている。
そして傾斜壁 1 0 4の傾斜角は、 方形基板の上側面に対して 4 5。 ないし 6 0 ° となるように設計するのがよい。
第 14図は、 ガス吐出装置により、 ガスを培養液中に吐出したときの様子を示す 説明図である。
空気ある L、は炭酸ガスを混入した空気などのガスは、培養装置とは別に設けら れたガス供給装置(図示せず)から、 ガス導入管 1 1 1を経て吐出ノズノレ 1 0 3 に至り、その先端部から培養装置の底部 1 1 2に向けて放出される。放出された ガス 1 1 3は底部 1 1 2に当たった後、気泡 1 1 4となって気泡誘導部材 1 0 2 の内側すなわち、傾斜壁 1 0 4および上壁 1 0 5に沿って上昇し、上壁 1 0 5の 端部から培養液 1 1 5中に送り出される。送り出された気泡 1 1 4は液中を上昇 し、培養液表面で大気に放出される。ガスが培養液と接触している間に炭酸ガス が培養液に吸収され、一方藻類の光合成によつて発生し培養液に気泡ないし溶解 している酸素がガスに取り込まれる。気泡 1 1 4は培養液中を上昇する際に液を 同時に上方に押し上げるので、 液の対流を発生させる。
吐出ノズル 1 0 3の先端部から放出されるガスと気泡 1 1 4により、ガス吐出 装置自体に浮力が生じるとともに矢印で示した方向に推進力が生じる。このため ガス吐出装置 1 0 0は矢印方向に浮き上がった状態で移動する。移動すると装置 1 0 0の自重により底部に着地し、また浮き上がって前進するという動作を繰り 返すので、 この動作により培養液が大きく撹拌されることになる。 このガス吐出 装置の培養液中での動作は、力エルピョンピョン飛びはねながら前進していく動 作と類似している。
ガス吐出装置 1 0 0を形成する部材は、通常プラスチックであるが、プラスチ ック自体は培養液中では浮力もあり相当軽 ヽものが多いので、プラスチックに比 重の大きな充填材を添加してある程度の重量を与えて成形したものか、あるいは 方形基板 1 0 1、 1 0 Γ に岩石粉末や充填剤粉末をエポキシ樹脂などの合成樹 脂で接着したものを積層して成形した人造石様のもの、あるいは方形基板 1 0 1、 1 0 1 ' の下部を人造石様の材料で上部をプラスチックで形成したものか、 ある いは、方形基枚 1 0 1、 1 0 Γ の対向面の任意の個所に鉛などの金属のおもり を着脱自在にして、ガス吐出装置 1 0 0の全体の重さを調節可能としたものがあ げられるが、 全体の重さを調節可能としたものが一番好ましい。 第 15図は、 ガス吐出装置 1 0 0 ' およびドーム形状の培養装置本体 1 5 1を 組み合わせてなる培養装置 1 5 0の断面説明図であり、 第 16図はその上面図で あって、 その一部を切り欠いたものを示す。
ここでは、培養装置本体 1 5 1は、外側半球状ドーム 1 5 3および内側半球状 ドーム 1 5 2およひ両ドームの下端部を連結する底部 1 5 4とよりなり、かつド ーム 1 5 3の頂部には円筒開口部 1 5 5が設けられており、その他の部材記載は 省略されている。
これらの材料は、 すべて透明な材料、 たとえばアクリル樹脂である。
ガス導入管 1 5 7が連結されたガス吐出装置 1 0 0 ' は、培養装置本体 1 5 1 の円筒開口部 1 5 5より挿入され底部 1 5 4に載置される。
ガス導入管 1 5 7は、 ポリウレタン、 シリコーン、合成ゴムなどの材料によつ て作製され、 内側半球状ドーム 1 5 2の表面に接している。
空気などのガスをガス吐出装置 1 0 0 ' に供給すると、 この装置 1 0 0 ' は培 養液中を飛びはねながら矢印の進行方向に前進する。この際、吐出されるガスと、 ガス吐出装置の動きにより培養液は十分撹件されることになる。
そして、 環状の底部 1 5 4上をガス吐出装置 1 0 0 ' が前進するので、 第 16 図に示したように連結しているガス導入管 1 5 7が内側半球状ドーム 1 5 2の 表面をこすりながら、すなわち、洗浄しながら装置 1 0 0 ' が底部 1 5 4上を円 運動することになる。つまり、 ガス導人管 1 5 7は、 ドーム 1 5 2の表面に藻類 が付着するのを防止するとともに表面を洗浄する作用をする。
また、 ガス吐出装置 1 0 0 ' は培養液 1 5 6を撹拌しながら移動するので、藻 類でコロニーを形成するようなものがあつても破壊されるとともに培養液中に 再び分散されるので非常に効率よく培養が行われる。
この際に、 ガス導入管にねじれが生じるが、 第 13図に示すように吐出ノズル は回転自在になっており、吐出ノズルが貫通孔内で回転し、ねじれが解消される。 第 17図は、 ガス吐出装置 1 0 0 ' および円錐形状の培養装置本体 1 6 1とを 組み合わせてなる培養装置 1 6 0の断面説明図である。
ここで、培養装置本体 1 6 1は、透明な材料よりなる外側円錐周壁 1 6 3、透明 な材料よりなる内側円錐周壁 1 6 2および両周壁下端部を連結する底部 1 6 4 とよりなり、かつ周壁 1 6 3の底部には透明な材料よりなる円筒開口部 1 6 5が 設けられている。 ここでは、 その他の部材の記載は省略されている。
ガス導入管 1 6 7が連結したガス吐出装置 1 0 0 ' は、 円筒開口部 1 6 5より挿 入され、 底部 1 6 4に載置される。
空気などのガスをガス吐出装置 1 0 0 " に供給するとこの装置 1 0 0 " は培養 液中を飛びはねながら前進運動を繰り返す。 この動きは第 15図、第 16図の培養 装置で説明したとおりである。
第 18図は、ガス吐出装置 1 0 0 ' "および円筒形状の培養装置本体 1 7 1とを 組み合わせてなる培養装置 1 7 0の断面説明図である。
ここで, 培養装置本体 1 7 1は、透明な材料よりなる上壁を有する外側筒状周 壁 1 7 3、透明な材料よりなる上壁を有する内側筒状周壁 1 7 2および両周壁の 下端部を連結する底部 1 7 4とよりなり、かつ外側筒状周壁 1 7 3の上壁中央部 には透明な材料よりなる円筒開口部 1 7 5が設けられている。 ここでは、その他 の部材の記載は省略されて 、る。
ガス導入管 1 7 7が連結したガス吐出装置 1 0 0 ' " は円筒開口部 1 7 5より 挿入され、 底部 1 7 4に載置される。
空気などのガスをガス吐出装置 1 0 0 ' "に供給すると、この装置 1 0 0 ' "は、 培養液中を飛びはねながら前進運動を繰り返す。 この動きは第 15図、第 16図の 培養装置で説明したとおりである。
第 19図は、本発明で使用するガス吐出装置の他の実施例を示す斜視図である。 このガス吐出装置 2 0 0は、第 9図で示されたガス吐出装置 1 0 0の構造とは、 対向する方形基板 2 0 1、 2 0 1 ' のうち、一方の方形基板 2 0 1が他方の方形 基板 2 0 Γ より長さが短く、その先端部と後端部が折り曲げられていない点で 相違する力 他の点では同じである。 そして、 2 0 2は気泡誘導部材、 2 0 3は 吐出ノズル、 2 1 1はガス導入管、 2 0 1、 2 0 Γ は方形基板、 2 0 4は傾斜 壁、 2 0 5は上壁、 2 0 6は側壁、 2 0 7、 2 0 7 ' は上側面、 2 0 8、 2 0 8 ' は固定部材をそれぞれ示す。
また、 方形基板 2 0 1、 2 0 Γ には重量調節手段であるおもり (図示せず) が着脱自在にとりつけられている。 第 20図は、本発明で使用するガス吐出装置の別の実施例を示す斜視図である。 このガス吐出装置 3 0 0は、第 9図で示されたガス吐出装置 1 0 0の構造とは、 対向する方形基板 3 0 1、 3 0 1 ' 力両者ともその先端部と後端部が折り曲げら れていない点で相違するが、他の点では同じである。そして、 3 0 2は気泡誘導 部材、 3 0 3は吐出ノズル、 3 1 1はガス導人管、 3 0 1、 3 0 Γ は方形基板、
3 0 4は傾斜壁、 3 0 5は上壁、 3 0 6は側壁、 3 0 7、 3 0 7 ' は方形基板の 上側面、 3 0 8、 3 0 8 ' は固定部材をそれぞれ示す。
また、 方形基板 3 0 1、 3 0 1 ' には重量調節手段であるおもり (図示せず) が着脱自在にとりつけられている。
第 21図は、 本願発明で使用するガス吐出装置のさらに別の実地例を示す斜視 図である。
また、 第 22図は、 第 21図におけるガス吐出装置の X— X' 断面図を示す。 このガス吐出装置 4 0 0は、 対向する方形基板 4 0 1、 4 0 1 '、 および断面 逆 U字状の下方に開放された、外形く字状の気泡誘導部材 4 0 2、およびガス導 入管 4 1 1が連結した吐出ノズル 4 0 3よりなつており、気泡誘導部材 4 0 2は、 方形基板部の上側面 4 0 7、 4 0 7 ' に対して傾斜して設けられ、 その上面の半 円状の傾斜壁 4 0 4の上端部が半円形状を保持したままほぼ水平に折り曲げら れて延在する上壁 4 0 5を形成し、かつその半円形状の側端部より垂下される両 側壁(壁 4 0 6および他側壁(図示せず) よりなる) を有する断面逆 U字状構造 となっており、 しかも前記両側壁の下端部が方形基板の上側面 4 0 7、 4 0 7 ' で接合されている。吐出ノズノレ 4 0 3は、断面逆 U字状の気泡誘導部材 4 0 2の 傾斜壁 4 0 4の下方の半円形状頂部に穿設された貫通孔 4 0 9を貫通して回転 自在に設けられているとともに該貫通孔 4 0 9から抜け出さないように 2つの ストッパー 4 1 0、 4 1 0 ' が該貫通孔 4 0 9をはさんで対向位置に吐出ノズル
4 0 3の外周部に設けられている。
そして、上壁 4 0 5と両側壁により形成される端部が開放されており、 また方 形基板 4 0 1、 4 0 1 ' が固定部材 4 0 8、 4 0 8 ' により固定されている。 この例においては 2つの方形基板は、先端部および後端部で曲がつていな t、が、 2つの方形基板の先端部および後端部が同じ方向に折れ曲がつたものでもよい し、 1つの方形基板のみが先端部および zまたは後端部で折れ曲がった構造のも のであっても同様に使用される。
また、 方形基板 4 0 1、 4 0 Γ には重量調節手段であるおもり (図示せず) 力着脱自在にとりつけられている。
培養装置として本発明者らが開発した藻類培養装置の中から代表例としてド ーム型藻類培養装置(以下、培養装置 Aという)を用いて以下に本発明を説明す る o
本発明の第 1は培養装置 Aを使用する藻類の高濃度培養法による藻体(バイオ マス) の製造方法である。
本発明において藻体(バイオマス)の高濃度培養とは、培養装置の構造、培養 装置の容量、 使用する藻の種類、初期藻類濃度、 培養液の種類、 培地の組成、 培 地の p H、 培養温度、 培養容器に照射する光量、 照射時間、 培養時間、通気の組 成 (空気および空気と炭酸ガスの混合ガス)、 通気量、 植物成長ホルモンなど植 物の生長を制御する添加物の有無、活性酸素除去用スカベンジャーの有無などに より異なり特に限定されるものではないが、通常、培養濃度が 1 gないし 1 0 g / L (リットル)、 好ましくは 3 gないし 6 g Z L、 より好ましくは 5 gないし 6 g Z Lの範囲での培養を意味する。
本発明にお L、て好適に使用される光合成色素類、高度不飽和脂肪酸類および/ または多糖類が産生できてかつ高濃度培養できる藻類としては、 たとえば、千原 光雄編著「藻類多様性の生物学」 (1 9 9 7年) などに記載されているものを例 示す る こ と ができ る 。 具体的 に は、 藍色植物門 〔 Division Cyanophy ta( =Myxophy ta) ) 藍藻綱 Class Cyanophyceae(=Nostocophyceae) 原 核緑色植物門(Division Prochlorophyta)原核緑藻綱(Class Prochlorophyceae)^ 灰色植物門 [ Division Glaucophyta(=Glaucocystophyta) ) 灰色藻綱 〔Class G 1 aucophyceae ( = G 1 aucocy s t ophyceae ) 〕ヽ 紅色植物門 (Division Rhodophyt ヽ 紅藻綱 〔 Class RhodophyceaeOBangiophyceae)〕、 クリプト植物門 (Division Cryptophyta)クリプト藻綱(Class Cryptophyceae)、渦鞭毛植物門 (炎色植物門) CDivision Dinophyta(=Pyrrhophyta) ) 渦鞭毛藻綱 (Class Dinophyceae)ヽ 不等 毛植物門 (Division Heterokontophyta). 黄色植物門 (Chromophyta)黄金色藻 綱 (Class Chrysophyceae)ヽ黄緑藻綱〔Class Xanthophyceae(=Tribophyceae " 真正眼点藻綱 (Class Eustigmatophyceae)ヽラフィ ド藻綱 (Class Raphidophyceae) 挂藻綱 〔 Class Bacillariophyceae(=Diatomophyceae)〕ヽ 褐藻綱 〔 Class Phaeophyceae(=Fucophyceae)〕、ハプト植物門(プリムネシゥム植物門) [Division Haptophyta(=Prymnesiophyta)〕、 ハプト藻綱(プリムネシゥム藻綱) 〔 Class Haptophyceae(=Prymnesiophyceae)〕、 ユークレナ植物門 (ミ 卜リムシ植物門)
