US20120156669A1 - Biomass Production - Google Patents

Biomass Production Download PDF

Info

Publication number
US20120156669A1
US20120156669A1 US13/327,541 US201113327541A US2012156669A1 US 20120156669 A1 US20120156669 A1 US 20120156669A1 US 201113327541 A US201113327541 A US 201113327541A US 2012156669 A1 US2012156669 A1 US 2012156669A1
Authority
US
United States
Prior art keywords
reaction zone
supply
phototrophic biomass
rate
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/327,541
Inventor
Jaime A. Gonzalez
Max Kolesnik
Steven C. Martin
Tony D. Pietro
Emidio Di Pietro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pond Technologies Inc
Original Assignee
Pond Biofuels Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/784,106 external-priority patent/US20110283618A1/en
Priority claimed from US12/784,181 external-priority patent/US20110287523A1/en
Priority claimed from US12/784,215 external-priority patent/US8969067B2/en
Priority claimed from US12/784,141 external-priority patent/US20110287522A1/en
Priority claimed from US12/784,172 external-priority patent/US8940520B2/en
Priority claimed from US12/784,126 external-priority patent/US8889400B2/en
Priority claimed from US13/022,396 external-priority patent/US20110287405A1/en
Priority claimed from PCT/CA2011/000574 external-priority patent/WO2011143749A2/en
Priority to US13/327,541 priority Critical patent/US20120156669A1/en
Application filed by Pond Biofuels Inc filed Critical Pond Biofuels Inc
Publication of US20120156669A1 publication Critical patent/US20120156669A1/en
Priority to US15/234,462 priority patent/US11612118B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G33/00Cultivation of seaweed or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2

