WO2006085376A1 - 光合成微生物の培養装置及び培養方法 - Google Patents
光合成微生物の培養装置及び培養方法 Download PDFInfo
- Publication number
- WO2006085376A1 WO2006085376A1 PCT/JP2005/002030 JP2005002030W WO2006085376A1 WO 2006085376 A1 WO2006085376 A1 WO 2006085376A1 JP 2005002030 W JP2005002030 W JP 2005002030W WO 2006085376 A1 WO2006085376 A1 WO 2006085376A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- culture
- outer container
- culture solution
- inner container
- photosynthetic microorganisms
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M21/00—Bioreactors or fermenters specially adapted for specific uses
- C12M21/02—Photobioreactors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/02—Form or structure of the vessel
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/02—Form or structure of the vessel
- C12M23/06—Tubular
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M29/00—Means for introduction, extraction or recirculation of materials, e.g. pumps
- C12M29/02—Percolation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M41/00—Means for regulation, monitoring, measurement or control, e.g. flow regulation
- C12M41/12—Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
- C12M41/18—Heat exchange systems, e.g. heat jackets or outer envelopes
Definitions
- the present invention relates to an apparatus and a method for culturing photosynthetic microorganisms.
- photosynthetic microorganisms such as algae such as chlorella, spirulina and donalinilla are cultured in a culture solution, and useful substances such as proteins and polysaccharides produced by such photosynthetic microorganisms by photosynthesis.
- useful substances such as proteins and polysaccharides produced by such photosynthetic microorganisms by photosynthesis.
- methods for efficiently producing fatty acids, pigments and the like are known.
- Patent Document 1 WO99Z50384 International Publication Pamphlet
- Patent Document 2 WOOOlZ023519 International Publication Pamphlet
- the present invention has been made in view of the above problems, and an object of the present invention is to provide a culture apparatus and a culture method capable of efficiently cultivating photosynthetic microorganisms in which the temperature controllability of the culture solution is high.
- a photosynthetic microorganism culturing apparatus includes an outer container, an inner container, a culture solution circulation section, and a heat transfer medium supply section.
- the outer container is transparent and has a cylindrical shape extending in a predetermined axial direction, and contains a culture solution containing photosynthetic microorganisms therein.
- the inner container has a cylindrical shape provided in the outer container and extending in the axial direction.
- the culture solution circulation unit extracts the culture solution from one side in the axial direction in the outer vessel, and supplies the extracted culture solution to the other side in the axial direction in the outer vessel.
- the heat transfer medium supply unit supplies the heat transfer medium into the inner container.
- the culture method according to the present invention is a method of culturing using the above-described photosynthetic microorganism culture apparatus.
- the culture solution containing the photosynthetic microorganisms flows in a relatively thin layer along the axial direction from the one side to the other side through the gap between the outer container and the inner container.
- External force of the outer container Light such as sunlight can be efficiently irradiated to the culture solution.
- heat exchange can be performed between the heat transfer medium supplied in the inner container and the culture medium in the gap between the outer container and the inner container, so that the temperature of the culture medium can be easily maintained at a desired temperature.
- the temperature of the culture solution can be maintained at a temperature suitable for culture regardless of changes in the external environment. Therefore, photosynthetic microorganisms can be efficiently cultured.
- the heat transfer medium may be either a refrigerant or a heat medium, so that both the heating of the culture solution and the cooling of the culture solution are possible.
- the outer container and the inner container are preferably coaxial with each other. It is also preferable that the outer container and the inner container are cylindrical with respect to each other. As a result, it is easy to form a tubular gap having a uniform thickness in the direction around the axis between the outer container and the inner container, so that the uniformity of the flow of the culture solution is increased, the problem of clogging of the culture solution and the wall surface It is preferable that it is difficult to adhere to the surface.
- the inner container is made of a metal material or a glass material. Since the metal material or glass material has a higher thermal conductivity than that of resin, etc., heat exchange between the heat transfer medium and the culture solution can be performed quickly, and the temperature of the culture solution can be adjusted more reliably. On the other hand, if the inner container is made of a resin material, it is preferable because the inner container can be manufactured at low cost.
- the culture fluid circulation section is transparent and cylindrical and includes a transparent tube through which the culture fluid passes. According to this, photosynthesis can be performed on the culture solution even in the transparent tube, and more efficient culture becomes possible.
- the axial direction is the vertical direction, that is, the outer container and the inner container are in the vertical direction. Preferably it extends. According to this, the apparatus can be made vertically long, and a large amount of culture solution can be processed with a small occupied area.
- the culture medium circulation section is transparent and has a cylindrical shape extending in the vertical direction, and a transparent tube through which the culture solution passes, and a transparent tube provided below the transparent tube. And a first nozzle for supplying a gas.
- a second nozzle that supplies gas to the bottom of the outer container may be further provided. From such a second nozzle, by supplying a gas containing dioxycarbon to an extent that does not affect the circulation flow of the culture solution between the outer container and the culture solution circulation section, It is possible to perform the culture more efficiently while maintaining a sufficient carbon concentration.
- a culture apparatus and a culture method capable of efficiently culturing photosynthetic microorganisms are provided.
- FIG. 1 is a partial cross-sectional schematic configuration diagram showing a photosynthetic microorganism culturing apparatus according to an embodiment of the present invention.
- FIG. 2 is a view taken along arrow II II of FIG.
- FIG. 3 is a diagram showing an example of the relationship between the photosynthetic rate of photosynthetic microorganisms and light intensity.
- FIG. 4 is a diagram showing an example of the relationship between the thickness of a culture solution and light attenuation.
- FIG. 5 is a table showing the composition of the culture medium used in Example 1.
- FIG. 6 is a table showing the composition of the culture medium used in Example 2.
- FIG. 7 is a table showing the composition of the culture solution used in Example 3.
- FIG. 8 is a table showing the composition of the culture solution used in Example 4.
- FIG. 9 is a table showing the composition of the culture medium used in Example 5.
- FIG. 10 is a table showing the composition of the culture medium used in Example 6.
- FIG. 11 is a table showing the composition of the culture medium used in Example 7.
- C ... medium, H ... heat transfer medium, 10 ... outer container, 17 ... second nozzle, 20 ... inner container, 30 ... medium circulation part, 32 ... transparent tube, 35 ... first One nozzle, 40 ⁇ Heat transfer medium supply unit, 100 ⁇ Incubator for photosynthetic microorganisms.
- FIG. 1 is a schematic side view showing a basic configuration of a culture apparatus according to an embodiment of the present invention.
- the photosynthetic microorganism culturing apparatus 100 mainly includes an outer container 10, an inner container 20 provided in the outer container 10, a culture solution circulation unit 30 for circulating the culture solution, and a transmission. And a heat medium supply unit 40.
- the outer container 10 is a cylindrical hollow container extending in the vertical direction.
- the upper end is formed in a dome shape and closed, while the bottom is formed in a conical shape whose diameter is reduced by a downward force and closed.
- a second nozzle 17 for supplying a gas containing carbon dioxide into the outer container 10 is connected to the bottom of the outer container 10.
- the outer container 10 is also formed with a transparent material force, and can transmit visible light such as sunlight that is also incident on the outer force into the outer container 10.
- a transparent material any material can be used as long as it has excellent light transmittance of visible light and has high weather resistance and ultraviolet resistance.
- acrylic, polycarbonate, polypropylene, polyethylene, poly A resin such as salty vinyl or glass can be suitably used.
- the inner container 20 is accommodated in the outer container 10, and is coaxial with the outer container 10 in the vertical direction. It has a cylindrical shape extending to The upper end portion of the inner container 20 is formed in a dome shape and closed, while the lower end portion of the inner container 20 corresponds to the lower end portion of the outer container 10 and has a conical shape with a downward diameter. Formed and closed. The inner container 20 and the outer container 10 are not in communication.
- the material of the inner container 20 is not particularly limited. However, it is preferable that the inner container 20 is formed of a metal material or a glass material with good thermal conductivity. Examples of such a metal material include aluminum and stainless steel. Further, when the resin material as described above is used as the material of the inner container 20, the inner container 20 can be manufactured at low cost. A heat transfer medium as a refrigerant or a heat medium is supplied into the inner container 20.
- a tubular gap 15 extending in the vertical direction is formed between the outer peripheral surface of the inner container 20 and the inner peripheral surface of the outer container 10.
- a culture solution C containing photosynthetic microorganisms such as algae is accommodated in this gap 15 .
- the thickness of gap 15 (radial spacing) is preferably about 2-10 cm.
- the thickness S of the gap 15 can be changed freely.
- a suitable value may be selected for the thickness of the gap 15 according to the type of photosynthetic microorganism to be cultured, the concentration of the photosynthetic microorganism in the culture medium (culture concentration), and the like.
- the diameter of the outer container 10 can be about 30-100 cm, for example.
- annular gap 15 only needs to be formed in the vertical direction, for example, about 2 to 10 cm.