( ivision Euglenop yta ) ユーグレナ藻綱(ミ ドリムシ藻綱) ( Class Euglenophyceae)ヽ クロララ ニオン植物門 (Division Chlorarachniophyta) ク ロ ラ ラ グ二オ ン藻綱 ( Class Chlorarachniophyceae ) ^ 緑色植物門
(DivisionChlorophyta)緑藻綱(広義リ [Class Ch 1 orophyceae( sensu lato)〕ヽ プラシノ藻綱 (ClassPrasinophyceae)ヽ ぺディノ藻綱 (ClassPedinophyceae) 緑色植物門 (Division Chlorophyta)^ プラシノ藻綱 (Class Prasinophyceae)、 ぺディノ藻綱 (Class PedinophyceaeCsensu stricto)〕、 緑藻綱 (狭義) (Class Chlorophyceae)^ トレボウクシァ藻綱 (Class Trebouxiophyceae)、 ァォサ藻綱
(Class Ulvophyceae) などである。
より具体的には藍藻綱 (Cyanophyceae) としては、酸素発生型光合成を営む原 核生物であり、 以下の目と科に分類されるものである。
クロォコックス目 (Chroococcales)には、ミクロキスティス科(Microcystaceae クロォコックス科 (Chroococcaceae)、ェントフィサリス科 (Entophysalidaceae) シ ャ マエ シ フ 才 ン ( Chamaes iphoniaceae )ヽ デノレモカノレぺノレラ ? (Dermocarpel laceae) クセノコックス科 (Xenococcaceae) およびヒドロコッ クス科(Hydrococcaceae)、 ユレモ目 (Oscillatoriales) としては、 ボルジァ科 (Borziaceae)、 プセゥダナバエナ科 (Pseudanabaenaceae)、 スキゾトリクス科 ( Schizotrichaceae )、 フオノレミアイゥム科 ( Phormidiaceae )、 ユレモ科 (oscillatoriaceae)ヽ およびホモェォ卜 1リスス科 (Homoeotrichaceae)^ネンジ ュ目 (Nostocales) としては、 スキ卜ネマ科(Scyto ataceae)、 ミクロカエテ 科 ( Microchaetaceae )、 ヒケモ科 ( Rivulariaceae ) およびネンジュモ科 (Nostocaceae)^ スティゴネマ目 (Stigonema tales) としては、 クロログロェォ プシス科 (Chlorogloeopsaceae)、 カプソシ一ラ科 (Capsosiraceae)、 スティゴ ネマ科 (Stigonemataceae)ヽ フイシケレノレラ科 (Fischerellaceae)ヽ ボノレジネマ 科 (Borziriemataceae)ヽ ノス卜コプシス科 (Nostochopsaceae) およびマスティ ゴクラドス科 (Mastigocladaceae) などである。
原核緑藻綱 (Prochlorophyceae) としては、酸素発生型の原核光合成生物であ り、以下の目と科の分類されるものである。 プロクロロン目としては、 プロクロ ロン科 (Prochloraceae) およびプロクロ口卜リクス科 (Prochlorotrichaceae) などである。
灰色藻綱 (Glaucophyceae) としては、 単細胞ないしは群体の耐性をもち、 葉 録体のかわりに藍藻を細胞内に共生させ光合成を営むものであり、以下の目と科 の分類されるものである。 キアノフオラ目 (Cyanophorales) としては、 キアノ フオラ科、 グロェォカエテ目 (Gloeochaetales) としては、 グラウコスファエラ 科 ( G laucosphaeraceae ) グロェォカエテ科 (Gloeochataceaeリ、 グラウコキス テイス (Glaucocys tales) グラウコキスティス科 (Glaucocystaceae) などであ
Ό o
紅藻綱(Rhodophyceae)は 6 0 0属約 5 0 0 0種が知られている。以下の亜綱、 目、 科の分類に分類されるものである。 紅藻目 (Prhodophyceae) は淡水、 汽水 域に広く分布する。 ゥシケノリ亜綱 (Bangiophycidae) とゥミゾウメン亜綱 (Nemaliophycidae; である c
ゥシケノリ亜綱としては、 チノリモ目 (Porphyridiales) としては、 チノリモ 科 (Porphyridiaceae)ヽ ィデュコゴメ科 (Cyanidiaceae) およびべ二ミ ドロ科 (Goniotrichiaceae)、エリ トロぺノレティス目(Erythropeltidales)などである。 ゥミゾウメン亜綱のァクロカエティゥム目 (Acrochaetiales) としては、 ァク ロカエティゥム科 (Acrochaetiaceae)、 ダノレス目 (Palraariales) としてはフチ トリべ二モドキ科 (Rhodophysemataceae) およびダノレス科 (Palmariaceae)、 ゥ ミゾウメン目 (Nemaliales) としてはゥミゾウメン科 (Nemaliaceae) などであ る
クリブト藻綱は、単細胞性鞭毛藻であり、 淡水、汽水、 海水のいずれにも生育 が知られていて、 以下の目と科に分類されるものである。 クリプトモナス目
(Cryptomonadales) としては、 クリブ卜モナス科(Crypto匪 adaceae)ヽ ク ' Jプ トクリシス科 ( Cryptochrys i daceae) ^ ゴニォモナス科 (Gonio醒 adaceae)、 力 タブレフ ア リ ス科 ( Katablepharidaceae ) およびへ ミ セル ミ ス科 (Hemiselmidaceae) である。
渦鞭毛藻綱は淡水、汽水、海水での生育が知られていて、以下の目と科に分類 されるものである。 ヤコゥチュウ目 (Noctilucales)、 プロロゲントルム目 (ProrocentralesA ディノフイシス目 (Dinophysiales)、 干ムノディ二ゥム目 ( Gymnodiniales )、 ペリティ二ゥム目 (Peridiniales )、 ゴニオラクス目 (Gonyaulacales)^ ブラス卜ディ二ゥム目 (Blastdiniales) および有柄渦鞭毛 藻目 (Phytodiniales) などである。
不等毛植物門の黄金色藻綱には以下の目と科に分類されるものである。ォクロ モナス目 (Ochromonadales) としては、 ォクロモナス科 (Ochhro匪 adaceae)、 サャツナギ科(Dynobryaceae)、 ヒカリモ科(Chlomulinaceae)、 クリサモエバ'科 (Chsamoebaceae)、 リゾクリシス科 (Rhizochrysi daceae) およびレポクロムリ ナ科 (Lepochromul inaceae) などヽ ファェオタムニオン目 (Phaeothamniales) としては、 ファェオタムニオン科 (Phaeothamniaceae) ^ タノレロクリシス目 (Thallochrysidales) としては、 タルロクリシス科(Thallochrysidaceae)、 ミ ズォ目(Hydrurales)としては、 ミズォ科(Hydrudaceae)、シヌラ目(Synurales) としては、 シヌラ科 (Synuraceae) などである。
黄緑藻綱は淡水を主な生息域とする不等毛植物の一藻群であり、以下の目に分 類されるものである。 クロラモエバ目 (Chloramoebales)、 リゾクロリス目 (Rhizochloridales)ヽ ミスココックス目 (Mischococcales)ヽ 卜リボネマ目 (Tribonematales) およびフシナシミ ドロ目 (Vaucheriales) などである。
真正眼点藻綱は単細胞性で多くは淡水産であるが海産のものもあり、以下の目 と科に分類されるものである。 ユースティグマトス目としては、 ラフィ ド藻綱 (Class Raphidophyceae ^藻綱 [Class Bacillariophyceae(=Matomophyceae;)〕ヽ 褐藻綱 [Class PhaeophyceaeC =Fucophyceae) ) などである 0
上記藻類中、本発明の培養装置を利用して藻類を高濃度でしかも光の高い利用 効率で培養するときに、特に好適に使用されるのは、 クロレラ (Chlorella)、 ス ピルリナ (Spirulina)ヽ ドナリエラ (Dunaliella) などである。 本発明で培養する藻類は、 上述のように各種の藻類を用いることができるが、 藻類が大きさや培養のしゃすさなどから一番好ましいものである 、ある程度大 き L、藻類でも培養することができる。
上記スピルリナはスピルリナ〔藍藻類(Cyanophyceae)ネンジュモ目ュレモ科、 ユレモ科〕 スピルリナ属 (ラセンモ属) Spirulina、 糸状体性、 浮遊性の藻類で ある。 より具体的には、 スピルリナ 'プラテンシス (SpirulinaPlatensis;)、 ス ピノレワナ ·マキシマ (Spirulina maxima)ヽ スピノレリナ ·ゲイ 卜レリ (Spirulina Geitleri)、 スピルリナ .サイアミ一ゼ (Spirulina siamise)、 スピルリナ ·メ ィヤー (Spirulina Ma]'or)、 スピルリナ ·サブサルサ (Spirulina Subsalsa)、 スピノレリナ ·プリンセプス (spirulina princeps)、 スピソレリナ · ラキシシマ (Spirulina Laxissima)、 スピノレリナ'クルタ (Spirulina Curta)、 スピノレリナ · スピルリノイデス (Spirulina Spirulinoides) などがあげられ、 好ましくは、 入手容易なスピルリナ 'プラテンシス、 スピルリナ ·マキシマ、 スピルリナ 'ゲ イ トレリ、 スピルリナ ·サイアミーゼなどである。
培養装置 Aを用いて上記藻類を高濃度培養する本願発明の方法について以下 に述べる。
本発明の高濃度培養による藻体(バイオマス)の製法は、 培養装置の構造、培 養装置の容量、 使用する藻の種類、 初期藻類濃度、 培養液の種類、 培地の組成、 培地の PH、 培養温度、 培養容器に照射する光量、 照射時間、 培養時間、通気の 組成 (空気および空気と炭酸ガスの混合ガス)、 通気量、 植物成長ホルモンなど 植物の生長を制御する添加物の有無、活性酸素除去用スカベンジャーの有無など により異なり特に限定されるものではないが、通常、培養濃度が 1 gないし 10 g/L (リットル)、 好ましくは 3 gないし 10 gZL、 より好ましくは 5 gな いし 10 gZLの範囲での培養を意味する。
従来から行われている実用規模での培養方法 (Open pond system) では、 初期 藻類培養濃度は 0. 05ないし 0. 1 gZL (リットル) で最終 (収穫)培養濃 度は 0. 5ないし 0. 8 gZLである。 1. 0 gZL以上の培養濃度になれば高 濃度培養と呼ばれる。
本明細書では、 高濃度培養を、 1. 0ないし 10. O gZL (リットル) の範 囲と定義した。 パ'ィォドームの液巾 (lightpath)を狭くすることにより、 10 gZLが可能となる。
上記培養装置は、本発明者らの出願(PCT/J P 99/ 1585) した明細 書に記載されている各種培養装置から任意に選ぶことができる。好ましくはドー ム型構造である。
培養装置の容量は特に制限はないが、維持管理上、通常、 60ないし 150リ ットル (し)、 好ましくは、 80ないし 120リツトル(L)である。