Definitions

  • the present disclosure relates to a process for growing biomass.
  • a process of growing a phototrophic biomass in a reaction zone includes a reaction mixture that is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, wherein the reaction mixture includes phototrophic biomass that is operative for growth within the reaction zone.
  • the reaction zone includes a production purpose reaction mixture that is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, wherein the production purpose reaction mixture includes production purpose phototrophic biomass that is operative for growth within the reaction zone.
  • the predetermination of the target value includes supplying an evaluation purpose reaction mixture that is representative of the production purpose reaction mixture and is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, such that the phototrophic biomass of the evaluation purpose reaction mixture is an evaluation purpose phototrophic biomass that is representative of the production purpose phototrophic biomass.
  • the evaluation purpose reaction mixture disposed in the reaction zone is exposed to photosynthetically active light radiation and growth of the evaluation purpose phototrophic biomass is being effected within the evaluation purpose reaction mixture, at least periodically detecting the phototrophic biomass growth indicator to provide a plurality of detected values of the phototrophic biomass growth indicator that have been detected during a time period, and calculating growth rates of the evaluation purpose phototrophic biomass based on the plurality of detected values of the phototrophic biomass growth indicator such that a plurality of growth rates of the evaluation purpose phototrophic biomass are determined during the time period
  • a relationship between the growth rate of the evaluation purpose phototrophic biomass and the phototrophic biomass growth indicator is established, based on the calculated growth rates and the detected values of the phototrophic biomass growth indicator upon which the calculated growth rates have been based, such that the established relationship between the growth rate of the evaluation purpose phototrophic biomass and the phototrophic biomass growth indicator is representative of a relationship between the growth rate of the production purpose phototrophic biomass within the reaction zone and the phototrophic biomass growth indicator, and such that the relationship
  • the predetermined growth rate of the production purpose phototrophic biomass is selected.
  • the phototrophic biomass growth indicator target value is defined as the phototrophic biomass growth indicator at which the predetermined growth rate is being effected based on the determined relationship between the growth rate of the production purpose phototrophic biomass within the reaction zone and the phototrophic biomass growth indicator, such that the correlation between the phototrophic biomass growth indicator target value and the predetermined growth rate is also thereby effected.
  • the reaction zone includes a reaction mixture that is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, wherein the reaction mixture includes phototrophic biomass that is operative for growth within the reaction zone. While exposing the reaction mixture disposed in the reaction zone to photosynthetically active light radiation and growth of the phototrophic biomass is being effected within the reaction mixture, discharging mass of the phototrophic biomass from the reaction zone at a rate that is within 10% of the rate at which the growth of mass of the phototrophic biomass is being effected within the reaction zone.
  • the effected growth of the phototrophic biomass within the reaction zone is being effected at a rate that is at least 90% of the maximum rate of growth of mass of the phototrophic biomass within the reaction mixture which is disposed in reaction zone and is being exposed to the photosynthetically active light radiation.
  • the reaction zone includes a reaction mixture that is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, wherein the reaction mixture includes phototrophic biomass that is operative for growth within the reaction zone.
  • the reaction mixture While exposing the reaction mixture to photosynthetically active light radiation and effecting growth of the phototrophic biomass within the reaction mixture disposed in the reaction zone, wherein the effected growth of the phototrophic biomass includes growth which is effected by the photosynthesis, discharging phototrophic biomass from the reaction zone such that the rate of discharge of mass of the phototrophic biomass is within 10% of the rate at which the growth of mass of the phototrophic biomass is being effected.
  • a process for growing a phototrophic biomass in a reaction zone wherein the reaction zone includes a reaction mixture that is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, wherein the reaction mixture includes phototrophic biomass that is operative for growth within the reaction zone, wherein the growth of the phototrophic biomass includes that which is effected by the photosynthesis, comprising: while the gaseous exhaust material is being discharged by the gaseous exhaust material producing process, wherein any of the gaseous exhaust material being supplied to the reaction zone defines a gaseous exhaust material reaction zone supply, supply of the gaseous exhaust material reaction zone supply to the reaction zone is modulated based on detection of at least one carbon dioxide processing capacity indicator.
  • a process for growing a phototrophic biomass in a reaction zone wherein the reaction zone includes a reaction mixture that is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, wherein the reaction mixture includes phototrophic biomass that is operative for growth within the reaction zone, wherein the growth of the phototrophic biomass includes that which is effected by the photosynthesis, comprising: while the gaseous exhaust material is being discharged by the gaseous exhaust material producing process, and while at least a fraction of the gaseous exhaust material is being supplied to the reaction zone, wherein the at least a fraction of the gaseous exhaust material which is being supplied to the reaction zone defines a gaseous exhaust material reaction zone supply, and there is effected a reduction in the molar rate of supply, or the termination of the supply, of the gaseous exhaust material reaction zone supply being supplied to the reaction zone, the process further includes initiating the supply of a supplemental gas-comprising material, or increasing the molar rate of supply of a
  • a process for growing a phototrophic biomass in a reaction zone wherein the reaction zone includes a reaction mixture that is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, wherein the reaction mixture includes phototrophic biomass that is operative for growth within the reaction zone, wherein the growth of the phototrophic biomass includes that which is effected by the photosynthesis, comprising: supplying gaseous exhaust material reaction zone supply to the reaction zone, wherein the gaseous exhaust material reaction zone supply is defined by at least a fraction of gaseous exhaust material produced by a gaseous exhaust material producing process, wherein the gaseous exhaust material reaction zone supply includes carbon dioxide, and supplying a supplemental aqueous material supply from a container to the reaction zone, wherein the supplemental aqueous material supply includes aqueous material that has been condensed from the gaseous exhaust material reaction zone supply and collected in the container, wherein the condensing of the aqueous material is effected while the gaseous exhaust material reaction
  • a process for growing a phototrophic biomass in a reaction zone wherein the reaction zone includes a reaction mixture that is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, wherein the reaction mixture includes phototrophic biomass that is operative for growth within the reaction zone, wherein the growth of the phototrophic biomass includes that which is effected by the photosynthesis, comprising: while carbon dioxide is being discharged by the gaseous exhaust material producing process, and while at least a fraction of the discharged carbon dioxide is being supplied to the reaction zone, wherein the at least a fraction of the discharged carbon dioxide which is being supplied to the reaction zone defines a discharged carbon dioxide reaction zone supply, at least one material input to the reaction zone is modulated based on, at least, the molar rate at which the discharged carbon dioxide reaction zone supply is being supplied to the reaction zone.
  • a process for growing a phototrophic biomass in a reaction zone wherein the reaction zone includes a reaction mixture that is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, wherein the reaction mixture includes phototrophic biomass that is operative for growth within the reaction zone, wherein the growth of the phototrophic biomass includes that which is effected by the photosynthesis, comprising: while carbon dioxide is being discharged by the gaseous exhaust material producing process, and while at least a fraction of the discharged carbon dioxide is being supplied to the reaction zone, wherein the at least a fraction of the discharged carbon dioxide which is being supplied to the reaction zone defines a discharged carbon dioxide reaction zone supply, at least one material input to the reaction zone is modulated based on, at least, an indication of the molar rate at which the discharged carbon dioxide reaction zone supply is being supplied to the reaction zone.
  • a process for growing a phototrophic biomass in a reaction zone wherein the reaction zone includes a reaction mixture that is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, wherein the reaction mixture includes phototrophic biomass that is operative for growth within the reaction zone, wherein the growth of the phototrophic biomass includes that which is effected by the photosynthesis, comprising: while carbon dioxide is being discharged by the gaseous exhaust material producing process, and while at least a fraction of the discharged carbon dioxide is being supplied to the reaction zone, wherein the at least a fraction of the discharged carbon dioxide which is being supplied to the reaction zone defines a discharged carbon dioxide reaction zone supply, when an indication of a change in the molar rate of supply of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone is detected, modulation of at least one material input to the reaction zone is effected.
  • a process for growing a phototrophic biomass in a reaction zone wherein the reaction zone includes a reaction mixture that is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, wherein the reaction mixture includes phototrophic biomass that is operative for growth within the reaction zone, wherein the growth of the phototrophic biomass includes that which is effected by the photosynthesis, comprising: while carbon dioxide is being discharged by the gaseous exhaust material producing process, and while at least a fraction of the discharged carbon dioxide is being supplied to the reaction zone, wherein the at least a fraction of the discharged carbon dioxide which is being supplied to the reaction zone defines a discharged carbon dioxide reaction zone supply, when a decrease in the molar rate of supply of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone is detected, or when an indication of a decrease in the molar rate of supply of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone is detected, either the molar rate of supply of a supplemental carbon dioxide supply to the reaction
  • a process for growing a phototrophic biomass in a reaction zone wherein the reaction zone includes a reaction mixture that is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, wherein the reaction mixture includes phototrophic biomass that is operative for growth within the reaction zone, wherein the growth of the phototrophic biomass includes that which is effected by the photosynthesis, comprising: prior to supplying reaction zone carbon dioxide supply to the reaction zone at a pressure sufficient to effect flow of the reaction zone carbon dioxide supply through a vertical extent of the reaction zone of at least a seventy (70) inches, increasing pressure of the reaction zone carbon dioxide supply by flowing the reaction zone carbon dioxide supply through an eductor or a jet pump.
  • a process for growing a phototrophic biomass in a reaction zone wherein the reaction zone includes a reaction mixture that is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, wherein the reaction mixture includes phototrophic biomass that is operative for growth within the reaction zone, wherein the growth of the phototrophic biomass includes that which is effected by the photosynthesis, comprising: prior to supplying reaction zone carbon dioxide supply to the reaction zone at a pressure sufficient to effect flow of the reaction zone carbon dioxide supply through a vertical extent of the reaction zone of at least a seventy (70) inches, transferring pressure energy to the reaction zone carbon dioxide supply from a motive fluid flow using the venturi effect.
  • a process for growing a phototrophic biomass in a reaction zone wherein the reaction zone includes a reaction mixture that is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, wherein the reaction mixture includes phototrophic biomass that is operative for growth within the reaction zone, wherein the growth of the phototrophic biomass includes that which is effected by the photosynthesis, comprising: while a reaction zone feed material is supplied to the reaction zone, supplying the reaction zone feed material with a supplemental gaseous dilution agent, wherein the molar concentration of carbon dioxide of the supplemental gaseous dilution agent is less than the molar concentration of carbon dioxide of the gaseous exhaust material reaction zone supply which is being supplied to the reaction zone feed material.
  • a process for growing a phototrophic biomass in a reaction zone wherein the reaction zone includes a reaction mixture that is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, wherein the reaction mixture includes phototrophic biomass that is operative for growth within the reaction zone, wherein the growth of the phototrophic biomass includes that which is effected by the photosynthesis, comprising: while a carbon dioxide concentrated supply is being supplied, admixing the carbon dioxide concentrated supply with a supplemental gaseous dilution agent to effect production of a diluted carbon dioxide supply, wherein the molar concentration of carbon dioxide of the diluted carbon dioxide supply is less than the molar concentration of carbon dioxide of the carbon dioxide concentrated supply; and supplying at least a fraction of the diluted carbon dioxide reaction zone supply to the reaction zone.
  • FIG. 1 is a process flow diagram of an embodiment of the process
  • FIG. 2 is a process flow diagram of another embodiment of the process
  • FIG. 3 is a schematic illustration of a portion of a fluid passage of an embodiment of the process
  • FIG. 4A is a sectional side elevation view of an embodiment of a mass concentration sensor mounted to a vessel
  • FIG. 4B is a view of the sensor of FIG. 4A taken along lines 4 B- 4 B;
  • FIG. 5A is a fragmentary side elevation view of another embodiment of a mass concentration sensor configured for mounting to a vessel;
  • FIG. 5B is a view of the sensor of FIG. 5B taken along lines 5 A- 5 A;
  • FIG. 6 is a schematic illustration of another embodiment of a mass concentration sensor
  • FIG. 7 is a graph generally illustrating typical algae growth rate and concentration as a function of time
  • FIG. 8 is a graph generally illustrating a comparison between yield from typical harvesting of algae at the concentration correlated with maximum growth rate versus growth rate of algae in a “batch” scenario
  • FIGS. 9A and 9B illustrates, generally, the growth of mass concentration of phototrophic biomass as a function of mass concentration of phototrophic biomass, and rate growth of mass concentration of phototrophic biomass versus mass concentration of phototrophic biomass, and how the maximum rate of growth of mass concentration of phototrophic biomass is determined.
  • the reaction zone 10 includes a reaction mixture that is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation.
  • the reaction mixture includes phototrophic biomass material, carbon dioxide, and water.
  • the reaction zone includes phototrophic biomass and carbon dioxide disposed in an aqueous medium.
  • the phototrophic biomass is disposed in mass transfer communication with both of carbon dioxide and water.
  • the reaction mixture includes phototrophic biomass disposed in an aqueous medium, and carbon dioxide-enriched phototrophic biomass is provided upon the receiving of carbon dioxide by the phototrophic biomass.
  • Phototrophic organism is an organism capable of phototrophic growth in the aqueous medium upon receiving light energy, such as plant cells and micro-organisms.
  • the phototrophic organism is unicellular or multicellular.
  • the phototrophic organism is an organism which has been modified artificially or by gene manipulation.
  • the phototrophic organism is an algae.
  • the algae is microalgae.
  • Phototrophic biomass is at least one phototrophic organism.
  • the phototrophic biomass includes more than one species of phototrophic organisms.
  • reaction zone 10 defines a space within which the growing of the phototrophic biomass is effected.
  • the reaction zone 10 is provided in a photobioreactor 12 .
  • pressure within the reaction zone is atmospheric pressure.
  • Photobioreactor 12 is any structure, arrangement, land formation or area that provides a suitable environment for the growth of phototrophic biomass. Examples of specific structures which can be used is a photobioreactor 12 by providing space for growth of phototrophic biomass using light energy include, without limitation, tanks, ponds, troughs, ditches, pools, pipes, tubes, canals, and channels. Such photobioreactors may be either open, closed, partially closed, covered, or partially covered. In some embodiments, for example, the photobioreactor 12 is a pond, and the pond is open, in which case the pond is susceptible to uncontrolled receiving of materials and light energy from the immediate environments.
  • the photobioreactor 12 is a covered pond or a partially covered pond, in which case the receiving of materials from the immediate environment is at least partially interfered with.
  • the photobioreactor 12 includes the reaction zone 10 which includes the reaction mixture.
  • the photobioreactor 12 is configured to receive a supply of phototrophic reagents (and, in some of these embodiments, optionally, supplemental nutrients), and is also configured to effect discharge of phototrophic biomass which is grown within the reaction zone 10 .
  • the photobioreactor 12 includes one or more inlets for receiving the supply of phototrophic reagents and supplemental nutrients, and also includes one or more outlets for effecting the recovery or harvesting of biomass which is grown within the reaction zone 10 .
  • one or more of the inlets are configured to be temporarily sealed for periodic or intermittent time intervals.
  • one or more of the outlets are configured to be temporarily sealed or substantially sealed for periodic or intermittent time intervals.
  • the photobioreactor 12 is configured to contain the reaction mixture which is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation.
  • the photobioreactor 12 is also configured so as to establish photosynthetically active light radiation (for example, a light of a wavelength between about 400-700 nm, which can be emitted by the sun or another light source) within the photobioreactor 12 for exposing the phototrophic biomass.
  • photosynthetically active light radiation for example, a light of a wavelength between about 400-700 nm, which can be emitted by the sun or another light source
  • the exposing of the reaction mixture to the photosynthetically active light radiation effects photosynthesis and growth of the phototrophic biomass.
  • the established light radiation is provided by an artificial light source 14 disposed within the photobioreactor 12 .
  • suitable artificial lights sources include submersible fiber optics or light guides, light-emitting diodes (“LEDs”), LED strips and fluorescent lights. Any LED strips known in the art can be adapted for use in the photobioreactor 12 .
  • energy sources include alternative energy sources, such as wind, photovoltaic cells, fuel cells, etc. to supply electricity to the LEDs.
  • Fluorescent lights, external or internal to the photobioreactor 12 can be used as a back-up system.
  • the established light is derived from a natural light source 16 which has been transmitted from externally of the photobioreactor 12 and through a transmission component.
  • the transmission component is a portion of a containment structure of the photobioreactor 12 which is at least partially transparent to the photosynthetically active light radiation, and which is configured to provide for transmission of such light to the reaction zone 10 for receiving by the phototrophic biomass.
  • natural light is received by a solar collector, filtered with selective wavelength filters, and then transmitted to the reaction zone 10 with fiber optic material or with a light guide.
  • both natural and artificial lights sources are provided for effecting establishment of the photosyntetically active light radiation within the photobioreactor 12 .
  • Aqueous medium is an environment that includes water.
  • the aqueous medium also includes sufficient nutrients to facilitate viability and growth of the phototrophic biomass.
  • supplemental nutrients may be included such as one of, or both of, NO X and SO X .
  • Suitable aqueous media are discussed in detail in: Rogers, L. J. and Gallon J. R. “Biochemistry of the Algae and Cyanobacteria,” Clarendon Press Oxford, 1988; Burlew, John S. “Algal Culture: From Laboratory to Pilot Plant.” Carnegie Institution of Washington Publication 600. Washington, D.C., 1961 (hereinafter “Burlew 1961”); and Round, F. E. The Biology of the Algae.
  • Modulating with respect to a process variable, such as an input or an output, means any one of initiating, terminating, increasing, decreasing, or otherwise changing the process parameter, such as that of an input or an output.
  • the process includes supplying the reaction zone 10 with carbon dioxide.
  • the carbon dioxide supplied to the reaction zone 10 is derived from a gaseous exhaust material 18 which includes carbon dioxide.
  • the carbon dioxide is supplied by a gaseous exhaust material producing process 20 , and the supplying is, therefore, effected from the gaseous exhaust material 18 being discharged by a gaseous exhaust material producing process 20 .
  • at least a fraction of the carbon dioxide being discharged by the gaseous exhaust material producing process 20 is supplied to the reaction zone 10 , wherein the at least a fraction of the discharged carbon dioxide which is being supplied to the reaction zone 10 defines a discharged carbon dioxide reaction zone supply.
  • At least a fraction of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 is supplied to the reaction zone 10 , wherein the at least a fraction of the gaseous exhaust material 18 which is being supplied to the reaction zone 10 defines gaseous exhaust material reaction zone supply 24 , such that the discharged carbon dioxide reaction zone supply is supplied to the reaction zone 10 as a portion of the gaseous exhaust material reaction zone supply 24 (along with other non-carbon dioxide materials deriving from the gaseous exhaust material 18 ).
  • the exposing of the phototrophic biomass disposed in the reaction zone 10 to photosynthetically active light radiation is effected while the gaseous exhaust material reaction zone supply 24 is being supplied to the reaction zone 10 .
  • the gaseous exhaust material 18 includes a carbon dioxide concentration of at least 2 volume % based on the total volume of the gaseous exhaust material 18 .
  • the gaseous exhaust material reaction zone supply 24 includes a carbon dioxide concentration of at least 2 volume % based on the total volume of the gaseous exhaust material reaction zone supply 24 .
  • the gaseous exhaust material 18 includes a carbon dioxide concentration of at least 4 volume % based on the total volume of the gaseous exhaust material 18 .
  • the gaseous exhaust material reaction zone supply 24 includes a carbon dioxide concentration of at least 4 volume % based on the total volume of the gaseous exhaust material reaction zone supply 24 .
  • the gaseous exhaust material reaction zone supply 24 also includes one of, or both of, NO X and SO X .
  • the at least a fraction of the gaseous exhaust material 18 being supplied to the reaction zone 10 has been treated prior to being supplied to the reaction zone 10 so as to effect removal of undesirable components of the gaseous exhaust material 18 such that the material composition of the at least a fraction of the gaseous material 18 being supplied to the reaction zone 10 is different relative to the material composition of the gaseous exhaust material 18 being discharged from the gaseous exhaust material producing process 20 .
  • the gaseous exhaust material producing process 20 includes any process which effects production and discharge of the gaseous exhaust material 18 .
  • at least a fraction of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 is supplied to the reaction zone 10 .
  • the at least a fraction of the gaseous exhaust material 18 , being discharged by the gaseous exhaust material producing process 20 , and supplied to the reaction zone 10 includes carbon dioxide derived from the gaseous exhaust material producing process 20 .
  • the gaseous exhaust material producing process 20 is a combustion process.
  • the combustion process is effected in a combustion facility.
  • the combustion process effects combustion of a fossil fuel, such as coal, oil, or natural gas.
  • a fossil fuel such as coal, oil, or natural gas.
  • the combustion facility is any one of a fossil fuel-fired power plant, an industrial incineration facility, an industrial furnace, an industrial heater, or an internal combustion engine.
  • the combustion facility is a cement kiln.
  • Reaction zone feed material 22 is supplied to the reaction zone 10 such that carbon dioxide of the reaction zone feed material 22 is received within the reaction zone 10 . At least a fraction of the carbon dioxide of the reaction zone feed material 22 is derived from the gaseous exhaust material 18 . During at least some periods of operation of the process, at least a fraction of the reaction zone feed material 22 is supplied by the gaseous exhaust material 18 which is discharged from the gaseous exhaust material producing process 20 . As discussed above, any of the gaseous exhaust material 18 that is supplied to the reaction zone 10 is supplied as a gaseous exhaust material reaction zone supply 24 .
  • the exposing of the phototrophic biomass disposed in the reaction zone 10 to photosynthetically active light radiation is effected while the gaseous exhaust material reaction zone supply 24 is being supplied to the reaction zone 10 .
  • the entirety of the gaseous exhaust material 18 is necessarily supplied to the reaction zone 10 as the gaseous exhaust material reaction zone supply 24 , such that the reaction zone feed material 22 includes the gaseous exhaust material reaction zone supply 24 .
  • the gaseous exhaust material 18 or at least a fraction thereof, is not necessarily supplied to the reaction zone 10 as the gaseous exhaust material reaction zone supply 24 for the entire time period during which the process is operational.
  • the gaseous exhaust material reaction zone supply 24 includes carbon dioxide.
  • the gaseous exhaust material reaction zone supply 24 is at least a fraction of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 .
  • the entirety of the gaseous exhaust material 18 discharged by the gaseous exhaust producing process 20 is supplied to the gaseous exhaust material reaction zone supply 24 .
  • the reaction zone feed material 22 is a fluid.
  • the reaction zone feed material 22 is a gaseous material.
  • the reaction zone feed material 22 includes gaseous material disposed in liquid material.
  • the liquid material is an aqueous material.
  • at least a fraction of the gaseous material is dissolved in the liquid material.
  • at least a fraction of the gaseous material is disposed as a gas dispersion in the liquid material.
  • the gaseous material of the reaction zone feed material 22 includes carbon dioxide supplied by the gaseous exhaust material reaction zone supply 24 .
  • the reaction zone feed material 22 is supplied to the reaction zone 10 as a flow.
  • a flow of reaction zone feed material 22 includes a flow of the gaseous exhaust material reaction zone feed material supply 24 .
  • a flow of reaction zone feed material 22 is a flow of the gaseous exhaust material reaction zone feed material supply 24 .
  • the reaction zone feed material 22 is supplied to the reaction zone 10 as one or more reaction zone feed material flows.
  • each of the one or more reaction zone feed material flows is flowed through a respective reaction zone feed material fluid passage.
  • the material composition varies between the reaction zone feed material flows.
  • the reaction zone feed material 22 is cooled prior to supply to the reaction zone 10 so that the temperature of the reaction zone feed material 22 aligns with a suitable temperature at which the phototrophic biomass can grow
  • the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone material 22 is disposed at a temperature of between 110 degrees Celsius and 150 degrees Celsius.
  • the temperature of the gaseous exhaust material reaction zone supply 24 is about 132 degrees Celsius.
  • the temperature at which the gaseous exhaust material reaction zone supply 24 is disposed is much higher than this, and, in some embodiments, such as the gaseous exhaust material reaction zone supply 24 from a steel mill, the temperature is over 500 degrees Celsius.
  • the reaction zone feed material 22 which includes the gaseous exhaust material reaction zone supply 24 , is cooled to between 20 degrees Celsius and 50 degrees Celsius (for example, about 30 degrees Celsius).
  • the reaction zone feed material 22 is defined by the gaseous exhaust material reaction zone supply 24 . Supplying the reaction zone feed material 22 at higher temperatures could hinder growth, or even kill, the phototrophic biomass in the reaction zone 10 .
  • at least a fraction of any water vapour of the gaseous exhaust material reaction zone supply 24 is condensed in a heat exchanger 26 (such as a condenser) and separated from the reaction zone feed material 22 as an aqueous material 70 .
  • the resulting aqueous material 70 is supplied to a container 28 (described below) where it provides supplemental aqueous material supply 44 for supply to the reaction zone 10 .
  • the condensing effects heat transfer from the reaction zone feed material 22 to a heat transfer medium 30 , thereby raising the temperature of the heat transfer medium 30 to produce a heated heat transfer medium 30 , and the heated heat transfer medium 30 is then supplied (for example, flowed) to a dryer 32 (discussed below), and heat transfer is effected from the heated heat transfer medium 30 to an intermediate concentrated reaction zone product 34 to effect drying of the intermediate concentrated reaction zone product 34 and thereby effect production of the final reaction zone product 36 .
  • the heat transfer medium 30 is recirculated to the heat exchanger 26 .
  • a suitable heat transfer medium 30 include thermal oil and glycol solution.
  • the supply of the reaction zone feed material 22 to the reaction zone 10 effects agitation of at least a fraction of the phototrophic biomass disposed in the reaction zone 10 .
  • the reaction zone feed material 22 is introduced to a lower portion of the reaction zone 10 .
  • the reaction zone feed material 22 is introduced from below the reaction zone 10 so as to effect mixing of the contents of the reaction zone 10 .
  • the effected mixing (or agitation) is such that any difference in concentration of mass of the phototrophic biomass between any two points in the reaction zone 10 is less than 20%.
  • any difference in the mass concentration of the phototrophic biomass between any two points in the reaction zone 10 is less than 10%.
  • the effected mixing is such that a homogeneous suspension is provided in the reaction zone 10 .
  • the supply of the reaction zone feed material 22 is co-operatively configured with the photobioreactor 12 so as to effect the desired agitation of the at least a fraction of the phototrophic biomass disposed in the reaction zone 10 .
  • the reaction zone feed material 22 flows through a gas injection mechanism, such as a sparger 40 , before being introduced to the reaction zone 10 .
  • the sparger 40 provides reaction zone feed material 22 as a gas-liquid mixture, including fine gas bubbles entrained in a liquid phase, to the reaction zone 10 in order to maximize the interface contact area between the phototrophic biomass and the carbon dioxide (and, in some embodiments, for example, one of, or both of, SO X and NO X ) of the reaction zone feed material 22 .
  • the sparger 40 provides reaction zone feed material 22 in larger bubbles that agitate the phototrophic biomass in the reaction zone 10 to promote mixing of the components of the reaction zone 10 .
  • An example of a suitable sparger 40 is EDI FlexAirTM T-Series Tube Diffuser Model 91 X 1003 supplied by Environmental Dynamics Inc of Columbia, Mo.
  • this sparger 40 is disposed in a photobioreactor 12 having a reaction zone 10 volume of 6000 litres and with an algae concentration of between 0.8 grams per litre and 1.5 grams per litre, and the reaction zone feed material 22 is a gaseous fluid flow supplied at a flowrate of between 10 cubic feet per minute and 20 cubic feet per minute, and at a pressure of about 68 inches of water.
  • the sparger 40 is designed to consider the fluid head of the reaction zone 10 , so that the supplying of the reaction zone feed material 22 to the reaction zone 10 is effected in such a way as to promote the optimization of carbon dioxide absorption by the phototrophic biomass.
  • bubble sizes are regulated so that they are fine enough to promote optimal carbon dioxide absorption by the phototrophic biomass from the reaction zone feed material.
  • the bubble sizes are large enough so that at least a fraction of the bubbles rise through the entire height of the reaction zone 10 , while mitigating against the reaction zone feed material 22 “bubbling through” the reaction zone 10 and being released without being absorbed by the phototrophic biomass.
  • the pressure of the reaction zone feed material 22 is controlled using a pressure regulator upstream of the sparger 40 .
  • the sparger 40 is disposed externally of the photobioreactor 12 . In other embodiments, for example, the sparger 40 is disposed within the photobioreactor 12 . In some of these embodiments, for example, the sparger 40 extends from a lower portion of the photobioreactor 12 (and within the photobioreactor 12 ).
  • carbon dioxide is supplied to the reaction zone 10 , and the supplied carbon dioxide defines the reaction zone carbon dioxide supply 2402 .
  • the reaction zone carbon dioxide supply 2402 is supplied to the reaction zone 10 at a pressure which effects flow of the reaction zone carbon dioxide supply through a vertical extent of the reaction zone of at least seventy (70) inches. In some embodiments, for example, the vertical extent is at least 10 feet. In some embodiments, for example, the vertical extent is at least 20 feet. In some embodiments, for example, the vertical extent is at least 30 feet. In some embodiments, for example, the pressure of the reaction zone carbon dioxide supply 2402 is increased before being supplied to the reaction zone 10 .
  • the increase in pressure of the reaction zone carbon dioxide supply 2402 is effected while the gaseous exhaust material 18 is being produced by the gaseous exhaust material producing process 20 .
  • the increase in pressure of the reaction zone carbon dioxide supply 2402 is effected while the reaction zone carbon dioxide supply is being supplied to the reaction zone 10 .
  • the exposing of the phototrophic biomass disposed in the reaction zone 10 to photosynthetically active light radiation is effected while the reaction zone carbon dioxide supply 2402 is being supplied to the reaction zone 10 .
  • the pressure increase is at least partially effected by a prime mover 38 .
  • a prime mover 38 for those embodiments where the pressure increase is at least partially effected by the prime mover 38 .
  • An example of a suitable prime mover 38 for embodiments where the reaction zone carbon dioxide supply 2402 is a portion of the reaction zone feed material 22 , and the reaction zone feed material 22 includes liquid material, is a pump.
  • Examples of a suitable prime mover 38 for embodiments where the pressure increase is effected to a gaseous flow, include a blower, a compressor, and an air pump. In other embodiments, for example, the pressure increase is effected by a jet pump or eductor.
  • the reaction zone carbon dioxide supply 2402 is supplied to the jet pump or eductor and pressure energy is transferred to the reaction zone carbon dioxide supply from another flowing fluid (the “motive fluid flow”) using the venturi effect to effect a pressure increase in the reaction zone carbon dioxide supply.
  • a motive fluid flow 700 is provided, wherein material of the motive fluid flow 700 includes a motive fluid pressure P M1 .
  • a lower pressure reaction zone carbon dioxide supply 2402 A is provided including a pressure P E , wherein the lower pressure state carbon dioxide supply 2402 A includes the reaction zone carbon dioxide supply 2402 .
  • the lower pressure reaction zone carbon dioxide supply 2402 A is defined by the reaction zone carbon dioxide supply 2402 .
  • P M1 of the motive fluid flow is greater than P E of the lower pressure state carbon dioxide supply 2402 A.
  • Pressure of the motive fluid flow 700 is reduced from P M1 to P M2 , such that P M2 is less than P E , by flowing the motive fluid flow 700 from an upstream fluid passage portion 702 to an intermediate downstream fluid passage portion 704 .
  • the intermediate downstream fluid passage portion 704 is characterized by a smaller cross-sectional area relative to the upstream fluid passage portion 702 .
  • reaction zone carbon dioxide supply-comprising mixture 2404 which includes the reaction zone carbon dioxide supply 2402 . At least a fraction of the reaction zone carbon dioxide supply-comprising mixture 2404 is supplied to the reaction zone 10 .
  • Pressure of the reaction zone carbon dioxide supply-comprising mixture 2404 which includes the reaction zone carbon dioxide supply 2402 , is increased to P M3 , such that the pressure of the reaction zone carbon dioxide supply 2402 is also increased to P M3 .
  • P M3 is greater than P E and is also sufficient to effect supply of the reaction zone carbon dioxide supply 2402 to the reaction zone 10 and, upon supply of the reaction zone carbon dioxide supply 2402 to the reaction zone 10 , effect flow of the reaction zone carbon dioxide supply 2402 through a vertical extent of the reaction zone 10 of at least seventy (70) inches.
  • P M3 is greater than P E and is also sufficient to effect supply of the reaction zone carbon dioxide supply 2402 to the reaction zone 10 and, upon supply of the reaction zone carbon dioxide supply 2402 to the reaction zone 10 , effect flow of the reaction zone carbon dioxide supply 2402 through a vertical extent of the reaction zone 10 of at least 10 feet.
  • P M3 is greater than P E and is also sufficient to effect supply of the reaction zone carbon dioxide supply 2402 to the reaction zone 10 and, upon supply of the reaction zone carbon dioxide supply 2402 to the reaction zone 10 , effect flow of the reaction zone carbon dioxide supply 2402 through a vertical extent of the reaction zone 10 of at least 20 feet.
  • P M3 is greater than P E and is also sufficient to effect supply of the reaction zone carbon dioxide supply 2402 to the reaction zone 10 and, upon supply of the reaction zone carbon dioxide supply 2402 to the reaction zone 10 , effect flow of the reaction zone carbon dioxide supply 2402 through a vertical extent of the reaction zone 10 of at least 30 feet.
  • the pressure increase is designed to overcome the fluid head within the reaction zone 10 .
  • the pressure increase is effected by flowing the reaction zone carbon dioxide supply-comprising mixture 2404 from the intermediate downstream fluid passage portion 704 to a “kinetic energy to static pressure energy conversion” downstream fluid passage portion 706 .
  • the cross-sectional area of the “kinetic energy to static pressure energy conversion” downstream fluid passage portion 706 is greater than the cross-sectional area of the intermediate downstream fluid passage portion 704 , such that kinetic energy of the reaction zone carbon dioxide supply-comprising mixture 2404 disposed in the intermediate downstream fluid passage portion 704 is converted into static pressure energy when the reaction zone carbon dioxide supply-comprising mixture 2404 becomes disposed in the “kinetic energy to static pressure energy conversion” downstream fluid passage portion 706 by virtue of the fact that the reaction zone carbon dioxide supply-comprising mixture 2404 has become flowed to a fluid passage portion with a larger cross-sectional area.
  • a converging nozzle portion of a fluid passage defines the upstream fluid passage portion 702 and a diverging nozzle portion of the fluid passage defines the “kinetic energy to static pressure energy conversion” downstream fluid passage portion 706
  • the intermediate downstream fluid passage portion 704 is disposed intermediate of the converging and diverging nozzle portions.
  • the combination of the upstream fluid passage portion 702 and the “kinetic energy to static pressure energy conversion” downstream fluid passage portion 706 is defined by a venture nozzle.
  • the combination of the upstream fluid passage portion 702 and the “kinetic energy to static pressure energy conversion” downstream fluid passage portion 706 is disposed within an eductor or jet pump.
  • the motive fluid flow 700 includes liquid aqueous material and, in this respect, the reaction zone carbon dioxide supply-comprising mixture 2404 includes a combination of liquid and gaseous material.
  • the reaction zone carbon dioxide supply-comprising mixture 2404 includes a dispersion of a gaseous material within a liquid material, wherein the dispersion of a gaseous material includes the reaction zone carbon dioxide supply.
  • the motive fluid flow 700 is another gaseous flow, such as an air flow, and the reaction zone carbon dioxide supply-comprising mixture is gaseous.
  • At least a fraction of the reaction zone carbon dioxide supply-comprising mixture 2404 is supplied to the reaction zone feed material 22 so as to effect supply of the at least a fraction of the reaction zone carbon dioxide supply-comprising mixture to the reaction zone 10 .
  • the carbon dioxide of the reaction zone feed material 22 includes at least a fraction of the reaction zone carbon dioxide supply 2402 .
  • the carbon dioxide of the reaction zone feed material 22 is defined by at least a fraction of the reaction zone carbon dioxide supply 2402 .
  • the reaction zone carbon dioxide supply 2402 is supplied by at least a fraction of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , and the supplying of the reaction zone carbon dioxide supply 2402 , by the at least a fraction of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , is effected while the gaseous exhaust material 18 is being discharged by the gaseous exhaust material producing process 20 and while the reaction zone carbon dioxide supply 2402 is being supplied to the reaction zone 10 .
  • the reaction zone carbon dioxide supply 2402 is supplied by at least a fraction of the carbon dioxide being discharged by the gaseous exhaust material producing process 20 , and the supplying of the reaction zone carbon dioxide supply 2402 , by the at least a fraction of the carbon dioxide being discharged by the gaseous exhaust material producing process 20 , is effected while the carbon dioxide is being discharged by the gaseous exhaust material producing process 20 and while the reaction zone carbon dioxide supply 2402 is being supplied to the reaction zone 10 .
  • the reaction zone carbon dioxide supply 2402 is defined by the discharged carbon dioxide reaction zone supply.
  • the photobioreactor 12 or plurality of photobioreactors 12 , are configured so as to optimize carbon dioxide absorption by the phototrophic biomass and reduce energy requirements.
  • the photobioreactor (s) is (are) configured to provide increased residence time of the carbon dioxide within the reaction zone 10 .
  • movement of the carbon dioxide over horizontal distances is minimized, so as to reduce energy consumption.
  • the one or more photobioreactors 12 is, or are, relatively taller, and provide a reduced footprint, so as to increase carbon dioxide residence time while conserving energy.
  • a supplemental nutrient supply 42 is supplied to the reaction zone 10 .
  • the exposing of the phototrophic biomass disposed in the reaction zone 10 to photosynthetically active light radiation is effected while the supplemental nutrient supply 42 is being supplied to the reaction zone 10 .
  • the supplemental nutrient supply 42 is effected by a pump, such as a dosing pump.
  • the supplemental nutrient supply 42 is supplied manually to the reaction zone 10 . Nutrients within the reaction zone 10 are processed or consumed by the phototrophic biomass, and it is desirable, in some circumstances, to replenish the processed or consumed nutrients.
  • a suitable nutrient composition is “Bold's Basal Medium”, and this is described in Bold, H. C. 1949 , The morphology of Chlamydomonas chlamydogama sp. nov. Bull. Torrey Bot. Club. 76: 101-8 (see also Bischoff, H. W. and Bold, H. C. 1963 . Phycological Studies IV. Some soil algae from Enchanted Rock and related algal species , Univ. Texas 6318: 1-95, and Stein, J. (ED.) Handbook of Phycological Methods, Culture methods and growth measurements , Cambridge University Press, pp. 7-24).
  • the supplemental nutrient supply 42 is supplied for supplementing the nutrients provided within the reaction zone, such as “Bold's Basal Medium”, or one or more dissolved components thereof.
  • the supplemental nutrient supply 42 includes “Bold's Basal Medium”.
  • the supplemental nutrient supply 42 includes one or more dissolved components of “Bold's Basal Medium”, such as NaNO 3 , CaCl 2 , MgSO 4 , KH 2 PO 4 , NaCl, or other ones of its constituent dissolved components.
  • the rate of supply of the supplemental nutrient supply 42 to the reaction zone 10 is controlled to align with a desired rate of growth of the phototrophic biomass in the reaction zone 10 .
  • regulation of nutrient addition is monitored by measuring any combination of pH, NO 3 concentration, and conductivity in the reaction zone 10 .
  • the supplemental aqueous material supply 44 is supplied to the reaction zone 10 so as to replenish water within the reaction zone 10 of the photobioreactor 12 .
  • the supply of the supplemental aqueous material supply 24 effects the discharge of product from the photobioreactor 12 .
  • the supplemental aqueous material supply 44 effects the discharge of product from the photobioreactor 12 as an overflow.
  • the supplemental aqueous material is water.
  • the supplemental aqueous material supply 44 includes at least one of: (a) aqueous material 70 that has been condensed from the reaction zone feed material 22 while the reaction zone feed material 22 is cooled before being supplied to the reaction zone 10 , and (b) aqueous material that has been separated from a discharged phototrophic biomass-comprising product 500 .
  • the supplemental aqueous material supply 44 is derived from an independent source (ie. a source other than the process), such as a municipal water supply.
  • the supplemental aqueous material supply 44 is supplied by the pump 281 . In some of these embodiments, for example, the supplemental aqueous material supply 44 is continuously supplied to the reaction zone 10 .
  • At least a fraction of the supplemental aqueous material supply 44 is supplied from a container 28 , which is further described below. At least a fraction of aqueous material which is discharged from the process is recovered and supplied to the container 28 to provide supplemental aqueous material in the container 28 .
  • the supplemental nutrient supply 42 and the supplemental aqueous material supply 44 are supplied to the reaction zone feed material 22 through the sparger 40 before being supplied to the reaction zone 10 .
  • the sparger 40 is disposed externally of the photobioreactor 12 .
  • it is desirable to mix the reaction zone feed material 22 with the supplemental nutrient supply 42 and the supplemental aqueous material supply 44 within the sparger 40 as this effects better mixing of these components versus separate supplies of the reaction zone feed material 22 , the supplemental nutrient supply 42 , and the supplemental aqueous material supply 44 .
  • the rate of supply of the reaction zone feed material 22 to the reaction zone 10 is limited by virtue of saturation limits of gaseous material of the reaction zone feed material 22 in the combined mixture. Because of this trade-off, such embodiments are more suitable when response time required for providing a modulated supply of carbon dioxide to the reaction zone 10 is not relatively immediate, and this depends on the biological requirements of the phototrophic organisms being used.
  • At least a fraction of the supplemental nutrient supply 42 is mixed with the supplemental aqueous material in the container 28 to provide a nutrient-enriched supplemental aqueous material supply 44 , and the nutrient-enriched supplemental aqueous material supply 44 is supplied directly to the reaction zone 10 or is mixed with the reaction zone feed material 22 in the sparger 40 .
  • the direct or indirect supply of the nutrient-enriched supplemental aqueous material supply is effected by a pump.
  • At least one material input to the reaction zone 10 is modulated based on at least the rate (the molar rate and/or the volumetric rate) at which the discharged carbon dioxide reaction zone supply is being supplied to the reaction zone 10 .
  • the exposing of the phototrophic biomass disposed in the reaction zone 10 to photosynthetically active light radiation is effected while the modulating of at least one input is being effected.
  • modulating of a material input is any one of initiating, terminating, increasing, decreasing, or otherwise changing the material input.
  • a material input to the reaction zone 10 is an input whose supply to the reaction zone 10 is material to the rate of growth of the phototrophic biomass within the reaction zone 10 .
  • Exemplary material inputs to the reaction zone 10 include supply of photosynthetically active light radiation of a characteristic intensity being to the reaction zone, and supply of supplemental nutrient supply 42 to the reaction zone 10 .
  • modulating the intensity of photosynthetically active light radiation being supplied to the reaction zone 10 is any one of: initiating supply of photosynthetically active light radiation to the reaction zone, terminating supply of photosynthetically active light radiation which is being supplied to the reaction zone, increasing the intensity of photosynthetically active light radiation being supplied to the reaction zone, and decreasing the intensity of photosynthetically active light radiation being supplied to the reaction zone 10 .
  • the modulating of the intensity of photosynthetically active light radiation being supplied to the reaction zone includes modulating of the intensity of photosynthetically active light radiation to which at least a fraction of the carbon dioxide-enriched phototrophic biomass is exposed.
  • Modulating the rate of supply (the molar rate of supply and/or the volumetric rate of supply) of supplemental nutrient supply 42 to the reaction zone is any one of initiating the supply of supplemental nutrient supply 42 to the reaction zone, terminating the supply of supplemental nutrient supply 42 being supplied to the reaction zone, increasing the rate of supply (the molar rate of supply and/or the volumetric rate of supply) of supplemental nutrient supply 42 being supplied to the reaction zone, or decreasing the rate of supply (the molar rate of supply and/or the volumetric rate of supply) of supplemental nutrient supply 42 being supplied to the reaction zone.
  • the modulation is based on, at least, an indication of the rate (the molar rate and/or the volumetric rate) at which the discharged carbon dioxide reaction zone supply is being supplied to the reaction zone 10 .
  • the rate the molar rate and/or the volumetric rate
  • at least one material input to the reaction zone 10 is modulated based on, at least, an indication of the rate (molar rate and/or volumetric rate) at which the discharged carbon dioxide reaction zone supply is being supplied to the reaction zone 10 .
  • the exposing of the phototrophic biomass disposed in the reaction zone 10 to photosynthetically active light radiation is effected while the modulating of at least one input is being effected.
  • the indication of the rate of supply of the discharged carbon dioxide reaction zone supply which is being supplied to the reaction zone 10 is the rate (molar rate and/or volumetric rate) at which gaseous exhaust material 18 is being discharged by the gaseous exhaust material producing process 20 , such that the modulation is based on, at least, the rate (molar rate and/or volumetric rate) at which the gaseous exhaust material 18 is being discharged by the gaseous exhaust material producing process 20 , wherein the gaseous exhaust material includes the discharged carbon dioxide reaction zone supply.
  • a flow sensor 78 is provided for detecting the flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , and transmitting a signal representative of the detected flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 to the controller.
  • a gas analyzer operates integrally with the flow sensor 78 .
  • the controller Upon the controller receiving a signal from the flow sensor 78 which is representative of the detected flow rate of the gaseous exhaust material 18 , the controller effects modulation of at least one material input to the reaction zone 10 based on the detected flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 .
  • the modulating of at least one material input includes at least one of: (i) initiating supply of the photosynthetically active light radiation to the reaction zone 10 , or (ii) effecting an increase in the intensity of the photosynthetically active light radiation being supplied to the reaction zone 10 .
  • the modulating of at least one material input includes: (i) initiating supply of the supplemental nutrient supply 42 to the reaction zone, or (ii) effecting an increase in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the supplemental nutrient supply 42 being supplied to the reaction zone 10 .
  • the modulation of at least one material input includes at least one of: (i) terminating supply of the photosynthetically active light radiation being supplied to the reaction zone 10 , or (ii) effecting a decrease in the intensity of the photosynthetically active light radiation being supplied to the reaction zone 10 .
  • the modulating of at least one material input includes at least one of: (i) terminating supply of the supplemental nutrient supply 42 being supplied to the reaction zone, or (ii) effecting a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the supplemental nutrient supply 42 being supplied to the reaction zone 10 .
  • the indication of the rate of supply of the discharged carbon dioxide reaction zone supply which is being supplied to the reaction zone 10 is the concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , such that the modulation is based on, at least, the concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , wherein the gaseous exhaust material 18 includes the discharged carbon dioxide reaction zone supply.
  • a carbon dioxide sensor 781 is provided for detecting the concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , and transmitting a signal representative of the concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 to the controller.
  • the carbon dioxide sensor is a gas analyzer such that the concentration detected is a molar concentration.
  • the controller Upon the controller receiving a signal from the carbon dioxide sensor 781 which is representative of a detected concentration of carbon dioxide of the gaseous exhaust material 18 , the controller effects modulation of at least one material input to the reaction zone 10 based on the detected concentration of carbon dioxide of the gaseous exhaust material 18 .
  • the modulating of at least one material input includes at least one of: (i) initiating supply of the photosynthetically active light radiation to the reaction zone 10 , or (ii) effecting an increase in the intensity of the photosynthetically active light radiation being supplied to the reaction zone 10 .
  • the modulating of at least one material input includes: (i) initiating supply of the supplemental nutrient supply 42 to the reaction zone, or (ii) effecting an increase in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the supplemental nutrient supply 42 being supplied to the reaction zone 10 .
  • the modulation of at least one material input includes at least one of: (i) terminating supply of the photosynthetically active light radiation being supplied to the reaction zone 10 , or (ii) effecting a decrease in the intensity of the photosynthetically active light radiation being supplied to the reaction zone 10 .
  • the modulating of at least one material input includes at least one of: (i) terminating supply of the supplemental nutrient supply 42 being supplied to the reaction zone, or (ii) effecting a decrease in the molar rate of supply (molar rate of supply and/or volumetric rate of supply) of the supplemental nutrient supply 42 being supplied to the reaction zone 10 .
  • the indication of the molar rate of supply of the discharged carbon dioxide reaction zone supply which is being supplied to the reaction zone 10 is the rate (molar rate and/or volumetric rate) at which carbon dioxide is being discharged by the gaseous exhaust material producing process 20 , such that the modulation is based on, at least, the rate (molar rate and/or volumetric rate) at which carbon dioxide is being discharged by the gaseous exhaust material producing process 20 , wherein the gaseous exhaust material 18 includes the discharged carbon dioxide reaction zone supply.
  • the rate at which carbon dioxide is being discharged by the gaseous exhaust material producing process 20 is calculated based on the combination of the detected flow rate (molar flow rate and/or volumetric flow rate) of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 and the detected concentration of carbon dioxide of the gaseous effluent material 18 being discharged by the gaseous exhaust material producing process 20 .
  • the combination of (i) the detected flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , and (ii) the detected molar concentration of carbon dioxide of the gaseous effluent material 18 being discharged by the gaseous exhaust material producing process 20 provides a basis for calculating a rate (molar rate and/or volumetric rate) at which carbon dioxide is being discharged by the gaseous exhaust material producing process 20 .
  • a flow sensor 78 is provided for detecting the flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , and transmitting a signal representative of the detected flow rate of the gaseous exhaust material 18 , being discharged by the gaseous exhaust material producing process 20 , to the controller.
  • a carbon dioxide sensor 781 is provided for detecting the concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , and transmitting a signal representative of the detected concentration of carbon dioxide of the gaseous exhaust material 18 , being discharged by the gaseous exhaust material producing process 20 , to the controller.
  • the carbon dioxide sensor is a gas analyzer such that the concentration detected is a molar concentration.
  • the controller Upon the controller receiving a flow sensor signal from the flow sensor 78 , which is representative of a detected flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , and also receiving a carbon dioxide sensor signal from a carbon dioxide sensor 781 , which is representative of a detected concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , wherein the detected concentration of carbon dioxide of the gaseous exhaust material 18 is being detected contemporaneously, or substantially contemporaneously, with the detecting of the flow rate of the gaseous exhaust material 18 being discharged by the process 20 , upon which the flow sensor signal is based, and calculating a rate (molar rate and/or volumetric rate) of carbon dioxide being discharged by the gaseous exhaust material producing process 20 , based upon the received flow sensor signal and the received carbon dioxide sensor signal, the controller effects modulation of at least one
  • the modulating of at least one material input includes at least one of: (i) initiating supply of the photosynthetically active light radiation to the reaction zone 10 , or (ii) effecting an increase in the intensity of the photosynthetically active light radiation being supplied to the reaction zone 10 .
  • the modulating of at least one material input includes: (i) initiating supply of the supplemental nutrient supply 42 to the reaction zone, or (ii) effecting an increase in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the supplemental nutrient supply 42 being supplied to the reaction zone 10 .
  • the modulation of at least one material input includes at least one of: (i) terminating supply of the photosynthetically active light radiation being supplied to the reaction zone 10 , or (ii) effecting a decrease in the intensity of the photosynthetically active light radiation being supplied to the reaction zone 10 .
  • the modulating of at least one material input includes at least one of: (i) terminating supply of the supplemental nutrient supply 42 being supplied to the reaction zone, or (ii) effecting a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the supplemental nutrient supply 42 being supplied to the reaction zone 10 .
  • the modulation of at least one material input to the reaction zone 10 is effected in response to the detection of a change in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 .
  • the exposing of the phototrophic biomass disposed in the reaction zone 10 to photosynthetically active light radiation is effected while the modulating of at least one material input is being effected.
  • the modulation of at least one material input to the reaction zone 10 is effected in response to the detection of an indication of a change in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 .
  • the exposing of the phototrophic biomass disposed in the reaction zone 10 to photosynthetically active light radiation is effected while the modulating of at least one material input is being effected.
  • modulating of a material input is any one of initiating, terminating, increasing, or decreasing the material input.
  • Exemplary material inputs to the reaction zone include supply of photosynthetically active light radiation of a characteristic intensity to the reaction zone 10 , and supply of supplemental nutrient supply 42 to the reaction zone 10 .
  • modulating the intensity of photosynthetically active light radiation being supplied to the reaction zone 10 is any one of: initiating supply of photosynthetically active light radiation to the reaction zone, terminating supply of photosynthetically active light radiation being supplied to the reaction zone, increasing the intensity of photosynthetically active light radiation being supplied to the reaction zone, and decreasing the intensity of photosynthetically active light radiation being supplied to the reaction zone.
  • the modulating of the intensity of photosynthetically active light radiation being supplied to the reaction zone includes modulating of the intensity of photosynthetically active light radiation to which at least a fraction of the carbon dioxide-enriched phototrophic biomass is exposed.
  • modulating the rate of supply (molar rate of supply and/or volumetric rate of supply) of supplemental nutrient supply 42 to the reaction zone is any one of initiating the supply of supplemental nutrient supply 42 to the reaction zone, terminating the supply of supplemental nutrient supply 42 being supplied to the reaction zone, increasing the rate of supply (molar rate of supply and/or volumetric rate of supply) of supplemental nutrient supply 42 being supplied to the reaction zone, or decreasing the rate of supply (molar rate of supply and/or volumetric rate of supply) of supplemental nutrient supply 42 being supplied to the reaction zone.
  • the modulating of the intensity of the photosynthetically active light radiation is effected by a controller.
  • the controller changes the power output to the light source from the power supply, and this can be effected by controlling either one of voltage or current.
  • the modulating of the rate of supply of the supplemental nutrient supply 42 is also effected by a controller.
  • the controller can control a dosing pump 421 to provide a predetermined flow rate of the supplemental nutrient supply 42 .
  • the modulating of at least one material input includes at least one of: (i) initiating supply of the photosynthetically active light radiation to the reaction zone 10 , or (ii) effecting an increase in the intensity of the photosynthetically active light radiation being supplied to the reaction zone 10 .
  • such modulation is effected in response to the detection of an increase in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 .
  • the increase in the intensity of the photosynthetically active light radiation being supplied to the reaction zone 10 is proportional to the increase in the molar rate of supply of the discharged carbon dioxide reaction zone supplied being supplied to the reaction zone 10 .
  • the modulating of at least one material input includes at least one of: (i) initiating supply of the photosynthetically active light radiation to the reaction zone 10 , or (ii) effecting an increase in the intensity of the photosynthetically active light radiation being supplied to the reaction zone 10 .
  • such modulation is effected in response to the detection of an indication of an increase in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 .
  • the increase in the intensity of the photosynthetically active light radiation being supplied to the reaction zone 10 is proportional to the increase in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supplied being supplied to the reaction zone 10 .
  • the rate of cooling of a light source that is provided in the reaction zone 10 and that is supplying the photosynthetically active light radiation to the reaction zone, is increased.
  • the cooling is effected for mitigating heating of the reaction zone by any thermal energy that is dissipated from the light source while the light source is supplying the photosynthetically active light radiation to the reaction zone. Heating of the reaction zone 10 increases the temperature of the reaction zone. In some embodiments, excessive temperature within the reaction zone 10 is deleterious to the phototrophic biomass.
  • the light source is disposed in a liquid light guide and a heat transfer fluid is disposed within the liquid light guide, and the rate of cooling is increased by increasing the rate of exchanges of the heat transfer fluid within the liquid light guide.
  • the modulating of at least one material input includes at least one of: (i) initiating supply of the supplemental nutrient supply 42 to the reaction zone 10 , or (ii) effecting an increase in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the supplemental nutrient supply 42 being supplied to the reaction zone 10 .
  • such modulation is effected in response to the detection of an increase in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide
  • the modulating of at least one material input includes at least one of: (i) initiating supply of the supplemental nutrient supply 42 to the reaction zone 10 , or (ii) effecting an increase in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the supplemental nutrient supply 42 being supplied to the reaction zone 10 .
  • such modulation is effected in response to the detection of an indication of an increase in the rate of supply (molar rate of supply and/or volumetric rate of supply)
  • the indication of an increase in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 which is detected is an increase in the rate (molar rate and/or volumetric rate) at which gaseous exhaust material 18 is being discharged by the gaseous exhaust material producing process 20 , wherein the gaseous exhaust material 18 includes the discharged carbon dioxide reaction zone supply.
  • a flow sensor 78 is provided for detecting the flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 (in the case of molar flow rate, a gas analyzer is also incorporated) and transmitting a signal representative of the detected molar flow rate of the gaseous exhaust material 18 to the controller.
  • the controller Upon the controller comparing a received signal from the flow sensor 78 , which is representative of the detected flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , to a previously received signal representative of a previously detected flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , and determining that an increase in the flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 has been effected, the controller effects at least one of: (a) initiation of supply of photosynthetically active light radiation to the reaction zone 10 , or an increase in the intensity of photosynthetically active light radiation supply being supplied to the reaction zone 10 , and (b) initiation of supply of a supplemental nutrient supply 42 to the reaction zone 10 , or an increase in the rate of supply (molar rate of supply and/or volumetric rate of supply) of a supplemental nutrient supply 42 being supplied to the reaction zone 10 .
  • the indication of an increase in the molar rate of supply of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 which is detected is an increase in the concentration of carbon dioxide of gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , wherein the gaseous exhaust material 18 includes the discharged carbon dioxide reaction zone supply.
  • a carbon dioxide sensor 781 is provided for detecting the concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , and transmitting a signal representative of the detected concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , to the controller.
  • the carbon dioxide sensor is a gas analyzer such that the concentration detected is a molar concentration.
  • the controller comparing a received signal from the carbon dioxide sensor 781 , which is representative of the detected concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , to a previously received signal representative of a previously detected concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , and determining that an increase in the concentration of carbon dioxide of the gaseous exhaust material 18 has been effected, the controller effects at least one of: (a) initiation of supply of photosynthetically active light radiation to the reaction zone 10 , or an increase in the intensity of photosynthetically active light radiation supply being supplied to the reaction zone 10 , and (b) initiation of supply of a supplemental nutrient supply 42 to the reaction zone 10 , or an increase in the rate of supply (molar rate of supply and/or volumetric rate of supply) of a supplemental nutrient supply 42
  • the indication of an increase in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 is an increase in the rate at which carbon dioxide (molar rate of supply and/or volumetric rate of supply) is being discharged by the gaseous exhaust material producing process 20 .
  • the increase in the rate at which carbon dioxide is being discharged by the gaseous exhaust material producing process 20 is based on a comparison between (i) a calculated rate at which carbon dioxide is being discharged by the gaseous exhaust producing process 20 , wherein the calculation is based on the combination of a detected flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 and also a detected concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , and (ii) a calculated rate at which carbon dioxide has been previously discharged by the gaseous exhaust producing process 20 , wherein the calculation is based on the combination of a previously detected flow rate of the gaseous exhaust material 18 previously being discharged by the gaseous exhaust material producing process 20 and also a previously detected concentration of carbon dioxide of the gaseous exhaust material 18 previously being discharged by the gaseous exhaust material producing process 20 .
  • a flow sensor 78 is provided for detecting the flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , and transmitting a signal representative of the detected flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , to the controller.
  • a carbon dioxide sensor 781 is provided for detecting the concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , and transmitting a signal representative of the detected concentration of carbon dioxide of the gaseous exhaust material 18 , being discharged by the gaseous exhaust material producing process 20 , to the controller.
  • the carbon dioxide sensor is a gas analyzer such that the concentration detected is a molar concentration.
  • the controller receiving a flow sensor signal from the flow sensor 78 , which is representative of a detected flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , and also receiving a carbon dioxide sensor signal from a carbon dioxide sensor 781 , which is representative of a detected concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , wherein the detecting of the detected concentration of carbon dioxide of the gaseous exhaust material 18 is contemporaneous, or substantially contemporaneous, with the detecting of the detected flow rate of the gaseous exhaust material 18 being discharged by the process 20 , upon which the flow sensor signal is based, and calculating a rate (molar rate and/or volumetric rate) at which carbon dioxide is being discharged by the gaseous exhaust material producing process 20 , based upon the received flow sensor signal and the received carbon dioxide sensor signal, and comparing the
  • the rate of supply of at least one condition for growth (ie. increased rate of supply of carbon dioxide) of the phototrophic biomass is increased, and the rates of supply of other inputs, relevant to such growth, are correspondingly initiated or increased, in anticipation of growth of the phototrophic biomass in the reaction zone 10 .
  • the modulating of at least one material input includes effecting at least one of: (i) terminating supply of the photosynthetically active light radiation being supplied to the reaction zone 10 , or (ii) effecting a decrease in the intensity of the photosynthetically active light radiation being supplied to the reaction zone 10 .
  • such modulation is effected in response to the detection of a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 .
  • the decrease in the intensity of the photosynthetically active light radiation being supplied to the reaction zone is proportional to the decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supplied being supplied to the reaction zone 10 .
  • the modulating of at least one material input includes effecting at least one of: (i) terminating supply of the photosynthetically active light radiation being supplied to the reaction zone 10 , or (ii) effecting a decrease in the intensity of the photosynthetically active light radiation being supplied to the reaction zone 10 .
  • such modulation is effected in response to the detection of an indication of a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 .
  • the decrease in the intensity of the photosynthetically active light radiation being supplied to the reaction zone is proportional to the decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supplied being supplied to the reaction zone 10 .
  • the modulating of at least one material input includes effecting at least one of: (i) terminating supply of the supplemental nutrient supply 42 being supplied to the reaction zone, or (ii) effecting a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the supplemental nutrient supply 42 being supplied to the reaction zone 10 .
  • such modulation is effected in response to the detection of a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of
  • the modulating of at least one material input includes effecting at least one of: (i) terminating supply of the supplemental nutrient supply 42 being supplied to the reaction zone, or (ii) effecting a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the supplemental nutrient supply 42 being supplied to the reaction zone 10 .
  • such modulation is effected in response to the detection of an indication of a decrease in the rate of supply (molar rate of supply and/or volume
  • the indication of a decrease in the molar rate of supply of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 which is detected is a decrease in the rate (molar rate and/or volumetric rate) at which the gaseous exhaust material 18 is being discharged by the gaseous exhaust material producing process 20 .
  • a flow sensor 78 is provided for detecting the flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 (for detecting molar flow rate, a gas analyzer is incorporated), and transmitting a signal representative of the detected flow rate of the gaseous exhaust material 18 to the controller.
  • the controller Upon the controller comparing a received signal from the flow sensor 78 , which is representative of the detected flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , to a previously received signal representative of a previously detected flow rate of the gaseous exhaust material 18 previously being discharged by the gaseous exhaust material producing process 20 , and determining that a decrease in the flow rate of the gaseous exhaust material 18 , being discharged by the gaseous exhaust material producing process 20 , has been effected, the controller effects at least one of: (a) a decrease in the intensity of, or termination of, supply of the photosynthetically active light radiation being supplied to the reaction zone 10 , and (b) a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of, or termination of supply of, of a supplemental nutrient supply 42 being supplied to the reaction zone 10 .
  • the indication of a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 which is detected is a decrease in the concentration of carbon dioxide of the gaseous effluent material 18 being discharged by the gaseous exhaust material producing process 20 .
  • a carbon dioxide sensor 781 is provided for detecting the concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , and transmitting a signal representative of the detected concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , to the controller.
  • the carbon dioxide sensor is a gas analyzer such that the concentration detected is a molar concentration.
  • the controller comparing a received signal from the carbon dioxide sensor 781 which is representative of the detected concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , to a previously received signal representative of a previously detected concentration of carbon dioxide of the gaseous exhaust material 18 previously being discharged by the gaseous exhaust material producing process 20 , and determining that a decrease in the concentration of carbon dioxide of the gaseous exhaust material 18 , being discharged by the gaseous exhaust material producing process 20 , has been effected, the controller effects at least one of: (a) a decrease in the intensity of, or termination of, supply of the photosynthetically active light radiation being supplied to the reaction zone 10 , and (b) a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of, or termination of supply of, a supplemental nutrient supply 42 being supplied to the reaction zone
  • the indication of a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 is a decrease in the rate (molar rate and/or volumetric rate) at which carbon dioxide is being discharged by the gaseous exhaust material producing process 20 .
  • the decrease in the rate at which carbon dioxide is being discharged by the gaseous exhaust material producing process 20 is based on a comparison between (i) a calculated rate at which carbon dioxide is being discharged by the gaseous exhaust producing process 20 , wherein the calculation is based on the combination of a detected flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 and also a detected concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , and (ii) a calculated rate at which carbon dioxide has previously been discharged by the gaseous exhaust producing process 20 , wherein the calculation is based on the combination of a previously detected flow rate of the gaseous exhaust material 18 previously being discharged by the gaseous exhaust material producing process 20 and also a previously detected concentration of carbon dioxide of the gaseous exhaust material 18 previously being discharged by the gaseous exhaust material producing process 20 .
  • a flow sensor 78 is provided for detecting the flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , and transmitting a signal representative of the detected flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , to the controller.
  • a carbon dioxide sensor 781 is provided for detecting the concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , and transmitting a signal representative of the detected concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , to the controller.
  • the carbon dioxide sensor is a gas analyzer such that the concentration detected is a molar concentration.
  • the controller receiving a flow sensor signal from the flow sensor 78 , which is representative of a detected flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , and also receiving a carbon dioxide sensor signal from a carbon dioxide sensor 781 , which is representative of a detected concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , wherein the detecting of the detected concentration of carbon dioxide of the gaseous exhaust material 18 is contemporaneous, or substantially contemporaneous, with the detecting of the detected flow rate of the gaseous exhaust material 18 being discharged by the process 20 , upon which the flow sensor signal is based, and calculating a rate (molar rate and/or volumetric rate) at which carbon dioxide is being discharged by the gaseous exhaust material producing process 20 , based upon the received flow sensor signal and the received carbon dioxide sensor signal, and comparing the
  • any one of: (a) a decrease in the flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , (b) a decrease in the concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , or (c) a decrease in the rate of carbon dioxide being discharged by the gaseous exhaust material producing process 20 is an indicator of a decrease in the rate of supply of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 .
  • the increase in the rate of supply of a supplemental carbon dioxide supply 92 to the reaction zone 10 , or the initiation of the supply of the supplemental carbon dioxide supply 92 to the reaction zone 10 is effected in response to the detecting of a decrease, or an indication of a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 .
  • the source of the supplemental carbon dioxide supply 92 is a carbon dioxide cylinder.
  • the source of the supplemental carbon dioxide supply 92 is a supply of air.
  • the detected decrease is a detected termination of the supply of the discharged carbon dioxide reaction zone supply to the reaction zone 10 .
  • the detected indication of a decrease is a detected indication of the termination of the supply of the discharged carbon dioxide reaction zone supply to the reaction zone 10 .
  • the indication of a decrease in the rate of supply of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 is any of the indications described above.
  • the exposing of the phototrophic biomass disposed in the reaction zone 10 to photosynthetically active light radiation is effected while the increasing of the molar rate of supply, or the initiation of supply, of the supplemental carbon dioxide supply 92 to the reaction zone 10 is being effected.
  • the supplemental carbon dioxide supply 92 is supplied for compensating for the decrease in the rate of supply of carbon dioxide being supplied by the gaseous exhaust material producing process 20 to the reaction zone 10 , with a view to sustaining a substantially constant growth rate of the phototrophic biomass, when it is believed that the decrease (for example, the termination) is only of a temporary nature (such as less than two weeks).
  • the supply of supply 92 to the reaction zone 10 continues after its initiation for a period of less than two (2) weeks, for example, less than one week, and as a further example, less than five (5) days, and as a further example, less than three (3) days, and as a further example, less than one (1) day.
  • the supply of supply 92 to the reaction zone 10 continues after its initiation for a period of greater than 15 minutes, for example, greater than 30 minutes, and as a further example, greater than one (1) hour, and as a further example, greater than six (6) hours, and as a further example, greater than 24 hours.
  • a supplemental carbon dioxide supply 92 to the reaction zone 10 is effected in response to the detection of an indication of a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 , and the indication of a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 , which is detected, is a decrease in the flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20
  • a flow sensor 78 is provided for detecting the flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , and transmitting a signal representative of the detected flow rate of the gaseous exhaust material 18 , being discharged
  • a gas analyzer operates integrally with the flow sensor 78 .
  • the controller Upon the controller comparing a received signal from the flow sensor 78 which is representative of a currently detected flow rate of the gaseous exhaust material 18 , being discharged by the gaseous exhaust material producing process 20 , to a previously received signal representative of a previously detected flow rate of the gaseous exhaust material 18 previously being discharged by the process 20 , and determining that a decrease in the flow rate of the gaseous exhaust material 18 , being discharged by the gaseous exhaust material producing process 20 , has been effected, the controller actuates the opening of a flow control element, such as a valve 921 , to initiate supply of the supplemental carbon dioxide supply 92 to the reaction zone 10 from a source of the supplemental carbon dioxide supply 92 , or to effect increasing of the rate of supply (molar rate of supply and/or volumetric rate of supply) of the supplemental carbon dioxide supply being supplied to the reaction zone 10 .
  • a flow control element such as a valve 921
  • a carbon dioxide sensor 781 is provided for detecting the concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , and transmitting a signal representative of the detected concentration of carbon dioxide of the gaseous exhaust material 18 being discharged
  • the carbon dioxide sensor is a gas analyzer such that the concentration detected is a molar concentration.
  • the controller Upon the controller comparing a received signal from the carbon dioxide sensor 781 which is representative of the detected concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , to a previously received signal representative of a previously detected concentration of carbon dioxide of the gaseous exhaust material 18 previously being discharged by the gaseous exhaust material producing process 20 , and determining that a decrease in the concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , has been effected, the controller actuates the opening of a flow control element, such as a valve 921 , to initiate supply of the supplemental carbon dioxide supply 92 to the reaction zone 10 , or to effect increasing of the rate of supply (molar rate of supply and/or volumetric rate of supply) of the supplemental carbon dioxide supply being supplied to the reaction zone 10 .
  • a flow control element such as a valve 9
  • the increasing of the rate of supply (molar rate of supply and/or volumetric rate of supply) of a supplemental carbon dioxide supply 92 being supplied to the reaction zone, or the initiation of supply of a supplemental carbon dioxide supply 92 to the reaction zone 10 is effected in response to the detection of an indication of a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply to the reaction zone 10 , when the indication of a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply to the reaction zone 10 , which is detected is a decrease in the rate (molar rate and/or volumetric rate) at which carbon dioxide is being discharged by the gaseous exhaust material producing process 20 , in some of these embodiments, for example, the decrease in the rate (molar rate and/or volumetric rate) at which carbon dioxide is being discharged by the gaseous exhaust material producing process 20 is based on a comparison between
  • a flow sensor 78 is provided for detecting the flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , and transmitting a signal representative of the detected flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , to the controller.
  • a carbon dioxide sensor 781 is provided for detecting the concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , and transmitting a signal representative of the detected concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , to the controller.
  • the carbon dioxide sensor is a gas analyzer such that the concentration detected is a molar concentration.
  • the controller receiving a flow sensor signal from the flow sensor 78 , which is representative of a detected flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , and also receiving a carbon dioxide sensor signal from a carbon dioxide sensor 781 , which is representative of a detected concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , wherein the detecting of the detected concentration of carbon dioxide of the gaseous exhaust material 18 is contemporaneous, or substantially contemporaneous, with the detecting of the detected flow rate of the gaseous exhaust material 18 being discharged by the process 20 , upon which the flow sensor signal is based, and calculating a rate at which carbon dioxide is being discharged by the gaseous exhaust material producing process 20 , based upon the received flow sensor signal and the received carbon dioxide sensor signal, and comparing the calculated rate at which carbon dioxide is being discharged by
  • the process further includes initiating the supply of a supplemental gas-comprising material 48 , or increasing the rate of supply (molar rate of supply and/or volumetric rate of supply) of a supplemental gas-comprising material 48 , to the reaction zone 10 .
  • the initiation of the supply of the supplemental gas-comprising material 48 to the reaction zone 10 or the increasing of the rate of supply (molar rate of supply and/or volumetric rate of supply) of the supplemental gas-comprising material 48 being supplied to the reaction zone 10 , at least partially compensates for the reduction in supply rate (molar supply rate and/or volumetric supply rate) of material (such as material of the reaction zone feed material 22 ), or the termination of supply of material (such as material of the reaction zone feed material 22 ), to the reaction zone 10 which is effected by the decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply), or by the termination of supply, of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 , notwithstanding the initiation of the supply of the supplemental carbon dioxide supply 92 to the reaction zone 10 , or the increase to the rate of supply (molar rate of supply and/or volumetric rate of supply) of a supplemental carbon dioxide supply 92 to the reaction
  • the compensation for the reduction in supply rate (molar supply rate and/or volumetric supply rate) of material (reaction zone feed material 22 ), or for the termination of supply of material (reaction zone feed material 22 ), to the reaction zone 10 which is effected effects substantially no change to the rate of supply (molar rate of supply and/or volumetric rate of supply) of material (reaction zone feed material 22 ) to the reaction zone 10 .
  • the compensation for the reduction in supply rate (molar supply rate and/or volumetric supply rate) of material (reaction zone feed material 22 ), or for the termination of supply of material (reaction zone feed material 22 ), to the reaction zone 10 which is effected mitigates against the reduced agitation of the reaction zone 10 which would otherwise be attributable to the reduction in the rate of supply, or the termination of supply, of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 , which is effected by the decrease in the rate of supply, or by the termination of supply, of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 .
  • the combination of any gaseous exhaust material reaction zone supply 24 , the supplemental carbon dioxide supply 92 , and the supplemental gas-comprising material defines a combined operative material flow that is supplied to the reaction zone as at least a fraction of the reaction zone feed material 22 , and the reaction zone feed material 22 is supplied to the reaction zone 10 and effects agitation of material in the reaction zone such that any difference in mass concentration of the phototrophic biomass between any two points in the reaction zone 10 is less than 20%.
  • the effected agitation is such that any difference in the mass concentration of the phototrophic biomass between any two points in the reaction zone 10 is less than 10%.
  • the supply of the supplemental gas-comprising material 48 is provided to mitigate against the creation of a phototrophic biomass concentration gradient between any two points in the reaction zone above a desired maximum.
  • the molar concentration of carbon dioxide, if any, of the supplemental gas-comprising material 48 is lower than the molar concentration of carbon dioxide of the supplemental carbon dioxide supply 92 being supplied to the reaction zone 10 .
  • the molar concentration of carbon dioxide of the supplemental gas material 48 is less than 3 mole % based on the total moles of the supplemental gas material 48 .
  • the molar concentration of carbon dioxide of the supplemental gas material 48 is less than 1 (one) mole % based on the total moles of the supplemental gas material 48 .
  • the supplemental gas-comprising material 48 is a gaseous material. In some of these embodiments, for example, the supplemental gas-comprising material 48 includes a dispersion of gaseous material in a liquid material. In some of these embodiments, for example, the supplemental gas-comprising material 48 includes air. In some of these embodiments, for example, the supplemental gas-comprising material 48 is provided as a flow. The supplemental gas-comprising material 48 is supplied to the reaction zone 10 as a fraction of the reaction zone feed material 22 .
  • the initiating of the supply of a supplemental gas-comprising material 48 to the reaction zone 10 is effected also in response to the detection of a decrease in (or termination of) the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 , or of an indication of a decrease in (or termination of) the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 .
  • the initiating of the supply of a supplemental gas-comprising material 48 to the reaction zone 10 is effected by the controller actuating the opening, or an increase in the opening, of a flow control element (such as valve 50 ) for effecting fluid coupling to a source of the supplemental gas-comprising material 48 .
  • a flow control element such as valve 50
  • the initiating of the supply of a supplemental gas-comprising material 48 to the reaction zone 10 , or the increasing of the rate of supply (molar rate of supply and/or volumetric rate of supply) of a supplemental gas-comprising material 48 being supplied to the reaction zone 10 is effected in response to the detection of a decrease, or an indication of a decrease, in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the reaction zone feed material 22 being supplied to the reaction zone 10 , while the supplemental carbon dioxide supply 92 is being supplied to the reaction zone 10 .
  • a flow sensor is provided for detecting the flow rate of the reaction zone feed material 22 , and transmitting a signal representative of the detected flow rate of the reaction zone feed material 22 to the controller.
  • the carbon dioxide sensor is a gas analyzer such that the concentration detected is a molar concentration.
  • the controller Upon the controller comparing a received signal from the flow sensor which is representative of a currently detected flow rate of the reaction zone feed material 22 , to a previously received signal representative of a previously detected flow rate of the reaction zone feed material 22 , and determining that a decrease in the flow rate of the reaction zone feed material 22 has been effected, the controller actuates the opening of a flow control element, such as a valve (for example, valve 50 ), to initiate supply of the supplemental gas-comprising material 48 to the reaction zone 10 from a source of the supplemental gas-comprising material 48 , or to effect increasing of the rate of supply of the supplemental gas-comprising material 48 being supplied to the reaction zone 10 from a source of the supplemental gas-comprising material 48 .
  • a flow control element such as a valve (for example, valve 50 )
  • any of the gaseous exhaust material 18 being supplied to the reaction zone 10 defines a gaseous exhaust material reaction zone supply 24
  • supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 is modulated based on detection of at least one carbon dioxide processing capacity indicator.
  • the gaseous exhaust material 18 is discharged in the form of a gaseous flow.
  • the gaseous exhaust material reaction zone supply 24 is provided in the form of a gaseous flow.
  • the modulation of the supply of the gaseous exhaust material reaction zone supply 24 is the modulation of the molar rate of supply of the gaseous exhaust material reaction zone supply 24 . In some embodiments, the modulation is the modulation of the volumetric rate of supply of the gaseous exhaust material reaction zone supply 24 . In some embodiments, for example, the exposing of the phototrophic biomass disposed in the reaction zone 10 to photosynthetically active light radiation is effected while the modulating of the gaseous exhaust material reaction zone supply 24 is being effected.
  • the process further includes modulating of a supply of a bypass fraction of the discharged gaseous exhaust material 18 to another unit operation.
  • the supply of the bypass fraction of the discharged gaseous exhaust material 18 to another unit operation defines a bypass gaseous exhaust material 60 .
  • the bypass gaseous exhaust material 60 includes carbon dioxide.
  • the another unit operation converts the bypass gaseous exhaust material 60 such that its environmental impact is reduced.
  • modulating of a supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 is any one of initiating, terminating, increasing, decreasing, or otherwise changing the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 .
  • modulation includes increasing (or decreasing) the number of moles (and/or volume) of gaseous exhaust material reaction zone supply 24 that are supplied to the reaction zone 10 over a time interval of a duration “D”, relative to number of moles (or, alternatively, as the case may be, volume) of gaseous exhaust material reaction zone supply 24 that are supplied to the reaction zone 10 over a previous time interval of equivalent duration “D”.
  • the time intervals include a period when gaseous exhaust material reaction zone supply 24 is being supplied to reaction zone 10 (“active supply period”), and a period when reaction zone 10 is not being supplied by gaseous exhaust material reaction zone supply 24 (“quiet period”), and the increasing (or decreasing) is effected by changing the duration of the “active supply period” relative to the duration of the “quiet period(s)”, as between the time intervals.
  • modulating of a supply of the bypass fraction of the discharged gaseous exhaust material 18 (ie. the bypass gaseous exhaust material 60 ) to another unit operation. is any one of initiating, terminating, increasing, decreasing, or otherwise changing the supply of the bypass gaseous exhaust material 60 to another unit operation.
  • the carbon dioxide processing capacity indicator is any characteristic that is representative of the capacity of the reaction zone 10 for receiving carbon dioxide and having at least a fraction of the received carbon dioxide converted in a photosynthesis reaction effected by phototrophic biomass disposed within the reaction zone.
  • the carbon dioxide processing capacity indicator is any characteristic of the process that is representative of the capacity of the reaction zone 10 for receiving carbon dioxide and having at least a fraction of the received carbon dioxide converted in a photosynthesis reaction effected by phototrophic biomass disposed within the reaction zone, such that the photosynthesis effects growth of the phototrophic biomass within the reaction zone 10 .
  • the detection of the carbon dioxide processing capacity indicator is material to determining whether modulation of the supply of the gaseous exhaust material reaction zone supply 24 is required to effect a predetermined rate of growth of mass of the phototrophic biomass within the reaction zone 10 .
  • the carbon dioxide processing capacity indicator is any characteristic of the process that is representative of the capacity of the reaction zone 10 for receiving carbon dioxide and having at least a fraction of the received carbon dioxide converted in a photosynthesis reaction effected by phototrophic biomass disposed within the reaction zone 10 , such that any discharge of carbon dioxide from the reaction zone 10 is effected below a predetermined molar rate.
  • the detection of the carbon dioxide processing capacity indicator is material to determining whether modulation of the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 is required to effect a predetermined molar rate of discharge of the carbon dioxide from the reaction zone 10 .
  • the carbon dioxide processing capacity indicator which is detected is a pH within the reaction zone 10 . In some embodiments, for example, the carbon dioxide processing capacity indicator which is detected is a mass concentration of phototrophic biomass within the reaction zone 10 . Because any of phototrophic biomass-comprising product 500 that is being discharged from the reaction zone 10 includes a portion of material from within the reaction zone 10 (ie.
  • the detecting of a carbon dioxide processing capacity indicator includes detecting of the carbon dioxide processing capacity indicator within the phototrophic biomass-comprising product 500 that is being discharged from the reaction zone 10
  • the modulating of the supply of the gaseous exhaust reaction zone supply 24 to the reaction zone 10 is based on detection of two or more carbon dioxide processing capacity indicators within the reaction zone 10 .
  • any gaseous exhaust material 18 which is being supplied to the reaction zone 10 defines a gaseous exhaust material reaction zone supply 24
  • the modulating of the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 includes initiating the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 , or increasing the molar rate of supply (and/or volumetric rate of supply) of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 .
  • the modulating is effected in response to the detection of a carbon dioxide processing capacity indicator in the reaction zone 10 which is representative of a capacity of the reaction zone 10 for receiving an increased molar rate of supply of carbon dioxide.
  • the process further includes effecting a decrease to the molar rate of supply (and/or volumetric rate of supply) of, or terminating the supply of, the bypass gaseous exhaust material 60 being supplied to the another unit operation.
  • the detecting of a capacity indicator which is representative of a capacity of the reaction zone 10 for receiving an increased molar rate of supply of carbon dioxide occurs while the reaction zone 10 is being supplied with the gaseous exhaust material reaction zone supply 24 . It is also understood that, in other embodiments, the detecting of a capacity indicator which is representative of a capacity of the reaction zone 10 for receiving an increased molar rate of supply of carbon dioxide occurs while the reaction zone 10 is not being supplied with the gaseous exhaust material reaction zone supply 24 .
  • the modulating of the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 includes reducing the molar rate of supply (and/or volumetric rate of supply) of, or terminating the supply of, the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 .
  • the modulating is effected in response to the detection of a carbon dioxide processing capacity indicator in the reaction zone 10 which is representative of a capacity of the reaction zone 10 for receiving a decreased molar rate of supply of carbon dioxide.
  • the process further includes initiating the supply of the bypass gaseous exhaust material 60 to the another unit operation, or effecting an increase to the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation.
  • the carbon dioxide processing capacity indicator is a pH within the reaction zone 10 .
  • a pH in the reaction zone 10 which is above the predetermined high pH (indicating an insufficient molar rate of supply of carbon dioxide to the reaction zone 20 ), or which is below the predetermined low pH (indicating an excessive molar rate of supply of carbon dioxide to the reaction zone 10 )
  • the pH which is detected in the reaction zone is detected in the reaction zone 10 with a pH sensor 46 .
  • the pH sensor 46 is provided for detecting the pH within the reaction zone, and transmitting a signal representative of the detected pH within the reaction zone to the controller.
  • the modulating of the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 includes initiating the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 , or increasing the molar rate of supply (and/or volumetric rate of supply) of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 .
  • the process further includes effecting a decrease to the molar rate of supply (and/or volumetric rate of supply), or terminating the supply, of the bypass gaseous exhaust material 60 being supplied to the another unit operation.
  • the detecting of a pH in the reaction zone 10 that is above a predetermined high pH value occurs when the reaction zone 10 is being supplied with the gaseous exhaust material reaction zone supply 24 . It is also understood that, in other embodiments, the detecting of a pH in the reaction zone 10 that is above a predetermined high pH value occurs when the reaction zone 10 is not being supplied with the gaseous exhaust material reaction zone supply 24 .
  • the controller upon the controller comparing a received signal from the pH sensor 47 which is representative of the detected pH within the reaction zone 10 to a target value (ie. the predetermined high pH value), and determining that the detected pH within the reaction zone 10 is above the predetermined high pH value, the controller responds by effecting initiation of the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 , or effecting an increase to the molar rate of supply (and/or volumetric rate of supply) of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 .
  • the initiation of supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 is effected by actuating opening of the flow control element 50 with the controller.
  • the effecting of an increase to the molar supply rate (and/or volumetric supply rate) of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 is effected by actuating an increase to the opening of the flow control element 50 with the controller.
  • the flow control element 50 is provided and configured to selectively control the molar rate (and/or volumetric rate) of flow of the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 by selectively interfering with the flow of the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 , including by effecting pressure losses to the flow of the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 .
  • the initiation of supply, or the increase to the molar rate of supply (and/or volumetric rate of supply), of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 is effected by actuation of the flow control element 50 .
  • the predetermined high pH value depends on the phototrophic organisms of the biomass. In some embodiments, for example, the predetermined high pH value can be as high as 10.
  • the outlet of the gaseous exhaust material producing process 20 is co-operatively disposed with another unit operation to effect supply of the bypass gaseous exhaust material 60 to the another unit operation, and while the bypass gaseous exhaust material 60 is being supplied to the another unit operation
  • the controller upon the controller determining that the pH within the reaction zone 10 is above the predetermined high pH value, the controller further responds by effecting a decrease to the molar rate of supply (and/or volumetric rate of supply), or by effecting termination of the supply, of the bypass gaseous exhaust material 60 being supplied to the another unit operation.
  • the decrease to the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation is effected by the controller by actuating a decrease to the opening of a valve disposed between the gaseous exhaust material producing process 20 and the another unit operation, wherein the valve is configured to interfere with fluid communication between the gaseous exhaust material producing process 20 and the another unit operation.
  • the termination of the supply of the bypass gaseous exhaust material 60 being supplied to the another unit operation is effected by the controller by actuation closure of a valve disposed between the gaseous exhaust material producing process 20 and the another unit operation, wherein the valve is configured to interfere with fluid communication between the gaseous exhaust material producing process 20 and the another unit operation.
  • the decrease to the molar rate of supply (and/or volumetric rate of supply), or the termination of supply, of the bypass gaseous exhaust material 60 being supplied to the another unit operation is effected when the pressure of the gaseous exhaust material 18 upstream of the another unit operation is below a predetermined pressure, wherein the decrease in pressure is effected in response to an initiation of the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 , or an increase to the molar rate of supply (and/or volumetric rate of supply) of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 , either of which is effected by the controller in response to the determination that the detected pH within the reaction zone is above a predetermined high
  • the controller upon the controller determining that the detected pH within the reaction zone is above the predetermined high pH value, the controller effects an initiation of the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 , or an increase to the molar rate of supply (and/or volumetric rate of supply) of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 , as described above.
  • the initiation of supply of, or the increase to the molar rate of supply (and/or volumetric rate of supply) of, the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 effects a corresponding decrease in pressure of the gaseous exhaust material 18 such that the pressure of the gaseous exhaust material 18 upstream of the another unit operation becomes disposed below the predetermined pressure.
  • a closure element 64 such as a valve
  • the forces biasing closure of a closure element 64 exceed the fluid pressure forces acting to open the closure element 64 .
  • a closure element 64 such as a valve
  • there is effected a decrease of the opening of the closure element 64 thereby effecting the decrease to the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation.
  • closure of the closure element 64 there is effected closure of the closure element 64 , thereby effecting the termination of supply of the bypass gaseous exhaust material 60 being supplied to the another unit operation.
  • the decrease to the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation is effected when the pressure of the gaseous exhaust material 18 upstream of the another unit operation is decreased, wherein the decrease in pressure of the gaseous exhaust material 18 is effected in response to an initiation of the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 , or an increase to the molar rate of supply (and/or volumetric rate of supply) of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 , either of which is effected by the controller in response to the determination that the detected pH within the reaction zone is above a predetermined high pH value.
  • the modulating of the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 includes reducing the molar rate of supply (and/or volumetric rate of supply), or terminating the supply, of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 .
  • the process further includes initiating the supply of the bypass gaseous exhaust material 60 to the another unit operation, or effecting an increase to the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation.
  • the controller upon the controller comparing a received signal from the pH sensor 46 which is representative of the detected pH within the reaction zone 10 to a target value (ie. the predetermined low pH value), and determining that the detected pH within the reaction zone 10 is below the predetermined low pH value, the controller responds by effecting reduction of the molar rate of supply (and/or volumetric rate of supply) of, or effecting termination of the supply of, the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 .