- At least one of the inner peripheral surface of the outer container 10 and the outer peripheral surface of the inner container 20 is coated with a photocatalyst layer.
- a photocatalyst is not particularly limited as long as it can cause a photocatalytic reaction to make the surface hydrophilic, but a solid oxide semiconductor such as titanium dioxide (Ti 2 O 3) or zinc oxide (ZnO) is preferably used.
- Ti 2 O 3 titanium dioxide
- ZnO zinc oxide
- Titanium is preferred. Thereby, the adhesion of the photosynthetic microorganisms to the surface of the outer container 10 and the surface of the inner container 20 can be suppressed.
- the culture medium circulating unit 30 extracts the culture medium C in the outer container 10 from the lower part of the outer container 10, and returns the extracted culture medium C to the upper part of the outer container 10, thereby using the culture medium. It is a means to circulate C.
- the culture medium circulation section 30 includes a lower malle 31 connected to the lower end of the outer vessel 10, a plurality of transparent tubes 32 connected to the lower hold 31, and transparent tubes.
- the upper receptacle 33 is connected to the upper end of the outer container 10 and is connected to the upper end of the outer container 10, and the first nozzle 35 is provided at the lower part of the transparent tube 32.
- the lower malle 31 is a branched pipe, and the collecting side end of the pipe is connected to the lower end of the outer container 10, while each branching side end of the pipe is connected to the lower end of the transparent pipe 32, respectively. It is connected .
- the lower malle 31 branches the culture solution C in the outer vessel 10 into a plurality of branches and supplies them to each transparent tube 32.
- the transparent tube 32 is a transparent pipe extending in the vertical direction.
- the upper end of the transparent tube 32 extends to be higher than the outer container 10 and the force is also folded downward in a U shape, and the tip thereof is connected to the upper receiver 33.
- the material of the transparent tube 32 is the same as that of the outer container 10.
- the outer diameter of the transparent tube 32 is smaller than that of the outer container 10, for example, about 3-7 cm.
- the first nozzle 35 is provided at the lower end portion of the transparent tube 32.
- the first nozzle 35 is connected to the line L1, and the first nozzle 35 is connected to the gas source 70 via the valve VI.
- the gas source 70 supplies a gas containing diacid-carbon such as air to which diacid-carbon is added.
- This gas becomes bubbles and rises in the transparent tube 32, and the culture solution C in the transparent tube 32 is caused by the air lift effect. Are transported upward and fed to the upper receiver 33.
- the gas source 70 is also connected to the second nozzle 17 via a line L2 having a valve V2.
- the upper receiver 33 is a container that is provided above the outer container 10 and receives the culture solution C supplied from each transparent tube 32.
- the lower part of the upper receiver 33 communicates with the upper part in the outer container 10, and the culture medium C received by the upper receiver 33 is directed into the outer container 10, specifically toward the upper end of the inner container 20. Supplied.
- the upper receptacle 33 is further provided with a vent hole 38 that extends upward and has a U-shaped bent tip, so that oxygen gas or the like generated by the culture medium C force can be discharged. .
- the main culture apparatus 100 is hermetically sealed except for the vent 38, and can suppress contamination due to other microorganisms and contaminants.
- the heat transfer medium supply unit 40 supplies a heat transfer medium functioning as a heating medium or a cooling medium into the inner container 20.
- the heat transfer medium supply unit 40 controls the line L5, the line L6, and the heat transfer medium H to a predetermined temperature.
- a temperature controller 41 and a pump 42 are provided.
- the temperature controller 41 includes a container 41A, a heater 41H, and a chiller 41C, and can heat or cool the heat transfer medium H passing through the container 41A. More specifically, the outer vessel 10 is provided with a thermometer T1 for measuring the temperature of the culture medium C in the outer vessel 10. The heater 41H and the chiller 41C of the temperature controller 41 are provided from the thermometer T1. Based on this data, the temperature of the heat transfer medium C is controlled so that the temperature of the culture medium C in the outer container 10 falls within a predetermined range.
- One of the lines L5 is connected to the upper part of the inner container 20, and the other of the line L5 is connected to the container 41A of the temperature controller 41.
- One of the lines L6 is connected to the lower part of the inner container 20, and the other of the line L6 is connected to the container 41A of the temperature controller 41 via the pump.
- the pump 42 is provided in the line L6, and circulates a heat medium or a refrigerant between the inner container 20 and the temperature controller 41.
- the heat transfer medium adjusted to a predetermined temperature by the heater 41H and the chiller 41C is supplied to the lower part of the inner container 20 via the pump 42 and the line L6, and then moves upward in the inner container 20. During this time, the culture medium C in the outer container 10 is heat-exchanged through the wall of the inner container 20 to maintain the temperature of the culture medium C in a predetermined range. Thereafter, the heat transfer medium H is discharged from the upper part of the inner container 20 and returned to the container 41A of the temperature controller 41 via the line L5, and is heated or cooled again.
- the heat transfer medium H is not particularly limited.
- water, oil, steam, or the like can be used.
- the heat transfer medium from the temperature controller 41 flows in the inner container 20 from the bottom upward, the heat transfer medium flows in the gap between the inner container 20 and the outer container 10 and flows to the culture medium flowing in the downward direction. Since it is in contact with the flow, the heat exchange capacity is high.
- the culture solution C containing the photosynthetic microorganisms is injected into the outer container 10 and the culture solution circulation unit 30.
- the gas injected from the first nozzle 35 causes an air lift effect in the transparent tube 32, and the culture medium C is transported. Any amount that can circulate between the nutrient solution circulation part 30 and the outer container 10 may be used.
- the culture apparatus 100 is installed outdoors.
- the photosynthetic microorganism is not particularly limited as long as it is a microorganism that performs photosynthesis.
- Cyanobacteria such as Spirulina and Nenjumo
- brown algae such as Donariella and Phaeodactylum can be preferably cultured.
- the components other than the photosynthetic microorganisms in the culture solution those suitable for the type of the photosynthetic microorganism, for example, salts, vitamins and the like can be adopted.
- the first nozzle 35 force, for example, a gas containing about 0.5-3. OvolZvol% of carbon dioxide, for example, 0.5-3.
- the contained air is injected into the transparent tube 32.
- the gas bubbles rise in the transparent tube 32, and the culture medium C in the transparent tube 32 moves upward with the air lift effect, and moves upward to the upper portion of the outer container 10 via the upper receptor 33.
- the culture medium C flows down through the gap 15 between the outer container 10 and the inner container 20 and returns to the transparent tube 32 through the lower malle 31.
- the culture solution C is circulated between the outer container 10 and the culture solution circulation unit 30 by the air lift pump using the transparent tube 32 and the first nozzle 35.
- the circulation rate of the culture solution is preferably such that the linear velocity force of the culture solution C flowing down the gap 15 is 20-50 cm Zs.
- a gas added with carbon dioxide is also injected.
- the flow rate of the gas from the second nozzle 17 is set so as not to inhibit the downward flow of the culture medium C in the gap 15.
- the amount of gas supplied from the first nozzle 35 is reduced to reduce the circulation rate, for example, a gas containing oxygen necessary for respiration of photosynthetic microorganisms, for example, For example, a small amount of air may be supplied. Since photosynthesis does not occur at night, there is little demand for temperature control of culture medium C, but it is of course possible to control the temperature with a heat transfer medium.
- the culture solution C containing the photosynthetic microorganisms flows in a relatively thin layer from the top to the bottom of the gap 15 between the outer vessel 10 and the inner vessel 20;
- the external force of the outer container 10 which is transparent to the photosynthesis microorganisms can also be efficiently irradiated with light such as sunlight.
- the algal concentration is cultured to a high concentration of about 5-10 gZL. Can do.
- the heat transfer medium H in the inner container 20 exchanges heat with the culture solution C in the gap 15, it becomes easy to maintain the temperature of the culture solution C at a desired temperature, and changes in the external environment, for example, The temperature of the culture solution c can be maintained at a temperature suitable for culture regardless of the season, weather, and the like. Therefore, it is possible to culture photosynthetic microorganisms efficiently.
- the temperature of the culture solution tends to be too high, and even with conventional devices, the temperature of the culture solution often exceeds the preferred range for photosynthesis. It is preferable because it can be cooled. Furthermore, in the winter, etc., the temperature of the culture solution tends to be too low in the conventional apparatus, but in this embodiment, the temperature of the culture solution can be maintained in the preferred range for photosynthesis in the same manner as described above. preferable. Therefore, the culture apparatus according to this embodiment can perform culture efficiently regardless of summer or winter.
- the inner container 20 has a higher thermal conductivity than that of resin and is made of a metal material or a glass material, and the temperature of the culture medium C by the heat transfer medium H can be adjusted very quickly and reliably. To be done.