使用する藻の初期藻類培養濃度は、培地の種類、培地の組成、培地の pH、培 養温度、 培養容器に照射する光量、 照射時間、通気の組成(空気、 空気と炭酸ガ スの混合ガスの比率)、通気量などにより異なり特に限定されるものではないが、 通常、 0. 03ないし 0. 5 gZLの範囲が好ましい。
培地は、 藻の種類により異なるが、 淡水、 海水、 海水の希釈したもの、 汽水、 あるいは人工の培地として公知、または公知の方法に準拠して調製した培地を使 用することができる。
培地の p Hは使用する培地の種類、藻の種類などにより異なり特に限定される ものではないが、通常、 pH5. 5ないし pH9. 0、 好ましくは、 pH7. 0 ないし pH8 0の範囲である。具体的にはスピルリナ類の場合は 8ないし 11、 好ましくは 8. 5ないし 10付近であり、へマトコッカス類では pH6. 0ない し 8. 5、好ましくは 6. 5ないし 7. 5付近、 ナンノクロロブシス *ォキユラ —タでは pH6. 5ないし 8. 5、 好ましくは 7. 0ないし 8. 0付近である。 培養温度は、藻の種類により異なり特に限定できるものではないが、通常、 1 5 ないし 35 の適宜な温度である。たとえば、スピルリナ類の場合は 25 ないし 35 が好適であり、へマトコッカス類では 20 ないし 28 が好適で あり、 また、 ナンノクロロブシス 'ォキユラ一タでは 25 ないし 30 の温度 範囲が好適である。
日照量は使用する藻の種類により異なり特に限定されるものではないが、たと えば、スピルリナを培養容量 120リツトルで培養した場合では約 18メガジュ ールである。
日照時間は、培養する藻の種類、培養温度などにより異なり特に限定されるも のではないが、 通常、 1 0時間ないし 1 4時間力好ましい。
通気量は、 培養容器の容量、空気、空気と炭酸ガスの混合ガス (炭酸ガス濃度 2. 0 %) などにより異なり特に限定されるものではないが、 たとえば、培養容 量 1 2 0リツトルの場合では、 2 0リツトルノ分ないし 3 0リットノレ Z分、好ま しくは、 2 5リットル Z分ないし 3 0リットル Z分である。
培養期間は、 約 1 0日間であり、 好ましくは 1 0日以内である。
得られた藻体(バイオマス) は、 常法にしたがって、 たとえば、 培養液中の藻 体をろ過、 遠心分離、 洗浄、 乾燥することにより単離することができる。
本発明の第 2は培養装置 Aを使用する高濃度培養法による光合成色素類高含 有藻体の製造方法である。
本発明において光合成色素類含有藻体の高濃度培養とは、培養装置の構造、培 養装置の容量、使用する藻の種類、初期藻類培養濃度、培養液の種類、培地の組 成、 培地の p H、 培養温度、 培養容器に照射する光量、 照射時間、 培養時間、通 気の組成 (空気および空気と炭酸ガスの混合ガス)、 通気量、 シスト化の方法、 植物成長ホルモンなど植物の生長を制御する添加物の有無、活性酸素除去用スカ ベンジャーの有無などにより異なり特に限定されるものではないが、通常、培養 濃度が 1 gないし 1 0 g Z L、好ましくは 3 gないし 1 0 g Z L、 より好ましく は 5 gないし 1 0 gZLの範囲での培養し、得られる光合成色素類の含量は乾物 あたり 0 . 8 %ないし 9 %、好ましくは 4 %ないし 9 %、 より好ましくは 7ない し 9 %の範囲である。
上記光合成色素類とは、 ァスタキサンチン、 アンテラキサンチン、 ァロキサン チン、 ヴィオラキサンチン、 ェキネノン、 ォスキラキサンチン、 カロチン、 カン タキサンチン、 クリプトキサンチン、 クロコキサンチン、 シフォナキサンチン、 シフォネィン、ゼアキサンチン、ディアディノキサンチン、ディァトキサンチン、 ディノキサンチン、 ネオキサンチン、 ネオフコキサンチン、 フコキサンチン、 プ ラシノキサンチン、ヘテロキサンチン、 ボウケリアキサンチン、 ボウケリアンキ サンチンエステル、 ミクソキサンチン、 ミクソキサン卜フィル、 モナドキサンチ ン、ルティンなどのカロチノィド系色素類、 ァロフィコシァニン、 フィコエリ 卜 リン、 フィコエリ トリン、 フィコエリ トリン、 フィコシァニン、 フィコシァニン などのフィコピリン色素類、およびクロロフィノレ(a、 b、 c l、 c 2、 c 3、 d )、 ペリディニンなどの葉緑体などを意味する。好ましくは上記力口チノィド系色素 であり、より好ましくは、ァスタキサンチン、ヴィオラキサンチン、ェキネノン、 カロチン、 カンタキサンチン、 ゼアキサンチン、 ネオキサンチンおよびルティン などであり、 特に好ましいのは、 ァスタキサンチン、 カンタキサンチンおよびゼ アキサンチンなどである。
光合成色素類産生に適する藻類としては、前記藻体の高濃度培養可能な藻類の 中で、 光合成色素類を主に産生する藻類が好ましい。具体的には、 たとえば、 藍 色植物門藍藻綱では、 クロロフィル a、 c—フィコシァニン、 c—フィコエリ ト リエン、 ァロフィコシァニン、 ;3—カロテン、 ェキネノン、 ゼアキサンチン、 力 ンタキサンチン、 ミクソキサンチン、 ミクソキサントフィル、 ォスキラキサンチ ンなど、 原核緑色植物門原核緑藻綱では、 クロロフィノレ ( a、 b )、 yS—力ロテ ン、 ゼアキサンチンなど、 灰色植物門灰色藻綱では、 クロロフィノレ a、 フィコシ ァニン、 ァロフィコシァニン、 yS—カロテン、 ゼアキサンチン、 クリプトキサン チンなど、紅色植物門紅藻綱では、 クロロフィル a、 rーフィコシァニンおよび c—フィコシァニン、 r一フィコエリ トリェンおよび b—フィ コエリ トリェン、 ァロフィコシァニン、 α—および ;3—力口テン、ルティン、ヴィオラキサンチン、 ゼアキサンチン、 アンテラキサンチン、 ネオキサンチンなど、 クリブト植物門ク リプト藻綱では、 クロロフィノレ ( a、 c 2 )、 α—および y3—力口テン、 フィコ シァニン、 フィコエリ トリン、 ァロキサンチン、 クロコキサンチン、 ゼアキサン チン、 モナドキサンチンなど、 渦鞭毛植物門 (炎色植物門)渦鞭毛藻綱では、 クロ ロフィノレ (a、 c 2 )、 /5—カロテン、 ペリディニン、 ディノキサンチン、 ディ ァトキサンチンなど、不等毛植物門 (黄色植物門)黄金色藻綱では、 クロロフィノレ ( a、 c l、 c 2、 c 3 )、 ^—カロテン、 ゼアキサンチン、 クリプトキサンチ ン、 アンテラキサンチン、 ヴィオラキサンチン、 フコキサンチン、 ネオフコキサ ンチン、 ディアトキサンチン、 ディアディノキサンチン、 ネオキサンチンなど、 黄緑藻綱では、 クロロフィノレ (a、 c 1、 c 2 )、 β—力口亍ン、 ボウケリアキ サンチン、 ディアトキサンチン、 ヘテロキサンチン、 ネオキサンチンなど、 真正 眼点藻綱では、 クロロフィル a、 β—力 Ό亍ン、 カンタキサンチン、 アンテラキ サンチン、 ヴィオラキサンチン、 ボウケリアキサンチン、 ネオキサンチンなど、 ラフィ ド藻綱では、 クロロフィノレ (a、 c l、 c 2 )、 β—カ 亍ン、 ディアデ イノキサンチン、ボウケリアキサンチスヘテロキサンチン、ディノキサンチン、 ネオキサンチン、 フコキサンチン、 ゼアキサンチン、 ヴィオラキサンチンなど、 珪藻綱では、 クロロフィル (a、 c l、 c 2、 c 3 )、 ;0—カロテン、 ェキネノ ン、 カンタキサンチン、 フコキサンチン、 ネオフコキサンチン、 ディアトキサン チン、 ディアディノキサンチン、 ネオキサンチンなど、 褐藻綱では、 クロロフィ ノレ (a、 c 1、 c 2、 c 3 )、 3—カロテン、 アンテラキサンチン、 ヴィオラキ サンチン、 フコキサンチン、 ディアトキサンチン、 ディアディノキサンチン、 ネ ォキサンチンなど、 ハプト植物門(プリムネシゥム植物門)ノヽブト藻綱(プリムネ シゥム藻綱)では、 クロロフィノレ (a、 c l、 c 2 )、 α—および; S—カロテン、 フコキサンチン、 ェキネノン、 カンタキサンチン、 ディアトキサンチン、 ディア ディノキサンチン、 ディノキサンチンなど、 ユーグレナ植物門(ミ ドリムシ植物 門)ュ一グレナ藻綱(ミ ドリムシ藻綱)では、 クロロフィル aおよび b、 β -力。 テン、 ゼアキサンチン、 ェキネノン、 ディアディノキサンチン、 ネオキサンチン など、 クロララグニォン植物門クロララグニォン藻綱では、 クロロフィル ( a、 b )、 β—カロ亍ン、 ゼアキサンチン、 ェキネノン、 ディアディノキサンチン、 ネオキサンチンなど、 緑色植物門緑藻綱 (広義)では、 クロロフィノレ (a、 b )、 α―、 yS—およびアーカロテン、 ゼアキサンチン、 ルティン、 アンテラキサンチ ン、 ヴィオラキサンチン、ネオキサンチン、 シフォネイン(数種の管状葉緑素)、 シフォナキサンチンなど、 ブラシノ藻綱では、 クロロフィル (a、 b )、 α—お よび; S—カロテン、 ブラシノキサンチン、 シフォネイン、 シフォナキサンチンな ど、 ぺディノ藻綱では、 クロロフィル (a、 b ) などが含まれていることが知ら れている。
上記各種藻類に含まれる光合成色素類は、本発明者らの藻類培養装置を用いて 適宜な培地中で培養することにより高収率、 高純度で産生することができる。 本発明に使用するァスタキサンチンを産生する藻類としては、好ましくはへマ トコッカス ·プノレヒ /リス (Haematococcus pluvialis)、 へマトコッカス■ラク ストリス (Haematococcus lacustris)、 クロ口コックム目に属する緑藻類、 たと えば、 クロレラ 'フス力(Chlorella fusca)、 クロレラ 'ゾーフィンゲンシス
(Chlorella zofingiensis)ヽク口レラ ·ホモスポーラ (Chlorella homospphaera などのクロレラ類、 セネデスムス (イカダモ) などをあげることができる。 また、 ;9—カロチン、 ゼアキサンチンを産生する藻類としては、 スピルリナ . プラテンシス、 スピルリナ ·マキシァ、 スピルリナ 'サブサルサなどであり、 よ り好ましくはスピルリナ ·プラテンシスなどである。
ァスタキサンを産生させるための培地の条件としては、緑藻類は栄養欠乏環境 下、 たとえばへマトコッカス (Haematococcus) は N欠乏培養することによりァ スタキサンチンを含有(2mg/g) することが知られている。
光合成色素類は、藻類をシスト化および着色化(Pigmentation)することによ り、 産生させることができる。 シスト化および着色化の条件としては、 (1 ) 光 強度を増大させる。たとえば強光(50, 000ないし 150, 000ルクス)、 (2 )培地の P04— Pを欠乏させる。 (3)培地の N (窒素)、例えば N03— Nを欠乏させる
(Oppm)o (4)培養温度を高くする(栄養細胞培養温度 20ないし 28てより、 約 1 0 高くする。好ましくは 3 0ないし 3 5 <€)o ( 5 )活性酸素発生剤(過酸 化水素、 H202、 オゾン 03) の添加。 (6) 塩ストレス (Salt Stress. N a C
Iの 0. 5%ないし 0. 8 %を培地に添加する)、 (7) 硫酸基欠乏 (Sulphate starvation , 培地中の MgS04 を除去する。 または MgC 12 に置き換える。)
( 8 )細胞分裂阻害剤の添加、例えば細胞分裂阻害剤として作用するビンブラス チン (Vinblastine) を添加するとァスタキサンチンの含量が増加する。
本発明においては、上記シスト化および着色化の各条件を 1種以上、好ましく は 2ないし 3種類の方法を組み合わせることにより一層の効果が期待できる。例 えば、 光強度を増大させ、 N欠乏、 P04欠乏などの組み合わせを好ましい例と してあげることができる。
また、緑藻類であるクロレラゃセネデスムスも N欠乏またはマグネシウム欠乏 培養することによりァスタキサンチンを含有 (1. 5mg)することが知られて いる。さらにはァスタキサンチンを生合成する緑藻類であるクロレラまたはセネ デスムスを、ナトリウム塩およびカリウム塩の 1種以上を 0. 2ないし 1 M含む 培地中で培養しァスタキサンチン高含有緑藻類(4ないし 1 OmgZg)を生産 する方法が報告されている。
光合成色素類の採取に適した藻類としては、 クロレラ、 スピノレリナ、 ドナリエ ラ、 ナンノクロロプシス属 (例、 Nannochloropsis 0culata)、 トラストキトリウ ム属 (例、 Thraustochy rium aureun 、クリァテコティニゥム(例ヽ Crypthecodinium Cohnii)、 イソクリシス属 (例、 Isochrysis Galbana) などをあげることができ る。
