WO2001013419A1 - Dispositif et procede de traitement - Google Patents

Dispositif et procede de traitement Download PDF

Info

Publication number
WO2001013419A1
WO2001013419A1 PCT/JP2000/005410 JP0005410W WO0113419A1 WO 2001013419 A1 WO2001013419 A1 WO 2001013419A1 JP 0005410 W JP0005410 W JP 0005410W WO 0113419 A1 WO0113419 A1 WO 0113419A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
processed
heating
transmission window
film
Prior art date
Application number
PCT/JP2000/005410
Other languages
English (en)
French (fr)
Inventor
Yasuo Kobayashi
Masao Yoshioka
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Publication of WO2001013419A1 publication Critical patent/WO2001013419A1/ja
Priority to US11/002,788 priority Critical patent/US20050150455A1/en
Priority to US11/980,612 priority patent/US20080113104A1/en
Priority to US11/980,613 priority patent/US8398813B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/0206Cleaning during device manufacture during, before or after processing of insulating layers
    • H01L21/02063Cleaning during device manufacture during, before or after processing of insulating layers the processing being the formation of vias or contact holes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/2001Maintaining constant desired temperature

Definitions

  • the present invention relates to a processing apparatus and a processing method for removing an oxide film formed on a surface of an object to be processed.
  • a mixed gas of N 2 gas and H 2 gas is activated by plasma to form an active gas species, and NF 3 gas is added to the down flow of the active gas species to activate the NF 3 gas.
  • the active gas species of the NF 3 gas is reacted with a natural oxide film on the surface of the wafer to form a generated film, and then the wafer is heated to a predetermined temperature to sublimate and remove the generated gas.
  • An apparatus used for such a method includes a processing container for accommodating a wafer therein, an NF 3 active gas type generating device for generating an active gas type of NF 3 gas, and a processing container for heating the wafer.
  • a processing apparatus including a heating unit provided outside, and a transmission window provided between the heating unit and the object to be processed and transmitting heat energy from the heating unit. Then, an active gas species of NF 3 gas is reacted at a low temperature with the natural oxide film formed on the surface of the wafer to form a generated film, and the generated film is heated to a predetermined temperature by a heating means to be sublimated. The natural oxide film is removed.
  • the present invention has been made in order to solve the above-mentioned problems, and prevents the temperature of an object to be processed from rising due to heat remaining during a heat treatment in a transmission window. It is an object of the present invention to provide a processing apparatus and a processing method capable of continuously processing an object to be processed.
  • An invention according to claim 1 is a processing apparatus for removing an oxide film formed on a surface of a processing target, wherein the processing container stores the processing target and an active gas species is generated.
  • An active gas species generating device a heating means provided outside the processing vessel for heating the object to be processed, and a transmission window provided in the processing vessel between the heating means and the object to be processed.
  • a transparent window that hermetically shields the inside and outside of the container and allows the energy for heating from the heating means to pass through, and a shield plate that can be inserted and removed between the workpiece and the transparent window, and the shield plate is closed.
  • the active gas species reacts at a low temperature with the oxide film formed on the surface of the object to be processed to form a product film, and then the shielding plate is opened Radiated heat from the heating means through the transmission window to form a film For example, vaporized and heated to a predetermined temperature, it shall be the said to remove the product film.
  • the invention described in claim 2 is a processing apparatus for removing an oxide film formed on the surface of the object to be processed, comprising: an active gas species generating apparatus for generating an active gas species; A first processing chamber for forming a generated film by reacting an active gas species at a low temperature with an oxide film formed on the surface of the object to be processed; and a heating means for heating the object to be processed. A second processing chamber for heating and evaporating the generated film formed on the surface of the object to be processed to a predetermined temperature by means, and removing the generated film; and a first processing chamber and a second processing chamber. And a transporting means for transporting the object to be processed therebetween.
  • the invention described in claim 3 is characterized in that the active gas species is an NF 3 gas active gas species.
  • the invention described in claim 4 is characterized in that the shielding plate is provided with a cooling means for cooling the shielding plate.
  • the transfer means is provided in a transfer chamber connected to the first processing chamber and the second processing chamber and having a non-reactive atmosphere inside. It is characterized by that.
  • the active gas species generating device comprises: a plasma forming tube having a plasma forming portion; a plasma gas introducing portion for supplying N 2 gas and H 2 gas into the plasma forming tube; An NF 3 gas supply unit for adding NF 3 gas to an active gas species flowing down from inside the plasma forming tube is provided.
  • the invention according to claim 7 is characterized in that the plasma forming section is composed of a microwave generating source for generating a microwave, and a waveguide for introducing the generated microwave into the plasma forming tube. .
  • the invention according to claim 8 is characterized in that a processing container for storing the object to be processed, heating means provided outside the processing container for heating the object to be processed, and a heating means provided between the heating means and the object to be processed.
  • the invention according to claim 9 is a processing method for removing an oxide film formed on a surface of a processing object, wherein the oxidation method is performed on a surface of the processing object in a first processing chamber. Reacting an active gas species with the film in a low temperature state to form a product film; and transporting the object on which the product film is formed from the first processing chamber to the second processing chamber. And (2) in the treatment chamber, a step of heating the generated film formed on the surface of the object to be processed to a predetermined temperature to vaporize the film, and removing the generated film.
  • FIG. 1 is a configuration diagram illustrating a processing apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a schematic plan view showing the movable shirt of the processing apparatus shown in FIG. 1 along the line II-II.
  • FIG. 3 is a schematic cross-sectional view along the line III-III in FIG.
  • FIG. 4 is a schematic plan view showing another example of the movable shirt.
  • FIG. 5 is a configuration diagram illustrating a processing apparatus according to the second embodiment of the present invention.
  • FIG. 1 to 3 are configuration diagrams illustrating a first embodiment of a processing apparatus.
  • the processing apparatus 12 is used to oxidize a plasma forming tube 14 for activating a mixed gas of N 2 gas and H 2 gas by plasma and a semiconductor wafer W to be processed.
  • a processing container 16 for performing a predetermined surface treatment for removing a film, particularly a natural oxide film (an oxide film formed unintentionally by contact with atmospheric oxygen or a cleaning solution) is provided.
  • the processing vessel 16 is formed in a cylindrical shape from aluminum, and a quartz mounting table 20 supported by a vertically movable support member 18 is provided in the processing vessel 16. ing.
  • An exhaust port 22 is provided at the peripheral edge of the bottom of the processing container 16 so that the inside of the processing container 16 can be evacuated.
  • An irradiation port 26 is formed at the bottom of the processing container 16 below the mounting table 20, and a quartz transmission window 28 is provided in the irradiation port 26 in an airtight manner. Below the transmission window 28, there are provided a number of heating lamps 36, such as halogen lamps, for heating the mounting table 20 from below, and the heating lamps 36 emit heat. Light is transmitted through the transmission window 28 and is incident on the back surface of the wafer W.
  • the plasma forming tube 14 is formed in a tubular shape by, for example, quartz, is opened at the ceiling of the processing container 16, and is airtightly attached to the processing container 16 while standing upright.
  • a plasma gas introducing section 44 for introducing a plasma gas composed of N 2 gas and H 2 gas into the tube is provided.
  • the plasma introduction section 44 has an introduction nozzle 46 inserted into the plasma forming tube 14, and a gas passage 48 is connected to the introduction nozzle 46.
  • the gas passage 48 is filled with an N 2 gas source 52 filled with N 2 gas and H 2 gas through a flow controller 50 such as a mass flow controller.
  • H 2 gas sources 54 are connected to each other.
  • the plasma forming section 56 includes a microwave generating source 58 for generating a microwave of 2.45 GHz, and a microwave supply device such as an Ebenson-type waveguide provided in the plasma forming tube 14.
  • the microwave microwave generated by the microwave generation source 58 is supplied to the microwave supplier 60 via the rectangular waveguide 62. Then, a plasma is formed in the plasma forming tube 14 by the supplied microwave, and a mixed gas of H 2 gas and N 2 gas is activated to form this down flow.
  • An outlet 64 which is the lower end of the plasma forming tube 14, is provided with a quartz covering member 66 spreading downward in an umbrella shape in communication therewith.
  • the gas flows over the wafer W efficiently by covering the upper part.
  • An NF 3 gas supply unit 68 for supplying NF 3 gas is provided immediately below the outlet 64.
  • the NF 3 gas supply unit 68 has a ring-shaped shower head 70 made of quartz, and a large number of gas holes 72 are formed in the shower head 70.
  • the shower head 70 is connected to an NF 3 gas source 80 for filling NF 3 gas through a communication pipe 74, a gas passage 76, and a flow rate controller 78.
  • a movable shirt 110 is provided between the mounting table 20 and the transmission window 28.
  • This movable shirt 101 is as shown in FIGS. 2 and 3, and has a shielding plate 103 rotatably disposed so as to cover the transmission window 28.
  • the shielding plate 103 is provided with a rotation axis 105 for rotating the shielding plate 103, and the rotation axis 105 passes through the outer wall 107 of the processing container 16. It is arranged.
  • a magnetic fluid seal 109 that rotatably and airtightly holds the space between the rotating shaft 105 and the outer wall 107 between the rotating shaft 105 and the outer wall 107 is provided. It is provided.