- the outer container 10 and the inner container 20 are cylindrical coaxial with each other, the outer container 10
- the thickness of the tubular gap 15 formed between the inner container 20 and the inner container 20 is uniform around the vertical axis. Therefore, it is preferable that the uniformity of the flow of the culture solution is high, and that the problem of clogging of the culture solution and the adhesion to the wall surface hardly occur.
- the outer container 10 and the inner container 20 extend in the vertical direction and the culture apparatus 100 is a so-called vertical apparatus, a large amount of culture solution can be processed with a small occupying area. be able to. Therefore, even when a plurality of such culture apparatuses are arranged, they do not occupy such a large area, and thus mass production can be performed efficiently.
- the culture solution circulating unit 30 has the transparent tube 32, sunlight can be irradiated to the culture solution C even in the transparent tube 32, and photosynthesis can be performed. Culture is possible.
- the transparent nozzle 32 is provided with the first nozzle 35, the culture medium C can be circulated using the transparent pipe 32 as an air lift pump. Therefore, since a spiral pump is not required, the photosynthetic microorganisms are mechanically damaged, and the photosynthetic microorganisms are subjected to an external force such as shear stress. Can be suppressed.
- the bubbles containing the carbon dioxide are raised while the bubbles containing the carbon dioxide rise from the bottom to the top of the transparent tube 32.
- the culture medium C are in contact with each other for a sufficiently long time, so that carbon dioxide is sufficiently supplied to the culture medium, and the dissolved nitric acid-carbon concentration is sufficiently maintained to contribute to the photosynthesis of the photosynthetic microorganism.
- the culture medium C is agitated, and deposition due to precipitation of photosynthetic microorganisms is unlikely to occur.
- the bottom of the outer container 10 has a conical shape (funnel shape), photosynthetic microorganisms are deposited.
- the photosynthetic microorganisms can be cultured as in the case of the first nozzle 35.
- sufficient stirring can be performed while performing efficiently.
- the relationship between the thickness of the culture solution and the attenuation of light is usually as shown in FIG. As can be seen from Fig. 4, light is extremely attenuated as the culture thickness increases.
- oxygen generated by the photosynthesis action is appropriately discharged from the air vent 38, so that inhibition of photosynthesis due to excess of dissolved oxygen is also suppressed.
- both the outer container 10 and the inner container 20 are cylindrical, but the present invention can also be implemented by using a non-circular cylinder such as a square cylinder.
- the outer container 10 and the inner container 20 are coaxial with each other, but the vertical axes of the outer container 10 and the inner container 20 are eccentric. Even if it is made wider, it can be implemented.
- the outer container 10, the inner container 20, and the transparent tube 32 are arranged such that each axis is along the vertical direction.
- Each axis is along an oblique direction or a horizontal direction. Even if it arrange
- the transparent tube 32 that increases the light receiving area is adopted, but the present invention can be implemented even if the transparent tube is a light shielding tube.
- the number of the transparent tubes 32 can be arbitrarily changed according to the concentration (culture concentration) of the photosynthetic microorganism in the culture solution, the deposition of the culture solution, and the like.
- the culture medium C may be part of the path. If you create a part where light will disappear, the photosynthetic microorganisms in the culture will be cultured under a light-dark cycle. That's a lot. Therefore, depending on the type of photosynthetic microorganism, the culture efficiency can be further increased.
- the marine microalga Isotalisis' Galpana (Isochrysis Galbana) was cultured outdoors.
- the size of the culture apparatus was such that the thickness of the gap 15 between the inner container 20 and the outer container 10 was 2. Ocm, the height of the gap 15 was 150 cm, and the diameter of the transparent tube 32 was 4 cm.
- the initial concentration of algae in the culture is 0.5gZL, the volume of the culture is 30L, the pH of the culture is 7.0-8.0, the temperature of the culture is 15-25 ° C, and the time-average solar radiation is 14 0 MJ / m 2 , the average solar radiation time was 9 hours per day, carbon dioxide was added at 1.0 vol% as the additive gas from the nozzle, 15-20 LZmin, and the culture period was 14 days.
- the culture solution shown in FIG. 5 was used.
- the concentration of algae after cultivation reached 5.0-10.OgZL, and the algae contained 5-8 wt% of DHA (docosahexanoic acid) per dry matter.
- the cyanobacterium Spirulina Plantends was cultured outdoors.
- the size of the culture apparatus was the same as in Example 1.
- the initial concentration of algae in the culture solution is 0.5gZL
- the amount of the culture solution is 50L
- the pH of the culture solution is 8.5-10.5
- the temperature of the culture solution is 25-35 ° C
- the time average solar radiation is 17.
- OMj / m 2 solar radiation time averaged 11 hours a day
- 15-25 LZmin of air supplemented with carbon dioxide as the additive gas from the nozzle was 15-25 LZmin
- the culture period was 14 days.
- the culture solution shown in Fig. 6 was used.
- the concentration of algae after culturing reached 10. 0-20. OgZL, and the productivity was 2.0-5. Og / L / day.
- the productivity was 0.1-0. 2gZLZday.
- Hematococcus pluvialis, a freshwater green algae, using the culture apparatus described above (Haematococcus Pluviaris) was cultured outdoors.
- the size of the culture apparatus was the same as in Example 1.
- the initial concentration of algae (cyst cells) in the culture is 0.5gZL
- the volume of the culture is 50L
- the pH of the culture is 7.5-8.5
- the temperature of the culture is 25-30 ° C
- the time average The amount of solar radiation was 16.
- OMj / m 2 the average solar radiation time was 12 hours per day, 25-30 LZmin of air supplemented with 1.0 vol% carbon dioxide as an additive gas from the nozzle, and the culture period was 14 days.
- the marine green algae Nannochloropsis Oculata was cultured outdoors.
- the size of the culture apparatus was the same as in Example 1.
- the initial concentration of algae in the culture is 0.5gZL
- the volume of the culture is 50L
- the pH of the culture is 7.0-8.0
- the temperature of the culture is 25–30 ° C
- the time average solar radiation is 15 0MJ / m 2
- carbon dioxide gas as an additive gas from the nozzle was added at a volume of 1.0-30% by volume, and the culture period was 10 days.
- the concentration of the algae after the cultivation reached 8-lOgZL, and algal bodies (biomass) containing 5-8 wt% of polyunsaturated fatty acid (EPA) per dry matter were obtained.
- This algae is extremely useful as a food for growing worms, a phytoplankton that feeds juvenile marine cultured fish
- the size of the culture apparatus was the same as in Example 1.
- the initial concentration of algae in the culture solution is 0.5 g / volume of the culture solution is 50 L
- the pH of the culture solution is 7.5
- the temperature of the culture solution is 25 ° C
- the average daily solar radiation is 15. OMj / m 2
- the solar radiation time was 11 hours on average per day
- the air was supplemented with 2.0 vol% carbon dioxide as the additive gas from the nozzle, 25-30 LZmin
- the culture period was 14 days.
- the culture solution shown in Fig. 9 was used. [0096] The concentration of the algae after the cultivation reached 5-8 gZL, and an algal body containing 6.5% by weight of arachidonic acid (ARA) containing an ester body which is a kind of polyunsaturated fatty acid per dry matter was obtained.
- ARA arachidonic acid
- the culture apparatus described above the culture of Nostoc Commune belonging to the genus Nenjumo was performed outdoors.
- the size of the culture apparatus was the same as in Example 1.
- the initial concentration of algae in the culture solution is 0.5gZL
- the amount of the culture solution is 50L
- the pH of the culture solution is 7.5-8.0
- the temperature of the culture solution is 25 ° C
- the average time solar radiation is 7— 10MjZm 2
- the average solar radiation time was 9 hours per day
- 25-30 LZmin of air supplemented with 1.0 vol% carbon dioxide as an additive gas from the nozzle and the culture period was 14 days.
- the marine brown alga Phaeodactylum tricornutum was cultured outdoors using the culture apparatus described above.
- the size of the culture apparatus was the same as in Example 1.
- the initial concentration of algae in the culture is 0.3gZL
- the volume of the culture is 50L
- the pH of the culture is 7.5-8.5
- the temperature of the culture is 26 ° C
- the time-average solar radiation is 15.
- OMj / m 2 solar radiation averaged 11 hours per day
- air added with carbon dioxide (1.0 vol%) as an additive gas from the nozzle was 25-30 LZmin
- the culture period was 14 days.
- Phaeodactylum is a very useful marine microalgae, along with Keatoceros gracilis of the genus Cnoce's Cheatoceros, as a food for crustaceans such as clams, shrimp and shrimp. is there.
- photosynthetic microorganisms cultivated by the culture apparatus and method of the present invention is also increased with respect to carotenoids such as ⁇ -carotene, pigments such as austaxanthin, and polyunsaturated compounds such as EPA, DHA and ARA.
- carotenoids such as ⁇ -carotene
- pigments such as austaxanthin
- polyunsaturated compounds such as EPA, DHA and ARA.
- active ingredients such as Japanese fatty acids and polysaccharides such as 13-1, 3 glucan can be extracted.