ドナリエラ (緑藻綱 (Chlorophyceae) ォォヒゲマヮリ目ドナリエラ属は、 藻 体にベータ一カロチンを多く含むものであり、好ましくは、 ドナリエラ ·サリー ナ (Dimaliella salina)ヽ 卜ナリエラ -ノヾノレタピ レ (Dunaliella bardawil)、 ド ナリエラ ·チルティォレクタ (Dunaliella tertiolecta) などである。
本発明の培養装置 Aを用いた藻類の培養により、医薬原料として有用な多糖類 (ポリサッカライド) を効率よく製造することができる。
本発明における多糖類とは、分子量 1万以上の水不溶性または水可溶性多糖類 を意味する。具体的には、 1種の単糖からなるホモグリカン (単一多糖類) およ び 2種以上の単糖からなるヘテログリカン(複合多糖類)である。 ホモグリカン としてはセ^^ロ一ス、 デンプン、 グリコーゲン、 カロニン、 ラミナラン、 デキス 卜ランなどのグルカン類、 ィヌリン、 レバンなどのフルクタン類、 マンナン類、 キシラン類、ぺクチン類などのガラクッロナン、 アルギン酸などのマンヌロナン 類、キチンなどの N—ァセチルグルコサミン重合体などであり、ヘテログルカン としては、 グァラン、 マンナン、 〜、。リン、 コンドロイチン硫酸、 ヒアノレロン酸 などのジヘテロダリカン、 フコィダン、 ァガロースなどであり、藻類の培養によ り得られるものである。
藻類から得られる多糖類の有用性としては、例えば褐藻類からの硫酸多糖類が 抗血液凝固作用や血液浄化作用 (リポタンパクリパーゼ活性)、 抗腫瘍活性、 ま た、褐藻から抽出されるフコステロールが血管内皮細胞でプラスミノ一ゲン活性 化因子の産生を増加させることが報告されている。
また、 健康食品用途にも多く利用されてきている。
多糖類の産生に適した藻類としては、 藍藻、 紅藻、 ハプト藻、 真正眼点藻、 黄 緑藻、 珪藻、 褐藻、 緑藻、 車軸藻などがあげられる。 好ましくは、 クロレラ 'ブルガリス (Chlorella vulgaris) などのクロレラ (Chlorella) 属、 ノストック コミユン (Nostoc Commune ) などのネンジュモ (Nostoc) 属などである。
多糖類を分離する方法としては、培養した藻類から常法に従って、例えば、藻 培養液から分離した藻体の細胞を破壊した後、酵素反応を行って多糖類を抽出す る方法により得ることができる。 また、必要ならば細胞破壊後、細胞内の脂溶性 成分を水混和性有機溶媒で処理し、 除去後多糖類を抽出することもできる。
以下、培養装置 Aを使用した光合成色素類含有藻類の製造方法について述べる c 本発明の光合成色素類含有藻類の培養液は公知のもの、または公知の方法に準 拠したものを使用することができる。 光合成色素類含有藻体の高濃度培養では、 培養装置の構造、培養装置の容量、使用する藻の種類、初期藻類培養濃度、培養 液の種類、 培地の組成、 培地の p H、 培養温度、 培養容器に照射する光量、 照射 時間、培養時間、通気の組成(空気および空気と炭酸ガスの混合ガス)、通気量、 シスト化の方法、植物成長ホルモンなど植物の生長を制御する添加物の有無、活 性酸素除去用スカベンジャーの有無などにより異なり特に限定されるものでは ないが、通常、培養濃度が 1 gないし 1 0 g Z L、好ましくは 3 gないし 1 0 g Z L、 より好ましくは 5 gないし 1 0 g Z Lの範囲での培養し、得られる光合成 色素類の含量は乾物あたり 0 . 8 %ないし 9 %、好ましくは 4 %ないし 9 %、 よ り好ましくは 7ないし 9 %の範囲である。
培養液の種類としては、 水、 人工の培養液、 天然の淡水、 汽水、 および海水、 またはこれらを適宜に希釈したものを使用することができる。海洋性藻類として は、 たとえば、 深海から低温、 富栄養、 無菌状態で入手できる深層水は、 そのま ま利用することにより、 また深層水の低温を利用し、温度制御しながら培養でき るというメリットがある。 また、 深層水を適宜希釈して、培養液を調製し、利用 することもできる。さらには、所望により、硝酸力リウム、リン酸ニントリウム、 リン酸ニカリウム、 ホウ酸、塩化マグネシウム、塩化マンガン、 モリブデン酸ナ トリウム、 硫酸亜鉛、 硫酸銅、 硫酸鉄を添加することもできる。
培養装置 Aはこれらの藻類を高濃度でしかも光の高 L、利用効率で培養するこ とができる。 培養温度は、培養する藻の種類などにより異なり特に限定されるものではない が、通常 1 5 ないし 3 5 、好ましくは 2 0 ないし 3 0 、 より好ましくは 2 {)■€ないし 2 5 である。
日照量(光量) は、使用する藻の種類などにより異なり特に限定されるもので はな 、が、通常 500ないし 100, 000ルクス、好ましくは 5, 000ないし 100, 000ル クス、 より好ましくは 75, 000ないし 100, 000ルクスである。
ァスタキサンチンなどの光合成色素を高濃度で蓄積させるために強光を要す るが、 緑色細胞培養にはさほど強 、光を要しない。
培養時間は、 培養する藻の種類、 培養温度、 日照量(光量) などにより異なり 特に限定されるものではないが、通常 7ないし 1 4日、好ましくは、約 1 0日で ある。 これに対し、従来のスルピリナの培養法で、本発明の培養方法と同じ量を 製造しょうとすると、通常 1週間から数週間必要であり、本発明の製造法が時間 的にも格段に改善されていることがわかる。
培養装置 Aを使用した光合成色素類含有藻類の培養方法では、光合成色素類を 増加させる公知の技術を使用することもできる。たとえば、ァスタキサンチンの 産生能を向上させるために緑藻類(Haematococcus pluvial is ) を高温度で培養 し、 ァスタキサンチンを多量蓄積させる方法を応用することもできる。 この方法 では上記藻を 3 0 で培養すると, ァスタキサンチン生産は 2 0 ^での 3倍とな り、そのとき酢酸を供給すると, 供給しない場合の 2倍のカロチノィドを合成す る ものである ( TJAHJONO A E など、 Biotechnol Lett、 VOL. 16, NO. 2 p. 133-138(1994))。
上記培養条件下で培養装置 Aを使用した場合には、バイオマスの増量のみなら ず、 さらに藻類中のァスタキサンチン蓄積量の増加が見られた。
本発明の製造法により得られる光合成色素類は、常法に従って、培養液中の藻 体をろ過または遠心分離などで単離、 洗浄、乾燥し、必要ならば、 藻体を、 常法 に従って破砕後、適宜な有機溶媒、 たとえば、 メタノール、 エタノール、 ァセト ンなどの極性の大きい溶媒、 あるいはこれらの溶媒の 1種以上とへキサン、塩化 メチレンなどを併用して抽出後、 シリカゲルカラムクロマトグラフィー、 H P L Cなどにより分離精製することができる。 藻体から目的の光合成色素類を回収する方法は、特に制限されるものではなく、 公知の方法に準じて行うことができる。藻体から効率よく目的の光合成色素類を 回収する方法としては、たとえば、培養液から高ァスタキンサン含有量の藻体を 収穫し, 粒径 0. 25ないし 5. 0 mmのガラスビ―ズで試料濃度 0. 1ないし 10重量%、処理時間 5ないし 60分間程度の条件で物理的に破碎する (特開平 03-83577)方法などを使用することができる。
藻からカロテノィド色素(光合成色素類) を抽出するには、 たとえば、 へマト コッカス ·プラビアリス藻の細胞壁を高圧下において、乱流により破壊し、乾燥 後、有機溶媒により抽出し、ァスタキサンチンカロテノィド色素を得る方法など を利用することができる。藻類の細胞壁破砕後の抽出は、常法に従って、前記適 宜な有機溶媒を使用して抽出することができる。
本発明の第 3は培養装置 Aを使用する高度不飽和脂肪酸を産生できる藻類の 高濃度培養法による高度不飽和脂肪酸類含有藻体の製造方法である。
高度不飽和脂肪酸類含有藻体の高濃度培養では、培養装置の構造、培養装置の 容量、 使用する藻の種類、 初期藻類培養濃度、 培養液の種類、 培地の組成、 培地 の pH、 培養温度、 培養容器に照射する光量、 照射時間、 培養時間、 通気の組成 (空気および空気と炭酸ガスの混合ガス)、 通気量、 植物成長ホルモンなど植物 の生長を制御する添加物の有無、活性酸素除去用ス力べンジャ一の有無などによ り異なり特に限定されるものではないが、通常、培養濃度が 1 gないし 10 g L、好ましくは 3 gないし 10 gZL、 より好ましくは 5 gないし 10 gZLの 範囲での培養し、得られる高度不飽和脂肪酸類の含量は乾物あたり 0. 8%ない し 9 %、好ましくは 4%ないし 9 %、より好ましくは 7ないし 9%の範囲である。 本発明 におしヽて藻類の高濃度培養により得られる高度不飽和脂肪酸類とは、 特に限定されるものではないが、通常不飽和結合 4ないし 6個を有する炭素原子 数 18ないし 22の脂肪酸を意味する。具体的には、不飽和結合 6個を有し炭素 数 22個のドコサへキサェン酸 (DHA)、 不飽和結合 5個を有し炭素数 20個 のエイコサペンタエン酸 (EPA)、 不飽和結合 4個を有し炭素数 20個のァラ キドン酸 (ARA) などをあげることができる。
高度不飽和脂肪酸類の有用性については、 たとえば、 DH Aおよびそのエステ ルがそれらを有効成分とする脳機能向上剤 (特開平 1— 1 5 3 6 2 9号)、 脳機 能改善剤組成物、学習能力増強剤、記憶力増強剤、痴呆予防剤、 痴呆治療剤また 脳機能改善効果を有する機能性食品(特開平 2 - 4 9 7 2 3号公報)への応用な どが報告されている。
従来の高度不飽和脂肪酸類の製造方法としては以下の方法が報告されている。 モルティエレラ菌を使った変換反応により高度不飽和脂肪酸類(D H A)を製 造する方法 (特開昭 6 3 - 1 8 5 3 8 9号)、 ァラキドン酸を生産できる微生物 による高度不飽和脂肪酸類強化油脂の製法(特開平 1 - 3 0 4 8 9 2号)、 海洋 微生物からの高度不飽和脂肪酸類含有脂質の製法(特開平 2— 1 4 2 4 8 6号公 報)、 ェチノスポランジゥム (Echinosporangium) 属菌による高度不飽和脂肪酸 類の製法 (特開平 2— 2 3 8 7 8号公報)。 ェチノスポランジゥム トランスバ —サリイ (Echinosporangium Transversal ie) ATCC 16960、 18036の培養物から 高度不飽和脂肪酸類を取得する方法 (ヨーロッパ公開公報 3 5 5 9 7号公報)、 さらに、 細菌、 真菌スラウストシトリウム (Trraustochytrium)、 ェントモフト ラ、 ジャポノシトリウム (Japonochytrium) sp. ATCC 28207 (特開平 1— 1 9 9 5 8 8号) などが報告されている。
また、藻類を培養して D H Aを得る方法としては、渦鞭毛藻、ハプト藻などを 培養する方法が報告されている ( Joseph. J. D.; Lipids, 10, 395(1975), Nichols, P. D. et al ;Phytochemistry, 23, 1043(1984))。
しかしながら、上記自然増殖法、単なる静置培養法であり、実用化には技術的 課題が多いものであった。
本発明の培養装置 Aを使用する高濃度培養による高度不飽和脂肪酸含有藻類 の製造に好適な藻類としては、前記藻類の中から高度不飽和脂肪酸類を産生する 藻類を任意に選ぶことができる。
具体的には、高度不飽和脂肪酸類(D H A )を産生するィソクリシス ·ガルバ ーナ (Isocrysis galvana )、 高度不飽和脂肪酸類 (E P A ) を産生するナンノ クロロプシス ·ォキユラ一タ (Nannochloropsis oculata) およびモノダス .サ ブテラナス(Monodus subterraneus)などをあげることができる。 本発明の高濃度 培養法では上記藻類の 1種または 2種以上を併用することができる。 上記ィソクリシス ·ガルバナ (IsochrysisGalbana) は海洋藻類であるハプト 藻に属するものである。 また、 ッノゲイ藻に属するカェトセロス ·グラシリス
( Chaetoceros Gracilis )、 力ェ卜セロス - カノレシ 卜ランス ( Chaetoceros Calcitrans) クリプト藻に属するクリプトモナス属菌 (Chryptomonas Sp。)、 そ の他パブロバ属菌 ( Paavlova Lutheri )ヽ およびク リコスフヱァラ属菌
(Cricosphaere Carterae) などが好ましい 0