  • a target value ie. the predetermined low pH value
  • the effected reduction of the molar rate of supply (and/or volumetric rate of supply) of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 is effected by actuating a decrease in the opening of the flow control element 50 (such as a valve) with the controller.
  • the effected termination of supply of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 is effected by actuating the closure of a flow control element 50 (such as a valve) with the controller.
  • the predetermined low pH value depends on the phototrophic organisms of the biomass. In some embodiments, for example, the predetermined low pH value can be as low as 4.0.
  • the controller further responds by effecting initiation of the supply of the bypass gaseous exhaust material 60 to the another unit operation, or effecting an increase to the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation.
  • the initiation of the supply of the bypass gaseous exhaust material 60 to the another unit operation, or the increase to the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation is effected by the controller actuating a valve disposed between the gaseous exhaust material producing process 20 and the another unit operation, wherein the valve is configured for interfering with fluid flow between the process 20 and the another unit operation.
  • the initiation of the supply of the bypass gaseous exhaust material 60 to the another unit operation is effected by the controller by actuating the opening of a valve disposed between the gaseous exhaust material producing process 20 and the another unit operation.
  • the increase to the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 to the another unit operation is effected by the controller by actuation of an increase to the opening of a valve disposed between the gaseous exhaust material producing process 20 and the another unit operation.
  • the outlet of the gaseous exhaust material producing process 20 is co-operatively disposed with another unit operation to effect supply of bypass gaseous exhaust material 60 to the another unit operation
  • the initiation of the supply of the bypass gaseous exhaust material 60 to the another unit operation, or an increase in the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 to the another unit operation is effected when the pressure of the gaseous exhaust material 18 upstream of the another unit operation is above a predetermined pressure
  • the increase in pressure of the gaseous exhaust material 18 upstream of the another unit operation to above the predetermined pressure is effected in response to the reduction of the molar rate of supply (and/or volumetric rate of supply), or the termination of the supply, of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 , either of which is effected by the controller in response to the determination that the detected pH within the reaction zone is below a predetermined low
  • the controller upon the controller determining that the detected pH within the reaction zone by the pH sensor 47 is below a predetermined low pH value, the controller effects a reduction of the molar rate of supply (and/or volumetric rate of supply), or effects termination of the supply, of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 , as described above.
  • the reduction of the molar rate of supply (and/or volumetric rate of supply), or the termination of the supply, of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 effects a corresponding increase in pressure of the gaseous exhaust material 18 upstream of the another unit operation such that the pressure of the gaseous exhaust material 18 upstream of the another unit operation becomes disposed above a predetermined pressure.
  • a closure element 64 such as a valve
  • the forces biasing closure of a closure element 64 are exceeded by the fluid pressure forces of the gaseous exhaust material 18 acting to open the closure element 64 .
  • initiation of the opening of the closure element 64 which effects the initiation of supply of the bypass gaseous exhaust material 60 being supplied to the another unit operation, in response to the fluid pressure increase.
  • the increase in the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation is effected in response to the increase in pressure of the gaseous exhaust material 18 upstream of the another unit operation, which is effected in response to the reduction of the molar rate of supply (and/or volumetric rate of supply), or the termination of the supply, of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 , either of which is effected by the controller in response to the determination that the detected pH within the reaction zone is below a predetermined low pH value.
  • the controller upon the controller determining that the detected pH within the reaction zone by the pH sensor 47 is below a predetermined low pH value, the controller effects a reduction of the molar rate of supply (and/or volumetric rate of supply), or effects termination of the supply, of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 , as described above.
  • the reduction of the molar rate of supply (and/or volumetric rate of supply) of, or the termination of the supply of, the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 effects a corresponding increase in pressure of the gaseous exhaust material 18 upstream of the another unit operation.
  • the increase in pressure of the gaseous exhaust material 18 upstream of the another unit operation effects the increase in the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation.
  • the carbon dioxide processing capacity indicator is a mass concentration of phototrophic biomass within the reaction zone 10 .
  • it is desirable to control the mass concentration of the phototrophic biomass within the reaction zone 10 as, for example, higher overall yield of the harvested phototrophic biomass is effected when the mass concentration of the phototrophic biomass within the reaction zone 10 is maintained at a predetermined concentration or within a predetermined concentration range.
  • the detecting of the mass concentration of phototrophic biomass in the reaction zone 10 is effected with a cell counter 47 .
  • a suitable cell counter is an AS-16F Single Channel Absorption Probe supplied by optek-Danulat, Inc. of Germantown, Wis., U.S.A.
  • Other suitable devices for detecting mass concentration of phototrophic biomass include other light scattering sensors, such as a spectrophotometer.
  • the mass concentration of phototrophic biomass can be detected manually, and then input manually into the controller for effecting the desired response.
  • the mass concentration of phototrophic biomass is detected using a sensor 300 that, in general, combines an absorbence sensor with a turbidity sensor.
  • the sensor 300 includes two different light emitters 302 , 304 (small light emitting diodes (LEDs)), each configured to emit light of a different wavelength than the other, and an optical sensor 306 to detect light while the light is being emitted by the light emitters.
  • LEDs small light emitting diodes
  • the two light emitters 303 , 304 are provided for different purposes.
  • the light emitter 302 is configured to emit light of a wavelength that would be absorbed by the phototrophic biomass. Where the phototrophic biomass is that of algae, in some embodiments, the light being emitted by the light emitter 302 is blue light and/or red light. In those embodiments where the algae is being grown in a photobioreactor 12 in the presence of red light, then the light emitter 302 is configured to emit blue light so as to obtain more accurate measurements.
  • the other light emitter 304 is configured to emit light of a wavelength that would be reflected or scattered by the phototrophic biomass, or at least which is characterized such that there is a greater likelihood that such emitted light would be reflected or scattered by the phototrophic biomass relative to the light emitted by light emitter 302 .
  • the phototrophic biomass is that of algae
  • the light being emitted by the light emitter 304 is green light.
  • the two light emitters 302 and 304 are disposed in spaced-apart relationship relative to the optical sensor 306 (about 1 cm, but this could vary depending on the emitted light intensity and expected mass concentration of the phototrophic biomass). In operation, light emission, from light emitter 302 and light emitter 304 , alternates between the two.
  • the light emissions from the sensor are characterized by alternating pulses of light from the light emitters 302 and 304 .
  • light emitter 302 emits a pulse of light for a defined time interval T 1 while light emitter 304 emits substantially no light during this time interval T 1
  • light emitter 304 emits a pulse of light for a defined time interval T 2 while light emitter 304 emits substantially no light during this time interval T 2
  • this cycle is then repeated for as many cycles as is desired for effecting the desired detection of mass concentration of phototrophic biomass.
  • each light pulse is not so critical, but typically about 1 sec would be used for each light emitter so that the optical sensor 306 has time to adjust to the new wavelength and record a value that is not affected by scattering of the other light emitter that just turned off.
  • the optical sensor 306 detects light than has not been absorbed by the phototrophic biomass, and transmits, to a controller, a signal representative of the quantity of light that has not been absorbed by the phototrophic biomass, which is then compared by the controller to a signal representative of the intensity of light being emitted by light emitter 302 , and converted into a signal representative of the quantity of light absorbed by the phototrophic biomass.
  • the optical sensor 306 detects light than has been scattered or reflected by the phototrophic biomass, and transmits, to a controller, a signal representative of the quantity of light that has been scattered or reflected by the phototrophic biomass.
  • the controller is calibrated based on predetermined correlation between algae mass concentration within an aqueous medium and the absorption of light, being emitted by the light emitter 302 , by the phototrophic biomass, and the reflection (or scattering) of light, being emitted by the light emitter 304 , by the phototrophic biomass.
  • This correlation is predetermined based on calibration measurements to known mass concentrations of the phototrophic biomass which is to be grown within the aqueous medium disposed in the photobioreactor 12 (ie.
  • the mass concentration of phototrophic biomass within the aqueous medium as a function of: (i) the absorption of light, being emitted by the light emitter 302 , by the phototrophic biomass, and (ii) the reflection (or scattering) of light, being emitted by the light emitter 304 , by the phototrophic biomass.
  • the light emitters 302 , 304 and the optical sensor 306 are mounted within a common housing 308 and are configured for electrical connection to a power source and a control transmitter for measuring an electrical signal (current or voltage, depending on the control set-up) with wiring 310 .
  • this configuration would be useful for effecting detection of mass concentration of phototrophic biomass within a vessel of a photobioreactor 12 In other embodiments, such as that illustrated in FIG.
  • the light emitters 302 , 304 and the optical sensor 306 do not necessarily require to be mounted within a common housing.
  • this configuration of sensor 300 is co-operatively mounted to a conduit (such as a conduit 312 which is effecting the discharge of phototrophic biomass from the photobioreactor 12 ) for measuring mass concentration of phototrophic biomass within a slurry flowing through the conduit 312 .
  • the modulating of the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 includes reducing the molar rate of supply (and/or volumetric rate of supply), or terminating the supply, of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 .
  • the process further includes initiating the supply of the bypass gaseous exhaust material 60 to the another unit operation, or effecting an increase to the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation.
  • the controller upon the controller comparing a received signal from the cell counter 47 , which is representative of the detected mass concentration of phototrophic biomass within the reaction zone 10 , to the predetermined high concentration target value, and determining that the mass concentration of phototrophic biomass within the reaction zone 10 is above the predetermined high concentration target value, the controller responds by effecting reduction of the molar rate of supply (and/or volumetric rate of supply) of, or termination of the supply of, the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 .
  • the reduction of the molar rate of supply (and/or volumetric rate of supply) of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 is effected by actuating a decrease to the opening the flow control element 50 with the controller.
  • the termination of the supply of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 is effected by actuating closure of the flow control element 50 with the controller.
  • the outlet of the gaseous exhaust material producing process 20 is co-operatively disposed with another unit operation to effect supply of bypass gaseous exhaust material 60 to the another unit operation
  • the controller upon the controller comparing a received signal from the cell counter 47 , which is representative of the mass concentration of phototrophic biomass within the reaction zone 10 , to the predetermined high concentration target value, and determining that the mass concentration of phototrophic biomass within the reaction zone 10 is above the predetermined high concentration target value, the controller further responds by effecting initiation of the supply of the bypass gaseous exhaust material 60 to the another unit operation, or effecting an increase to the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation.
  • the initiation of the supply of the bypass gaseous exhaust material 60 to the another unit operation, or the increase to the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation is effected by the controller actuating a valve disposed between the gaseous exhaust material producing process 20 and the another unit operation, wherein the valve is configured for interfering with fluid flow between the process 20 and the another unit operation.
  • the initiation of the supply the bypass gaseous exhaust material 60 to the another unit operation is effected by the controller by actuation of the opening of the valve disposed between the gaseous exhaust material producing process 20 and the another unit operation.
  • the increase to the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation is effected by the controller by actuation of an increase in the opening of the valve disposed between the gaseous exhaust material producing process 20 and the another unit operation.
  • the outlet of the gaseous exhaust material producing process 20 is co-operatively disposed with another unit operation to effect supply of bypass gaseous exhaust material 60 to the another unit operation
  • the initiation of the supply of the bypass gaseous exhaust material 60 to the another unit operation, or an increase in the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation is effected when the pressure of the gaseous exhaust material 18 upstream of the another unit operation is above a predetermined pressure, wherein the increase in pressure of the gaseous exhaust material 18 upstream of the another unit operation to above the predetermined pressure is effected in response to the reduction of the molar rate of supply (and/or volumetric rate of supply), or the termination of the supply, of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 , either of which is effected by the controller in response to the determination that the detected mass concentration of phototrophic biomass within the reaction
  • the controller upon the controller determining that the detected mass concentration of phototrophic biomass within the reaction zone by the cell counter 47 is above the predetermined high concentration target value, the controller effects a reduction of the molar rate of supply (and/or volumetric rate of supply), or termination of the supply, of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 , as described above.
  • the reduction of the molar rate of supply (and/or volumetric rate of supply) of, or the termination of the supply of, the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 effects a corresponding increase in pressure of the gaseous exhaust material 18 upstream of the another unit operation such that the pressure of the gaseous exhaust material 18 becomes disposed above a predetermined pressure.
  • a closure element 64 such as a valve
  • the forces biasing closure of a closure element 64 are exceeded by the fluid pressure forces acting to open the closure element 64 .
  • a closure element 64 such as a valve
  • there is effected an initiation of the opening of the closure element 64 thereby effecting the initiation of the supply of the bypass gaseous exhaust material 60 to the another unit operation.
  • there is effected an increase in the opening of the closure element 64 thereby effecting the increase in the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation.
  • the increase in the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation is effected in response to the increase in pressure of the gaseous exhaust material 18 upstream of the another unit operation, which is effected in response to the reduction of the molar rate of supply (and/or volumetric rate of supply), or the termination of the supply, of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 , either of which is effected by the controller in response to the determination that the detected mass concentration of phototrophic biomass within the reaction zone is above the predetermined high concentration target value.
  • the controller upon the controller determining that the detected mass concentration of phototrophic biomass within the reaction zone by the cell counter 47 is above the predetermined high concentration target value, the controller effects a reduction of the molar rate of supply (and/or volumetric rate of supply), or effects termination of the supply, of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 , as described above.
  • the reduction of the molar rate of supply of (and/or volumetric rate of supply), or the termination of the supply of, the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 effects a corresponding increase in pressure of the gaseous exhaust material 18 upstream of the another unit operation.
  • the increase in pressure of the gaseous exhaust material 18 upstream of the another unit operation effects the increase in the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation.
  • the modulating of the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 includes initiating the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 , or increasing the molar rate of supply (and/or volumetric rate of supply) of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 .
  • the process further includes effecting a decrease to the molar rate of supply (and/or volumetric rate of supply) of, or terminating the supply of, the bypass gaseous exhaust material 60 to the another unit operation.
  • the controller upon the controller comparing a received signal from the cell counter 47 , which is representative of the detected mass concentration of phototrophic biomass within the reaction zone 10 , to the predetermined low concentration target value, and determining that the detected mass concentration of phototrophic biomass within the reaction zone 10 is below the predetermined low concentration target value, the controller responds by effecting initiation of the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 , or effecting an increase to the molar rate of supply (and/or volumetric rate of supply) of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 .
  • this is effected by actuating the flow control element 50 with the controller.
  • the initiation of supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 is effected by actuating opening of the flow control element 50 with the controller.
  • the effecting of an increase to the molar supply rate (and/or volumetric supply rate) of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 is effected by actuating an increase to the opening of the flow control element 50 with the controller.
  • the outlet of the gaseous exhaust material producing process 20 is co-operatively disposed with another unit operation to effect supply of the bypass gaseous exhaust material 60 to the another unit operation, and while the bypass gaseous exhaust material 60 is being supplied to the another unit operation
  • the controller upon the controller comparing a received signal from the cell counter 47 , which is representative of the mass concentration of phototrophic biomass within the reaction zone 10 , to the low concentration target value, and determining that the mass concentration of phototrophic biomass within the reaction zone 10 is below the predetermined low concentration target value, the controller further responds by effecting a decrease to the molar rate of supply (and/or volumetric rate of supply), or by effecting the termination of the supply, of the bypass gaseous exhaust material 60 to the another unit operation.
  • the decrease to the molar rate of supply (and/or volumetric rate of supply), or the termination of the supply, of the bypass gaseous exhaust material 60 to the another unit operation is effected by the controller by actuation of a valve disposed between the gaseous exhaust material producing process 20 and the another unit operation, wherein the valve is configured to interfere with fluid communication between the gaseous exhaust material producing process 20 and the another unit operation.
  • the decrease to the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation is effected by the controller by actuating a decrease to the opening of a valve disposed between the gaseous exhaust material producing process 20 and the another unit operation.
  • the termination of the supply of the bypass gaseous exhaust material 60 being supplied to the another unit operation is effected by the controller by actuating closure of a valve disposed between the gaseous exhaust material producing process 20 and the another unit operation.
  • the decrease to the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation, or the termination of the supply of the bypass gaseous exhaust material 60 being supplied to the another unit operation is effected in response to a decrease in pressure of the gaseous exhaust material 18 upstream of the another unit operation, wherein the decrease in pressure is effected in response to an initiation of the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 , or an increase to the molar rate of supply (and/or volumetric rate of supply) of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 , either of which is effected by the controller in response to the
  • the pressure decrease is such that the pressure of the gaseous exhaust material 18 upstream of the another unit operation is below a predetermined minimum pressure, and the forces biasing closure of a closure element 64 (such as a valve), disposed between the gaseous exhaust material producing process 20 and the another unit operation and configured for interfering with fluid communication between the gaseous exhaust material producing process 20 and the another unit operation, exceed the fluid pressure forces of the gaseous exhaust material 18 acting to open the closure element 64 .
  • a closure element 64 such as a valve
  • a decrease in the opening of the closure element 64 which effects the decrease to the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 to the another unit operation, in response to the decrease in the pressure of the gaseous exhaust material 18 upstream of the another unit operation.
  • a closure of the closure element 64 which effects the termination of the supply of the bypass gaseous exhaust material 60 to the another unit operation, in response to the decrease in the pressure of the gaseous exhaust material 18 upstream of the another unit operation.
  • the decrease to the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation is effected in response to a decrease in pressure of the gaseous exhaust material 18 upstream of the another unit operation, wherein the decrease in pressure is effected in response to an initiation of the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 , or an increase to the molar rate of supply (and/or volumetric rate of supply) of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 , either of which is effected by the controller in response to the determination that the detected mass concentration of phototrophic biomass within the reaction zone is below the predetermined low concentration target value
  • the modulating of the bypass gaseous exhaust material 60 to the another unit operation is effected while the modulating of the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 is being effected.
  • the initiation of the supply of the bypass gaseous exhaust material 60 to the another unit operation, or the increase to the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation is effected while the decrease in the molar rate of supply (and/or volumetric rate of supply), or the termination of the supply, of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 is being effected.
  • the decrease to the molar rate of supply (and/or volumetric rate of supply), or the termination of the supply, of the bypass gaseous exhaust material 60 being supplied to the another unit operation is effected while the initiation of the supply of the gaseous exhaust material reaction zone supply 24 , or the increase in the molar rate of supply (and/or volumetric rate of supply), of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 , is being effected.
  • the flow control element 50 is a flow control valve. In some embodiments, for example, the flow control element 50 is a three-way valve which also regulates the supply of a supplemental gas-comprising material 48 , which is further described below.
  • the closure element 64 is any one of a valve, a damper, or a stack cap.
  • the flowing of the gaseous exhaust material reaction zone supply 24 is at least partially effected by a prime mover 38 .
  • a suitable prime mover 38 include a blower, a compressor, a pump (for pressurizing liquids including the gaseous exhaust material reaction zone supply 24 ), and an air pump.
  • the prime mover 38 is a variable speed blower and the prime mover 38 also functions as the flow control element 50 which is configured to selectively control the flow rate of the reaction zone feed material 22 and define such flow rate.
  • the another unit operation is a smokestack 62 .
  • the smokestack 62 is configured to receive the bypass gaseous exhaust material 60 supplied from the outlet of the gaseous exhaust material producing process 20 .
  • the bypass gaseous exhaust material 60 is disposed at a pressure that is sufficiently high so as to effect flow through the smokestack 62 .
  • the flow of the bypass gaseous exhaust material 60 through the smokestack 62 is directed to a space remote from the outlet of the gaseous exhaust material producing process 20 .
  • the bypass gaseous exhaust material 60 is supplied from the outlet when the pressure of the gaseous exhaust material 18 exceeds a predetermined maximum pressure. In such embodiments, for example, the exceeding of the predetermined maximum pressure by the gaseous exhaust material 18 effects an opening of the closure element 64 , to thereby effect supply of the bypass gaseous exhaust material 60 .
  • the smokestack 62 is provided to direct the bypass fraction of the gaseous exhaust material 18 to a space remote from the outlet which discharges the gaseous exhaust material 18 from the gaseous exhaust material producing process 20 , in response to a detected carbon dioxide processing capacity indicator which is representative of a capacity of the reaction zone 10 for receiving a decreased molar rate of supply of carbon dioxide from the gaseous exhaust material reaction zone supply 24 , so as to mitigate against a gaseous discharge of an unacceptable carbon dioxide concentration to the environment.
  • the smokestack 62 is an existing smokestack 62 which has been modified to accommodate lower throughput of gaseous flow as provided by the bypass gaseous exhaust material 60 .
  • an inner liner is inserted within the smokestack 62 to accommodate the lower throughput.
  • the another unit operation is a separator which effects removal of carbon dioxide from the bypass gaseous exhaust material 60 .
  • the separator is a gas absorber.
  • the at least a fraction of the gaseous exhaust material 18 which is being supplied to the reaction zone 10 defines a gaseous exhaust material reaction zone supply 24
  • a carbon dioxide processing capacity indicator is detected in the reaction zone 10 which is representative of a capacity of the reaction zone 10 for receiving a decreased molar rate of supply of carbon dioxide, (for example, a detected pH within the reaction zone that is below a predetermined low pH value, or a detected mass concentration of phototrophic biomass within the reaction zone that is above a predetermined high mass concentration of phototrophic biomass)
  • the modulating of the gaseous exhaust material reaction zone supply 24 in response to the detecting of the carbon dioxide processing capacity indicator which is representative of a capacity of the reaction zone 10 for receiving a decreased molar rate of supply of carbon dioxide, includes reducing the m
  • the molar concentration of carbon dioxide, if any, of the supplemental gas-comprising material 48 is lower than the molar concentration of carbon dioxide of the at least a fraction of the gaseous exhaust material 18 being supplied to the reaction zone 10 from the gaseous exhaust material producing process 20 .
  • the molar concentration of carbon dioxide of the supplemental gas material 48 is less than 3 mole % based on the total moles of the supplemental gas material 48 .
  • the molar concentration of carbon dioxide of the supplemental gas material 48 is less than 1 (one) mole % based on the total moles of the supplemental gas material 48 .
  • the supplemental gas-comprising material 48 is supplied to the reaction zone 10 as a fraction of the reaction zone feed material 22 .
  • the reaction zone feed material 22 is a gaseous material.
  • the reaction zone feed material 22 includes a dispersion of gaseous material in a liquid material.
  • the molar supply rate reduction (and/or volumetric supply rate reduction), or the termination of the supply, of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 , effected by the modulating of the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone, co-operates with the supplying of the supplemental gas-comprising material 48 to the reaction zone 10 to effect a reduction in the molar rate of supply, or the termination of supply, of carbon dioxide being supplied to the reaction zone 10 .
  • the initiation of the supply, or the increase to the molar rate of supply (and/or volumetric rate of supply), of the bypass gaseous exhaust material 60 to the another unit operation is effected while the decrease in the molar rate of supply (and/or volumetric rate of supply), or the termination of the supply, of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 is being effected, and while the initiating of the supply of the supplemental gas-comprising material 48 to the reaction zone 10 , or the increasing of the molar rate of supply (and/or volumetric rate of supply), of the supplemental gas-comprising material 48 being supplied to the reaction zone 10 , is being effected.
  • the flow control element 50 is a three-way valve, and is operative to modulate supply of the supplemental gas-comprising material 48 to the reaction zone, in combination with the modulation of the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 , in response to the carbon dioxide processing capacity indicator.
  • a carbon dioxide processing capacity indicator is detected in the reaction zone 10 which is representative of a capacity of the reaction zone for receiving a decreased molar rate of supply of carbon dioxide, (for example, a detected pH within the reaction zone that is below a predetermined low pH value, or a detected mass concentration of phototrophic biomass within the reaction zone that is above a predetermined high mass concentration of phototrophic biomass)
  • the controller responds by actuating the valve 50 to initiate the supply of the supplemental gas-comprising material 48 to the reaction zone 10 , or increase the molar rate of supply (and/or volumetric rate of supply) of the supplemental gas-comprising material 48 being supplied to the reaction zone 10 .
  • the controller responds by actuating the valve 50 to reduce the molar rate of supply (and/or volumetric rate of supply), or terminate the supply, of the supplemental gas-comprising material 48 being supplied to the reaction zone 10 .
  • the process further includes initiating the supply of a supplemental gas-comprising material 48 , or increasing the molar rate of supply (and/or volumetric rate of supply) of a supplemental gas-comprising material 48 , to the reaction zone 10 .
  • the initiating of the supply of a supplemental gas-comprising material 48 to the reaction zone 10 , or the increasing of the molar rate of supply (and/or volumetric rate of supply) of a supplemental gas-comprising material 48 being supplied to the reaction zone 10 is effected in response to the detection of the reduction in the molar rate of supply (and/or volumetric rate of supply) of, or the termination of the supply of, the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 , or of an indication of the reduction in the molar rate of supply of (and/or volumetric rate of supply), or the termination of the supply of, the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 .
  • the reduction in the molar rate of supply (and/or volumetric rate of supply) of, or the termination of the supply of, the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 being effected in response to the detecting of the carbon dioxide processing capacity indicator which is representative of a capacity of the reaction zone 10 for receiving a decreased molar rate of supply of carbon dioxide, is described above.
  • a flow sensor is provided for detecting the molar flow rate (in which case, a gas analyzer would also be used) or volumetric flow rate of the gaseous exhaust material reaction zone supply 24 , and transmitting a signal representative of the detected molar flow rate (or volumetric flow rate, as the case may be) of the gaseous exhaust material reaction zone supply 24 to the controller.
  • the controller Upon the controller comparing a received signal from the flow sensor which is representative of a currently detected molar flow rate (or volumetric flow rate, as the case may be) of the gaseous exhaust material reaction zone supply 24 , to a previously received signal representative of a previously detected molar flow rate (or volumetric flow rate, as the case may be) of the gaseous exhaust material reaction zone supply 24 , and determining that a decrease in the molar flow rate (or volumetric flow rate, as the case may be) of the gaseous exhaust material reaction zone supply 24 has been effected, the controller actuates the opening of a flow control element, such as a valve (for example, valve 50 ), to initiate supply of the supplemental gas-comprising material 48 to the reaction zone 10 from a source of the supplemental gas-comprising material 48 , or to effect increasing of the molar rate of supply (and/or volumetric rate of supply) of the supplemental gas-comprising material 48 being supplied to the reaction zone 10 from a source of the
  • the reduction in the molar rate of supply (and/or volumetric rate of supply), or the termination of the supply, of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 is effected by a reduction in the molar rate (and/or volumetric rate) at which the gaseous exhaust material 18 is being discharged by the gaseous exhaust material producing process 20 .
  • the corresponding initiating of the supply of a supplemental gas-comprising material 48 to the reaction zone 10 , or the corresponding increasing of the molar rate of supply (and/or volumetric rate of supply) of a supplemental gas-comprising material 48 being supplied to the reaction zone 10 is effected in response to the detection of the reduction in the molar rate (and/or volumetric rate) at which the gaseous exhaust material 18 is being discharged by the gaseous exhaust material producing process 20 , or of an indication of the reduction in the molar rate (and/or volumetric rate) at which the gaseous exhaust material 18 is being discharged by the gaseous exhaust material producing process 20 .
  • a flow sensor is provided for detecting the molar flow rate (in which case, a gas analyzer would also be used) or volumetric flow rate of the gaseous exhaust material 18 , and transmitting a signal representative of the detected molar flow rate (or volumetric flow rate, as the case may be) of the gaseous exhaust material 18 to the controller.
  • the controller Upon the controller comparing a received signal from the flow sensor which is representative of a currently detected molar flow rate (or volumetric flow rate, as the case may be) of the gaseous exhaust material 18 , to a previously received signal representative of a previously detected molar flow rate (or volumetric flow rate, as the case may be) of the gaseous exhaust material 18 , and determining that a decrease in the molar flow rate (or volumetric flow rate, as the case may be) of the gaseous exhaust material 18 has been effected, the controller actuates the opening of a flow control element, such as a valve (for example, valve 50 ), to initiate supply of the supplemental gas-comprising material 48 to the reaction zone 10 from a source of the supplemental gas-comprising material 48 , or to effect increasing of the molar rate of supply (and/or volumetric rate of supply) of the supplemental gas-comprising material 48 being supplied to the reaction zone 10 from a source of the supplemental gas-comprising material
  • the exposing of the phototrophic biomass disposed in the reaction zone 10 to photosynthetically active light radiation is effected while the initiation of the supply of the supplemental gas-comprising material 48 to the reaction zone 10 , or the increasing of the molar rate of supply (and/or volumetric rate of supply) of the supplemental gas-comprising material 48 to the reaction zone 10 , is being effected.
  • the modulation of the supply of the supplemental gas-comprising material 48 to the reaction zone 10 is effected by the flow control element 50 , for example, upon actuation by the controller.
  • the actuation by the controller is effected when a detected molar flow rate (or volumetric flow rate) of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , is compared to a previously detected molar flow rate (or volumetric flow rate) of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , and it is determined that there has been a decrease in the molar flow rate (or volumetric flow rate) of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 .
  • the combination of: (a) the reduction of the molar rate of supply (and/or volumetric rate of supply), or the termination of supply, of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 , and (b) the initiation of the supply, or the increase to the molar rate of supply (and/or volumetric rate of supply), of the supplemental gas-comprising material 48 to the reaction zone 10 mitigates against the reduced agitation of the reaction zone 10 attributable to the reduction in the molar rate of supply (and/or volumetric rate of supply), or the termination of supply, of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 .
  • the combination of the supplemental gas-comprising material and any of the gaseous exhaust material reaction zone supply 24 is supplied to the reaction zone as at least a fraction of the reaction zone feed material 22 , and the reaction zone feed material 22 is supplied to the reaction zone 10 and effects agitation of material in the reaction zone such that any difference in the mass concentration of the phototrophic biomass between any two points in the reaction zone 10 is less than 20%.
  • the effected agitation is such that any difference in the mass concentration of the phototrophic biomass between any two points in the reaction zone 10 is less than 10%.
  • the supply of the supplemental gas-comprising material 48 is provided to mitigate against the creation of a phototrophic biomass concentration gradient between any two points in the reaction zone above a desired maximum.
  • the supplemental gas-comprising material 48 is a gaseous material. In some of these embodiments, for example, the supplemental gas-comprising material 48 includes a dispersion of gaseous material in a liquid material. In some of these embodiments, for example, the supplemental gas-comprising material 48 includes air. In some of these embodiments, for example, the supplemental gas-comprising material 48 is provided as a flow.
  • the phototrophic biomass may respond adversely when exposed to the reaction zone feed material 22 , if the carbon dioxide concentration of the reaction zone feed material 22 is excessive, such carbon dioxide concentration being at least partly attributable to the molar concentration of carbon dioxide of the gaseous exhaust material 18 from which the gaseous exhaust material reaction zone supply 24 is derived.
  • the supplemental carbon dioxide supply 92 may include a relatively high concentration of carbon dioxide (such as greater than 90 mol % carbon dioxide based on the total moles of supplemental carbon dioxide supply 92 ), such that the phototrophic biomass may respond adversely when exposed to the reaction zone feed material 22 .
  • carbon dioxide is supplied to the reaction zone 10 , and the supplied carbon dioxide defines the reaction zone carbon dioxide supply.
  • a carbon dioxide concentrated supply 25 A is provided, wherein the carbon dioxide concentrated supply 25 A includes the reaction zone carbon dioxide supply.
  • the carbon dioxide concentrated supply 25 A is admixed with a supplemental gaseous dilution agent 90 .
  • the admixing effects production of a diluted carbon dioxide supply 25 B, wherein the molar concentration of carbon dioxide of the diluted carbon dioxide supply 25 B is less than the molar concentration of carbon dioxide of the carbon dioxide concentrate supply 25 A. At least a fraction of the diluted carbon dioxide zone supply 25 B is supplied to the reaction zone 10 .
  • the molar concentration of carbon dioxide of the supplemental gaseous dilution agent 90 is less than the molar concentration of carbon dioxide of the carbon dioxide concentrated supply 25 A.
  • the reaction zone carbon dioxide supply includes, or is defined by, carbon dioxide discharged by the gaseous exhaust material producing process 20 .
  • the reaction zone carbon dioxide supply includes, or is defined by, the supplemental carbon dioxide supply 92 .
  • a carbon dioxide concentrated supply 25 A is admixed with the supplemental gaseous dilution agent 90 , wherein the carbon dioxide concentrated supply 25 A includes a gaseous exhaust material-derived supply 24 A, wherein the gaseous exhaust material-derived supply 24 A is defined by at least a fraction of the gaseous exhaust material 18 which is being discharged by the gaseous exhaust material producing process 20 .
  • the admixing effects production of a diluted carbon dioxide supply 25 B, wherein the molar concentration of carbon dioxide of the diluted carbon dioxide zone supply 25 B is less than the molar concentration of carbon dioxide of the carbon dioxide concentrated supply 25 A.
  • At least a fraction of the diluted carbon dioxide supply 25 B is supplied to the reaction zone 10 .
  • the molar concentration of carbon dioxide of the supplemental gaseous dilution agent 90 is less than the molar concentration of carbon dioxide of the carbon dioxide concentrated supply 25 A.
  • the exposing of the phototrophic biomass disposed in the reaction zone 10 to photosynthetically active light radiation is effected while the admixing of the carbon dioxide concentrated supply 25 A with the supplemental gaseous dilution agent 90 is being effected.
  • the carbon dioxide concentrated supply 25 A is defined by the gaseous exhaust material-derived supply 24 A.
  • the carbon dioxide concentrated supply 25 A includes the supplemental carbon dioxide supply 92 . In some of these embodiments, for example. the supplying of the supplemental carbon dioxide supply 92 to the carbon dioxide concentrated supply 25 A is being effected while the admixing is being effected.
  • the diluted carbon dioxide supply 25 B includes a molar concentration of carbon dioxide that is below a predetermined maximum molar concentration of carbon dioxide.
  • the predetermined maximum molar concentration of carbon dioxide is at least 30 mol % based on the total moles of the diluted carbon dioxide supply 25 B.
  • the predetermined maximum molar concentration of carbon dioxide is at least 20 mol % based on the total moles of the diluted carbon dioxide supply 25 B.
  • the predetermined maximum molar concentration of carbon dioxide is at least 10 mol % based on the total moles of the diluted carbon dioxide supply 25 B.
  • the admixing of the supplemental gaseous dilution agent 90 with the carbon dioxide concentrated supply 25 A is effected in response to detection of a molar concentration of carbon dioxide in the gaseous exhaust material 18 being discharged from the carbon dioxide producing process 20 that is greater than a predetermined maximum molar concentration of carbon dioxide.
  • the predetermined maximum molar concentration of carbon dioxide is at least 10 mole % based on the total moles of the gaseous exhaust material 18 .
  • the predetermined maximum molar concentration of carbon dioxide is at least 20 mole % based on the total moles of the gaseous exhaust material 18 .
  • the predetermined maximum molar concentration of carbon dioxide is at least 30 mole % based on the total moles of the gaseous exhaust material 18 .
  • a carbon dioxide sensor 781 is provided for detecting the molar concentration of carbon dioxide of the gaseous exhaust material 18 being discharged, and transmitting a signal representative of the molar concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 , to the controller.
  • the carbon dioxide sensor is a gas analyzer such that the concentration detected is a molar concentration.
  • the controller Upon the controller comparing a received signal from the carbon dioxide sensor 781 , which is representative of a detected molar concentration of carbon dioxide of the gaseous exhaust material 18 , to a predetermined maximum molar concentration of carbon dioxide, and determining that the molar concentration of carbon dioxide of the gaseous exhaust material 18 is greater than the predetermined maximum molar concentration of carbon dioxide, the controller actuates opening of, or an increase to the opening of, a control valve 901 which effects supply of the supplemental gaseous dilution agent 90 for admixing with the carbon dioxide concentrated supply 25 A.
  • the gaseous exhaust material producing process 20 while carbon dioxide is being discharged by the gaseous exhaust material producing process 20 , and while at least a fraction of the discharged carbon dioxide is being supplied to the reaction zone 10 , wherein the at least a fraction of the discharged carbon dioxide which is being supplied to the reaction zone 10 defines a discharged carbon dioxide reaction zone supply, when an indication of a decrease in the molar rate of supply of the discharged carbon dioxide reaction zone supply to the reaction zone 10 is detected, either the molar rate of supply of a supplemental carbon dioxide supply 92 being supplied to the reaction zone 10 is increased, or supply of the supplemental carbon dioxide supply 92 to the reaction zone 10 is initiated.
  • the supplemental carbon dioxide supply 92 is being supplied to a carbon dioxide concentrated supply 25 A, in response to the detection of the indication of a decrease in the molar rate of supply of the discharged carbon dioxide reaction zone supply to the reaction zone 10 , such that at least a fraction of the carbon dioxide concentrated supply 25 A is defined by the supplemental carbon dioxide supply 92 , and while at least a fraction of the carbon dioxide concentrated supply 25 A is being supplied to the reaction zone 10 , the carbon dioxide concentrated supply 25 A is admixed with the supplemental gaseous dilution agent 90 to effect production of the diluted carbon dioxide supply 25 B.
  • the source of the supplemental carbon dioxide supply 92 is a carbon dioxide cylinder.
  • the source of the supplemental carbon dioxide supply 92 is a supply of air.
  • the exposing of the phototrophic biomass disposed in the reaction zone 10 to photosynthetically active light radiation is effected while the carbon dioxide concentrated supply 25 A is admixed with the supplemental carbon dioxide supply 92 to effect production of the diluted carbon dioxide supply 25 B, and while at least a fraction of the diluted carbon dioxide supply 25 B is being supplied to the reaction zone 10 .
  • the carbon dioxide concentrated supply 25 A is admixed with the supplemental carbon dioxide supply 92 to effect production of the diluted carbon dioxide supply 25 B such that the diluted carbon dioxide supply 25 B includes a molar concentration of carbon dioxide below the predetermined maximum concentration of carbon dioxide.
  • the admixing is effect in response to the detection of a molar concentration of carbon dioxide in the carbon dioxide concentrated supply 25 A (which includes the supplemental carbon dioxide supply 92 ) that is above the predetermined maximum molar concentration of carbon dioxide.
  • the indication of a decrease in the molar rate of supply of the discharged carbon dioxide reaction zone supply to the reaction zone 10 is any of the indications described above.
  • the supplemental carbon dioxide supply 92 is provided for compensating for the decrease in the molar rate of supply of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 , with a view to sustaining a constant growth rate of the phototrophic biomass, when it is believed that the decrease is only of a temporary nature (such as less than two weeks).
  • the carbon dioxide concentrated supply 25 A includes the supplemental carbon dioxide supply 92
  • the carbon dioxide concentrated supply 25 A is being admixed with the supplemental gaseous dilution agent 90 to produce the diluted carbon dioxide supply 25 B, and at least a fraction of the diluted carbon dioxide supply 25 B is supplied to the reaction zone
  • the admixing of the carbon dioxide concentrated supply 25 A with the supplemental gaseous dilution agent 90 is configured to produce the diluted carbon dioxide supply 25 B including a predetermined molar concentration of carbon dioxide.
  • the supplemental gaseous dilution agent 90 is gaseous material. In some embodiments, for example, the supplemental gaseous dilution agent 90 includes air. In some embodiments, for example, the supplemental gaseous dilution agent 90 is being supplied to the carbon dioxide concentrated supply 25 A as a flow.
  • the reaction mixture disposed in the reaction zone 10 is exposed to photosynthetically active light radiation so as to effect photosynthesis.
  • the photosynthesis effects growth of the phototrophic biomass.
  • the light radiation is characterized by a wavelength of between 400-700 nm.
  • the light radiation is in the form of natural sunlight.
  • the light radiation is provided by an artificial light source 14 .
  • light radiation includes natural sunlight and artificial light.
  • the intensity of the provided light is controlled so as to align with the desired growth rate of the phototrophic biomass in the reaction zone 10 .
  • regulation of the intensity of the provided light is based on measurements of the growth rate of the phototrophic biomass in the reaction zone 10 .
  • regulation of the intensity of the provided light is based on the molar rate of supply of carbon dioxide to the reaction zone feed material 22 .
  • the light is provided at pre-determined wavelengths, depending on the conditions of the reaction zone 10 . Having said that, generally, the light is provided in a blue light source to red light source ratio of 1:4. This ratio varies depending on the phototrophic organism being used. As well, this ratio may vary when attempting to simulate daily cycles. For example, to simulate dawn or dusk, more red light is provided, and to simulate mid-day condition, more blue light is provided. Further, this ratio may be varied to simulate artificial recovery cycles by providing more blue light.
  • suitable artificial light source 14 include submersible fiber optics, light-emitting diodes, LED strips and fluorescent lights. Any LED strips known in the art can be adapted for use in the process.
  • the design includes the use of solar powered batteries to supply the electricity.
  • energy sources include alternative energy sources, such as wind, photovoltaic cells, fuel cells, etc. to supply electricity to the LEDs.
  • the light energy is provided from a combination of sources, as follows. Natural light source 16 in the form of solar light is captured though solar collectors and filtered with custom mirrors that effect the provision of light of desired wavelengths to the reaction zone 10 . The filtered light from the solar collectors is then transmitted through light guides or fiber optic materials into the photobioreactor 12 , where it becomes dispersed within the reaction zone 10 .
  • the light tubes in the photobioreactor 12 contains high power LED arrays that can provide light at specific wavelengths to either complement solar light, as necessary, or to provide all of the necessary light to the reaction zone 10 during periods of darkness (for example, at night).
  • a transparent heat transfer medium such as a glycol solution
  • the LED power requirements can be predicted and, therefore, controlled, based on trends observed with respect to the gaseous exhaust material 18 , as these observed trends assist in predicting future growth rate of the phototrophic biomass.
  • the exposing of the reaction mixture to photosynthetically active light radiation is effected while the supplying of the reaction feed material 22 is being effected.
  • the growth rate of the phototrophic biomass is dictated by the available gaseous exhaust material reaction zone supply 24 (defining the at least a fraction of the gaseous exhaust material 18 discharged by the gaseous exhaust material producing process 20 and being supplied to the reaction zone 10 ). In turn, this defines the nutrient, water, and light intensity requirements to maximize phototrophic biomass growth rate.
  • a controller e.g. a computer-implemented system, is provided to be used to monitor and control the operation of the various components of the process disclosed herein, including lights, valves, sensors, blowers, fans, dampers, pumps, etc.
  • Reaction zone product 500 is discharged from the reaction zone.
  • the reaction zone product 500 includes phototrophic biomass 58 .
  • the reaction zone product 500 includes at least a fraction of the contents of the reaction zone 10 .
  • the discharge of the reaction zone product 500 effects harvesting of the phototrophic biomass.
  • a reaction zone gaseous effluent product 80 is also discharged from the reaction zone 10 .
  • a process for growing a phototrophic biomass in a reaction zone 10 that includes modulating of the rate of discharge of phototrophic biomass based on the detection of a phototrophic biomass growth indicator.
  • the rate of discharge of phototrophic biomass being modulated is a rate of discharge of mass of the phototrophic biomass.
  • the reaction mixture in the form of a production purpose reaction mixture that is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, is disposed within the reaction zone 10 .
  • the production purpose reaction mixture includes phototrophic biomass in the form of production purpose phototrophic biomass that is operative for growth within the reaction zone 10 .
  • a reaction zone concentration of mass of production purpose phototrophic biomass is provided in the reaction zone 10 .
  • production purpose has been introduced to differentiate the reaction mixture and the phototrophic biomass, of a process for growing phototrophic biomass, from “evaluation purpose reaction mixture” and “evaluation purpose phototrophic biomass”, which are in some embodiments, integral to the predetermination of a phototrophic biomass growth indicator target value, as further explained below.
  • the process includes modulating the rate of discharge of mass of the production purposes phototrophic biomass from the reaction zone 10 , wherein the predetermined phototrophic biomass growth indicator target value is correlated with a predetermined growth rate of the production purpose phototrophic biomass within the reaction mixture which is disposed within the reaction zone 10 and is being exposed to the photosynthetically active light radiation.
  • the predetermined growth rate of the production purpose phototrophic biomass is a growth rate of mass (or mass concentration) of production purpose phototrophic biomass.
  • the effected growth of the production purpose phototrophic biomass includes growth effected by photosynthesis.
  • the growth includes that effected by metabolic processes that consume supplemental nutrients disposed within the reaction mixture.
  • the predetermined phototrophic biomass growth indicator target value corresponds to the phototrophic biomass growth indicator target value at which the growth rate of the production purpose phototrophic biomass, within the reaction mixture which is disposed within the reaction zone 10 and is being exposed to the photosynthetically active light radiation, is the predetermined growth rate.
  • the effected growth of the production purpose phototrophic biomass is being effected within 10% of the predetermined growth rate of the production purpose phototrophic biomass within the reaction mixture which is disposed within the reaction zone 10 and is being exposed to photosynthetically active light radiation. In some embodiments, the effected growth of the production purpose phototrophic biomass is being effected within 5% of the predetermined growth rate of the production purpose phototrophic biomass within the reaction mixture which is disposed within the reaction zone 10 and is being exposed to the photosynthetically active light radiation.
  • the effected growth of the production purpose phototrophic biomass is being effected within 1% of the predetermined growth rate of the production purpose phototrophic biomass within the reaction mixture which is disposed within the reaction zone 10 and is being exposed to the photosynthetically active light radiation.
  • the modulating is effected in response to comparing of a detected phototrophic biomass growth indicator to the predetermined phototrophic biomass growth indicator target value.
  • the process further includes detecting a phototrophic biomass growth indicator to provide the detected phototrophic biomass growth indicator.
  • the phototrophic biomass growth indicator is a mass concentration of the phototrophic biomass within the reaction mixture disposed within the reaction zone 10 .
  • the detected phototrophic biomass growth indicator is representative of the mass concentration of the production purpose phototrophic biomass within the reaction mixture disposed within the reaction zone 10 .
  • the detected phototrophic biomass growth indicator is the mass concentration of the production purpose phototrophic biomass within the reaction mixture disposed within the reaction zone 10 .
  • the detected phototrophic biomass growth indicator is the mass concentration of the production purpose phototrophic biomass within the reaction zone product 500 .
  • the detecting of the concentration is effected by a cell counter 47 .
  • a suitable cell counter is an AS-16F Single Channel Absorption Probe supplied by optek-Danulat, Inc.
  • Suitable devices for detecting a mass concentration of phototrophic biomass indication include other light scattering sensors, such as a spectrophotometer. As well, the mass concentration of phototrophic biomass can be detected manually, and then input manually into a controller for effecting the desired response.
  • the mass concentration of phototrophic biomass is detected using a sensor 300 that, in general, combines an absorbence sensor with a turbidity sensor.
  • the sensor 300 includes two different light emitters 302 , 304 (small light emitting diodes (LEDs)), each configured to emit light of a different wavelength than the other, and an optical sensor 306 to detect light while the light is being emitted by the light emitters.
  • LEDs small light emitting diodes
  • the two light emitters 303 , 304 are provided for different purposes.
  • the light emitter 302 is configured to emit light of a wavelength that would be absorbed by the phototrophic biomass. Where the phototrophic biomass is that of algae, in some embodiments, the light being emitted by the light emitter 302 is blue light and/or red light. In those embodiments where the algae is being grown in a photobioreactor 12 in the presence of red light, then the light emitter 302 is configured to emit blue light so as to obtain more accurate measurements.
  • the other light emitter 304 is configured to emit light of a wavelength that would be reflected or scattered by the phototrophic biomass, or at least which is characterized such that there is a greater likelihood that such emitted light would be reflected or scattered by the phototrophic biomass relative to the light emitted by light emitter 302 .
  • the phototrophic biomass is that of algae
  • the light being emitted by the light emitter 304 is green light.
  • the two light emitters 302 and 304 are disposed in spaced-apart relationship relative to the optical sensor 306 (about 1 cm, but this could vary depending on the emitted light intensity and expected mass concentration of the phototrophic biomass). In operation, light emission, from light emitter 302 and light emitter 304 , alternates between the two.
  • the light emissions from the sensor are characterized by alternating pulses of light from the light emitters 302 and 304 .
  • light emitter 302 emits a pulse of light for a defined time interval T 1 while light emitter 304 emits substantially no light during this time interval T 1
  • light emitter 304 emits a pulse of light for a defined time interval T 2 while light emitter 304 emits substantially no light during this time interval T 2
  • this cycle is then repeated for as many cycles as is desired for effecting the desired detection of mass concentration of phototrophic biomass.
  • each light pulse is not so critical, but typically about 1 sec would be used for each light emitter so that the optical sensor 306 has time to adjust to the new wavelength and record a value that is not affected by scattering of the other light emitter that just turned off.
  • the optical sensor 306 detects light than has not been absorbed by the phototrophic biomass, and transmits, to a controller, a signal representative of the quantity of light that has not been absorbed by the phototrophic biomass, which is then compared by the controller to a signal representative of the intensity of light being emitted by light emitter 302 , and converted into a signal representative of the quantity of light absorbed by the phototrophic biomass.
  • the optical sensor 306 detects light than has been scattered or reflected by the phototrophic biomass, and transmits, to a controller, a signal representative of the quantity of light that has been scattered or reflected by the phototrophic biomass.
  • the controller is calibrated based on predetermined correlation between algae mass concentration within an aqueous medium and the absorption of light, being emitted by the light emitter 302 , by the phototrophic biomass, and the reflection (or scattering) of light, being emitted by the light emitter 304 , by the phototrophic biomass.
  • This correlation is predetermined based on calibration measurements to known mass concentrations of the phototrophic biomass which is to be grown within the aqueous medium disposed in the photobioreactor 12 (ie.
  • the mass concentration of phototrophic biomass within the aqueous medium as a function of: (i) the absorption of light, being emitted by the light emitter 302 , by the phototrophic biomass, and (ii) the reflection (or scattering) of light, being emitted by the light emitter 304 , by the phototrophic biomass.
  • the light emitters 302 , 304 and the optical sensor 306 are mounted within a common housing 308 and are configured for electrical connection to a power source and a control transmitter for measuring an electrical signal (current or voltage, depending on the control set-up) with wiring 310 .
  • this configuration would be useful for effecting detection of mass concentration of phototrophic biomass within a vessel of a photobioreactor 12 In other embodiments, such as that illustrated in FIG.
  • the light emitters 302 , 304 and the optical sensor 306 do not necessarily require to be mounted within a common housing.
  • this configuration of sensor 300 is co-operatively mounted to a conduit (such as a conduit 312 which is effecting the discharge of phototrophic biomass from the photobioreactor 12 ) for measuring mass concentration of phototrophic biomass within a slurry flowing through the conduit 312 .
  • the senor 300 could be used to measure the mass concentration of phototrophic biomass within the return water 72 recovered from dewatering operations, compared with the mass concentration of phototrophic biomass being discharged from the photobioreactor 12 , to determine separation efficiency of the dewatering operation.
  • the effecting of the growth of the phototrophic biomass includes supplying carbon dioxide to the reaction zone 10 and exposing the production purpose reaction mixture to photosynthetically active light radiation.
  • the supplied carbon dioxide is supplied from the gaseous exhaust material 18 of the gaseous exhaust material producing process 20 .
  • the supplied carbon dioxide is supplied from the gaseous exhaust material 18 of the gaseous exhaust material producing process 20 while the gaseous exhaust material 18 is being discharged by the gaseous exhaust material producing process 20 , and while at least a fraction of the gaseous exhaust material 18 is being supplied to the reaction zone feed material 22 (as the gaseous exhaust material reaction zone supply 24 ), and while the reaction zone feed material 22 is being supplied to the reaction zone 10 .
  • the carbon dioxide is supplied to the reaction zone 10 while the growth is being effected, wherein at least a fraction of the carbon dioxide being supplied to the reaction zone 10 is supplied from a gaseous exhaust material 18 while the gaseous exhaust material 18 is being discharged from a gaseous exhaust material producing process 20 .
  • the production purpose reaction mixture further includes water and carbon dioxide.
  • the predetermined rate of growth of the phototrophic biomass is based upon the maximum rate of growth of the phototrophic biomass within the reaction mixture which is disposed within the reaction zone 10 and is being exposed to the photosynthetically active light radiation, as described above.
  • the predetermined rate of growth of the phototrophic biomass is a rate of growth of mass (or mass concentration) of the phototrophic biomass
  • the predetermined rate of growth of mass (or mass concentration) of the phototrophic biomass is based upon the maximum rate of growth of mass (or mass concentration) of the phototrophic biomass within the reaction mixture which is disposed within the reaction zone 10 and is being exposed to photosynthetically active light radiation.
  • the predetermined growth rate of the production purpose phototrophic biomass is at least 90% of the maximum growth rate of the production purpose phototrophic biomass within the reaction mixture which is disposed within the reaction zone 10 and is being exposed to the photosynthetically active light radiation. In some embodiments, for example, the predetermined growth rate is at least 95% of the maximum growth rate of the production purpose phototrophic biomass within the reaction mixture which is disposed within the reaction zone 10 and is being exposed to the photosynthetically active light radiation. In some embodiments, for example, the predetermined growth rate is at least 99% of the maximum growth rate of the production purpose phototrophic biomass within the reaction mixture which is disposed within the reaction zone 10 and is being exposed to the photosynthetically active light radiation. In some embodiments, for example, the predetermined growth rate is equivalent to the maximum growth rate of the production purpose phototrophic biomass within the reaction mixture which is disposed within the reaction zone 10 and is being exposed to the photosynthetically active light radiation.
  • FIG. 7 illustrates how the maximum rate of growth of mass of phototrophic biomass (algae), expressed as a maximum rate of growth of mass concentration of phototrophic biomass within a photobioreactor system, is determined by measuring mass concentration of phototrophic biomass (algae) during growth of the phototrophic biomass within the system.
  • the curves depicted in FIG. 7 are characteristic of a typical algae growth system, but the exact time and concentration limits will vary with each set-up (maximum mass concentration and maximum rate of growth of mass concentration are determined system limitations). With the knowledge of the form and behaviour of these characteristic curves, it is possible to determine these system parameters by monitoring the mass concentration (or density) in short time intervals, so that it can be converted to real-time growth rates.
  • the harvesting cycle can start to effectively remove the algae growth and maintain the same consistency and growth conditions required to support the maximum growth rate for the system.
  • FIG. 8 illustrates the improved yields of phototrophic biomass (algae) when harvesting occurs while mass concentration of the phototrophic biomass (algae) within the photobioreactor is controlled at a concentration which is correlated with maximum rate of growth of mass concentration of the phototrophic biomass (algae) (a), versus the case when the phototrophic biomass (algae) is grown on a batch basis for an equivalent period of time without any harvesting (b).
  • the improved harvesting yield can be sustained for longer periods of time and will not end when the culture reached its maximum density (because it is never allowed to do so), when compared to the batch case scenario.
  • FIGS. 9A and 9B illustrate, generally, the growth of mass concentration of phototrophic biomass (algae) as a function of mass concentration of phototrophic biomass, and the maximum rate of growth of mass concentration of phototrophic biomass (algae), and the mass concentration at which this occurs and how it is determined.
  • FIGS. 7 , 8 , 9 A and 9 B are illustrative of algae growth systems, but their information is also relevant to other phototrophic biomass growth systems.
  • the volume of the reaction mixture disposed within the reaction zone is maintained constant or substantially constant for a time period of at least one (1) hour.
  • the time period is at least six (6) hours.
  • the time period is at least 24 hours.
  • the time period is at least seven (7) days.
  • the volume of the reaction mixture disposed within the reaction zone is maintained constant or substantially constant for the a period of time such that the predetermined phototrophic biomass growth indicator value, as well as the predetermined rate of growth of phototrophic biomass, is maintained constant or substantially constant during this period, with a view to optimizing economic efficiency of the process.
  • the reaction zone 10 is disposed within a photobioreactor 10 , and the production purpose phototrophic biomass is discharged from the photobioreactor 12 (and reaction zone 10 ) by displacement effected in response to supplying of an aqueous feed material 4 to the reaction zone 10 .
  • the supplying of an aqueous feed material 4 to the reaction zone 10 effects displacement of the production purpose phototrophic biomass from the photobioreactor 12 (and the reaction zone 10 ), thereby effecting discharge of the production purpose phototrophic biomass from the photobioreactor 12 (and the reaction zone 10 ).
  • the production purpose phototrophic biomass is discharged from the photobioreactor 12 by displacement as an overflow from the photobioreactor 12 .
  • the aqueous feed material 4 includes substantially no phototrophic biomass. In other embodiments, for example, the aqueous feed material includes phototrophic biomass at a mass concentration less than the mass concentration of phototrophic biomass disposed within the reaction mixture disposed within the reaction zone 10 .
  • the aqueous feed material 4 is supplied as a flow from a source 6 of aqueous feed material 4 .
  • the flow is effected by a prime mover, such as pump.
  • the aqueous feed material includes the supplemental aqueous material supply 44 .
  • at least a fraction of the supplemental aqueous material supply 44 is supplied from a container 28 .
  • the container functions as the source 6 of the aqueous feed material 4 .
  • the aqueous feed material 4 includes the supplemental nutrient supply 42 and the supplemental aqueous material supply 44 .
  • the aqueous feed material 4 is supplied to the reaction zone feed material 22 upstream of the reaction zone 10 .
  • the supplemental nutrient supply 42 and the supplemental aqueous material supply 44 are supplied to the reaction zone feed material 22 through the sparger 40 upstream of the reaction zone 10 .
  • the modulating includes effecting a decrease in the rate of discharge of mass of the production purpose phototrophic biomass from the reaction zone 10 .
  • the production purpose phototrophic biomass is discharged by displacement from the reaction zone 10 in response to the supplying of the aqueous feed material 4 to the reaction zone 10 , and the decrease in the rate of discharge of mass of the production purpose phototrophic biomass from the reaction zone 10 is effected by effecting a decrease in the rate of supply (such as a volumetric rate of supply or a molar rate of supply) of, or termination of the supply of, the aqueous feed material 4 to the reaction zone 10 .
  • a decrease in the rate of supply such as a volumetric rate of supply or a molar rate of supply
  • the controller when the production purpose phototrophic biomass is discharged by such displacement, in some embodiments, for example, when the detected phototrophic biomass growth indicator is a mass concentration of phototrophic biomass within the reaction mixture disposed within the reaction zone 10 , upon comparing the detected mass concentration of phototrophic biomass within the reaction mixture disposed within the reaction zone 10 , which is detected by the cell counter 47 , with the predetermined phototrophic biomass mass concentration target value, and determining that the detected mass concentration is less than the predetermined phototrophic biomass mass concentration target value, the controller responds by effecting a decrease in the rate of supply (for example, volumetric rate of supply or a molar rate of supply) of, or termination of supply of, the aqueous feed material 4 to the reaction zone 10 , which thereby effects a decrease in the mass rate of discharge of, or termination of the discharge of, the production purpose phototrophic biomass from the reaction zone 10 .
  • the rate of supply for example, volumetric rate of supply or a molar rate of supply
  • the decrease in the rate of supply of the aqueous feed material 4 to the reaction zone 10 is effected by the controller by actuating a decrease in the opening of a control valve 441 that is disposed in a fluid passage that facilitates supply of a flow of the aqueous feed material 4 from the source 6 to the reaction zone 10 .
  • the termination of supply of the aqueous feed material 4 to the reaction zone 10 is effected by the controller by actuating closure of a control valve 441 that is disposed in a fluid passage that facilitates supply of a flow of the aqueous feed material 4 from the source 6 to the reaction zone 10 .
  • the flow of the aqueous feed material 4 is being effected by a prime mover, such as a pump 281 .
  • the flow of the aqueous feed material 4 is being effected by gravity.
  • the aqueous feed material 4 includes the supplemental aqueous material supply 44 which is supplied from the container 28 .
  • the aqueous feed material 4 is the supplemental aqueous material supply 44 which is supplied from the container 28 .
  • the supplemental aqueous material supply 44 is supplied from the container 28 by the pump 281 , and in other ones of these embodiments, for example, the supplemental aqueous material supply 44 is supplied from the container 28 by gravity.
  • a prime mover such as the pump 281
  • the decrease in the rate of supply of the aqueous feed material 4 to the reaction zone 10 is effected by the controller actuating a decrease to the power being supplied to the prime mover 281 (such as the pump 281 ) to the aqueous feed material 4 , such as by reducing the speed of the prime mover 281 .
  • a prime mover such as the pump 281
  • the termination of supply of the aqueous feed material 4 to the reaction zone 10 is effected by the controller actuating stoppage of the prime mover.
  • the modulating includes effecting an increase in the rate of discharge of mass of the production purpose phototrophic biomass from the reaction zone 10 .
  • the production purpose phototrophic biomass is discharged from the reaction zone 10 by displacement in response to the supplying of the aqueous feed material 4 to the reaction zone 10 , and the increase in the rate of discharge of mass of the production purpose phototrophic biomass from the reaction zone 10 is effected by effecting initiation of supply of, or an increase in the rate of supply (for example, a volumetric rate of supply or a molar rate of supply) of, the aqueous feed material 4 to the reaction zone 10 .
  • the controller when the production purpose phototrophic biomass is discharged by such displacement, in some embodiments, for example, when the detected phototrophic biomass growth indicator is a mass concentration of phototrophic biomass in the reaction zone 10 , upon comparing the detected mass concentration of phototrophic biomass within the reaction mixture disposed within the reaction zone 10 , which is detected by the cell counter 47 , with the predetermined phototrophic biomass mass concentration target value, and determining that the detected mass concentration is greater than the predetermined phototrophic biomass mass concentration target value, the controller responds by effecting initiation of supply of, or an increase in the rate of supply (molar rate of supply and/or volumetric rate of supply) of, the aqueous feed material 4 to the reaction zone 10 , which thereby effects an increase in the rate of discharge of mass of the production purpose phototrophic biomass from the reaction zone 10 .
  • the rate of supply molar rate of supply and/or volumetric rate of supply
  • the initiation of supply of the aqueous feed material 4 to the reaction zone 10 is effected by the controller by actuating opening of a control valve 441 that is disposed in a fluid passage that facilitates supply of a flow of the aqueous feed material 4 from the source 6 to the reaction zone 10 .
  • the increase in the rate of supply of the aqueous feed material 4 to the reaction zone 10 is effected by the controller by actuating an increase in the opening of a control valve 441 that is disposed in a fluid passage that facilitates supply of a flow of the aqueous feed material 4 from the source 6 to the reaction zone 10 .
  • the flow of the aqueous feed material 4 is being effected by a prime mover, such as a pump 281 .
  • the flow of the aqueous feed material 4 is being effected by gravity.
  • the aqueous feed material includes the supplemental aqueous material supply 44 which is supplied from the container 28 .
  • the aqueous feed material is the supplemental aqueous material supply 44 which is supplied from the container 28 .
  • the supplemental aqueous material supply 44 is supplied from the container 28 by the pump 281 , and in other ones of these embodiments, for example, the supplemental aqueous material supply 44 is supplied from the container 28 by gravity.
  • a prime mover such as the pump 281
  • the initiation of supply of the aqueous feed material 4 to the reaction zone 10 is effected by the controller actuating operation of the prime mover.
  • the increase in the rate of supply of the aqueous feed material 4 to the reaction zone 10 is effected by the controller actuating an increase to the power being supplied to the prime mover to the aqueous feed material 4 .
  • the discharging of the phototrophic biomass 58 from the reaction zone 10 is effected by a prime mover that is fluidly coupled to the reaction zone 10 .
  • the modulating of the rate of discharge of mass of the phototrophic biomass from the reaction zone includes:
  • the indication of volume of reaction mixture within the reaction zone 10 is an upper liquid level of the reaction mixture within the reaction zone 10 .
  • this upper liquid level is detected with a level sensor.
  • the level sensor is provided to detect the level of the reaction mixture within the reaction zone 10 , and transmit a signal representative of the detected level to a controller. The controller compares the received signal to a predetermined level value (representative of the predetermined reaction mixture volume indication value).
  • the controller responds by effecting initiation of supply, or an increase to the rate of supply (such as a volumetric rate of supply or a molar rate of supply), of the supplemental aqueous material supply 48 to the reaction zone 10 , such as by opening (in the case of initiation of supply), or increasing the opening (in the case of increasing the molar rate of supply), of a valve configured to interfere with the supply of the supplemental aqueous material supply 48 to the reaction zone 10 .
  • initiation of supply such as a volumetric rate of supply or a molar rate of supply
  • the controller responds by effecting a decrease to the rate of supply (such as a volumetric rate of supply or a molar rate of supply), or termination of supply, of the supplemental aqueous material supply 48 to the reaction zone 10 , such as by decreasing the opening of (in the case of decreasing the molar rate of supply), or closing the valve (in the case of terminating the supply) that is configured to interfere with the supply of the supplemental aqueous material supply 48 to the reaction zone 10 .
  • a decrease to the rate of supply such as a volumetric rate of supply or a molar rate of supply
  • termination of supply of the supplemental aqueous material supply 48 to the reaction zone 10
  • make-up water is supplied to the reaction zone 10 to replace water that is discharged with the phototrophic biomass from the reaction zone 10 , with a view to optimizing the rate of growth of mass of concentration of the phototrophic biomass within the reaction zone 10 , and thereby optimizing the rate at which mass of the phototrophic biomass is being discharged from the reaction zone 10 .
  • the process further includes modulating the rate of supply (such as a molar rate of supply or a volumetric rate of supply) of the supplemental nutrient supply to the reaction zone in response to the detection of a difference between a detected concentration of one or more nutrients (eg. NO 3 ) within the reaction zone 10 and a corresponding predetermined target concentration value.
  • the rate of supply such as a molar rate of supply or a volumetric rate of supply
  • the process further includes modulating the rate of flow (such as a molar rate of flow, or a volumetric rate of flow) of the carbon dioxide to the reaction zone 10 in response to detecting of at least one carbon dioxide processing capacity indicator.
  • the detecting of at least one of the at least one carbon dioxide processing capacity indicator is effected in the reaction zone 10 .
  • the carbon dioxide processing capacity indicator which is detected is any characteristic that is representative of the capacity of the reaction zone 10 for receiving carbon dioxide and having at least a fraction of the received carbon dioxide converted in a photosynthesis reaction effected by phototrophic biomass disposed within the reaction zone.
  • the carbon dioxide processing capacity indicator which is detected is a pH within the reaction zone 10 .
  • the carbon dioxide processing capacity indicator which is detected is a mass concentration of phototrophic biomass within the reaction zone 10 .
  • the process further includes modulating the intensity of the photosynthetically active light radiation to which the reaction mixture is exposed to, in response to a detected change in the rate (such as a molar rate, or a volumetric rate) at which the carbon dioxide is being supplied to the reaction zone 10 .
  • the process further includes effecting the predetermination of the phototrophic biomass growth indicator target value.
  • an evaluation purpose reaction mixture that is representative of the production purpose reaction mixture and is operative for effecting photosynthesis, upon exposure to photosynthetically active light radiation, is provided, such that the phototrophic biomass of the evaluation purpose reaction mixture is an evaluation purpose phototrophic biomass that is representative of the production purpose phototrophic biomass.
  • the production purpose reaction mixture further includes water and carbon dioxide
  • the evaluation purpose reaction mixture further includes water and carbon dioxide.
  • the phototrophic biomass growth indicator target value is defined as the phototrophic biomass growth indicator at which the predetermined growth rate is being effected based on the determined relationship between the growth rate of mass (or mass concentration) of the production purpose phototrophic biomass within the reaction zone and the phototrophic biomass growth indicator. In this respect, the correlation between the phototrophic biomass growth indicator target value and the predetermined growth rate is also thereby effected.
  • the growth of the evaluation purpose phototrophic biomass in the reaction zone 10 is effected while the reaction zone is characterized by at least one evaluation purpose growth condition, wherein each one of the at least one evaluation purpose growth condition is representative of a production purpose growth condition by which the reaction zone 10 is characterized while growth of the production purpose phototrophic biomass, within the reaction zone 10 , is being effected.
  • the production purpose growth condition is any one of a plurality of production purpose growth conditions including composition of the reaction mixture, reaction zone temperature, reaction zone pH, reaction zone light intensity, reaction zone lighting regimes (eg. variable intensities), reaction zone lighting cycles (eg. duration of ON/OFF lighting cycles), and reaction zone temperature.
  • providing one or more evaluation purpose growth conditions, each of which is representative of a production purpose growth condition to which the production purpose reaction mixture is exposed to while growth of the production purpose phototrophic biomass in the reaction zone 10 is being effected promotes optimization of phototrophic biomass production.
  • a rate of discharge of mass of the phototrophic biomass is effected that at least approximates the rate of growth of mass of the phototrophic biomass within the reaction zone.
  • the reaction mixture in the form of a production purpose reaction mixture that is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, is disposed within the reaction zone 10 .
  • the production purpose reaction mixture includes phototrophic biomass in the form of production purpose phototrophic biomass that is operative for growth within the reaction zone 10 . While the reaction mixture disposed in the reaction zone 10 is exposed to photosynthetically active light radiation and growth of the production purpose phototrophic biomass is being effected within the reaction mixture, mass of production purpose phototrophic biomass is discharging from the reaction zone 10 at a rate that is within 10% of the rate at which the growth of mass of the production purpose phototrophic biomass is being effected within the reaction zone 10 .
  • the effected growth of the production purpose phototrophic biomass within the reaction zone 10 is being effected at a rate that is at least 90% of the maximum growth rate of mass of the production purpose phototrophic biomass within the reaction mixture which is disposed in reaction zone 10 and is being exposed to the photosynthetically active light radiation.
  • the rate of discharge of mass of the production purpose phototrophic biomass is within 5% of the rate of growth of mass of the production purpose phototrophic biomass within the reaction zone 10 .
  • the rate of discharge of mass of the production purpose phototrophic biomass is within 1% of the rate of growth of mass the production purpose phototrophic biomass within the reaction zone 10 .
  • the effected growth of the production purpose phototrophic biomass within the reaction zone 10 is being effected at a mass growth rate of at least 95% of the maximum rate of growth of mass of the production purpose phototrophic biomass within the reaction mixture which is disposed within the reaction zone 10 and is being exposed to the photosynthetically active light radiation, and in some of these embodiments, for example, the rate of discharge of mass of the production purpose phototrophic biomass that is provided is within 5%, such as within 1%, of the rate of growth of mass of the production purpose phototrophic biomass within the reaction zone 10 .
  • the effected growth of the production purpose phototrophic biomass within the reaction zone 10 is being effected at a mass growth rate of at least 99% of the maximum rate of growth of mass of the production purpose phototrophic biomass within the reaction mixture which is disposed within the reaction zone 10 and is being exposed to the photosynthetically active light radiation, and in some of these embodiments, for example, the rate of discharge of mass of the production purpose phototrophic biomass that is provided is within 5%, such as within 1%, of the rate of growth of mass of the production purpose phototrophic biomass within the reaction zone 10 .
  • the effecting of the growth of the production purpose phototrophic biomass includes supplying carbon dioxide to the reaction zone 10 and exposing the production purpose reaction mixture to photosynthetically active light radiation.
  • the supplied carbon dioxide is supplied from the gaseous exhaust material 18 of the gaseous exhaust material producing process 20 .
  • the supplied carbon dioxide is supplied from the gaseous exhaust material 18 of the gaseous exhaust material producing process 20 while the gaseous exhaust material 18 is being discharged by the gaseous exhaust material producing process 20 , and while at least a fraction of the gaseous exhaust material 18 is being supplied to the reaction zone feed material 22 (as the gaseous exhaust material reaction zone supply 24 ), and while the reaction zone feed material 22 is being supplied to the reaction zone 10 .
  • the carbon dioxide is supplied to the reaction zone 10 while the growth is being effected, wherein at least a fraction of the carbon dioxide being supplied to the reaction zone is supplied from a gaseous exhaust material while the gaseous exhaust material is being discharged from a gaseous exhaust material producing process.
  • the reaction zone 10 is disposed within a photobioreactor 10 , and the production purpose phototrophic biomass is discharged from the photobioreactor 12 (and the reaction zone 10 ) by displacement effected in response to supplying of an aqueous feed material 4 to the reaction zone 10 .
  • the supplying of an aqueous feed material 4 to the reaction zone 10 effects displacement of the production purpose phototrophic biomass from the photobioreactor 12 (and the reaction zone 10 ), thereby effecting discharge of the production purpose phototrophic biomass from the photobioreactor 12 (and the reaction zone 10 ).
  • the production purpose phototrophic biomass product is discharged as an overflow from the photobioreactor.
  • the aqueous feed material 4 is supplied to the reaction zone 10 and effects displacement of the production purpose phototrophic biomass from the reaction zone 10 , thereby effecting discharge of the production purpose phototrophic biomass from the reaction zone 10 .
  • the aqueous feed material 4 includes substantially no production purpose phototrophic biomass.
  • the aqueous feed material 4 includes production purpose phototrophic biomass at a concentration less than the reaction zone concentration of the production purpose phototrophic biomass.
  • the aqueous feed material 4 is supplied as a flow from a source 6 of aqueous feed material 4 .
  • the flow is effected by a prime mover, such as pump.
  • the aqueous feed material includes the supplemental aqueous material supply 44 .
  • at least a fraction of the supplemental aqueous material supply 44 is supplied from a container 28 .
  • the container functions as the source 6 of the aqueous feed material 4 .
  • the aqueous feed material 4 includes the supplemental nutrient supply 42 and the supplemental aqueous material supply 44 .
  • the aqueous feed material 4 is supplied to the reaction zone feed material 22 upstream of the reaction zone 10 .
  • the supplemental nutrient supply 42 and the supplemental aqueous material supply 44 are supplied to the reaction zone feed material 22 through the sparger 40 upstream of the reaction zone 10 .
  • the discharging of the phototrophic biomass 58 from the reaction zone 10 is effected by a prime mover that is fluidly coupled to the reaction zone 10 .
  • supplemental aqueous material supply 44 is supplied to the reaction zone 10 so as to maintain a predetermined volume of reaction mixture within the reaction zone 10 , as described above.
  • discharging of the phototrophic biomass is effected at a rate that matches the growth rate of mass of the phototrophic biomass within the reaction zone 10 . In some embodiments, for example, this mitigates shocking of the phototrophic biomass in the reaction zone 10 .
  • the discharging of the phototrophic biomass is controlled through the rate of supply (such as a volumetric rate of supply, or a molar rate of supply) of supplemental aqueous material supply 44 , which influences the displacement from the photobioreactor 12 of the phototrophic biomass-comprising product 500 from the photobioreactor 12 .
  • the product 500 including the phototrophic biomass, is discharged as an overflow.
  • the upper portion of phototrophic biomass suspension in the reaction zone 10 overflows the photobioreactor 12 (for example, the phototrophic biomass is discharged through an overflow port of the photobioreactor 12 ) to provide the phototrophic biomass-comprising product 500 .
  • the discharging of the product 500 is controlled with a valve disposed in a fluid passage which is fluidly communicating with an outlet of the photobioreactor 12 .
  • the discharging of the product 500 is effected continuously. In other embodiments, for example, the discharging of the product is effected periodically. In some embodiments, for example, the discharging of the product is designed such that the concentration of mass of the biomass in the phototrophic biomass-comprising product 500 is maintained at a relatively low concentration. In those embodiments where the phototrophic biomass includes algae, it is desirable, for some embodiments, to effect discharging of the product 500 at lower concentrations to mitigate against sudden changes in the molar growth rate of the algae in the reaction zone 10 . Such sudden changes could effect shocking of the algae, which thereby contributes to lower yield over the longer term.
  • the concentration of this algae in the phototrophic biomass-comprising product 500 could be between 0.5 and 3 grams per litre.
  • the desired concentration of the discharged algae product 500 depends on the strain of algae such that this concentration range changes depending on the strain of algae.
  • maintaining a predetermined water content in the reaction zone is desirable to promote the optimal growth of the phototrophic biomass, and this can also be influenced by controlling the supply of the supplemental aqueous material supply 44 .
  • the phototrophic biomass-comprising product 500 includes water.
  • the phototrophic biomass-comprising product 500 is supplied to a separator 52 for effecting removal of at least a fraction of the water from the phototrophic biomass-comprising product 500 to effect production of an intermediate concentrated phototrophic biomass-comprising product 34 and a recovered aqueous material 72 (in some embodiments, substantially water).
  • the separator 52 is a high speed centrifugal separator 52 .
  • Other suitable examples of a separator 52 include a decanter, a settling vessel or pond, a flocculation device, or a flotation device.
  • the recovered aqueous material 72 is supplied to a container 28 , such as a container, for re-use by the process.
  • the phototrophic biomass-comprising product 500 is supplied to a harvest pond 54 .
  • the harvest pond 54 functions both as a buffer between the photobioreactor 12 and the separator 52 , as well as a mixing vessel in cases where the harvest pond 54 receives different biomass strains from multiple photobioreactors. In the latter case, customization of a blend of biomass strains can be effected with a predetermined set of characteristics tailored to the fuel type or grade that will be produced from the blend.
  • the container 28 provides a source of supplemental aqueous material supply 44 for the reaction zone 10 , and functions to contain the supplemental aqueous material supply 44 before supplemental aqueous material supply 44 is supplied to the reaction zone 10 .
  • Loss of water is experienced in some embodiments as moisture in the final phototrophic biomass-comprising product 36 , as well as through evaporation in the dryer 32 .
  • the supplemental aqueous material in the container 28 which is recovered from the process, can be supplied to the reaction zone 10 as the supplemental aqueous material supply 44 .
  • the supplemental aqueous material supply 44 is supplied to the reaction zone 10 with the pump 281 .
  • the supply can be effected by gravity, if the layout of the process equipment of the system, which embodies the process, permits.
  • the supplemental aqueous material recovered from the process includes at least one of: (a) aqueous material 70 which has been condensed from the reaction zone feed material 22 while the reaction zone feed material 22 is being cooled before being supplied to the reaction zone 10 , and (b) aqueous material 72 which has been separated from the phototrophic biomass-comprising product 500 .
  • the supplemental aqueous material supply 44 is supplied to the reaction zone 10 to effect displacement of the product 500 from the reaction zone.
  • the product 500 is displaced as an overflow from the photobioreactor 12 .
  • the supplemental aqueous material supply 44 is supplied to the reaction zone 10 to effect a desired predetermined concentration of phototrophic biomass within the reaction zone by diluting the reaction mixture disposed within the reaction zone.
  • Examples of specific structures which can be used as the container 28 by allowing for containment of aqueous material recovered from the process include, without limitation, tanks, ponds, troughs, ditches, pools, pipes, tubes, canals, and channels.
  • the supplying of the supplemental aqueous material supply 44 to the reaction zone 10 is effected while the gaseous exhaust material 18 is being discharged by the gaseous exhaust material producing process 20 , and while the gaseous exhaust material reaction zone supply 24 is being supplied to the reaction zone feed material 22 .
  • the exposing of the carbon dioxide-enriched phototrophic biomass disposed in the aqueous medium to photosynthetically active light radiation is effected while the supplying of the supplemental aqueous material supply to the reaction zone 10 is being effected.
  • the supplying of the supplemental aqueous material supply 44 to the reaction zone 10 is modulated based upon the detection of a deviation of a value of a phototrophic biomass growth indicator from that of a predetermined target value of the process parameter, wherein the predetermined target value of the phototrophic biomass growth indicator is based upon a predetermined growth rate of mass of the phototrophic biomass within the reaction zone.
  • supply of the supplemental aqueous material supply 44 to the reaction zone 10 is dictated by the mass concentration of phototrophic biomass.
  • mass concentration of the phototrophic biomass in the reaction zone 10 or an indication of mass concentration of the phototrophic biomass in the reaction zone 10 , is detected by a cell counter, such as the cell counters described above.
  • the detected mass concentration of the phototrophic biomass, or the detected indication of mass concentration of phototrophic biomass is transmitted to the controller, and when the controller determines that the detected mass concentration exceeds a predetermined high mass concentration value, the controller responds by initiating the supply, or increasing the rate of supply (such as a volumetric rate of supply, or a molar rate of supply), of the supplemental aqueous material supply 44 to the reaction zone 10 .
  • the initiating of the supply, or increasing the rate of supply, of the supplemental aqueous material supply 44 to the reaction zone 10 includes actuating a prime mover, such as the pump 281 , to initiate supply, or an increase in the molar rate of supply, of the supplemental aqueous material supply 44 to the reaction zone 10 .
  • the effecting supply, or increasing the rate of supply, of the supplemental aqueous material supply 44 to the reaction zone 10 includes initiating the opening, or increase the opening, of a valve that is configured to interfere with supply of the supplemental aqueous material supply 44 from the container 28 to the reaction zone 10 .
  • the initiation of the supply of, or an increase to the rate of supply (such as a volumetric rate of supply, or a molar rate of supply) of, the supplemental aqueous material supply 44 (which has been recovered from the process) is effected to the reaction zone 10 .
  • a level sensor 76 is provided for detecting the position of the upper level of the contents of the reaction zone 10 within the photobioreactor, and transmitting a signal representative of the upper level of the contents of the reaction zone 10 to the controller.
  • the controller Upon the controller comparing a received signal from the level sensor 76 , which is representative of the upper level of the contents of the reaction zone 10 , to a predetermined low level value, and determining that the detected upper level of the contents of the reaction zone is below the predetermined low level value, the controller effects the initiation of the supply of, or an increase to the rate of supply of, the supplemental aqueous material supply 44 .
  • the controller actuates the pump 281 to effect the initiation of the supply, or an increase to the rate of supply, of the supplemental aqueous material supply 44 to the reaction zone 10 .
  • the controller actuates the opening of a valve to effect the initiation of the supply, or an increase to the molar rate of supply, of the supplemental aqueous material supply 44 to the reaction zone 10 .
  • control of the position of the upper level of the contents of the reaction zone 10 is relevant to operation for some of those embodiments where the discharging of the phototrophic biomass 58 from the reaction zone 10 is effected from a lower portion of the reaction zone 10 , such as when the discharging of the phototrophic biomass 58 from the reaction zone 10 is effected by a prime mover that is fluidly coupled to the reaction zone 10 , as discussed above.
  • control of the position of the upper level of the contents of the reaction zone 10 is relevant during the “seeding stage” of operation of the photobioreactor 12 .
  • mass concentration of phototrophic biomass in the reaction zone is detected by a cell counter 47 , such as the cell counters described above.
  • the detected mass concentration of phototrophic biomass is transmitted to the controller, and when the controller determines that the detected molar phototrophic biomass concentration exceeds a predetermined high phototrophic biomass mass concentration value, the controller responds by initiating opening, or increasing the opening, of the valve to effect an increase in the rate of discharging of mass of the product 500 from the reaction zone 10 .
  • a source of additional make-up water 68 is provided to mitigate against circumstances when the supplemental aqueous material supply 44 is insufficient to make-up for water which is lost during operation of the process.
  • the supplemental aqueous material supply 44 is mixed with the reaction zone feed material 22 in the sparger 40 .
  • accommodation for draining of the container 28 to drain 66 is provided to mitigate against the circumstances when aqueous material recovered from the process exceeds the make-up requirements.
  • a reaction zone gaseous effluent product 80 is discharged from the reaction zone 10 . At least a fraction of the reaction zone gaseous effluent 80 is recovered and supplied to a reaction zone 110 of a combustion process unit operation 100 . As a result of the photosynthesis being effected in the reaction zone 10 , the reaction zone gaseous effluent 80 is rich in oxygen relative to the gaseous exhaust material reaction zone supply 24 . The gaseous effluent 80 is supplied to the combustion zone 110 of a combustion process unit operation 100 (such as a combustion zone 110 disposed in a reaction vessel), and, therefore, functions as a useful reagent for the combustion process being effected in the combustion process unit operation 100 .
  • a combustion process unit operation 100 such as a combustion zone 110 disposed in a reaction vessel
  • the reaction zone gaseous effluent 80 is contacted with combustible material (such as carbon-comprising material) in the combustion zone 100 , and a reactive process is effected whereby the combustible material is combusted.
  • combustible material such as carbon-comprising material
  • suitable combustion process unit operations 100 include those in a fossil fuel-fired power plant, an industrial incineration facility, an industrial furnace, an industrial heater, an internal combustion engine, and a cement kiln.
  • the contacting of the recovered reaction zone gaseous effluent 80 with a combustible material is effected while the gaseous exhaust material 18 is being discharged by the gaseous exhaust material producing process 20 and while the gaseous exhaust material reaction zone supply 24 is being supplied to the reaction zone feed material 22 .
  • the contacting of the recovered reaction zone gaseous effluent with a combustible material is effected while the gaseous exhaust material reaction zone supply 24 is being supplied to the reaction zone feed material 22 .
  • the contacting of the recovered reaction zone gaseous effluent with a combustible material is effected while the reaction zone feed material is being supplied to the reaction zone.
  • the exposing of the carbon dioxide-enriched phototrophic biomass disposed in the aqueous medium to photosynthetically active light radiation is effected while the contacting of the recovered reaction zone gaseous effluent with a combustible material is being effected.
  • the intermediate concentrated phototrophic biomass-comprising product 34 is supplied to a dryer 32 which supplies heat to the intermediate concentrated phototrophic biomass-comprising product 34 to effect evaporation of at least a fraction of the water of the intermediate concentrated phototrophic biomass-comprising product 34 , and thereby effect production of a final phototrophic biomass-comprising product 36 .
  • the heat supplied to the intermediate concentrated phototrophic biomass-comprising product 34 is provided by a heat transfer medium 30 which has been used to effect the cooling of the reaction zone feed material 22 prior to supply of the reaction zone feed material 22 to the reaction zone 10 .
  • the intermediate concentrated phototrophic biomass-comprising product 34 is at a relatively warm temperature, and the heat requirement to effect evaporation of water from the intermediate concentrated phototrophic biomass-comprising product 34 is not significant, thereby rendering it feasible to use the heated heat transfer medium 30 as a source of heat to effect the drying of the intermediate concentrated phototrophic biomass-comprising product 34 .
  • the heat transfer medium 30 is recirculated to the heat exchanger 26 to effect cooling of the reaction zone feed material 22 .
  • the heating requirements of the dryer 32 is based upon the rate of supply of mass of intermediate concentrated phototrophic biomass-comprising product 34 to the dryer 32 .
  • Cooling requirements (of the heat exchanger 26 ) and heating requirements (of the dryer 32 ) are adjusted by the controller to balance the two operations by monitoring flowrates (the molar and/or volumetric flowrates) and temperatures of each of the reaction zone feed material 22 and the rate of production of the product 500 through discharging of the product 500 from the photobioreactor.
  • changes to the phototrophic biomass growth rate effected by changes to the rate of supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone material feed 22 are realized after a significant time lag (for example, in some cases, more than three (3) hours, and sometimes even longer) from the time when the change is effected to the rate of supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone feed material 22 .
  • changes to the thermal value of the heat transfer medium 30 which are based on the changes in the rate of supply (the molar rate of supply and/or the volumetric rate of supply) of the gaseous exhaust material reaction zone supply 24 to the reaction zone feed material 22 , are realized more quickly.
  • a thermal buffer is provided for storing any excess heat (in the form of the heat transfer medium 30 ) and introducing a time lag to the response of the heat transfer performance of the dryer 32 to the changes in the gaseous exhaust material reaction zone supply 24 .
  • the thermal buffer is a heat transfer medium storage tank.
  • an external source of heat may be required to supplement heating requirements of the dryer 32 during transient periods of supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone material 22 .
  • the use of a thermal buffer or additional heat may be required to accommodate changes to the rate of growth of the phototrophic biomass, or to accommodate start-up or shutdown of the process. For example, if growth of the phototrophic biomass is decreased or stopped, the dryer 32 can continue operating by using the stored heat in the buffer until it is consumed, or, in some embodiments, use a secondary source of heat.
  • a prophetic example exemplifying an embodiment of determining a target value of a phototrophic biomass growth indicator (eg. algae concentration in the reaction zone of a photobioreactor), and effecting operation of an embodiment of the above-described process, including modulating the molar rate of discharge of the phototrophic biomass-comprising product from the reaction zone based on a deviation of a detected value of the process parameter from the target value, will now be described.
  • a phototrophic biomass growth indicator eg. algae concentration in the reaction zone of a photobioreactor
  • an initial algae concentration in an aqueous medium, with suitable nutrients, is provided in a reaction zone of a photobioreactor.
  • Gaseous carbon dioxide is supplied to the reaction zone, and the reaction zone is exposed to light from a light source (such as LEDs), to effect growth of the algae.
  • a light source such as LEDs
  • the supplied water is flowed at a relatively moderate and constant rate such that the half (1 ⁇ 2) of the volume of the photobioreactor is exchanged per day, as it is found that periodically replacing water volume within the reaction zone with fresh water promotes growth of the algae and enables attaining the target value in a shorter period of time. If the algae growth rate is lower than the dilution rate, and the detected algae concentration drops at least 2% from the algae concentration set point at any time during this determination exercise, the control system will stop or reduce the dilution rate to avoid further dilution of the algae concentration in the reaction zone.
  • the algae concentration will increase above the initial algae concentration set point, and the control system will increase the algae concentration set point so as to keep pace with the increasing algae concentration, while maintaining the same dilution rate.
  • the algae concentration may increase to 0.52 grams per litre, at which point the control system will increase the algae concentration set point to 0.51.
  • the control system continues to monitor the increase in algae concentration and, in parallel, increasing the target algae concentration.
  • the target algae concentration is locked at its existing value to become the target value, and dilution rate is then modulated so that harvesting of the algae is effected at a rate which is equivalent to the growth rate of the algae within the photobioreactor when the algae concentration is at the target value.
  • Algae growth rate corresponds with algae concentration. When a considerable change in the algae growth rate is detected, this is indicative of growth of algae within the reaction zone at, or close to, its maximum rate, and this growth rate corresponds to an algae concentration at the target value.
  • algae concentration in the reaction zone at the target value by controlling dilution rate, algae growth is maintained at or close to the maximum, and, as a corollary, over time, the rate of discharge of algae is optimized.