- photosynthetic microorganisms themselves can be used for various purposes such as seafood fry and shellfish.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Sustainable Development (AREA)
- Clinical Laboratory Science (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Analytical Chemistry (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
本発明に係る光合成微生物の培養装置は、外側容器と、内側容器と、培養液循環部と、伝熱媒体供給部とを備える。外側容器は、透明であり、所定の軸方向に延びる筒状であり、その内部に光合成微生物を含む培養液が収容される。内側容器は、外側容器内に設けられ上記軸方向に伸びる筒状である。培養液循環部は、外側容器内において上記軸方向の一方側から培養液を抜き出し、外側容器内の上記軸方向の他方側に供給する。伝熱媒体供給部は、内側容器内に伝熱媒体を供給する。
Description
明 細 書
光合成微生物の培養装置及び培養方法
技術分野
[0001] 本発明は、光合成微生物の培養装置及び培養方法に関するものである。
背景技術
[0002] 従来より、例えば、クロレラ、スピルリナ、ドナリニラを始めとする藻類等の光合成微 生物を培養液中で培養し、このような光合成微生物が光合成により生成する有用物 質、例えばタンパク質、多糖類、脂肪酸、色素類等を効率的に生産する方法が知ら れている。
[0003] 光合成微生物を効率的に培養する方法として、例えば、特許文献 1及び 2に示す 装置を用いた方法が知られている。この装置は、ドーム状の透明部材を上下方向に 2枚重ねて容器としたものであり、二つの部材間に培養液が薄い層として貯留される 。そして、上側の透明部材の上から冷却水を散布して培養液の温度を調節する。 特許文献 1: WO99Z50384号国際公開パンフレット
特許文献 2 :WOOlZ023519号国際公開パンフレット
発明の開示
発明が解決しょうとする課題
[0004] し力しながら、本発明者が検討したところ、上述の装置では培養液の温度制御性が 十分でな 、ために、光合成微生物を効率よく培養できな!、ことが判明した。
[0005] 本発明は上記課題に鑑みてなされたものであり、培養液の温度制御性が高ぐ光 合成微生物を効率よく培養できる培養装置及び培養方法を提供することを目的とす る。
課題を解決するための手段
[0006] 本発明に係る光合成微生物の培養装置は、外側容器と、内側容器と、培養液循環 部と、伝熱媒体供給部とを備える。
[0007] 外側容器は、透明であり、所定の軸方向に延びる筒状であり、その内部に光合成 微生物を含む培養液が収容される。
[0008] 内側容器は、外側容器内に設けられ上記軸方向に伸びる筒状である。
[0009] 培養液循環部は、外側容器内における上記軸方向の一方側から培養液を抜き出 し、抜き出した培養液を外側容器内の上記軸方向の他方側に供給する。
[0010] 伝熱媒体供給部は、内側容器内に伝熱媒体を供給する。
[0011] 本発明にカゝかる培養方法は、上述の光合成微生物の培養装置を用いて培養を行 う方法である。
[0012] 本発明によれば、光合成微生物を含む培養液が、外側容器と内側容器との隙間を 一方側から他方側まで軸方向に沿って比較的薄 、層となって流れるので、透明な外 側容器の外部力 培養液に対して効率よく太陽光等の光を照射させることができる。 また、内側容器内に供給された伝熱媒体と、外側容器と内側容器との隙間の培養液 とで熱交換をさせることができるので、培養液の温度を所望の温度に維持することが 容易となり、外部環境の変化によらず培養液の温度を培養に適した温度に維持でき る。したがって、効率よく光合成微生物の培養が可能である。
[0013] ここで伝熱媒体としては、冷媒でも熱媒でもどちらでも良ぐこれにより培養液の加 温、培養液の冷却いずれも可能である。
[0014] 上述の発明にお 、て、外側容器及び内側容器は互いに同軸であることが好ま ヽ 。また、外側容器及び内側容器は互いに円筒であることも好ましい。これらにより、外 側容器と内側容器との間に軸周り方向において厚みが均一な管状の隙間を形成し やすいので、培養液の流れの均一性が高くなり、培養液のつまりの問題や、壁面へ の付着が起り難くなつて好ましい。
[0015] また、内側容器は金属材料又はガラス材料力も作られて 、ることがより好ま 、。金 属材料またはガラス材料は、榭脂等に比べ熱伝導率が高いので、伝熱媒体と培養液 との熱交換を迅速に行え、培養液の温度の調節がより確実に行える。一方、内側容 器が榭脂材料カゝら作られて ヽると、内側容器を低コストで製造できて好まし 、。
[0016] また、培養液循環部は、透明であり筒状であり培養液が通過する透明管を備えるこ とが好ましい。これによれば、透明管内でも培養液に対して光合成を行わせることが できて一層効率的な培養が可能となる。
[0017] また、上記軸方向が鉛直方向、すなわち、外側容器及び内側容器が鉛直方向に
延びることが好ましい。これによれば、装置を縦長とすることができ、少ない占有面積 で大量の培養液を処理することができる。
[0018] 上記軸方向が鉛直方向である場合には、培養液循環部が、透明であり鉛直方向に 延びる筒状であり培養液が通過する透明管と、透明管の下部に設けられ透明管内に ガスを供給する第一ノズルと、を有することが好ましい。
[0019] こうすると、透明管内でも培養液に対して光合成を行わせることができて効率的な 培養が可能となる上、垂直な透明管に第一ノズルカゝらガスを供給すると、供給された ガスの気泡が上昇することによるエアリフト効果によって培養液が輸送されるので、他 に遠心ポンプ等を設置することなく外側容器と培養液循環部との間で培養液を循環 させることができる。したがって、光合成微生物細胞の破壊を抑止することができる。 特に、ガスとして、二酸ィ匕炭素を添加した空気等を用いると、培養液中の二酸化炭素 濃度の維持も同時に可能となって好ましい。
[0020] また、軸方向が鉛直な場合には、外側容器内の底部にガスを供給する第二ノズル をさらに備えてもよい。このような第二ノズルから、外側容器と培養液循環部との間で の培養液の循環流れに影響を与えない程度に二酸ィヒ炭素を含むガスを供給するこ とにより、溶存ニ酸ィ匕炭素濃度を十分に維持して培養をさらに効率よく行うことができ る。
発明の効果
[0021] 本発明によれば、光合成微生物を効率よく培養できる培養装置及び培養方法が提 供される。
図面の簡単な説明
[0022] [図 1]図 1は、本発明の実施形態に係る光合成微生物の培養装置を示す一部断面概 略構成図である。
[図 2]図 2は、図 1の II II矢視図である。
[図 3]光合成微生物の光合成速度と光強度との関係の一例を示す図である。
[図 4]培養液の厚さと光の減衰との関係の一例を示す図である。
[図 5]図 5は、実施例 1で使用する培養液の組成を示す表である。
[図 6]図 6は、実施例 2で使用する培養液の組成を示す表である。
[図 7]図 7は、実施例 3で使用する培養液の組成を示す表である。
[図 8]図 8は、実施例 4で使用する培養液の組成を示す表である。
[図 9]図 9は、実施例 5で使用する培養液の組成を示す表である。
[図 10]図 10は、実施例 6で使用する培養液の組成を示す表である。
[図 11]図 11は、実施例 7で使用する培養液の組成を示す表である。
符号の説明
[0023] C…培養液、 H…伝熱媒体、 10…外側容器、 17…第二ノズル、 20· ··内側容器、 3 0…培養液循環部、 32· ··透明管、 35…第一ノズル、 40· ··伝熱媒体供給部、 100· ·· 光合成微生物の培養装置。
発明を実施するための最良の形態
[0024] 以下、必要に応じて図面を参照しつつ、本発明の好適な実施形態について詳細に 説明する。なお、図面中、同一要素には同一符号を付すことととし、重複する説明は 省略する。図面の寸法比率は図示の比率に限られるものではな 、。
[0025] 図 1は、本発明に係る実施形態の培養装置の基本構成を示す側面概略模式図で ある。
[0026] 本発明に係る光合成微生物の培養装置 100は、主として、外側容器 10と、外側容 器 10内に設けられた内側容器 20と、培養液を循環させる培養液循環部 30、及び、 伝熱媒体供給部 40と、を備えた密閉型の培養装置である。
[0027] 外側容器 10は、鉛直方向に延びる円筒形状の中空容器である。上端部はドーム 状に形成されて閉じられている一方、底部は下に向力つて径が狭まる円錐状に形成 されて閉じられている。外側容器 10の底部には、二酸化炭素を含むガスを外側容器 10内に供給する第二ノズル 17が接続されている。
[0028] 外側容器 10は透明材料力も形成されており、外部力も入射する太陽光等の可視 光を外側容器 10内に透過させることが可能である。透明材料としては、可視光の光 透過性に優れかつ耐候性および耐紫外線性の高 、材料であれば、 、かなる素材で も使用可能であり、例えば、アクリル、ポリカーボネート、ポリプロピレン、ポリエチレン 、ポリ塩ィ匕ビニル等の榭脂や、ガラス等を好適に利用できる。
[0029] 内側容器 20は、外側容器 10内に収容されており、外側容器 10と同軸に鉛直方向
に延びる円筒形状をなす。内側容器 20の上端部はドーム状に形成されて閉じられて いる一方、内側容器 20の下端部は、外側容器 10の下端部に対応して、下に向かつ て径が小さくなる円錐状に形成されて閉じられている。内側容器 20と外側容器 10と は連通されていない。
[0030] 内側容器 20の材料は特に限定されな 、が、熱伝導率の良!、金属材料又はガラス 材料カゝら形成されていることが好ましい。このような金属材料としては、例えば、アルミ -ゥムやステンレス等が挙げられる。また、内側容器 20の材料として前述したような榭 脂材料を用いると、内側容器 20を低コストで製造できる。内側容器 20内には冷媒又 は熱媒としての伝熱媒体が供給される。
[0031] 内側容器 20の外周面と、外側容器 10の内周面との間には、鉛直方向に延びる管 状の隙間 15が形成されている。この隙間 15に藻類等の光合成微生物を含む培養液 Cが収容される。隙間 15の厚み(半径方向の間隔)は、 2— 10cm程度とすることが好 ましい。内側容器 20の外径を変えることにより、隙間 15の厚みを自在に変更すること 力 Sできる。隙間 15の厚みは、培養する光合成微生物の種類と、培養液中における光 合成微生物の濃度 (培養濃度)等に応じて、好適な値を選択すればよい。また、外側 容器 10の径は、例えば、 30— 100cm程度とすることができる。
[0032] また、環状の隙間 15は、上下方向に、例えば、 2— 10cm程度形成されていればよ い。
[0033] また、外側容器 10の内周面や内側容器 20の外周面の少なくとも一方には、光触 媒層がコーティングされていることが好ましい。このような光触媒としては光触媒反応 を起こして表面を親水化できるものであれば特に制限されないが、二酸ィ匕チタン (Ti O )や酸化亜鉛 (ZnO)等の固体の酸化物半導体が好ましく用いられ、特に、二酸化
2
チタンが好ましい。これにより、光合成微生物の外側容器 10の表面や内側容器 20の 表面への付着を抑制することができる。
[0034] 培養液循環部 30は、外側容器 10内の培養液 Cを外側容器 10の下部から抜き出 すと共に、抜き出した培養液 Cを外側容器 10の上部に戻し、これによつて培養液 Cを 循環させる手段である。この培養液循環部 30は、外側容器 10の下端に接続された 下側マ-ホールド 31、下側マ-ホールド 31に接続された複数の透明管 32、透明管
32に接続されると共に外側容器 10の上端に接続された上側受容器 33、および、透 明管 32の下部にそれぞれ設けられた第一ノズル 35を備えている。
[0035] 下側マ-ホールド 31は、枝分れ管であり、管の集合側端が外側容器 10の下端に 接続される一方、管の各分岐側端が透明管 32の下端部にそれぞれ接続されている 。下側マ-ホールド 31は、外側容器 10内の培養液 Cを複数に分岐して各透明管 32 に供給する。
[0036] 透明管 32は、鉛直方向に延びる透明パイプである。透明管 32の上端は、外側容 器 10よりも高くまで伸びて力も U字状に下向きに折り返され、その先端はそれぞれ上 側受容器 33に接続されている。透明管 32の材料は外側容器 10と同様である。透明 管 32の外径は外側容器 10よりも小さぐ例えば、 3— 7cm程度とすることができる。
[0037] 第一ノズル 35は、透明管 32の下端部に設けられている。第一ノズル 35〖こは、ライ ン L1が接続されており、第一ノズル 35はバルブ VIを介してガス源 70に接続されて いる。ガス源 70は、二酸ィ匕炭素が添加された空気等の二酸ィ匕炭素を含有するガスを 供給する。第一ノズル 35を介してガス源 70からのガスが透明管 32内に供給されると 、このガスが気泡となって透明管 32内を上昇し、エアリフト効果によって透明管 32内 の培養液 Cが上方に向力つて輸送され、上側受容器 33に供給される。なお、このガ ス源 70は、バルブ V2を有するライン L2を介して第二ノズル 17にも接続されている。
[0038] 上側受容器 33は、外側容器 10の上方に設けられており、各透明管 32から供給さ れた培養液 Cを受ける容器である。上側受容器 33の下部は、外側容器 10内の上部 と連通しており、上側受容器 33が受けた培養液 Cは、外側容器 10内に、具体的には 内側容器 20の上端に向かって供給される。この上側受容器 33には、上方に向かつ て延び、先端が U字状に折れ曲がった通気口 38がさらに設けられており、培養液 C 力 発生する酸素ガス等の排出が可能となっている。なお、本培養装置 100は、この 通気口 38を除いて密閉されており、他の微生物や夾雑物等によるコンタミネーシヨン を抑制することができる。
[0039] 伝熱媒体供給部 40は、熱媒 (heating medium)又は冷媒(cooling medium)として機 能する伝熱媒体 (heat transfer medium)を内側容器 20内に供給するものである。こ の伝熱媒体供給部 40は、ライン L5、ライン L6、伝熱媒体 Hを所定の温度にコント口
ールする温度コントローラ 41、及びポンプ 42を備えている。
[0040] 温度コントローラ 41は、容器 41A、ヒータ 41H、及びチラ一 41Cを有し、容器 41A 内を通過する伝熱媒体 Hを加熱又は冷却することができる。より具体的には、外側容 器 10には外側容器 10内の培養液 Cの温度を測定する温度計 T1が設けられており、 温度コントローラ 41のヒータ 41Hやチラ一 41Cは、温度計 T1からのデータに基づい て外側容器 10内の培養液 Cの温度が所定範囲に入るように、伝熱媒体 Cの温度をコ ントロールする。
[0041] ライン L5の一方は内側容器 20の上部に接続され、ライン L5の他方は温度コント口 ーラ 41の容器 41Aに接続されている。ライン L6の一方は内側容器 20の下部に接続 され、ライン L6の他方はポンプ 42を介して温度コントローラ 41の容器 41Aに接続さ れている。
[0042] ポンプ 42は、ライン L6に設けられており、内側容器 20と温度コントローラ 41との間 で熱媒または冷媒を循環させる。
[0043] ヒータ 41Hやチラ一 41Cによって所定の温度に調整された伝熱媒体は、ポンプ 42 及びライン L6を介して内側容器 20内の下部に供給され、その後、内側容器 20内を 上方に移動し、この間に内側容器 20の壁を介して外側容器 10内の培養液 Cと熱交 換して、培養液 Cの温度を所定の範囲に維持する。その後、伝熱媒体 Hは、内側容 器 20の上部カゝら排出されてライン L5を介して温度コントローラ 41の容器 41A内に戻 つて、再び加温又は冷却がなされる。
[0044] 伝熱媒体 Hは特に限定されな 、が、例えば、水、油、スチーム等を利用できる。
[0045] 温度コントローラ 41からの伝熱媒体は、内側容器 20内を下から上に向力つて流れ るので、内側容器 20と外側容器 10との隙間を下方に向力つて流れる培養液と向流 に接触するので、熱交換能力が高い。
[0046] 次に、本実施形態の培養装置 100を用いて光合成微生物を培養する方法につい て説明する。
[0047] あらカゝじめ、外側容器 10内及び培養液循環部 30内に光合成微生物を含む培養液 Cを注入する。注入する培養液 Cの分量としては、第一ノズル 35から注入されたガス により透明管 32内でエアリフト効果が発生して培養液 Cの輸送が起り、培養液 Cが培
養液循環部 30と外側容器 10との間で循環しうる程度の量であればよい。なお、この 培養装置 100は屋外に設置されて 、る。
[0048] ここで光合成微生物は、光合成を行う微生物であれば特に限定されな 、が、特に 藻類、例えば、イソタリシス等のハプト藻類、へマトコッカス、ナンノクロロブシス、パリ エトクロリス、クロレラ等の緑藻類、スピルリナ、ネンジュモ等の藍藻類、ドナリエラ、フ ァェオダクチラム等の褐藻類等を好適に培養することができる。
[0049] また、この培養液における光合成微生物以外の成分は、光合成微生物の種類に応 じて適切なもの、例えば、塩類、ビタミン類等を採用できる。
[0050] 次に、第一ノズル 35力ら、例えば、 0. 5-3. OvolZvol%程度の二酸化炭素を含 有するガス、例えば、 0. 5-3. OvolZvol%程度の二酸ィ匕炭素を含有する空気を透 明管 32内に注入する。そうすると、このガスの気泡が透明管 32内を上昇し、エアリフ ト効果によって透明管 32内の培養液 Cが下力も上に向力つて移動し上側受容器 33 を介して外側容器 10の上部に供給される。その後、培養液 Cは、外側容器 10と内側 容器 20との間の隙間 15を流下して、下側マ-ホールド 31を介して透明管 32に戻る 。このようにして、透明管 32及び第一ノズル 35を利用するエアリフトポンプにより、培 養液 Cを、外側容器 10と培養液循環部 30との間で循環させる。
[0051] なお培養液の循環速度は、隙間 15を流下する培養液 Cの線速度力 20— 50cm Zsとなる程度が好ましい。
[0052] さらに、温度コントローラ 41から所定の温度にコントロールされた伝熱媒体 Hを内側 容器 20内に供給し、この伝熱媒体 Hを隙間 15を流下する培養液 Cと熱交換させるこ とによって、培養液 Cの温度を所定の温度範囲に維持する。培養液 Cと熱交換した後 の伝熱媒体 Hは温度コントローラ 41に戻って再び加熱又は冷却される。
[0053] さらに、第二ノズル 17からも、二酸ィ匕炭素を添加したガスを注入する。第二ノズル 1 7からのガスの流量は、隙間 15における培養液 Cの下向き流れを阻害しない程度の 流量とする。
[0054] そして、隙間 15を流下する培養液 Cに対しては、外側容器 10の壁を透過した太陽 光が鉛直軸周りほぼ 360度の全方向にわたって満遍なく入射すると共に、透明管 32 内を上昇する培養液 Cに対しても、透明管 32の壁を透過した太陽光が入射し、これ
によって光合成微生物の光合成が促され、光合成微生物の効率のよ!、培養が行わ れる。また、光合成微生物が有用物質を産生するものであれば、光合成作用によつ て細胞内等に有用物質が多く産生されることにもなる。
[0055] なお、夜間等、太陽光が入射しない場合には、第一ノズル 35からのガスの供給量 を少なくして循環量を小さくし、光合成微生物の呼吸に必要な酸素を含むガス、例え ば空気を少量供給すればよい。夜間には光合成が起らないので、培養液 Cの温度 制御の要請は少な 、が、伝熱媒体による温度制御を行うことももちろん可能である。
[0056] 次に、本実施形態の培養装置 100における作用について説明する。
[0057] 本実施形態によれば、光合成微生物を含む培養液 Cが、外側容器 10と内側容器 2 0との隙間 15を上から下まで比較的薄い層となって流れるので、培養液 C中の光合 成微生物に対して透明な外側容器 10の外部力も効率よく太陽光等の光を照射させ ることができる。これにより、光合成微生物を高濃度になるまで培養することができ、 隙間 15の厚みにもよる力 例えば、へマトコッカスの培養では、藻類の濃度が 5— 10 gZL程度の高濃度まで培養を行うことができる。