イソクリシス ·ガルバ、ナとしては、 具体的には、 イソクリシス .ガルバ'ナ L B 2307、 LB 9807、 カェトセロス ·グラシリス 2375、 カェトセ口 ス ·カルシトランス CCAL 1315、 クリプトモナス ·スビシーズ LB 24 23、パブロバ'ルテリ LB 1293、 クリコスフェアラ ·力ノレテラエ LB 1 014、 LB 2167などがあげられる。 これらの藻類は 1種または 2種以上混 合して使用することができる。
高度不飽和脂肪酸類が EP Aの場合は、たとえば、 EP Aを多く含む浮遊性の 単細胞藻類モノダス (Monodus) 真正眼点藻綱 (Eustigmatopceae)、 ナンノクロ ロプシス -ォキユラ一タ (Nannnochloropsis oculata) などが好適である 0 培養条件は前述の藻体 (バイオマス) の製法に準拠した方法である。
本発明においては培養装置 Aの使用により簡便な方法により、培養液内の光環 境を最適化することができるので連続照射、非連続照射により培養速度をさらに 早めることもできる。
本発明の方法によれば、高濃度培養により、高純度、高収率で藻類を産生する ことができる。 さらに、 必要ならば培地に公知の植物成長ホルモン、 たとえば、 オーキシン(auxin)、 ジべレリン(gibberellins)、サイ卜カイニン (cytokinin) などを添加し、 ユーグレナなどの藻類の成長を促進させることができる。
本発明の製造法により得られる高度不飽和脂肪酸類は、常法に従って、培養液 中の藻体をろ過または遠心分離などで単離、洗浄、乾燥し、必要ならば、藻体を、 常法に従って破砕後、 適宜な有機溶媒、 たとえば、 メタノール、 エタノール、 ァ セトンなどの極性の大きし、溶媒、 あるいはこれらの溶媒の 1種以上とへキサン、 塩化メチレンなどを併用して抽出後、 シリカゲルカラムクロマトグラフィー、 H P L Cなどにより分離精製することができる。 実施例
実施例 1 DHA産生イソクリシス ·ガルバーナ
培養装置 Aを使用し、 イソクリシス ·ガルバ一ナ (Isochrysis Galbana) の初 期藻類培養濃度 (0.3 gZL)、 および下記培養条件〔培養容量、 120リット ル、 培地の組成 (表 1)、 培養温度 15 ないし 25 、 日照量および日照時間 14. 3メガジュール(12. 5時間)、通 Mは空気と炭酸ガスの混合ガス(炭 酸ガス濃度 2. 0%) を 30リットルノ分、 培地の pHは 7. 0ないし 8. 0、 培養期間は 10日間〕下で藻類ィソクリシス ·ガルバ一ナ(Isochrysis Galbana) を培養した。
その結果、 培養濃度として 10. 0 gZLで高度不飽和脂肪酸類(DHA) を 乾物当たり 8%含有する高含量藻体 (バイオマス) を得ることができた。
培地組成
表 1
Figure imgf000043_0001
pH: 7.5ないし 8.0の範囲で使用。
実施例 2 DH A産生ィソクリシス .ガルバーナ
本培養装置を使用し、 実施例 1の培養条件において、 培地組成の ZnC 12を Z n S 04 · 7 H20 8. 4 m gZLに替え、 F e C 13 · 4 H2 Oを F e C I 3. 6 H20 2. 77 gZLに替え、 藻類ィソクリシス ·ガルバ一ナ (Isochrysis Galbana) を培養することにより、 培養濃度として 5. 0 g/Lで高度不飽和脂 肪酸類(DHA)を乾物当たり 7. 5%含有する高含量藻体(バイオマス) を得 ることができた。
実施例 3 高濃度培養によるスピルリナ 'プラテンシスの製法
本培養装置を使用し、初期藻類培養濃度(0.5 gZL)、以下に示す培養条件 (培養容量 120リツトル、培地の組成(表 2)、培養温度 25 ないし 35 、 日照量 18メガジュール Zm2および日照時間 14. 5時間、 通気量は空気と炭 酸ガスの混合ガス、 炭酸ガス濃度 2. 0%)を 25リットルノ分、 培地の pHは 8. 5ないし 10. 0、 培養期間は 10日間)下で藻類スピルリナ .プラテンシ ス (Spirulina Platencis) を培養した。 その結果、 培養濃度として 10ないし 20 gZLで、生産性も 2.0ないし 5.0 gZL/日を実現することができた。 下記比較例 1の従来の培養方法に比較し生産性が約 10倍であつた。
表 2
Figure imgf000045_0001
上記表中の Na2 EDTAは、 E D T Aの 2ナトリウム塩を示す c
比較例 1 従来の培養法 (スピルリナ ·プラテンシス)
上記実施例 1の培養条件において、培養器を従来の培養池方式に替えて培養し たところ、 スピルリナ 'プラテンシスの培養濃度は 0.3ないし 0. 5ノリット ル、 およびその生産性は 0. 1ないし 0. 2 gZLZ日であった。
実施例 4 ァスタキサンチンのへマ卜コッカス ·プルビアリスによる製法 培養装置 Aを使用し、 初期藻類培養濃度(0.5 g/L) および以下に示す培 養条件 (培養容量 80リッ トル、 培地の組成 (表 3)、 培養温度 25 ないし 3 0 、 日照量 17. 5メガジュール Zm2、 および日照時間 13. 5時間、 通気 量(空気と炭酸ガスの混合ガス、炭酸ガス濃度 2. 0%、 25リツトル Z分、 p H7. 5ないし 8. 5、 培養日数 10日) 下でへマトコッカス .プルビアリス (Haematococcus Pluviaris)を培養した。通気を止め、沈殿した藻体を分収し、 上記培地から Nと Pを除いた培地を加え、 強光下で 4日間培養した。 その結果、 培養濃度として 5 gないし 10 g/Lの高濃度培養により、色素ァスタキサンチ ンを 4%ないし 8%の高含量を含む藻体 (バイオマス) が得られた。
表 3
o
成分名 使用量 成分名 使用量
NaNOs 1.50g/L (1) A—溶液の組成
CaCI2 · 2H20 0.036g L ZnS。4 · 7H20 222mg L
NasCOs 0.02g/L CuS04 · 5H20 79mg/L
MgS04 · 7H20 0.075g/L M0O3 15mg/L
EDTA O.OOlg/L H3BO3 2,860m g/L
K2HPO4 0.039g/L MnC · 2H2O l,810mg/L クェン酸 0.006g/L
クェン酸アンモニゥム 0.006g/L
A—溶液 (1) 1.0 ml L
比較例 2 へマトコッカス 'プノレビアリスの培養法
上記実施例 4の培養条件において、培養器を従来の培養池方式に替えてへマト コッカス 'プルビアリス (Haematococcus Pluvialis) を培養した。
その結果として、へマトコッカス 'プルビアリスの培養自体がきわめて困難で あることが分かった。
実施例 5 EP Aのナンノクロロブシス ·ォキユラ一夕培養法による製造 培養装置 Aを使用し、 ナンノクロロブシス 'ォキユラ一夕 (Nannnochloropsis Oculata) の初期藻類培養濃度 (0.4 g/L), 以下に示す培養条件 (培養容量 120リツトル、 培地の組成(別紙(5))、 培養温度 25 ないし 30 、 日照 量および日照時間 16. 3メガジュールノ m2、 13. 5時間、 通気量 (空気と 炭酸ガスの混合ガス、 炭酸ガス濃度 2. 0%)、 30リットル 分、 培地 pH7. 0ないし 8. 0、培養日数 10日)下で海洋性藻類のナンノクロロブシス 'ォキ ユラ一夕 (Nannnochloropsis Oculata) を培養した。
その結果、 8 gZLの高濃度培養により、高度不飽和脂肪酸類(EPA) を乾 物当たり 10%の高含量を含む藻体 (バイオマス) を得ることができた。
表 4
Figure imgf000049_0001
実施例 6 EPAのナンノクロロブシス ·ォキユラ一夕培養法による製造 培養装置 Aを使用し、実施例 5と同一の培養条件下でナンノクロロブシス ·ォ キユラ一夕を培養した。
その結果、 3 gZLの高濃度培養により、高度不飽和脂肪酸類(EPA)を乾 物当たり 8%の高含量を含む藻体 (バイオマス) を得ることができた。
比較例 3 EP Aのナンノクロロブシス ·ォキユラ一夕培養法による製造 上記実施例 5の培養条件において、培養器を従来の培養池方式に替えてナンノ クロロブシス ·ォキユラ一タを培養した。
その結果、 この製法ではバイオマスの培養濃度は 0. 2ないし 0. 4gZL力 限度であった。
実施例 7 雪藻培養による A R Aの製造
培養装置 Aを使用し、 雪藻 (Paietochloris inciss) の初期藻類培養濃度 0. 5 gZL、および下記培養条件(培養容量 120リツトル、培地の組成(表 5)、 培養温度約 25 、 日照量 15メガジュール Zm2、 通気量 (空気と炭酸ガスの 混合ガス、 炭酸ガス濃度 2. 0%)を 30リットルノ分、 培地の pHは 7、培養 時間 2週間) で培養した。 その結果、 最終バイオマス濃度 0.5 gZLまで藻体 を培養することができた。藻体をろ取し、乾燥することにより、乾燥重量当たり 6. 5重量% (w/w%)のァラキドン酸を含むものを得た。 ここでァラキドン 酸量は、藻体に含まれるトリァラキドニルグリセライド、ァラキドン酸モノエス テル、 ァラキドン酸ジエステルをァラキドン酸に換算した量である。
表 5
Figure imgf000051_0001
実施例 8
培養装置 Aを使用し、 藻類としてネンジュモ属 (NostocCofflnmne) の初期藻類 培養濃度 0. 5 g/Lおよび下記培養条件〔培養容量 120リツトル、培地の組 成(表 6)、培養温度 25 、光強度 7ないし 10メガジュール、培地の pH7. 6ないし 7. 8、 培養期間 2週間〕 下で培養した。
その結果、 最終バイオマス濃度として 4ないし 5 g/Lで藻体を得た。
得られたバイオマスを熱水抽出し、乾燥重量当たり 10ないし 15%のポリサ ッカライドが得られた。抽出された多糖類を分析した結果、乾燥重量当たり 4% の β— i , 3—グルカンが検出された。 表 6
Figure imgf000052_0001
stock溶液は下記表 7のとおりである <
表 7
Figure imgf000053_0001
ナンォクロロブシス (Nannochloropsis) 属の藻類、 例えば、 ナンノクロロブ シス ォキユラ一夕 (Nannochloropsis oculata) は、 養殖用の稚魚の餌となる 「ヮシム」を繁殖させるための餌として有用である。
またファェオダクチルム (phaeodactylum ) 属の藻類、 例えば、 ファェオダク チルム トリコノレニュータム ( phaeodactylum tricornutum )、 ッノ'ケイソゥ (Cheatoceros) 属の藻類、 例えば、 Cheatoceros gracilisは二枚貝ゃァヮビ、 ェビなどの甲殻類の餌として有用である。自然界では季節や環境の変化によって これらの藻類の増減(消長) は成り行きまかせになるため、従来はこれを補うた めにオープンポンド(ため池) で藻類を培養し、補っていた。 しかしながら、 こ のため池も自然変化の影響を受けるため、安定的に藻類を確保することができず、 また必要な特定種のみを効率よく得ることも困難であつた。
閉鎖型のバイオドームを使用することにより、高品質な藻類を安定的に生産供 給することが可能になる。 実施例 9
培養装置 Aを使用し、 藻類としてファェオダクチルム トリコルニュータム (phaeodactylum tricornutum) の初期藻類培養濃度 0. 3 gZLおよび下記培 養条件 〔培養容量 120リツトル、 培地の組成 (人工海水、 表 8)、 培養温度 2 6 、光強度 5メガジュール、培地の pH7. 5ないし 8. 5、培養期間 2週間〕 下で培養した。
その結果、 最終バイオマス濃度として 5 gZLで藻体を得た。
この得られたものは、 海洋養殖用飼料 (餌の餌) として用いられる。 表 8
Figure imgf000054_0002
表中、 stock溶液 1と stock溶液 2の組成はそれぞれ表 9、 表 10のとおりで める。
表 9
Figure imgf000054_0001
表 1 0
Figure imgf000055_0001
発明の効果
本発明者らの培養装置を使用することにより、 藻体 (バイオマス) が高純度、 高収率で得られる方法を提供することができた。 また、 得られたバイオマスは、 光合成色素類および Zまたは高度不飽和脂肪酸類およびノまたは多糖類を高濃 度で含有した藻体を得ることができる。このため比較的簡便な装置で容易に光合 成色素類および Zまたは高度不飽和脂肪酸類およびノまたは多糖類を製造する ことができる。