  • the rotating shaft 105 is provided with a shaft-side gear 111.
  • the shaft-side gear 111 is connected to a driving motor 111 via a motor-side gear 113. 5 are provided. Then, by operating the drive motor 115, the shield plate 103 is rotated via the shaft-side gear 111 and the motor-side gear 113, and the open position as shown in FIG. And the closed position as shown in FIG. Further, a refrigerant passage 117 is formed inside the shielding plate 103 and the rotating shaft 105. The refrigerant passage 117 extends from the lower end of the rotating shaft 105 to the outside of the processing container 16 and is connected to a refrigerant circulation unit 119 provided outside the processing container 16.
  • the coolant circulation means 1 19 allows a coolant such as water to flow through the coolant passage 1 17 to cool the shielding plate 103.
  • a coolant such as water
  • FIG. 4 is a diagram showing an example of another movable shirt.
  • This movable shirt 1 2 1 has a shielding plate 1 2 3 covering a transmission window 2 8.
  • the shield plate 1 2 3 is connected to two drive shafts 1 2 5 and 1 2 5.
  • the other end of the drive shafts 1 2 5 and 1 2 5 is connected to the piston rod of the hydraulic cylinder 1 2 7 Are connected.
  • a magnetic fluid seal 13 1 is provided between the drive shaft 125 and the outer wall 129 at a portion where the drive shaft 125 passes through the outer wall of the processing vessel 16.
  • the drive shaft can be moved with respect to the outer wall while keeping the space between the drive shaft 125 and the outer wall 129 airtight.
  • the shield plate 123 By operating the hydraulic cylinder 127, the shield plate 123 can be positioned between the open position and the closed position. Also in this case, similarly to the case shown in FIG. 3, a refrigerant passage is formed inside the shielding plate 123 and the drive shaft 125, and at the end of the refrigerant passage located outside the processing vessel 16, It is also possible to connect a refrigerant circulating means provided outside the processing vessel 16 so that the shielding plate 123 can be cooled. By doing so, it is possible to suppress a rise in the temperature of the wafer W due to radiant heat from the shielding plates 123.
  • the semiconductor wafer W to be processed is introduced into the processing chamber 16 via a gate valve (not shown), and is mounted on the mounting table 20.
  • a contact hole or the like is formed in a previous stage, and a natural oxide film is generated on the bottom surface.
  • the inside of the processing container 16 is sealed, and the inside is evacuated.
  • the N 2 gas source 52 and the H 2 gas source 54 And H2 gas are introduced into the plasma forming tube 14 from the plasma gas inlet 44 at predetermined flow rates.
  • a microwave of 2.45 GHz is generated from the microwave generation source 58 of the microwave forming unit 56, guided to the microwave supplier 60, and introduced into the plasma forming tube 14.
  • the N2 gas and the H2 gas are converted into plasma by microwaves and activated, and active gas species are formed.
  • the active gas species forms a downflow by evacuation in the processing container 16 and flows down the plasma forming tube 14 toward the outlet 64.
  • the NF 3 gas supplied from the NF 3 gas source 80 becomes an active gas species of a down-flow of a mixed gas composed of N 2 gas and H 2 gas. Is added.
  • the added NF 3 gas is also activated by the down-flowing active gas species.
  • NF 3 gas is also converted into active gas, and reacts with the natural oxide film on the surface of the wafer in combination with the above-mentioned active gas species in the downflow to form a mixed film of Si, N, H, and F. It will be.
  • the wafer W Since the reaction is promoted at a low temperature in this process, the wafer W must not be heated during this process, and a formed film is formed at room temperature.
  • the movable shirt 103 is in the closed state. This is to prevent the radiant heat from the transmission window 28 heated during the previous heat treatment from reaching the wafer W and increasing the temperature of the wafer.
  • the process conditions at this time are as follows: H2, NF3, and N2 are 10 sccm, 150 sccm, and 1400 sccm, respectively, for the gas flow rates.
  • the process pressure is 4 Torr
  • the plasma power is 400 W
  • the process time is 1 minute.
  • a product film that has reacted with the natural oxide film is formed on the wafer surface.
  • the upper part of the mounting table 20 is covered with the umbrella-shaped covering member 66, the dispersion of the active gas species in the downflow is suppressed, and the active gas species flows down onto the wafer surface efficiently.
  • a raw film can be formed on the substrate.
  • the supply of each gas of H2, NF3, and N2 is stopped, the driving of the microwave generation source 58 is also stopped, and the processing chamber 16 is evacuated. To eliminate residual gas.
  • movable shirt evening 103 opened The heating lamp 36 is turned on to heat the wafer W to a predetermined temperature, for example, 100 ° C. or more. By this heating, the generated film sublimates (vaporizes). As a result, the natural oxide film on the wafer W is removed, and the Si surface appears on the wafer surface.
  • the process conditions at this time are a process pressure of 1 mTorr or less, and a process time of about 2 minutes.
  • the activated NF 3 gas is discharged. Reacts with the natural oxide film on the surface to form a mixed film of Si, N, H, and F.
  • the wafer W is heated by the radiant heat from the transmission window 28 heated during the previous heat treatment. Can be prevented from being heated. Therefore, when the low-temperature processing and the heating processing are sequentially repeated for a plurality of wafers, it is possible to prevent the wafer from being heated by the radiant heat from the previous heating processing during the low-temperature processing. Therefore, the low-temperature treatment and the heat treatment can be performed continuously without an interval, and the oxide film removing operation can be performed efficiently.
  • the motor 115 provided outside the processing container and the shielding plate 103 inside the processing container are sealed with a magnetic fluid seal 109. Since they are connected by the shaft 105, there is no need to provide a drive source in the processing container, so that the processing container can be reduced in size and contamination can be prevented. This effect is the same in the reciprocating movable shirt shown in FIG.
  • FIG. 5 shows a second embodiment of the present invention.
  • the processing apparatus 201 is characterized in that a low-temperature processing chamber and a heating processing chamber are separately provided.
  • This processing apparatus 201 has a transfer chamber 203 in the center.
  • the transfer chamber 203 is provided with a transfer device for transferring a wafer.
  • the inside of the transfer chamber 203 is set to a non-reactive atmosphere, for example, a vacuum, so that the generation of a natural oxide film on the wafer W during the transfer of the wafer W can be suppressed.
  • the transfer chamber 203 is provided with a load lock chamber 205 for carrying the wafer to be processed into the transfer chamber 203.
  • two low-temperature processing chambers 207 and 207 are provided on the side of the transfer chamber 203 opposite to the load lock chamber 205.
  • This low temperature processing chamber 2007 In this example, the movable shirts 101 and the heating lamps 36 were removed from the processing apparatus 12 shown in FIG. In this case, it is necessary that the bottom of the processing container 16 be airtightly closed, but the member for closing the bottom of the processing container 16 is made of light-transmitting material like the transmission window 28 in Fig. 1. It is not necessary to have Therefore, instead of the transmission window 28 in the case of FIG. 1, for example, the bottom of the processing container 16 may be covered with an aluminum plate.
  • the activated NF 3 gas reacts with the natural oxide film on the wafer surface to form a mixed film of Si, N, H, and F.
  • a heating chamber 209 is provided in the transfer chamber 203.
  • a heating means for example, a known resistance heating type stage heater is provided inside the heating chamber 209, and the wafer W can be heated by the stage heater.
  • the wafer W after the low-temperature treatment is heated to a predetermined temperature, for example, 100 ° C. or higher, and the heating causes the generated film to sublime (vaporize). As a result, the natural oxide film on the wafer W is removed.
  • a cooling chamber 211 is provided in the transfer chamber 203.
  • the cooling chamber 211 is for cooling the wafer after the heat treatment.
  • the processed wafers are to be stored in a resin cassette and transported out, but if the wafers remain hot, the resin cassette may be damaged. For this reason, the wafer is cooled before being stored in the cassette.
  • a wafer to be processed having a natural oxide film formed on its surface is carried from the load lock chamber 205 to the transfer chamber 203.
  • the wafer is transported to a low-temperature processing chamber 2007 where it is subjected to a so-called low-temperature processing.
  • the heating chamber 209 is provided separately from the low-temperature processing chamber 207, the heat during the previous heating processing remains to perform the low-temperature processing. The adverse effect can be prevented.
  • the wafer to be processed is sent to the heating chamber 209.
  • the wafer W after the low-temperature treatment is heated to a predetermined temperature, for example, 100 ° C.
  • the generated film is sublimated (vaporized) by this heating.
  • the natural oxide film of wafer W is removed.
  • the heated wafer is sent to the cooling chamber 211. ⁇ ⁇ C is cooled here, then stored in a cassette and carried out. Therefore, it is possible to prevent the possibility that the hot wafer may damage the resin cassette. be able to.
  • the activated NF 3 gas is supplied to the wafer surface.
  • the wafer can be prevented from being heated by the influence of the heat treatment during the so-called low-temperature treatment, which reacts with the natural oxide film of the silicon and forms a mixed film of Si, N, H and F. Therefore, the low-temperature treatment and the heat treatment can be performed continuously without an interval, so that the oxide film removing operation can be performed efficiently.
  • a shield plate is provided between the object to be processed and the transmission window so as to be able to be inserted and withdrawn. Therefore, the shield plate is closed to shut off radiant heat from the transmission window, and the active gas species can react with the oxide film at a low temperature.
  • the low-temperature treatment for reacting the active gas species with the oxide film and the subsequent heat treatment are performed in different chambers. Therefore, the low-temperature treatment and the heat treatment can be performed continuously, and the oxide film removing operation can be performed efficiently.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Analytical Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Plasma Technology (AREA)