Abstract

A process of growing a phototrophic biomass in a reaction zone, including a reaction mixture that is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, is provided. The reaction mixture includes phototrophic biomass that is operative for growth within the reaction zone. In one aspect, the carbon dioxide supply is modulated in response to detected process parameters. In another aspect, inputs to the reaction zone are modulated based on changes to the carbon dioxide supply. In another aspect, dilution of the carbon dioxide-comprising supply is effected. In another aspect, pressure of the carbon dioxide-comprising supply is increased. In another aspect, water is condensed from the carbon dioxide-comprising supply and recovered for re-use. In another aspect, the produced phototrophic biomass is harvested at a rate which approximates a predetermined mass growth rate of the phototrophic biomass.

Description

    PRIORITY INFORMATION
  • This application is a continuation-in-part of U.S. patent application Ser. No. 13/022,396, filed on Feb. 7, 2011, which is a continuation-in-part of U.S. patent application Ser. No. 12/784,172, filed on May 20, 2010. This application claims priority to Canadian Patent Application No. 2,738,516, filed on Apr. 29, 2011. This application is also a continuation-in-part of International (PCT) Application No. PCT/CA2011/000574, which has an international filing date of May 18, 2011, which PCT application is a continuation-in-part of U.S. patent application Ser. No. 12/784,215, filed on May 20, 2010, and is also a continuation-in-part of U.S. patent application Ser. No. 12/784,181, filed on May 20, 2010, and is also a continuation-in-part of U.S. patent application Ser. No. 12/784,172, filed on May 20, 2010, and is also a continuation-in-part of U.S. patent application Ser. No. 12/784,141, filed on May 20, 2010, and is also a continuation-in-part of U.S. application Ser. No. 12/784,126, filed on May 20, 2010, and is also a continuation-in-part of U.S. patent application Ser. No. 12/784,106, filed on May 20, 2010, and is also a continuation-in-part of U.S. Application No. 13/022,396, filed on Feb. 7, 2011. This application is also a continuation-in-part of International (PCT) Application No. ______, filed on Nov. 18, 2011. These applications are incorporated herein by reference in their entirety.
  • FIELD
  • The present disclosure relates to a process for growing biomass.
  • BACKGROUND
  • The cultivation of phototrophic organisms has been widely practised for purposes of producing a fuel source. Exhaust gases from industrial processes have also been used to promote the growth of phototrophic organisms by supplying carbon dioxide for consumption by phototrophic organisms during photosynthesis. By providing exhaust gases for such purpose, environmental impact is reduced and, in parallel a potentially useful fuel source is produced. Challenges remain, however, to render this approach more economically attractive for incorporation within existing facilities.
  • SUMMARY
  • In one aspect, there is provided a process of growing a phototrophic biomass in a reaction zone. The reaction zone includes a reaction mixture that is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, wherein the reaction mixture includes phototrophic biomass that is operative for growth within the reaction zone. While exposing the reaction mixture to photosynthetically active light radiation and effecting growth of the phototrophic biomass in the reaction zone, wherein the effected growth includes growth effected by photosynthesis, and while discharging phototrophic biomass from the reaction zone, when a phototrophic biomass growth indicator is different than a target value of the phototrophic biomass growth indicator, modulating the rate of discharge of mass the phototrophic biomass from the reaction zone, wherein the target value of the phototrophic biomass growth indicator is based upon a predetermined growth rate of the phototrophic biomass within the reaction mixture which is disposed within the reaction zone and is being exposed to photosynthetically active light radiation.
  • In another aspect, there is provided another process of growing a phototrophic biomass in a reaction zone. The reaction zone includes a production purpose reaction mixture that is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, wherein the production purpose reaction mixture includes production purpose phototrophic biomass that is operative for growth within the reaction zone. While exposing the reaction mixture to photosynthetically active light radiation and effecting growth of the production purpose phototrophic biomass in the reaction zone, wherein the effected growth includes growth effected by photosynthesis, and while discharging production purpose phototrophic biomass from the reaction zone, when a phototrophic biomass growth indicator is different than a predetermined target value of the phototrophic biomass growth indicator, modulating the rate of discharge of mass of the production purpose phototrophic biomass from the reaction zone, wherein the target value of the phototrophic biomass growth indicator is based upon a predetermined growth rate of the production purpose phototrophic biomass within the reaction mixture which is disposed within the reaction zone and is being exposed to photosynthetically active light radiation. The predetermination of the target value includes supplying an evaluation purpose reaction mixture that is representative of the production purpose reaction mixture and is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, such that the phototrophic biomass of the evaluation purpose reaction mixture is an evaluation purpose phototrophic biomass that is representative of the production purpose phototrophic biomass. While the evaluation purpose reaction mixture disposed in the reaction zone is exposed to photosynthetically active light radiation and growth of the evaluation purpose phototrophic biomass is being effected within the evaluation purpose reaction mixture, at least periodically detecting the phototrophic biomass growth indicator to provide a plurality of detected values of the phototrophic biomass growth indicator that have been detected during a time period, and calculating growth rates of the evaluation purpose phototrophic biomass based on the plurality of detected values of the phototrophic biomass growth indicator such that a plurality of growth rates of the evaluation purpose phototrophic biomass are determined during the time period A relationship between the growth rate of the evaluation purpose phototrophic biomass and the phototrophic biomass growth indicator is established, based on the calculated growth rates and the detected values of the phototrophic biomass growth indicator upon which the calculated growth rates have been based, such that the established relationship between the growth rate of the evaluation purpose phototrophic biomass and the phototrophic biomass growth indicator is representative of a relationship between the growth rate of the production purpose phototrophic biomass within the reaction zone and the phototrophic biomass growth indicator, and such that the relationship between the growth rate of the production purpose phototrophic biomass within the reaction zone and the phototrophic biomass growth indicator is thereby determined. The predetermined growth rate of the production purpose phototrophic biomass is selected. The phototrophic biomass growth indicator target value is defined as the phototrophic biomass growth indicator at which the predetermined growth rate is being effected based on the determined relationship between the growth rate of the production purpose phototrophic biomass within the reaction zone and the phototrophic biomass growth indicator, such that the correlation between the phototrophic biomass growth indicator target value and the predetermined growth rate is also thereby effected.
  • In another aspect, there is provided another process for growing a phototrophic biomass in a reaction zone. The reaction zone includes a reaction mixture that is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, wherein the reaction mixture includes phototrophic biomass that is operative for growth within the reaction zone. While exposing the reaction mixture disposed in the reaction zone to photosynthetically active light radiation and growth of the phototrophic biomass is being effected within the reaction mixture, discharging mass of the phototrophic biomass from the reaction zone at a rate that is within 10% of the rate at which the growth of mass of the phototrophic biomass is being effected within the reaction zone. The effected growth of the phototrophic biomass within the reaction zone is being effected at a rate that is at least 90% of the maximum rate of growth of mass of the phototrophic biomass within the reaction mixture which is disposed in reaction zone and is being exposed to the photosynthetically active light radiation.
  • In another aspect, there is provided another process for growing phototrophic biomass in a reaction zone. The reaction zone includes a reaction mixture that is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, wherein the reaction mixture includes phototrophic biomass that is operative for growth within the reaction zone. While exposing the reaction mixture to photosynthetically active light radiation and effecting growth of the phototrophic biomass within the reaction mixture disposed in the reaction zone, wherein the effected growth of the phototrophic biomass includes growth which is effected by the photosynthesis, discharging phototrophic biomass from the reaction zone such that the rate of discharge of mass of the phototrophic biomass is within 10% of the rate at which the growth of mass of the phototrophic biomass is being effected.
  • In another aspect, there is provided a process for growing a phototrophic biomass in a reaction zone, wherein the reaction zone includes a reaction mixture that is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, wherein the reaction mixture includes phototrophic biomass that is operative for growth within the reaction zone, wherein the growth of the phototrophic biomass includes that which is effected by the photosynthesis, comprising: while the gaseous exhaust material is being discharged by the gaseous exhaust material producing process, wherein any of the gaseous exhaust material being supplied to the reaction zone defines a gaseous exhaust material reaction zone supply, supply of the gaseous exhaust material reaction zone supply to the reaction zone is modulated based on detection of at least one carbon dioxide processing capacity indicator.
  • In another aspect, there is provided a process for growing a phototrophic biomass in a reaction zone, wherein the reaction zone includes a reaction mixture that is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, wherein the reaction mixture includes phototrophic biomass that is operative for growth within the reaction zone, wherein the growth of the phototrophic biomass includes that which is effected by the photosynthesis, comprising: while the gaseous exhaust material is being discharged by the gaseous exhaust material producing process, and while at least a fraction of the gaseous exhaust material is being supplied to the reaction zone, wherein the at least a fraction of the gaseous exhaust material which is being supplied to the reaction zone defines a gaseous exhaust material reaction zone supply, and there is effected a reduction in the molar rate of supply, or the termination of the supply, of the gaseous exhaust material reaction zone supply being supplied to the reaction zone, the process further includes initiating the supply of a supplemental gas-comprising material, or increasing the molar rate of supply of a supplemental gas-comprising material, to the reaction zone.
  • In another aspect, there is provided a process for growing a phototrophic biomass in a reaction zone, wherein the reaction zone includes a reaction mixture that is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, wherein the reaction mixture includes phototrophic biomass that is operative for growth within the reaction zone, wherein the growth of the phototrophic biomass includes that which is effected by the photosynthesis, comprising: supplying gaseous exhaust material reaction zone supply to the reaction zone, wherein the gaseous exhaust material reaction zone supply is defined by at least a fraction of gaseous exhaust material produced by a gaseous exhaust material producing process, wherein the gaseous exhaust material reaction zone supply includes carbon dioxide, and supplying a supplemental aqueous material supply from a container to the reaction zone, wherein the supplemental aqueous material supply includes aqueous material that has been condensed from the gaseous exhaust material reaction zone supply and collected in the container, wherein the condensing of the aqueous material is effected while the gaseous exhaust material reaction zone supply is being cooled before being supplied to the reaction zone.
  • In another aspect, there is provided a process for growing a phototrophic biomass in a reaction zone, wherein the reaction zone includes a reaction mixture that is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, wherein the reaction mixture includes phototrophic biomass that is operative for growth within the reaction zone, wherein the growth of the phototrophic biomass includes that which is effected by the photosynthesis, comprising: while carbon dioxide is being discharged by the gaseous exhaust material producing process, and while at least a fraction of the discharged carbon dioxide is being supplied to the reaction zone, wherein the at least a fraction of the discharged carbon dioxide which is being supplied to the reaction zone defines a discharged carbon dioxide reaction zone supply, at least one material input to the reaction zone is modulated based on, at least, the molar rate at which the discharged carbon dioxide reaction zone supply is being supplied to the reaction zone.
  • In another aspect, there is provided a process for growing a phototrophic biomass in a reaction zone, wherein the reaction zone includes a reaction mixture that is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, wherein the reaction mixture includes phototrophic biomass that is operative for growth within the reaction zone, wherein the growth of the phototrophic biomass includes that which is effected by the photosynthesis, comprising: while carbon dioxide is being discharged by the gaseous exhaust material producing process, and while at least a fraction of the discharged carbon dioxide is being supplied to the reaction zone, wherein the at least a fraction of the discharged carbon dioxide which is being supplied to the reaction zone defines a discharged carbon dioxide reaction zone supply, at least one material input to the reaction zone is modulated based on, at least, an indication of the molar rate at which the discharged carbon dioxide reaction zone supply is being supplied to the reaction zone.
  • In another aspect, there is provided a process for growing a phototrophic biomass in a reaction zone, wherein the reaction zone includes a reaction mixture that is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, wherein the reaction mixture includes phototrophic biomass that is operative for growth within the reaction zone, wherein the growth of the phototrophic biomass includes that which is effected by the photosynthesis, comprising: while carbon dioxide is being discharged by the gaseous exhaust material producing process, and while at least a fraction of the discharged carbon dioxide is being supplied to the reaction zone, wherein the at least a fraction of the discharged carbon dioxide which is being supplied to the reaction zone defines a discharged carbon dioxide reaction zone supply, when an indication of a change in the molar rate of supply of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone is detected, modulation of at least one material input to the reaction zone is effected.
  • In another aspect, there is provided a process for growing a phototrophic biomass in a reaction zone, wherein the reaction zone includes a reaction mixture that is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, wherein the reaction mixture includes phototrophic biomass that is operative for growth within the reaction zone, wherein the growth of the phototrophic biomass includes that which is effected by the photosynthesis, comprising: while carbon dioxide is being discharged by the gaseous exhaust material producing process, and while at least a fraction of the discharged carbon dioxide is being supplied to the reaction zone, wherein the at least a fraction of the discharged carbon dioxide which is being supplied to the reaction zone defines a discharged carbon dioxide reaction zone supply, when a decrease in the molar rate of supply of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone is detected, or when an indication of a decrease in the molar rate of supply of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone is detected, either the molar rate of supply of a supplemental carbon dioxide supply to the reaction zone is increased, or supply of the supplemental carbon dioxide supply to the reaction zone is initiated.
  • In another aspect, there is provided a process for growing a phototrophic biomass in a reaction zone, wherein the reaction zone includes a reaction mixture that is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, wherein the reaction mixture includes phototrophic biomass that is operative for growth within the reaction zone, wherein the growth of the phototrophic biomass includes that which is effected by the photosynthesis, comprising: prior to supplying reaction zone carbon dioxide supply to the reaction zone at a pressure sufficient to effect flow of the reaction zone carbon dioxide supply through a vertical extent of the reaction zone of at least a seventy (70) inches, increasing pressure of the reaction zone carbon dioxide supply by flowing the reaction zone carbon dioxide supply through an eductor or a jet pump.
  • In another aspect, there is provided a process for growing a phototrophic biomass in a reaction zone, wherein the reaction zone includes a reaction mixture that is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, wherein the reaction mixture includes phototrophic biomass that is operative for growth within the reaction zone, wherein the growth of the phototrophic biomass includes that which is effected by the photosynthesis, comprising: prior to supplying reaction zone carbon dioxide supply to the reaction zone at a pressure sufficient to effect flow of the reaction zone carbon dioxide supply through a vertical extent of the reaction zone of at least a seventy (70) inches, transferring pressure energy to the reaction zone carbon dioxide supply from a motive fluid flow using the venturi effect.
  • In another aspect, there is provided a process for growing a phototrophic biomass in a reaction zone, wherein the reaction zone includes a reaction mixture that is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, wherein the reaction mixture includes phototrophic biomass that is operative for growth within the reaction zone, wherein the growth of the phototrophic biomass includes that which is effected by the photosynthesis, comprising: while a reaction zone feed material is supplied to the reaction zone, supplying the reaction zone feed material with a supplemental gaseous dilution agent, wherein the molar concentration of carbon dioxide of the supplemental gaseous dilution agent is less than the molar concentration of carbon dioxide of the gaseous exhaust material reaction zone supply which is being supplied to the reaction zone feed material.
  • In another aspect, there is provided a process for growing a phototrophic biomass in a reaction zone, wherein the reaction zone includes a reaction mixture that is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, wherein the reaction mixture includes phototrophic biomass that is operative for growth within the reaction zone, wherein the growth of the phototrophic biomass includes that which is effected by the photosynthesis, comprising: while a carbon dioxide concentrated supply is being supplied, admixing the carbon dioxide concentrated supply with a supplemental gaseous dilution agent to effect production of a diluted carbon dioxide supply, wherein the molar concentration of carbon dioxide of the diluted carbon dioxide supply is less than the molar concentration of carbon dioxide of the carbon dioxide concentrated supply; and supplying at least a fraction of the diluted carbon dioxide reaction zone supply to the reaction zone.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The process of the preferred embodiments of the invention will now be described with the following accompanying drawing:
  • FIG. 1 is a process flow diagram of an embodiment of the process;
  • FIG. 2 is a process flow diagram of another embodiment of the process;
  • FIG. 3 is a schematic illustration of a portion of a fluid passage of an embodiment of the process;
  • FIG. 4A is a sectional side elevation view of an embodiment of a mass concentration sensor mounted to a vessel;
  • FIG. 4B is a view of the sensor of FIG. 4A taken along lines 4B-4B;
  • FIG. 5A is a fragmentary side elevation view of another embodiment of a mass concentration sensor configured for mounting to a vessel;
  • FIG. 5B is a view of the sensor of FIG. 5B taken along lines 5A-5A;
  • FIG. 6 is a schematic illustration of another embodiment of a mass concentration sensor;
  • FIG. 7 is a graph generally illustrating typical algae growth rate and concentration as a function of time;
  • FIG. 8 is a graph generally illustrating a comparison between yield from typical harvesting of algae at the concentration correlated with maximum growth rate versus growth rate of algae in a “batch” scenario;
  • FIGS. 9A and 9B illustrates, generally, the growth of mass concentration of phototrophic biomass as a function of mass concentration of phototrophic biomass, and rate growth of mass concentration of phototrophic biomass versus mass concentration of phototrophic biomass, and how the maximum rate of growth of mass concentration of phototrophic biomass is determined.
  • DETAILED DESCRIPTION
  • Reference throughout the specification to “some embodiments” means that a particular feature, structure, or characteristic described in connection with some embodiments are not necessarily referring to the same embodiments. Furthermore, the particular features, structure, or characteristics may be combined in any suitable manner with one another.
  • Referring to FIG. 1, there is provided a process of growing a phototrophic biomass in a reaction zone 10. The reaction zone 10 includes a reaction mixture that is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation. The reaction mixture includes phototrophic biomass material, carbon dioxide, and water. In some embodiments, the reaction zone includes phototrophic biomass and carbon dioxide disposed in an aqueous medium. Within the reaction zone, the phototrophic biomass is disposed in mass transfer communication with both of carbon dioxide and water. In some embodiments, for example, the reaction mixture includes phototrophic biomass disposed in an aqueous medium, and carbon dioxide-enriched phototrophic biomass is provided upon the receiving of carbon dioxide by the phototrophic biomass.
  • “Phototrophic organism” is an organism capable of phototrophic growth in the aqueous medium upon receiving light energy, such as plant cells and micro-organisms. The phototrophic organism is unicellular or multicellular. In some embodiments, for example, the phototrophic organism is an organism which has been modified artificially or by gene manipulation. In some embodiments, for example, the phototrophic organism is an algae. In some embodiments, for example, the algae is microalgae.
  • “Phototrophic biomass” is at least one phototrophic organism. In some embodiments, for example, the phototrophic biomass includes more than one species of phototrophic organisms.
  • Reaction zone 10” defines a space within which the growing of the phototrophic biomass is effected. In some embodiments, for example, the reaction zone 10 is provided in a photobioreactor 12. In some embodiments, for example, pressure within the reaction zone is atmospheric pressure.
  • Photobioreactor 12” is any structure, arrangement, land formation or area that provides a suitable environment for the growth of phototrophic biomass. Examples of specific structures which can be used is a photobioreactor 12 by providing space for growth of phototrophic biomass using light energy include, without limitation, tanks, ponds, troughs, ditches, pools, pipes, tubes, canals, and channels. Such photobioreactors may be either open, closed, partially closed, covered, or partially covered. In some embodiments, for example, the photobioreactor 12 is a pond, and the pond is open, in which case the pond is susceptible to uncontrolled receiving of materials and light energy from the immediate environments. In other embodiments, for example, the photobioreactor 12 is a covered pond or a partially covered pond, in which case the receiving of materials from the immediate environment is at least partially interfered with. The photobioreactor 12 includes the reaction zone 10 which includes the reaction mixture. In some embodiments, the photobioreactor 12 is configured to receive a supply of phototrophic reagents (and, in some of these embodiments, optionally, supplemental nutrients), and is also configured to effect discharge of phototrophic biomass which is grown within the reaction zone 10. In this respect, in some embodiments, the photobioreactor 12 includes one or more inlets for receiving the supply of phototrophic reagents and supplemental nutrients, and also includes one or more outlets for effecting the recovery or harvesting of biomass which is grown within the reaction zone 10. In some embodiments, for example, one or more of the inlets are configured to be temporarily sealed for periodic or intermittent time intervals. In some embodiments, for example, one or more of the outlets are configured to be temporarily sealed or substantially sealed for periodic or intermittent time intervals. The photobioreactor 12 is configured to contain the reaction mixture which is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation. The photobioreactor 12 is also configured so as to establish photosynthetically active light radiation (for example, a light of a wavelength between about 400-700 nm, which can be emitted by the sun or another light source) within the photobioreactor 12 for exposing the phototrophic biomass. The exposing of the reaction mixture to the photosynthetically active light radiation effects photosynthesis and growth of the phototrophic biomass. In some embodiments, for example, the established light radiation is provided by an artificial light source 14 disposed within the photobioreactor 12. For example, suitable artificial lights sources include submersible fiber optics or light guides, light-emitting diodes (“LEDs”), LED strips and fluorescent lights. Any LED strips known in the art can be adapted for use in the photobioreactor 12. In the case of the submersible LEDs, in some embodiments, for example, energy sources include alternative energy sources, such as wind, photovoltaic cells, fuel cells, etc. to supply electricity to the LEDs. Fluorescent lights, external or internal to the photobioreactor 12, can be used as a back-up system. In some embodiments, for example, the established light is derived from a natural light source 16 which has been transmitted from externally of the photobioreactor 12 and through a transmission component. In some embodiments, for example, the transmission component is a portion of a containment structure of the photobioreactor 12 which is at least partially transparent to the photosynthetically active light radiation, and which is configured to provide for transmission of such light to the reaction zone 10 for receiving by the phototrophic biomass. In some embodiments, for example, natural light is received by a solar collector, filtered with selective wavelength filters, and then transmitted to the reaction zone 10 with fiber optic material or with a light guide. In some embodiments, for example, both natural and artificial lights sources are provided for effecting establishment of the photosyntetically active light radiation within the photobioreactor 12.
  • “Aqueous medium” is an environment that includes water. In some embodiments, for example, the aqueous medium also includes sufficient nutrients to facilitate viability and growth of the phototrophic biomass. In some embodiments, for example, supplemental nutrients may be included such as one of, or both of, NOX and SOX. Suitable aqueous media are discussed in detail in: Rogers, L. J. and Gallon J. R. “Biochemistry of the Algae and Cyanobacteria,” Clarendon Press Oxford, 1988; Burlew, John S. “Algal Culture: From Laboratory to Pilot Plant.” Carnegie Institution of Washington Publication 600. Washington, D.C., 1961 (hereinafter “Burlew 1961”); and Round, F. E. The Biology of the Algae. St Martin's Press, New York, 1965; each of which is incorporated herein by reference). A suitable supplemental nutrient composition, known as “Bold's Basal Medium”, is described in Bold, H. C. 1949, The morphology of Chlamydomonas chlamydogama sp. nov. Bull. Torrey Bot. Club. 76: 101-8 (see also Bischoff, H. W. and Bold, H. C. 1963. Phycological Studies IV. Some soil algae from Enchanted Rock and related algal species, Univ. Texas Publ. 6318: 1-95, and Stein, J. (ED.) Handbook of Phycological Methods, Culture methods and growth measurements, Cambridge University Press, pp. 7-24).
  • “Modulating”, with respect to a process variable, such as an input or an output, means any one of initiating, terminating, increasing, decreasing, or otherwise changing the process parameter, such as that of an input or an output.
  • In some embodiments, the process includes supplying the reaction zone 10 with carbon dioxide. In some of these embodiments, for example, the carbon dioxide supplied to the reaction zone 10 is derived from a gaseous exhaust material 18 which includes carbon dioxide. In this respect, in some embodiments, the carbon dioxide is supplied by a gaseous exhaust material producing process 20, and the supplying is, therefore, effected from the gaseous exhaust material 18 being discharged by a gaseous exhaust material producing process 20. In some embodiments, for example, at least a fraction of the carbon dioxide being discharged by the gaseous exhaust material producing process 20 is supplied to the reaction zone 10, wherein the at least a fraction of the discharged carbon dioxide which is being supplied to the reaction zone 10 defines a discharged carbon dioxide reaction zone supply. In some embodiments, for example, at least a fraction of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 is supplied to the reaction zone 10, wherein the at least a fraction of the gaseous exhaust material 18 which is being supplied to the reaction zone 10 defines gaseous exhaust material reaction zone supply 24, such that the discharged carbon dioxide reaction zone supply is supplied to the reaction zone 10 as a portion of the gaseous exhaust material reaction zone supply 24 (along with other non-carbon dioxide materials deriving from the gaseous exhaust material 18). In some of these embodiments, for example, the exposing of the phototrophic biomass disposed in the reaction zone 10 to photosynthetically active light radiation is effected while the gaseous exhaust material reaction zone supply 24 is being supplied to the reaction zone 10.
  • In some embodiments, for example, the gaseous exhaust material 18 includes a carbon dioxide concentration of at least 2 volume % based on the total volume of the gaseous exhaust material 18. In this respect, in some embodiments, for example, the gaseous exhaust material reaction zone supply 24 includes a carbon dioxide concentration of at least 2 volume % based on the total volume of the gaseous exhaust material reaction zone supply 24. In some embodiments, for example, the gaseous exhaust material 18 includes a carbon dioxide concentration of at least 4 volume % based on the total volume of the gaseous exhaust material 18. In this respect, in some embodiments, for example, the gaseous exhaust material reaction zone supply 24 includes a carbon dioxide concentration of at least 4 volume % based on the total volume of the gaseous exhaust material reaction zone supply 24. In some embodiments, for example, the gaseous exhaust material reaction zone supply 24 also includes one of, or both of, NOX and SOX.
  • In some embodiments, for example, the at least a fraction of the gaseous exhaust material 18 being supplied to the reaction zone 10 has been treated prior to being supplied to the reaction zone 10 so as to effect removal of undesirable components of the gaseous exhaust material 18 such that the material composition of the at least a fraction of the gaseous material 18 being supplied to the reaction zone 10 is different relative to the material composition of the gaseous exhaust material 18 being discharged from the gaseous exhaust material producing process 20.
  • The gaseous exhaust material producing process 20 includes any process which effects production and discharge of the gaseous exhaust material 18. In some embodiments, for example, at least a fraction of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 is supplied to the reaction zone 10. The at least a fraction of the gaseous exhaust material 18, being discharged by the gaseous exhaust material producing process 20, and supplied to the reaction zone 10, includes carbon dioxide derived from the gaseous exhaust material producing process 20. In some embodiments, for example, the gaseous exhaust material producing process 20 is a combustion process. In some embodiments, for example, the combustion process is effected in a combustion facility. In some of these embodiments, for example, the combustion process effects combustion of a fossil fuel, such as coal, oil, or natural gas. For example, the combustion facility is any one of a fossil fuel-fired power plant, an industrial incineration facility, an industrial furnace, an industrial heater, or an internal combustion engine. In some embodiments, for example, the combustion facility is a cement kiln.
  • Reaction zone feed material 22 is supplied to the reaction zone 10 such that carbon dioxide of the reaction zone feed material 22 is received within the reaction zone 10. At least a fraction of the carbon dioxide of the reaction zone feed material 22 is derived from the gaseous exhaust material 18. During at least some periods of operation of the process, at least a fraction of the reaction zone feed material 22 is supplied by the gaseous exhaust material 18 which is discharged from the gaseous exhaust material producing process 20. As discussed above, any of the gaseous exhaust material 18 that is supplied to the reaction zone 10 is supplied as a gaseous exhaust material reaction zone supply 24. In some of these embodiments, for example, the exposing of the phototrophic biomass disposed in the reaction zone 10 to photosynthetically active light radiation is effected while the gaseous exhaust material reaction zone supply 24 is being supplied to the reaction zone 10. It is understood that, in some embodiments, not the entirety of the gaseous exhaust material 18 is necessarily supplied to the reaction zone 10 as the gaseous exhaust material reaction zone supply 24, such that the reaction zone feed material 22 includes the gaseous exhaust material reaction zone supply 24. It is also understood that, in some embodiments, the gaseous exhaust material 18, or at least a fraction thereof, is not necessarily supplied to the reaction zone 10 as the gaseous exhaust material reaction zone supply 24 for the entire time period during which the process is operational. The gaseous exhaust material reaction zone supply 24 includes carbon dioxide. In some of these embodiments, for example, the gaseous exhaust material reaction zone supply 24 is at least a fraction of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20. In some cases, the entirety of the gaseous exhaust material 18 discharged by the gaseous exhaust producing process 20 is supplied to the gaseous exhaust material reaction zone supply 24.
  • With respect to the reaction zone feed material 22, the reaction zone feed material 22 is a fluid. In some embodiments, for example, the reaction zone feed material 22 is a gaseous material. In some embodiments, for example, the reaction zone feed material 22 includes gaseous material disposed in liquid material. In some embodiments, for example, the liquid material is an aqueous material. In some of these embodiments, for example, at least a fraction of the gaseous material is dissolved in the liquid material. In some of these embodiments, for example, at least a fraction of the gaseous material is disposed as a gas dispersion in the liquid material. In some of these embodiments, for example, and during at least some periods of operation of the process, the gaseous material of the reaction zone feed material 22 includes carbon dioxide supplied by the gaseous exhaust material reaction zone supply 24. In some of these embodiments, for example, the reaction zone feed material 22 is supplied to the reaction zone 10 as a flow. In some embodiments, for example, a flow of reaction zone feed material 22 includes a flow of the gaseous exhaust material reaction zone feed material supply 24. In some embodiments, for example, a flow of reaction zone feed material 22 is a flow of the gaseous exhaust material reaction zone feed material supply 24.
  • In some embodiments, for example, the reaction zone feed material 22 is supplied to the reaction zone 10 as one or more reaction zone feed material flows. For example, each of the one or more reaction zone feed material flows is flowed through a respective reaction zone feed material fluid passage. In some of those embodiments where there are more than one reaction zone feed material flow, the material composition varies between the reaction zone feed material flows.
  • In some embodiments, for example, the reaction zone feed material 22 is cooled prior to supply to the reaction zone 10 so that the temperature of the reaction zone feed material 22 aligns with a suitable temperature at which the phototrophic biomass can grow In some embodiments, for example, the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone material 22 is disposed at a temperature of between 110 degrees Celsius and 150 degrees Celsius. In some embodiments, for example, the temperature of the gaseous exhaust material reaction zone supply 24 is about 132 degrees Celsius. In some embodiments, the temperature at which the gaseous exhaust material reaction zone supply 24 is disposed is much higher than this, and, in some embodiments, such as the gaseous exhaust material reaction zone supply 24 from a steel mill, the temperature is over 500 degrees Celsius. In some embodiments, for example, the reaction zone feed material 22, which includes the gaseous exhaust material reaction zone supply 24, is cooled to between 20 degrees Celsius and 50 degrees Celsius (for example, about 30 degrees Celsius). In some embodiments, the reaction zone feed material 22 is defined by the gaseous exhaust material reaction zone supply 24. Supplying the reaction zone feed material 22 at higher temperatures could hinder growth, or even kill, the phototrophic biomass in the reaction zone 10. In some of these embodiments, in effecting the cooling of the reaction zone feed material 22, at least a fraction of any water vapour of the gaseous exhaust material reaction zone supply 24 is condensed in a heat exchanger 26 (such as a condenser) and separated from the reaction zone feed material 22 as an aqueous material 70. In some embodiments, the resulting aqueous material 70 is supplied to a container 28 (described below) where it provides supplemental aqueous material supply 44 for supply to the reaction zone 10. In some embodiments, the condensing effects heat transfer from the reaction zone feed material 22 to a heat transfer medium 30, thereby raising the temperature of the heat transfer medium 30 to produce a heated heat transfer medium 30, and the heated heat transfer medium 30 is then supplied (for example, flowed) to a dryer 32 (discussed below), and heat transfer is effected from the heated heat transfer medium 30 to an intermediate concentrated reaction zone product 34 to effect drying of the intermediate concentrated reaction zone product 34 and thereby effect production of the final reaction zone product 36. In some embodiments, for example, after being discharged from the dryer 32, the heat transfer medium 30 is recirculated to the heat exchanger 26. Examples of a suitable heat transfer medium 30 include thermal oil and glycol solution.
  • In some embodiments, for example, the supply of the reaction zone feed material 22 to the reaction zone 10 effects agitation of at least a fraction of the phototrophic biomass disposed in the reaction zone 10. In this respect, in some embodiments, for example, the reaction zone feed material 22 is introduced to a lower portion of the reaction zone 10. In some embodiments, for example, the reaction zone feed material 22 is introduced from below the reaction zone 10 so as to effect mixing of the contents of the reaction zone 10. In some of these embodiments, for example, the effected mixing (or agitation) is such that any difference in concentration of mass of the phototrophic biomass between any two points in the reaction zone 10 is less than 20%. In some embodiments, for example, any difference in the mass concentration of the phototrophic biomass between any two points in the reaction zone 10 is less than 10%. In some of these embodiments, for example, the effected mixing is such that a homogeneous suspension is provided in the reaction zone 10. In those embodiments with a photobioreactor 12, for some of these embodiments, for example, the supply of the reaction zone feed material 22 is co-operatively configured with the photobioreactor 12 so as to effect the desired agitation of the at least a fraction of the phototrophic biomass disposed in the reaction zone 10.
  • With further respect to those embodiments where the supply of the reaction zone feed material 22 to the reaction zone 10 effects agitation of at least a fraction of the phototrophic biomass disposed in the reaction zone 10, in some of these embodiments, for example, the reaction zone feed material 22 flows through a gas injection mechanism, such as a sparger 40, before being introduced to the reaction zone 10. In some of these embodiments, for example, the sparger 40 provides reaction zone feed material 22 as a gas-liquid mixture, including fine gas bubbles entrained in a liquid phase, to the reaction zone 10 in order to maximize the interface contact area between the phototrophic biomass and the carbon dioxide (and, in some embodiments, for example, one of, or both of, SOX and NOX) of the reaction zone feed material 22. This assists the phototrophic biomass in efficiently absorbing the carbon dioxide (and, in some embodiments, other gaseous components) required for photosynthesis, thereby promoting the optimization of the growth rate of the phototrophic biomass. As well, in some embodiments, for example, the sparger 40 provides reaction zone feed material 22 in larger bubbles that agitate the phototrophic biomass in the reaction zone 10 to promote mixing of the components of the reaction zone 10. An example of a suitable sparger 40 is EDI FlexAir™ T-Series Tube Diffuser Model 91 X 1003 supplied by Environmental Dynamics Inc of Columbia, Mo. In some embodiments, for example, this sparger 40 is disposed in a photobioreactor 12 having a reaction zone 10 volume of 6000 litres and with an algae concentration of between 0.8 grams per litre and 1.5 grams per litre, and the reaction zone feed material 22 is a gaseous fluid flow supplied at a flowrate of between 10 cubic feet per minute and 20 cubic feet per minute, and at a pressure of about 68 inches of water.
  • With respect to the sparger 40, in some embodiments, for example, the sparger 40 is designed to consider the fluid head of the reaction zone 10, so that the supplying of the reaction zone feed material 22 to the reaction zone 10 is effected in such a way as to promote the optimization of carbon dioxide absorption by the phototrophic biomass. In this respect, bubble sizes are regulated so that they are fine enough to promote optimal carbon dioxide absorption by the phototrophic biomass from the reaction zone feed material. Concomitantly, the bubble sizes are large enough so that at least a fraction of the bubbles rise through the entire height of the reaction zone 10, while mitigating against the reaction zone feed material 22 “bubbling through” the reaction zone 10 and being released without being absorbed by the phototrophic biomass. To promote the realization of an optimal bubble size, in some embodiments, the pressure of the reaction zone feed material 22 is controlled using a pressure regulator upstream of the sparger 40.
  • With respect to those embodiments where the reaction zone 10 is disposed in a photobioreactor 12, in some of these embodiments, for example, the sparger 40 is disposed externally of the photobioreactor 12. In other embodiments, for example, the sparger 40 is disposed within the photobioreactor 12. In some of these embodiments, for example, the sparger 40 extends from a lower portion of the photobioreactor 12 (and within the photobioreactor 12).
  • In one aspect, carbon dioxide is supplied to the reaction zone 10, and the supplied carbon dioxide defines the reaction zone carbon dioxide supply 2402. The reaction zone carbon dioxide supply 2402 is supplied to the reaction zone 10 at a pressure which effects flow of the reaction zone carbon dioxide supply through a vertical extent of the reaction zone of at least seventy (70) inches. In some embodiments, for example, the vertical extent is at least 10 feet. In some embodiments, for example, the vertical extent is at least 20 feet. In some embodiments, for example, the vertical extent is at least 30 feet. In some embodiments, for example, the pressure of the reaction zone carbon dioxide supply 2402 is increased before being supplied to the reaction zone 10. In some embodiments, the increase in pressure of the reaction zone carbon dioxide supply 2402 is effected while the gaseous exhaust material 18 is being produced by the gaseous exhaust material producing process 20. In some embodiments, for example the increase in pressure of the reaction zone carbon dioxide supply 2402 is effected while the reaction zone carbon dioxide supply is being supplied to the reaction zone 10. In some embodiments, for example, the exposing of the phototrophic biomass disposed in the reaction zone 10 to photosynthetically active light radiation is effected while the reaction zone carbon dioxide supply 2402 is being supplied to the reaction zone 10.
  • In some embodiments, for example, the pressure increase is at least partially effected by a prime mover 38. For those embodiments where the pressure increase is at least partially effected by the prime mover 38. An example of a suitable prime mover 38, for embodiments where the reaction zone carbon dioxide supply 2402 is a portion of the reaction zone feed material 22, and the reaction zone feed material 22 includes liquid material, is a pump. Examples of a suitable prime mover 38, for embodiments where the pressure increase is effected to a gaseous flow, include a blower, a compressor, and an air pump. In other embodiments, for example, the pressure increase is effected by a jet pump or eductor.
  • Where the pressure increase is effected by a jet pump or eductor, in some of these embodiments, for example, the reaction zone carbon dioxide supply 2402 is supplied to the jet pump or eductor and pressure energy is transferred to the reaction zone carbon dioxide supply from another flowing fluid (the “motive fluid flow”) using the venturi effect to effect a pressure increase in the reaction zone carbon dioxide supply. In this respect, in some embodiments, for example, and referring to FIG. 3, a motive fluid flow 700 is provided, wherein material of the motive fluid flow 700 includes a motive fluid pressure PM1. In this respect also, a lower pressure reaction zone carbon dioxide supply 2402A is provided including a pressure PE, wherein the lower pressure state carbon dioxide supply 2402A includes the reaction zone carbon dioxide supply 2402. In some embodiments, the lower pressure reaction zone carbon dioxide supply 2402A is defined by the reaction zone carbon dioxide supply 2402. PM1 of the motive fluid flow is greater than PE of the lower pressure state carbon dioxide supply 2402A. Pressure of the motive fluid flow 700 is reduced from PM1 to PM2, such that PM2 is less than PE, by flowing the motive fluid flow 700 from an upstream fluid passage portion 702 to an intermediate downstream fluid passage portion 704. The intermediate downstream fluid passage portion 704 is characterized by a smaller cross-sectional area relative to the upstream fluid passage portion 702. By flowing the motive fluid flow 700 from the upstream fluid passage portion 702 to the intermediate downstream fluid passage portion 704, static pressure energy is converted to kinetic energy. When the pressure of the motive fluid flow 700 has becomes reduced to PM2, fluid communication between the motive fluid flow 700 and the lower pressure state carbon dioxide supply 2402A is effected such that the lower pressure state carbon dioxide supply 2402A is induced to mix with the motive fluid flow 700 in the intermediate downstream fluid passage portion 704, in response to the pressure differential between the lower pressure state carbon dioxide supply 2402A and the motive fluid flow 700, to produce a reaction zone carbon dioxide supply-comprising mixture 2404 which includes the reaction zone carbon dioxide supply 2402. At least a fraction of the reaction zone carbon dioxide supply-comprising mixture 2404 is supplied to the reaction zone 10. Pressure of the reaction zone carbon dioxide supply-comprising mixture 2404, which includes the reaction zone carbon dioxide supply 2402, is increased to PM3, such that the pressure of the reaction zone carbon dioxide supply 2402 is also increased to PM3. PM3 is greater than PE and is also sufficient to effect supply of the reaction zone carbon dioxide supply 2402 to the reaction zone 10 and, upon supply of the reaction zone carbon dioxide supply 2402 to the reaction zone 10, effect flow of the reaction zone carbon dioxide supply 2402 through a vertical extent of the reaction zone 10 of at least seventy (70) inches. In some embodiments, for example, PM3 is greater than PE and is also sufficient to effect supply of the reaction zone carbon dioxide supply 2402 to the reaction zone 10 and, upon supply of the reaction zone carbon dioxide supply 2402 to the reaction zone 10, effect flow of the reaction zone carbon dioxide supply 2402 through a vertical extent of the reaction zone 10 of at least 10 feet. In some embodiments, for example, PM3 is greater than PE and is also sufficient to effect supply of the reaction zone carbon dioxide supply 2402 to the reaction zone 10 and, upon supply of the reaction zone carbon dioxide supply 2402 to the reaction zone 10, effect flow of the reaction zone carbon dioxide supply 2402 through a vertical extent of the reaction zone 10 of at least 20 feet. In some embodiments, for example, PM3 is greater than PE and is also sufficient to effect supply of the reaction zone carbon dioxide supply 2402 to the reaction zone 10 and, upon supply of the reaction zone carbon dioxide supply 2402 to the reaction zone 10, effect flow of the reaction zone carbon dioxide supply 2402 through a vertical extent of the reaction zone 10 of at least 30 feet. In any of these embodiments, the pressure increase is designed to overcome the fluid head within the reaction zone 10. The pressure increase is effected by flowing the reaction zone carbon dioxide supply-comprising mixture 2404 from the intermediate downstream fluid passage portion 704 to a “kinetic energy to static pressure energy conversion” downstream fluid passage portion 706. The cross-sectional area of the “kinetic energy to static pressure energy conversion” downstream fluid passage portion 706 is greater than the cross-sectional area of the intermediate downstream fluid passage portion 704, such that kinetic energy of the reaction zone carbon dioxide supply-comprising mixture 2404 disposed in the intermediate downstream fluid passage portion 704 is converted into static pressure energy when the reaction zone carbon dioxide supply-comprising mixture 2404 becomes disposed in the “kinetic energy to static pressure energy conversion” downstream fluid passage portion 706 by virtue of the fact that the reaction zone carbon dioxide supply-comprising mixture 2404 has become flowed to a fluid passage portion with a larger cross-sectional area. In some embodiments, for example, a converging nozzle portion of a fluid passage defines the upstream fluid passage portion 702 and a diverging nozzle portion of the fluid passage defines the “kinetic energy to static pressure energy conversion” downstream fluid passage portion 706, and the intermediate downstream fluid passage portion 704 is disposed intermediate of the converging and diverging nozzle portions. In some embodiments, for example, the combination of the upstream fluid passage portion 702 and the “kinetic energy to static pressure energy conversion” downstream fluid passage portion 706 is defined by a venture nozzle. In some embodiments, for example, the combination of the upstream fluid passage portion 702 and the “kinetic energy to static pressure energy conversion” downstream fluid passage portion 706 is disposed within an eductor or jet pump. In some of these embodiments, for example, the motive fluid flow 700 includes liquid aqueous material and, in this respect, the reaction zone carbon dioxide supply-comprising mixture 2404 includes a combination of liquid and gaseous material. In this respect, in some embodiments, for example, the reaction zone carbon dioxide supply-comprising mixture 2404 includes a dispersion of a gaseous material within a liquid material, wherein the dispersion of a gaseous material includes the reaction zone carbon dioxide supply. Alternatively, in some of these embodiments, for example, the motive fluid flow 700 is another gaseous flow, such as an air flow, and the reaction zone carbon dioxide supply-comprising mixture is gaseous. At least a fraction of the reaction zone carbon dioxide supply-comprising mixture 2404 is supplied to the reaction zone feed material 22 so as to effect supply of the at least a fraction of the reaction zone carbon dioxide supply-comprising mixture to the reaction zone 10. In this respect, the carbon dioxide of the reaction zone feed material 22 includes at least a fraction of the reaction zone carbon dioxide supply 2402. In some embodiments, for example, the carbon dioxide of the reaction zone feed material 22 is defined by at least a fraction of the reaction zone carbon dioxide supply 2402.
  • In some of these embodiments, for example, the reaction zone carbon dioxide supply 2402 is supplied by at least a fraction of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, and the supplying of the reaction zone carbon dioxide supply 2402, by the at least a fraction of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, is effected while the gaseous exhaust material 18 is being discharged by the gaseous exhaust material producing process 20 and while the reaction zone carbon dioxide supply 2402 is being supplied to the reaction zone 10. In this respect, in some embodiments, for example, the reaction zone carbon dioxide supply 2402 is supplied by at least a fraction of the carbon dioxide being discharged by the gaseous exhaust material producing process 20, and the supplying of the reaction zone carbon dioxide supply 2402, by the at least a fraction of the carbon dioxide being discharged by the gaseous exhaust material producing process 20, is effected while the carbon dioxide is being discharged by the gaseous exhaust material producing process 20 and while the reaction zone carbon dioxide supply 2402 is being supplied to the reaction zone 10. In some embodiments, for example, the reaction zone carbon dioxide supply 2402 is defined by the discharged carbon dioxide reaction zone supply.
  • In some embodiments, for example, the photobioreactor 12, or plurality of photobioreactors 12, are configured so as to optimize carbon dioxide absorption by the phototrophic biomass and reduce energy requirements. In this respect, the photobioreactor (s) is (are) configured to provide increased residence time of the carbon dioxide within the reaction zone 10. As well, movement of the carbon dioxide over horizontal distances is minimized, so as to reduce energy consumption. To this end, the one or more photobioreactors 12 is, or are, relatively taller, and provide a reduced footprint, so as to increase carbon dioxide residence time while conserving energy.
  • In some embodiments, for example, a supplemental nutrient supply 42 is supplied to the reaction zone 10. In some of these embodiments, for example, the exposing of the phototrophic biomass disposed in the reaction zone 10 to photosynthetically active light radiation is effected while the supplemental nutrient supply 42 is being supplied to the reaction zone 10. In some embodiments, for example, the supplemental nutrient supply 42 is effected by a pump, such as a dosing pump. In other embodiments, for example, the supplemental nutrient supply 42 is supplied manually to the reaction zone 10. Nutrients within the reaction zone 10 are processed or consumed by the phototrophic biomass, and it is desirable, in some circumstances, to replenish the processed or consumed nutrients. A suitable nutrient composition is “Bold's Basal Medium”, and this is described in Bold, H. C. 1949, The morphology of Chlamydomonas chlamydogama sp. nov. Bull. Torrey Bot. Club. 76: 101-8 (see also Bischoff, H. W. and Bold, H. C. 1963. Phycological Studies IV. Some soil algae from Enchanted Rock and related algal species, Univ. Texas 6318: 1-95, and Stein, J. (ED.) Handbook of Phycological Methods, Culture methods and growth measurements, Cambridge University Press, pp. 7-24). The supplemental nutrient supply 42 is supplied for supplementing the nutrients provided within the reaction zone, such as “Bold's Basal Medium”, or one or more dissolved components thereof. In this respect, in some embodiments, for example, the supplemental nutrient supply 42 includes “Bold's Basal Medium”. In some embodiments for example, the supplemental nutrient supply 42 includes one or more dissolved components of “Bold's Basal Medium”, such as NaNO3, CaCl2, MgSO4, KH2PO4, NaCl, or other ones of its constituent dissolved components.
  • In some of these embodiments, the rate of supply of the supplemental nutrient supply 42 to the reaction zone 10 is controlled to align with a desired rate of growth of the phototrophic biomass in the reaction zone 10. In some embodiments, for example, regulation of nutrient addition is monitored by measuring any combination of pH, NO3 concentration, and conductivity in the reaction zone 10.
  • In some embodiments, for example, the supplemental aqueous material supply 44 is supplied to the reaction zone 10 so as to replenish water within the reaction zone 10 of the photobioreactor 12. In some embodiments, for example, and as further described below, the supply of the supplemental aqueous material supply 24 effects the discharge of product from the photobioreactor 12. For example, the supplemental aqueous material supply 44 effects the discharge of product from the photobioreactor 12 as an overflow.
  • In some embodiments, for example, the supplemental aqueous material is water.
  • In another aspect, the supplemental aqueous material supply 44 includes at least one of: (a) aqueous material 70 that has been condensed from the reaction zone feed material 22 while the reaction zone feed material 22 is cooled before being supplied to the reaction zone 10, and (b) aqueous material that has been separated from a discharged phototrophic biomass-comprising product 500. In some embodiments, for example, the supplemental aqueous material supply 44 is derived from an independent source (ie. a source other than the process), such as a municipal water supply.
  • In some embodiments, for example, the supplemental aqueous material supply 44 is supplied by the pump 281. In some of these embodiments, for example, the supplemental aqueous material supply 44 is continuously supplied to the reaction zone 10.
  • In some embodiments, for example, at least a fraction of the supplemental aqueous material supply 44 is supplied from a container 28, which is further described below. At least a fraction of aqueous material which is discharged from the process is recovered and supplied to the container 28 to provide supplemental aqueous material in the container 28.
  • Referring to FIG. 2, in some embodiments, the supplemental nutrient supply 42 and the supplemental aqueous material supply 44 are supplied to the reaction zone feed material 22 through the sparger 40 before being supplied to the reaction zone 10. In those embodiments where the reaction zone 10 is disposed in the photobioreactor 12, in some of these embodiments, for example, the sparger 40 is disposed externally of the photobioreactor 12. In some embodiments, it is desirable to mix the reaction zone feed material 22 with the supplemental nutrient supply 42 and the supplemental aqueous material supply 44 within the sparger 40, as this effects better mixing of these components versus separate supplies of the reaction zone feed material 22, the supplemental nutrient supply 42, and the supplemental aqueous material supply 44. On the other hand, the rate of supply of the reaction zone feed material 22 to the reaction zone 10 is limited by virtue of saturation limits of gaseous material of the reaction zone feed material 22 in the combined mixture. Because of this trade-off, such embodiments are more suitable when response time required for providing a modulated supply of carbon dioxide to the reaction zone 10 is not relatively immediate, and this depends on the biological requirements of the phototrophic organisms being used.
  • In another aspect, at least a fraction of the supplemental nutrient supply 42 is mixed with the supplemental aqueous material in the container 28 to provide a nutrient-enriched supplemental aqueous material supply 44, and the nutrient-enriched supplemental aqueous material supply 44 is supplied directly to the reaction zone 10 or is mixed with the reaction zone feed material 22 in the sparger 40. In some embodiments, for example, the direct or indirect supply of the nutrient-enriched supplemental aqueous material supply is effected by a pump.
  • In another aspect, while carbon dioxide is being discharged by the gaseous exhaust material producing process 20, and while at least a fraction of the discharged carbon dioxide is being supplied to the reaction zone 10, wherein the at least a fraction of the discharged carbon dioxide which is being supplied to the reaction zone 10 defines a discharged carbon dioxide reaction zone supply, at least one material input to the reaction zone 10 is modulated based on at least the rate (the molar rate and/or the volumetric rate) at which the discharged carbon dioxide reaction zone supply is being supplied to the reaction zone 10. In some of these embodiments, the exposing of the phototrophic biomass disposed in the reaction zone 10 to photosynthetically active light radiation is effected while the modulating of at least one input is being effected.
  • As suggested above, modulating of a material input is any one of initiating, terminating, increasing, decreasing, or otherwise changing the material input. A material input to the reaction zone 10 is an input whose supply to the reaction zone 10 is material to the rate of growth of the phototrophic biomass within the reaction zone 10. Exemplary material inputs to the reaction zone 10 include supply of photosynthetically active light radiation of a characteristic intensity being to the reaction zone, and supply of supplemental nutrient supply 42 to the reaction zone 10.
  • In this respect, modulating the intensity of photosynthetically active light radiation being supplied to the reaction zone 10 is any one of: initiating supply of photosynthetically active light radiation to the reaction zone, terminating supply of photosynthetically active light radiation which is being supplied to the reaction zone, increasing the intensity of photosynthetically active light radiation being supplied to the reaction zone, and decreasing the intensity of photosynthetically active light radiation being supplied to the reaction zone 10. In some embodiments, for example, the modulating of the intensity of photosynthetically active light radiation being supplied to the reaction zone includes modulating of the intensity of photosynthetically active light radiation to which at least a fraction of the carbon dioxide-enriched phototrophic biomass is exposed.
  • Modulating the rate of supply (the molar rate of supply and/or the volumetric rate of supply) of supplemental nutrient supply 42 to the reaction zone is any one of initiating the supply of supplemental nutrient supply 42 to the reaction zone, terminating the supply of supplemental nutrient supply 42 being supplied to the reaction zone, increasing the rate of supply (the molar rate of supply and/or the volumetric rate of supply) of supplemental nutrient supply 42 being supplied to the reaction zone, or decreasing the rate of supply (the molar rate of supply and/or the volumetric rate of supply) of supplemental nutrient supply 42 being supplied to the reaction zone.
  • In some embodiments, for example, the modulation is based on, at least, an indication of the rate (the molar rate and/or the volumetric rate) at which the discharged carbon dioxide reaction zone supply is being supplied to the reaction zone 10. In this respect, in some embodiments, for example, while carbon dioxide is being discharged by the gaseous exhaust material producing process 20, and while at least a fraction of the discharged carbon dioxide is being supplied to the reaction zone 10, wherein the at least a fraction of the discharged carbon dioxide which is being supplied to the reaction zone 10 defines a discharged carbon dioxide reaction zone supply, at least one material input to the reaction zone 10 is modulated based on, at least, an indication of the rate (molar rate and/or volumetric rate) at which the discharged carbon dioxide reaction zone supply is being supplied to the reaction zone 10. In some of these embodiments, the exposing of the phototrophic biomass disposed in the reaction zone 10 to photosynthetically active light radiation is effected while the modulating of at least one input is being effected.
  • In some embodiments, for example, the indication of the rate of supply of the discharged carbon dioxide reaction zone supply which is being supplied to the reaction zone 10 is the rate (molar rate and/or volumetric rate) at which gaseous exhaust material 18 is being discharged by the gaseous exhaust material producing process 20, such that the modulation is based on, at least, the rate (molar rate and/or volumetric rate) at which the gaseous exhaust material 18 is being discharged by the gaseous exhaust material producing process 20, wherein the gaseous exhaust material includes the discharged carbon dioxide reaction zone supply. In this respect, in some embodiments, for example, a flow sensor 78 is provided for detecting the flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, and transmitting a signal representative of the detected flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 to the controller. Where molar flow rate is being detected, a gas analyzer operates integrally with the flow sensor 78. Upon the controller receiving a signal from the flow sensor 78 which is representative of the detected flow rate of the gaseous exhaust material 18, the controller effects modulation of at least one material input to the reaction zone 10 based on the detected flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20. In some embodiments, for example, the modulating of at least one material input includes at least one of: (i) initiating supply of the photosynthetically active light radiation to the reaction zone 10, or (ii) effecting an increase in the intensity of the photosynthetically active light radiation being supplied to the reaction zone 10. In some embodiments, for example, the modulating of at least one material input includes: (i) initiating supply of the supplemental nutrient supply 42 to the reaction zone, or (ii) effecting an increase in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the supplemental nutrient supply 42 being supplied to the reaction zone 10. In some embodiments, the modulation of at least one material input includes at least one of: (i) terminating supply of the photosynthetically active light radiation being supplied to the reaction zone 10, or (ii) effecting a decrease in the intensity of the photosynthetically active light radiation being supplied to the reaction zone 10. In some embodiments, for example, the modulating of at least one material input includes at least one of: (i) terminating supply of the supplemental nutrient supply 42 being supplied to the reaction zone, or (ii) effecting a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the supplemental nutrient supply 42 being supplied to the reaction zone 10.
  • In some embodiments, for example, the indication of the rate of supply of the discharged carbon dioxide reaction zone supply which is being supplied to the reaction zone 10 is the concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, such that the modulation is based on, at least, the concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, wherein the gaseous exhaust material 18 includes the discharged carbon dioxide reaction zone supply. In this respect, in some embodiments, for example, a carbon dioxide sensor 781 is provided for detecting the concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, and transmitting a signal representative of the concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 to the controller. In some embodiments, the carbon dioxide sensor is a gas analyzer such that the concentration detected is a molar concentration. Upon the controller receiving a signal from the carbon dioxide sensor 781 which is representative of a detected concentration of carbon dioxide of the gaseous exhaust material 18, the controller effects modulation of at least one material input to the reaction zone 10 based on the detected concentration of carbon dioxide of the gaseous exhaust material 18. In some embodiments, for example, the modulating of at least one material input includes at least one of: (i) initiating supply of the photosynthetically active light radiation to the reaction zone 10, or (ii) effecting an increase in the intensity of the photosynthetically active light radiation being supplied to the reaction zone 10. In some embodiments, for example, the modulating of at least one material input includes: (i) initiating supply of the supplemental nutrient supply 42 to the reaction zone, or (ii) effecting an increase in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the supplemental nutrient supply 42 being supplied to the reaction zone 10. In some embodiments, the modulation of at least one material input includes at least one of: (i) terminating supply of the photosynthetically active light radiation being supplied to the reaction zone 10, or (ii) effecting a decrease in the intensity of the photosynthetically active light radiation being supplied to the reaction zone 10. In some embodiments, for example, the modulating of at least one material input includes at least one of: (i) terminating supply of the supplemental nutrient supply 42 being supplied to the reaction zone, or (ii) effecting a decrease in the molar rate of supply (molar rate of supply and/or volumetric rate of supply) of the supplemental nutrient supply 42 being supplied to the reaction zone 10.
  • In some embodiments, for example, the indication of the molar rate of supply of the discharged carbon dioxide reaction zone supply which is being supplied to the reaction zone 10 is the rate (molar rate and/or volumetric rate) at which carbon dioxide is being discharged by the gaseous exhaust material producing process 20, such that the modulation is based on, at least, the rate (molar rate and/or volumetric rate) at which carbon dioxide is being discharged by the gaseous exhaust material producing process 20, wherein the gaseous exhaust material 18 includes the discharged carbon dioxide reaction zone supply. In some embodiments, for example, the rate at which carbon dioxide is being discharged by the gaseous exhaust material producing process 20 is calculated based on the combination of the detected flow rate (molar flow rate and/or volumetric flow rate) of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 and the detected concentration of carbon dioxide of the gaseous effluent material 18 being discharged by the gaseous exhaust material producing process 20. The combination of (i) the detected flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, and (ii) the detected molar concentration of carbon dioxide of the gaseous effluent material 18 being discharged by the gaseous exhaust material producing process 20, provides a basis for calculating a rate (molar rate and/or volumetric rate) at which carbon dioxide is being discharged by the gaseous exhaust material producing process 20. In this respect, a flow sensor 78 is provided for detecting the flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, and transmitting a signal representative of the detected flow rate of the gaseous exhaust material 18, being discharged by the gaseous exhaust material producing process 20, to the controller. In this respect also, a carbon dioxide sensor 781 is provided for detecting the concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, and transmitting a signal representative of the detected concentration of carbon dioxide of the gaseous exhaust material 18, being discharged by the gaseous exhaust material producing process 20, to the controller. In some embodiments, the carbon dioxide sensor is a gas analyzer such that the concentration detected is a molar concentration. Upon the controller receiving a flow sensor signal from the flow sensor 78, which is representative of a detected flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, and also receiving a carbon dioxide sensor signal from a carbon dioxide sensor 781, which is representative of a detected concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, wherein the detected concentration of carbon dioxide of the gaseous exhaust material 18 is being detected contemporaneously, or substantially contemporaneously, with the detecting of the flow rate of the gaseous exhaust material 18 being discharged by the process 20, upon which the flow sensor signal is based, and calculating a rate (molar rate and/or volumetric rate) of carbon dioxide being discharged by the gaseous exhaust material producing process 20, based upon the received flow sensor signal and the received carbon dioxide sensor signal, the controller effects modulation of at least one material input to the reaction zone 10 based on the calculated rate of carbon dioxide being discharged by the gaseous exhaust material producing process 20. In some embodiments, for example, the modulating of at least one material input includes at least one of: (i) initiating supply of the photosynthetically active light radiation to the reaction zone 10, or (ii) effecting an increase in the intensity of the photosynthetically active light radiation being supplied to the reaction zone 10. In some embodiments, for example, the modulating of at least one material input includes: (i) initiating supply of the supplemental nutrient supply 42 to the reaction zone, or (ii) effecting an increase in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the supplemental nutrient supply 42 being supplied to the reaction zone 10. In some embodiments, the modulation of at least one material input includes at least one of: (i) terminating supply of the photosynthetically active light radiation being supplied to the reaction zone 10, or (ii) effecting a decrease in the intensity of the photosynthetically active light radiation being supplied to the reaction zone 10. In some embodiments, for example, the modulating of at least one material input includes at least one of: (i) terminating supply of the supplemental nutrient supply 42 being supplied to the reaction zone, or (ii) effecting a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the supplemental nutrient supply 42 being supplied to the reaction zone 10.
  • In another aspect, while carbon dioxide is being discharged by the gaseous exhaust material producing process 20, and while at least a fraction of the discharged carbon dioxide is being supplied to the reaction zone 10, wherein the at least a fraction of the discharged carbon dioxide which is being supplied to the reaction zone 10 defines a discharged carbon dioxide reaction zone supply, when a change in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 is detected, modulation of at least one material input to the reaction zone 10 is effected. In this respect, the modulation of at least one material input to the reaction zone 10 is effected in response to the detection of a change in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10. In some of these embodiments, the exposing of the phototrophic biomass disposed in the reaction zone 10 to photosynthetically active light radiation is effected while the modulating of at least one material input is being effected.
  • In another aspect, while carbon dioxide is being discharged by the gaseous exhaust material producing process 20, and while at least a fraction of the discharged carbon dioxide is being supplied to the reaction zone 10, wherein the at least a fraction of the discharged carbon dioxide which is being supplied to the reaction zone 10 defines a discharged carbon dioxide reaction zone supply, when an indication of a change in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 is detected, modulation of at least one material input to the reaction zone 10 is effected. In this respect, the modulation of at least one material input to the reaction zone 10 is effected in response to the detection of an indication of a change in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10. In some of these embodiments, the exposing of the phototrophic biomass disposed in the reaction zone 10 to photosynthetically active light radiation is effected while the modulating of at least one material input is being effected.
  • As above-described, modulating of a material input is any one of initiating, terminating, increasing, or decreasing the material input. Exemplary material inputs to the reaction zone include supply of photosynthetically active light radiation of a characteristic intensity to the reaction zone 10, and supply of supplemental nutrient supply 42 to the reaction zone 10.
  • As also above-described, modulating the intensity of photosynthetically active light radiation being supplied to the reaction zone 10 is any one of: initiating supply of photosynthetically active light radiation to the reaction zone, terminating supply of photosynthetically active light radiation being supplied to the reaction zone, increasing the intensity of photosynthetically active light radiation being supplied to the reaction zone, and decreasing the intensity of photosynthetically active light radiation being supplied to the reaction zone. In some embodiments, for example, the modulating of the intensity of photosynthetically active light radiation being supplied to the reaction zone includes modulating of the intensity of photosynthetically active light radiation to which at least a fraction of the carbon dioxide-enriched phototrophic biomass is exposed.
  • As also above-described, modulating the rate of supply (molar rate of supply and/or volumetric rate of supply) of supplemental nutrient supply 42 to the reaction zone is any one of initiating the supply of supplemental nutrient supply 42 to the reaction zone, terminating the supply of supplemental nutrient supply 42 being supplied to the reaction zone, increasing the rate of supply (molar rate of supply and/or volumetric rate of supply) of supplemental nutrient supply 42 being supplied to the reaction zone, or decreasing the rate of supply (molar rate of supply and/or volumetric rate of supply) of supplemental nutrient supply 42 being supplied to the reaction zone.
  • In some embodiments, for example, and as also above-described, the modulating of the intensity of the photosynthetically active light radiation is effected by a controller. In some embodiments, for example, to increase or decrease light intensity of a light source, the controller changes the power output to the light source from the power supply, and this can be effected by controlling either one of voltage or current. As well, in some embodiments, for example, the modulating of the rate of supply of the supplemental nutrient supply 42 is also effected by a controller. To modulate the rate of supply of the supplemental nutrient supply 42, the controller can control a dosing pump 421 to provide a predetermined flow rate of the supplemental nutrient supply 42.
  • In some embodiments, for example, while carbon dioxide is being discharged by the gaseous exhaust material producing process 20, and while at least a fraction of the discharged carbon dioxide is being supplied to the reaction zone 10, wherein the at least a fraction of the discharged carbon dioxide which is being supplied to the reaction zone 10 defines a discharged carbon dioxide reaction zone supply, when an increase in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 is detected, the modulating of at least one material input includes at least one of: (i) initiating supply of the photosynthetically active light radiation to the reaction zone 10, or (ii) effecting an increase in the intensity of the photosynthetically active light radiation being supplied to the reaction zone 10. In this respect, such modulation is effected in response to the detection of an increase in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10. In some embodiments, for example, the increase in the intensity of the photosynthetically active light radiation being supplied to the reaction zone 10 is proportional to the increase in the molar rate of supply of the discharged carbon dioxide reaction zone supplied being supplied to the reaction zone 10.
  • In some embodiments, for example, while carbon dioxide is being discharged by the gaseous exhaust material producing process 20, and while at least a fraction of the discharged carbon dioxide is being supplied to the reaction zone 10, wherein the at least a fraction of the discharged carbon dioxide which is being supplied to the reaction zone 10 defines a discharged carbon dioxide reaction zone supply, when an indication of an increase in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 is detected, the modulating of at least one material input includes at least one of: (i) initiating supply of the photosynthetically active light radiation to the reaction zone 10, or (ii) effecting an increase in the intensity of the photosynthetically active light radiation being supplied to the reaction zone 10. In this respect, such modulation is effected in response to the detection of an indication of an increase in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10. In some embodiments, for example, the increase in the intensity of the photosynthetically active light radiation being supplied to the reaction zone 10 is proportional to the increase in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supplied being supplied to the reaction zone 10.
  • In some embodiments, for example, upon the initiating of the supply of photosynthetically active light radiation being supplied to the reaction zone, or the increasing of the intensity of photosynthetically active light radiation being supplied to the reaction zone, the rate of cooling of a light source, that is provided in the reaction zone 10 and that is supplying the photosynthetically active light radiation to the reaction zone, is increased. The cooling is effected for mitigating heating of the reaction zone by any thermal energy that is dissipated from the light source while the light source is supplying the photosynthetically active light radiation to the reaction zone. Heating of the reaction zone 10 increases the temperature of the reaction zone. In some embodiments, excessive temperature within the reaction zone 10 is deleterious to the phototrophic biomass. In some embodiments, for example, the light source is disposed in a liquid light guide and a heat transfer fluid is disposed within the liquid light guide, and the rate of cooling is increased by increasing the rate of exchanges of the heat transfer fluid within the liquid light guide.
  • In some embodiments, for example, while carbon dioxide is being discharged by the gaseous exhaust material producing process 20, and while at least a fraction of the discharged carbon dioxide is being supplied to the reaction zone 10, wherein the at least a fraction of the discharged carbon dioxide which is being supplied to the reaction zone 10 defines a discharged carbon dioxide reaction zone supply, when an increase in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 is detected, the modulating of at least one material input includes at least one of: (i) initiating supply of the supplemental nutrient supply 42 to the reaction zone 10, or (ii) effecting an increase in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the supplemental nutrient supply 42 being supplied to the reaction zone 10. In this respect, such modulation is effected in response to the detection of an increase in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10.
  • In some embodiments, for example, while carbon dioxide is being discharged by the gaseous exhaust material producing process 20, and while at least a fraction of the discharged carbon dioxide is being supplied to the reaction zone 10, wherein the at least a fraction of the discharged carbon dioxide which is being supplied to the reaction zone 10 defines a discharged carbon dioxide reaction zone supply, when an indication of an increase in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 is detected, the modulating of at least one material input includes at least one of: (i) initiating supply of the supplemental nutrient supply 42 to the reaction zone 10, or (ii) effecting an increase in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the supplemental nutrient supply 42 being supplied to the reaction zone 10. In this respect, such modulation is effected in response to the detection of an indication of an increase in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10.
  • In some embodiments, for example, the indication of an increase in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 which is detected is an increase in the rate (molar rate and/or volumetric rate) at which gaseous exhaust material 18 is being discharged by the gaseous exhaust material producing process 20, wherein the gaseous exhaust material 18 includes the discharged carbon dioxide reaction zone supply. In this respect, in some embodiments, for example, a flow sensor 78 is provided for detecting the flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 (in the case of molar flow rate, a gas analyzer is also incorporated) and transmitting a signal representative of the detected molar flow rate of the gaseous exhaust material 18 to the controller. Upon the controller comparing a received signal from the flow sensor 78, which is representative of the detected flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, to a previously received signal representative of a previously detected flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, and determining that an increase in the flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 has been effected, the controller effects at least one of: (a) initiation of supply of photosynthetically active light radiation to the reaction zone 10, or an increase in the intensity of photosynthetically active light radiation supply being supplied to the reaction zone 10, and (b) initiation of supply of a supplemental nutrient supply 42 to the reaction zone 10, or an increase in the rate of supply (molar rate of supply and/or volumetric rate of supply) of a supplemental nutrient supply 42 being supplied to the reaction zone 10.
  • In some embodiments, for example, the indication of an increase in the molar rate of supply of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 which is detected is an increase in the concentration of carbon dioxide of gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, wherein the gaseous exhaust material 18 includes the discharged carbon dioxide reaction zone supply. In this respect, in some embodiments, for example, a carbon dioxide sensor 781 is provided for detecting the concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, and transmitting a signal representative of the detected concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, to the controller. In some embodiments, the carbon dioxide sensor is a gas analyzer such that the concentration detected is a molar concentration. Upon the controller comparing a received signal from the carbon dioxide sensor 781, which is representative of the detected concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, to a previously received signal representative of a previously detected concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, and determining that an increase in the concentration of carbon dioxide of the gaseous exhaust material 18 has been effected, the controller effects at least one of: (a) initiation of supply of photosynthetically active light radiation to the reaction zone 10, or an increase in the intensity of photosynthetically active light radiation supply being supplied to the reaction zone 10, and (b) initiation of supply of a supplemental nutrient supply 42 to the reaction zone 10, or an increase in the rate of supply (molar rate of supply and/or volumetric rate of supply) of a supplemental nutrient supply 42 being supplied to the reaction zone 10.
  • In some embodiments, for example, the indication of an increase in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 is an increase in the rate at which carbon dioxide (molar rate of supply and/or volumetric rate of supply) is being discharged by the gaseous exhaust material producing process 20. In this respect, in some embodiments, for example, the increase in the rate at which carbon dioxide is being discharged by the gaseous exhaust material producing process 20 is based on a comparison between (i) a calculated rate at which carbon dioxide is being discharged by the gaseous exhaust producing process 20, wherein the calculation is based on the combination of a detected flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 and also a detected concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, and (ii) a calculated rate at which carbon dioxide has been previously discharged by the gaseous exhaust producing process 20, wherein the calculation is based on the combination of a previously detected flow rate of the gaseous exhaust material 18 previously being discharged by the gaseous exhaust material producing process 20 and also a previously detected concentration of carbon dioxide of the gaseous exhaust material 18 previously being discharged by the gaseous exhaust material producing process 20. In this respect, a flow sensor 78 is provided for detecting the flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, and transmitting a signal representative of the detected flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, to the controller. In this respect also, a carbon dioxide sensor 781 is provided for detecting the concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, and transmitting a signal representative of the detected concentration of carbon dioxide of the gaseous exhaust material 18, being discharged by the gaseous exhaust material producing process 20, to the controller. In some embodiments, the carbon dioxide sensor is a gas analyzer such that the concentration detected is a molar concentration. Upon the controller receiving a flow sensor signal from the flow sensor 78, which is representative of a detected flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, and also receiving a carbon dioxide sensor signal from a carbon dioxide sensor 781, which is representative of a detected concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, wherein the detecting of the detected concentration of carbon dioxide of the gaseous exhaust material 18 is contemporaneous, or substantially contemporaneous, with the detecting of the detected flow rate of the gaseous exhaust material 18 being discharged by the process 20, upon which the flow sensor signal is based, and calculating a rate (molar rate and/or volumetric rate) at which carbon dioxide is being discharged by the gaseous exhaust material producing process 20, based upon the received flow sensor signal and the received carbon dioxide sensor signal, and comparing the calculated rate at which carbon dioxide is being discharged by the gaseous exhaust material producing process 20 to a calculated rate at which carbon dioxide has previously been discharged by the gaseous exhaust material producing process 20, wherein the calculated rate at which carbon dioxide has previously been discharged by the gaseous exhaust material producing process 20 is based upon the combination of a previously received flow sensor signal, which is representative of a previously detected flow rate of the gaseous exhaust material 18 previously discharged by the gaseous exhaust material producing process 20, and a previously received carbon dioxide sensor signal, which is representative of a previously detected concentration of carbon dioxide of the gaseous exhaust material 18 previously discharged by the gaseous exhaust material producing process 20, wherein the detecting of the previously detected concentration of carbon dioxide has been effected contemporaneously, or substantially contemporaneously, with the detecting of the previously detected flow rate of the previously discharging gaseous exhaust material 18, upon which the previously received flow sensor signal is based, and determining that an increase in the rate at which carbon dioxide is being discharged by the gaseous exhaust material producing process 20 has been effected, the controller effects at least one of: (a) initiation of supply of photosynthetically active light radiation to the reaction zone 10, or an increase in the intensity of photosynthetically active light radiation supply being supplied to the reaction zone 10, and (b) initiation of supply of a supplemental nutrient supply 42 to the reaction zone 10, or an increase in the rate of supply (molar rate of supply and/or volumetric rate of supply) of a supplemental nutrient supply 42 being supplied to the reaction zone 10.
  • In some embodiments, for example, any one of: (a) an increase in the detected flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, (b) an increase in the detected concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, or (c) an increase in the calculated rate of supply of carbon dioxide being discharged by the gaseous exhaust material producing process 20, is an indicator of an increase in the rate of supply of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10. Where there is provided an increase in the rate of supply of the discharged carbon dioxide reaction zone supply to the reaction zone 10, the rate of supply of at least one condition for growth (ie. increased rate of supply of carbon dioxide) of the phototrophic biomass is increased, and the rates of supply of other inputs, relevant to such growth, are correspondingly initiated or increased, in anticipation of growth of the phototrophic biomass in the reaction zone 10.
  • In some embodiments, for example, while carbon dioxide is being discharged by the gaseous exhaust material producing process 20, and while at least a fraction of the discharged carbon dioxide is being supplied to the reaction zone 10, wherein the at least a fraction of the discharged carbon dioxide which is being supplied to the reaction zone 10 defines a discharged carbon dioxide reaction zone supply, when a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 is detected, the modulating of at least one material input includes effecting at least one of: (i) terminating supply of the photosynthetically active light radiation being supplied to the reaction zone 10, or (ii) effecting a decrease in the intensity of the photosynthetically active light radiation being supplied to the reaction zone 10. In this respect, such modulation is effected in response to the detection of a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10. In some embodiments, for example, the decrease in the intensity of the photosynthetically active light radiation being supplied to the reaction zone is proportional to the decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supplied being supplied to the reaction zone 10.
  • In some embodiments, for example, while carbon dioxide is being discharged by the gaseous exhaust material producing process 20, and while at least a fraction of the discharged carbon dioxide is being supplied to the reaction zone 10, wherein the at least a fraction of the discharged carbon dioxide which is being supplied to the reaction zone 10 defines a discharged carbon dioxide reaction zone supply, when an indication of a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 is detected, the modulating of at least one material input includes effecting at least one of: (i) terminating supply of the photosynthetically active light radiation being supplied to the reaction zone 10, or (ii) effecting a decrease in the intensity of the photosynthetically active light radiation being supplied to the reaction zone 10. In this respect, such modulation is effected in response to the detection of an indication of a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10. In some embodiments, for example, the decrease in the intensity of the photosynthetically active light radiation being supplied to the reaction zone is proportional to the decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supplied being supplied to the reaction zone 10.
  • In some embodiments, for example, while carbon dioxide is being discharged by the gaseous exhaust material producing process 20, and while at least a fraction of the discharged carbon dioxide is being supplied to the reaction zone 10, wherein the at least a fraction of the discharged carbon dioxide which is being supplied to the reaction zone 10 defines a discharged carbon dioxide reaction zone supply, when a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 is detected, the modulating of at least one material input includes effecting at least one of: (i) terminating supply of the supplemental nutrient supply 42 being supplied to the reaction zone, or (ii) effecting a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the supplemental nutrient supply 42 being supplied to the reaction zone 10. In this respect, such modulation is effected in response to the detection of a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10.