Claims

請 求 の 範 囲
1 . 高度不飽和脂肪酸およびノまたは光合成色素およびノまたは多糖類の産生 能を有する藻類を培養装置を用し、て培地中で光照射下かつ通気条件下で高濃度 培養することにより高度不飽和脂肪酸およびノまたは光合成色素および Zまた は多糖類を含有する藻類を製造する方法において、 前記培養装置がドーム形状、 円錐形状または円筒形状の t、ずれかの形状のものから選ばれるものであつて、 該ドーム形状の培養装置は、透明な材料よりなる外側半球状ドーム、透明な材 料よりなる内側半球状ドームおよび両ドームの下端部を連結する底部よりなり、 かつ該外側半球状ドームの頂部には円筒開口部が設けられるとともに該底部に は空気および または炭酸ガスの導入部材ぉよび培養液の排出部材が設けられ ているものであり、
該円錐形状の培養装置は、透明な材料よりなる外側円錐周壁、透明な内側円錐 周壁および両周壁の下端部を連絡する底部よりなり、かつ該外側円錐周壁の頂部 には円筒開口部が設けられるとともに該底部には空気および または炭酸ガス の導入部材および培養液の排出部材力、'設けられているものであり、
または、該円筒形状の培養装置は、透明な材料よりなる上壁を有する外側筒状周 壁、透明な材料よりなる上壁を有する内側筒状周壁および両周壁の下端部を連絡 する底部よりなり、かつ該外側筒状周壁の上壁中央部には円筒開口部が設けられ るとともに該底部には空気および/または炭酸ガスの導入部材および培養液の 排出部材が設けられているものであることを特徴とする上記方法。
2. 培養装置を構成する透明な材料としてアクリル樹脂、 ポリカーボネート、 ポリプロピレン、ポリェチレンぉよびポリ塩化ビニルから選ばれる 1種以上の材 料を使用するものであることを特徴とする請求項 1記載の方法。
3 . 培養装置の円筒開口部の外側に散水部材と底部の外周に散水受器とをさら に設けた培養装置を使用して培養することを特徴とする請求項 1記載の方法。
4 . 培養装置の内側半球状ドーム、 内側円錐周壁または内側筒状周壁の内側空 間に人工光源がさらに設けられた培養装置を使用して連続培養を行うことを特 徵とする請求項 1記載の方法。
5. 高度不飽和脂肪酸および または光合成色素および/または多糖類の産生 能を有する藻類を培養装置を用 、て培地中で光照射下かつ通気条件下で高濃度 培養することにより高度不飽和脂肪酸および Zまたは光合成色素および Zまた は多糖類を多量に含有する藻類を製造する方法において、前記培養装置が、培養 装置本体とガス吐出装置からなり、 かつ
培養装置本体はドーム形状、 円錐形状または円筒形状の培養装置であって、 該ドーム形状の培養装置は、透明な材料よりなる外側半球状ドーム、透明な材 料よりなる内側半球状ドームおよび両ドームの下端部を連結する底部よりなり、 かつ、該外側半球状ドームの頂部には円筒開口部が設けられるとともに該底部に は培養液の排出部材が設けられているものであり、
該円錐形状の培養装置は、透明な材料よりなる外側円錐周壁、透明な材料より なる内側円錐周壁および両周壁の下端部を連結する底部よりなり、かつ該外側円 錐周壁の頂部には円筒開口部が設けられるとともに該底部には培養液の排出部 材が設けられているものであり、
または該円筒形状の培養装置は、透明な材料よりなる上壁を有する外側筒状周 壁、透明な材料よりなる上壁を有する内側筒状周壁および両周壁の下端部を連結 する底部よりなり、かつ該外側筒状周壁の上壁中央部には円筒開口部が設けられ るとともに該底部には培養液の排出部材が設けられているものであり、
該ガス吐出装置は、対向する 2つの方形基板、断面コ字状または断面逆 U字状 で下方に開放された気泡誘導部材および吐出ノズノレより構成され、該気泡誘導部 材は該方形基板の上側面に対して傾斜して設けられるとともに該気泡誘導部材 の上面の傾斜壁が上端部においてほぼ水平に折り曲げられて延在する上壁を形 成し、かつ該傾斜壁および該上壁の両側端より垂下される側壁を有し、かつ両側 壁の下端部のそれぞれが該方形基板の 2つの該上側面で接合されており、該吐出 ノズルは、該傾斜壁の下方部に穿設された貫通孔を貫通して回転自体に取り付け られていることを特徴とする上記方法。
6 · 培養装置本体の透明な材料がァクリル樹脂、 ポリカーボネート、 ポリプロ ピレン、ポリエチレンおよびポリ塩化ビニルから選ばれる 1種以上の材料である ことを特徴とする請求項 5記載の方法。
7. 培養装置本体の円筒開口部の外側に散水部材と底部の外周に散水受器とを さらに設けた培養装置を使用して培養することを特徴とする請求項 5記載の方 法。
8. 培養装置の内側半球状ドーム、内側円錐周壁または内側筒状周壁の内側空 間に人口光源がさらに設けられた培養装置を使用して連続培養を行うことを特 徵とする請求項 5記載の方法。
9. 培養装置本体の底部にさらに空気および Zまたは炭酸ガスの導入部材が設 けられた培養装置を使用して培養することを特徴とする請求項 5記載の方法。
1 0. ガス吐出装置がその方形基板のうち少なくとも一方が先端部およびノま たは後端部およびノまたは後端部において同一方向に折り曲げられたものを使 用して培養することを特徴とする請求項 5記載の方法。
1 1 . ガス吐出装置としてその 2つの方形基板の少なくとも一方に重量調整手 段が設けられたものを使用して培養することを特徴とする請求項 5記載の方法。
PCT/JP2000/006611 1999-09-29 2000-09-26 Procede de mise en culture d'algues permettant de produire des pigments phototropes, des acides gras fortement insatures ou des polysaccharides a forte concentration WO2001023519A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU73213/00A AU7321300A (en) 1999-09-29 2000-09-26 Method of culturing algae capable of producing phototrophic pigments, highly unsaturated fatty acids, or polysaccharides at high concentration
US09/831,905 US6579714B1 (en) 1999-09-29 2000-09-26 Method of culturing algae capable of producing phototrophic pigments, highly unsaturated fatty acids, or polysaccharides at high concentration
IL14342100A IL143421A0 (en) 1999-09-29 2000-09-26 Method for culturing algae
EP00961223A EP1138757A4 (en) 1999-09-29 2000-09-26 METHOD FOR GROWING ALGAE THAT MAKES PHOTOTROPHIC PIGMENTS, HIGH UNSATURATED FATTY ACIDS OR POLYSACCHARIDES IN HIGH CONCENTRATIONS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/277611 1999-09-29
JP27761199 1999-09-29

Publications (1)

Publication Number Publication Date
WO2001023519A1 true WO2001023519A1 (fr) 2001-04-05

Family

ID=17585843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/006611 WO2001023519A1 (fr) 1999-09-29 2000-09-26 Procede de mise en culture d'algues permettant de produire des pigments phototropes, des acides gras fortement insatures ou des polysaccharides a forte concentration

Country Status (6)

Country Link
US (1) US6579714B1 (ja)
EP (1) EP1138757A4 (ja)
CN (1) CN1263844C (ja)
AU (1) AU7321300A (ja)
IL (1) IL143421A0 (ja)
WO (1) WO2001023519A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6565455B2 (en) 2000-02-10 2003-05-20 Bridgestone Sports Co., Ltd. Multi-piece golf ball
WO2007029627A1 (ja) * 2005-09-06 2007-03-15 Yamaha Hatsudoki Kabushiki Kaisha アスタキサンチン含量の高い緑藻抽出物およびその製造方法
WO2009130895A1 (ja) * 2008-04-22 2009-10-29 日本水産株式会社 フコキサンチンの製造方法およびそれに用いる微細藻類
JP2012512655A (ja) * 2008-12-19 2012-06-07 アルファ−ジェイ リサーチ リミテッド パートナーシップ 細胞増殖および藻類生成物生成の切り離しを通じた藻類生成物生成の最適化
JP2013051892A (ja) * 2011-09-01 2013-03-21 South Product:Kk シフォナキサンチンおよび/またはシフォネインの製造方法
WO2014142540A1 (ko) * 2013-03-15 2014-09-18 한국해양과학기술원 색소 생산능을 갖는 헤마토코커스 에스피. kordi03
JP2015510768A (ja) * 2012-03-16 2015-04-13 フォアライト,エルエルシー 光合成生物の培養および/または増殖の方法および材料
WO2017141318A1 (ja) * 2016-02-15 2017-08-24 国立大学法人神戸大学 油脂の製造方法
JP2018070569A (ja) * 2016-11-04 2018-05-10 株式会社ユーグレナ 肝星細胞の活性化抑制剤及び肝星細胞の活性化抑制用食品組成物
JP2018529343A (ja) * 2015-09-25 2018-10-11 フェルメンタル 単細胞紅藻類を培養するための新規な方法
WO2023176322A1 (ja) * 2022-03-14 2023-09-21 本田技研工業株式会社 培養装置