Description

明 細 書 処理装置及び処理方法 技術分野
本発明は、 被処理体表面に形成された酸化膜を除去する処理装置及び処理方法 に関する。 背景技術
従来、 ウェハ形成された微細なホール内の自然酸化膜を有効に除去する方法と しては、 例えば、 以下のような表面処理方法がある。
まず、 N 2ガスと H 2ガスの混合ガスをプラズマにより活性化して活性ガス種 を形成し、 この活性ガス種のダウンフローに N F 3ガスを添加して N F 3ガスを 活性化する。 この N F 3ガスの活性ガス種をウェハの表面の自然酸化膜と反応さ せて生成膜を形成し、 その後ウェハを所定の温度に加熱することにより前記生成 月莫を昇華させて除去する。
このような方法に使用される装置としては、 内部にウェハを収納する処理容器 と、 N F 3ガスの活性ガス種を生成する N F 3活性ガス種生成装置と、 ウェハを 加熱するために処理容器の外部に設けられた加熱手段と、 この加熱手段と前記被 処理体との間に設けられ、 加熱手段からの熱エネルギを透過する透過窓とを備え た処理装置が知られている。 そして、 ウェハの表面に形成された自然酸化膜に、 N F 3ガスの活性ガス種を低温で反応させて生成膜を形成し、 この生成膜を加熱 手段によって所定の温度に加熱して昇華させ、 前記自然酸化膜を除去するように なっている。
しかしながら、 上記処理装置にあっては、 被処理ウェハの加熱処理後に、 新た な被処理ウェハを処理容器に導入して低温処理を行おうとすると、 前回の加熱処 理時の熱が透過窓に蓄積されており、 この透過窓からの熱放射によってウェハが 加熱されてしまう。 このため、 透過窓が所定の温度まで冷却されるのを待たねば ならず、 処理能率が著しく低下するという問題点があった。 発明の開示
本発明は、 上記課題を解決するために成されたものであって、 透過窓に残存し ている加熱処理時の熱によって被処理体の温度が上昇するのを防止し、 これによ つて、 連続的に被処理体を処理できる処理装置及び処理方法を提供することを目 的としている。
請求の範囲第 1項に記載の発明は、 被処理体の表面に形成された酸化膜を除去 するための処理装置であって、 被処理体を収納する処理容器と、 活性ガス種を生 成する活性ガス種生成装置と、 処理容器の外部に設けられ被処理体を加熱する加 熱手段と、 この加熱手段と被処理体との間の処理容器に設けられた透過窓であつ て、 処理容器の内外を気密に遮蔽するとともに加熱手段からの加熱用のエネルギ を透過する透過窓と、 被処理体と透過窓との間に挿抜可能に設けられた遮蔽板と を備え、 遮蔽板を閉状態にして透過窓からの放射熱を遮断した状態で、 被処理体 の表面に形成された酸化膜に、 活性ガス種を低温状態で反応させて生成膜を形成 し、 その後、 遮蔽板を開状態にして、 加熱手段からの放射熱を透過窓を通して生 成膜に加え、 所定の温度に加熱して気化させ、 生成膜を除去することを特徴とす る。
請求の範囲第 2項に記載の発明は、 被処理体の表面に形成された酸化膜を除去 するための処理装置であって、 活性ガス種を生成する活性ガス種生成装置とを有 し、 被処理体の表面に形成された酸化膜に、 活性ガス種を低温状態で反応させて 生成膜を形成する第 1の処理室と、 被処理体を加熱する加熱手段を有し、 この加 熱手段で被処理体の表面に形成された生成膜を所定の温度に加熱して気化させ、 生成膜を除去する第 2の処理室と、 これら第 1の処理室と第 2の処理室との間で 被処理体を搬送する搬送手段と、 を備えたことを特徴とする。
請求の範囲第 3項に記載の発明は、 活性ガス種は、 N F 3ガスの活性ガス種で あることを特徴とする。
請求の範囲第 4項に記載の発明は、 遮蔽板には、 この遮蔽板を冷却する冷却手 段が設けられていることを特徴とする。
請求の範囲第 5項に記載の発明は、 搬送手段は、 第 1の処理室と第 2の処理室 に接続されるとともに内部が非反応性雰囲気になされた搬送室内に設けられてい ることを特徴とする。
請求の範囲第 6項に記載の発明は、 活性ガス種生成装置は、 プラズマ形成部を 有するプラズマ形成管と、 このプラズマ形成管内に N 2ガスと H 2ガスを供給 するプラズマガス導入部と、 プラズマ形成管内からダウンフローする活性ガス種 に N F 3ガスを添加する N F 3ガス供給部とを備えていることを特徴とする。 請求の範囲第 7項に記載の発明は、 プラズマ形成部は、 マイクロ波を発生する マイクロ波発生源と、 発生したマイクロ波をプラズマ形成管内へ導入する導波管 とよりなることを特徴とする。
請求の範囲第 8項に記載の発明は、 被処理体を収納する処理容器と、 この処理 容器の外部に設けられ被処理体を加熱する加熱手段と、 この加熱手段と被処理体 との間の処理容器に設けられた透過窓と、 被処理体と透過窓との間に挿抜可能に 設けられた遮蔽板とを有する処理装置を用いて、 被処理体の表面に形成された酸 化膜を除去するための処理方法であって、 遮蔽板を閉状態にして透過窓からの放 射熱を遮断した状態で、 被処理体の表面に形成された酸化膜に、 活性ガス種を低 温状態で反応させて生成膜を形成し、 その後、 遮蔽板を閧状態にして、 加熱手段 からの放射熱を透過窓を通して生成膜に加え、 所定の温度に加熱して気化させ、 生成膜を除去することを特徴とする。
請求の範囲第 9項に記載の発明は、 被処理体の表面に形成された酸化膜を除去 する処理方法であって、 第 1の処理室において、 被処理体の表面に形成された酸 化膜に活性ガス種を低温状態で反応させて生成膜を形成する工程と、 生成膜が形 成された被処理体を前記第 1の処理室から第 2の処理室へ搬送する工程と、 第 2 の処理室において、 被処理体の表面に形成された生成膜を所定の温度に加熱して 気化させ、 生成膜を除去する工程とを有することを特徴とする。 図面の簡単な説明
図 1は、 本発明の第 1の実施の形態の処理装置を示す構成図である。
図 2は、 図 1に示す処理装置の可動シャツ夕を示す I I― I I線に沿う概略平 面図である。
図 3は、 図 2中 I I I— I I I線に沿う概略断面図である。 図 4は、 可動シャツ夕の他の例を示す概略平面図である。
図 5は、 本発明の第 2の実施の形態の処理装置を示す構成図である。 発明を実施するための最良の形態
以下、 本発明に係る処理装置を実施するための最良の形態を図面を参照して説 明する。
図 1ないし図 3は、 処理装置の第 1の実施の形態を示す構成図である。 図 1に おいて、 この処理装置 1 2は、 N 2ガスと H 2ガスの混合ガスをプラズマにより 活性化するプラズマ形成管 1 4と、 被処理体である半導体ウェハ Wに対して、 酸 化膜、 特に自然酸化膜 (大気中の酸素や洗浄液等との接触により意図しないで形 成された酸化膜) を除去するための所定の表面処理を行なう処理容器 1 6とを有 している。
この処理容器 1 6は、 アルミニウムにより円筒体状に成形されており、 この処 理容器 1 6内には、 上下動可能な支持部材 1 8により支持された石英製の載置台 2 0が設けられている。 処理容器 1 6の底部の周縁部には、 排気口 2 2が設けら れ、 処理容器 1 6内を真空引き可能としている。 また、 載置台 2 0の下方の処理 容器 1 6底部には照射口 2 6が形成されており、 この照射口 2 6には、 石英製の 透過窓 2 8が気密に設けられている。 この透過窓 2 8の下方には、 上記載置台 2 0を下面側から加熱するためのハロゲンランプ等よりなる多数の加熱ランプ 3 6 が設けられており、 この加熱ランプ 3 6から放出される加熱用の光線が透過窓 2 8を透過してウェハ Wの裏面に入射するようになっている。