  • In some embodiments, for example, while carbon dioxide is being discharged by the gaseous exhaust material producing process 20, and while at least a fraction of the discharged carbon dioxide is being supplied to the reaction zone 10, wherein the at least a fraction of the discharged carbon dioxide which is being supplied to the reaction zone 10 defines a discharged carbon dioxide reaction zone supply, when an indication of a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 is detected, the modulating of at least one material input includes effecting at least one of: (i) terminating supply of the supplemental nutrient supply 42 being supplied to the reaction zone, or (ii) effecting a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the supplemental nutrient supply 42 being supplied to the reaction zone 10. In this respect, such modulation is effected in response to the detection of an indication of a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10.
  • In some embodiments, for example, the indication of a decrease in the molar rate of supply of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 which is detected is a decrease in the rate (molar rate and/or volumetric rate) at which the gaseous exhaust material 18 is being discharged by the gaseous exhaust material producing process 20. In this respect, in some embodiments, for example, a flow sensor 78 is provided for detecting the flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 (for detecting molar flow rate, a gas analyzer is incorporated), and transmitting a signal representative of the detected flow rate of the gaseous exhaust material 18 to the controller. Upon the controller comparing a received signal from the flow sensor 78, which is representative of the detected flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, to a previously received signal representative of a previously detected flow rate of the gaseous exhaust material 18 previously being discharged by the gaseous exhaust material producing process 20, and determining that a decrease in the flow rate of the gaseous exhaust material 18, being discharged by the gaseous exhaust material producing process 20, has been effected, the controller effects at least one of: (a) a decrease in the intensity of, or termination of, supply of the photosynthetically active light radiation being supplied to the reaction zone 10, and (b) a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of, or termination of supply of, of a supplemental nutrient supply 42 being supplied to the reaction zone 10.
  • In some embodiments, for example, the indication of a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 which is detected is a decrease in the concentration of carbon dioxide of the gaseous effluent material 18 being discharged by the gaseous exhaust material producing process 20. In this respect, in some embodiments, for example, a carbon dioxide sensor 781 is provided for detecting the concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, and transmitting a signal representative of the detected concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, to the controller. In some embodiments, the carbon dioxide sensor is a gas analyzer such that the concentration detected is a molar concentration. Upon the controller comparing a received signal from the carbon dioxide sensor 781 which is representative of the detected concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, to a previously received signal representative of a previously detected concentration of carbon dioxide of the gaseous exhaust material 18 previously being discharged by the gaseous exhaust material producing process 20, and determining that a decrease in the concentration of carbon dioxide of the gaseous exhaust material 18, being discharged by the gaseous exhaust material producing process 20, has been effected, the controller effects at least one of: (a) a decrease in the intensity of, or termination of, supply of the photosynthetically active light radiation being supplied to the reaction zone 10, and (b) a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of, or termination of supply of, a supplemental nutrient supply 42 being supplied to the reaction zone 10.
  • In some embodiments, for example, the indication of a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 is a decrease in the rate (molar rate and/or volumetric rate) at which carbon dioxide is being discharged by the gaseous exhaust material producing process 20. In this respect, in some embodiments, for example, the decrease in the rate at which carbon dioxide is being discharged by the gaseous exhaust material producing process 20 is based on a comparison between (i) a calculated rate at which carbon dioxide is being discharged by the gaseous exhaust producing process 20, wherein the calculation is based on the combination of a detected flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 and also a detected concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, and (ii) a calculated rate at which carbon dioxide has previously been discharged by the gaseous exhaust producing process 20, wherein the calculation is based on the combination of a previously detected flow rate of the gaseous exhaust material 18 previously being discharged by the gaseous exhaust material producing process 20 and also a previously detected concentration of carbon dioxide of the gaseous exhaust material 18 previously being discharged by the gaseous exhaust material producing process 20. In this respect, a flow sensor 78 is provided for detecting the flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, and transmitting a signal representative of the detected flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, to the controller. In this respect also, a carbon dioxide sensor 781 is provided for detecting the concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, and transmitting a signal representative of the detected concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, to the controller. In some embodiments, the carbon dioxide sensor is a gas analyzer such that the concentration detected is a molar concentration. Upon the controller receiving a flow sensor signal from the flow sensor 78, which is representative of a detected flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, and also receiving a carbon dioxide sensor signal from a carbon dioxide sensor 781, which is representative of a detected concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, wherein the detecting of the detected concentration of carbon dioxide of the gaseous exhaust material 18 is contemporaneous, or substantially contemporaneous, with the detecting of the detected flow rate of the gaseous exhaust material 18 being discharged by the process 20, upon which the flow sensor signal is based, and calculating a rate (molar rate and/or volumetric rate) at which carbon dioxide is being discharged by the gaseous exhaust material producing process 20, based upon the received flow sensor signal and the received carbon dioxide sensor signal, and comparing the calculated rate at which carbon dioxide is being discharged by the gaseous exhaust material producing process 20 to a calculated rate at which carbon dioxide has previously been discharged by the gaseous exhaust material producing process 20, wherein the calculation of the rate at which carbon dioxide has previously been discharged by the gaseous exhaust material producing process 20, is based upon the combination of a previously received flow sensor signal, which is representative of a previously detected flow rate of the gaseous exhaust material 18 previously discharged by the gaseous exhaust material producing process 20, and a previously received carbon dioxide sensor signal, which is representative of a previously detected concentration of carbon dioxide of the gaseous exhaust material 18 previously discharged by the gaseous exhaust material producing process 20, wherein the detecting of the previously detected concentration of carbon dioxide has been effected contemporaneously, or substantially contemporaneously, with the detecting of the previously detected flow rate of the gaseous exhaust material 18 previously discharged by the process 20, upon which the previously received flow sensor signal is based, and determining that a decrease in the rate (molar rate and/or volumetric rate) at which carbon dioxide is being discharged by the gaseous exhaust material producing process 20 has been effected, the controller effects at least one of: (a) a decrease in the intensity, or termination of supply, of the photosynthetically active light radiation being supplied to the reaction zone 10, and (b) a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply), or termination of supply, of a supplemental nutrient supply 42 being supplied to the reaction zone 10.
  • In some embodiments, for example, any one of: (a) a decrease in the flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, (b) a decrease in the concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, or (c) a decrease in the rate of carbon dioxide being discharged by the gaseous exhaust material producing process 20, is an indicator of a decrease in the rate of supply of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10. Because there is provided a decrease in the rate of supply of the discharged carbon dioxide reaction zone supply to the reaction zone 10, the rate of supply of one or more other material inputs, which are relevant to phototrophic biomass growth, are correspondingly reduced or terminated to conserve such inputs.
  • In another aspect, while carbon dioxide is being discharged by the gaseous exhaust material producing process 20, and while at least a fraction of the discharged carbon dioxide is being supplied to the reaction zone 10, wherein the at least a fraction of the discharged carbon dioxide which is being supplied to the reaction zone 10 defines a discharged carbon dioxide reaction zone supply, when a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 is detected, or when an indication of a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 is detected, either the rate of supply (molar rate of supply and/or volumetric rate of supply) of a supplemental carbon dioxide supply 92 to the reaction zone 10 is increased, or supply of the supplemental carbon dioxide supply 92 to the reaction zone 10 is initiated. In this respect, the increase in the rate of supply of a supplemental carbon dioxide supply 92 to the reaction zone 10, or the initiation of the supply of the supplemental carbon dioxide supply 92 to the reaction zone 10 is effected in response to the detecting of a decrease, or an indication of a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10. In some embodiments, for example, the source of the supplemental carbon dioxide supply 92 is a carbon dioxide cylinder. In some embodiments, for example, the source of the supplemental carbon dioxide supply 92 is a supply of air. In some embodiments, for example, the detected decrease is a detected termination of the supply of the discharged carbon dioxide reaction zone supply to the reaction zone 10. In some embodiments, for example the detected indication of a decrease is a detected indication of the termination of the supply of the discharged carbon dioxide reaction zone supply to the reaction zone 10. In some embodiments, for example, the indication of a decrease in the rate of supply of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 is any of the indications described above.
  • In some of these embodiments, the exposing of the phototrophic biomass disposed in the reaction zone 10 to photosynthetically active light radiation is effected while the increasing of the molar rate of supply, or the initiation of supply, of the supplemental carbon dioxide supply 92 to the reaction zone 10 is being effected.
  • In some embodiments, for example, the supplemental carbon dioxide supply 92 is supplied for compensating for the decrease in the rate of supply of carbon dioxide being supplied by the gaseous exhaust material producing process 20 to the reaction zone 10, with a view to sustaining a substantially constant growth rate of the phototrophic biomass, when it is believed that the decrease (for example, the termination) is only of a temporary nature (such as less than two weeks). In this respect, in some embodiments, the supply of supply 92 to the reaction zone 10 continues after its initiation for a period of less than two (2) weeks, for example, less than one week, and as a further example, less than five (5) days, and as a further example, less than three (3) days, and as a further example, less than one (1) day. In some embodiments, for example, the supply of supply 92 to the reaction zone 10 continues after its initiation for a period of greater than 15 minutes, for example, greater than 30 minutes, and as a further example, greater than one (1) hour, and as a further example, greater than six (6) hours, and as a further example, greater than 24 hours.
  • In those embodiments where the increasing of the rate of supply (molar rate of supply and/or volumetric rate of supply), or the initiation of supply, of a supplemental carbon dioxide supply 92 to the reaction zone 10 is effected in response to the detection of an indication of a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10, and the indication of a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10, which is detected, is a decrease in the flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, in some of these embodiments, for example, a flow sensor 78 is provided for detecting the flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, and transmitting a signal representative of the detected flow rate of the gaseous exhaust material 18, being discharged by the gaseous exhaust material producing process 20, to the controller. Where molar flow rate is being detected, a gas analyzer operates integrally with the flow sensor 78. Upon the controller comparing a received signal from the flow sensor 78 which is representative of a currently detected flow rate of the gaseous exhaust material 18, being discharged by the gaseous exhaust material producing process 20, to a previously received signal representative of a previously detected flow rate of the gaseous exhaust material 18 previously being discharged by the process 20, and determining that a decrease in the flow rate of the gaseous exhaust material 18, being discharged by the gaseous exhaust material producing process 20, has been effected, the controller actuates the opening of a flow control element, such as a valve 921, to initiate supply of the supplemental carbon dioxide supply 92 to the reaction zone 10 from a source of the supplemental carbon dioxide supply 92, or to effect increasing of the rate of supply (molar rate of supply and/or volumetric rate of supply) of the supplemental carbon dioxide supply being supplied to the reaction zone 10.
  • In those embodiments where the increasing of the rate of supply (molar rate of supply and/or volumetric rate of supply), or the initiation of supply, of a supplemental carbon dioxide supply 92 to the reaction zone 10 is effected in response to the detection of an indication of a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10, and the indication of a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 which is detected is a decrease in the concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, in some embodiments, for example, a carbon dioxide sensor 781 is provided for detecting the concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, and transmitting a signal representative of the detected concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, to the controller. In some embodiments, the carbon dioxide sensor is a gas analyzer such that the concentration detected is a molar concentration. Upon the controller comparing a received signal from the carbon dioxide sensor 781 which is representative of the detected concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, to a previously received signal representative of a previously detected concentration of carbon dioxide of the gaseous exhaust material 18 previously being discharged by the gaseous exhaust material producing process 20, and determining that a decrease in the concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, has been effected, the controller actuates the opening of a flow control element, such as a valve 921, to initiate supply of the supplemental carbon dioxide supply 92 to the reaction zone 10, or to effect increasing of the rate of supply (molar rate of supply and/or volumetric rate of supply) of the supplemental carbon dioxide supply being supplied to the reaction zone 10.
  • In those embodiments where the increasing of the rate of supply (molar rate of supply and/or volumetric rate of supply) of a supplemental carbon dioxide supply 92 being supplied to the reaction zone, or the initiation of supply of a supplemental carbon dioxide supply 92 to the reaction zone 10, is effected in response to the detection of an indication of a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply to the reaction zone 10, when the indication of a decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply to the reaction zone 10, which is detected is a decrease in the rate (molar rate and/or volumetric rate) at which carbon dioxide is being discharged by the gaseous exhaust material producing process 20, in some of these embodiments, for example, the decrease in the rate (molar rate and/or volumetric rate) at which carbon dioxide is being discharged by the gaseous exhaust material producing process 20 is based on a comparison between (i) a calculated rate at which carbon dioxide is being discharged by the gaseous exhaust producing process 20, wherein the calculation is based on the combination of a detected flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20 and also a detected concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, and (ii) a calculated rate at which carbon dioxide has previously been discharged by the gaseous exhaust producing process 20, wherein the calculation is based on the combination of a previously detected flow rate of the gaseous exhaust material 18 previously being discharged by the gaseous exhaust material producing process 20 and also a previously detected concentration of carbon dioxide of the gaseous exhaust material 18 previously being discharged by the gaseous exhaust material producing process 20. In this respect, a flow sensor 78 is provided for detecting the flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, and transmitting a signal representative of the detected flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, to the controller. In this respect also, a carbon dioxide sensor 781 is provided for detecting the concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, and transmitting a signal representative of the detected concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, to the controller. In some embodiments, the carbon dioxide sensor is a gas analyzer such that the concentration detected is a molar concentration. Upon the controller receiving a flow sensor signal from the flow sensor 78, which is representative of a detected flow rate of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, and also receiving a carbon dioxide sensor signal from a carbon dioxide sensor 781, which is representative of a detected concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, wherein the detecting of the detected concentration of carbon dioxide of the gaseous exhaust material 18 is contemporaneous, or substantially contemporaneous, with the detecting of the detected flow rate of the gaseous exhaust material 18 being discharged by the process 20, upon which the flow sensor signal is based, and calculating a rate at which carbon dioxide is being discharged by the gaseous exhaust material producing process 20, based upon the received flow sensor signal and the received carbon dioxide sensor signal, and comparing the calculated rate at which carbon dioxide is being discharged by the gaseous exhaust material producing process 20 to a calculated rate at which carbon dioxide has previously been discharged by the gaseous exhaust material producing process 20, wherein the calculated rate at which carbon dioxide has previously been discharged by the gaseous exhaust material producing process 20 is based upon the combination of a previously received flow sensor signal, which is representative of a previously detected flow rate of the gaseous exhaust material 18 previously discharged by the gaseous exhaust material producing process 20, and a previously received carbon dioxide sensor signal, which is representative of a previously detected concentration of carbon dioxide of the gaseous exhaust material 18 previously discharged by the gaseous exhaust material producing process 20, wherein the detecting of the previously detected concentration of carbon dioxide has been effected contemporaneously, or substantially contemporaneously, with the detecting of the previously detected flow rate of the gaseous exhaust material 18 previously discharged by the process 20, upon which the previously received flow sensor signal is based, and determining that a decrease in the rate at which carbon dioxide is being discharged by the gaseous exhaust material producing process 20 has been effected, the controller actuates the opening of a flow control element, such as a valve 921, to initiate supply of the supplemental carbon dioxide supply 92 to the reaction zone 10, or to effect increasing of the rate of supply (molar rate of supply and/or volumetric rate of supply) of the supplemental carbon dioxide supply being supplied to the reaction zone 10.
  • In those embodiments where a decrease (or termination) in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 is detected, or when an indication of a decrease (or termination) in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10 is detected, and, in response, either the rate of supply (molar rate of supply and/or volumetric rate of supply) of a supplemental carbon dioxide supply 92 to the reaction zone 10 is increased, or supply of the supplemental carbon dioxide supply 92 to the reaction zone 10 is initiated, in some of these embodiments, the process further includes initiating the supply of a supplemental gas-comprising material 48, or increasing the rate of supply (molar rate of supply and/or volumetric rate of supply) of a supplemental gas-comprising material 48, to the reaction zone 10.
  • In some embodiments, for example, the initiation of the supply of the supplemental gas-comprising material 48 to the reaction zone 10, or the increasing of the rate of supply (molar rate of supply and/or volumetric rate of supply) of the supplemental gas-comprising material 48 being supplied to the reaction zone 10, at least partially compensates for the reduction in supply rate (molar supply rate and/or volumetric supply rate) of material (such as material of the reaction zone feed material 22), or the termination of supply of material (such as material of the reaction zone feed material 22), to the reaction zone 10 which is effected by the decrease in the rate of supply (molar rate of supply and/or volumetric rate of supply), or by the termination of supply, of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10, notwithstanding the initiation of the supply of the supplemental carbon dioxide supply 92 to the reaction zone 10, or the increase to the rate of supply (molar rate of supply and/or volumetric rate of supply) of a supplemental carbon dioxide supply 92 to the reaction zone 10, which is effected in response to the reduction in the rate of supply (molar rate of supply and/or volumetric rate of supply), or to the termination of supply, of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10.
  • In some embodiments, for example, the compensation for the reduction in supply rate (molar supply rate and/or volumetric supply rate) of material (reaction zone feed material 22), or for the termination of supply of material (reaction zone feed material 22), to the reaction zone 10 which is effected, effects substantially no change to the rate of supply (molar rate of supply and/or volumetric rate of supply) of material (reaction zone feed material 22) to the reaction zone 10.
  • In some embodiments, the compensation for the reduction in supply rate (molar supply rate and/or volumetric supply rate) of material (reaction zone feed material 22), or for the termination of supply of material (reaction zone feed material 22), to the reaction zone 10 which is effected, mitigates against the reduced agitation of the reaction zone 10 which would otherwise be attributable to the reduction in the rate of supply, or the termination of supply, of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10, which is effected by the decrease in the rate of supply, or by the termination of supply, of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10.
  • In some embodiments, for example, the combination of any gaseous exhaust material reaction zone supply 24, the supplemental carbon dioxide supply 92, and the supplemental gas-comprising material defines a combined operative material flow that is supplied to the reaction zone as at least a fraction of the reaction zone feed material 22, and the reaction zone feed material 22 is supplied to the reaction zone 10 and effects agitation of material in the reaction zone such that any difference in mass concentration of the phototrophic biomass between any two points in the reaction zone 10 is less than 20%. In some embodiments, for example, the effected agitation is such that any difference in the mass concentration of the phototrophic biomass between any two points in the reaction zone 10 is less than 10%. In this respect, the supply of the supplemental gas-comprising material 48 is provided to mitigate against the creation of a phototrophic biomass concentration gradient between any two points in the reaction zone above a desired maximum.
  • The molar concentration of carbon dioxide, if any, of the supplemental gas-comprising material 48 is lower than the molar concentration of carbon dioxide of the supplemental carbon dioxide supply 92 being supplied to the reaction zone 10. In some embodiments, for example, the molar concentration of carbon dioxide of the supplemental gas material 48 is less than 3 mole % based on the total moles of the supplemental gas material 48. In some embodiments, for example, the molar concentration of carbon dioxide of the supplemental gas material 48 is less than 1 (one) mole % based on the total moles of the supplemental gas material 48.
  • In some embodiments, for example, the supplemental gas-comprising material 48 is a gaseous material. In some of these embodiments, for example, the supplemental gas-comprising material 48 includes a dispersion of gaseous material in a liquid material. In some of these embodiments, for example, the supplemental gas-comprising material 48 includes air. In some of these embodiments, for example, the supplemental gas-comprising material 48 is provided as a flow. The supplemental gas-comprising material 48 is supplied to the reaction zone 10 as a fraction of the reaction zone feed material 22.
  • In some embodiments, for example, the initiating of the supply of a supplemental gas-comprising material 48 to the reaction zone 10, or the increasing of the rate of supply (molar rate of supply and/or volumetric rate of supply) of a supplemental gas-comprising material 48 being supplied to the reaction zone 10, is effected also in response to the detection of a decrease in (or termination of) the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10, or of an indication of a decrease in (or termination of) the rate of supply (molar rate of supply and/or volumetric rate of supply) of the discharged carbon dioxide reaction zone supply being supplied to the reaction zone 10. Examples of suitable indications, and suitable sensors and control schemes for detecting such indications, are described above, and, in some embodiments, the initiating of the supply of a supplemental gas-comprising material 48 to the reaction zone 10, or the increasing of the rate of supply (molar rate of supply and/or volumetric rate of supply) of a supplemental gas-comprising material 48 being supplied to the reaction zone 10, is effected by the controller actuating the opening, or an increase in the opening, of a flow control element (such as valve 50) for effecting fluid coupling to a source of the supplemental gas-comprising material 48.
  • In some embodiments, for example, the initiating of the supply of a supplemental gas-comprising material 48 to the reaction zone 10, or the increasing of the rate of supply (molar rate of supply and/or volumetric rate of supply) of a supplemental gas-comprising material 48 being supplied to the reaction zone 10 is effected in response to the detection of a decrease, or an indication of a decrease, in the rate of supply (molar rate of supply and/or volumetric rate of supply) of the reaction zone feed material 22 being supplied to the reaction zone 10, while the supplemental carbon dioxide supply 92 is being supplied to the reaction zone 10. In some embodiments, for example, a flow sensor is provided for detecting the flow rate of the reaction zone feed material 22, and transmitting a signal representative of the detected flow rate of the reaction zone feed material 22 to the controller. In some embodiments, the carbon dioxide sensor is a gas analyzer such that the concentration detected is a molar concentration. Upon the controller comparing a received signal from the flow sensor which is representative of a currently detected flow rate of the reaction zone feed material 22, to a previously received signal representative of a previously detected flow rate of the reaction zone feed material 22, and determining that a decrease in the flow rate of the reaction zone feed material 22 has been effected, the controller actuates the opening of a flow control element, such as a valve (for example, valve 50), to initiate supply of the supplemental gas-comprising material 48 to the reaction zone 10 from a source of the supplemental gas-comprising material 48, or to effect increasing of the rate of supply of the supplemental gas-comprising material 48 being supplied to the reaction zone 10 from a source of the supplemental gas-comprising material 48.
  • In another aspect, while the gaseous exhaust material 18 is being discharged by the gaseous exhaust material producing process 20, wherein any of the gaseous exhaust material 18 being supplied to the reaction zone 10 defines a gaseous exhaust material reaction zone supply 24, supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 is modulated based on detection of at least one carbon dioxide processing capacity indicator. In some embodiments, for example, the gaseous exhaust material 18 is discharged in the form of a gaseous flow. In some embodiments, for example, the gaseous exhaust material reaction zone supply 24 is provided in the form of a gaseous flow. In some embodiments, for example, the modulation of the supply of the gaseous exhaust material reaction zone supply 24 is the modulation of the molar rate of supply of the gaseous exhaust material reaction zone supply 24. In some embodiments, the modulation is the modulation of the volumetric rate of supply of the gaseous exhaust material reaction zone supply 24. In some embodiments, for example, the exposing of the phototrophic biomass disposed in the reaction zone 10 to photosynthetically active light radiation is effected while the modulating of the gaseous exhaust material reaction zone supply 24 is being effected.
  • When the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 is modulated based on detection of at least one carbon dioxide processing capacity indicator, in some embodiments, for example, the process further includes modulating of a supply of a bypass fraction of the discharged gaseous exhaust material 18 to another unit operation. The supply of the bypass fraction of the discharged gaseous exhaust material 18 to another unit operation defines a bypass gaseous exhaust material 60. The bypass gaseous exhaust material 60 includes carbon dioxide. The another unit operation converts the bypass gaseous exhaust material 60 such that its environmental impact is reduced.
  • As suggested above, modulating of a supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 is any one of initiating, terminating, increasing, decreasing, or otherwise changing the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10. Such modulation includes increasing (or decreasing) the number of moles (and/or volume) of gaseous exhaust material reaction zone supply 24 that are supplied to the reaction zone 10 over a time interval of a duration “D”, relative to number of moles (or, alternatively, as the case may be, volume) of gaseous exhaust material reaction zone supply 24 that are supplied to the reaction zone 10 over a previous time interval of equivalent duration “D”. In some of these embodiments, the time intervals include a period when gaseous exhaust material reaction zone supply 24 is being supplied to reaction zone 10 (“active supply period”), and a period when reaction zone 10 is not being supplied by gaseous exhaust material reaction zone supply 24 (“quiet period”), and the increasing (or decreasing) is effected by changing the duration of the “active supply period” relative to the duration of the “quiet period(s)”, as between the time intervals.
  • Also, modulating of a supply of the bypass fraction of the discharged gaseous exhaust material 18 (ie. the bypass gaseous exhaust material 60) to another unit operation. is any one of initiating, terminating, increasing, decreasing, or otherwise changing the supply of the bypass gaseous exhaust material 60 to another unit operation.
  • The carbon dioxide processing capacity indicator is any characteristic that is representative of the capacity of the reaction zone 10 for receiving carbon dioxide and having at least a fraction of the received carbon dioxide converted in a photosynthesis reaction effected by phototrophic biomass disposed within the reaction zone.
  • In some embodiments, for example, the carbon dioxide processing capacity indicator is any characteristic of the process that is representative of the capacity of the reaction zone 10 for receiving carbon dioxide and having at least a fraction of the received carbon dioxide converted in a photosynthesis reaction effected by phototrophic biomass disposed within the reaction zone, such that the photosynthesis effects growth of the phototrophic biomass within the reaction zone 10. In this respect, the detection of the carbon dioxide processing capacity indicator is material to determining whether modulation of the supply of the gaseous exhaust material reaction zone supply 24 is required to effect a predetermined rate of growth of mass of the phototrophic biomass within the reaction zone 10.
  • In some embodiments, for example, the carbon dioxide processing capacity indicator is any characteristic of the process that is representative of the capacity of the reaction zone 10 for receiving carbon dioxide and having at least a fraction of the received carbon dioxide converted in a photosynthesis reaction effected by phototrophic biomass disposed within the reaction zone 10, such that any discharge of carbon dioxide from the reaction zone 10 is effected below a predetermined molar rate. In this respect, the detection of the carbon dioxide processing capacity indicator is material to determining whether modulation of the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 is required to effect a predetermined molar rate of discharge of the carbon dioxide from the reaction zone 10.
  • In some embodiments, for example, the carbon dioxide processing capacity indicator which is detected is a pH within the reaction zone 10. In some embodiments, for example, the carbon dioxide processing capacity indicator which is detected is a mass concentration of phototrophic biomass within the reaction zone 10. Because any of phototrophic biomass-comprising product 500 that is being discharged from the reaction zone 10 includes a portion of material from within the reaction zone 10 (ie. phototrophic biomass-comprising product 500 that is being discharged from the reaction zone 10 is supplied with material from within the reaction zone 10), the detecting of a carbon dioxide processing capacity indicator (such as the pH within the reaction zone, or the phototrophic biomass mass concentration within the reaction zone) includes detecting of the carbon dioxide processing capacity indicator within the phototrophic biomass-comprising product 500 that is being discharged from the reaction zone 10
  • In some embodiments for example, the modulating of the supply of the gaseous exhaust reaction zone supply 24 to the reaction zone 10 is based on detection of two or more carbon dioxide processing capacity indicators within the reaction zone 10.
  • In some embodiments, for example, while the gaseous exhaust material 18 is being discharged by the gaseous exhaust material producing process 20, wherein any gaseous exhaust material 18 which is being supplied to the reaction zone 10 defines a gaseous exhaust material reaction zone supply 24, when a carbon dioxide processing capacity indicator is detected in the reaction zone 10 which is representative of a capacity of the reaction zone 10 for receiving an increased molar rate of supply of carbon dioxide, the modulating of the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 includes initiating the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10, or increasing the molar rate of supply (and/or volumetric rate of supply) of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10. In this respect, the modulating is effected in response to the detection of a carbon dioxide processing capacity indicator in the reaction zone 10 which is representative of a capacity of the reaction zone 10 for receiving an increased molar rate of supply of carbon dioxide. In those embodiments where the outlet of the gaseous exhaust material producing process 20 is co-operatively disposed with another unit operation to effect supply of the bypass gaseous exhaust material 60 to the another unit operation, and while the bypass gaseous exhaust material 60 is being supplied to the another unit operation, in some of these embodiments, the process further includes effecting a decrease to the molar rate of supply (and/or volumetric rate of supply) of, or terminating the supply of, the bypass gaseous exhaust material 60 being supplied to the another unit operation. It is understood that, in some embodiments, the detecting of a capacity indicator which is representative of a capacity of the reaction zone 10 for receiving an increased molar rate of supply of carbon dioxide occurs while the reaction zone 10 is being supplied with the gaseous exhaust material reaction zone supply 24. It is also understood that, in other embodiments, the detecting of a capacity indicator which is representative of a capacity of the reaction zone 10 for receiving an increased molar rate of supply of carbon dioxide occurs while the reaction zone 10 is not being supplied with the gaseous exhaust material reaction zone supply 24.
  • In some embodiments, for example, while the gaseous exhaust material 18 is being discharged by the gaseous exhaust material producing process 20, and while at least a fraction of the gaseous exhaust material 18 is being supplied to the reaction zone 10, wherein the at least a fraction of the gaseous exhaust material 18 which is being supplied to the reaction zone 10 defines a gaseous exhaust material reaction zone supply 24, when a carbon dioxide processing capacity indicator is detected in the reaction zone 10 which is representative of a capacity of the reaction zone 10 for receiving a decreased molar rate of supply of carbon dioxide, the modulating of the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 includes reducing the molar rate of supply (and/or volumetric rate of supply) of, or terminating the supply of, the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10. In this respect, the modulating is effected in response to the detection of a carbon dioxide processing capacity indicator in the reaction zone 10 which is representative of a capacity of the reaction zone 10 for receiving a decreased molar rate of supply of carbon dioxide. In those embodiments where the outlet of the gaseous exhaust material producing process 20 is co-operatively disposed with another unit operation to effect supply of the bypass gaseous exhaust material 60 to the another unit operation, in some of these embodiments, the process further includes initiating the supply of the bypass gaseous exhaust material 60 to the another unit operation, or effecting an increase to the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation.
  • In some embodiments, for example, the carbon dioxide processing capacity indicator is a pH within the reaction zone 10. Operating with a pH in the reaction zone 10 which is above the predetermined high pH (indicating an insufficient molar rate of supply of carbon dioxide to the reaction zone 20), or which is below the predetermined low pH (indicating an excessive molar rate of supply of carbon dioxide to the reaction zone 10), effects less than a desired growth rate of the phototrophic biomass, and, in the extreme, could effect death of the phototrophic biomass. In some embodiments, for example, the pH which is detected in the reaction zone is detected in the reaction zone 10 with a pH sensor 46. The pH sensor 46 is provided for detecting the pH within the reaction zone, and transmitting a signal representative of the detected pH within the reaction zone to the controller.
  • In some embodiments, for example, while the gaseous exhaust material 18 is being discharged by the gaseous exhaust material producing process 20, wherein any of the gaseous exhaust material 18 which is supplied to the reaction zone 10 defines a gaseous exhaust material reaction zone supply 24, when a pH is detected in the reaction zone 10 that is above a predetermined high pH value, the modulating of the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 includes initiating the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10, or increasing the molar rate of supply (and/or volumetric rate of supply) of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10. In those embodiments where the outlet of the gaseous exhaust material producing process 20 is co-operatively disposed with another unit operation to effect supply of the bypass gaseous exhaust material 60 to the another unit operation, and while the bypass gaseous exhaust material 60 is being supplied to the another unit operation, in some of these embodiments, the process further includes effecting a decrease to the molar rate of supply (and/or volumetric rate of supply), or terminating the supply, of the bypass gaseous exhaust material 60 being supplied to the another unit operation. It is understood that, in some embodiments, the detecting of a pH in the reaction zone 10 that is above a predetermined high pH value occurs when the reaction zone 10 is being supplied with the gaseous exhaust material reaction zone supply 24. It is also understood that, in other embodiments, the detecting of a pH in the reaction zone 10 that is above a predetermined high pH value occurs when the reaction zone 10 is not being supplied with the gaseous exhaust material reaction zone supply 24.
  • In those embodiments when the pH within the reaction zone is above a predetermined high pH value, in some of these embodiments, upon the controller comparing a received signal from the pH sensor 47 which is representative of the detected pH within the reaction zone 10 to a target value (ie. the predetermined high pH value), and determining that the detected pH within the reaction zone 10 is above the predetermined high pH value, the controller responds by effecting initiation of the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10, or effecting an increase to the molar rate of supply (and/or volumetric rate of supply) of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10. In some embodiments, for example, the initiation of supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 is effected by actuating opening of the flow control element 50 with the controller. In some embodiments, for example, the effecting of an increase to the molar supply rate (and/or volumetric supply rate) of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 is effected by actuating an increase to the opening of the flow control element 50 with the controller. The flow control element 50 is provided and configured to selectively control the molar rate (and/or volumetric rate) of flow of the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 by selectively interfering with the flow of the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10, including by effecting pressure losses to the flow of the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10. In this respect, the initiation of supply, or the increase to the molar rate of supply (and/or volumetric rate of supply), of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 is effected by actuation of the flow control element 50. The predetermined high pH value depends on the phototrophic organisms of the biomass. In some embodiments, for example, the predetermined high pH value can be as high as 10.
  • In those embodiments where the outlet of the gaseous exhaust material producing process 20 is co-operatively disposed with another unit operation to effect supply of the bypass gaseous exhaust material 60 to the another unit operation, and while the bypass gaseous exhaust material 60 is being supplied to the another unit operation, in some of these embodiments, for example, upon the controller determining that the pH within the reaction zone 10 is above the predetermined high pH value, the controller further responds by effecting a decrease to the molar rate of supply (and/or volumetric rate of supply), or by effecting termination of the supply, of the bypass gaseous exhaust material 60 being supplied to the another unit operation. In some embodiments, for example, the decrease to the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation is effected by the controller by actuating a decrease to the opening of a valve disposed between the gaseous exhaust material producing process 20 and the another unit operation, wherein the valve is configured to interfere with fluid communication between the gaseous exhaust material producing process 20 and the another unit operation. In some embodiments, for example, the termination of the supply of the bypass gaseous exhaust material 60 being supplied to the another unit operation is effected by the controller by actuation closure of a valve disposed between the gaseous exhaust material producing process 20 and the another unit operation, wherein the valve is configured to interfere with fluid communication between the gaseous exhaust material producing process 20 and the another unit operation.
  • Also in those embodiments where the outlet of the gaseous exhaust material producing process 20 is co-operatively disposed with another unit operation to effect supply of bypass gaseous exhaust material 60 to the another unit operation, and while bypass gaseous exhaust material 60 is being supplied to the another unit operation, in other ones of these embodiments, for example, the decrease to the molar rate of supply (and/or volumetric rate of supply), or the termination of supply, of the bypass gaseous exhaust material 60 being supplied to the another unit operation is effected when the pressure of the gaseous exhaust material 18 upstream of the another unit operation is below a predetermined pressure, wherein the decrease in pressure is effected in response to an initiation of the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10, or an increase to the molar rate of supply (and/or volumetric rate of supply) of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10, either of which is effected by the controller in response to the determination that the detected pH within the reaction zone is above a predetermined high pH value. In such embodiments, upon the controller determining that the detected pH within the reaction zone is above the predetermined high pH value, the controller effects an initiation of the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10, or an increase to the molar rate of supply (and/or volumetric rate of supply) of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10, as described above. The initiation of supply of, or the increase to the molar rate of supply (and/or volumetric rate of supply) of, the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 effects a corresponding decrease in pressure of the gaseous exhaust material 18 such that the pressure of the gaseous exhaust material 18 upstream of the another unit operation becomes disposed below the predetermined pressure. When the pressure of the gaseous exhaust material 18 upstream of the another unit operation is below the predetermined pressure, the forces biasing closure of a closure element 64 (such as a valve), disposed between the gaseous exhaust material producing process 20 and the another unit operation and configured for interfering with fluid communication between the gaseous exhaust material producing process 20 and the another unit operation, exceed the fluid pressure forces acting to open the closure element 64. In some implementations, there is effected a decrease of the opening of the closure element 64, thereby effecting the decrease to the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation. In other implementations, there is effected closure of the closure element 64, thereby effecting the termination of supply of the bypass gaseous exhaust material 60 being supplied to the another unit operation.
  • Also in those embodiments where the outlet of the gaseous exhaust material producing process 20 is co-operatively disposed with another unit operation to effect supply of bypass gaseous exhaust material 60 to the another unit operation, and while bypass gaseous exhaust material 60 is being supplied to the another unit operation, in other ones of these embodiments, for example, the decrease to the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation is effected when the pressure of the gaseous exhaust material 18 upstream of the another unit operation is decreased, wherein the decrease in pressure of the gaseous exhaust material 18 is effected in response to an initiation of the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10, or an increase to the molar rate of supply (and/or volumetric rate of supply) of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10, either of which is effected by the controller in response to the determination that the detected pH within the reaction zone is above a predetermined high pH value. The decrease in pressure of the gaseous exhaust material 18 upstream of the another unit operation effects a decrease in the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation.
  • In some embodiments, for example, while the gaseous exhaust material 18 is being discharged by the gaseous exhaust material producing process 20, and while at least a fraction of the gaseous exhaust material 18 is being supplied to the reaction zone 10, wherein the at least a fraction of the gaseous exhaust material 18 which is being supplied to the reaction zone 10 defines a gaseous exhaust material reaction zone supply 24, when a pH is detected in the reaction zone 10 that is below a predetermined low pH value, the modulating of the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 includes reducing the molar rate of supply (and/or volumetric rate of supply), or terminating the supply, of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10. In those embodiments where the outlet of the gaseous exhaust material producing process 20 is co-operatively disposed with another unit operation to effect supply of the bypass gaseous exhaust material 60 to the another unit operation, in some of these embodiments, for example, the process further includes initiating the supply of the bypass gaseous exhaust material 60 to the another unit operation, or effecting an increase to the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation.
  • In those embodiments where the pH within the reaction zone is below a predetermined low pH value, in some of these embodiments, for example, upon the controller comparing a received signal from the pH sensor 46 which is representative of the detected pH within the reaction zone 10 to a target value (ie. the predetermined low pH value), and determining that the detected pH within the reaction zone 10 is below the predetermined low pH value, the controller responds by effecting reduction of the molar rate of supply (and/or volumetric rate of supply) of, or effecting termination of the supply of, the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10. In some embodiments, for example, the effected reduction of the molar rate of supply (and/or volumetric rate of supply) of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 is effected by actuating a decrease in the opening of the flow control element 50 (such as a valve) with the controller. In some embodiments, for example, the effected termination of supply of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 is effected by actuating the closure of a flow control element 50 (such as a valve) with the controller. The predetermined low pH value depends on the phototrophic organisms of the biomass. In some embodiments, for example, the predetermined low pH value can be as low as 4.0.
  • In those embodiments where the outlet of the gaseous exhaust material producing process 20 is co-operatively disposed with another unit operation to effect supply of the bypass gaseous exhaust material 60 to the another unit operation, in some of these embodiments, for example, upon the controller determining that the pH within the reaction zone 10 is below the predetermined low pH value, the controller further responds by effecting initiation of the supply of the bypass gaseous exhaust material 60 to the another unit operation, or effecting an increase to the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation. In some embodiments, for example, the initiation of the supply of the bypass gaseous exhaust material 60 to the another unit operation, or the increase to the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation is effected by the controller actuating a valve disposed between the gaseous exhaust material producing process 20 and the another unit operation, wherein the valve is configured for interfering with fluid flow between the process 20 and the another unit operation. In some implementations, for example, the initiation of the supply of the bypass gaseous exhaust material 60 to the another unit operation is effected by the controller by actuating the opening of a valve disposed between the gaseous exhaust material producing process 20 and the another unit operation. In some implementations, for example, the increase to the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 to the another unit operation is effected by the controller by actuation of an increase to the opening of a valve disposed between the gaseous exhaust material producing process 20 and the another unit operation.
  • Also in those embodiments where the outlet of the gaseous exhaust material producing process 20 is co-operatively disposed with another unit operation to effect supply of bypass gaseous exhaust material 60 to the another unit operation, in other ones of these embodiments, for example, the initiation of the supply of the bypass gaseous exhaust material 60 to the another unit operation, or an increase in the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 to the another unit operation, is effected when the pressure of the gaseous exhaust material 18 upstream of the another unit operation is above a predetermined pressure, wherein the increase in pressure of the gaseous exhaust material 18 upstream of the another unit operation to above the predetermined pressure is effected in response to the reduction of the molar rate of supply (and/or volumetric rate of supply), or the termination of the supply, of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10, either of which is effected by the controller in response to the determination that the detected pH within the reaction zone is below a predetermined low pH value. In such embodiments, upon the controller determining that the detected pH within the reaction zone by the pH sensor 47 is below a predetermined low pH value, the controller effects a reduction of the molar rate of supply (and/or volumetric rate of supply), or effects termination of the supply, of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10, as described above. The reduction of the molar rate of supply (and/or volumetric rate of supply), or the termination of the supply, of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 effects a corresponding increase in pressure of the gaseous exhaust material 18 upstream of the another unit operation such that the pressure of the gaseous exhaust material 18 upstream of the another unit operation becomes disposed above a predetermined pressure. When the pressure of the gaseous exhaust material 18 upstream of the another unit operation is above the predetermined pressure, the forces biasing closure of a closure element 64 (such as a valve), disposed between the gaseous exhaust material producing process 20 and the another unit operation and configured for interfering with fluid communication between the gaseous exhaust material producing process 20 and the another unit operation, are exceeded by the fluid pressure forces of the gaseous exhaust material 18 acting to open the closure element 64. In some implementations, there is effected initiation of the opening of the closure element 64, which effects the initiation of supply of the bypass gaseous exhaust material 60 being supplied to the another unit operation, in response to the fluid pressure increase. In other implementations, there is effected an increase to the opening of the closure element 64, which effects the increase to the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation, in response to the fluid pressure increase.
  • Also in those embodiments where the outlet of the gaseous exhaust material producing process 20 is co-operatively disposed with another unit operation to effect supply of bypass gaseous exhaust material 60 to the another unit operation, in other ones of these embodiments, for example, the increase in the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation is effected in response to the increase in pressure of the gaseous exhaust material 18 upstream of the another unit operation, which is effected in response to the reduction of the molar rate of supply (and/or volumetric rate of supply), or the termination of the supply, of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10, either of which is effected by the controller in response to the determination that the detected pH within the reaction zone is below a predetermined low pH value. In such embodiments, upon the controller determining that the detected pH within the reaction zone by the pH sensor 47 is below a predetermined low pH value, the controller effects a reduction of the molar rate of supply (and/or volumetric rate of supply), or effects termination of the supply, of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10, as described above. The reduction of the molar rate of supply (and/or volumetric rate of supply) of, or the termination of the supply of, the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 effects a corresponding increase in pressure of the gaseous exhaust material 18 upstream of the another unit operation. The increase in pressure of the gaseous exhaust material 18 upstream of the another unit operation effects the increase in the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation.
  • In some embodiments, for example, the carbon dioxide processing capacity indicator is a mass concentration of phototrophic biomass within the reaction zone 10. In some embodiments, for example, it is desirable to control the mass concentration of the phototrophic biomass within the reaction zone 10, as, for example, higher overall yield of the harvested phototrophic biomass is effected when the mass concentration of the phototrophic biomass within the reaction zone 10 is maintained at a predetermined concentration or within a predetermined concentration range. In some embodiments, the detecting of the mass concentration of phototrophic biomass in the reaction zone 10 is effected with a cell counter 47. For example, a suitable cell counter is an AS-16F Single Channel Absorption Probe supplied by optek-Danulat, Inc. of Germantown, Wis., U.S.A. Other suitable devices for detecting mass concentration of phototrophic biomass include other light scattering sensors, such as a spectrophotometer. As well, the mass concentration of phototrophic biomass can be detected manually, and then input manually into the controller for effecting the desired response.
  • In some embodiments, the mass concentration of phototrophic biomass is detected using a sensor 300 that, in general, combines an absorbence sensor with a turbidity sensor. In this respect, the sensor 300 includes two different light emitters 302, 304 (small light emitting diodes (LEDs)), each configured to emit light of a different wavelength than the other, and an optical sensor 306 to detect light while the light is being emitted by the light emitters.
  • The two light emitters 303, 304 are provided for different purposes. The light emitter 302 is configured to emit light of a wavelength that would be absorbed by the phototrophic biomass. Where the phototrophic biomass is that of algae, in some embodiments, the light being emitted by the light emitter 302 is blue light and/or red light. In those embodiments where the algae is being grown in a photobioreactor 12 in the presence of red light, then the light emitter 302 is configured to emit blue light so as to obtain more accurate measurements. The other light emitter 304 is configured to emit light of a wavelength that would be reflected or scattered by the phototrophic biomass, or at least which is characterized such that there is a greater likelihood that such emitted light would be reflected or scattered by the phototrophic biomass relative to the light emitted by light emitter 302. Where the phototrophic biomass is that of algae, in some embodiments, the light being emitted by the light emitter 304 is green light. The two light emitters 302 and 304 are disposed in spaced-apart relationship relative to the optical sensor 306 (about 1 cm, but this could vary depending on the emitted light intensity and expected mass concentration of the phototrophic biomass). In operation, light emission, from light emitter 302 and light emitter 304, alternates between the two. In some embodiments, the light emissions from the sensor are characterized by alternating pulses of light from the light emitters 302 and 304. In some of these embodiments, for example, light emitter 302 emits a pulse of light for a defined time interval T1 while light emitter 304 emits substantially no light during this time interval T1, and then, at the completion of time interval T1, light emitter 304 emits a pulse of light for a defined time interval T2 while light emitter 304 emits substantially no light during this time interval T2, and this cycle is then repeated for as many cycles as is desired for effecting the desired detection of mass concentration of phototrophic biomass. By alternating light emissions between the light emitter 302 and 304, interference of the detection of light, being emitted from one of the light emitters 302, 304, by light being emitted from the other one of the light emitters 302, 304, is avoided or mitigated. The duration of each light pulse is not so critical, but typically about 1 sec would be used for each light emitter so that the optical sensor 306 has time to adjust to the new wavelength and record a value that is not affected by scattering of the other light emitter that just turned off.
  • When light is being emitted by light emitter 302, the optical sensor 306 detects light than has not been absorbed by the phototrophic biomass, and transmits, to a controller, a signal representative of the quantity of light that has not been absorbed by the phototrophic biomass, which is then compared by the controller to a signal representative of the intensity of light being emitted by light emitter 302, and converted into a signal representative of the quantity of light absorbed by the phototrophic biomass. When light is being emitted by light emitter 304, the optical sensor 306 detects light than has been scattered or reflected by the phototrophic biomass, and transmits, to a controller, a signal representative of the quantity of light that has been scattered or reflected by the phototrophic biomass. These signals are combined by the controller into a signal that is representative of a density measurement (ie. mass concentration of phototrophic biomass). The controller is calibrated based on predetermined correlation between algae mass concentration within an aqueous medium and the absorption of light, being emitted by the light emitter 302, by the phototrophic biomass, and the reflection (or scattering) of light, being emitted by the light emitter 304, by the phototrophic biomass. This correlation is predetermined based on calibration measurements to known mass concentrations of the phototrophic biomass which is to be grown within the aqueous medium disposed in the photobioreactor 12 (ie. defining the mass concentration of phototrophic biomass within the aqueous medium as a function of: (i) the absorption of light, being emitted by the light emitter 302, by the phototrophic biomass, and (ii) the reflection (or scattering) of light, being emitted by the light emitter 304, by the phototrophic biomass.
  • Referring to FIGS. 4A, 4B and FIGS. 5A, 5B, in some embodiments, the light emitters 302, 304 and the optical sensor 306 are mounted within a common housing 308 and are configured for electrical connection to a power source and a control transmitter for measuring an electrical signal (current or voltage, depending on the control set-up) with wiring 310. For example, as illustrated in FIGS. 4A, 4B and FIGS. 5A, 5B, this configuration would be useful for effecting detection of mass concentration of phototrophic biomass within a vessel of a photobioreactor 12 In other embodiments, such as that illustrated in FIG. 6, for example, the light emitters 302, 304 and the optical sensor 306 do not necessarily require to be mounted within a common housing. In the embodiment illustrated in FIG. 6, this configuration of sensor 300 is co-operatively mounted to a conduit (such as a conduit 312 which is effecting the discharge of phototrophic biomass from the photobioreactor 12) for measuring mass concentration of phototrophic biomass within a slurry flowing through the conduit 312.
  • In this respect, in some embodiments, for example, while the gaseous exhaust material 18 is being discharged by the gaseous exhaust material producing process 20, and while at least a fraction of the gaseous exhaust material 18 is being supplied to the reaction zone 10, wherein the at least a fraction of the gaseous exhaust material 18 which is being supplied to the reaction zone 10 defines a gaseous exhaust material reaction zone supply 24, when a phototrophic biomass concentration is detected in the reaction zone 10 that is above a predetermined high mass concentration of phototrophic biomass (the “predetermined high target concentration value”), the modulating of the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 includes reducing the molar rate of supply (and/or volumetric rate of supply), or terminating the supply, of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10. In those embodiments where the outlet of the gaseous exhaust material producing process 20 is co-operatively disposed with another unit operation to effect supply of the bypass gaseous exhaust material 60 to the another unit operation, the process further includes initiating the supply of the bypass gaseous exhaust material 60 to the another unit operation, or effecting an increase to the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation.
  • In those embodiments where the phototrophic biomass concentration within the reaction zone is above the predetermined high concentration target value, in some of these embodiments, upon the controller comparing a received signal from the cell counter 47, which is representative of the detected mass concentration of phototrophic biomass within the reaction zone 10, to the predetermined high concentration target value, and determining that the mass concentration of phototrophic biomass within the reaction zone 10 is above the predetermined high concentration target value, the controller responds by effecting reduction of the molar rate of supply (and/or volumetric rate of supply) of, or termination of the supply of, the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10. In some implementations, for example, the reduction of the molar rate of supply (and/or volumetric rate of supply) of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 is effected by actuating a decrease to the opening the flow control element 50 with the controller. In some implementations, for example, the termination of the supply of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 is effected by actuating closure of the flow control element 50 with the controller.
  • In those embodiments where the outlet of the gaseous exhaust material producing process 20 is co-operatively disposed with another unit operation to effect supply of bypass gaseous exhaust material 60 to the another unit operation, in some of these embodiments, for example, upon the controller comparing a received signal from the cell counter 47, which is representative of the mass concentration of phototrophic biomass within the reaction zone 10, to the predetermined high concentration target value, and determining that the mass concentration of phototrophic biomass within the reaction zone 10 is above the predetermined high concentration target value, the controller further responds by effecting initiation of the supply of the bypass gaseous exhaust material 60 to the another unit operation, or effecting an increase to the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation. In some embodiments, for example, the initiation of the supply of the bypass gaseous exhaust material 60 to the another unit operation, or the increase to the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation is effected by the controller actuating a valve disposed between the gaseous exhaust material producing process 20 and the another unit operation, wherein the valve is configured for interfering with fluid flow between the process 20 and the another unit operation. In some implementations, for example, the initiation of the supply the bypass gaseous exhaust material 60 to the another unit operation is effected by the controller by actuation of the opening of the valve disposed between the gaseous exhaust material producing process 20 and the another unit operation. In some implementations, for example, the increase to the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation is effected by the controller by actuation of an increase in the opening of the valve disposed between the gaseous exhaust material producing process 20 and the another unit operation.
  • Also in those embodiments where the outlet of the gaseous exhaust material producing process 20 is co-operatively disposed with another unit operation to effect supply of bypass gaseous exhaust material 60 to the another unit operation, in other ones of these embodiments, for example, the initiation of the supply of the bypass gaseous exhaust material 60 to the another unit operation, or an increase in the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation, is effected when the pressure of the gaseous exhaust material 18 upstream of the another unit operation is above a predetermined pressure, wherein the increase in pressure of the gaseous exhaust material 18 upstream of the another unit operation to above the predetermined pressure is effected in response to the reduction of the molar rate of supply (and/or volumetric rate of supply), or the termination of the supply, of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10, either of which is effected by the controller in response to the determination that the detected mass concentration of phototrophic biomass within the reaction zone is above the predetermined high concentration target value. In such embodiments, upon the controller determining that the detected mass concentration of phototrophic biomass within the reaction zone by the cell counter 47 is above the predetermined high concentration target value, the controller effects a reduction of the molar rate of supply (and/or volumetric rate of supply), or termination of the supply, of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10, as described above. The reduction of the molar rate of supply (and/or volumetric rate of supply) of, or the termination of the supply of, the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 effects a corresponding increase in pressure of the gaseous exhaust material 18 upstream of the another unit operation such that the pressure of the gaseous exhaust material 18 becomes disposed above a predetermined pressure. When the pressure of the gaseous exhaust material 18 is above the predetermined pressure, the forces biasing closure of a closure element 64 (such as a valve), disposed between the gaseous exhaust material producing process 20 and the another unit operation and configured for interfering with fluid communication between the gaseous exhaust material producing process 20 and the another unit operation, are exceeded by the fluid pressure forces acting to open the closure element 64. In some implementations, there is effected an initiation of the opening of the closure element 64, thereby effecting the initiation of the supply of the bypass gaseous exhaust material 60 to the another unit operation. In some implementations, there is effected an increase in the opening of the closure element 64, thereby effecting the increase in the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation.
  • Also in those embodiments where the outlet of the gaseous exhaust material producing process 20 is co-operatively disposed with another unit operation to effect supply of bypass gaseous exhaust material 60 to the another unit operation, in other ones of these embodiments, for example, the increase in the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation is effected in response to the increase in pressure of the gaseous exhaust material 18 upstream of the another unit operation, which is effected in response to the reduction of the molar rate of supply (and/or volumetric rate of supply), or the termination of the supply, of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10, either of which is effected by the controller in response to the determination that the detected mass concentration of phototrophic biomass within the reaction zone is above the predetermined high concentration target value. In such embodiments, upon the controller determining that the detected mass concentration of phototrophic biomass within the reaction zone by the cell counter 47 is above the predetermined high concentration target value, the controller effects a reduction of the molar rate of supply (and/or volumetric rate of supply), or effects termination of the supply, of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10, as described above. The reduction of the molar rate of supply of (and/or volumetric rate of supply), or the termination of the supply of, the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 effects a corresponding increase in pressure of the gaseous exhaust material 18 upstream of the another unit operation. The increase in pressure of the gaseous exhaust material 18 upstream of the another unit operation effects the increase in the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation.
  • In some embodiments, for example, while the gaseous exhaust material 18 is being discharged by the gaseous exhaust material producing process 20, wherein any of the gaseous exhaust material 18 which is being supplied to the reaction zone 10 defines a gaseous exhaust material reaction zone supply 24, when a mass concentration of phototrophic biomass is detected in the reaction zone 10 that is below a predetermined low mass concentration of phototrophic biomass (a “predetermined low concentration target value”), the modulating of the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 includes initiating the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10, or increasing the molar rate of supply (and/or volumetric rate of supply) of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10. In those embodiments where the outlet of the gaseous exhaust material producing process 20 is co-operatively disposed with another unit operation to effect supply of the bypass gaseous exhaust material 60 to the another unit operation, and while the bypass gaseous exhaust material 60 is being supplied to the another unit operation, in some of these embodiments, the process further includes effecting a decrease to the molar rate of supply (and/or volumetric rate of supply) of, or terminating the supply of, the bypass gaseous exhaust material 60 to the another unit operation.
  • In those embodiments where the mass concentration of phototrophic biomass within the reaction zone is below the predetermined low concentration target value, in some of these embodiments, upon the controller comparing a received signal from the cell counter 47, which is representative of the detected mass concentration of phototrophic biomass within the reaction zone 10, to the predetermined low concentration target value, and determining that the detected mass concentration of phototrophic biomass within the reaction zone 10 is below the predetermined low concentration target value, the controller responds by effecting initiation of the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10, or effecting an increase to the molar rate of supply (and/or volumetric rate of supply) of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10. In some embodiments, for example, this is effected by actuating the flow control element 50 with the controller. In some implementations, the initiation of supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 is effected by actuating opening of the flow control element 50 with the controller. In some implementations, the effecting of an increase to the molar supply rate (and/or volumetric supply rate) of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 is effected by actuating an increase to the opening of the flow control element 50 with the controller.
  • In those embodiments where the outlet of the gaseous exhaust material producing process 20 is co-operatively disposed with another unit operation to effect supply of the bypass gaseous exhaust material 60 to the another unit operation, and while the bypass gaseous exhaust material 60 is being supplied to the another unit operation, in some of these embodiments, for example, upon the controller comparing a received signal from the cell counter 47, which is representative of the mass concentration of phototrophic biomass within the reaction zone 10, to the low concentration target value, and determining that the mass concentration of phototrophic biomass within the reaction zone 10 is below the predetermined low concentration target value, the controller further responds by effecting a decrease to the molar rate of supply (and/or volumetric rate of supply), or by effecting the termination of the supply, of the bypass gaseous exhaust material 60 to the another unit operation. In some embodiments, for example, the decrease to the molar rate of supply (and/or volumetric rate of supply), or the termination of the supply, of the bypass gaseous exhaust material 60 to the another unit operation is effected by the controller by actuation of a valve disposed between the gaseous exhaust material producing process 20 and the another unit operation, wherein the valve is configured to interfere with fluid communication between the gaseous exhaust material producing process 20 and the another unit operation. In some implementations, for example, the decrease to the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation is effected by the controller by actuating a decrease to the opening of a valve disposed between the gaseous exhaust material producing process 20 and the another unit operation. In some implementations, for example, the termination of the supply of the bypass gaseous exhaust material 60 being supplied to the another unit operation is effected by the controller by actuating closure of a valve disposed between the gaseous exhaust material producing process 20 and the another unit operation.
  • Also in those embodiments where the outlet of the gaseous exhaust material producing process 20 is co-operatively disposed with another unit operation to effect supply of bypass gaseous exhaust material 60 to the another unit operation, and while bypass gaseous exhaust material 60 is being supplied to the another unit operation, in other ones of these embodiments, for example, the decrease to the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation, or the termination of the supply of the bypass gaseous exhaust material 60 being supplied to the another unit operation, is effected in response to a decrease in pressure of the gaseous exhaust material 18 upstream of the another unit operation, wherein the decrease in pressure is effected in response to an initiation of the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10, or an increase to the molar rate of supply (and/or volumetric rate of supply) of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10, either of which is effected by the controller in response to the determination that the detected mass concentration of phototrophic biomass within the reaction zone is below the predetermined low concentration target value. The pressure decrease is such that the pressure of the gaseous exhaust material 18 upstream of the another unit operation is below a predetermined minimum pressure, and the forces biasing closure of a closure element 64 (such as a valve), disposed between the gaseous exhaust material producing process 20 and the another unit operation and configured for interfering with fluid communication between the gaseous exhaust material producing process 20 and the another unit operation, exceed the fluid pressure forces of the gaseous exhaust material 18 acting to open the closure element 64. In some implementations, there is effected a decrease in the opening of the closure element 64, which effects the decrease to the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 to the another unit operation, in response to the decrease in the pressure of the gaseous exhaust material 18 upstream of the another unit operation. In other implementations, there is effected a closure of the closure element 64, which effects the termination of the supply of the bypass gaseous exhaust material 60 to the another unit operation, in response to the decrease in the pressure of the gaseous exhaust material 18 upstream of the another unit operation.
  • Also in those embodiments where the outlet of the gaseous exhaust material producing process 20 is co-operatively disposed with another unit operation to effect supply of bypass gaseous exhaust material 60 to the another unit operation, and while bypass gaseous exhaust material 60 is being supplied to the another unit operation, in other ones of these embodiments, for example, the decrease to the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation is effected in response to a decrease in pressure of the gaseous exhaust material 18 upstream of the another unit operation, wherein the decrease in pressure is effected in response to an initiation of the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10, or an increase to the molar rate of supply (and/or volumetric rate of supply) of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10, either of which is effected by the controller in response to the determination that the detected mass concentration of phototrophic biomass within the reaction zone is below the predetermined low concentration target value. The decrease in pressure of the gaseous exhaust material 18 upstream of the another unit operation effects a decrease in the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation.
  • In some embodiments, for example, the modulating of the bypass gaseous exhaust material 60 to the another unit operation is effected while the modulating of the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 is being effected. In this respect, in some embodiments, for example, the initiation of the supply of the bypass gaseous exhaust material 60 to the another unit operation, or the increase to the molar rate of supply (and/or volumetric rate of supply) of the bypass gaseous exhaust material 60 being supplied to the another unit operation, is effected while the decrease in the molar rate of supply (and/or volumetric rate of supply), or the termination of the supply, of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 is being effected. Also in this respect, the decrease to the molar rate of supply (and/or volumetric rate of supply), or the termination of the supply, of the bypass gaseous exhaust material 60 being supplied to the another unit operation is effected while the initiation of the supply of the gaseous exhaust material reaction zone supply 24, or the increase in the molar rate of supply (and/or volumetric rate of supply), of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10, is being effected.
  • In some embodiments, for example, the flow control element 50 is a flow control valve. In some embodiments, for example, the flow control element 50 is a three-way valve which also regulates the supply of a supplemental gas-comprising material 48, which is further described below.
  • In some embodiments, for example, the closure element 64 is any one of a valve, a damper, or a stack cap.
  • In some embodiments, for example, when the gaseous exhaust material reaction zone supply 24 is supplied to the reaction zone 10 as a flow, the flowing of the gaseous exhaust material reaction zone supply 24 is at least partially effected by a prime mover 38. For such embodiments, examples of a suitable prime mover 38 include a blower, a compressor, a pump (for pressurizing liquids including the gaseous exhaust material reaction zone supply 24), and an air pump. In some embodiments, for example, the prime mover 38 is a variable speed blower and the prime mover 38 also functions as the flow control element 50 which is configured to selectively control the flow rate of the reaction zone feed material 22 and define such flow rate.
  • In some embodiments, for example, the another unit operation is a smokestack 62. The smokestack 62 is configured to receive the bypass gaseous exhaust material 60 supplied from the outlet of the gaseous exhaust material producing process 20. When operational, the bypass gaseous exhaust material 60 is disposed at a pressure that is sufficiently high so as to effect flow through the smokestack 62. In some of these embodiments, for example, the flow of the bypass gaseous exhaust material 60 through the smokestack 62 is directed to a space remote from the outlet of the gaseous exhaust material producing process 20. Also in some of these embodiments, for example, the bypass gaseous exhaust material 60 is supplied from the outlet when the pressure of the gaseous exhaust material 18 exceeds a predetermined maximum pressure. In such embodiments, for example, the exceeding of the predetermined maximum pressure by the gaseous exhaust material 18 effects an opening of the closure element 64, to thereby effect supply of the bypass gaseous exhaust material 60.
  • In some embodiments, for example, the smokestack 62 is provided to direct the bypass fraction of the gaseous exhaust material 18 to a space remote from the outlet which discharges the gaseous exhaust material 18 from the gaseous exhaust material producing process 20, in response to a detected carbon dioxide processing capacity indicator which is representative of a capacity of the reaction zone 10 for receiving a decreased molar rate of supply of carbon dioxide from the gaseous exhaust material reaction zone supply 24, so as to mitigate against a gaseous discharge of an unacceptable carbon dioxide concentration to the environment.
  • In some embodiments, for example, the smokestack 62 is an existing smokestack 62 which has been modified to accommodate lower throughput of gaseous flow as provided by the bypass gaseous exhaust material 60. In this respect, in some embodiments, for example, an inner liner is inserted within the smokestack 62 to accommodate the lower throughput.
  • In some embodiments, for example, the another unit operation is a separator which effects removal of carbon dioxide from the bypass gaseous exhaust material 60. In some embodiments, for example, the separator is a gas absorber.
  • In some embodiments, for example, while the gaseous exhaust material 18 is being discharged by the gaseous exhaust material producing process 20, and while at least a fraction of the gaseous exhaust material 18 is being supplied to the reaction zone 10, wherein the at least a fraction of the gaseous exhaust material 18 which is being supplied to the reaction zone 10 defines a gaseous exhaust material reaction zone supply 24, when a carbon dioxide processing capacity indicator is detected in the reaction zone 10 which is representative of a capacity of the reaction zone 10 for receiving a decreased molar rate of supply of carbon dioxide, (for example, a detected pH within the reaction zone that is below a predetermined low pH value, or a detected mass concentration of phototrophic biomass within the reaction zone that is above a predetermined high mass concentration of phototrophic biomass), and the modulating of the gaseous exhaust material reaction zone supply 24, in response to the detecting of the carbon dioxide processing capacity indicator which is representative of a capacity of the reaction zone 10 for receiving a decreased molar rate of supply of carbon dioxide, includes reducing the molar rate of supply (and/or volumetric rate of supply), or terminating the supply, of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10, the process further includes initiating the supply of a supplemental gas-comprising material 48 to the reaction zone 10, or increasing the molar rate of supply (and/or volumetric rate of supply) of a supplemental gas-comprising material 48 being supplied to the reaction zone 10.
  • The molar concentration of carbon dioxide, if any, of the supplemental gas-comprising material 48 is lower than the molar concentration of carbon dioxide of the at least a fraction of the gaseous exhaust material 18 being supplied to the reaction zone 10 from the gaseous exhaust material producing process 20. In some embodiments, for example, the molar concentration of carbon dioxide of the supplemental gas material 48 is less than 3 mole % based on the total moles of the supplemental gas material 48. In some embodiments, for example, the molar concentration of carbon dioxide of the supplemental gas material 48 is less than 1 (one) mole % based on the total moles of the supplemental gas material 48. In some embodiments, for example, the supplemental gas-comprising material 48 is supplied to the reaction zone 10 as a fraction of the reaction zone feed material 22. In some embodiments, for example, the reaction zone feed material 22 is a gaseous material. In some embodiments, for example, the reaction zone feed material 22 includes a dispersion of gaseous material in a liquid material.
  • In some embodiments, for example, the molar supply rate reduction (and/or volumetric supply rate reduction), or the termination of the supply, of the gaseous exhaust material reaction zone supply 24, being supplied to the reaction zone 10, effected by the modulating of the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone, co-operates with the supplying of the supplemental gas-comprising material 48 to the reaction zone 10 to effect a reduction in the molar rate of supply, or the termination of supply, of carbon dioxide being supplied to the reaction zone 10. In some embodiments, for example, the initiation of the supply, or the increase to the molar rate of supply (and/or volumetric rate of supply), of the bypass gaseous exhaust material 60 to the another unit operation is effected while the decrease in the molar rate of supply (and/or volumetric rate of supply), or the termination of the supply, of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 is being effected, and while the initiating of the supply of the supplemental gas-comprising material 48 to the reaction zone 10, or the increasing of the molar rate of supply (and/or volumetric rate of supply), of the supplemental gas-comprising material 48 being supplied to the reaction zone 10, is being effected.
  • In some of these embodiments, and as described above, the flow control element 50 is a three-way valve, and is operative to modulate supply of the supplemental gas-comprising material 48 to the reaction zone, in combination with the modulation of the supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10, in response to the carbon dioxide processing capacity indicator. In this respect, when a carbon dioxide processing capacity indicator is detected in the reaction zone 10 which is representative of a capacity of the reaction zone for receiving a decreased molar rate of supply of carbon dioxide, (for example, a detected pH within the reaction zone that is below a predetermined low pH value, or a detected mass concentration of phototrophic biomass within the reaction zone that is above a predetermined high mass concentration of phototrophic biomass), the controller responds by actuating the valve 50 to initiate the supply of the supplemental gas-comprising material 48 to the reaction zone 10, or increase the molar rate of supply (and/or volumetric rate of supply) of the supplemental gas-comprising material 48 being supplied to the reaction zone 10. In some embodiments, while the supplemental gas-comprising material 48 is being supplied to the reaction zone 10, when a carbon dioxide processing capacity indicator is detected in the reaction zone 10 which is representative of a capacity of the reaction zone for receiving an increased molar rate of supply of carbon dioxide (for example, a detected pH within the reaction zone that is above a predetermined high pH value, or a detected mass concentration of phototrophic biomass within the reaction zone that is below a predetermined low mass concentration of phototrophic biomass), the controller responds by actuating the valve 50 to reduce the molar rate of supply (and/or volumetric rate of supply), or terminate the supply, of the supplemental gas-comprising material 48 being supplied to the reaction zone 10.
  • In another aspect, while the gaseous exhaust material 18 is being discharged by the gaseous exhaust material producing process 20, and while at least a fraction of the gaseous exhaust material 18 is being supplied to the reaction zone 10, wherein the at least a fraction of the gaseous exhaust material 18 which is being supplied to the reaction zone 10 defines a gaseous exhaust material reaction zone supply 24, and there is effected a reduction in the molar rate of supply (and/or volumetric rate of supply), or the termination of the supply, of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10, the process further includes initiating the supply of a supplemental gas-comprising material 48, or increasing the molar rate of supply (and/or volumetric rate of supply) of a supplemental gas-comprising material 48, to the reaction zone 10.
  • In some embodiments, for example, the initiating of the supply of a supplemental gas-comprising material 48 to the reaction zone 10, or the increasing of the molar rate of supply (and/or volumetric rate of supply) of a supplemental gas-comprising material 48 being supplied to the reaction zone 10 is effected in response to the detection of the reduction in the molar rate of supply (and/or volumetric rate of supply) of, or the termination of the supply of, the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10, or of an indication of the reduction in the molar rate of supply of (and/or volumetric rate of supply), or the termination of the supply of, the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10. For example, the reduction in the molar rate of supply (and/or volumetric rate of supply) of, or the termination of the supply of, the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10 being effected in response to the detecting of the carbon dioxide processing capacity indicator which is representative of a capacity of the reaction zone 10 for receiving a decreased molar rate of supply of carbon dioxide, is described above. In some embodiments, for example, a flow sensor is provided for detecting the molar flow rate (in which case, a gas analyzer would also be used) or volumetric flow rate of the gaseous exhaust material reaction zone supply 24, and transmitting a signal representative of the detected molar flow rate (or volumetric flow rate, as the case may be) of the gaseous exhaust material reaction zone supply 24 to the controller. Upon the controller comparing a received signal from the flow sensor which is representative of a currently detected molar flow rate (or volumetric flow rate, as the case may be) of the gaseous exhaust material reaction zone supply 24, to a previously received signal representative of a previously detected molar flow rate (or volumetric flow rate, as the case may be) of the gaseous exhaust material reaction zone supply 24, and determining that a decrease in the molar flow rate (or volumetric flow rate, as the case may be) of the gaseous exhaust material reaction zone supply 24 has been effected, the controller actuates the opening of a flow control element, such as a valve (for example, valve 50), to initiate supply of the supplemental gas-comprising material 48 to the reaction zone 10 from a source of the supplemental gas-comprising material 48, or to effect increasing of the molar rate of supply (and/or volumetric rate of supply) of the supplemental gas-comprising material 48 being supplied to the reaction zone 10 from a source of the supplemental gas-comprising material 48.