Families Citing this family (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO309386B1 (no) * 1999-04-19 2001-01-22 Norsk Hydro As Pigment
WO2006085376A1 (ja) * 2005-02-10 2006-08-17 Biogenic Co., Ltd. 光合成微生物の培養装置及び培養方法
CA2488443A1 (en) * 2002-05-13 2003-11-20 Greenfuel Technologies Corporation Photobioreactor and process for biomass production and mitigation of pollutants in flue gases
US20050239182A1 (en) * 2002-05-13 2005-10-27 Isaac Berzin Synthetic and biologically-derived products produced using biomass produced by photobioreactors configured for mitigation of pollutants in flue gases
US8507253B2 (en) * 2002-05-13 2013-08-13 Algae Systems, LLC Photobioreactor cell culture systems, methods for preconditioning photosynthetic organisms, and cultures of photosynthetic organisms produced thereby
US20050064577A1 (en) * 2002-05-13 2005-03-24 Isaac Berzin Hydrogen production with photosynthetic organisms and from biomass derived therefrom
US7484329B2 (en) * 2003-11-20 2009-02-03 Seaweed Bio-Technology Inc. Technology for cultivation of Porphyra and other seaweeds in land-based sea water ponds
US7080478B2 (en) * 2003-11-20 2006-07-25 Noritech Seaweed Technologies Ltd. Technology for cultivation of Porphyra and other seaweeds in land-based sea water ponds
US20080083160A1 (en) * 2003-11-20 2008-04-10 Israel Levy Compositions of enriched seaweeds in land-based sea water ponds
JP2007526768A (ja) * 2004-02-03 2007-09-20 アルガエン コーポレイション イシクラゲ(Nostoccommune)のコロニー、可食イシクラゲを培養するための方法、可食イシクラゲ製剤および健康を促進するためのそれらの使用
AU2004322412B2 (en) * 2004-08-13 2011-02-24 Council Of Scientific And Industrial Research An economical and efficient method for mass production of spirulina
GB0501365D0 (en) * 2005-01-21 2005-03-02 Promar As Compositions
BRPI0613487A2 (pt) * 2005-06-07 2011-01-11 Hr Biopetroleum Inc processo hìbrido em batelada contìnua para produção de óleo e outros produtos úteis de micróbios fotossintéticos
AU2006282946A1 (en) * 2005-08-25 2007-03-01 Solix Biofuels, Inc. Method, apparatus and system for biodiesel production from algae
US20070054351A1 (en) * 2005-09-06 2007-03-08 Yamaha Hatsudoki Kabushiki Kaisha Green algae having a high astaxanthin content and method for producing the same
US20090047722A1 (en) * 2005-12-09 2009-02-19 Bionavitas, Inc. Systems, devices, and methods for biomass production
US7691388B2 (en) * 2006-03-24 2010-04-06 Ocean Nutrition Canada Limited Compositions comprising Porphyra and methods of making and using thereof
US20080009055A1 (en) * 2006-07-10 2008-01-10 Greenfuel Technologies Corp. Integrated photobioreactor-based pollution mitigation and oil extraction processes and systems
US8110395B2 (en) * 2006-07-10 2012-02-07 Algae Systems, LLC Photobioreactor systems and methods for treating CO2-enriched gas and producing biomass
EP2052073A2 (en) * 2006-08-17 2009-04-29 Algepower, LLC Hydroponic growing enclosure and method for growing, harvesting, processing and distributing algae, related microorganisms and their by products
US8088614B2 (en) * 2006-11-13 2012-01-03 Aurora Algae, Inc. Methods and compositions for production and purification of biofuel from plants and microalgae
US20080138891A1 (en) * 2006-11-16 2008-06-12 Millipore Corporation Small scale cell culture container
SG143147A1 (en) * 2006-11-16 2008-06-27 Millipore Corp Small scale cell culture container
US20080318304A1 (en) * 2006-12-11 2008-12-25 Dudley Burton Cultivation of micro-algae and application to animal feeds, environments, field crops, and waste treatment
US9637714B2 (en) * 2006-12-28 2017-05-02 Colorado State University Research Foundation Diffuse light extended surface area water-supported photobioreactor
WO2008083352A1 (en) * 2006-12-29 2008-07-10 Genifuel Corporation Production of biofuels using algae
US7950181B2 (en) * 2007-01-17 2011-05-31 Mip, Llc Apparatus and methods for production of biodiesel
WO2008127533A1 (en) * 2007-04-13 2008-10-23 Freeman Energy Corporation Biomass cultivation system and corresponding method of operation
WO2008131019A1 (en) * 2007-04-20 2008-10-30 Bionavitas, Inc. Systems, devices, and, methods for releasing biomass cell components
US7980024B2 (en) 2007-04-27 2011-07-19 Algae Systems, Inc. Photobioreactor systems positioned on bodies of water
US20090148931A1 (en) * 2007-08-01 2009-06-11 Bionavitas, Inc. Illumination systems, devices, and methods for biomass production
US9468668B2 (en) 2011-08-11 2016-10-18 Allergy Research Group, Llc Flavored chewable lipid supplements for maintaining health and the treatment of acute and chronic disorders
US8877239B2 (en) 2010-08-12 2014-11-04 Nutritional Therapeutics, Inc. Lipid supplements for maintaining health and treatment of acute and chronic disorders
US20090134091A1 (en) * 2007-11-24 2009-05-28 Green Vision Energy Corporation Method for removing undesirable components from water while containing, cultivating, and harvesting photosynthetic marine microorganisms within water
US20090137025A1 (en) * 2007-11-24 2009-05-28 Green Vision Energy Corporation Apparatus for containing, cultivating, and harvesting photosynthetic marine microorganisms within water
US20090148927A1 (en) * 2007-12-05 2009-06-11 Sequest, Llc Mass Production Of Aquatic Plants
US20100022393A1 (en) * 2008-07-24 2010-01-28 Bertrand Vick Glyphosate applications in aquaculture
US8586352B2 (en) 2008-08-11 2013-11-19 Community Synergies, Llc Reactor system and method for processing a process fluid
US20100034050A1 (en) * 2008-08-11 2010-02-11 Gary Erb Apparatus and Method for Cultivating Algae
US20100170150A1 (en) * 2009-01-02 2010-07-08 Walsh Jr William Arthur Method and Systems for Solar-Greenhouse Production and Harvesting of Algae, Desalination of Water and Extraction of Carbon Dioxide from Flue Gas via Controlled and Variable Gas Atomization
TW201028472A (en) * 2009-01-13 2010-08-01 Alpha J Res Ltd Partnership Use of plant growth regulators to enhance algae growth for the production of added value products
US8940340B2 (en) * 2009-01-22 2015-01-27 Aurora Algae, Inc. Systems and methods for maintaining the dominance of Nannochloropsis in an algae cultivation system
US8143051B2 (en) * 2009-02-04 2012-03-27 Aurora Algae, Inc. Systems and methods for maintaining the dominance and increasing the biomass production of nannochloropsis in an algae cultivation system
WO2010107914A2 (en) * 2009-03-18 2010-09-23 Palmer Labs, Llc Biomass production and processing and methods of use thereof
US8207363B2 (en) 2009-03-19 2012-06-26 Martek Biosciences Corporation Thraustochytrids, fatty acid compositions, and methods of making and uses thereof
US8852924B2 (en) 2009-04-02 2014-10-07 Chingoo Research Partnership Algae photobioreactor
US8569050B1 (en) 2009-05-04 2013-10-29 John D. Ericsson Enclosed bioreactor system and methods associated therewith
US9187778B2 (en) * 2009-05-04 2015-11-17 Aurora Algae, Inc. Efficient light harvesting
US8865452B2 (en) * 2009-06-15 2014-10-21 Aurora Algae, Inc. Systems and methods for extracting lipids from wet algal biomass
US8769867B2 (en) * 2009-06-16 2014-07-08 Aurora Algae, Inc. Systems, methods, and media for circulating fluid in an algae cultivation pond
US9101942B2 (en) * 2009-06-16 2015-08-11 Aurora Algae, Inc. Clarification of suspensions
US8747930B2 (en) * 2009-06-29 2014-06-10 Aurora Algae, Inc. Siliceous particles
US20100325948A1 (en) * 2009-06-29 2010-12-30 Mehran Parsheh Systems, methods, and media for circulating and carbonating fluid in an algae cultivation pond
US8765983B2 (en) * 2009-10-30 2014-07-01 Aurora Algae, Inc. Systems and methods for extracting lipids from and dehydrating wet algal biomass
US8748160B2 (en) * 2009-12-04 2014-06-10 Aurora Alage, Inc. Backward-facing step
WO2011090493A1 (en) 2010-01-19 2011-07-28 Martek Biosciences Corporation Eicosapentaenoic acid-producing microorganisms, fatty acid compositions, and methods of making and uses thereof
CA2792904A1 (en) 2010-03-12 2011-09-15 Solix Biosystems, Inc. Systems and methods for positioning flexible floating photobioreactors
US8211309B2 (en) 2010-04-06 2012-07-03 Heliae Development, Llc Extraction of proteins by a two solvent method
US8115022B2 (en) 2010-04-06 2012-02-14 Heliae Development, Llc Methods of producing biofuels, chlorophylls and carotenoids
US8273248B1 (en) 2010-04-06 2012-09-25 Heliae Development, Llc Extraction of neutral lipids by a two solvent method
US8211308B2 (en) 2010-04-06 2012-07-03 Heliae Development, Llc Extraction of polar lipids by a two solvent method
US8475660B2 (en) 2010-04-06 2013-07-02 Heliae Development, Llc Extraction of polar lipids by a two solvent method
WO2011127127A2 (en) 2010-04-06 2011-10-13 Arizona Board Of Regents For And On Behalf Of Arizona State University Extraction with fractionation of oil and co-products from oleaginous material
US8313648B2 (en) 2010-04-06 2012-11-20 Heliae Development, Llc Methods of and systems for producing biofuels from algal oil
US8308951B1 (en) 2010-04-06 2012-11-13 Heliae Development, Llc Extraction of proteins by a two solvent method
US8202425B2 (en) 2010-04-06 2012-06-19 Heliae Development, Llc Extraction of neutral lipids by a two solvent method
WO2011127169A1 (en) 2010-04-06 2011-10-13 Heliae Development, Llc Methods of and systems for isolating carotenoids and omega- 3 rich oils from algae
US20120156669A1 (en) 2010-05-20 2012-06-21 Pond Biofuels Inc. Biomass Production
US8940520B2 (en) 2010-05-20 2015-01-27 Pond Biofuels Inc. Process for growing biomass by modulating inputs to reaction zone based on changes to exhaust supply
US11512278B2 (en) 2010-05-20 2022-11-29 Pond Technologies Inc. Biomass production
US8889400B2 (en) 2010-05-20 2014-11-18 Pond Biofuels Inc. Diluting exhaust gas being supplied to bioreactor
US8969067B2 (en) 2010-05-20 2015-03-03 Pond Biofuels Inc. Process for growing biomass by modulating supply of gas to reaction zone
DK2576758T3 (da) 2010-06-07 2017-11-13 Dit Buisson Jean-Louis Roux Fotobioreaktor med kontinuerlig eller semikontinuerlig strømning og fremgangsmåde til anvendelse deraf
WO2012033855A1 (en) * 2010-09-07 2012-03-15 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University Commercial production docosahexaenoic acid using phototrophic mecroalgae
US8973531B2 (en) * 2010-12-09 2015-03-10 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Automated continuous zooplankton culture system
WO2012135150A2 (en) * 2011-03-25 2012-10-04 The University Of Montana Production of cyanobacterial or algal biomass using chitin as a nitrogen source
US9688557B2 (en) 2011-03-25 2017-06-27 The University Of Montana Process of treating buchu mercaptan production wastewater using microalgae and chitin as a nitrogen source
US8926844B2 (en) 2011-03-29 2015-01-06 Aurora Algae, Inc. Systems and methods for processing algae cultivation fluid
US8569530B2 (en) 2011-04-01 2013-10-29 Aurora Algae, Inc. Conversion of saponifiable lipids into fatty esters
US20120276633A1 (en) 2011-04-27 2012-11-01 Pond Biofuels Inc. Supplying treated exhaust gases for effecting growth of phototrophic biomass
US8752329B2 (en) 2011-04-29 2014-06-17 Aurora Algae, Inc. Optimization of circulation of fluid in an algae cultivation pond
US8365462B2 (en) 2011-05-31 2013-02-05 Heliae Development, Llc V-Trough photobioreactor systems
USD661164S1 (en) 2011-06-10 2012-06-05 Heliae Development, Llc Aquaculture vessel
USD679965S1 (en) 2011-06-10 2013-04-16 Heliae Development, Llc Aquaculture vessel
USD682637S1 (en) 2011-06-10 2013-05-21 Heliae Development, Llc Aquaculture vessel
BR112014001126B1 (pt) 2011-07-21 2022-05-10 Dsm Ip Assets B.V Composição contendo óleo microbiano refinado e forma de dosagem oral
US11253531B2 (en) 2011-08-11 2022-02-22 Nutritional Therapeutics, Inc. Lipid supplements for reducing nerve action potentials
US10117885B2 (en) 2011-08-11 2018-11-06 Allergy Research Group, Llc Chewable lipid supplements for treating pain and fibromyalgia
US9200236B2 (en) 2011-11-17 2015-12-01 Heliae Development, Llc Omega 7 rich compositions and methods of isolating omega 7 fatty acids
US9375654B1 (en) * 2011-12-15 2016-06-28 Charles David Gilliam Algae growth
US9534261B2 (en) 2012-10-24 2017-01-03 Pond Biofuels Inc. Recovering off-gas from photobioreactor
US8938909B2 (en) * 2012-11-26 2015-01-27 National Taiwan Ocean University Process of rapid isolating Monostroma latissimum filamentous bodies for mass-scale breeding
JP2015507642A (ja) 2013-01-10 2015-03-12 ニュートリショナル セラピューティクス インコーポレイテッド ディー/ビー/エーエヌティーアイ インコーポレイテッド 健康の維持ならびに急性および慢性障害の治療のための脂質サプリメントを含有するチュアブルウエハース
CN103960117B (zh) * 2013-01-29 2016-07-06 中国科学院青岛生物能源与过程研究所 一种制备黄丝藻生物油的方法及由其制备的黄丝藻生物油
US9266973B2 (en) 2013-03-15 2016-02-23 Aurora Algae, Inc. Systems and methods for utilizing and recovering chitosan to process biological material
MD4360C1 (ro) * 2013-09-23 2016-02-29 Государственный Университет Молд0 Procedeu de obţinere a mixoxantofilei din biomasa cianobacteriei Spirulina platensis
CN104276989A (zh) * 2014-09-16 2015-01-14 张玉石 从扁藻中提取虾青素的方法
CN104357328A (zh) * 2014-09-16 2015-02-18 佛山市海星宝生物科技有限公司 克隆号为macc/p66的扁藻的筛选及培养方法
JP6814380B2 (ja) * 2016-02-25 2021-01-20 国立大学法人 東京大学 細胞スフェロイドの製造方法
EP3720942A4 (en) * 2017-12-04 2021-09-08 Synthetic Genomics, Inc. PHOTOBIOREACTOR FOR THE CULTURE OF THE MICRO-ORGANISMS CONTAINED
GB2587874B (en) * 2017-12-14 2023-01-11 DIY Service LLC Open loop additive material process and system for creating a human-habitable environment
CN108265014B (zh) * 2017-12-28 2019-06-25 中国科学院南海海洋研究所 一株通过太空育种获得的高品质海水螺旋藻及其用途
CN112280682A (zh) * 2019-07-24 2021-01-29 台湾海洋大学 一种提高顶丝藻中藻红蛋白含量的培养方法
TWI728412B (zh) * 2019-07-24 2021-05-21 國立台灣海洋大學 一種提高頂絲藻中藻紅蛋白含量的培養方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0838155A (ja) * 1994-08-04 1996-02-13 Chikyu Kankyo Sangyo Gijutsu Kenkyu Kiko 噴流式光培養装置
JPH0838154A (ja) * 1994-08-04 1996-02-13 Chikyu Kankyo Sangyo Gijutsu Kenkyu Kiko 多層光合成培養装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3224143A (en) * 1962-04-17 1965-12-21 Aerojet General Co Apparatus and method for growing algae to recover oxygen
GB1547373A (en) 1975-03-20 1979-06-13 British Petroleum Co Method of growing plant cells and/or photosynthetic bacteria
US4320594A (en) 1978-12-28 1982-03-23 Battelle Memorial Institute Mass algal culture system
US4324068A (en) * 1980-03-03 1982-04-13 Sax Zzyzx, Ltd. Production of algae
EP0239272B1 (en) * 1986-03-19 1993-03-03 Biotechna Limited Improvements relating to biomass production
US4952511A (en) * 1987-06-11 1990-08-28 Martek Corporation Photobioreactor
IL102189A (en) * 1992-06-12 1995-07-31 Univ Ben Gurion Device for growing microorganisms
US5958761A (en) * 1994-01-12 1999-09-28 Yeda Research And Developement Co. Ltd. Bioreactor and system for improved productivity of photosynthetic algae
JPH0838156A (ja) * 1994-07-28 1996-02-13 Maruha Corp 藻類の培養方法およびその装置
JPH08116960A (ja) * 1994-10-26 1996-05-14 Kajima Corp 光合成微生物を用いたリアクターの冷却 ならびに温度調節の方式
DE69927654T2 (de) 1998-03-31 2006-06-22 Bioreal, Inc., Maui Kulturvorrichtung für feinalgen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0838155A (ja) * 1994-08-04 1996-02-13 Chikyu Kankyo Sangyo Gijutsu Kenkyu Kiko 噴流式光培養装置
JPH0838154A (ja) * 1994-08-04 1996-02-13 Chikyu Kankyo Sangyo Gijutsu Kenkyu Kiko 多層光合成培養装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BIO ENGINEERING, vol. 9, no. 9, 1992, pages 585 - 590, XP002934274 *
GUDIN C. ET AL.: "Solar biotechnology study and development of tubular solar receptors for controlled production of photosynthetic cellular biomass for methane production and specific cellular biomass", ENERGY BIOMASS, 1984, pages 184 - 193, XP002934275 *
See also references of EP1138757A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6565455B2 (en) 2000-02-10 2003-05-20 Bridgestone Sports Co., Ltd. Multi-piece golf ball
WO2007029627A1 (ja) * 2005-09-06 2007-03-15 Yamaha Hatsudoki Kabushiki Kaisha アスタキサンチン含量の高い緑藻抽出物およびその製造方法
WO2009130895A1 (ja) * 2008-04-22 2009-10-29 日本水産株式会社 フコキサンチンの製造方法およびそれに用いる微細藻類
JPWO2009130895A1 (ja) * 2008-04-22 2011-08-11 日本水産株式会社 フコキサンチンの製造方法およびそれに用いる微細藻類
JP2012512655A (ja) * 2008-12-19 2012-06-07 アルファ−ジェイ リサーチ リミテッド パートナーシップ 細胞増殖および藻類生成物生成の切り離しを通じた藻類生成物生成の最適化
JP2015142575A (ja) * 2008-12-19 2015-08-06 アルファ−ジェイ リサーチ リミテッド パートナーシップ 細胞増殖および藻類生成物生成の切り離しを通じた藻類生成物生成の最適化
JP2013051892A (ja) * 2011-09-01 2013-03-21 South Product:Kk シフォナキサンチンおよび/またはシフォネインの製造方法
US11505771B2 (en) 2012-03-16 2022-11-22 Forelight, Inc. Methods and materials for cultivation and/or propagation of a photosynthetic organism
JP2015510768A (ja) * 2012-03-16 2015-04-13 フォアライト,エルエルシー 光合成生物の培養および/または増殖の方法および材料
WO2014142540A1 (ko) * 2013-03-15 2014-09-18 한국해양과학기술원 색소 생산능을 갖는 헤마토코커스 에스피. kordi03
JP2018529343A (ja) * 2015-09-25 2018-10-11 フェルメンタル 単細胞紅藻類を培養するための新規な方法
WO2017141318A1 (ja) * 2016-02-15 2017-08-24 国立大学法人神戸大学 油脂の製造方法
JP2018070569A (ja) * 2016-11-04 2018-05-10 株式会社ユーグレナ 肝星細胞の活性化抑制剤及び肝星細胞の活性化抑制用食品組成物
WO2023176322A1 (ja) * 2022-03-14 2023-09-21 本田技研工業株式会社 培養装置