一方、 プラズマ形成管 1 4は、 例えば石英により管状に成形されており、 上記 処理容器 1 6の天井部に開口するとともに、 この処理容器 1 6に起立させた状態 で気密に取り付けられている。 このプラズマ形成管 1 4の上端には、 この管内に N 2ガスと H 2ガスよりなるプラズマガスを導入するプラズマガス導入部 4 4 が設けられる。 このプラズマ導入部 4 4は、 プラズマ形成管 1 4内に挿通された 導入ノズル 4 6を有しており、 この導入ノズル 4 6にはガス通路 4 8が連結され ている。 このガス通路 4 8には、 それそれマスフ口一コントローラのごとき流量 制御器 5 0を介して N 2ガスを充填した N 2ガス源 5 2及び H 2ガスを充填し た H 2ガス源 5 4がそれそれ接続されている。
また、 上記導入ノズル 4 6の真下には、 プラズマ形成部 5 6が設けられている。 このプラズマ形成部 5 6は、 2 . 4 5 G H zのマイクロ波を発生するマイクロ波 発生源 5 8と、 上記プラズマ形成管 1 4に設けた例えばェベンソン型の導波管等 のマイクロ波供給器 6 0よりなり、 上記マイクロ波発生源 5 8で発生したマイク 口波を矩形導波管 6 2を介して上記マイクロ波供給器 6 0へ供給するようになつ ている。 そして、 この供給されたマイクロ波によりプラズマ形成管 1 4内にブラ ズマを立て、 H 2ガスと N 2ガスの混合ガスを活性化し、 このダウンフローを 形成し得るようになつている。
上記プラズマ形成管 1 4の下端部である流出口 6 4には、 これに連通させて、 下方向へ傘状に広がった石英製の覆い部材 6 6が設けられており、 載置台 2 0の 上方を覆ってガスを効率的にウェハ W上に流下させるようになつている。 そして、 この流出口 6 4の直下には、 N F 3ガスを供給するための N F 3ガス供給部 6 8 が設けられる。 この N F 3ガス供給部 6 8は、 石英製のリング状のシャワーへ ッド 7 0を有し、 このシャワーへッド 7 0には多数のガス孔 7 2が形成されてい る。 このシャワーヘッド 7 0は、 連通管 7 4、 ガス通路 7 6、 流量制御器 7 8を 介して N F 3ガスを充填する N F 3ガス源 8 0に接続されている。
このような構成において、 載置台 2 0と透過窓 2 8との間には、 可動シャツ夕 1 0 1が設けられている。 この可動シャツ夕 1 0 1は、 図 2及び図 3に示すよう なものであって、 透過窓 2 8を覆うように回動可能に配設された遮蔽板 1 0 3を 有している、 この遮蔽板 1 0 3には、 この遮蔽板 1 0 3を回動させる回動軸 1 0 5が設けられ、 この回動軸 1 0 5は、 処理容器 1 6の外壁 1 0 7を貫通して配設 されている。 この回動軸 1 0 5と外壁 1 0 Ίとの間には、 この回動軸 1 0 5と外 壁 1 0 7との間を回動自在かつ気密に保持する磁性流体シール 1 0 9が設けられ ている。 この回動軸 1 0 5には、 軸側ギア 1 1 1が設けられており、 この軸側ギ ァ 1 1 1には、 モ一夕側ギア 1 1 3を介して駆動モ一夕 1 1 5が設けられている。 そして、 駆動モー夕 1 1 5を作動させることによって、 軸側ギア 1 1 1とモ一 夕側ギア 1 1 3を介して遮蔽板 1 0 3を回動させ、 図 2に示すような開位置と図 3に示すような閉位置に位置せしめることができるようになつている。 また、 遮蔽板 1 0 3および回動軸 1 0 5の内部には冷媒通路 1 1 7が形成され ている。 この冷媒通路 1 1 7は、 回動軸 1 0 5の下端部から処理容器 1 6の外部 に伸び、 処理容器 1 6外部に設けられた冷媒循環手段 1 1 9に接続されている。 そして、 この冷媒循環手段 1 1 9によって冷媒通路 1 1 7に水等の冷媒を流すこ とによって、 遮蔽板 1 0 3を冷却するようになっている。 このようにすることに より、 透過窓 2 8からの輻射熱が遮蔽板 1 0 3に到達し遮蔽板 1 0 3の温度が上 昇するのを防止することができ、 したがって遮蔽板 1 0 3からの輻射熱がウェハ Wに到達し、 ウェハの温度が上昇するのを防止することができる。
—方、 図 4は、 他の可動シャツ夕 1 2 1の例を示す図である。 この可動シャツ 夕 1 2 1は、 透過窓 2 8をおおう遮蔽板 1 2 3を有している。 この遮蔽板 1 2 3 には、 2つの駆動軸 1 2 5、 1 2 5が接続されており、 この駆動軸 1 2 5, 1 2 5の他端には、 油圧シリンダ 1 2 7のビストンロッドが連結されている。 また、 駆動軸 1 2 5が処理容器 1 6の外壁を 1 2 9を貫通する部分には、 この駆動軸 1 2 5と外壁 1 2 9との間に磁性流体シール 1 3 1が設けられており、 駆動軸 1 2 5と外壁 1 2 9との間を気密に維持しつつ駆動軸を外壁に対して移動できるよう になっている。 そして、 油圧シリンダ 1 2 7を作動させることによって、 遮蔽板 1 2 3を、 開位置と閉位置に位置せしめることができるようになつている。 この場合においても、 図 3に示す場合と同様に、 遮蔽板 1 2 3および駆動軸 1 2 5の内部に冷媒通路を形成し、 処理容器 1 6の外部に位置する冷媒通路の端部 に、 処理容器 1 6の外部に設けた冷媒循環手段を接続して、 遮蔽板 1 2 3を冷却 可能に構成することもできる。 このようすれば、 遮蔽板 1 2 3からの輻射熱によ るウェハ Wの温度上昇を抑制することができる。
次に、 以上のように構成された装置を用いて行なわれる自然酸化膜の除去方法 について説明する。 まず、 被処理体である半導体ウェハ Wを、 図示しないゲート バルブを介して処理容器 1 6内に導入し、 これを載置台 2 0上に載置する。 この ウェハ Wには、 例えば前段階でコンタクトホール等が形成されており、 その底部 の表面に自然酸化膜が発生している。
ウェハ Wを処理容器 1 6内に搬入したならば、 処理容器 1 6内を密閉し、 内部 を真空引きする。 そして、 N 2ガス源 5 2及び H 2ガス源 5 4より N 2ガス及 び H2ガスをそれそれ、 所定の流量でプラズマガス導入部 44よりプラズマ形 成管 14内へ導入する。 これと同時に、 マイクロ波形成部 56のマイクロ波発生 源 58より 2. 45 GHzのマイクロ波を発生し、 これをマイクロ波供給器 60 へ導いて、 これよりプラズマ形成管 14内へ導入する。 これにより、 N2ガス と H 2ガスはマイクロ波によりプラズマ化されると共に活性化され、 活性ガス 種が形成される。 この活性ガス種は処理容器 16内の真空引きによりダウンフロ 一を形成してプラズマ形成管 14内を流出口 64に向けて流下することになる。 一方、 NF 3ガス供給部 68のリング状のシャワーヘッ ド 70からは、 NF3 ガス源 80より供給された NF 3ガスが N 2ガスと H 2ガスよりなる混合ガス のダウンフローの活性ガス種に添加される。 この結果、 添加された NF 3ガスも ダウンフローの活性ガス種により活性化されることになる。 このように NF 3ガ スも活性ガス化され、 上記したダウンフローの活性ガス種と相まってウェハ の 表面の自然酸化膜と反応し、 S i、 N、 H、 Fの混合した生成膜を形成すること になる。