  • In other ones of these embodiments, the reduction in the molar rate of supply (and/or volumetric rate of supply), or the termination of the supply, of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10 is effected by a reduction in the molar rate (and/or volumetric rate) at which the gaseous exhaust material 18 is being discharged by the gaseous exhaust material producing process 20. In some of these embodiments, for example, the corresponding initiating of the supply of a supplemental gas-comprising material 48 to the reaction zone 10, or the corresponding increasing of the molar rate of supply (and/or volumetric rate of supply) of a supplemental gas-comprising material 48 being supplied to the reaction zone 10 is effected in response to the detection of the reduction in the molar rate (and/or volumetric rate) at which the gaseous exhaust material 18 is being discharged by the gaseous exhaust material producing process 20, or of an indication of the reduction in the molar rate (and/or volumetric rate) at which the gaseous exhaust material 18 is being discharged by the gaseous exhaust material producing process 20. In some embodiments, for example, a flow sensor is provided for detecting the molar flow rate (in which case, a gas analyzer would also be used) or volumetric flow rate of the gaseous exhaust material 18, and transmitting a signal representative of the detected molar flow rate (or volumetric flow rate, as the case may be) of the gaseous exhaust material 18 to the controller. Upon the controller comparing a received signal from the flow sensor which is representative of a currently detected molar flow rate (or volumetric flow rate, as the case may be) of the gaseous exhaust material 18, to a previously received signal representative of a previously detected molar flow rate (or volumetric flow rate, as the case may be) of the gaseous exhaust material 18, and determining that a decrease in the molar flow rate (or volumetric flow rate, as the case may be) of the gaseous exhaust material 18 has been effected, the controller actuates the opening of a flow control element, such as a valve (for example, valve 50), to initiate supply of the supplemental gas-comprising material 48 to the reaction zone 10 from a source of the supplemental gas-comprising material 48, or to effect increasing of the molar rate of supply (and/or volumetric rate of supply) of the supplemental gas-comprising material 48 being supplied to the reaction zone 10 from a source of the supplemental gas-comprising material 48.
  • In some embodiments, for example, the exposing of the phototrophic biomass disposed in the reaction zone 10 to photosynthetically active light radiation is effected while the initiation of the supply of the supplemental gas-comprising material 48 to the reaction zone 10, or the increasing of the molar rate of supply (and/or volumetric rate of supply) of the supplemental gas-comprising material 48 to the reaction zone 10, is being effected. In some embodiments, for example, the modulation of the supply of the supplemental gas-comprising material 48 to the reaction zone 10 is effected by the flow control element 50, for example, upon actuation by the controller. In some embodiments, the actuation by the controller is effected when a detected molar flow rate (or volumetric flow rate) of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, is compared to a previously detected molar flow rate (or volumetric flow rate) of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, and it is determined that there has been a decrease in the molar flow rate (or volumetric flow rate) of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20.
  • With respect to any of the above-described embodiments of the process where there is the reduction in the molar rate of supply (and/or volumetric rate of supply), or the termination of supply, of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10, and where there is initiated the supply of the supplemental gas-comprising material 48 to the reaction zone 10, or the increase to the molar rate of supply (and/or volumetric rate of supply) of the supplemental gas-comprising material 48 to the reaction zone 10, in some of these embodiments, for example, the initiation of the supply of the supplemental gas-comprising material 48 to the reaction zone 10, or the increasing of the molar rate of supply (and/or volumetric rate of supply) of the supplemental gas-comprising material 48 being supplied to the reaction zone 10, at least partially compensates for the reduction in molar supply rate (and/or volumetric supply rate) of material (such as material of the reaction zone feed material 22), or the termination of supply of material (such as material of the reaction zone feed material 22), to the reaction zone 10 which is effected by the reduction in the molar rate of supply (and/or volumetric rate of supply), or by the termination of supply, of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10. In some embodiments, for example, the compensation for the reduction in molar supply rate (and/or volumetric supply rate) of material (such as material of the reaction zone feed material 22), or for the termination of supply of material (such as material of the reaction zone feed material 22), to the reaction zone 10 which is effected by the reduction in the molar rate of supply (and/or volumetric rate of supply), or by the termination of supply, of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10, as effected by the initiation of the supply, or the increasing of the molar rate of supply (and/or volumetric rate of supply), of the supplemental gas-comprising material 48, effects substantially no change to the molar rate of supply (and/or volumetric rate of supply) of material (such as material of the reaction zone feed material 22) to the reaction zone 10.
  • In some embodiments, the combination of: (a) the reduction of the molar rate of supply (and/or volumetric rate of supply), or the termination of supply, of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10, and (b) the initiation of the supply, or the increase to the molar rate of supply (and/or volumetric rate of supply), of the supplemental gas-comprising material 48 to the reaction zone 10, mitigates against the reduced agitation of the reaction zone 10 attributable to the reduction in the molar rate of supply (and/or volumetric rate of supply), or the termination of supply, of the gaseous exhaust material reaction zone supply 24 to the reaction zone 10. In some embodiments, for example, the combination of the supplemental gas-comprising material and any of the gaseous exhaust material reaction zone supply 24 is supplied to the reaction zone as at least a fraction of the reaction zone feed material 22, and the reaction zone feed material 22 is supplied to the reaction zone 10 and effects agitation of material in the reaction zone such that any difference in the mass concentration of the phototrophic biomass between any two points in the reaction zone 10 is less than 20%. In some embodiments, for example, the effected agitation is such that any difference in the mass concentration of the phototrophic biomass between any two points in the reaction zone 10 is less than 10%. The supply of the supplemental gas-comprising material 48 is provided to mitigate against the creation of a phototrophic biomass concentration gradient between any two points in the reaction zone above a desired maximum.
  • In some embodiments, for example, the supplemental gas-comprising material 48 is a gaseous material. In some of these embodiments, for example, the supplemental gas-comprising material 48 includes a dispersion of gaseous material in a liquid material. In some of these embodiments, for example, the supplemental gas-comprising material 48 includes air. In some of these embodiments, for example, the supplemental gas-comprising material 48 is provided as a flow.
  • In some circumstances, it is desirable to grow phototrophic biomass using carbon dioxide of the gaseous exhaust material 18 being discharged from the gaseous exhaust material producing process 20, but the molar concentration of carbon dioxide in the discharged gaseous exhaust material 18 is excessive for effecting a desired growth rate of the phototrophic biomass. In this respect, when a reaction zone feed material 22 is supplied to the reaction zone 10, and the reaction zone feed material 22 is supplied by the gaseous exhaust material reaction zone supply 24 being discharged by the gaseous exhaust material producing process 20, such that the gaseous exhaust material reaction zone supply 24 defines at least a fraction of the reaction zone feed material 22, the phototrophic biomass may respond adversely when exposed to the reaction zone feed material 22, if the carbon dioxide concentration of the reaction zone feed material 22 is excessive, such carbon dioxide concentration being at least partly attributable to the molar concentration of carbon dioxide of the gaseous exhaust material 18 from which the gaseous exhaust material reaction zone supply 24 is derived.
  • In other circumstances, when a reaction zone feed material 22 is supplied to the reaction zone 10, and the reaction zone feed material 22 is supplied by the supplemental carbon dioxide supply 92, such that the supplemental carbon dioxide supply 92 defines at least a fraction of the reaction zone feed material 22, the supplemental carbon dioxide supply 92 may include a relatively high concentration of carbon dioxide (such as greater than 90 mol % carbon dioxide based on the total moles of supplemental carbon dioxide supply 92), such that the phototrophic biomass may respond adversely when exposed to the reaction zone feed material 22.
  • In this respect, in another aspect, carbon dioxide is supplied to the reaction zone 10, and the supplied carbon dioxide defines the reaction zone carbon dioxide supply. A carbon dioxide concentrated supply 25A is provided, wherein the carbon dioxide concentrated supply 25A includes the reaction zone carbon dioxide supply. The carbon dioxide concentrated supply 25A is admixed with a supplemental gaseous dilution agent 90. The admixing effects production of a diluted carbon dioxide supply 25B, wherein the molar concentration of carbon dioxide of the diluted carbon dioxide supply 25B is less than the molar concentration of carbon dioxide of the carbon dioxide concentrate supply 25A. At least a fraction of the diluted carbon dioxide zone supply 25B is supplied to the reaction zone 10. The molar concentration of carbon dioxide of the supplemental gaseous dilution agent 90 is less than the molar concentration of carbon dioxide of the carbon dioxide concentrated supply 25A. In some embodiments, for example, the reaction zone carbon dioxide supply includes, or is defined by, carbon dioxide discharged by the gaseous exhaust material producing process 20. In some embodiments, for example, the reaction zone carbon dioxide supply includes, or is defined by, the supplemental carbon dioxide supply 92.
  • In another aspect, while the gaseous exhaust material 18 is being discharged by the gaseous exhaust material producing process 20, a carbon dioxide concentrated supply 25A is admixed with the supplemental gaseous dilution agent 90, wherein the carbon dioxide concentrated supply 25A includes a gaseous exhaust material-derived supply 24A, wherein the gaseous exhaust material-derived supply 24A is defined by at least a fraction of the gaseous exhaust material 18 which is being discharged by the gaseous exhaust material producing process 20. The admixing effects production of a diluted carbon dioxide supply 25B, wherein the molar concentration of carbon dioxide of the diluted carbon dioxide zone supply 25B is less than the molar concentration of carbon dioxide of the carbon dioxide concentrated supply 25A. At least a fraction of the diluted carbon dioxide supply 25B is supplied to the reaction zone 10. The molar concentration of carbon dioxide of the supplemental gaseous dilution agent 90 is less than the molar concentration of carbon dioxide of the carbon dioxide concentrated supply 25A. In some of these embodiments, for example, the exposing of the phototrophic biomass disposed in the reaction zone 10 to photosynthetically active light radiation is effected while the admixing of the carbon dioxide concentrated supply 25A with the supplemental gaseous dilution agent 90 is being effected. In some embodiments, for example, the carbon dioxide concentrated supply 25A is defined by the gaseous exhaust material-derived supply 24A. In some embodiments, for example, the carbon dioxide concentrated supply 25A includes the supplemental carbon dioxide supply 92. In some of these embodiments, for example. the supplying of the supplemental carbon dioxide supply 92 to the carbon dioxide concentrated supply 25A is being effected while the admixing is being effected.
  • In some embodiments, for example, the diluted carbon dioxide supply 25B includes a molar concentration of carbon dioxide that is below a predetermined maximum molar concentration of carbon dioxide. In some embodiments, for example, the predetermined maximum molar concentration of carbon dioxide is at least 30 mol % based on the total moles of the diluted carbon dioxide supply 25B. In some embodiments, for example, the predetermined maximum molar concentration of carbon dioxide is at least 20 mol % based on the total moles of the diluted carbon dioxide supply 25B. In some embodiments, for example, the predetermined maximum molar concentration of carbon dioxide is at least 10 mol % based on the total moles of the diluted carbon dioxide supply 25B.
  • In some embodiments, for example, the admixing of the supplemental gaseous dilution agent 90 with the carbon dioxide concentrated supply 25A is effected in response to detection of a molar concentration of carbon dioxide in the gaseous exhaust material 18 being discharged from the carbon dioxide producing process 20 that is greater than a predetermined maximum molar concentration of carbon dioxide. In some embodiments, for example, the predetermined maximum molar concentration of carbon dioxide is at least 10 mole % based on the total moles of the gaseous exhaust material 18. In some embodiments, for example, the predetermined maximum molar concentration of carbon dioxide is at least 20 mole % based on the total moles of the gaseous exhaust material 18. In some embodiments, for example, the predetermined maximum molar concentration of carbon dioxide is at least 30 mole % based on the total moles of the gaseous exhaust material 18. In this respect, in some embodiments, for example, a carbon dioxide sensor 781 is provided for detecting the molar concentration of carbon dioxide of the gaseous exhaust material 18 being discharged, and transmitting a signal representative of the molar concentration of carbon dioxide of the gaseous exhaust material 18 being discharged by the gaseous exhaust material producing process 20, to the controller. In some embodiments, the carbon dioxide sensor is a gas analyzer such that the concentration detected is a molar concentration. Upon the controller comparing a received signal from the carbon dioxide sensor 781, which is representative of a detected molar concentration of carbon dioxide of the gaseous exhaust material 18, to a predetermined maximum molar concentration of carbon dioxide, and determining that the molar concentration of carbon dioxide of the gaseous exhaust material 18 is greater than the predetermined maximum molar concentration of carbon dioxide, the controller actuates opening of, or an increase to the opening of, a control valve 901 which effects supply of the supplemental gaseous dilution agent 90 for admixing with the carbon dioxide concentrated supply 25A.
  • In some embodiments, for example, while carbon dioxide is being discharged by the gaseous exhaust material producing process 20, and while at least a fraction of the discharged carbon dioxide is being supplied to the reaction zone 10, wherein the at least a fraction of the discharged carbon dioxide which is being supplied to the reaction zone 10 defines a discharged carbon dioxide reaction zone supply, when an indication of a decrease in the molar rate of supply of the discharged carbon dioxide reaction zone supply to the reaction zone 10 is detected, either the molar rate of supply of a supplemental carbon dioxide supply 92 being supplied to the reaction zone 10 is increased, or supply of the supplemental carbon dioxide supply 92 to the reaction zone 10 is initiated. While the supplemental carbon dioxide supply 92 is being supplied to a carbon dioxide concentrated supply 25A, in response to the detection of the indication of a decrease in the molar rate of supply of the discharged carbon dioxide reaction zone supply to the reaction zone 10, such that at least a fraction of the carbon dioxide concentrated supply 25A is defined by the supplemental carbon dioxide supply 92, and while at least a fraction of the carbon dioxide concentrated supply 25A is being supplied to the reaction zone 10, the carbon dioxide concentrated supply 25A is admixed with the supplemental gaseous dilution agent 90 to effect production of the diluted carbon dioxide supply 25B. In some embodiments, for example, the source of the supplemental carbon dioxide supply 92 is a carbon dioxide cylinder. In some embodiments, for example, the source of the supplemental carbon dioxide supply 92 is a supply of air. In some of these embodiments, the exposing of the phototrophic biomass disposed in the reaction zone 10 to photosynthetically active light radiation is effected while the carbon dioxide concentrated supply 25A is admixed with the supplemental carbon dioxide supply 92 to effect production of the diluted carbon dioxide supply 25B, and while at least a fraction of the diluted carbon dioxide supply 25B is being supplied to the reaction zone 10. In some embodiments, for example, the carbon dioxide concentrated supply 25A is admixed with the supplemental carbon dioxide supply 92 to effect production of the diluted carbon dioxide supply 25B such that the diluted carbon dioxide supply 25B includes a molar concentration of carbon dioxide below the predetermined maximum concentration of carbon dioxide. In some embodiments, for example, the admixing is effect in response to the detection of a molar concentration of carbon dioxide in the carbon dioxide concentrated supply 25A (which includes the supplemental carbon dioxide supply 92) that is above the predetermined maximum molar concentration of carbon dioxide. In some embodiments, for example, the indication of a decrease in the molar rate of supply of the discharged carbon dioxide reaction zone supply to the reaction zone 10 is any of the indications described above. In some embodiments, for example, the supplemental carbon dioxide supply 92 is provided for compensating for the decrease in the molar rate of supply of the gaseous exhaust material reaction zone supply 24 being supplied to the reaction zone 10, with a view to sustaining a constant growth rate of the phototrophic biomass, when it is believed that the decrease is only of a temporary nature (such as less than two weeks).
  • In those embodiments where the carbon dioxide concentrated supply 25A includes the supplemental carbon dioxide supply 92, and the carbon dioxide concentrated supply 25A is being admixed with the supplemental gaseous dilution agent 90 to produce the diluted carbon dioxide supply 25B, and at least a fraction of the diluted carbon dioxide supply 25B is supplied to the reaction zone, the admixing of the carbon dioxide concentrated supply 25A with the supplemental gaseous dilution agent 90 is configured to produce the diluted carbon dioxide supply 25B including a predetermined molar concentration of carbon dioxide.
  • In some embodiments, for example, the supplemental gaseous dilution agent 90 is gaseous material. In some embodiments, for example, the supplemental gaseous dilution agent 90 includes air. In some embodiments, for example, the supplemental gaseous dilution agent 90 is being supplied to the carbon dioxide concentrated supply 25A as a flow.
  • The reaction mixture disposed in the reaction zone 10 is exposed to photosynthetically active light radiation so as to effect photosynthesis. The photosynthesis effects growth of the phototrophic biomass. In some embodiments, for example, there is provided the carbon dioxide-enriched phototrophic biomass disposed in the aqueous medium, and the carbon dioxide-enriched phototrophic biomass disposed in the aqueous medium is exposed to photosynthetically active light radiation so as to effect photosynthesis.
  • In some embodiments, for example, the light radiation is characterized by a wavelength of between 400-700 nm. In some embodiments, for example, the light radiation is in the form of natural sunlight. In some embodiments, for example, the light radiation is provided by an artificial light source 14. In some embodiments, for example, light radiation includes natural sunlight and artificial light.
  • In some embodiments, for example, the intensity of the provided light is controlled so as to align with the desired growth rate of the phototrophic biomass in the reaction zone 10. In some embodiments, regulation of the intensity of the provided light is based on measurements of the growth rate of the phototrophic biomass in the reaction zone 10. In some embodiments, regulation of the intensity of the provided light is based on the molar rate of supply of carbon dioxide to the reaction zone feed material 22.
  • In some embodiments, for example, the light is provided at pre-determined wavelengths, depending on the conditions of the reaction zone 10. Having said that, generally, the light is provided in a blue light source to red light source ratio of 1:4. This ratio varies depending on the phototrophic organism being used. As well, this ratio may vary when attempting to simulate daily cycles. For example, to simulate dawn or dusk, more red light is provided, and to simulate mid-day condition, more blue light is provided. Further, this ratio may be varied to simulate artificial recovery cycles by providing more blue light.
  • It has been found that blue light stimulates algae cells to rebuild internal structures that may become damaged after a period of significant growth, while red light promotes algae growth. Also, it has been found that omitting green light from the spectrum allows algae to continue growing in the reaction zone 10 even beyond what has previously been identified as its “saturation point” in water, so long as sufficient carbon dioxide and, in some embodiments, other nutrients, are supplied.
  • With respect to artificial light sources, for example, suitable artificial light source 14 include submersible fiber optics, light-emitting diodes, LED strips and fluorescent lights. Any LED strips known in the art can be adapted for use in the process. In the case of the submersible LEDs, the design includes the use of solar powered batteries to supply the electricity. In the case of the submersible LEDs, in some embodiments, for example, energy sources include alternative energy sources, such as wind, photovoltaic cells, fuel cells, etc. to supply electricity to the LEDs.
  • With respect to those embodiments where the reaction zone 10 is disposed in a photobioreactor 12 which includes a tank, in some of these embodiments, for example, the light energy is provided from a combination of sources, as follows. Natural light source 16 in the form of solar light is captured though solar collectors and filtered with custom mirrors that effect the provision of light of desired wavelengths to the reaction zone 10. The filtered light from the solar collectors is then transmitted through light guides or fiber optic materials into the photobioreactor 12, where it becomes dispersed within the reaction zone 10. In some embodiments, in addition to solar light, the light tubes in the photobioreactor 12 contains high power LED arrays that can provide light at specific wavelengths to either complement solar light, as necessary, or to provide all of the necessary light to the reaction zone 10 during periods of darkness (for example, at night). In some embodiments, with respect to the light guides, for example, a transparent heat transfer medium (such as a glycol solution) is circulated through light guides within the photobioreactor 12 so as to regulate the temperature in the light guides and, in some circumstances, provide for the controlled dissipation of heat from the light guides and into the reaction zone 10. In some embodiments, for example, the LED power requirements can be predicted and, therefore, controlled, based on trends observed with respect to the gaseous exhaust material 18, as these observed trends assist in predicting future growth rate of the phototrophic biomass.
  • In some embodiments, the exposing of the reaction mixture to photosynthetically active light radiation is effected while the supplying of the reaction feed material 22 is being effected.
  • In some embodiments, for example, the growth rate of the phototrophic biomass is dictated by the available gaseous exhaust material reaction zone supply 24 (defining the at least a fraction of the gaseous exhaust material 18 discharged by the gaseous exhaust material producing process 20 and being supplied to the reaction zone 10). In turn, this defines the nutrient, water, and light intensity requirements to maximize phototrophic biomass growth rate. In some embodiments, for example, a controller, e.g. a computer-implemented system, is provided to be used to monitor and control the operation of the various components of the process disclosed herein, including lights, valves, sensors, blowers, fans, dampers, pumps, etc.
  • Reaction zone product 500 is discharged from the reaction zone. The reaction zone product 500 includes phototrophic biomass 58. In some embodiments, for example, the reaction zone product 500 includes at least a fraction of the contents of the reaction zone 10. In this respect, the discharge of the reaction zone product 500 effects harvesting of the phototrophic biomass. In some embodiments, for example, a reaction zone gaseous effluent product 80 is also discharged from the reaction zone 10.
  • In another aspect, there is provided a process for growing a phototrophic biomass in a reaction zone 10 that includes modulating of the rate of discharge of phototrophic biomass based on the detection of a phototrophic biomass growth indicator. In some embodiments, for example, the rate of discharge of phototrophic biomass being modulated is a rate of discharge of mass of the phototrophic biomass.
  • The reaction mixture, in the form of a production purpose reaction mixture that is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, is disposed within the reaction zone 10. The production purpose reaction mixture includes phototrophic biomass in the form of production purpose phototrophic biomass that is operative for growth within the reaction zone 10. In this respect, a reaction zone concentration of mass of production purpose phototrophic biomass is provided in the reaction zone 10.
  • It is understood that the term “production purpose” has been introduced to differentiate the reaction mixture and the phototrophic biomass, of a process for growing phototrophic biomass, from “evaluation purpose reaction mixture” and “evaluation purpose phototrophic biomass”, which are in some embodiments, integral to the predetermination of a phototrophic biomass growth indicator target value, as further explained below.
  • While the reaction mixture disposed in the reaction zone 10 is exposed to photosynthetically active light radiation and growth of the production purpose phototrophic biomass is being effected within the reaction mixture, and while production purpose phototrophic biomass is discharging from the reaction zone 10, when a difference between a phototrophic biomass growth indicator from within the reaction zone and a predetermined phototrophic biomass growth indicator target value is detected, the process includes modulating the rate of discharge of mass of the production purposes phototrophic biomass from the reaction zone 10, wherein the predetermined phototrophic biomass growth indicator target value is correlated with a predetermined growth rate of the production purpose phototrophic biomass within the reaction mixture which is disposed within the reaction zone 10 and is being exposed to the photosynthetically active light radiation. In some embodiments, for example, the predetermined growth rate of the production purpose phototrophic biomass is a growth rate of mass (or mass concentration) of production purpose phototrophic biomass. The effected growth of the production purpose phototrophic biomass includes growth effected by photosynthesis. In some embodiments, for example, the growth includes that effected by metabolic processes that consume supplemental nutrients disposed within the reaction mixture.
  • The predetermined phototrophic biomass growth indicator target value corresponds to the phototrophic biomass growth indicator target value at which the growth rate of the production purpose phototrophic biomass, within the reaction mixture which is disposed within the reaction zone 10 and is being exposed to the photosynthetically active light radiation, is the predetermined growth rate.
  • In some embodiments, for example, the effected growth of the production purpose phototrophic biomass is being effected within 10% of the predetermined growth rate of the production purpose phototrophic biomass within the reaction mixture which is disposed within the reaction zone 10 and is being exposed to photosynthetically active light radiation. In some embodiments, the effected growth of the production purpose phototrophic biomass is being effected within 5% of the predetermined growth rate of the production purpose phototrophic biomass within the reaction mixture which is disposed within the reaction zone 10 and is being exposed to the photosynthetically active light radiation. In some embodiments, the effected growth of the production purpose phototrophic biomass is being effected within 1% of the predetermined growth rate of the production purpose phototrophic biomass within the reaction mixture which is disposed within the reaction zone 10 and is being exposed to the photosynthetically active light radiation.
  • In some embodiments, for example, the modulating is effected in response to comparing of a detected phototrophic biomass growth indicator to the predetermined phototrophic biomass growth indicator target value.
  • In some embodiments, for example, the process further includes detecting a phototrophic biomass growth indicator to provide the detected phototrophic biomass growth indicator.
  • In some embodiments, for example, the phototrophic biomass growth indicator is a mass concentration of the phototrophic biomass within the reaction mixture disposed within the reaction zone 10.
  • In some embodiments, for example, the detected phototrophic biomass growth indicator is representative of the mass concentration of the production purpose phototrophic biomass within the reaction mixture disposed within the reaction zone 10. In this respect, in some of these embodiments, for example, the detected phototrophic biomass growth indicator is the mass concentration of the production purpose phototrophic biomass within the reaction mixture disposed within the reaction zone 10. In other ones of these embodiments, for example, the detected phototrophic biomass growth indicator is the mass concentration of the production purpose phototrophic biomass within the reaction zone product 500. In some embodiments, for example, the detecting of the concentration is effected by a cell counter 47. For example, a suitable cell counter is an AS-16F Single Channel Absorption Probe supplied by optek-Danulat, Inc. of Germantown, Wis., U.S.A. Other suitable devices for detecting a mass concentration of phototrophic biomass indication include other light scattering sensors, such as a spectrophotometer. As well, the mass concentration of phototrophic biomass can be detected manually, and then input manually into a controller for effecting the desired response.
  • In some embodiments, the mass concentration of phototrophic biomass is detected using a sensor 300 that, in general, combines an absorbence sensor with a turbidity sensor. In this respect, the sensor 300 includes two different light emitters 302, 304 (small light emitting diodes (LEDs)), each configured to emit light of a different wavelength than the other, and an optical sensor 306 to detect light while the light is being emitted by the light emitters.
  • The two light emitters 303, 304 are provided for different purposes. The light emitter 302 is configured to emit light of a wavelength that would be absorbed by the phototrophic biomass. Where the phototrophic biomass is that of algae, in some embodiments, the light being emitted by the light emitter 302 is blue light and/or red light. In those embodiments where the algae is being grown in a photobioreactor 12 in the presence of red light, then the light emitter 302 is configured to emit blue light so as to obtain more accurate measurements. The other light emitter 304 is configured to emit light of a wavelength that would be reflected or scattered by the phototrophic biomass, or at least which is characterized such that there is a greater likelihood that such emitted light would be reflected or scattered by the phototrophic biomass relative to the light emitted by light emitter 302. Where the phototrophic biomass is that of algae, in some embodiments, the light being emitted by the light emitter 304 is green light. The two light emitters 302 and 304 are disposed in spaced-apart relationship relative to the optical sensor 306 (about 1 cm, but this could vary depending on the emitted light intensity and expected mass concentration of the phototrophic biomass). In operation, light emission, from light emitter 302 and light emitter 304, alternates between the two. In some embodiments, the light emissions from the sensor are characterized by alternating pulses of light from the light emitters 302 and 304. In some of these embodiments, for example, light emitter 302 emits a pulse of light for a defined time interval T1 while light emitter 304 emits substantially no light during this time interval T1, and then, at the completion of time interval T1, light emitter 304 emits a pulse of light for a defined time interval T2 while light emitter 304 emits substantially no light during this time interval T2, and this cycle is then repeated for as many cycles as is desired for effecting the desired detection of mass concentration of phototrophic biomass. By alternating light emissions between the light emitter 302 and 304, interference of the detection of light, being emitted from one of the light emitters 302, 304, by light being emitted from the other one of the light emitters 302, 304, is avoided or mitigated. The duration of each light pulse is not so critical, but typically about 1 sec would be used for each light emitter so that the optical sensor 306 has time to adjust to the new wavelength and record a value that is not affected by scattering of the other light emitter that just turned off.
  • When light is being emitted by light emitter 302, the optical sensor 306 detects light than has not been absorbed by the phototrophic biomass, and transmits, to a controller, a signal representative of the quantity of light that has not been absorbed by the phototrophic biomass, which is then compared by the controller to a signal representative of the intensity of light being emitted by light emitter 302, and converted into a signal representative of the quantity of light absorbed by the phototrophic biomass. When light is being emitted by light emitter 304, the optical sensor 306 detects light than has been scattered or reflected by the phototrophic biomass, and transmits, to a controller, a signal representative of the quantity of light that has been scattered or reflected by the phototrophic biomass. These signals are combined by the controller into a signal that is representative of a density measurement (ie. mass concentration of phototrophic biomass). The controller is calibrated based on predetermined correlation between algae mass concentration within an aqueous medium and the absorption of light, being emitted by the light emitter 302, by the phototrophic biomass, and the reflection (or scattering) of light, being emitted by the light emitter 304, by the phototrophic biomass. This correlation is predetermined based on calibration measurements to known mass concentrations of the phototrophic biomass which is to be grown within the aqueous medium disposed in the photobioreactor 12 (ie. defining the mass concentration of phototrophic biomass within the aqueous medium as a function of: (i) the absorption of light, being emitted by the light emitter 302, by the phototrophic biomass, and (ii) the reflection (or scattering) of light, being emitted by the light emitter 304, by the phototrophic biomass.
  • Referring to FIGS. 4A, 4B and FIGS. 5A, 5B, in some embodiments, the light emitters 302, 304 and the optical sensor 306 are mounted within a common housing 308 and are configured for electrical connection to a power source and a control transmitter for measuring an electrical signal (current or voltage, depending on the control set-up) with wiring 310. For example, as illustrated in FIGS. 4A, 4B and FIGS. 5A, 5B, this configuration would be useful for effecting detection of mass concentration of phototrophic biomass within a vessel of a photobioreactor 12 In other embodiments, such as that illustrated in FIG. 6, for example, the light emitters 302, 304 and the optical sensor 306 do not necessarily require to be mounted within a common housing. In the embodiment illustrated in FIG. 6, this configuration of sensor 300 is co-operatively mounted to a conduit (such as a conduit 312 which is effecting the discharge of phototrophic biomass from the photobioreactor 12) for measuring mass concentration of phototrophic biomass within a slurry flowing through the conduit 312.
  • Aside from measuring phototrophic biomass concentration within the photobioreactor 12, or within the fluid passage that is discharging slurry including harvested phototrophic biomass, the sensor 300 could be used to measure the mass concentration of phototrophic biomass within the return water 72 recovered from dewatering operations, compared with the mass concentration of phototrophic biomass being discharged from the photobioreactor 12, to determine separation efficiency of the dewatering operation.
  • In some embodiments, for example, the effecting of the growth of the phototrophic biomass includes supplying carbon dioxide to the reaction zone 10 and exposing the production purpose reaction mixture to photosynthetically active light radiation. In some embodiments, for example, the supplied carbon dioxide is supplied from the gaseous exhaust material 18 of the gaseous exhaust material producing process 20. In some embodiments, for example, the supplied carbon dioxide is supplied from the gaseous exhaust material 18 of the gaseous exhaust material producing process 20 while the gaseous exhaust material 18 is being discharged by the gaseous exhaust material producing process 20, and while at least a fraction of the gaseous exhaust material 18 is being supplied to the reaction zone feed material 22 (as the gaseous exhaust material reaction zone supply 24), and while the reaction zone feed material 22 is being supplied to the reaction zone 10. In this respect, in some embodiments, for example, the carbon dioxide is supplied to the reaction zone 10 while the growth is being effected, wherein at least a fraction of the carbon dioxide being supplied to the reaction zone 10 is supplied from a gaseous exhaust material 18 while the gaseous exhaust material 18 is being discharged from a gaseous exhaust material producing process 20.
  • In some embodiments, for example, the production purpose reaction mixture further includes water and carbon dioxide.
  • In some of these embodiments, for example, the predetermined rate of growth of the phototrophic biomass is based upon the maximum rate of growth of the phototrophic biomass within the reaction mixture which is disposed within the reaction zone 10 and is being exposed to the photosynthetically active light radiation, as described above. In this respect, when the predetermined rate of growth of the phototrophic biomass is a rate of growth of mass (or mass concentration) of the phototrophic biomass, the predetermined rate of growth of mass (or mass concentration) of the phototrophic biomass is based upon the maximum rate of growth of mass (or mass concentration) of the phototrophic biomass within the reaction mixture which is disposed within the reaction zone 10 and is being exposed to photosynthetically active light radiation.
  • In some embodiments, for example, the predetermined growth rate of the production purpose phototrophic biomass is at least 90% of the maximum growth rate of the production purpose phototrophic biomass within the reaction mixture which is disposed within the reaction zone 10 and is being exposed to the photosynthetically active light radiation. In some embodiments, for example, the predetermined growth rate is at least 95% of the maximum growth rate of the production purpose phototrophic biomass within the reaction mixture which is disposed within the reaction zone 10 and is being exposed to the photosynthetically active light radiation. In some embodiments, for example, the predetermined growth rate is at least 99% of the maximum growth rate of the production purpose phototrophic biomass within the reaction mixture which is disposed within the reaction zone 10 and is being exposed to the photosynthetically active light radiation. In some embodiments, for example, the predetermined growth rate is equivalent to the maximum growth rate of the production purpose phototrophic biomass within the reaction mixture which is disposed within the reaction zone 10 and is being exposed to the photosynthetically active light radiation.
  • FIG. 7 illustrates how the maximum rate of growth of mass of phototrophic biomass (algae), expressed as a maximum rate of growth of mass concentration of phototrophic biomass within a photobioreactor system, is determined by measuring mass concentration of phototrophic biomass (algae) during growth of the phototrophic biomass within the system. The curves depicted in FIG. 7 are characteristic of a typical algae growth system, but the exact time and concentration limits will vary with each set-up (maximum mass concentration and maximum rate of growth of mass concentration are determined system limitations). With the knowledge of the form and behaviour of these characteristic curves, it is possible to determine these system parameters by monitoring the mass concentration (or density) in short time intervals, so that it can be converted to real-time growth rates. These density measurements and the corresponding growth estimates in real time, assist in determining the algae concentration at which the maximum growth occurs by calculating the growth acceleration (A=dG/dt) and identifying the range where this value approaches zero (see also FIGS. 9A and 9B).
  • Once the maximum growth rate is determined, the harvesting cycle can start to effectively remove the algae growth and maintain the same consistency and growth conditions required to support the maximum growth rate for the system.
  • FIG. 8 illustrates the improved yields of phototrophic biomass (algae) when harvesting occurs while mass concentration of the phototrophic biomass (algae) within the photobioreactor is controlled at a concentration which is correlated with maximum rate of growth of mass concentration of the phototrophic biomass (algae) (a), versus the case when the phototrophic biomass (algae) is grown on a batch basis for an equivalent period of time without any harvesting (b). Importantly, the improved harvesting yield can be sustained for longer periods of time and will not end when the culture reached its maximum density (because it is never allowed to do so), when compared to the batch case scenario.
  • FIGS. 9A and 9B illustrate, generally, the growth of mass concentration of phototrophic biomass (algae) as a function of mass concentration of phototrophic biomass, and the maximum rate of growth of mass concentration of phototrophic biomass (algae), and the mass concentration at which this occurs and how it is determined.
  • FIGS. 7, 8, 9A and 9B are illustrative of algae growth systems, but their information is also relevant to other phototrophic biomass growth systems.
  • In some embodiments, for example, while the modulating of the rate of discharge of the production purpose phototrophic biomass from the reaction zone 10 is being effected, the volume of the reaction mixture disposed within the reaction zone is maintained constant or substantially constant for a time period of at least one (1) hour. In some embodiments, for example, the time period is at least six (6) hours. In some embodiments, for example, the time period is at least 24 hours. In some embodiments, for example, the time period is at least seven (7) days. In some embodiments, for example, while the modulating is being effected, the volume of the reaction mixture disposed within the reaction zone is maintained constant or substantially constant for the a period of time such that the predetermined phototrophic biomass growth indicator value, as well as the predetermined rate of growth of phototrophic biomass, is maintained constant or substantially constant during this period, with a view to optimizing economic efficiency of the process.
  • In some embodiments, for example, the reaction zone 10 is disposed within a photobioreactor 10, and the production purpose phototrophic biomass is discharged from the photobioreactor 12 (and reaction zone 10) by displacement effected in response to supplying of an aqueous feed material 4 to the reaction zone 10. In other words, the supplying of an aqueous feed material 4 to the reaction zone 10 effects displacement of the production purpose phototrophic biomass from the photobioreactor 12 (and the reaction zone 10), thereby effecting discharge of the production purpose phototrophic biomass from the photobioreactor 12 (and the reaction zone 10). In some embodiments, for example, the production purpose phototrophic biomass is discharged from the photobioreactor 12 by displacement as an overflow from the photobioreactor 12.
  • In some embodiments, for example, the aqueous feed material 4 includes substantially no phototrophic biomass. In other embodiments, for example, the aqueous feed material includes phototrophic biomass at a mass concentration less than the mass concentration of phototrophic biomass disposed within the reaction mixture disposed within the reaction zone 10.
  • In some embodiments, for example, with respect to the aqueous feed material 4, the aqueous feed material 4 is supplied as a flow from a source 6 of aqueous feed material 4. For example, the flow is effected by a prime mover, such as pump. In some embodiments, for example, the aqueous feed material includes the supplemental aqueous material supply 44. As described above, in some embodiments, for example, at least a fraction of the supplemental aqueous material supply 44 is supplied from a container 28. In this respect, in those embodiments where the supplemental aqueous material supply 44 is included within the aqueous feed material, the container functions as the source 6 of the aqueous feed material 4.
  • In some embodiments, for example, the aqueous feed material 4 includes the supplemental nutrient supply 42 and the supplemental aqueous material supply 44. In some of these embodiments, the aqueous feed material 4 is supplied to the reaction zone feed material 22 upstream of the reaction zone 10. In this respect, and referring to FIG. 2, and as described above, in some of these embodiments, the supplemental nutrient supply 42 and the supplemental aqueous material supply 44 are supplied to the reaction zone feed material 22 through the sparger 40 upstream of the reaction zone 10.
  • In some embodiments, for example, when the detected phototrophic biomass growth indicator is a mass concentration of phototrophic biomass within the reaction mixture disposed within the reaction zone 10, and the detected mass concentration of phototrophic biomass within the reaction mixture disposed within the reaction zone 10 is less than the predetermined phototrophic biomass mass concentration target value, the modulating includes effecting a decrease in the rate of discharge of mass of the production purpose phototrophic biomass from the reaction zone 10. In some of these embodiments, for example, the production purpose phototrophic biomass is discharged by displacement from the reaction zone 10 in response to the supplying of the aqueous feed material 4 to the reaction zone 10, and the decrease in the rate of discharge of mass of the production purpose phototrophic biomass from the reaction zone 10 is effected by effecting a decrease in the rate of supply (such as a volumetric rate of supply or a molar rate of supply) of, or termination of the supply of, the aqueous feed material 4 to the reaction zone 10. In this respect, when the production purpose phototrophic biomass is discharged by such displacement, in some embodiments, for example, when the detected phototrophic biomass growth indicator is a mass concentration of phototrophic biomass within the reaction mixture disposed within the reaction zone 10, upon comparing the detected mass concentration of phototrophic biomass within the reaction mixture disposed within the reaction zone 10, which is detected by the cell counter 47, with the predetermined phototrophic biomass mass concentration target value, and determining that the detected mass concentration is less than the predetermined phototrophic biomass mass concentration target value, the controller responds by effecting a decrease in the rate of supply (for example, volumetric rate of supply or a molar rate of supply) of, or termination of supply of, the aqueous feed material 4 to the reaction zone 10, which thereby effects a decrease in the mass rate of discharge of, or termination of the discharge of, the production purpose phototrophic biomass from the reaction zone 10. In some embodiments, for example, the decrease in the rate of supply of the aqueous feed material 4 to the reaction zone 10 is effected by the controller by actuating a decrease in the opening of a control valve 441 that is disposed in a fluid passage that facilitates supply of a flow of the aqueous feed material 4 from the source 6 to the reaction zone 10. In some embodiments, for example, the termination of supply of the aqueous feed material 4 to the reaction zone 10 is effected by the controller by actuating closure of a control valve 441 that is disposed in a fluid passage that facilitates supply of a flow of the aqueous feed material 4 from the source 6 to the reaction zone 10. In some embodiments, for example, the flow of the aqueous feed material 4 is being effected by a prime mover, such as a pump 281. In some embodiments, for example, the flow of the aqueous feed material 4 is being effected by gravity. In some embodiments, for example, the aqueous feed material 4 includes the supplemental aqueous material supply 44 which is supplied from the container 28. In some embodiments, the aqueous feed material 4 is the supplemental aqueous material supply 44 which is supplied from the container 28. In some of these embodiments, for example, the supplemental aqueous material supply 44 is supplied from the container 28 by the pump 281, and in other ones of these embodiments, for example, the supplemental aqueous material supply 44 is supplied from the container 28 by gravity. In some embodiments, for example, where a prime mover (such as the pump 281) is provided for effecting the flow of the aqueous feed material 4 to the reaction zone 10, the decrease in the rate of supply of the aqueous feed material 4 to the reaction zone 10 is effected by the controller actuating a decrease to the power being supplied to the prime mover 281 (such as the pump 281) to the aqueous feed material 4, such as by reducing the speed of the prime mover 281. In some embodiments, for example, where a prime mover (such as the pump 281) is provided for effecting the flow of the aqueous feed material 4 to the reaction zone 10, the termination of supply of the aqueous feed material 4 to the reaction zone 10 is effected by the controller actuating stoppage of the prime mover.
  • In some embodiments, for example, when the detected phototrophic biomass growth indicator is a mass concentration of phototrophic biomass within the reaction mixture disposed within the reaction mixture disposed within the reaction zone 10, and the detected mass concentration of phototrophic biomass within the reaction mixture disposed within the reaction zone 10 is greater than the predetermined phototrophic biomass mass concentration target value, the modulating includes effecting an increase in the rate of discharge of mass of the production purpose phototrophic biomass from the reaction zone 10. In some of these embodiments, for example, the production purpose phototrophic biomass is discharged from the reaction zone 10 by displacement in response to the supplying of the aqueous feed material 4 to the reaction zone 10, and the increase in the rate of discharge of mass of the production purpose phototrophic biomass from the reaction zone 10 is effected by effecting initiation of supply of, or an increase in the rate of supply (for example, a volumetric rate of supply or a molar rate of supply) of, the aqueous feed material 4 to the reaction zone 10. In this respect, when the production purpose phototrophic biomass is discharged by such displacement, in some embodiments, for example, when the detected phototrophic biomass growth indicator is a mass concentration of phototrophic biomass in the reaction zone 10, upon comparing the detected mass concentration of phototrophic biomass within the reaction mixture disposed within the reaction zone 10, which is detected by the cell counter 47, with the predetermined phototrophic biomass mass concentration target value, and determining that the detected mass concentration is greater than the predetermined phototrophic biomass mass concentration target value, the controller responds by effecting initiation of supply of, or an increase in the rate of supply (molar rate of supply and/or volumetric rate of supply) of, the aqueous feed material 4 to the reaction zone 10, which thereby effects an increase in the rate of discharge of mass of the production purpose phototrophic biomass from the reaction zone 10. In some embodiments, for example, the initiation of supply of the aqueous feed material 4 to the reaction zone 10 is effected by the controller by actuating opening of a control valve 441 that is disposed in a fluid passage that facilitates supply of a flow of the aqueous feed material 4 from the source 6 to the reaction zone 10. In some embodiments, for example, the increase in the rate of supply of the aqueous feed material 4 to the reaction zone 10 is effected by the controller by actuating an increase in the opening of a control valve 441 that is disposed in a fluid passage that facilitates supply of a flow of the aqueous feed material 4 from the source 6 to the reaction zone 10. In some embodiments, for example, the flow of the aqueous feed material 4 is being effected by a prime mover, such as a pump 281. In some embodiments, for example, the flow of the aqueous feed material 4 is being effected by gravity. In some embodiments, for example, the aqueous feed material includes the supplemental aqueous material supply 44 which is supplied from the container 28. In some embodiments, for example, the aqueous feed material is the supplemental aqueous material supply 44 which is supplied from the container 28. In some of these embodiments, for example, the supplemental aqueous material supply 44 is supplied from the container 28 by the pump 281, and in other ones of these embodiments, for example, the supplemental aqueous material supply 44 is supplied from the container 28 by gravity. In some embodiments, for example, where a prime mover (such as the pump 281) is provided for effecting the flow of the aqueous feed material 4 to the reaction zone 10, the initiation of supply of the aqueous feed material 4 to the reaction zone 10 is effected by the controller actuating operation of the prime mover. In some embodiments, for example, where a prime mover (such as the pump 281) is provided for effecting the flow of the aqueous feed material 4 to the reaction zone 10, the increase in the rate of supply of the aqueous feed material 4 to the reaction zone 10 is effected by the controller actuating an increase to the power being supplied to the prime mover to the aqueous feed material 4.
  • In some embodiments, for example, the discharging of the phototrophic biomass 58 from the reaction zone 10 is effected by a prime mover that is fluidly coupled to the reaction zone 10. In this respect, in some embodiments, for example, the modulating of the rate of discharge of mass of the phototrophic biomass from the reaction zone includes:
  • (i) modulating the power being supplied to the prime mover effecting the discharge of the phototrophic biomass from the reaction zone 10 in response to detection of a difference between a detected phototrophic biomass growth indicator (within the reaction mixture disposed within the reaction zone) and a predetermined phototrophic biomass growth indicator target value, wherein the predetermined phototrophic biomass growth indicator target value is correlated with a predetermined rate of growth of mass of the phototrophic biomass within the reaction mixture which is disposed within the reaction zone 10 and is being exposed to the photosynthetically active light radiation, and;
  • (ii) while the modulating of the power supplied to the prime mover is being effected, modulating the rate of supply (for example, a volumetric rate of supply or a molar rate of supply) of the supplemental aqueous material supply 44 to the reaction zone 10 in response to detection of a difference between a detected indication of volume of reaction mixture within the reaction zone and a predetermined reaction mixture volume indication value, wherein the predetermined reaction mixture volume indication value is representative of a volume of reaction mixture within the reaction zone 10 within which growth of the phototrophic biomass is being effected within the reaction mixture at the predetermined rate of growth of mass (or mass concentration) of the phototrophic biomass while the phototrophic biomass growth indicator within the reaction mixture is disposed at the predetermined phototrophic biomass growth indicator target value.
  • In some embodiments, for example, the indication of volume of reaction mixture within the reaction zone 10 (or, simply, the “reaction mixture volume indication”) is an upper liquid level of the reaction mixture within the reaction zone 10. In some embodiments, for example, this upper liquid level is detected with a level sensor. In this respect, in some embodiments, for example, the level sensor is provided to detect the level of the reaction mixture within the reaction zone 10, and transmit a signal representative of the detected level to a controller. The controller compares the received signal to a predetermined level value (representative of the predetermined reaction mixture volume indication value). If the received signal is less than the predetermined level value, the controller responds by effecting initiation of supply, or an increase to the rate of supply (such as a volumetric rate of supply or a molar rate of supply), of the supplemental aqueous material supply 48 to the reaction zone 10, such as by opening (in the case of initiation of supply), or increasing the opening (in the case of increasing the molar rate of supply), of a valve configured to interfere with the supply of the supplemental aqueous material supply 48 to the reaction zone 10. If the received signal is greater than the predetermined level value, the controller responds by effecting a decrease to the rate of supply (such as a volumetric rate of supply or a molar rate of supply), or termination of supply, of the supplemental aqueous material supply 48 to the reaction zone 10, such as by decreasing the opening of (in the case of decreasing the molar rate of supply), or closing the valve (in the case of terminating the supply) that is configured to interfere with the supply of the supplemental aqueous material supply 48 to the reaction zone 10. By regulating the supplying of the supplemental aqueous material supply 48 to the reaction zone 10 so as to effect the maintaining of a desired level within the reaction zone 10, make-up water is supplied to the reaction zone 10 to replace water that is discharged with the phototrophic biomass from the reaction zone 10, with a view to optimizing the rate of growth of mass of concentration of the phototrophic biomass within the reaction zone 10, and thereby optimizing the rate at which mass of the phototrophic biomass is being discharged from the reaction zone 10.
  • In some embodiments, for example, while the modulating of the rate of discharge of mass of the phototrophic biomass from the reaction zone 10 is being effected, the process further includes modulating the rate of supply (such as a molar rate of supply or a volumetric rate of supply) of the supplemental nutrient supply to the reaction zone in response to the detection of a difference between a detected concentration of one or more nutrients (eg. NO3) within the reaction zone 10 and a corresponding predetermined target concentration value.
  • In some embodiments, for example, while the modulating of the rate of discharge of mass of the phototrophic biomass from the reaction zone 10 is being effected, the process further includes modulating the rate of flow (such as a molar rate of flow, or a volumetric rate of flow) of the carbon dioxide to the reaction zone 10 in response to detecting of at least one carbon dioxide processing capacity indicator. In some embodiments, for example, the detecting of at least one of the at least one carbon dioxide processing capacity indicator is effected in the reaction zone 10. The carbon dioxide processing capacity indicator which is detected is any characteristic that is representative of the capacity of the reaction zone 10 for receiving carbon dioxide and having at least a fraction of the received carbon dioxide converted in a photosynthesis reaction effected by phototrophic biomass disposed within the reaction zone. In some embodiments, for example, the carbon dioxide processing capacity indicator which is detected is a pH within the reaction zone 10. In some embodiments, for example, the carbon dioxide processing capacity indicator which is detected is a mass concentration of phototrophic biomass within the reaction zone 10.
  • In some embodiments, for example, while the modulating of the rate of discharge of mass of the phototrophic biomass from the reaction zone 10 is being effected, the process further includes modulating the intensity of the photosynthetically active light radiation to which the reaction mixture is exposed to, in response to a detected change in the rate (such as a molar rate, or a volumetric rate) at which the carbon dioxide is being supplied to the reaction zone 10.
  • In another aspect, the process further includes effecting the predetermination of the phototrophic biomass growth indicator target value. In this respect, an evaluation purpose reaction mixture that is representative of the production purpose reaction mixture and is operative for effecting photosynthesis, upon exposure to photosynthetically active light radiation, is provided, such that the phototrophic biomass of the evaluation purpose reaction mixture is an evaluation purpose phototrophic biomass that is representative of the production purpose phototrophic biomass. In some embodiments, for example, the production purpose reaction mixture further includes water and carbon dioxide, and the evaluation purpose reaction mixture further includes water and carbon dioxide. While the evaluation purpose reaction mixture disposed in the reaction zone 10 is exposed to photosynthetically active light radiation and growth of the evaluation purpose phototrophic biomass is being effected within the evaluation purpose reaction mixture, the process further includes:
  • (i) at least periodically detecting the phototrophic biomass growth indicator to provide a plurality of detected values of the phototrophic biomass growth indicator that have been detected during a time period (“at least periodically” means that the detecting could be done intermittently, at equally spaced intervals or at unequally spaced time intervals, or could be done continuously);
    (ii) calculating growth rates of mass (or mass concentration) of the evaluation purpose phototrophic biomass based on the plurality of detected values of the phototrophic biomass growth indicator such that a plurality of growth rates of mass (or mass concentration) of the evaluation purpose phototrophic biomass are determined during the time period; and
    (iii) establishing a relationship between the growth rate of mass (or mass concentration) of the evaluation purpose phototrophic biomass and the phototrophic biomass growth indicator, based on the calculated growth rates and the detected values of the phototrophic biomass growth indicator upon which the calculated growth rates have been based, such that the established relationship between the growth rate of the mass (or mass concentration) of evaluation purpose phototrophic biomass and the phototrophic biomass growth indicator is representative of a relationship between the growth rate of mass (or mass concentration) of the production purpose phototrophic biomass within the reaction zone 10 and the phototrophic biomass growth indicator, and such that the relationship between the growth rate of mass (or mass concentration) of the production purpose phototrophic biomass within the reaction zone 10 and the phototrophic biomass growth indicator is thereby determined.
  • A predetermined growth rate is selected. The phototrophic biomass growth indicator target value is defined as the phototrophic biomass growth indicator at which the predetermined growth rate is being effected based on the determined relationship between the growth rate of mass (or mass concentration) of the production purpose phototrophic biomass within the reaction zone and the phototrophic biomass growth indicator. In this respect, the correlation between the phototrophic biomass growth indicator target value and the predetermined growth rate is also thereby effected.
  • In some embodiments, for example, the growth of the evaluation purpose phototrophic biomass in the reaction zone 10 is effected while the reaction zone is characterized by at least one evaluation purpose growth condition, wherein each one of the at least one evaluation purpose growth condition is representative of a production purpose growth condition by which the reaction zone 10 is characterized while growth of the production purpose phototrophic biomass, within the reaction zone 10, is being effected. In some embodiments, for example, the production purpose growth condition is any one of a plurality of production purpose growth conditions including composition of the reaction mixture, reaction zone temperature, reaction zone pH, reaction zone light intensity, reaction zone lighting regimes (eg. variable intensities), reaction zone lighting cycles (eg. duration of ON/OFF lighting cycles), and reaction zone temperature. In some embodiments, for example, providing one or more evaluation purpose growth conditions, each of which is representative of a production purpose growth condition to which the production purpose reaction mixture is exposed to while growth of the production purpose phototrophic biomass in the reaction zone 10 is being effected, promotes optimization of phototrophic biomass production.
  • In another aspect, while the phototrophic biomass is growing at or relatively close to the maximum growth rate within the reaction zone 10, a rate of discharge of mass of the phototrophic biomass is effected that at least approximates the rate of growth of mass of the phototrophic biomass within the reaction zone.
  • The reaction mixture, in the form of a production purpose reaction mixture that is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, is disposed within the reaction zone 10. The production purpose reaction mixture includes phototrophic biomass in the form of production purpose phototrophic biomass that is operative for growth within the reaction zone 10. While the reaction mixture disposed in the reaction zone 10 is exposed to photosynthetically active light radiation and growth of the production purpose phototrophic biomass is being effected within the reaction mixture, mass of production purpose phototrophic biomass is discharging from the reaction zone 10 at a rate that is within 10% of the rate at which the growth of mass of the production purpose phototrophic biomass is being effected within the reaction zone 10. The effected growth of the production purpose phototrophic biomass within the reaction zone 10 is being effected at a rate that is at least 90% of the maximum growth rate of mass of the production purpose phototrophic biomass within the reaction mixture which is disposed in reaction zone 10 and is being exposed to the photosynthetically active light radiation. In some embodiments, for example, the rate of discharge of mass of the production purpose phototrophic biomass is within 5% of the rate of growth of mass of the production purpose phototrophic biomass within the reaction zone 10. In some embodiments, for example, the rate of discharge of mass of the production purpose phototrophic biomass is within 1% of the rate of growth of mass the production purpose phototrophic biomass within the reaction zone 10. In some embodiments, for example, the effected growth of the production purpose phototrophic biomass within the reaction zone 10 is being effected at a mass growth rate of at least 95% of the maximum rate of growth of mass of the production purpose phototrophic biomass within the reaction mixture which is disposed within the reaction zone 10 and is being exposed to the photosynthetically active light radiation, and in some of these embodiments, for example, the rate of discharge of mass of the production purpose phototrophic biomass that is provided is within 5%, such as within 1%, of the rate of growth of mass of the production purpose phototrophic biomass within the reaction zone 10. In some embodiments, for example, the effected growth of the production purpose phototrophic biomass within the reaction zone 10 is being effected at a mass growth rate of at least 99% of the maximum rate of growth of mass of the production purpose phototrophic biomass within the reaction mixture which is disposed within the reaction zone 10 and is being exposed to the photosynthetically active light radiation, and in some of these embodiments, for example, the rate of discharge of mass of the production purpose phototrophic biomass that is provided is within 5%, such as within 1%, of the rate of growth of mass of the production purpose phototrophic biomass within the reaction zone 10.
  • In some embodiments, for example, the effecting of the growth of the production purpose phototrophic biomass includes supplying carbon dioxide to the reaction zone 10 and exposing the production purpose reaction mixture to photosynthetically active light radiation. In some embodiments, for example, the supplied carbon dioxide is supplied from the gaseous exhaust material 18 of the gaseous exhaust material producing process 20. In some embodiments, for example, the supplied carbon dioxide is supplied from the gaseous exhaust material 18 of the gaseous exhaust material producing process 20 while the gaseous exhaust material 18 is being discharged by the gaseous exhaust material producing process 20, and while at least a fraction of the gaseous exhaust material 18 is being supplied to the reaction zone feed material 22 (as the gaseous exhaust material reaction zone supply 24), and while the reaction zone feed material 22 is being supplied to the reaction zone 10. In this respect, in some embodiments, for example, the carbon dioxide is supplied to the reaction zone 10 while the growth is being effected, wherein at least a fraction of the carbon dioxide being supplied to the reaction zone is supplied from a gaseous exhaust material while the gaseous exhaust material is being discharged from a gaseous exhaust material producing process.
  • In some embodiments, for example, the reaction zone 10 is disposed within a photobioreactor 10, and the production purpose phototrophic biomass is discharged from the photobioreactor 12 (and the reaction zone 10) by displacement effected in response to supplying of an aqueous feed material 4 to the reaction zone 10. In other words, the supplying of an aqueous feed material 4 to the reaction zone 10 effects displacement of the production purpose phototrophic biomass from the photobioreactor 12 (and the reaction zone 10), thereby effecting discharge of the production purpose phototrophic biomass from the photobioreactor 12 (and the reaction zone 10). In some embodiments, for example, the production purpose phototrophic biomass product is discharged as an overflow from the photobioreactor.
  • In some embodiments, for example, the aqueous feed material 4 is supplied to the reaction zone 10 and effects displacement of the production purpose phototrophic biomass from the reaction zone 10, thereby effecting discharge of the production purpose phototrophic biomass from the reaction zone 10. In some of these embodiments, for example, the aqueous feed material 4 includes substantially no production purpose phototrophic biomass. In other ones of these embodiments, for example, the aqueous feed material 4 includes production purpose phototrophic biomass at a concentration less than the reaction zone concentration of the production purpose phototrophic biomass.
  • In some embodiments, for example, with respect to the aqueous feed material 4, the aqueous feed material 4 is supplied as a flow from a source 6 of aqueous feed material 4. For example, the flow is effected by a prime mover, such as pump. In some embodiments, for example, the aqueous feed material includes the supplemental aqueous material supply 44. As described above, in some embodiments, for example, at least a fraction of the supplemental aqueous material supply 44 is supplied from a container 28. In this respect, in those embodiments where the supplemental aqueous material supply 44 is included within the aqueous feed material, the container functions as the source 6 of the aqueous feed material 4.
  • In some embodiments, for example, the aqueous feed material 4 includes the supplemental nutrient supply 42 and the supplemental aqueous material supply 44. In some of these embodiments, the aqueous feed material 4 is supplied to the reaction zone feed material 22 upstream of the reaction zone 10. In this respect, and referring to FIG. 2, and as described above, in some of these embodiments, the supplemental nutrient supply 42 and the supplemental aqueous material supply 44 are supplied to the reaction zone feed material 22 through the sparger 40 upstream of the reaction zone 10.
  • In some of these embodiments, for example, and as described above, the discharging of the phototrophic biomass 58 from the reaction zone 10 is effected by a prime mover that is fluidly coupled to the reaction zone 10. In some embodiments, for example, supplemental aqueous material supply 44 is supplied to the reaction zone 10 so as to maintain a predetermined volume of reaction mixture within the reaction zone 10, as described above.
  • In another aspect, discharging of the phototrophic biomass is effected at a rate that matches the growth rate of mass of the phototrophic biomass within the reaction zone 10. In some embodiments, for example, this mitigates shocking of the phototrophic biomass in the reaction zone 10. With respect to some embodiments, for example, the discharging of the phototrophic biomass is controlled through the rate of supply (such as a volumetric rate of supply, or a molar rate of supply) of supplemental aqueous material supply 44, which influences the displacement from the photobioreactor 12 of the phototrophic biomass-comprising product 500 from the photobioreactor 12. For example, the product 500, including the phototrophic biomass, is discharged as an overflow. In some of these embodiments, the upper portion of phototrophic biomass suspension in the reaction zone 10 overflows the photobioreactor 12 (for example, the phototrophic biomass is discharged through an overflow port of the photobioreactor 12) to provide the phototrophic biomass-comprising product 500. In other embodiments, for example, the discharging of the product 500 is controlled with a valve disposed in a fluid passage which is fluidly communicating with an outlet of the photobioreactor 12.
  • In some embodiments, for example, the discharging of the product 500 is effected continuously. In other embodiments, for example, the discharging of the product is effected periodically. In some embodiments, for example, the discharging of the product is designed such that the concentration of mass of the biomass in the phototrophic biomass-comprising product 500 is maintained at a relatively low concentration. In those embodiments where the phototrophic biomass includes algae, it is desirable, for some embodiments, to effect discharging of the product 500 at lower concentrations to mitigate against sudden changes in the molar growth rate of the algae in the reaction zone 10. Such sudden changes could effect shocking of the algae, which thereby contributes to lower yield over the longer term. In some embodiments, where the phototrophic biomass is algae and, more specifically, scenedesmus obliquus, the concentration of this algae in the phototrophic biomass-comprising product 500 could be between 0.5 and 3 grams per litre. The desired concentration of the discharged algae product 500 depends on the strain of algae such that this concentration range changes depending on the strain of algae. In this respect, in some embodiments, maintaining a predetermined water content in the reaction zone is desirable to promote the optimal growth of the phototrophic biomass, and this can also be influenced by controlling the supply of the supplemental aqueous material supply 44.
  • The phototrophic biomass-comprising product 500 includes water. In some embodiments, for example, the phototrophic biomass-comprising product 500 is supplied to a separator 52 for effecting removal of at least a fraction of the water from the phototrophic biomass-comprising product 500 to effect production of an intermediate concentrated phototrophic biomass-comprising product 34 and a recovered aqueous material 72 (in some embodiments, substantially water). In some embodiments, for example, the separator 52 is a high speed centrifugal separator 52. Other suitable examples of a separator 52 include a decanter, a settling vessel or pond, a flocculation device, or a flotation device. In some embodiments, the recovered aqueous material 72 is supplied to a container 28, such as a container, for re-use by the process.
  • In some embodiments, for example, after the product 500 is discharged, and before being supplied to the separator 52, the phototrophic biomass-comprising product 500 is supplied to a harvest pond 54. The harvest pond 54 functions both as a buffer between the photobioreactor 12 and the separator 52, as well as a mixing vessel in cases where the harvest pond 54 receives different biomass strains from multiple photobioreactors. In the latter case, customization of a blend of biomass strains can be effected with a predetermined set of characteristics tailored to the fuel type or grade that will be produced from the blend.
  • As described above, the container 28 provides a source of supplemental aqueous material supply 44 for the reaction zone 10, and functions to contain the supplemental aqueous material supply 44 before supplemental aqueous material supply 44 is supplied to the reaction zone 10. Loss of water is experienced in some embodiments as moisture in the final phototrophic biomass-comprising product 36, as well as through evaporation in the dryer 32. The supplemental aqueous material in the container 28, which is recovered from the process, can be supplied to the reaction zone 10 as the supplemental aqueous material supply 44. In some embodiments, for example, the supplemental aqueous material supply 44 is supplied to the reaction zone 10 with the pump 281. In other embodiments, the supply can be effected by gravity, if the layout of the process equipment of the system, which embodies the process, permits. As described above, the supplemental aqueous material recovered from the process includes at least one of: (a) aqueous material 70 which has been condensed from the reaction zone feed material 22 while the reaction zone feed material 22 is being cooled before being supplied to the reaction zone 10, and (b) aqueous material 72 which has been separated from the phototrophic biomass-comprising product 500. In some embodiments, for example, the supplemental aqueous material supply 44 is supplied to the reaction zone 10 to effect displacement of the product 500 from the reaction zone. In some embodiments, for example, the product 500 is displaced as an overflow from the photobioreactor 12. In some embodiments, for example, the supplemental aqueous material supply 44 is supplied to the reaction zone 10 to effect a desired predetermined concentration of phototrophic biomass within the reaction zone by diluting the reaction mixture disposed within the reaction zone.
  • Examples of specific structures which can be used as the container 28 by allowing for containment of aqueous material recovered from the process, as above-described, include, without limitation, tanks, ponds, troughs, ditches, pools, pipes, tubes, canals, and channels.
  • In some embodiments, for example, the supplying of the supplemental aqueous material supply 44 to the reaction zone 10 is effected while the gaseous exhaust material 18 is being discharged by the gaseous exhaust material producing process 20, and while the gaseous exhaust material reaction zone supply 24 is being supplied to the reaction zone feed material 22. In some embodiments, for example, the exposing of the carbon dioxide-enriched phototrophic biomass disposed in the aqueous medium to photosynthetically active light radiation is effected while the supplying of the supplemental aqueous material supply to the reaction zone 10 is being effected.
  • In some embodiments, for example, the supplying of the supplemental aqueous material supply 44 to the reaction zone 10 is modulated based upon the detection of a deviation of a value of a phototrophic biomass growth indicator from that of a predetermined target value of the process parameter, wherein the predetermined target value of the phototrophic biomass growth indicator is based upon a predetermined growth rate of mass of the phototrophic biomass within the reaction zone. The detection of a deviation of the phototrophic biomass growth indicator from that of the target value of the phototrophic biomass growth indicator, and the modulation of the supplying of the supplemental aqueous material supply 44 to the reaction zone 10 in response to the detection, is discussed above.
  • In some embodiments, for example, supply of the supplemental aqueous material supply 44 to the reaction zone 10 is dictated by the mass concentration of phototrophic biomass. In this respect, mass concentration of the phototrophic biomass in the reaction zone 10, or an indication of mass concentration of the phototrophic biomass in the reaction zone 10, is detected by a cell counter, such as the cell counters described above. The detected mass concentration of the phototrophic biomass, or the detected indication of mass concentration of phototrophic biomass, is transmitted to the controller, and when the controller determines that the detected mass concentration exceeds a predetermined high mass concentration value, the controller responds by initiating the supply, or increasing the rate of supply (such as a volumetric rate of supply, or a molar rate of supply), of the supplemental aqueous material supply 44 to the reaction zone 10. In some embodiments, for example, the initiating of the supply, or increasing the rate of supply, of the supplemental aqueous material supply 44 to the reaction zone 10 includes actuating a prime mover, such as the pump 281, to initiate supply, or an increase in the molar rate of supply, of the supplemental aqueous material supply 44 to the reaction zone 10. In some embodiments, for example, the effecting supply, or increasing the rate of supply, of the supplemental aqueous material supply 44 to the reaction zone 10 includes initiating the opening, or increase the opening, of a valve that is configured to interfere with supply of the supplemental aqueous material supply 44 from the container 28 to the reaction zone 10.
  • In some embodiments, for example, when the upper level of the contents of the reaction zone 10 within the photobioreactor 12 becomes disposed below a predetermined minimum level, the initiation of the supply of, or an increase to the rate of supply (such as a volumetric rate of supply, or a molar rate of supply) of, the supplemental aqueous material supply 44 (which has been recovered from the process) is effected to the reaction zone 10. In some of these embodiments, for example, a level sensor 76 is provided for detecting the position of the upper level of the contents of the reaction zone 10 within the photobioreactor, and transmitting a signal representative of the upper level of the contents of the reaction zone 10 to the controller. Upon the controller comparing a received signal from the level sensor 76, which is representative of the upper level of the contents of the reaction zone 10, to a predetermined low level value, and determining that the detected upper level of the contents of the reaction zone is below the predetermined low level value, the controller effects the initiation of the supply of, or an increase to the rate of supply of, the supplemental aqueous material supply 44. When the supply of the supplemental aqueous material supply 44 to the reaction zone 10 is effected by a pump 281, the controller actuates the pump 281 to effect the initiation of the supply, or an increase to the rate of supply, of the supplemental aqueous material supply 44 to the reaction zone 10. When the supply of the supplemental aqueous material supply 44 to the reaction zone 10 is effected by gravity, the controller actuates the opening of a valve to effect the initiation of the supply, or an increase to the molar rate of supply, of the supplemental aqueous material supply 44 to the reaction zone 10. For example, control of the position of the upper level of the contents of the reaction zone 10 is relevant to operation for some of those embodiments where the discharging of the phototrophic biomass 58 from the reaction zone 10 is effected from a lower portion of the reaction zone 10, such as when the discharging of the phototrophic biomass 58 from the reaction zone 10 is effected by a prime mover that is fluidly coupled to the reaction zone 10, as discussed above. In those embodiments where the discharging of the phototrophic biomass 58 from the reaction zone 10 is effected by an overflow, in some of these embodiments, control of the position of the upper level of the contents of the reaction zone 10 is relevant during the “seeding stage” of operation of the photobioreactor 12.
  • In some embodiments, for example, where the discharging of the product 500 is controlled with a valve disposed in a fluid passage which is fluidly communicating with an outlet of the photobioreactor 12, mass concentration of phototrophic biomass in the reaction zone is detected by a cell counter 47, such as the cell counters described above. The detected mass concentration of phototrophic biomass is transmitted to the controller, and when the controller determines that the detected molar phototrophic biomass concentration exceeds a predetermined high phototrophic biomass mass concentration value, the controller responds by initiating opening, or increasing the opening, of the valve to effect an increase in the rate of discharging of mass of the product 500 from the reaction zone 10.
  • In some embodiments, for example, a source of additional make-up water 68 is provided to mitigate against circumstances when the supplemental aqueous material supply 44 is insufficient to make-up for water which is lost during operation of the process. In this respect, in some embodiments, for example, the supplemental aqueous material supply 44 is mixed with the reaction zone feed material 22 in the sparger 40. Conversely, in some embodiments, for example, accommodation for draining of the container 28 to drain 66 is provided to mitigate against the circumstances when aqueous material recovered from the process exceeds the make-up requirements.
  • In some embodiments, for example, a reaction zone gaseous effluent product 80 is discharged from the reaction zone 10. At least a fraction of the reaction zone gaseous effluent 80 is recovered and supplied to a reaction zone 110 of a combustion process unit operation 100. As a result of the photosynthesis being effected in the reaction zone 10, the reaction zone gaseous effluent 80 is rich in oxygen relative to the gaseous exhaust material reaction zone supply 24. The gaseous effluent 80 is supplied to the combustion zone 110 of a combustion process unit operation 100 (such as a combustion zone 110 disposed in a reaction vessel), and, therefore, functions as a useful reagent for the combustion process being effected in the combustion process unit operation 100. The reaction zone gaseous effluent 80 is contacted with combustible material (such as carbon-comprising material) in the combustion zone 100, and a reactive process is effected whereby the combustible material is combusted. Examples of suitable combustion process unit operations 100 include those in a fossil fuel-fired power plant, an industrial incineration facility, an industrial furnace, an industrial heater, an internal combustion engine, and a cement kiln.
  • In some embodiments, for example, the contacting of the recovered reaction zone gaseous effluent 80 with a combustible material is effected while the gaseous exhaust material 18 is being discharged by the gaseous exhaust material producing process 20 and while the gaseous exhaust material reaction zone supply 24 is being supplied to the reaction zone feed material 22. In some embodiments, for example, the contacting of the recovered reaction zone gaseous effluent with a combustible material is effected while the gaseous exhaust material reaction zone supply 24 is being supplied to the reaction zone feed material 22. In some embodiments, for example, the contacting of the recovered reaction zone gaseous effluent with a combustible material is effected while the reaction zone feed material is being supplied to the reaction zone. In some embodiments, for example, the exposing of the carbon dioxide-enriched phototrophic biomass disposed in the aqueous medium to photosynthetically active light radiation is effected while the contacting of the recovered reaction zone gaseous effluent with a combustible material is being effected.
  • The intermediate concentrated phototrophic biomass-comprising product 34 is supplied to a dryer 32 which supplies heat to the intermediate concentrated phototrophic biomass-comprising product 34 to effect evaporation of at least a fraction of the water of the intermediate concentrated phototrophic biomass-comprising product 34, and thereby effect production of a final phototrophic biomass-comprising product 36. As discussed above, in some embodiments, the heat supplied to the intermediate concentrated phototrophic biomass-comprising product 34 is provided by a heat transfer medium 30 which has been used to effect the cooling of the reaction zone feed material 22 prior to supply of the reaction zone feed material 22 to the reaction zone 10. By effecting such cooling, heat is transferred from the reaction zone feed material 22 to the heat transfer medium 30, thereby raising the temperature of the heat transfer medium 30. In such embodiments, the intermediate concentrated phototrophic biomass-comprising product 34 is at a relatively warm temperature, and the heat requirement to effect evaporation of water from the intermediate concentrated phototrophic biomass-comprising product 34 is not significant, thereby rendering it feasible to use the heated heat transfer medium 30 as a source of heat to effect the drying of the intermediate concentrated phototrophic biomass-comprising product 34. As discussed above, after heating the intermediate concentrated phototrophic biomass-comprising product 34, the heat transfer medium 30, having lost some energy and becoming disposed at a lower temperature, is recirculated to the heat exchanger 26 to effect cooling of the reaction zone feed material 22. The heating requirements of the dryer 32 is based upon the rate of supply of mass of intermediate concentrated phototrophic biomass-comprising product 34 to the dryer 32. Cooling requirements (of the heat exchanger 26) and heating requirements (of the dryer 32) are adjusted by the controller to balance the two operations by monitoring flowrates (the molar and/or volumetric flowrates) and temperatures of each of the reaction zone feed material 22 and the rate of production of the product 500 through discharging of the product 500 from the photobioreactor.
  • In some embodiments, changes to the phototrophic biomass growth rate effected by changes to the rate of supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone material feed 22 are realized after a significant time lag (for example, in some cases, more than three (3) hours, and sometimes even longer) from the time when the change is effected to the rate of supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone feed material 22. In comparison, changes to the thermal value of the heat transfer medium 30, which are based on the changes in the rate of supply (the molar rate of supply and/or the volumetric rate of supply) of the gaseous exhaust material reaction zone supply 24 to the reaction zone feed material 22, are realized more quickly. In this respect, in some embodiments, a thermal buffer is provided for storing any excess heat (in the form of the heat transfer medium 30) and introducing a time lag to the response of the heat transfer performance of the dryer 32 to the changes in the gaseous exhaust material reaction zone supply 24. In some embodiments, for example, the thermal buffer is a heat transfer medium storage tank. Alternatively, an external source of heat may be required to supplement heating requirements of the dryer 32 during transient periods of supply of the gaseous exhaust material reaction zone supply 24 to the reaction zone material 22. The use of a thermal buffer or additional heat may be required to accommodate changes to the rate of growth of the phototrophic biomass, or to accommodate start-up or shutdown of the process. For example, if growth of the phototrophic biomass is decreased or stopped, the dryer 32 can continue operating by using the stored heat in the buffer until it is consumed, or, in some embodiments, use a secondary source of heat.
  • Further embodiments will now be described in further detail with reference to the following non-limitative example.
  • Example 1
  • A prophetic example, exemplifying an embodiment of determining a target value of a phototrophic biomass growth indicator (eg. algae concentration in the reaction zone of a photobioreactor), and effecting operation of an embodiment of the above-described process, including modulating the molar rate of discharge of the phototrophic biomass-comprising product from the reaction zone based on a deviation of a detected value of the process parameter from the target value, will now be described.
  • Initially, an initial algae concentration in an aqueous medium, with suitable nutrients, is provided in a reaction zone of a photobioreactor. Gaseous carbon dioxide is supplied to the reaction zone, and the reaction zone is exposed to light from a light source (such as LEDs), to effect growth of the algae. When algae concentration in the reaction zone reaches 0.5 grams per litre, water is flowed to the reaction zone of the photobioreactor to effect harvesting of the algae by effecting overflow of the reactor contents, and an initial target algae concentration is set at 0.5 grams per litre. Initially, the supplied water is flowed at a relatively moderate and constant rate such that the half (½) of the volume of the photobioreactor is exchanged per day, as it is found that periodically replacing water volume within the reaction zone with fresh water promotes growth of the algae and enables attaining the target value in a shorter period of time. If the algae growth rate is lower than the dilution rate, and the detected algae concentration drops at least 2% from the algae concentration set point at any time during this determination exercise, the control system will stop or reduce the dilution rate to avoid further dilution of the algae concentration in the reaction zone. If the algae growth rate is higher than the dilution rate, the algae concentration will increase above the initial algae concentration set point, and the control system will increase the algae concentration set point so as to keep pace with the increasing algae concentration, while maintaining the same dilution rate. For example, the algae concentration may increase to 0.52 grams per litre, at which point the control system will increase the algae concentration set point to 0.51. The control system continues to monitor the increase in algae concentration and, in parallel, increasing the target algae concentration. When a maximum change in the algae growth rate has been detected, the target algae concentration is locked at its existing value to become the target value, and dilution rate is then modulated so that harvesting of the algae is effected at a rate which is equivalent to the growth rate of the algae within the photobioreactor when the algae concentration is at the target value.
  • Algae growth rate corresponds with algae concentration. When a considerable change in the algae growth rate is detected, this is indicative of growth of algae within the reaction zone at, or close to, its maximum rate, and this growth rate corresponds to an algae concentration at the target value. In this respect, by maintaining algae concentration in the reaction zone at the target value by controlling dilution rate, algae growth is maintained at or close to the maximum, and, as a corollary, over time, the rate of discharge of algae is optimized.
  • In the above description, for purposes of explanation, numerous details are set forth in order to provide a thorough understanding of the present disclosure. However, it will be apparent to one skilled in the art that these specific details are not required in order to practice the present disclosure. Although certain dimensions and materials are described for implementing the disclosed example embodiments, other suitable dimensions and/or materials may be used within the scope of this disclosure. All such modifications and variations, including all suitable current and future changes in technology, are believed to be within the sphere and scope of the present disclosure. All references mentioned are hereby incorporated by reference in their entirety.