Also Published As

Publication number Publication date
EP1138757A4 (en) 2002-09-18
US6579714B1 (en) 2003-06-17
EP1138757A1 (en) 2001-10-04
IL143421A0 (en) 2002-04-21
CN1263844C (zh) 2006-07-12
AU7321300A (en) 2001-04-30
CN1336956A (zh) 2002-02-20

Similar Documents

Publication Publication Date Title
WO2001023519A1 (fr) Procede de mise en culture d&#39;algues permettant de produire des pigments phototropes, des acides gras fortement insatures ou des polysaccharides a forte concentration
Chaumont Biotechnology of algal biomass production: a review of systems for outdoor mass culture
JP3462508B2 (ja) 微細藻類培養装置
Fernandes et al. Continuous cultivation of photosynthetic microorganisms: approaches, applications and future trends
Lebeau et al. Diatom cultivation and biotechnologically relevant products. Part I: Cultivation at various scales
WO2017190504A1 (zh) 一种用于微藻规模化培养的转盘式光生物反应器
US20110258915A1 (en) Method and Unit for Large-Scale Algal Biomass Production
WO2006085376A1 (ja) 光合成微生物の培養装置及び培養方法
CN102036551A (zh) 藻培养物生产、收获和加工
EP3194607B1 (en) Method and apparatus for producing astaxanthin
ES2650440T3 (es) Producción de ácido docosahexaenoico y de astaxantina en modo mixótrofo por Schizochytrium
CN105316217B (zh) 人工光源微藻养殖装备
JP6480187B2 (ja) ニツシア(Nitzschia)による混合栄養モードでのドコサヘキサエン酸および/またはエイコサペンタエン酸および/またはカロテノイドの産生
CN106906142A (zh) 一种高含量虾青素血球藻的规模化生产方法
Grubišić et al. Potential of microalgae for the production of different biotechnological products
US20220162542A1 (en) Algae Beads
WO2021068604A1 (zh) 移动式机械翻搅薄液层微藻附壁培养方法与装置
CN104404118A (zh) 一种利用海水促进雨生红球藻生产天然虾青素的方法
KR101347109B1 (ko) 광생물 반응기를 이용한 미세조류 배양과 이를 이용한 양식사료 제조시스템 및 그 제조방법
JP6352818B2 (ja) セネデスムス(Scenedesmus)による混合栄養モードでのルテインの産生
Borowitzka Algae as food
KR101670129B1 (ko) 광 반응 미세조류 배양장치 및 배양방법
MARTIN Optimization Of Photobioreactor For Astaxanthin Production In Chlorella Zofingiensis.
KR101721448B1 (ko) 미세조류 배양장치
CN108285859B (zh) 一种新型气动式念珠藻属藻类跑道池培养系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00802906.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN IL JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref document number: 2001 526903

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 143421

Country of ref document: IL

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 73213/00

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2000961223

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000961223

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09831905

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2000961223

Country of ref document: EP