この処理は低温で反応が促進されるため、 この処理中はウェハ Wは加熱されて はならず、 室温の状態で生成膜を形成する。
ここで、 この処理中は、 可動シャツ夕 103は閉状態になされている。 これは、 前回の加熱処理中に加熱された透過窓 28からの輻射熱がウェハ Wに到達し、 ゥ ェハの温度が上昇するのを防止するためである。
この時のプロセス条件は、 ガスの流量に関しては、 H2、 NF3、 N2が、 そ れそれ 10 s c cm、 150 s c cm、 1400 s c c mである。 プロセス圧力 は 4Torr、 プラズマ電力は 400W、 プロセス時間は 1分である。 このよう にして、 ウェハ表面に自然酸化膜と反応した生成膜を形成する。 この場合、 載置 台 20の上方は、 傘状の覆い部材 66により覆われているのでダウンフローの活 性ガス種の分散が抑制されて、 これが効率的にウェハ面上に流下し、 効率的に生 成膜を形成することができる。
このように生成膜の形成が完了したならば、 H2、 NF 3, N 2のそれぞれの ガスの供給を停止すると共に、 マイクロ波発生源 58の駆動も停止し、 処理容器 16内を真空引きして残留ガスを排除する。 その後、 可動シャツ夕 103を開状 態に位置せしめ、 加熱ランプ 3 6を点灯させてウェハ Wを所定の温度、 例えば 1 0 0 °C以上に加熱する。 この加熱により、 上記生成膜は昇華 (気化) する。 これ により、 ウェハ Wの自然酸化膜が除去されてウェハ表面に S i面が現れることに なる。 この時のプロセス条件は、 プロセス圧力が 1 m T o r r以下、 プロセス時 間は 2分程度である。
以上説明したように、 この処理装置にあっては、 ウェハ Wと透過窓 2 8との間 に、 挿抜可能な可動シャツ夕 1 0 1を設けているから、 活性化された N F 3ガス がゥヱハ表面の自然酸化膜と反応し、 S i、 N、 H、 Fの混合した生成膜を形成 する、 いわゆる低温処理時に、 前回の加熱処理時に加熱された透過窓 2 8からの 輻射熱によって、 ウェハ Wが加熱されるのを防止することができる。 このため、 複数のウェハについて、 低温処理と加熱処理を順次繰り返し行う場合に、 低温処 理中に前回の加熱処理による輻射熱でゥェハ加熱されてしまうことを防止するこ とができる。 従って、 低温処理と加熱処理とを連続的に間隔を置くことなく行う ことができ、 酸化膜除去作業を効率良く行うことができる。
また、 この処理装置の可動シャツ夕にあっては、 処理容器外に配設されたモー 夕 1 1 5と処理容器内の遮蔽板 1 0 3とを磁性流体シール 1 0 9でシールされた 回転軸 1 0 5で連結しているから、 駆動源を処理容器内に設ける必要がなく、 従 つて処理容器を小型にすることができるとともに、 汚染を防止することができる。 このような作用効果は、 図 4に示す往復動型の可動シャツ夕 1 2 1においても同 ¾に する。
図 5は、 本発明の第 2の実施の形態を示すものである。 この処理装置 2 0 1は、 低温処理室と加熱処理室をそれそれ別に備えていることを特徴としている。 この 処理装置 2 0 1は、 中央部に搬送室 2 0 3を有している。 この搬送室 2 0 3には、 ウェハ搬送用の搬送装置が設けられている。 この搬送室 2 0 3の内部は、 非反応 性雰囲気、 例えば真空になされており、 ウェハ Wの搬送中に、 ウェハ Wに自然酸 化膜が発生することを抑制することができる。 この搬送室 2 0 3には、 被処理ゥ ェハを搬送室 2 0 3内に搬入するためのロードロック室 2 0 5が設けられている。 一方、 前記搬送室 2 0 3のロードロック室 2 0 5と反対の側には、 2つの低温 処理室 2 0 7、 2 0 7がそれそれ設けられている。 この低温処理室 2 0 7は、 図 1に示す処理装置 1 2から可動シャツ夕 1 0 1と加熱ランプ 3 6を取り除いたも のである。 この場合、 処理容器 1 6の底部が気密に塞がれる必要はあるが、 処理 容器 1 6の底部を塞く、ための部材が、 図 1の場合の透過窓 2 8のように光透過性 を有する必要はない。 従って、 図 1の場合の透過窓 2 8に代えて、 例えばアルミ ニゥム板で処理容器 1 6の底部を塞ぐようにしてもよい。 この低温処理室 2 0 7 では、 活性化された N F 3ガスがウェハ表面の自然酸化膜と反応し、 S i、 N、 H、 Fの混合した生成膜を形成する。
また、 搬送室 2 0 3には、 加熱室 2 0 9が設けられている。 この加熱室 2 0 9 の内部には、 加熱手段、 例えば公知の抵抗加熱式ステージヒ一夕が設けられ、 こ のステージヒー夕によりウェハ Wを加熱することができる。 この加熱室 2 0 9で は、 低温処理後のウェハ Wを所定の温度、 例えば 1 0 0 °C以上に加熱し、 この加 熱により上記生成膜は昇華 (気化) する。 これにより、 ウェハ Wの自然酸化膜が 除去される。
さらに、 搬送室 2 0 3には、 冷却室 2 1 1が設けられている。 この冷却室 2 1 1は、 加熱処理後のウェハを冷却するためのものである。 処理後のウェハは、 樹 脂製のカセットに収納されて搬出されることになつているが、 ウェハが高温のま まだと樹脂製カセットを痛めるおそれがある。 このため、 カセットへ収納する前 にウェハを冷却するようにしている。
このような処理装置 2 0 1において、 自然酸化膜が表面に形成された被処理ゥ ェハは、 ロードロック室 2 0 5から搬送室 2 0 3へ搬入される。 ついで、 このゥ ェハは、 低温処理室 2 0 7に搬送され、 ここにおいていわゆる低温処理を施され る。 ここで、 この処理装置 2 0 1にあっては、 低温処理室 2 0 7に対して加熱室 2 0 9は別に設けられているから、 前回の加熱処理中の熱が残存して低温処理に 悪影響を及ぼすのを防止することができる。 その後、 被処理ウェハは加熱室 2 0 9に送られる。 ここで、 低温処理後のウェハ Wを所定の温度、 例えば 1 0 0 °C以 上に加熱し、 この加熱により上記生成膜は昇華 (気化) する。 これにより、 ゥェ ハ Wの自然酸化膜が除去される。 その後、 この加熱されたウェハは、 冷却室 2 1 1に送られる。 ゥヱハは、 ここで冷却されてから、 カセットに収納されて搬出さ れる。 従って、 高温のままのウェハが樹脂製カセッ トを痛めるおそれを防止する ことができる。
以上説明したように、 この処理装置 2 0 1にあっては、 低温処理室 2 0 7と加 熱処理室 2 0 9がそれそれ別に設けられているから、 活性化された N F 3ガスが ウェハ表面の自然酸化膜と反応し、 S i、 N、 H、 Fの混合した生成膜を形成す る、 いわゆる低温処理時に、 加熱処理の影響によってウェハが加熱されるのを防 止することができる。 従って、 低温処理と加熱処理とを連続的に間隔を置くこと なく行うことができ、 従って酸化膜除去作業を効率良く行うことができる。
本発明にあっては、 被処理体と透過窓との間に挿抜可能に遮蔽板を設けている。 従って、 遮蔽板を閉状態にして透過窓からの放射熱を遮断し、 低温状態で酸化膜 に活性ガス種を反応させることができる。 また、 本発明にあっては、 酸化膜に活 性ガス種を反応させる低温処理とその後の加熱処理とを別の室で行っている。 従 つて、 低温処理と加熱処理とを連続して行うことができ、 酸化膜除去作業を効率 的に行うことができる。

Claims

請 求 の 範 囲
1 . 被処理体の表面に形成された酸化膜を除去するための処理装置であって、 被処理体を収納する処理容器と、
活性ガス種を生成する活性ガス種生成装置と、
前記処理容器の外部に設けられ前記被処理体を加熱する加熱手段と、
この加熱手段と前記被処理体との間の前記処理容器に設けられた透過窓であつ て、 前記処理容器の内外を気密に遮蔽するとともに前記加熱手段からの加熱用の エネルギを透過する透過窓と、
前記被処理体と前記透過窓との間に挿抜可能に設けられた遮蔽板とを備え、 前記遮蔽板を閉状態にして前記透過窓からの放射熱を遮断した状態で、 被処理 体の表面に形成された酸化膜に、 前記活性ガス種を低温状態で反応させて生成膜 を形成し、
その後、 前記遮蔽板を閧状態にして、 前記加熱手段からの放射熱を前記透過窓 を通して前記生成膜に加え、 所定の温度に加熱して気化させ、 前記生成膜を除去 する処理装置。
2 . 被処理体の表面に形成された酸化膜を除去するための処理装置であって、 活性ガス種を生成する活性ガス種生成装置を有し、 被処理体の表面に形成され た酸化膜に、 前記活性ガス種を低温状態で反応させて生成膜を形成する第 1の処 理室と、
前記被処理体を加熱する加熱手段を有し、 この加熱手段で前記被処理体の表面 に形成された生成膜を所定の温度に加熱して気化させ、 前記生成膜を除去する第
2の処理室と、
これら第 1の処理室と第 2の処理室との間で前記被処理体を搬送する搬送手段 と、
を備えた処理装置。
3 . 前記活性ガス種は、 N F 3ガスの活性ガス種である請求の範囲第 1項又 は第 2項のいずれかに記載の処理装置。
4 . 前記遮蔽板には、 この遮蔽板を冷却する冷却手段が設けられている請求 の範囲第 1項に記載の処理装置。
5 . 前記搬送手段は、 前記第 1の処理室と前記第 2の処理室に接続されると ともに内部が非反応性雰囲気になされた搬送室内に設けられている請求の範囲第 2項に記載の処理装置。
6 . 前記活性ガス種生成装置は、 プラズマ形成部を有するプラズマ形成管と、 このプラズマ形成管内に N 2ガスと H 2ガスを供給するプラズマガス導入部と、 前記ブラズマ形成管内からダウンフロ一する活性ガス種に N F 3ガスを添加す る N F 3ガス供給部とを備えている請求の範囲第 1項又は第 2項に記載の処理
7 . 前記プラズマ形成部は、 マイクロ波を発生するマイクロ波発生源と、 発 生したマイクロ波を前記プラズマ形成管内へ導入する導波管とよりなる請求の範 囲第 6項に記載の処理装置。
8 . 被処理体を収納する処理容器と、 この処理容器の外部に設けられ前記被 処理体を加熱する加熱手段と、 この加熱手段と前記被処理体との間の前記処理容 器に設けられた透過窓と、 前記被処理体と前記透過窓との間に挿抜可能に設けら れた遮蔽板とを有する処理装置を用いて、 被処理体の表面に形成された酸化膜を 除去するための処理方法であって、
前記遮蔽板を閉状態にして前記透過窓からの放射熱を遮断した状態で、 前記被 処理体の表面に形成された酸化膜に、 活性ガス種を低温状態で反応させて生成膜 を形成し、
その後、 前記遮蔽板を閧状態にして、 前記加熱手段からの放射熱を前記透過窓 を通して前記生成膜に加え、 所定の温度に加熱して気化させ、 前記生成膜を除去 する処理方法。
9 . 被処理体の表面に形成された酸化膜を除去する処理方法であって、 第 1の処理室において、 被処理体の表面に形成された酸化膜に活性ガス種を低 温状態で反応させて生成膜を形成する工程と、
前記生成膜が形成された被処理体を前記第 1の処理室から第 2の処理室へ搬送 する工程と、
前記第 2の処理室において、 前記被処理体の表面に形成された前記生成膜を所 定の温度に加熱して気化させ、 前記生成膜を除去する工程と、
を具備する処理方法。
PCT/JP2000/005410 1999-08-13 2000-08-11 Dispositif et procede de traitement WO2001013419A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/002,788 US20050150455A1 (en) 1999-08-13 2004-12-03 Processing apparatus and processing method
US11/980,612 US20080113104A1 (en) 1999-08-13 2007-10-31 Processing apparatus and processing method
US11/980,613 US8398813B2 (en) 1999-08-13 2007-10-31 Processing apparatus and processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/229338 1999-08-13
JP22933899A JP4057198B2 (ja) 1999-08-13 1999-08-13 処理装置及び処理方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US66776800A Continuation 1999-08-13 2000-09-22

Publications (1)

Publication Number Publication Date
WO2001013419A1 true WO2001013419A1 (fr) 2001-02-22

Family

ID=16890603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/005410 WO2001013419A1 (fr) 1999-08-13 2000-08-11 Dispositif et procede de traitement

Country Status (4)

Country Link
US (3) US20050150455A1 (ja)
JP (1) JP4057198B2 (ja)
KR (1) KR100666018B1 (ja)
WO (1) WO2001013419A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7604701B2 (en) * 2003-07-14 2009-10-20 Tokyo Electron Limited Method and apparatus for removing external components from a process chamber without compromising process vacuum
US20180149427A1 (en) * 2013-10-17 2018-05-31 Triglia Technologies, Inc. System and Method of Removing Moisture from Fibrous or Porous Materials Using Microwave Radiation and RF Energy

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100338768B1 (ko) * 1999-10-25 2002-05-30 윤종용 산화막 제거방법 및 산화막 제거를 위한 반도체 제조 장치
JP2005093909A (ja) * 2003-09-19 2005-04-07 Tokyo Electron Ltd 基板処理方法及び基板処理装置
US7780793B2 (en) * 2004-02-26 2010-08-24 Applied Materials, Inc. Passivation layer formation by plasma clean process to reduce native oxide growth
US20050230350A1 (en) 2004-02-26 2005-10-20 Applied Materials, Inc. In-situ dry clean chamber for front end of line fabrication
JP2007012734A (ja) * 2005-06-29 2007-01-18 Matsushita Electric Ind Co Ltd プラズマエッチング装置及びプラズマエッチング方法
KR100691137B1 (ko) * 2005-12-26 2007-03-12 동부일렉트로닉스 주식회사 이미지 센서의 제조 방법
US7994002B2 (en) 2008-11-24 2011-08-09 Applied Materials, Inc. Method and apparatus for trench and via profile modification
KR101297926B1 (ko) * 2009-03-26 2013-08-19 가부시키가이샤 알박 진공 처리 방법 및 진공 처리 장치
US8617411B2 (en) * 2011-07-20 2013-12-31 Lam Research Corporation Methods and apparatus for atomic layer etching
US9499905B2 (en) * 2011-07-22 2016-11-22 Applied Materials, Inc. Methods and apparatus for the deposition of materials on a substrate
JP5507654B2 (ja) * 2012-11-30 2014-05-28 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
CN103745924B (zh) * 2013-12-24 2016-08-17 中国电子科技集团公司第十六研究所 一种高温超导Lange耦合器的制备方法
JP6230954B2 (ja) * 2014-05-09 2017-11-15 東京エレクトロン株式会社 エッチング方法
US9793104B2 (en) 2015-01-29 2017-10-17 Aixtron Se Preparing a semiconductor surface for epitaxial deposition
JP6325067B2 (ja) * 2016-12-15 2018-05-16 東京エレクトロン株式会社 基板乾燥方法及び基板処理装置
JP6356207B2 (ja) * 2016-12-15 2018-07-11 東京エレクトロン株式会社 基板乾燥方法及び基板処理装置
TWI616555B (zh) * 2017-01-17 2018-03-01 漢民科技股份有限公司 應用於半導體設備之噴氣裝置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432230A (ja) * 1990-05-29 1992-02-04 Tokyo Electron Ltd ドライ洗浄装置
JPH06349791A (ja) * 1993-06-11 1994-12-22 Kawasaki Steel Corp 薄膜形成方法
EP0887845A2 (en) * 1997-06-04 1998-12-30 Tokyo Electron Limited Processing method and apparatus for removing oxide film
US5884009A (en) * 1997-08-07 1999-03-16 Tokyo Electron Limited Substrate treatment system
JP2000208498A (ja) * 1998-11-11 2000-07-28 Tokyo Electron Ltd 表面処理方法及びその装置

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3716424A (en) * 1970-04-02 1973-02-13 Us Navy Method of preparation of lead sulfide pn junction diodes
US4123663A (en) * 1975-01-22 1978-10-31 Tokyo Shibaura Electric Co., Ltd. Gas-etching device
US4192706A (en) * 1975-01-22 1980-03-11 Tokyo Shibaura Electric Co., Ltd. Gas-etching device
US4391617A (en) * 1978-09-15 1983-07-05 Way Peter F Process for the recovery of vaporized sublimates from gas streams
US4572956A (en) * 1982-08-31 1986-02-25 Tokyo Shibaura Denki Kabushiki Kaisha Electron beam pattern transfer system having an autofocusing mechanism
US4599869A (en) * 1984-03-12 1986-07-15 Ozin Geoffrey A Cryogenic deposition of catalysts
KR920004171B1 (ko) * 1984-07-11 1992-05-30 가부시기가이샤 히다찌세이사꾸쇼 드라이에칭장치
JPH0766910B2 (ja) * 1984-07-26 1995-07-19 新技術事業団 半導体単結晶成長装置
US4687544A (en) * 1985-05-17 1987-08-18 Emergent Technologies Corporation Method and apparatus for dry processing of substrates
US4689112A (en) * 1985-05-17 1987-08-25 Emergent Technologies Corporation Method and apparatus for dry processing of substrates
US4699689A (en) * 1985-05-17 1987-10-13 Emergent Technologies Corporation Method and apparatus for dry processing of substrates
US4863561A (en) * 1986-12-09 1989-09-05 Texas Instruments Incorporated Method and apparatus for cleaning integrated circuit wafers
US4913929A (en) * 1987-04-21 1990-04-03 The Board Of Trustees Of The Leland Stanford Junior University Thermal/microwave remote plasma multiprocessing reactor and method of use
JPS6474717A (en) 1987-09-17 1989-03-20 Matsushita Electric Ind Co Ltd Formation of thin film
JP2637121B2 (ja) 1987-11-26 1997-08-06 株式会社東芝 光励起反応装置
US4952273A (en) * 1988-09-21 1990-08-28 Microscience, Inc. Plasma generation in electron cyclotron resonance
US4952299A (en) * 1988-10-31 1990-08-28 Eaton Corporation Wafer handling apparatus
US5030319A (en) * 1988-12-27 1991-07-09 Kabushiki Kaisha Toshiba Method of oxide etching with condensed plasma reaction product
JP2981243B2 (ja) 1988-12-27 1999-11-22 株式会社東芝 表面処理方法
US5076205A (en) * 1989-01-06 1991-12-31 General Signal Corporation Modular vapor processor system
US4988644A (en) * 1989-05-23 1991-01-29 Texas Instruments Incorporated Method for etching semiconductor materials using a remote plasma generator
JPH03155621A (ja) 1989-07-12 1991-07-03 Toshiba Corp ドライエッチング方法
US5028724A (en) * 1990-03-30 1991-07-02 Air Products And Chemicals, Inc. Synthesis of volatile fluorinated and non-fluorinated metal-beta-ketonate and metal-beta-ketoiminato complexes
US5041719A (en) * 1990-06-01 1991-08-20 General Electric Company Two-zone electrical furnace for molecular beam epitaxial apparatus
US5223453A (en) * 1991-03-19 1993-06-29 The United States Of America As Represented By The United States Department Of Energy Controlled metal-semiconductor sintering/alloying by one-directional reverse illumination
JP3084497B2 (ja) * 1992-03-25 2000-09-04 東京エレクトロン株式会社 SiO2膜のエッチング方法
JP3148004B2 (ja) * 1992-07-06 2001-03-19 株式会社東芝 光cvd装置及びこれを用いた半導体装置の製造方法
US5282925A (en) * 1992-11-09 1994-02-01 International Business Machines Corporation Device and method for accurate etching and removal of thin film
DE69304038T2 (de) * 1993-01-28 1996-12-19 Applied Materials Inc Vorrichtung für ein Vakuumverfahren mit verbessertem Durchsatz
JP2804700B2 (ja) 1993-03-31 1998-09-30 富士通株式会社 半導体装置の製造装置及び半導体装置の製造方法
US5501740A (en) * 1993-06-04 1996-03-26 Applied Science And Technology, Inc. Microwave plasma reactor
US5616206A (en) * 1993-06-15 1997-04-01 Ricoh Company, Ltd. Method for arranging conductive particles on electrodes of substrate
JP2933469B2 (ja) 1993-07-12 1999-08-16 大日本スクリーン製造株式会社 熱処理装置
US5350480A (en) * 1993-07-23 1994-09-27 Aspect International, Inc. Surface cleaning and conditioning using hot neutral gas beam array
US5616208A (en) * 1993-09-17 1997-04-01 Tokyo Electron Limited Vacuum processing apparatus, vacuum processing method, and method for cleaning the vacuum processing apparatus
JPH08186081A (ja) 1994-12-29 1996-07-16 F T L:Kk 半導体装置の製造方法及び半導体装置の製造装置
JPH08193271A (ja) * 1995-01-13 1996-07-30 Aneruba Kk その場クリーニング処理後の予備的処理完了点検出装置および完了点検出法
JP3553204B2 (ja) * 1995-04-28 2004-08-11 アネルバ株式会社 Cvd装置
US6002109A (en) * 1995-07-10 1999-12-14 Mattson Technology, Inc. System and method for thermal processing of a semiconductor substrate
US5830272A (en) * 1995-11-07 1998-11-03 Sputtered Films, Inc. System for and method of providing a controlled deposition on wafers
US5728260A (en) * 1996-05-29 1998-03-17 Applied Materials, Inc. Low volume gas distribution assembly and method for a chemical downstream etch tool
US5802439A (en) * 1997-02-19 1998-09-01 Lockheed Martin Idaho Technologies Company Method for the production of 99m Tc compositions from 99 Mo-containing materials
US6706334B1 (en) * 1997-06-04 2004-03-16 Tokyo Electron Limited Processing method and apparatus for removing oxide film
US5968279A (en) * 1997-06-13 1999-10-19 Mattson Technology, Inc. Method of cleaning wafer substrates
US6352593B1 (en) * 1997-08-11 2002-03-05 Torrex Equipment Corp. Mini-batch process chamber
US20030049372A1 (en) * 1997-08-11 2003-03-13 Cook Robert C. High rate deposition at low pressures in a small batch reactor
WO1999029923A1 (en) * 1997-12-05 1999-06-17 Tegal Corporation Plasma reactor with a deposition shield
FR2774460B1 (fr) * 1998-02-03 2000-03-24 Elf Aquitaine Procede de gestion d'une reaction thermochimique ou d'une adsorption solide-gaz
WO1999049101A1 (en) * 1998-03-23 1999-09-30 Mattson Technology, Inc. Apparatus and method for cvd and thermal processing of semiconductor substrates
US6300600B1 (en) * 1998-08-12 2001-10-09 Silicon Valley Group, Inc. Hot wall rapid thermal processor
JP2000124195A (ja) 1998-10-14 2000-04-28 Tokyo Electron Ltd 表面処理方法及びその装置
JP3631063B2 (ja) * 1998-10-21 2005-03-23 キヤノン株式会社 フッ化物の精製方法及びフッ化物結晶の製造方法
KR100605884B1 (ko) 1998-11-11 2006-08-01 동경 엘렉트론 주식회사 표면 처리 방법 및 장치
JP2000323487A (ja) * 1999-05-14 2000-11-24 Tokyo Electron Ltd 枚葉式熱処理装置
US6849328B1 (en) * 1999-07-02 2005-02-01 Ppg Industries Ohio, Inc. Light-transmitting and/or coated article with removable protective coating and methods of making the same
JP2001110785A (ja) 1999-10-12 2001-04-20 Tokyo Electron Ltd 処理方法
EP1654473B1 (de) 2003-08-06 2011-12-28 Continental Teves AG & Co. oHG Kraftfahrzeugbremse
TWM277007U (en) 2004-11-24 2005-10-01 Chin-Feng Wu Combination structure improvement of glasses frames and feet
TWM357424U (en) 2009-01-05 2009-05-21 Ace Pump Co Ltd Dual-use quantity control mechanism for powder and liquid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432230A (ja) * 1990-05-29 1992-02-04 Tokyo Electron Ltd ドライ洗浄装置
JPH06349791A (ja) * 1993-06-11 1994-12-22 Kawasaki Steel Corp 薄膜形成方法
EP0887845A2 (en) * 1997-06-04 1998-12-30 Tokyo Electron Limited Processing method and apparatus for removing oxide film
US5884009A (en) * 1997-08-07 1999-03-16 Tokyo Electron Limited Substrate treatment system
JP2000208498A (ja) * 1998-11-11 2000-07-28 Tokyo Electron Ltd 表面処理方法及びその装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7604701B2 (en) * 2003-07-14 2009-10-20 Tokyo Electron Limited Method and apparatus for removing external components from a process chamber without compromising process vacuum
US20180149427A1 (en) * 2013-10-17 2018-05-31 Triglia Technologies, Inc. System and Method of Removing Moisture from Fibrous or Porous Materials Using Microwave Radiation and RF Energy
US10533799B2 (en) * 2013-10-17 2020-01-14 Joseph P. Triglia, Jr. System and method of removing moisture from fibrous or porous materials using microwave radiation and RF energy

Also Published As

Publication number Publication date
JP4057198B2 (ja) 2008-03-05
US20080067147A1 (en) 2008-03-20
KR20020027529A (ko) 2002-04-13
US20050150455A1 (en) 2005-07-14
US8398813B2 (en) 2013-03-19
US20080113104A1 (en) 2008-05-15
JP2001053055A (ja) 2001-02-23
KR100666018B1 (ko) 2007-01-10

Similar Documents

Publication Publication Date Title
WO2001013419A1 (fr) Dispositif et procede de traitement
TWI455243B (zh) 基板處理設備及製造半導體裝置之方法
JP3230836B2 (ja) 熱処理装置
JP4131239B2 (ja) 高速熱処理の急速雰囲気切り替えシステムおよびその方法
KR100649461B1 (ko) 표면 처리 방법 및 장치
US8883653B2 (en) Substrate treatment method and substrate treatment apparatus
JP4750176B2 (ja) 表面処理方法及びその装置
US20060240680A1 (en) Substrate processing platform allowing processing in different ambients
JP2003347278A (ja) 基板処理装置、及び半導体装置の製造方法
JP2006229085A (ja) プラズマ処理装置、熱処理装置、処理システム、前処理装置及び記憶媒体
JP4124543B2 (ja) 表面処理方法及びその装置
JP2012023366A (ja) 窒化シリコンをエッチングするシステム及び方法
TWI719762B (zh) 成膜裝置
JP4124800B2 (ja) 表面処理方法及びその装置
JP5084525B2 (ja) 基板処理装置、及び基板処理方法
JP4003206B2 (ja) 熱処理装置および熱処理方法
JP4554097B2 (ja) 誘導結合プラズマ処理装置
JP2001007117A (ja) 処理装置及び処理方法
JP2000243719A (ja) ランプアニール方法とその装置
JPH1092754A (ja) 枚葉式の熱処理装置及び熱処理方法
JP4612063B2 (ja) 表面処理方法及びその装置
JP2000068218A (ja) 熱処理装置
JPH11100675A (ja) 気相成長方法
JPH07335632A (ja) 半導体処理装置及び方法
JPH10149993A (ja) 半導体製造装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 09667768

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020027001692

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020027001692

Country of ref document: KR

122 Ep: pct application non-entry in european phase