Claims (43)

1. A process for growing a phototrophic biomass in a reaction zone, wherein the reaction zone includes a reaction mixture that is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, wherein the reaction mixture includes phototrophic biomass that is operative for growth within the reaction zone, comprising:
while exposing the reaction mixture to photosynthetically active light radiation and effecting growth of the phototrophic biomass in the reaction zone, wherein the effected growth includes growth effected by photosynthesis, and while discharging phototrophic biomass from the reaction zone, when a phototrophic biomass growth indicator is different than a target value of the phototrophic biomass growth indicator, modulating the rate of discharge of mass of the phototrophic biomass from the reaction zone, wherein the target value of the phototrophic biomass growth indicator is based upon a predetermined growth rate of the phototrophic biomass within the reaction mixture which is disposed within the reaction zone and is being exposed to photosynthetically active light radiation.
2. The process as claimed in claim 1;
wherein the target value of the phototrophic biomass growth indicator is correlated with the predetermined growth rate of the phototrophic biomass.
3. The process as claimed in claim 1;
wherein the modulating is effected in response to detection of a difference between the phototrophic biomass growth indicator and the target value of the phototrophic biomass growth indicator.
4. The process as claimed in claim 3;
further comprising detecting a phototrophic biomass growth indicator to provide a detected phototrophic biomass growth indicator.
5. The process as claimed in claim 4;
wherein the detected phototrophic biomass growth indicator is representative of the mass concentration of the phototrophic biomass within the reaction mixture.
6. The process as claimed in claim 4;
wherein the detected phototrophic biomass growth indicator is the mass concentration of the phototrophic biomass within the reaction mixture.
7. The process as claimed in claim 4;
wherein the detected phototrophic biomass growth indicator is the mass concentration of the phototrophic biomass within a reaction zone product being discharged from the reaction zone, wherein the reaction zone product further includes water.
8. The process as claimed in claim 1;
wherein the target value of the phototrophic biomass growth indicator is predetermined.
9. The process as claimed in claim 1;
wherein the effected growth of the phototrophic biomass is being effected at a rate of growth that is within 10% of the predetermined growth rate.
10. The process as claimed in claim 1;
wherein the effected growth of the phototrophic biomass is being effected at a rate of growth that is within 5% of the predetermined growth rate.
11. The process as claimed in claim 1;
wherein the effected growth of the phototrophic biomass is being effected at a rate of growth that is within 1% of the predetermined growth rate.
12. The process as claimed in claim 1;
wherein the reaction zone is disposed within a photobioreactor, and wherein the discharged phototrophic biomass is included in an overflow that is discharged from the photobioreactor, and the overflow is effected by supplying of an aqueous feed material to the reaction zone.
13. The process as claimed in claim 12;
wherein the modulating of the rate of discharge of mass of the phototrophic biomass from the reaction zone is effected by modulating the rate of supply of the aqueous feed material to the reaction zone.
14. The process as claimed in claim 4;
wherein, when the detected phototrophic biomass growth indicator is less than the phototrophic biomass growth indicator target value, the modulating includes effecting a decrease in the rate of discharge of mass of the phototrophic biomass from the reaction zone.
15. The process as claimed in claim 14;
wherein the reaction zone is disposed within a photobioreactor, and wherein the discharged phototrophic biomass is included in an overflow that is discharged from the photobioreactor, and the overflow is effected by supplying of an aqueous feed material to the reaction zone.
16. The process as claimed in claim 15;
wherein the modulating is effected by effecting a decrease in the rate of supply of the aqueous feed material to the reaction zone.
17. The process as claimed in claim 1;
wherein, when the phototrophic biomass growth indicator is greater than the target value of the phototrophic biomass growth indicator, the modulating includes effecting an increase in the rate of discharge of mass of the phototrophic biomass from the reaction zone.
18. The process as claimed in claim 17;
wherein the reaction zone is disposed within a photobioreactor, and wherein the discharged phototrophic biomass is included in an overflow that is discharged from the photobioreactor, and the overflow is effected by supplying of an aqueous feed material to the reaction zone.
19. The process as claimed in claim 18;
wherein the modulating is effected by effecting an increase in the rate of supply of the aqueous feed material to the reaction zone.
20. The process as claimed in claim 12;
wherein the aqueous feed material includes substantially no phototrophic biomass.
21. The process as claimed in claim 1;
wherein the effecting of the growth of the phototrophic biomass includes supplying carbon dioxide to the reaction zone and exposing the production purpose reaction mixture to photosynthetically active light radiation.
22. The process as claimed in claim 21;
wherein the carbon dioxide is supplied while the growth is being effected.
23. The process as claimed in claim 22;
wherein at least a fraction of the carbon dioxide being supplied to the reaction zone is supplied from a gaseous exhaust material while the gaseous exhaust material is being discharged from a gaseous exhaust material producing process.
24. The process as claimed in claim 1;
wherein the reaction mixture further includes water and carbon dioxide.
25. The process as claimed in claim 1;
wherein the predetermined growth rate of the production purpose phototrophic biomass is at least 90% of the maximum rate of growth of mass of the production purpose phototrophic biomass within the reaction mixture which is disposed within the reaction zone and is being exposed to the photosynthetically active light radiation.
26. A process for growing a production purpose phototrophic biomass in a reaction zone, wherein the reaction zone includes a production purpose reaction mixture that is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, wherein the production purpose reaction mixture includes production purpose phototrophic biomass that is operative for growth within the reaction zone, comprising:
while exposing the reaction mixture to photosynthetically active light radiation and effecting growth of the production purpose phototrophic biomass in the reaction zone, wherein the effected growth includes growth effected by photosynthesis, and while discharging production purpose phototrophic biomass from the reaction zone,
when a phototrophic biomass growth indicator is different than a predetermined target value of the phototrophic biomass growth indicator, modulating the rate of discharge of mass of the production purpose phototrophic biomass from the reaction zone, wherein the target value of the phototrophic biomass growth indicator is based upon a predetermined growth rate of the production purpose phototrophic biomass within the reaction mixture which is disposed within the reaction zone and is being exposed to photosynthetically active light radiation;
wherein the predetermination of the target value includes:
supplying an evaluation purpose reaction mixture that is representative of the production purpose reaction mixture and is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, such that the phototrophic biomass of the evaluation purpose reaction mixture is an evaluation purpose phototrophic biomass that is representative of the production purpose phototrophic biomass;
while the evaluation purpose reaction mixture disposed in the reaction zone is exposed to photosynthetically active light radiation and growth of the evaluation purpose phototrophic biomass is being effected within the evaluation purpose reaction mixture:
at least periodically detecting the phototrophic biomass growth indicator to provide a plurality of detected values of the phototrophic biomass growth indicator that have been detected during a time period; and
calculating growth rates of the evaluation purpose phototrophic biomass based on the plurality of detected values of the phototrophic biomass growth indicator such that a plurality of growth rates of the evaluation purpose phototrophic biomass are determined during the time period;
establishing a relationship between the growth rate of the evaluation purpose phototrophic biomass and the phototrophic biomass growth indicator, based on the calculated growth rates and the detected values of the phototrophic biomass growth indicator upon which the calculated growth rates have been based, such that the established relationship between the growth rate of the evaluation purpose phototrophic biomass and the phototrophic biomass growth indicator is representative of a relationship between the growth rate of the production purpose phototrophic biomass within the reaction zone and the phototrophic biomass growth indicator, and such that the relationship between the growth rate of the production purpose phototrophic biomass within the reaction zone and the phototrophic biomass growth indicator is thereby determined;
selecting the predetermined growth rate of the production purpose phototrophic biomass; and
defining the phototrophic biomass growth indicator target value as the phototrophic biomass growth indicator at which the predetermined growth rate is being effected based on the determined relationship between the growth rate of the production purpose phototrophic biomass within the reaction zone and the phototrophic biomass growth indicator, such that the correlation between the phototrophic biomass growth indicator target value and the predetermined growth rate is also thereby effected.
27. The process as claimed in claim 26;
wherein the effected growth of the evaluation purpose phototrophic biomass is effected while the reaction zone is characterized by at least one evaluation purpose growth condition, wherein each one of the at least one evaluation purpose growth condition is representative of a production purpose growth condition by which the reaction zone is characterized while the growth of the production purpose phototrophic biomass, within the reaction zone, is being effected.
28. The process as claimed in claim 27;
wherein the production purpose growth condition is any one of a plurality of production purpose growth conditions including composition of the reaction zone, reaction zone temperature, reaction zone pH, reaction zone light intensity, reaction zone lighting regimes, reaction zone lighting cycles, and reaction zone temperature.
29. The process as claimed in claim 26;
wherein the predetermined growth rate of the production purpose phototrophic biomass is at least 90% of the maximum rate of growth of mass of the production purpose phototrophic biomass within the reaction mixture which is disposed within the reaction zone and is being exposed to the photosynthetically active light radiation.
30. The process as claimed in claim 26;
the predetermined growth rate of the production purpose phototrophic biomass is at least 99% of the maximum rate of growth of mass of the production purpose phototrophic biomass within the reaction mixture which is disposed within the reaction zone and is being exposed to the photosynthetically active light radiation.
31. The process as claimed in claim 26;
wherein the production purpose reaction mixture further includes water and carbon dioxide;
and wherein the evaluation purpose reaction mixture further includes water and carbon dioxide.
32. A process for growing a phototrophic biomass in a reaction zone, wherein the reaction zone includes a reaction mixture that is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, wherein the reaction mixture includes phototrophic biomass that is operative for growth within the reaction zone, comprising:
while exposing the reaction mixture disposed in the reaction zone to photosynthetically active light radiation and growth of the phototrophic biomass is being effected within the reaction mixture, discharging mass of the phototrophic biomass from the reaction zone at a rate that is within 10% of the rate at which the growth of mass of the phototrophic biomass is being effected within the reaction zone;
wherein the effected growth of mass of the phototrophic biomass within the reaction zone is being effected at a rate that is at least 90% of the maximum rate of growth of mass of the phototrophic biomass within the reaction mixture which is disposed in reaction zone and is being exposed to the photosynthetically active light radiation.
33. The process as claimed in claim 32;
wherein the reaction zone is disposed within a photobioreactor, and wherein the discharged phototrophic biomass is included in an overflow from the photobioreactor.
34. The process as claimed in claim 32;
wherein the effecting of the growth of the production purpose phototrophic biomass includes supplying carbon dioxide to the reaction zone and exposing the production purpose reaction mixture to photosynthetically active light radiation.
35. The process as claimed in claim 32;
wherein the effected growth of mass of the phototrophic biomass within the reaction zone is being effected at a rate that is at least 95% of the maximum rate of growth of mass of the phototrophic biomass within the reaction mixture which is disposed in reaction zone and is being exposed to the photosynthetically active light radiation.
36. The process as claimed in claim 32;
wherein the effected growth of mass of the phototrophic biomass within the reaction zone is being effected at a rate that is at least 99% of the maximum rate of growth of mass of the phototrophic biomass within the reaction mixture which is disposed in reaction zone and is being exposed to the photosynthetically active light radiation.
37. The process as claimed in claim 32;
wherein the discharging of mass of the phototrophic biomass from the reaction zone is effected at a rate that is within 5% of the rate at which the growth of mass of the phototrophic biomass is being effected within the reaction zone.
38. The process as claimed in claim 32;
wherein the discharging of mass of the phototrophic biomass from the reaction zone is effected at a rate that is within 1% of the rate at which the growth of mass of the phototrophic biomass is being effected within the reaction zone.
39. A process for growing a phototrophic biomass in a reaction zone, wherein the reaction zone includes a reaction mixture that is operative for effecting photosynthesis upon exposure to photosynthetically active light radiation, wherein the reaction mixture includes phototrophic biomass that is operative for growth within the reaction zone, comprising:
while exposing the reaction mixture to photosynthetically active light radiation and effecting growth of the phototrophic biomass within the reaction mixture disposed in the reaction zone, wherein the effected growth of the phototrophic biomass includes growth which is effected by the photosynthesis, discharging phototrophic biomass from the reaction zone such that the rate of discharge of mass of the phototrophic biomass is within 10% of the rate at which the growth of mass of the phototrophic biomass is being effected.
40. The process as claimed in claim 39;
wherein the rate of discharge of the phototrophic biomass is within 5% of the rate at which the growth of mass of the phototrophic biomass is being effected.
41. The process as claimed in claim 39;
wherein the rate of discharge of the phototrophic biomass is within 1% of the rate at which the growth of mass of the phototrophic biomass is being effected.
42. The process as claimed in claim 39;
wherein the rate of discharge of the phototrophic biomass is equivalent to the rate at which the growth of mass of the phototrophic biomass is being effected.
43. The process as claimed in claim 39;
wherein the rate at which the growth of the phototrophic biomass is being effected is equivalent to the maximum rate of growth of mass of the phototrophic biomass within the reaction mixture which is disposed within the reaction zone and is being exposed to the photosynthetically active light radiation.
US13/327,541 2010-05-20 2011-12-15 Biomass Production Abandoned US20120156669A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/327,541 US20120156669A1 (en) 2010-05-20 2011-12-15 Biomass Production
US15/234,462 US11612118B2 (en) 2010-05-20 2016-08-11 Biomass production

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US12/784,181 US20110287523A1 (en) 2010-05-20 2010-05-20 Recovering make-up water during biomass production
US12/784,215 US8969067B2 (en) 2010-05-20 2010-05-20 Process for growing biomass by modulating supply of gas to reaction zone
US12/784,141 US20110287522A1 (en) 2010-05-20 2010-05-20 Producing biomass using pressurized exhaust gas
US12/784,172 US8940520B2 (en) 2010-05-20 2010-05-20 Process for growing biomass by modulating inputs to reaction zone based on changes to exhaust supply
US12/784,126 US8889400B2 (en) 2010-05-20 2010-05-20 Diluting exhaust gas being supplied to bioreactor
US12/784,106 US20110283618A1 (en) 2010-05-20 2010-05-20 Supplying bioreactor gaseous effluent to combustion process
US13/022,396 US20110287405A1 (en) 2010-05-20 2011-02-07 Biomass production
CA2738516 2011-04-29
CA2738516A CA2738516A1 (en) 2010-05-20 2011-04-29 Biomass production
PCT/CA2011/000574 WO2011143749A2 (en) 2010-05-20 2011-05-18 Biomass production
US13/327,541 US20120156669A1 (en) 2010-05-20 2011-12-15 Biomass Production

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
US13/022,396 Continuation-In-Part US20110287405A1 (en) 2010-05-20 2011-02-07 Biomass production
PCT/CA2011/000574 Continuation-In-Part WO2011143749A2 (en) 2010-05-20 2011-05-18 Biomass production
PCT/CA2011/001367 Continuation-In-Part WO2012106796A1 (en) 2010-05-20 2011-11-18 Biomass production

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/234,462 Continuation US11612118B2 (en) 2010-05-20 2016-08-11 Biomass production

Publications (1)

Publication Number Publication Date
US20120156669A1 true US20120156669A1 (en) 2012-06-21

Family

ID=46234883

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/327,541 Abandoned US20120156669A1 (en) 2010-05-20 2011-12-15 Biomass Production
US15/234,462 Active US11612118B2 (en) 2010-05-20 2016-08-11 Biomass production

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/234,462 Active US11612118B2 (en) 2010-05-20 2016-08-11 Biomass production

Country Status (1)

Country Link
US (2) US20120156669A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9534261B2 (en) 2012-10-24 2017-01-03 Pond Biofuels Inc. Recovering off-gas from photobioreactor
US10711232B2 (en) * 2015-03-20 2020-07-14 Inria Institut National De Recherche En Informatique Et En Automatique Bioreactor for microalgae
US11124751B2 (en) 2011-04-27 2021-09-21 Pond Technologies Inc. Supplying treated exhaust gases for effecting growth of phototrophic biomass
US11845974B2 (en) * 2015-05-25 2023-12-19 Neste Corporation Methods for continuous production of products from microorganisms

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019237201A1 (en) * 2018-06-12 2019-12-19 Paige Growth Technologies Inc. Devices, systems and methods for multivariable optimization of plant growth and growth of other phototrophic organisms

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050239182A1 (en) * 2002-05-13 2005-10-27 Isaac Berzin Synthetic and biologically-derived products produced using biomass produced by photobioreactors configured for mitigation of pollutants in flue gases
CA2738516A1 (en) * 2010-05-20 2011-11-20 Pond Biofuels Inc. Biomass production