[0058] また、内側容器 20内の伝熱媒体 Hが隙間 15の培養液 Cと熱交換するので、培養 液 Cの温度を所望の温度に維持することが容易となり、外部環境の変化、例えば、季 節、気象等によらず培養液 cの温度を培養に適した温度に維持できる。したがって、 効率よく光合成微生物の培養をすることが可能である。
[0059] 特に、夏場等には、培養液の温度が高くなりすぎる傾向があり、従来の装置でも培 養液の温度が光合成の好適範囲を超えることが多いが、本実施形態では、効率よく 冷却ができるので好ましい。さらに、冬場等は、従来の装置では、培養液の温度が低 くなりすぎる傾向があつたが、本実施形態では、上述と同様にして、培養液の温度を 光合成の好適範囲に維持できるので好ましい。したがって、本実施形態にかかる培 養装置では夏冬問わず効率のよ!、培養が行える。
[0060] また、内側容器 20は榭脂等に比べて熱伝導率が高 、金属材料又はガラス材料に より作られており、伝熱媒体 Hによる培養液 Cの温度の調節がきわめて迅速かつ確実 に行われる。
[0061] また、外側容器 10及び内側容器 20が互いに同軸な円筒であるので、外側容器 10
と内側容器 20との間にできる管状の隙間 15の厚みが鉛直軸周りに均一となる。した がって、培養液の流れの均一性が高くなつて、培養液のつまりの問題や、壁面への 付着が起り難くなつて好まし 、。
[0062] また、外側容器 10及び内側容器 20が鉛直方向に延びており、培養装置 100が ヽ わゆる縦型の装置となって 、るので、少な ヽ占有面積で大量の培養液を処理するこ とができる。したがって、このような培養装置を複数配置する場合でもそれほど広い場 所を占有しないので、効率よく大量生産が可能である。
[0063] また、培養液循環部 30が、透明管 32を有しているので、透明管 32内でも培養液 C に対して太陽光が照射され光合成を行わせることができ、一層効率的な培養が可能 となる。
[0064] さらに、この透明管 32には第一ノズル 35が設けられているので、この透明管 32を エアリフトポンプとして用いて培養液 Cを循環させることができる。したがって、渦巻き 式ポンプ等を必要としないので、光合成微生物の機械的損傷や、光合成微生物に 剪断応力等の外力が力かることによって光合成微生物の増殖速度が低下する現象、 V、わゆるシアーストレス現象を抑制することができる。
[0065] また、このようなエアリフト式のポンプは、他のポンプと比べて比較的省エネルギー である。
[0066] また、エアリフト用のガスとして、二酸ィ匕炭素を添カ卩したガスを用いるので、二酸ィ匕 炭素を含む気泡が透明管 32の下から上まで上昇する間に、この気泡と培養液 Cとが 十分長い時間接触することにより、培養液に対して二酸化炭素が十分に供給され、 溶存ニ酸ィ匕炭素濃度が十分に維持されて光合成微生物の光合成に資することとな る。また、培養液 Cが攪拌されて光合成微生物の沈殿による堆積等が起りにくい。
[0067] また、本実施形態においては、外側容器 10の底部が円錐状 (漏斗状)とされている ので、光合成微生物が堆積しに《なっている。
[0068] さらに、第二ノズル 17によって、外側容器 10内の培養液にも二酸ィ匕炭素を含むガ スを供給することにより、第一ノズル 35による場合と同様に光合成微生物の培養をさ らに効率よく行いつつ十分な攪拌を行うことができる。
[0069] ところで、一般に、光合成微生物の光合成速度と光強度との関係は、図 3に示すと
おりとなる。図 3から明らかなように、光合成微生物の光合成速度は光飽和点 (I )に
0 達するまでは、光の強さに比例して向上することがわかる。
[0070] また、培養液の厚さと光の減衰との関係は、通常、図 4に示すとおりとなる。図 4から 明らかなように、培養液の厚さが大きくなると光が極度に減衰することがわ力る。
[0071] したがって、効率よく光合成微生物を培養するには、培養液の厚みを薄くして十分 な照度の光が培養液に照射されるようにすることが望まれる。
[0072] そして、本実施形態では、隙間 15において培養液 Cの薄い層が形成されるので特 に高い光の利用効率を得ることができ、光合成速度を大幅に速められる。
[0073] なお、本実施形態に係る培養装置 100では、光合成作用により発生する酸素が通 気口 38から適度に排出されるので、溶存酸素の過剰による光合成阻害も抑制される
[0074] なお、本発明は上記実施形態に限定されず様々な変形態様が可能である。
[0075] 例えば、上記実施形態では、外側容器 10及び内側容器 20とも円筒であるが、断 面四角形の筒等断面形状が非円形の筒を用いても実施は可能である。
[0076] また、上記実施形態では、外側容器 10及び内側容器 20は互いに同軸であるが、 互いの鉛直軸が偏心となる、例えば、太陽光が強く入射しやすい側(例えば南側)の 隙間を広くするようにしても実施は可能である。
[0077] また、上記実施形態では、外側容器 10、内側容器 20、透明管 32は、それぞれ各 軸が鉛直方向に沿うように配置されている力 各軸が、斜め方向や、水平方向に沿う ように配置されていても実施は可能である。透明管を水平方向に設けた場合、エアリ フトは採用できな 、ために、他のポンプが必要となる。
[0078] また、上記実施形態では、受光面積を上げるベぐ透明管 32を採用しているが、透 明管が遮光性の管であっても実施は可能である。
[0079] また、透明管 32の本数は、培養液中の光合成微生物の濃度 (培養濃度)や培養液 の堆積等に応じて任意に変更することができる。
[0080] さらに、例えば、外側容器 10の底部付近に遮光性の覆 、をすることや、下側マ-ホ 一ルド 31を遮光性材料力も作る等によって、培養液 Cの通り道の一部に光があたら なくなる部分を作成すると、培養液中の光合成微生物は明暗サイクル下で培養され
ること〖こなる。したがって、光合成微生物の種類によっては、培養効率をより高めるこ とがでさる。
実施例
[0081] (実施例 1)
上述の培養装置を用いて、海洋性微細藻類であるイソタリシス'ガルパーナ (Isochrysis Galbana)の培養を屋外にて行った。培養装置のサイズは、内側容器 20と 外側容器 10との間の隙間 15の厚み 2. Ocm、隙間 15の高さ 150cm、透明管 32の 径 4cmとした。培養液中の藻類の初期濃度は 0. 5gZL、培養液の量は 30L、培養 液の pHは 7. 0-8. 0、培養液の温度は 15— 25°C、時間平均日射量は 14. 0MJ/ m2、 日射時間は 1日平均 9時間、ノズルからの添加ガスとして炭酸ガスを 1. 0Vol% 添カロした空気を 15— 20LZmin、培養期間は 14日間とした。
[0082] 培養液としては、図 5に示す培養液を用いた。
[0083] 培養後の藻類の濃度は 5. 0— 10. OgZLに達し、藻類は DHA (ドコサへキサノィ ック酸)を乾燥物あたり 5— 8wt%含んで 、た。
[0084] (実施例 2)
上述の培養装置を用いて、藍藻類であるスピルリナ ·プラテンシス (Spirulina Plantends)の培養を屋外にて行った。培養装置のサイズは、実施例 1と同じとした。培 養液中の藻類の初期濃度は 0. 5gZL、培養液の量は 50L、培養液の pHは 8. 5— 10. 5、培養液の温度は 25— 35°C、時間平均日射量は 17. OMj/m2, 日射時間 は 1日平均 11時間、ノズルからの添加ガスとして炭酸ガスを 1. 0Vol%添カ卩した空気 を 15— 25LZmin、培養期間は 14日間とした。
[0085] 培養液としては、図 6に示す培養液を用いた。
[0086] 培養後の藻類の濃度は 10. 0— 20. OgZLに達し、生産性は 2. 0-5. Og/L/d ayという値であった。
[0087] 一方、従来の野外培養池方式 (オープンポンド方式)では、培養後の藻類の濃度は
0. 3-0. 5gZL、生産性は 0. 1-0. 2gZLZdayであった。
[0088] (実施例 3)
上述の培養装置を用いて、淡水性緑藻類であるへマトコッカス ·プルビアリス
(Haematococcus Pluviaris)の培養を屋外にて行った。培養装置のサイズは、実施例 1 と同じとした。培養液中の藻類 (シスト細胞)の初期濃度は 0. 5gZL、培養液の量は 50L、培養液の pHは 7. 5-8. 5、培養液の温度は 25— 30°C、時間平均日射量は 16. OMj/m2, 日射時間は 1日平均 12時間、ノズルからの添加ガスとして炭酸ガス を 1. 0Vol%添カ卩した空気を 25— 30LZmin、培養期間は 14日間とした。
[0089] また、図 7に示す培養液を用 、た。
[0090] 培養後の藻類の濃度は 5. 0— 10. Og/Lに達し、カロテノイド色素であるァスタキ サンチンを乾燥物あたり 3— 8wt%含む藻体 (バイオマス)を得た。
[0091] (実施例 4)
上述の培養装置を用いて、海洋性緑藻類であるナンノクロロブシス'ォキユラータ (Nannnochloropsis Oculata)の培養を屋外にて行った。培養装置のサイズは、実施例 1と同じとした。培養液中の藻類の初期濃度は 0. 5gZL、培養液の量は 50L、培養 液の pHは 7. 0-8. 0、培養液の温度は 25— 30°C、時間平均日射量は 15. 0MJ/ m2、 日射時間は 1日平均 11時間、ノズルからの添加ガスとして炭酸ガスを 1. 0Vol% 添カロした空気を 25— 30LZmin、培養期間は 10日間とした。
[0092] また、図 8に示す培養液を用いた。
[0093] 培養後の藻類の濃度は 8— lOgZLに達し、多価不飽和脂肪酸 (EPA)を乾燥物あ たり 5— 8wt%含む藻体 (バイオマス)を得た。この藻は、海洋性養殖魚の稚魚のえさ となる植物性プランクトンであるヮムシを増殖させるための餌として極めて有用である
[0094] (実施例 5)
上述の培養装置を用いて、淡水性緑藻類であり雪藻の一種であるパリエトクロリス' インシサ (Parietochloris Incisa)の培養を屋外にて行った。培養装置のサイズは、実施 例 1と同じとした。培養液中の藻類の初期濃度は 0. 5g/ 培養液の量は 50L、培 養液の pHは 7. 5、培養液の温度は 25°C、時間平均日射量は 15. OMj/m2, 日射 時間は 1日平均 11時間、ノズルからの添加ガスとして炭酸ガスを 2. 0Vol%添カ卩した 空気を 25— 30LZmin、培養期間は 14日間とした。
[0095] 図 9に示す培養液を用 、た。
[0096] 培養後の藻類の濃度は 5— 8gZLに達し、多価不飽和脂肪酸の一種であるエステ ル体を含むァラキドン酸 (ARA)を乾燥物あたり 6. 5wt%含む藻体を得た。
[0097] (実施例 6)
上述の培養装置を用いて、ネンジュモ属のノストック 'コミューン (Nostoc Commune) の培養を屋外にて行った。培養装置のサイズは、実施例 1と同じとした。培養液中の 藻類の初期濃度は 0. 5gZL、培養液の量は 50L、培養液の pHは 7. 5-8. 0、培 養液の温度は 25°C、時間平均日射量は 7— 10MjZm2、 日射時間は 1日平均 9時 間、ノズルからの添加ガスとして炭酸ガスを 1. 0Vol%添カ卩した空気を 25— 30LZm in、培養期間は 14日間とした。
[0098] 図 10に示す培養液を用いた。
[0099] 培養後の藻類の濃度は 4一 5gZLに達し、ポリサッカライドを乾燥物あたり 10— 15 wt%含む藻体を得た。ポリサッカライドは熱水抽出により得た。ポリサッカライドを分 祈したところ ι8—1 , 3—グルカンを多く含み、 β— 1 , 3—グルカンの濃度は乾燥物あた り 3— 4wt%であった。
[0100] (実施例 7)
上述の培養装置を用いて、海洋性褐藻類ファェオダクチラム'トリコ-ユータム (Phaeodactylum tricornutum)の培養を屋外にて行った。培養装置のサイズは、実施 例 1と同じとした。培養液中の藻類の初期濃度は 0. 3gZL、培養液の量は 50L、培 養液の pHは 7. 5— 8. 5、培養液の温度は 26°C、時間平均日射量は 15. OMj/m2 、 日射時間は 1日平均 11時間、ノズルからの添加ガスとして炭酸ガスを 1. 0Vol%添 加した空気を 25— 30LZmin、培養期間は 14日間とした。
[0101] 図 11に示す培養液を用いた。
[0102] 培養後の藻類の濃度は 5— 7g/Lに達した。ファェオダクチラムは、二枚貝ゃァヮ ビ、ェビなどの甲殻類の餌として、ッノ 'ケイソゥ (Cheatoceros)属のキートセラス 'ダラ シリス(Cheatoceros gracilis)と共に、極めて有用な海洋性微細藻類である。
産業上の利用可能性
[0103] 本発明の培養装置や培養方法により培養した光合成微生物力もは、 βカロチン等 のカロテノイド類、ァスタキサンチン等の色素類、 EPA, DHA, ARA等の多価不飽
和脂肪酸類、 13—1 , 3グルカン等の多糖類等、様々な有効成分を取り出すことがで きる。また、このような光合成微生物自体は、魚介類の稚魚ゃ稚貝等のえさ等様々な 用途に利用できる。
Claims
[1] 透明であり、所定の軸方向に延びる筒状であり、その内部に光合成微生物を含む 培養液が収容される外側容器と、
前記外側容器内に設けられ前記軸方向に伸びる筒状の内側容器と、
前記外側容器内における前記軸方向の一方側から前記培養液を抜き出し、抜き出 した培養液を前記外側容器内の前記軸方向の他方側に供給する培養液循環部と、 前記内側容器内に伝熱媒体を供給する伝熱媒体供給部と、
を備える光合成微生物の培養装置。
[2] 前記外側容器及び前記内側容器は互いに同軸である請求項 1に記載の光合成微 生物の培養装置。
[3] 前記外側容器及び前記内側容器はそれぞれ円筒である請求項 1又は 2に記載の 光合成微生物の培養装置。
[4] 前記内側容器は金属材料又はガラス材料力 作られて 、る請求項 1一 3の 、ずれ かに記載の光合成微生物の培養装置。
[5] 前記内側容器は榭脂材料力 作られている請求項 1一 3のいずれかに記載の光合 成微生物の培養装置。
[6] 前記培養液循環部は、透明であり筒状であり前記培養液が通過する透明管を有す る請求項 1一 5のいずれかに記載の光合成微生物の培養装置。
[7] 前記軸方向は鉛直方向である請求項 1一 6のいずれかに記載の光合成微生物の 培養装置。
[8] 前記軸方向は鉛直方向であり、
前記培養液循環部は、透明であり鉛直方向に延びる筒状であり前記培養液が通過 する透明管と、前記透明管の下部に設けられ前記透明管内にガスを供給する第一ノ ズルと、を有する請求項 1一 5のいずれかに記載の光合成微生物の培養装置。
[9] 前記外側容器内の底部にガスを供給する第二ノズルをさらに備える請求項 7又は 8 の!、ずれかに記載の光合成微生物の培養装置。
[10] 前記伝熱媒体は、熱媒または冷媒である請求項 1一 9のいずれかに記載の光合成 微生物の培養装置。
請求項 1一 10のいずれかに記載の光合成微生物の培養装置を用いて光合成微生 物を培養する光合成微生物の培養方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2005/002030 WO2006085376A1 (ja) | 2005-02-10 | 2005-02-10 | 光合成微生物の培養装置及び培養方法 |
US11/884,116 US20090137031A1 (en) | 1999-09-29 | 2005-02-10 | Culturing Apparatus and Culturing Method for Photosynthesis Microorganism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2005/002030 WO2006085376A1 (ja) | 2005-02-10 | 2005-02-10 | 光合成微生物の培養装置及び培養方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006085376A1 true WO2006085376A1 (ja) | 2006-08-17 |
Family
ID=36792952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2005/002030 WO2006085376A1 (ja) | 1999-09-29 | 2005-02-10 | 光合成微生物の培養装置及び培養方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20090137031A1 (ja) |
WO (1) | WO2006085376A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103224879A (zh) * | 2013-05-13 | 2013-07-31 | 宁夏大学 | 一种高密度培养微藻的光生物反应器装置 |
CN115011491A (zh) * | 2022-07-06 | 2022-09-06 | 厦门大昌生物技术服务有限公司 | 一种产朊假丝酵母菌的培养工艺 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7851211B2 (en) * | 2007-03-07 | 2010-12-14 | Chao-Hui Lu | Alga microbe photosynthetic reaction system |
US20100022393A1 (en) * | 2008-07-24 | 2010-01-28 | Bertrand Vick | Glyphosate applications in aquaculture |
US8940340B2 (en) * | 2009-01-22 | 2015-01-27 | Aurora Algae, Inc. | Systems and methods for maintaining the dominance of Nannochloropsis in an algae cultivation system |
US9187778B2 (en) | 2009-05-04 | 2015-11-17 | Aurora Algae, Inc. | Efficient light harvesting |
US8569050B1 (en) | 2009-05-04 | 2013-10-29 | John D. Ericsson | Enclosed bioreactor system and methods associated therewith |
US8769867B2 (en) | 2009-06-16 | 2014-07-08 | Aurora Algae, Inc. | Systems, methods, and media for circulating fluid in an algae cultivation pond |
US20100325948A1 (en) * | 2009-06-29 | 2010-12-30 | Mehran Parsheh | Systems, methods, and media for circulating and carbonating fluid in an algae cultivation pond |
US8748160B2 (en) * | 2009-12-04 | 2014-06-10 | Aurora Alage, Inc. | Backward-facing step |
AU2010202957B2 (en) * | 2010-07-13 | 2013-06-13 | Eulgi University Industry Academy Cooperation Foundation | Method for circulatory cultivating photosynthetic microalgae |
US8973531B2 (en) * | 2010-12-09 | 2015-03-10 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Automated continuous zooplankton culture system |
US10000786B2 (en) * | 2010-12-28 | 2018-06-19 | Eino Elias Hakalehto | Method and equipment for the automated testing of microbiological samples |
US8752329B2 (en) | 2011-04-29 | 2014-06-17 | Aurora Algae, Inc. | Optimization of circulation of fluid in an algae cultivation pond |
WO2013006334A2 (en) * | 2011-07-07 | 2013-01-10 | Dow Agrosciences Llc | Variable gas source gas exchange system |
CN102827766B (zh) * | 2012-08-17 | 2014-06-18 | 宁波红龙生物科技有限公司 | 用于规模化红球藻生产虾青素的光生物反应器 |
AT515854B1 (de) | 2014-05-30 | 2018-07-15 | Ecoduna Ag | Verfahren für einen photochemischen, wie photokatalytischen und/oder photosynthetischen Prozess |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49126878A (ja) * | 1973-04-13 | 1974-12-04 | ||
JPS5049480A (ja) * | 1973-08-30 | 1975-05-02 | ||
EP0497330A1 (en) * | 1991-01-31 | 1992-08-05 | Boehringer Ingelheim Animal Health Inc. | Process and apparatus for the surface culture of nucleated cells and cell culture-dependent substances |
JPH0595778A (ja) * | 1991-10-07 | 1993-04-20 | Agency Of Ind Science & Technol | 撹拌機を装備した多孔質分離膜一体型培養器 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6348347B1 (en) * | 1998-03-31 | 2002-02-19 | Micro Gaia Co., Ltd. | Fine algae culture device |
EP1138757A4 (en) * | 1999-09-29 | 2002-09-18 | Micro Gaia Co Ltd | METHOD FOR GROWING ALGAE THAT MAKES PHOTOTROPHIC PIGMENTS, HIGH UNSATURATED FATTY ACIDS OR POLYSACCHARIDES IN HIGH CONCENTRATIONS |
US20050064577A1 (en) * | 2002-05-13 | 2005-03-24 | Isaac Berzin | Hydrogen production with photosynthetic organisms and from biomass derived therefrom |
-
2005
- 2005-02-10 WO PCT/JP2005/002030 patent/WO2006085376A1/ja not_active Application Discontinuation
- 2005-02-10 US US11/884,116 patent/US20090137031A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49126878A (ja) * | 1973-04-13 | 1974-12-04 | ||
JPS5049480A (ja) * | 1973-08-30 | 1975-05-02 | ||
EP0497330A1 (en) * | 1991-01-31 | 1992-08-05 | Boehringer Ingelheim Animal Health Inc. | Process and apparatus for the surface culture of nucleated cells and cell culture-dependent substances |
JPH0595778A (ja) * | 1991-10-07 | 1993-04-20 | Agency Of Ind Science & Technol | 撹拌機を装備した多孔質分離膜一体型培養器 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103224879A (zh) * | 2013-05-13 | 2013-07-31 | 宁夏大学 | 一种高密度培养微藻的光生物反应器装置 |
CN115011491A (zh) * | 2022-07-06 | 2022-09-06 | 厦门大昌生物技术服务有限公司 | 一种产朊假丝酵母菌的培养工艺 |
Also Published As
Publication number | Publication date |
---|---|
US20090137031A1 (en) | 2009-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2006085376A1 (ja) | 光合成微生物の培養装置及び培養方法 | |
Chaumont | Biotechnology of algal biomass production: a review of systems for outdoor mass culture | |
Pulz | Photobioreactors: production systems for phototrophic microorganisms | |
Xu et al. | Microalgal bioreactors: challenges and opportunities | |
Borowitzka | Commercial production of microalgae: ponds, tanks, tubes and fermenters | |
Pulz et al. | Photobioreactors: design and performance with respect to light energy input | |
US20060035370A1 (en) | Multi-layered photobioreactor and method of culturing photosynthetic microorganisms using the same | |
WO2001023519A1 (fr) | Procede de mise en culture d'algues permettant de produire des pigments phototropes, des acides gras fortement insatures ou des polysaccharides a forte concentration | |
Carvalho et al. | Microalgae bioreactors | |
AU2006272954A1 (en) | Continuous-batch hybrid process for production of oil and other useful products from photosynthetic microbes | |
WO2010138571A1 (en) | Photobioreactor and method for culturing and harvesting microorganisms | |
Pinto et al. | Cultivation techniques | |
CN104789478B (zh) | 一种雨生红球藻藻种的培养方法和培养系统 | |
KR101670129B1 (ko) | 광 반응 미세조류 배양장치 및 배양방법 | |
İhsan | Types of microalgae cultivation photobioreactors and production process of microalgal biodiesel as alternative fuel | |
Takenaka et al. | Commercial‐scale culturing of cyanobacteria: an industrial experience | |
CN107460129A (zh) | 生物质与培养液分离的工业化微藻培养方法 | |
JP5324532B2 (ja) | 循環型の光生物反応器 | |
US10829725B2 (en) | Air accordion bioreactor | |
Divakaran et al. | Algae Cultivation Strategies: An Overview | |
Griffiths | 5 Microalgal Cultivation | |
Plengsakul et al. | Plastic media reduced algal wall-growth of Chlorococcum humicola for the cultivation in internal-loop airlift photobioreactor | |
CN107384801A (zh) | 用于工业化生产微藻的封闭生物膜式培养方法 | |
Perera et al. | Investigation of the Effect of Solar Irradiation and Temperature on H. pluvialis Production in Photobioreactors Under Outdoor Cultivation in Sri Lanka | |
CN109182133A (zh) | 微藻纯化培养基及分离纯化微藻的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 11884116 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 05710082 Country of ref document: EP Kind code of ref document: A1 |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 5710082 Country of ref document: EP |