Family Cites Families (437)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2732661A (en) 1956-01-31 Composition of chlorella
US2732663A (en) 1956-01-31 System for photosynthesis
US2658310A (en) 1950-12-22 1953-11-10 Carnegie Inst Of Washington Apparatus and process for the production of photosynthetic microorganisms, particularly algae
US2715795A (en) 1954-06-22 1955-08-23 Basic Res Corp Microorganism culture method and apparatus
US2815607A (en) 1954-11-26 1957-12-10 William E Beatty Process and apparatus for the culture of photo-synthetic micro-organisms and macro-organisms, particularly algae
US2854792A (en) 1956-09-20 1958-10-07 Ionics Method and apparatus for propagating algae culture
US3224143A (en) 1962-04-17 1965-12-21 Aerojet General Co Apparatus and method for growing algae to recover oxygen
US3243918A (en) 1963-03-13 1966-04-05 Robert A Erkins Method for propagating photosynthetic microorganisms
US3403471A (en) 1965-02-18 1968-10-01 Inst Francais Du Petrole Method of culturing algae in an artificial medium
US3303608A (en) 1965-09-02 1967-02-14 Patrick J Hannan Oxygen production by photosynthesis of algae under pressure
US3504185A (en) 1968-05-09 1970-03-31 Univ Syracuse Res Corp Apparatus for measuring and controlling cell population density in a liquid medium
FR1594564A (en) 1968-07-05 1970-06-08
US3712025A (en) 1970-03-30 1973-01-23 R Wallace Continuous electromigration process for removal of gaseous contaminants from the atmosphere and apparatus
US3855121A (en) 1971-11-01 1974-12-17 A Gough Biochemical process
US3763824A (en) 1971-11-30 1973-10-09 Minnesota Mining & Mfg System for growing aquatic organisms
JPS564233B2 (en) 1973-03-30 1981-01-29
US4116778A (en) 1974-01-10 1978-09-26 Viktor Vasilievich Belousov Plant for continuous cultivation of microorganisms
US3986297A (en) 1974-06-24 1976-10-19 Shoji Ichimura Photosynthesis reactor tank assembly
IL46022A (en) 1974-11-08 1977-06-30 Dor I Process for promotion of algae growth in a sewage medium
US3959923A (en) 1974-12-04 1976-06-01 Erno Raumfahrttechnik Gmbh Equipment for growing algae
DE2556290C3 (en) 1975-12-13 1979-05-23 Gesellschaft Fuer Strahlen- Und Umweltforschung Mbh, 8000 Muenchen Optimal supply of autotrophic organisms
US4078331A (en) 1976-04-28 1978-03-14 Mobil Oil Corporation Process and culture composition for growth of alga and synthesis of biopolymer
US4087936A (en) 1976-12-13 1978-05-09 Mobil Oil Corporation Process for production of alga biopolymer and biomass
US4525031A (en) 1978-06-07 1985-06-25 Kei Mori Solar light energy and electric lighting system and solar and electric light lamps used therein
JPS5561736A (en) 1978-10-28 1980-05-09 Nippon Carbide Kogyo Kk Laver breeding method and material
US4253271A (en) 1978-12-28 1981-03-03 Battelle Memorial Institute Mass algal culture system
US4297000A (en) 1979-01-11 1981-10-27 Fries James E Solar lighting system
IL57712A (en) 1979-07-03 1984-02-29 Yissum Res Dev Co Cultivation of halophilic algae of the dunaliella species for the production of fuel-like product
US4267038A (en) 1979-11-20 1981-05-12 Thompson Worthington J Controlled natural purification system for advanced wastewater treatment and protein conversion and recovery
US4438591A (en) 1980-02-04 1984-03-27 The University Of Arizona Foundation Algal cell growth, modification and harvesting
US4324068A (en) 1980-03-03 1982-04-13 Sax Zzyzx, Ltd. Production of algae
FR2505359B1 (en) 1981-05-08 1985-07-05 Air Liquide METHOD AND PLANT FOR MANUFACTURING MICROORGANISMS
US4900678A (en) 1981-12-03 1990-02-13 Kei Mori Apparatus for photosynthesis
JPS5898081A (en) 1981-12-03 1983-06-10 Takashi Mori Photosynthetic apparatus
US4383039A (en) 1981-12-10 1983-05-10 Ethyl Corporation L-Proline production from algae
US4724214A (en) 1982-01-16 1988-02-09 Kei Mori Apparatus for photosynthesis
US4398926A (en) 1982-04-23 1983-08-16 Union Carbide Corporation Enhanced hydrogen recovery from low purity gas streams
US4417415A (en) 1982-04-26 1983-11-29 Battelle Development Corporation Process for culturing a microalga, and extracting a polysaccharide therefrom
US4442211A (en) 1982-06-16 1984-04-10 The United States Of America As Represented By The United States Department Of Energy Method for producing hydrogen and oxygen by use of algae
US4473970A (en) 1982-07-21 1984-10-02 Hills Christopher B Method for growing a biomass in a closed tubular system
US4676956A (en) 1982-12-24 1987-06-30 Kei Mori Apparatus for photosynthesis
US4681612A (en) 1984-05-31 1987-07-21 Koch Process Systems, Inc. Process for the separation of landfill gas
US4539625A (en) 1984-07-31 1985-09-03 Dhr, Incorporated Lighting system combining daylight concentrators and an artificial source
US4595405A (en) 1984-12-21 1986-06-17 Air Products And Chemicals, Inc. Process for the generation of gaseous and/or liquid nitrogen
US4851339A (en) 1986-04-01 1989-07-25 Hills Christopher B Extraction of anti-mutagenic pigments from algae and vegetables
US4889812A (en) 1986-05-12 1989-12-26 C. D. Medical, Inc. Bioreactor apparatus
JPS6312274A (en) 1986-07-03 1988-01-19 Takashi Mori Bioreactor
US5081036A (en) 1987-01-23 1992-01-14 Hoffmann-La Roche Inc. Method and apparatus for cell culture
US4939087A (en) 1987-05-12 1990-07-03 Washington State University Research Foundation, Inc. Method for continuous centrifugal bioprocessing
US4869017A (en) 1987-05-29 1989-09-26 Harbor Branch Oceanographic Institution, Inc. Macroalgae culture methods
US4952511A (en) 1987-06-11 1990-08-28 Martek Corporation Photobioreactor
US5216976A (en) 1987-10-23 1993-06-08 Marinkovich Vincent S Method and apparatus for high-intensity controlled environment aquaculture
US4781843A (en) 1987-12-11 1988-11-01 Dubois Chemicals, Inc. Chemical treatment for algae control in open water systems
DE3802031A1 (en) 1988-01-25 1989-07-27 Hoechst Ag MULTILAYERED RECORDING MATERIAL FOR OPTICAL INFORMATION
US5104803A (en) 1988-03-03 1992-04-14 Martek Corporation Photobioreactor
US4958460A (en) 1988-05-09 1990-09-25 Algae Farms Method of growing and harvesting microorganisms
US5334497A (en) 1988-12-13 1994-08-02 Hideki Inaba Method of feeding a substrate into tubular bioreactor
JPH02242629A (en) 1988-12-20 1990-09-27 Korea Advanced Inst Of Sci Technol Producing method for microslgae and pisces by mutualism between them
US5882849A (en) 1989-10-10 1999-03-16 Aquasearch, Inc. Method of control of Haematococcus spp, growth process
US5541056A (en) 1989-10-10 1996-07-30 Aquasearch, Inc. Method of control of microorganism growth process
US5151347A (en) 1989-11-27 1992-09-29 Martek Corporation Closed photobioreactor and method of use
US5407957A (en) 1990-02-13 1995-04-18 Martek Corporation Production of docosahexaenoic acid by dinoflagellates
US5656421A (en) 1990-02-15 1997-08-12 Unisyn Technologies, Inc. Multi-bioreactor hollow fiber cell propagation system and method
DE69131730T2 (en) 1990-05-15 2000-02-03 Archer Daniels Midland Co A CONTINUOUS FERMENTATION PROCESS FOR THE PRODUCTION OF MICROORGANISMS WITH A HIGH PRODUCTIVITY OF CAROTENOIDS
JP3076586B2 (en) 1990-05-16 2000-08-14 三井化学株式会社 Non-yellowing molding resin and method for producing the same
US5614378A (en) 1990-06-28 1997-03-25 The Regents Of The University Of Michigan Photobioreactors and closed ecological life support systems and artifificial lungs containing the same
US4995377A (en) 1990-06-29 1991-02-26 Eiden Glenn E Dual axis solar collector assembly
DE4037325A1 (en) 1990-11-23 1992-05-27 Karl Mueller U Co Kg METHOD FOR GENERATING CELL MASS AND / OR FERMENTATION PRODUCTS UNDER STERILE CONDITIONS, AND DEVICE FOR IMPLEMENTING THE METHOD
FR2669935B1 (en) 1990-11-30 1996-08-02 Ajinomoto Kk PROCESS AND APPARATUS FOR REGULATING THE CONCENTRATION OF CARBON SOURCE IN THE AEROBIC CULTURE OF A MICROORGANISM.
US5206173A (en) 1991-06-05 1993-04-27 Bedminster Bioconversion Corporation Air hood
US5330915A (en) 1991-10-18 1994-07-19 Endotronics, Inc. Pressure control system for a bioreactor
US5573669A (en) 1992-06-02 1996-11-12 Jensen; Kyle R. Method and system for water purification by culturing and harvesting attached algal communities
IL102189A (en) 1992-06-12 1995-07-31 Univ Ben Gurion Microorganism growth apparatus
FR2698350B1 (en) 1992-11-23 1994-12-23 Commissariat Energie Atomique Device for purifying a liquid effluent loaded with pollutants and method for purifying this effluent.
US5424209A (en) 1993-03-19 1995-06-13 Kearney; George P. Automated cell culture and testing system
US5552058A (en) 1993-09-03 1996-09-03 Advanced Waste Reduction Cooling tower water treatment method
DE69427144T2 (en) 1993-09-27 2001-10-11 Mitsubishi Heavy Ind Ltd Process and system for producing ethanol from microalgae
US5565108A (en) 1993-11-01 1996-10-15 Dimesky; Robert S. System for the control and retardation of the growth of algae
US5534404A (en) 1993-12-10 1996-07-09 Cytotherapeutics, Inc. Glucose responsive insulin secreting β-cell lines and method for producing same
US5958761A (en) 1994-01-12 1999-09-28 Yeda Research And Developement Co. Ltd. Bioreactor and system for improved productivity of photosynthetic algae
US5358858A (en) 1994-03-17 1994-10-25 National Science Council Process for preparing phycoerythrin from bangia atropurpurea and porphyra angusta
ZA954157B (en) 1994-05-27 1996-04-15 Seec Inc Method for recycling carbon dioxide for enhancing plant growth
US5558984A (en) 1994-06-03 1996-09-24 Clemson University Automated system and process for heterotrophic growth of plant tissue
US5462666A (en) 1994-09-28 1995-10-31 Rjjb & G, Inc. Treatment of nutrient-rich water
US5851398A (en) 1994-11-08 1998-12-22 Aquatic Bioenhancement Systems, Inc. Algal turf water purification method
AUPN060095A0 (en) 1995-01-13 1995-02-09 Enviro Research Pty Ltd Apparatus for biomass production
WO1996023865A1 (en) 1995-02-02 1996-08-08 Aspitalia S.R.L. Process and device for cultivating microalgae in a closed circuit
US5843762A (en) 1995-03-02 1998-12-01 Desert Energy Research, Inc. Method for the high yield, agricultural production of enteromorpha clathrata
FR2734173B1 (en) 1995-05-19 1997-08-01 Rhone Poulenc Chimie REACTOR FOR IMPLEMENTING CHEMICAL REACTIONS INVOLVING BIOMASS
US5686299A (en) 1995-05-23 1997-11-11 Lockheed Idaho Technologies Company Method and apparatus for determining nutrient stimulation of biological processes
US6238908B1 (en) 1995-06-07 2001-05-29 Aastrom Biosciences, Inc. Apparatus and method for maintaining and growth biological cells
DE19522429A1 (en) 1995-06-21 1997-01-02 Thomas Lorenz Arrangement for the treatment of gases containing carbon dioxide
WO1997015332A1 (en) 1995-10-26 1997-05-01 Purepulse Technologies, Inc. Improved deactivation of organisms using high-intensity pulsed polychromatic light
IL116995A (en) 1996-02-01 2000-08-31 Univ Ben Gurion Procedure for large-scale production of astaxanthin from haematococcus
US5659977A (en) 1996-04-29 1997-08-26 Cyanotech Corporation Integrated microalgae production and electricity cogeneration
DE19629433A1 (en) 1996-07-22 1998-01-29 Hoechst Ag Preparation containing omega-3 fatty acids from microorganisms as a prophylactic or therapeutic agent against parasitic diseases in animals
US5744041A (en) 1996-09-19 1998-04-28 Grove; John E. Biological treatment process
US5906750A (en) 1996-09-26 1999-05-25 Haase; Richard Alan Method for dewatering of sludge
US5846435A (en) 1996-09-26 1998-12-08 Haase; Richard Alan Method for dewatering of sludge
US6673592B1 (en) 1996-10-21 2004-01-06 Jaw-Kai Wang Continuous cultivation of microorganisms in large open tanks in sunlight
CZ326696A3 (en) 1996-11-06 1998-05-13 Mikrobiologický Ústav Av Čr Process of external thin-layer cultivation of algae and blue-green algae and a bioreactor for making the same
US5910254A (en) 1996-12-20 1999-06-08 Eastman Chemical Company Method for dewatering microalgae with a bubble column
US6000551A (en) 1996-12-20 1999-12-14 Eastman Chemical Company Method for rupturing microalgae cells
WO1998028403A1 (en) 1996-12-20 1998-07-02 Eastman Chemical Company Method for cross flow microfiltration of microalgae in the absence of flocculating agents
AU5802398A (en) 1996-12-20 1998-07-17 Eastman Chemical Company Method for deep bed filtration of microalgae
US5776349A (en) 1996-12-20 1998-07-07 Eastman Chemical Company Method for dewatering microalgae with a jameson cell
US5951875A (en) 1996-12-20 1999-09-14 Eastman Chemical Company Adsorptive bubble separation methods and systems for dewatering suspensions of microalgae and extracting components therefrom
US5871952A (en) 1997-04-14 1999-02-16 Midwest Research Institute Process for selection of Oxygen-tolerant algal mutants that produce H2
SE509852C2 (en) 1997-07-02 1999-03-15 Marzena Belina Grodzka Harvesting device for algae
AU732808B2 (en) 1997-08-25 2001-05-03 Water Research Commission Treatment of water
JP3112439B2 (en) 1997-09-16 2000-11-27 株式会社スピルリナ研究所 Method for producing algae and apparatus for producing the same
US6120690A (en) 1997-09-16 2000-09-19 Haase; Richard Alan Clarification of water and wastewater
GB9719965D0 (en) 1997-09-19 1997-11-19 Biotechna Environmental Intern Modified bioreactor
JP3950526B2 (en) 1997-10-17 2007-08-01 次郎 近藤 Photosynthesis culture apparatus and collective photosynthesis culture apparatus
JPH11226351A (en) 1998-02-12 1999-08-24 Spirulina Kenkyusho:Kk Production of cleaned air and apparatus for cleaning air
DE69927654T2 (en) 1998-03-31 2006-06-22 Bioreal, Inc., Maui CULTURE DEVICE FOR FINE ALGAE
US6128135A (en) 1998-05-01 2000-10-03 Synertech Systems Corporation Three-reflection collection system for solar and lunar radiant energy
JP4084883B2 (en) 1998-05-07 2008-04-30 三菱電機株式会社 Gas-liquid two-phase distributor
US6792336B1 (en) 1998-05-13 2004-09-14 Bechtel Bwxt Idaho, Llc Learning-based controller for biotechnology processing, and method of using
US20020034817A1 (en) 1998-06-26 2002-03-21 Henry Eric C. Process and apparatus for isolating and continuosly cultivating, harvesting, and processing of a substantially pure form of a desired species of algae
WO2000012673A1 (en) 1998-08-28 2000-03-09 Addavita Limited Photobioreactor
WO2000011953A1 (en) 1998-09-01 2000-03-09 Penn State Research Foundation Method and apparatus for aseptic growth or processing of biomass
DE69813042D1 (en) 1998-10-19 2003-05-08 Ifremer METHOD FOR IMPROVING THE EXPLOITATION OF A PHOTOBIO REACTOR
JP3248514B2 (en) 1998-10-29 2002-01-21 日本鋼管株式会社 How to reduce carbon dioxide emissions
US6391238B1 (en) 1998-11-13 2002-05-21 Kabushiki Kaisha Toshiba Method of producing algae cultivating medium
US6991919B1 (en) 1999-03-17 2006-01-31 Biodiversity Limited Biochemical synthesis apparatus
IL129101A (en) 1999-03-22 2002-09-12 Solmecs Israel Ltd Closed cycle power plant
DE19916597A1 (en) 1999-04-13 2000-10-19 Fraunhofer Ges Forschung Photobioreactor with improved light input through surface enlargement, wavelength shifter or light transport
US20020130076A1 (en) 1999-05-07 2002-09-19 Merritt Clifford A. Aerated pond wastewater treatment system and process for controlling algae and ammonia
DE60043327D1 (en) 1999-07-29 2009-12-31 Nat Inst Of Advanced Ind Scien Process and apparatus for separating and recovering carbon dioxide from combustion exhaust gases
US6929942B2 (en) 1999-08-10 2005-08-16 Council Of Scientific And Industrial Research Process for the treatment of industrial effluents using marine algae to produce potable wafer
US6284453B1 (en) 1999-09-29 2001-09-04 Steven Anthony Siano Method for controlling fermentation growth and metabolism
AU7321300A (en) 1999-09-29 2001-04-30 Micro Gaia Co., Ltd. Method of culturing algae capable of producing phototrophic pigments, highly unsaturated fatty acids, or polysaccharides at high concentration
IN189919B (en) 1999-11-11 2003-05-10 Proalgen Biotech Ltd
US6989252B2 (en) 1999-12-28 2006-01-24 Midwest Research Institute Hydrogen production using hydrogenase-containing oxygenic photosynthetic organisms
NO312413B1 (en) 2000-01-04 2002-05-06 Forinnova As Method and apparatus for preventing the bloom of microorganisms in an aqueous system
US6258588B1 (en) 2000-01-06 2001-07-10 Oregon State University Palmaria algal strains and methods for their use
DE10009060A1 (en) 2000-02-25 2001-09-06 Dlr Ev Solar photoreactor
US20050044911A1 (en) 2000-03-15 2005-03-03 Shinichi Shimose Method and apparatus for producing organic fertilizer
FI110533B (en) 2000-05-04 2003-02-14 Aga Ab Method for controlling microbial growth
US6299774B1 (en) 2000-06-26 2001-10-09 Jack L. Ainsworth Anaerobic digester system
FR2810992B1 (en) 2000-07-03 2002-10-25 Ifremer METHOD FOR IMPROVING TRANSFER IN A BIOREACTION CHAMBER
US6667171B2 (en) 2000-07-18 2003-12-23 Ohio University Enhanced practical photosynthetic CO2 mitigation
EP1309719B2 (en) 2000-08-14 2022-09-07 University of Maryland at Baltimore County Bioreactor and bioprocessing technique
WO2002017707A1 (en) 2000-08-31 2002-03-07 Council Of Scientific And Industrial Research An improved process for cultivation of algae
US7270996B2 (en) 2000-10-02 2007-09-18 Cannon Thomas F Automated bioculture and bioculture experiments system
US20020146817A1 (en) 2000-10-02 2002-10-10 Cannon Thomas F. Automated bioculture and bioculture experiments system
US6571735B1 (en) 2000-10-10 2003-06-03 Loy Wilkinson Non-metallic bioreactor and uses
US7198940B2 (en) 2000-10-25 2007-04-03 Shot Hardware Optimization Technology, Inc. Bioreactor apparatus and cell culturing system
JP2002136094A (en) * 2000-10-30 2002-05-10 Minebea Co Ltd Stepping motor
AU783125B2 (en) 2000-10-31 2005-09-29 Dsm Ip Assets B.V. Optimisation of fermentation processes
US6524486B2 (en) 2000-12-27 2003-02-25 Sepal Technologies Ltd. Microalgae separator apparatus and method
EP1249264A1 (en) 2001-04-11 2002-10-16 Ammonia Casale S.A. Process for the separation and recovery of carbon dioxide from waste gas or fumes produced by combustible oxidation
US6723243B2 (en) 2001-04-19 2004-04-20 Aquafiber Technologies Corporation Periphyton filtration pre- and post-treatment system and method
ATE322535T1 (en) 2001-06-20 2006-04-15 Labatt Brewing Co Ltd COMBINED CONTINUOUS / BATCH FERMENTATION PROCESS
DE10133273A1 (en) 2001-07-09 2003-01-30 Bayer Cropscience Ag Device and method for the detection of photosynthesis inhibition
US7135332B2 (en) 2001-07-12 2006-11-14 Ouellette Joseph P Biomass heating system
CA2353307A1 (en) 2001-07-13 2003-01-13 Carmen Parent Device and procedure for processing gaseous effluents
US20030044114A1 (en) 2001-09-06 2003-03-06 Pelka David G. Source wavelength shifting apparatus and method for delivery of one or more selected emission wavelengths
US6603069B1 (en) 2001-09-18 2003-08-05 Ut-Battelle, Llc Adaptive, full-spectrum solar energy system
WO2003027267A1 (en) 2001-09-26 2003-04-03 Parry Nutraceuticals Ltd. Process to produce astaxanthin from haematococcus biomass
CA2359417A1 (en) 2001-10-17 2003-04-17 Co2 Solution Inc. Photobioreactor with internal artificial lighting
US20040214314A1 (en) 2001-11-02 2004-10-28 Friedrich Srienc High throughput bioreactor
US6648949B1 (en) 2001-11-28 2003-11-18 The United States Of America As Represented By The United States Department Of Energy System for small particle and CO2 removal from flue gas using an improved chimney or stack
WO2003053143A2 (en) 2001-12-20 2003-07-03 Global Biosciences, Inc. Method and apparatus for butane-enhanced aquatic plant and animal growth
CN1219871C (en) 2002-01-22 2005-09-21 中国科学院过程工程研究所 Gas-phase double-dynamic solid fermentation technology and fermentation apparatus
US7033823B2 (en) 2002-01-31 2006-04-25 Cesco Bioengineering, Inc. Cell-cultivating device
US20030162273A1 (en) 2002-02-04 2003-08-28 Anastasios Melis Modulation of sulfate permease for photosynthetic hydrogen production
SE521571C2 (en) 2002-02-07 2003-11-11 Greenfish Ab Integrated closed recirculation system for wastewater treatment in aquaculture.
US6851387B2 (en) 2002-02-15 2005-02-08 Automated Shrimp Holding Corporation Aquaculture method and system for producing aquatic species
US7507579B2 (en) 2002-05-01 2009-03-24 Massachusetts Institute Of Technology Apparatus and methods for simultaneous operation of miniaturized reactors
JP2005533632A (en) 2002-05-13 2005-11-10 グリーンフューエル テクノロジーズ コーポレイション Photobioreactor and process for biomass production and mitigation of pollutants in fuel gas
US8507253B2 (en) 2002-05-13 2013-08-13 Algae Systems, LLC Photobioreactor cell culture systems, methods for preconditioning photosynthetic organisms, and cultures of photosynthetic organisms produced thereby
AU2005274791B2 (en) 2002-05-13 2011-11-10 Algae Systems, L.L.C. Photobioreactor cell culture systems, methods for preconditioning photosynthetic organisms, and cultures of photosynthetic organisms produced thereby
US20050064577A1 (en) 2002-05-13 2005-03-24 Isaac Berzin Hydrogen production with photosynthetic organisms and from biomass derived therefrom
JP3916632B2 (en) 2002-07-12 2007-05-16 株式会社海洋バイオテクノロジー研究所 Novel chemicals with morphogenesis and growth promoting activity
WO2004033616A1 (en) 2002-09-16 2004-04-22 Pan-Biotech Gmbh Device for culturing cells, particularly human or animal cells
AU2003276624B2 (en) 2002-10-24 2009-09-10 Pan Pacific Technologies, Pty Ltd Method and system for removal of contaminants from aqueous solution
US20060223155A1 (en) 2002-11-01 2006-10-05 Jackson Streeter Enhancement of in vitro culture or vaccine production in bioreactors using electromagnetic energy
CA2411383A1 (en) 2002-11-07 2004-05-07 Real Fournier Method and apparatus for concentrating an aqueous suspension of microalgae
US6887692B2 (en) 2002-12-17 2005-05-03 Gas Technology Institute Method and apparatus for hydrogen production from organic wastes and manure
US7392615B2 (en) 2002-12-24 2008-07-01 Lee L Courtland Process to produce a commercial soil additive by extracting waste heat, exhaust gas, and other combustion by-products from a coal power generator
US7191597B2 (en) 2003-01-21 2007-03-20 Los Angeles Advisory Services, Inc. Hybrid generation with alternative fuel sources
US20070157614A1 (en) 2003-01-21 2007-07-12 Goldman Arnold J Hybrid Generation with Alternative Fuel Sources
US7331178B2 (en) 2003-01-21 2008-02-19 Los Angeles Advisory Services Inc Hybrid generation with alternative fuel sources
US20060258000A1 (en) 2003-02-26 2006-11-16 Allen Jared W Use of steady-state oxygen gradients to modulate animal cell functions
JP4287678B2 (en) 2003-03-14 2009-07-01 Okiセミコンダクタ株式会社 Internal power circuit
US8313921B2 (en) 2003-03-24 2012-11-20 Ch2M Hill, Inc. Reclaimable hybrid bioreactor
KR100420253B1 (en) 2003-03-31 2004-03-02 디엔텍 (주) Composites For Elimination Of Green Algae And Red Algae Having The Effect Of Dissolved Oxygen Increament, Elimination Of Nutrient Sources And Bottom Property Improvement And The Green Algae And Red Algae Eliminating Method Thereby
DE10322054B4 (en) 2003-05-15 2015-06-18 Sartorius Stedim Biotech Gmbh Apparatus and method for culturing cells
US7176024B2 (en) 2003-05-30 2007-02-13 Biolex, Inc. Bioreactor for growing biological materials supported on a liquid surface
US20070113474A1 (en) 2003-05-30 2007-05-24 Biolex, Inc. Bioreactor for growing biological materials supported on a liquid surface
CA2530914C (en) 2003-06-27 2011-09-20 The University Of Western Ontario Biofuel cell
CA2472285C (en) 2003-07-16 2012-08-28 Frederick J. Dart Water treatment apparatus and method
CA2531814A1 (en) 2003-07-17 2005-01-27 Kenneth J. Hsu A process for suppressing the growth of green algae in aqueous systems
WO2005006838A2 (en) 2003-07-21 2005-01-27 Ben-Gurion University Of The Negev Flat panel photobioreactor
EP1646710A1 (en) 2003-07-21 2006-04-19 Algenion GmbH & Co. KG Method and device for cultivating eucaryotic microorganisms or blue algae, and biosensor with cultivated eucaryotic microorganisms or blue algae
TWI273137B (en) 2003-08-14 2007-02-11 Far East Microalgae Ind Co Ltd Method for culturing organic blue-green algae
US20070015263A1 (en) 2003-09-01 2007-01-18 Mogens Wumpelmann Method for increasing yield of biomass of and/or components of biomass from marine microorganisms
CN2749890Y (en) 2003-09-17 2006-01-04 刘宗翰 Photosynthetic bacteria culturing reactor
AU2003282895A1 (en) 2003-10-01 2005-05-19 Midwest Research Institute Multi-stage microbial system for continuous hydrogen production
AU2004280575B8 (en) 2003-10-02 2010-05-13 Dsm Ip Assets B.V. Production of high levels of DHA in microalgae using modified amounts of chloride and potassium
US7658851B2 (en) 2003-10-31 2010-02-09 Pseudonym Corporation Method of growing bacteria for use in wastewater treatment
US7635586B2 (en) 2003-11-26 2009-12-22 Broadley-James Corporation Integrated bio-reactor monitor and control system
US7435581B2 (en) 2003-11-26 2008-10-14 Broadley-James Corporation Integrated bio-reactor monitor and control system
US7220018B2 (en) 2003-12-15 2007-05-22 Orbital Technologies, Inc. Marine LED lighting system and method
KR100490641B1 (en) 2003-12-16 2005-05-19 인하대학교 산학협력단 Multiple layer photobioreactors and method for culturing photosynthetic microorganisms using them
US7510864B2 (en) 2004-01-27 2009-03-31 Krichevsky Micah I Decision-making spectral bioreactor
DE102004019234B3 (en) 2004-04-16 2005-11-24 Sartorius Ag Bioreactor for the cultivation of microorganisms
WO2005102031A1 (en) 2004-04-20 2005-11-03 Technical Office Ltd. Algae intensive-cultivation apparatus and cultivating method
US20050244957A1 (en) 2004-04-29 2005-11-03 Healthy Soils, Inc. Regenerating tank
CN1878872A (en) 2004-05-26 2006-12-13 雅马哈发动机株式会社 Method of producing xanthophyll
DE602005024544D1 (en) 2004-06-07 2010-12-16 Sampath Kumar Thothathri GROWTH-SUPPLEMENTAL COMPOSITION FOR SOCCER EYES
CN1724637A (en) 2004-07-21 2006-01-25 中国科学院过程工程研究所 Mend the method that carbon is cultivated little algae by pH value feedback control
US7662615B2 (en) 2004-07-27 2010-02-16 Chung Yuan Christian University System and method for cultivating cells
US20060134598A1 (en) 2004-12-20 2006-06-22 Drummond Scientific Company Cell culture media dispenser
US7056725B1 (en) 2004-12-23 2006-06-06 Chao-Hui Lu Vegetable alga and microbe photosynthetic reaction system and method for the same
US20090104594A1 (en) 2004-12-29 2009-04-23 Biogen Idec Bioreactor Process Control System and Method
US20070161095A1 (en) 2005-01-18 2007-07-12 Gurin Michael H Biomass Fuel Synthesis Methods for Increased Energy Efficiency
US7771988B2 (en) 2005-03-24 2010-08-10 Hitachi, Ltd. Control device for fermenter
US7531350B2 (en) 2005-04-20 2009-05-12 Agricultural Research Institute Bioreactor for growing fungus, plant cell, tissue, organ, hairy roots and plantlet
US20080028675A1 (en) 2005-05-10 2008-02-07 Nbe,Llc Biomass treatment of organic waste materials in fuel production processes to increase energy efficiency
US20060275858A1 (en) 2005-06-02 2006-12-07 Saucedo Victor M Optimization of Process Variables in Oxygen Enriched Fermentors Through Process Controls
WO2007013899A2 (en) 2005-06-07 2007-02-01 Hr Biopetroleum, Inc. Continuous-batch hybrid process for production of oil and other useful products from photosynthetic microbes
WO2006135632A2 (en) 2005-06-10 2006-12-21 Nanologix, Inc. System for sustained microbial production of hydrogen gas in a bioreactor
EP1739165A1 (en) 2005-06-29 2007-01-03 Cellution Biotech B.V. Method and apparatus for cultivating cells utilizing wave motion
US20070042487A1 (en) 2005-08-19 2007-02-22 Imi Norgren, Inc. Bioreactor valve island
MX2008002633A (en) 2005-08-25 2008-09-26 A2Be Carbon Capture Llc Method, apparatus and system for biodiesel production from algae.
WO2007029627A1 (en) 2005-09-06 2007-03-15 Yamaha Hatsudoki Kabushiki Kaisha Green alga extract with high astaxanthin content and method of producing the same
US20070054351A1 (en) 2005-09-06 2007-03-08 Yamaha Hatsudoki Kabushiki Kaisha Green algae having a high astaxanthin content and method for producing the same
US9248421B2 (en) 2005-10-07 2016-02-02 Massachusetts Institute Of Technology Parallel integrated bioreactor device and method
US20070092962A1 (en) 2005-10-20 2007-04-26 Saudi Arabian Oil Company Carbon Neutralization System (CNS) for CO2 sequestering
AU2006326582A1 (en) 2005-12-09 2007-06-21 Bionavitas, Inc. Systems, devices, and methods for biomass production
US20090047722A1 (en) 2005-12-09 2009-02-19 Bionavitas, Inc. Systems, devices, and methods for biomass production
CN100562564C (en) 2005-12-12 2009-11-25 中国科学院过程工程研究所 The carbon compensator and using method and the purposes that are used for large-scale culturing micro-algae
JP2009522092A (en) 2006-01-04 2009-06-11 ジェイ スー ケネス How to deal with water contaminated with algae
AU2007217821B2 (en) 2006-02-21 2012-06-14 The Arizona Board Of Regents, A Body Corporate Acting On Behalf Of Arizona State University Photobioreactor and uses therefor
US7507554B2 (en) 2006-02-28 2009-03-24 Propulsion Logic, Llc Process for the production of ethanol from algae
US7135308B1 (en) 2006-02-28 2006-11-14 Propulsion Logic, Llc Process for the production of ethanol from algae
MX2008011715A (en) 2006-03-15 2009-03-26 Petroalgae Llc Systems and methods for large-scale production and harvesting of oil-rich algae.
WO2007118223A2 (en) 2006-04-06 2007-10-18 Brightsource Energy, Inc. Solar plant employing cultivation of organisms
US8470584B2 (en) 2006-05-10 2013-06-25 Ohio University Apparatus and method for growing biological organisms for fuel and other purposes
EP2024490A4 (en) 2006-05-12 2010-01-20 Arizona Board Regents A Body C Novel chlorella species and uses therefor
US8415142B2 (en) 2006-06-14 2013-04-09 Malcolm Glen Kertz Method and apparatus for CO2 sequestration
AU2007273128B2 (en) 2006-07-10 2013-02-14 Algae Systems, L.L.C. Photobioreactor systems and methods for treating CO2-enriched gas and producing biomass
US8110395B2 (en) 2006-07-10 2012-02-07 Algae Systems, LLC Photobioreactor systems and methods for treating CO2-enriched gas and producing biomass
US20080009055A1 (en) 2006-07-10 2008-01-10 Greenfuel Technologies Corp. Integrated photobioreactor-based pollution mitigation and oil extraction processes and systems
US20080014961A1 (en) 2006-07-12 2008-01-17 Tekelec Methods, systems, and computer program products for providing geographically diverse IP multimedia subsystem (IMS) instances
US7771515B2 (en) 2006-07-13 2010-08-10 Institut National Des Sciences Appliquees Method and installation for treating an aqueous effluent, in order to extract at least one dissolved gaseous compound; application to aquaculture in recirculated aqueous medium
CN101484572A (en) 2006-07-14 2009-07-15 Abb研究有限公司 A method for on-line optimization of a fed-batch fermentation unit to maximize the product yield
US8278087B2 (en) 2006-07-18 2012-10-02 The University of Regensburg Energy production with hyperthermophilic organisms
WO2008053353A2 (en) 2006-07-18 2008-05-08 Hyperthermics Holding As Energy production with hyperthermophilic organisms
US8975065B2 (en) 2006-07-24 2015-03-10 California Institute Of Technology Meandering channel fluid device and method
IL184971A0 (en) 2006-08-01 2008-12-29 Brightsource Energy Inc High density bioreactor system, devices and methods
WO2008022312A2 (en) 2006-08-17 2008-02-21 Algepower, Llc Hydroponic growing enclosure and method for growing, harvesting, processing and distributing algae, related microorganisms and their by products
US20080050800A1 (en) 2006-08-23 2008-02-28 Mckeeman Trevor Method and apparatus for a multi-system bioenergy facility
TW200825169A (en) 2006-09-13 2008-06-16 Petroalgae Llc Tubular microbial growth system
US7850848B2 (en) 2006-09-18 2010-12-14 Limcaco Christopher A Apparatus and process for biological wastewater treatment
US7736508B2 (en) 2006-09-18 2010-06-15 Christopher A. Limcaco System and method for biological wastewater treatment and for using the byproduct thereof
WO2008039450A2 (en) 2006-09-25 2008-04-03 James Weifu Lee Designer organisms for photosynthetic production of ethanol from carbon dioxide and water
NZ575870A (en) 2006-10-02 2012-02-24 Global Res Technologies Llc Method and apparatus for extracting carbon dioxide from ambient air
ES2326296B1 (en) 2006-10-02 2010-07-15 Bio Fuel Systems, S.L. SUBMERSIBLE VERTICAL PHOTOBREACTOR FOR OBTAINING BIOFUELS.
US20080113413A1 (en) 2006-10-04 2008-05-15 Board Of Regents, The University Of Texas System Expression of Foreign Cellulose Synthase Genes in Photosynthetic Prokaryotes (Cyanobacteria)
US20080085536A1 (en) 2006-10-04 2008-04-10 Board Of Regents, The University Of Texas System Production of Cellulose in Halophilic Photosynthetic Prokaryotes (Cyanobacteria)
US20100071370A1 (en) 2006-10-06 2010-03-25 O'kane Pearse Renewable energy recovery from msw and other wastes
US7687261B2 (en) 2006-10-13 2010-03-30 General Atomics Photosynthetic oil production in a two-stage reactor
US8262776B2 (en) 2006-10-13 2012-09-11 General Atomics Photosynthetic carbon dioxide sequestration and pollution abatement
US7662616B2 (en) 2006-10-13 2010-02-16 General Atomics Photosynthetic oil production with high carbon dioxide utilization
EA200900569A1 (en) 2006-10-20 2009-10-30 Аризона Борд Оф Риджентс Фор Энд Он Бихаф Оф Аризона Стейт Юниверсити SYSTEM AND METHOD OF CULTIVATION OF PHOTOSYNTHESIZING CELLS
US8323958B2 (en) 2006-11-02 2012-12-04 Algenol Biofuels Switzerland GmbH Closed photobioreactor system for continued daily in situ production of ethanol from genetically enhanced photosynthetic organisms with means for separation and removal of ethanol
AU2007313669B2 (en) 2006-11-02 2013-03-07 Algenol Biofuels Switzerland GmbH Closed photobioreactor system for production of ethanol
US20080115500A1 (en) 2006-11-15 2008-05-22 Scott Macadam Combustion of water borne fuels in an oxy-combustion gas generator
US20080138875A1 (en) 2006-12-08 2008-06-12 Lucia Atehortua Method to generate fungal biomass from a culture of differentiated mycelium
EP2099921B1 (en) 2006-12-11 2011-03-09 Ralf Salvetzki Process for the biological generation of methane
US20080318304A1 (en) 2006-12-11 2008-12-25 Dudley Burton Cultivation of micro-algae and application to animal feeds, environments, field crops, and waste treatment
US7750494B1 (en) 2006-12-13 2010-07-06 Rudolph Behrens Systems and vessels for producing hydrocarbons and/or water, and methods for same
WO2008079896A1 (en) 2006-12-20 2008-07-03 Carbon Capture Corporation Diesel exhaust gas scrubbing method for carbon dioxide removal
US9637714B2 (en) 2006-12-28 2017-05-02 Colorado State University Research Foundation Diffuse light extended surface area water-supported photobioreactor
US8404004B2 (en) 2006-12-29 2013-03-26 Genifuel Corporation Process of producing oil from algae using biological rupturing
US9003695B2 (en) 2006-12-29 2015-04-14 Genifuel Corporation Controlled growth environments for algae cultivation
US8030037B2 (en) 2007-01-10 2011-10-04 Parry Nutraceuticals, Division Of E.I.D. Parry (India) Ltd. Photoautotrophic growth of microalgae for omega-3 fatty acid production
ES2308912B2 (en) 2007-01-16 2009-09-16 Bernard A.J. Stroiazzo-Mougin ACCELERATED PROCEDURE OF ENERGETIC CONVERSION OF CARBON DIOXIDE.
WO2008089321A2 (en) 2007-01-17 2008-07-24 Joe Mccall Apparatus and methods for production of biodiesel
US20080268302A1 (en) 2007-01-17 2008-10-30 Mccall Joe Energy production systems and methods
US20080176303A1 (en) 2007-01-19 2008-07-24 6Solutions, Llc Farm Scale Ethanol Plant
US7736509B2 (en) 2007-01-24 2010-06-15 Alan Kruse Probiotic system and aquaculture devices
US8043847B2 (en) 2007-01-26 2011-10-25 Arizona Public Service Company System including a tunable light and method for using same
US20080213049A1 (en) 2007-03-01 2008-09-04 Higgins Timothy R Methods for Controlling Dust and Creating Bio-Crust
WO2008109122A1 (en) 2007-03-05 2008-09-12 Novus Energy, Llc Efficient use of biogas carbon dioxie in liquid fuel synthesis
AU2008222307B2 (en) 2007-03-08 2010-09-16 Seambiotic Ltd. Method for growing photosynthetic organisms
EP2121895B1 (en) 2007-03-19 2012-12-12 Feyecon B.V. Photo bioreactor with light distributor and method for the production of a photosynthetic culture
WO2008122029A1 (en) 2007-04-02 2008-10-09 Inventure Chemical, Inc. Simultaneous esterification and alcohol ysis/hydrolysis of oil-containing materials with cellulosic and peptidic content
DE102007018675B4 (en) 2007-04-18 2009-03-26 Seyfried, Ralf, Dr. Biomass breeding plant and method for growing biomass
WO2008131019A1 (en) 2007-04-20 2008-10-30 Bionavitas, Inc. Systems, devices, and, methods for releasing biomass cell components
WO2008134010A2 (en) 2007-04-27 2008-11-06 Greenfuel Technologies Corp. Photobioreactor systems positioned on bodies of water
EP3366762B1 (en) 2007-05-07 2020-07-08 Protalix Ltd. Large scale disposable bioreactor
US20100255541A1 (en) 2007-05-16 2010-10-07 Arizona Board of Regents, a body corporate acting for and on behalf of Arizona State University Advanced Algal Photosynthesis-Driven Bioremediation Coupled with Renewable Biomass and Bioenergy Production
US20090215155A1 (en) 2007-05-31 2009-08-27 Xl Renewables, Inc. Algae Producing Trough System
WO2008145719A1 (en) 2007-06-01 2008-12-04 Wacker Chemie Ag Photoreactor
MY154965A (en) 2007-06-01 2015-08-28 Solazyme Inc Production of oil in microorganisms
US9966763B2 (en) 2007-06-07 2018-05-08 Allen L. Witters Integrated multiple fuel renewable energy system
US20080305539A1 (en) 2007-06-08 2008-12-11 Robert Hickey Membrane supported bioreactor for conversion of syngas components to liquid products
US8198055B2 (en) 2007-06-08 2012-06-12 Coskata, Inc. Process for converting syngas to liquid products with microorganisms on two-layer membrane
CA2691007A1 (en) 2007-06-18 2008-12-24 Choudhary, Vidhi Golden yellow algae and method of producing the same
TWI580778B (en) 2007-06-19 2017-05-01 再生海藻能源公司 Process for microalgae conditioning and concentration
EP2009092A1 (en) 2007-06-25 2008-12-31 BIOeCON International Holding N.V. Method for producing aquatic biomass
ITMI20071278A1 (en) 2007-06-26 2008-12-27 Eni Spa PROCEDURE FOR CULTIVATION OF MICRO-ALGAES
US20090023199A1 (en) 2007-07-19 2009-01-22 New England Clean Fuels, Inc. Micro-organism production system and method
US20100120134A1 (en) 2007-07-19 2010-05-13 Texas Clean Fuels, Inc. Micro-organism production apparatus and system
US7838272B2 (en) 2007-07-25 2010-11-23 Chevron U.S.A. Inc. Increased yield in gas-to-liquids processing via conversion of carbon dioxide to diesel via microalgae
US8993314B2 (en) 2007-07-28 2015-03-31 Ennesys Sas Algae growth system for oil production
IL184941A0 (en) 2007-07-31 2008-12-29 Slavin Vladimir Method and device for producing biomass of photosynthesizing microorganisms mainly halobacteria halobacterium as well as biomass of the said microorganisms pigments bacteriorhodopsin in particular
CN101139113B (en) 2007-08-01 2011-01-19 李贵生 High-efficienct algae-removing and clean water reduction method
WO2009018498A2 (en) 2007-08-01 2009-02-05 Bionavitas, Inc. Illumination systems, devices, and methods for biomass production
US8097168B2 (en) 2007-08-14 2012-01-17 Earth Renaissance Technologies, Llc Wastewater photo biomass/algae treatment method
US20090068727A1 (en) 2007-08-28 2009-03-12 Greg Karr Closed system, shallow channel photobioreactor
US20090068715A1 (en) 2007-09-06 2009-03-12 OGAKI Bio. Technology Research Co., Ltd. Method of producing bio-ethanol
CA2699663A1 (en) 2007-09-07 2009-03-12 Csir Non-invasive automated cell proliferation apparatus
US20090203067A1 (en) * 2007-09-18 2009-08-13 Eckerle Matthew W Photobioreactor Systems and Methods for Growing Organisms
US20100227368A1 (en) 2007-09-19 2010-09-09 Tm Industrial Supply, Inc. Renewable energy system
CZ2007657A3 (en) 2007-09-20 2009-04-01 Ecofuel Labs Llc Method of processing stillage
US20090077864A1 (en) 2007-09-20 2009-03-26 Marker Terry L Integrated Process of Algae Cultivation and Production of Diesel Fuel from Biorenewable Feedstocks
US20090081743A1 (en) 2007-09-24 2009-03-26 Hazelbeck David A Transportable algae biodiesel system
US8033047B2 (en) 2007-10-23 2011-10-11 Sartec Corporation Algae cultivation systems and methods
US7905049B2 (en) 2007-11-01 2011-03-15 Independence Bio-Products, Inc. Algae production
US7449313B2 (en) 2007-11-03 2008-11-11 Rush Stephen L Systems and processes for cellulosic ethanol production
US7514247B2 (en) 2007-11-03 2009-04-07 Wise Landfill Recycling Mining, Inc. Systems and processes for cellulosic ethanol production
US7662617B2 (en) 2007-11-03 2010-02-16 Rush Stephen L Systems and processes for cellulosic ethanol production
EP2220244A4 (en) 2007-11-07 2011-01-12 Sustainable Green Technologies Inc Microorganisms and methods for increased hydrogen production using diverse carbonaceous feedstock&highly absorptive materials
US20090130747A1 (en) 2007-11-16 2009-05-21 Mon-Han Wu System and Method of Enhancing Production of Algae
US20090137025A1 (en) 2007-11-24 2009-05-28 Green Vision Energy Corporation Apparatus for containing, cultivating, and harvesting photosynthetic marine microorganisms within water
US20090134091A1 (en) 2007-11-24 2009-05-28 Green Vision Energy Corporation Method for removing undesirable components from water while containing, cultivating, and harvesting photosynthetic marine microorganisms within water
EP2222862A4 (en) 2007-12-04 2013-06-19 Univ Ohio State Res Found Optimization of biofuel production
US20090148927A1 (en) 2007-12-05 2009-06-11 Sequest, Llc Mass Production Of Aquatic Plants
CN101254364A (en) 2007-12-11 2008-09-03 云南德林海生物科技有限公司 Blue algae slurry dewatering process method
US20090151241A1 (en) 2007-12-14 2009-06-18 Dressler Lawrence V Method for producing algae in photobioreactor
US20090155864A1 (en) 2007-12-14 2009-06-18 Alan Joseph Bauer Systems, methods, and devices for employing solar energy to produce biofuels
ITMI20072343A1 (en) 2007-12-14 2009-06-15 Eni Spa PROCESS FOR THE PRODUCTION OF ALGAL BIOMASS WITH HIGH LIPID CONTENT
WO2009086307A1 (en) 2007-12-21 2009-07-09 Core Intellectual Properties Holdings, Llc Methods and systems for biomass recycling and energy production
US7927491B2 (en) 2007-12-21 2011-04-19 Highmark Renewables Research Limited Partnership Integrated bio-digestion facility
US8759068B2 (en) 2008-01-02 2014-06-24 Missing Link Technologies, L.L.C. System for fermentation using algae
BRPI0907112A2 (en) 2008-01-25 2015-07-07 Aquatic Energy Llc Method for selectively cultivating a target algae, biofuel, polyunsaturated acid, raw material, phytonutrient, selective algal culture in open-air running water tank
US20090203116A1 (en) 2008-02-13 2009-08-13 Bazaire Keith E System to improve algae production in a photo-bioreactor
US20090205638A1 (en) 2008-02-19 2009-08-20 Peter Corcoran Solar Receiver for a Photo-Bioreactor
MX339437B (en) 2008-02-19 2016-05-26 Global Res Technologies Llc Extraction and sequestration of carbon dioxide.
US20090221057A1 (en) 2008-02-28 2009-09-03 Kennedy James C Bio-Breeder System for Biomass Production
US20090233334A1 (en) 2008-03-11 2009-09-17 Excellgene Sa Cell cultivation and production of recombinant proteins by means of an orbital shake bioreactor system with disposable bags at the 1,500 liter scale
TW201005089A (en) 2008-03-13 2010-02-01 Evolution Energy Production Inc Methods and systems for producing biofuels and bioenergy products from xenobiotic compounds
GB2458529A (en) 2008-03-25 2009-09-30 Saigas Ltd Extracting energy products from biomass using solar energy
US20090249685A1 (en) 2008-03-28 2009-10-08 Flowers Troy D Closed loop biomass energy system
US8017377B1 (en) 2008-04-11 2011-09-13 Agoil International, Llc Mass culture of microalgae for lipid production
US20090325253A1 (en) 2008-04-25 2009-12-31 Ascon Miguel Methods and systems for production of biofuels and bioenergy products from sewage sludge, including recalcitrant sludge
WO2009134358A1 (en) 2008-04-28 2009-11-05 Optiswitch Technology Corporation Apparatus and method for producing biofuel from algae by application of shaped pulsed pressure waves
US8236535B2 (en) 2008-04-30 2012-08-07 Xyleco, Inc. Processing biomass
US20090275120A1 (en) 2008-04-30 2009-11-05 Edward John Koch Extraction of co2 gas from engine exhaust
US20090324799A1 (en) 2008-05-15 2009-12-31 Robert Michael Hartman Maximizing utilization of municipal sewage treatment effluents to produce a biofuel, fertilizer and/or animal feed for environmentally sustainable minded communities
US8058058B2 (en) 2008-05-19 2011-11-15 Coskata, Inc. Submerged membrane supported bioreactor for conversion of syngas components to liquid products
US8464540B2 (en) 2008-05-23 2013-06-18 Pacific Waste, Inc. Waste to energy process and plant
US20090291485A1 (en) 2008-05-23 2009-11-26 Steven Shigematsu Apparatus and method for optimizing photosynthetic growth in a photo bioreactor
WO2009142765A2 (en) 2008-05-23 2009-11-26 Orginoil, Inc. Apparatus and methods for photosynthetic growth of microorganisms in a photobioreactor
CN101280328B (en) 2008-05-27 2011-06-29 清华大学 Method for producing biodiesel by autotrophic culture and heterotrophic culture of chlorella
WO2009149260A1 (en) 2008-06-04 2009-12-10 Solix Biofuels, Inc. Compositions, methods and uses for growth of microorganisms and production of their products
US8197857B2 (en) 2008-06-06 2012-06-12 Dressler Lawrence V Method for eliminating carbon dioxide from waste gases
US7855061B2 (en) 2008-06-19 2010-12-21 Adrian George Vance Fuel farm process for producing butanol
ES2653848T3 (en) 2008-06-20 2018-02-09 Stroiazzo-Mougin, Bernard A. J. Continuous procedure for the generation of a product of high nutritional value and energy resources
CN101384056B (en) 2008-06-23 2012-09-26 中兴通讯股份有限公司 Scheduling method for service division sector access by uplink packet
BRPI0914593A2 (en) 2008-06-26 2015-12-15 Univ Colorado State Res Found photobioreactors, algal growth systems, algal growth methods and systems, for algae growth control in flat panel photobioreactor, algal harvest scheduling and model-based and bioreactor error and adaptive control diagnostics photobioreactor
WO2009158028A2 (en) 2008-06-26 2009-12-30 Novus Energy Llc Integreated systems for producing biogas and liquid fuel from algae
US20100003741A1 (en) 2008-07-01 2010-01-07 Fromson Howard A Integrated power plant, sewage treatment, and aquatic biomass fuel production system
US20100003717A1 (en) 2008-07-03 2010-01-07 Oyler James R Closed-Loop System for Growth of Algae or Cyanobacteria and Gasification of the Wet Biomass
US20100173375A1 (en) 2008-07-03 2010-07-08 Oyler James R Closed-loop system for growth of aquatic biomass and gasification thereof
US20100005711A1 (en) 2008-07-09 2010-01-14 Sartec Corporation Lighted Algae Cultivation Systems
US8383870B2 (en) 2008-07-18 2013-02-26 Federal Express Corporation Environmentally friendly methods and systems of energy production
US20100018214A1 (en) 2008-07-22 2010-01-28 Eliezer Halachmi Katchanov Energy Production from Algae in Photo Bioreactors Enriched with Carbon Dioxide
US8510985B2 (en) 2008-07-22 2013-08-20 Eliezer Halachmi Katchanov Energy production from algae in photo bioreactors enriched with carbon dioxide
WO2010011320A1 (en) 2008-07-23 2010-01-28 Global Energies, Llc Bioreactor system for mass production of biomass
US20100028977A1 (en) 2008-07-30 2010-02-04 Wayne State University Enclosed photobioreactors with adaptive internal illumination for the cultivation of algae
JP2011530290A (en) 2008-08-06 2011-12-22 プラクスエア・テクノロジー・インコーポレイテッド Systems and methods for controlling mammalian cell culture processes
WO2010017002A1 (en) 2008-08-08 2010-02-11 Diversified Energy Corp. Algae production systems and associated methods
US8318416B2 (en) 2008-08-08 2012-11-27 Biogen Idec Ma Inc. Nutrient monitoring and feedback control for increased bioproduct production
US20100034050A1 (en) 2008-08-11 2010-02-11 Gary Erb Apparatus and Method for Cultivating Algae
US20100050502A1 (en) 2008-08-21 2010-03-04 LiveFuels, Inc. Systems and methods for hydrothermal conversion of algae into biofuel
WO2010025345A2 (en) 2008-08-28 2010-03-04 Innovative American Technology Inc. Semi-closed loop alga-diesel fuel photobioreactor using waste water
US8367392B2 (en) 2008-09-05 2013-02-05 Transalgae Ltd. Genetic transformation of algal and cyanobacteria cells by microporation
US8518690B2 (en) 2008-09-09 2013-08-27 Battelle Memorial Institute Production of bio-based materials using photobioreactors with binary cultures
US9051539B2 (en) 2008-09-12 2015-06-09 Kenneth Matthew Snyder Algaculture system for biofuel production and methods of production thereof
CN101669569A (en) 2008-09-12 2010-03-17 中国科学院海洋研究所 Method for processing seaweed fodder
MX2011003070A (en) 2008-09-22 2011-07-28 Phycosystems Inc Device for efficient, cost-effective conversion of aquatic biomass to fuels and electricity.
US20100081835A1 (en) 2008-09-23 2010-04-01 LiveFuels, Inc. Systems and methods for producing biofuels from algae
US20100077654A1 (en) 2008-09-23 2010-04-01 LiveFuels, Inc. Systems and methods for producing biofuels from algae
JP4883067B2 (en) 2008-09-29 2012-02-22 株式会社日立プラントテクノロジー Culture apparatus and culture method
US20110195473A1 (en) 2008-10-09 2011-08-11 Maria Rogmans Method and device for photosynthesis-supported exhaust gas disposal, particularly co2
US20100093078A1 (en) 2008-10-14 2010-04-15 Cleveland State University Separating device, an algae culture photobioreactor, and methods of using them
US20100099170A1 (en) 2008-10-20 2010-04-22 Deepak Aswani Methods of controlling open algal bioreactors
US20100159579A1 (en) 2008-10-20 2010-06-24 Schuring Christopher S Photobioreactor systems
CA2997756C (en) 2008-10-21 2020-05-26 Canadian Pacific Algae Inc. Method for the efficient and continuous growth and harvesting of multiple species of phytoplankton
US20100107487A1 (en) 2008-10-22 2010-05-06 Holland Alexandra D Methods for estimating intrinsic autotrophic biomass yield and productivity in unicellular photosynthetic algae
US20100105127A1 (en) 2008-10-24 2010-04-29 Margin Consulting, Llc Systems and methods for generating resources using wastes
US20100105125A1 (en) 2008-10-24 2010-04-29 Bioprocessh20 Llc Systems, apparatuses and methods for cultivating microorganisms and mitigation of gases
US20100105129A1 (en) 2008-10-27 2010-04-29 Sanchez-Pina Jose L Biomass production system
US20100101621A1 (en) 2008-10-28 2010-04-29 Jun Xu Solar powered generating apparatus and methods
WO2010054325A2 (en) 2008-11-07 2010-05-14 Kuehnle Agrosystems, Inc. Preservation and composition of bioprocess algae for production of lipids, seedstock, and feed
KR20110097968A (en) 2008-12-19 2011-08-31 알파-제이 리서치 리미티드 파트너쉽 Optimization of algal product production through uncoupling cell proliferation and algal product production
US20100159578A1 (en) 2008-12-22 2010-06-24 Alberto Daniel Lacaze Method and system for robotic algae harvest
US8629646B2 (en) 2009-01-09 2014-01-14 Solar Components Llc Generation of renewable energy certificates from distributed procedures
TW201028472A (en) 2009-01-13 2010-08-01 Alpha J Res Ltd Partnership Use of plant growth regulators to enhance algae growth for the production of added value products
ZA200900499B (en) 2009-01-22 2009-09-30 Energetix Llc Plastic disposable reactor system
US8143051B2 (en) 2009-02-04 2012-03-27 Aurora Algae, Inc. Systems and methods for maintaining the dominance and increasing the biomass production of nannochloropsis in an algae cultivation system
US8434626B2 (en) 2009-02-16 2013-05-07 Combined Power, Llc System and related method for concentrating biological culture and circulating biological culture and process fluid
JP5446805B2 (en) 2009-03-16 2014-03-19 富士通株式会社 Fuel cell system and control method thereof
CN201381254Y (en) 2009-03-18 2010-01-13 宜兴市官林工业环保设备厂 Algae-laden water separation dehydractor
MX2011009778A (en) 2009-03-19 2012-07-23 Univ Colorado State Res Found Systems and methods for delivery of gases to algal cultures.
US20100267122A1 (en) 2009-04-17 2010-10-21 Senthil Chinnasamy Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications
BRPI1015000B8 (en) 2009-04-20 2019-08-06 Pa Llc apparatus for growing a species of duckweed outdoors
US20100297749A1 (en) 2009-04-21 2010-11-25 Sapphire Energy, Inc. Methods and systems for biofuel production
US8535906B2 (en) 2009-04-27 2013-09-17 Woods Hole Oceanographic Institution Biofuel manufacturing methods and systems incorporating radiocarbon analysis techniques
US20100297739A1 (en) 2009-05-21 2010-11-25 Tm Industrial Supply, Inc. Renewable energy system
US8623634B2 (en) 2009-06-23 2014-01-07 Kior, Inc. Growing aquatic biomass, and producing biomass feedstock and biocrude therefrom
US20110027827A1 (en) 2009-07-30 2011-02-03 Zhanyou Chi Integrated system for production of biofuel feedstock
CN101648092B (en) 2009-08-25 2011-06-01 中国船舶重工集团公司第七○二研究所 Dehydration processing method for cyanophyte water
CN101643700B (en) 2009-08-28 2012-09-19 刘永平 Algae growth system device with two-step photobiologic reactors
CN101696389B (en) 2009-10-29 2012-03-07 新奥科技发展有限公司 Microalgae culture method and photo-bioreactor system thereof
US20110113681A1 (en) 2009-11-16 2011-05-19 Mathias Mostertz Use of by-product carbon dioxide from a steam methane reformer in an algae biofuel production process
US20110124091A1 (en) 2009-11-24 2011-05-26 Chao-Hui Lu Industrialized algae culturing method and system thereof
CN101838606B (en) 2009-12-30 2013-01-02 同济大学 Airlift loop bioreactor through microalgae photoautotrophic-photoheterotrophic coupling for carbon emission reduction in sewage treatment
US20100173355A1 (en) 2010-03-08 2010-07-08 Clearvalue Technologies, Inc. Means for sequestration and conversion of COx and NOx, CONOx
US20110236958A1 (en) 2010-03-23 2011-09-29 Lan Wong Multistory Bioreaction System for Enhancing Photosynthesis
CA2738461C (en) 2010-05-20 2023-06-06 Pond Biofuels Inc. Process for growing biomass by modulating gas supply to reaction zone
CA2738397C (en) 2010-05-20 2022-08-16 Pond Biofuels Inc. Producing biomass using pressurized exhaust gas
CN115369041A (en) 2010-05-20 2022-11-22 波德科技公司 Production of biomass
CA2738459C (en) 2010-05-20 2022-09-20 Pond Biofuels Inc. Recovering make-up water during biomass production
CA2738410C (en) 2010-05-20 2022-09-20 Pond Biofuels Inc. Diluting exhaust gas being supplied to bioreactor
EP2422870A1 (en) 2010-08-26 2012-02-29 SFN Biosystems, Inc. Extraction of co2 gas
US20120203714A1 (en) 2011-02-04 2012-08-09 Pond Biofuels Inc. Systems for Growing Phototrophic Organisms Using Green Energy
US20120276633A1 (en) 2011-04-27 2012-11-01 Pond Biofuels Inc. Supplying treated exhaust gases for effecting growth of phototrophic biomass
WO2014063229A1 (en) 2012-10-24 2014-05-01 Pond Biofuels Inc. Process of operating a plurality of photobioreactors
CN103263960B (en) 2013-05-14 2015-12-16 苏州工业园区日高能源科技有限公司 A kind of slurry apparatus for grinding and dispersing and method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050239182A1 (en) * 2002-05-13 2005-10-27 Isaac Berzin Synthetic and biologically-derived products produced using biomass produced by photobioreactors configured for mitigation of pollutants in flue gases
CA2738516A1 (en) * 2010-05-20 2011-11-20 Pond Biofuels Inc. Biomass production

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11124751B2 (en) 2011-04-27 2021-09-21 Pond Technologies Inc. Supplying treated exhaust gases for effecting growth of phototrophic biomass
US9534261B2 (en) 2012-10-24 2017-01-03 Pond Biofuels Inc. Recovering off-gas from photobioreactor
US10711232B2 (en) * 2015-03-20 2020-07-14 Inria Institut National De Recherche En Informatique Et En Automatique Bioreactor for microalgae
US11845974B2 (en) * 2015-05-25 2023-12-19 Neste Corporation Methods for continuous production of products from microorganisms

Also Published As

Publication number Publication date
US11612118B2 (en) 2023-03-28
US20170118932A1 (en) 2017-05-04

Similar Documents

Publication Publication Date Title
CA2738418C (en) Process for growing biomass by modulating inputs based on changes to exhaust supply
AU2020250220B2 (en) Biomass production
US11612118B2 (en) Biomass production
CA2738397C (en) Producing biomass using pressurized exhaust gas
CA2738461C (en) Process for growing biomass by modulating gas supply to reaction zone
CA2738410C (en) Diluting exhaust gas being supplied to bioreactor
CA2738459C (en) Recovering make-up water during biomass production
US20160115433A1 (en) Light energy supply for photobioreactor system
US8969067B2 (en) Process for growing biomass by modulating supply of gas to reaction zone
US20130316439A1 (en) Biomass production
US8889400B2 (en) Diluting exhaust gas being supplied to bioreactor
CA2826322C (en) Biomass production
US11512278B2 (en) Biomass production
US8940520B2 (en) Process for growing biomass by modulating inputs to reaction zone based on changes to exhaust supply
US20130183744A1 (en) Producing biomass using pressurized exhaust gas
US20110287523A1 (en) Recovering make-up water during biomass production

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION