WO2001007501A1 - Composition de resine epoxyde et dispositif semi-conducteur - Google Patents

Composition de resine epoxyde et dispositif semi-conducteur Download PDF

Info

Publication number
WO2001007501A1
WO2001007501A1 PCT/JP2000/001448 JP0001448W WO0107501A1 WO 2001007501 A1 WO2001007501 A1 WO 2001007501A1 JP 0001448 W JP0001448 W JP 0001448W WO 0107501 A1 WO0107501 A1 WO 0107501A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
compound
resin composition
molecule
hydroxyl groups
Prior art date
Application number
PCT/JP2000/001448
Other languages
English (en)
French (fr)
Inventor
Hiromi Oki
Yoshiyuki Go
Sumiya Miyake
Yoshihito Akiyama
Original Assignee
Sumitomo Bakelite Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Company Limited filed Critical Sumitomo Bakelite Company Limited
Priority to US09/762,950 priority Critical patent/US6664344B1/en
Priority to DE60020516T priority patent/DE60020516T2/de
Priority to EP00907980A priority patent/EP1130041B1/en
Publication of WO2001007501A1 publication Critical patent/WO2001007501A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/688Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing phosphorus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to an epoxy resin composition having good curability and preservability and useful in the field of electronic and electric materials, and a semiconductor device using the same.
  • epoxy resins for the electronics and electronics fields have used curing accelerators such as phosphines, amines, imidazole compounds, nitrogen-containing heterocyclic compounds such as diazabicycloundecene, quaternary ammonium, phosphonium, or aluminum.
  • curing accelerators such as phosphines, amines, imidazole compounds, nitrogen-containing heterocyclic compounds such as diazabicycloundecene, quaternary ammonium, phosphonium, or aluminum.
  • Various compounds such as compounds have been used.
  • Hei 8-412 various organic acids and phosphonic acid are disclosed.
  • a latent hardening accelerator having a salt structure with muon is disclosed.
  • this phosphonium salt does not have a specific higher-order molecular structure, and the ion pair is relatively easily affected by the external environment. In the case of sealing materials, there is a problem that storage stability is reduced.
  • the present invention is useful in the field of electronic and electrical materials that achieves both fast curing and storage stability. It is an object of the present invention to provide a novel epoxy resin composition and a semiconductor device using the same.
  • the present invention provides a compound (A) having two or more epoxy groups in one molecule, a co-condensate (B) having two or more phenolic hydroxyl groups in one molecule, and a tetra-substituted phosphonium (X) And a compound (C) comprising a compound having two or more phenolic hydroxyl groups in one molecule (Y) and a compound having two or more phenolic hydroxyl groups in one molecule (Y) with a cooperating base,
  • An epoxide resin composition wherein the conjugate base is a fuoxide compound obtained by removing one hydrogen from the compound (Y) having two or more phenolic hydroxyl groups in one molecule, and
  • the semiconductor device is characterized in that the semiconductor device is sealed with a semiconductor device.
  • the present inventors have found that an epoxy resin composition having extremely excellent curability and storage stability can be obtained by using a salt structure in which a reactive active site is protected as a curing accelerator, and completed the present invention. I came
  • FIG. 1 is a 1 H—NMR chart of compound C 1 obtained in Synthesis Example 1.
  • FIG. 2 is a 1 H—NMR chart of compound C2 obtained in Synthesis Example 2.
  • the compound (A) having two or more epoxy groups in one molecule used in the present invention is not limited as long as it has two or more epoxy groups in one molecule.
  • bisphenol A type epoxy resin Bisphenol F type epoxy resin, brominated bisphenol type epoxy resin, biphenyl type epoxy resin, stilbene type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, alicyclic epoxy resin, glycidyl ester type Epoxy resin, glycidylamine epoxy resin, naphthalene epoxy resin, glycidyl ether compound of resin synthesized by condensation of carbonyl compound with naphthol, etc., 4,4,1-bis (1,2-epoxyethyl) diphenyl ether, 4, 4'-bis (1, 2-e poxicetil) bif Examples include glycidyl ether compounds of phenolic resins obtained by reacting enyl and dicyclopentadiene with phenols, and glycidyl ether compounds
  • a crystalline epoxy resin having a melting point of 50 to 150 ° C. is preferable.
  • Such a crystalline epoxy resin has a rigid structure such as a biphenyl-skeleton, a bisphenol skeleton, or a stilbene skeleton in a main chain, and is relatively low in molecular weight, and thus exhibits crystallinity.
  • Crystalline epoxy resin is a solid that crystallizes at room temperature, but rapidly melts to a low-viscosity liquid at temperatures above its melting point.
  • the melting point of the crystalline epoxy resin indicates the temperature at the top of the endothermic peak of crystal 1 ⁇ ⁇ when the temperature is raised from room temperature at a rate of 5 ° CZ using a differential scanning calorimeter.
  • the crystalline epoxy resin satisfying these conditions in particular, one or more selected from the general formulas (1) and (2) or a stilbene type epoxy resin represented by the general formula (3) and the general formula (4) ) Is preferred.
  • the substituent R 2 of the bisphenol type epoxy resin represented by (2) is a group or atom selected from a hydrogen atom, a chain or cyclic alkyl group of at most 6 carbon atoms, a fuunyl group, and a halogen. May be the same as or different from each other, and examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, a cyclohexyl group, a phenyl group, a chlorine atom, and a bromine atom. preferable.
  • General formula (1) is a group or atom selected from a hydrogen atom, a chain or cyclic alkyl group of at most 6 carbon atoms, a fuunyl group, and a halogen. May be the same as or different from each other, and examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, a cyclohexyl group,
  • the substituents R 3 to R 14 of the stilbene type epoxy resin represented by (3) and the general formula (4) are preferably selected from a hydrogen atom, a chain or cyclic alkyl group having at most 6 carbon atoms, and halogen.
  • Selected groups or atoms which may be the same or different, such as a hydrogen atom, a methyl group, an ethyl group, a propyl group, a butyl group, an amyl group, a hexyl group (each isomer ), A cyclohexyl group, a chlorine atom, a bromine atom, and the like.
  • a methyl group, an ethyl group, a propyl group, or a butyl group is preferable because of a low melt viscosity of the epoxy resin.
  • This type of epoxy resin is a mixture of a stilbene type epoxy resin of the general formula (3) and a stilbene type epoxy resin of the general formula (4).
  • the stilbene type epoxy resin of the general formula (3) and the general formula (4) ) Of the stilbene type epoxy resin has various structures depending on the type of the substituent, etc.
  • Each of the stilbene type epoxy resins of the general formulas (3) and (4) has one type of structure. Or a mixture of two or more structures.
  • stilbene type epoxy resin of the general formula (3) and the stilbene type epoxy resin of the general formula (4) may be performed as long as the melting point is reduced by mixing both compounds, and the mixing method is not particularly limited.
  • stilbene-type phenols which are the raw materials of stilbene-type epoxy resins, are mixed before glycidyl etherification, or both stilbene-type epoxy resins are melt-mixed. In each case, the melting point is adjusted so as to be 50 to 150 ° C.
  • Stilbene As the stilbene type epoxy resin represented by the general formula (3), 5-tert-butyl-4,4'-dihydroxy-1,2,3,5'-trimethyl is preferred from the viewpoint of availability, performance, and raw material price. Stilbene, glycidyl ether of 3-tert-butyl-4,4'dihydroxy-13 ', 5,5, -trimethylstilbene, is particularly preferred.
  • stilbene type epoxy resin represented by the general formula (4) 4,4, dihydroxy 3,3 ', 5,5'-tetramethylstilbene, 4,4' dihydroxy_3, Glycidyl etherified product of 3'-ditert-liptyl-6,6'-dimethylsynoleben, 4,4'dihydroxy_3,3'-di-tert-butyl-5,5'-dimethylstilbene is particularly preferred.
  • the co-condensate (B) having two or more phenolic hydroxyl groups in one molecule used in the present invention acts as a curing agent for the compound (A) having two or more epoxy groups in one molecule.
  • phenol resins and bisphenols which are co-condensation products of phenols and aldehydes or ketones
  • phenylene or diphenyl which is a co-condensation product of phenols and dimethoxyparaxylene.
  • a phenol aralkyl resin having a diene skeleton is included, and mononuclear resorcinol, catechol, etc.
  • phenol generally means that a hydrogen atom bonded to an aromatic ring is Since it is a compound substituted with a hydroxyl group, a co-condensation reaction product of a hydroxyl group-containing compound derived from a condensed polycyclic aromatic such as naphthol and a carbonyl compound is also included.
  • phenolic resins the number of hydroxyl groups in the molecule is small, so the water absorption of the cured product is low, and the molecule has appropriate flexibility, so that the reactivity in the curing reaction is good and the viscosity can be reduced. For this reason, phenol aralkyl resins are particularly preferred.
  • the ratio of the compound (A) having two or more epoxy groups in one molecule of the present invention to the co-condensate (B) having two or more phenolic hydroxyl groups in one molecule which acts as a curing agent Can be cured by adjusting the cocondensate (B) to an equivalent ratio of 0.5 to 2 equivalents, preferably 0.8 to 1.2 equivalents to 1 equivalent of the compound (A).
  • the properties, heat resistance and electrical properties of the cured product are better.
  • the molecular aggregate (C) used in the present invention comprises a tetra-substituted phosphonium (X), a compound (Y) having two or more phenolic hydroxyl groups in one molecule, and a compound (Y) having two or more phenolic hydroxyl groups in one molecule.
  • the substituent of the tetra-substituted phosphonium (X) which is one of the constituents is not limited at all, and the substituents may be the same or different.
  • a tetra-substituted phosphonium ion having a substituted or unsubstituted aryl or alkyl group as a substituent is preferable because it is stable against heat and hydrolysis.
  • tetrafenolinorephosphonium tetratrinolephosphonium, tetraethizolepheninephosphonium, tetramethoxphene / lephosphonium, tetranaphthine / lephosphonium, tetrabenzinolephosphonium, ethynolephenone / rephosphonium , N-butynoletrifenolinolephosphonium, 2-hydroxythietinoletrifenolinolephosphonium, trimethinolepheninolephosphonium, methinolecetinolefeninolephosphonium, methyldiarylphenylphosphonium, tetra-n-butylphosphonium An example can be shown.
  • Examples of the compound (Y) having two or more phenolic hydroxyl groups in one molecule, which is a component of the molecular aggregate (C) of the present invention, include a compound represented by the formula (5): Hydroxy-1,3,5-dimethylphenyl) methane (commonly known as tetramethylbisphenoleno F), 4,4, snolephonyldiphenol and the compound represented by the formula (6), for example, 4,4,1-isopropylidenediphenol (Commonly known as bisphenol; A), bis (4-hydroxyphenyl) methane, bis (2-hydroxyphenyl) methane, (2-hydroxyphenyl) (4-hydroxyphenyl) methane and their bis (4-hydroxyphenyl) methane (Droxyphenyl) methane, bis (2-hydroxyphenyl) methane, (2-hydroxyphenyl) (4-hydroxyphenyl) methane (Eg, bisphenol F-D, manufactured by Honshu Chemical Industry Co., Ltd.), 1,2-benz
  • the conjugate base as another component is a phenoxide type compound obtained by removing one hydrogen from the compound (Y).
  • R 15 represents CH 2 or C (CH 3 ) 2.
  • the molecular aggregate (C) of the present invention has a phosphonium dienoxide type salt in the structure as described above, it is different from the phosphonidum organic acid diazo salt type compound in the prior art.
  • a higher-order structure by hydrogen bonding surrounds ionic bonds.
  • the reactivity is controlled only by the ionic bond strength
  • the enclosing by the higher order structure of the anion at room temperature causes the active site to be activated.
  • the active sites are exposed due to the collapse of this higher-order structure at the molding stage, and so-called latency, which expresses reactivity, is imparted.
  • the molecular aggregate (C) which acts as a curing accelerator, comprises about 0.5 to 20 parts by weight of the total weight of the compound (A) and the cocondensate (B) of about 0.5 to 20 parts by weight. It is well-balanced in terms of compatibility, storage stability, and other properties.
  • the epoxy resin composition comprising the components (A), (B) and (C) of the present invention includes inorganic fillers such as silica powder, release agents such as carnauba wax, silane coupling agents, silicone oils and the like. Low stress agent, colorant such as carbon black etc. You can do this, but if you try to optimize it according to your application, you can do nothing.
  • the inorganic filler is used in an amount of 100 to 240 parts by weight based on 100 parts by weight of the total weight of the compounds (A) and (B). About 0.1 to 20 parts by weight of the release agent and the force coupling agent are suitable.
  • the epoxy resin composition of the present invention is obtained by mixing and heating and kneading the above components with a heating kneader, an extruder, a hot roll or the like.
  • the method for producing the molecular aggregate (C) of the present invention is not limited at all, but two typical methods can be mentioned.
  • the first is to react a tetra-substituted phosphonium tetra-substituted borate (Z) with a compound (Y) having two or more funonolic hydroxyl groups in one molecule at a high temperature, and then to further raise the boiling point to 60 ° C.
  • This is a method of performing a thermal reaction in a solvent of C or more.
  • the second is a method in which a compound (Y) having two or more phenolic hydroxyl groups in one molecule, an inorganic base or an organic base, and a tetra-substituted phosphonium halide are reacted.
  • the preceding reaction step is a reaction including a substitution reaction on boron.
  • the phenolic hydroxyl group of compound (Y) is deeply involved in this substitution reaction, and borate (Z) having four substituents on boron and compound having two or more phenolic hydroxyl groups in one molecule
  • the optimal value of the molar ratio with (Y) is uniquely determined.
  • n is an integer of 2 or more
  • the number of moles of the compound (Y) per 1 mole of the borate (Z) is less than lZn
  • the substitution reaction on boron is not performed sufficiently, and the thermal reaction in the latter solvent may not be performed sufficiently.
  • the number of moles of the compound (Y) per mole of the borate (Z) exceeds 4, it is considered that the compound (Y) added excessively cannot be completely removed and the properties of the molecular aggregate (C) deteriorate.
  • the reaction is optimally performed by setting the molar ratio of borate (Z) and compound (Y) so as to be within this range. ing.
  • This reaction can be monitored by the rate of phenyl substituent substitution on boron. For example, when tetraphenylphosphonium tetraphenylborate is used, the amount of benzene generated when the fuunyl group on boron is replaced with a funolic hydroxyl group can be monitored, and usually the theoretical amount If more than 80% by weight of benzene is generated, the reaction has sufficiently proceeded.
  • the type of the solvent used in the thermal reaction in the latter stage of the synthesis of the molecular aggregate (C) is not particularly limited as long as it has a boiling point of 60 ° C or more.
  • a single solvent having a boiling point of 60 ° C. or higher is preferable, and particularly, a commonly used alcohol solvent such as methanol, ethanol, propanol, and butanol is suitable.
  • the thermal reaction time in the solvent is desirably 1 hour or more, but this thermal reaction does not necessarily need to be a reflux reaction, and is carried out under conditions that can be heated to substantially 60 ° C or more. If so, it does not need to be refluxed. Due to the conditions described above, in this process, the reaction product is sufficiently diffused into the solvent, and components derived from boron and excess (Y) components are removed, and a molecular aggregate (C) is formed. . It is also possible that the solubility can be temporarily increased by heating the alcoholic solvent to dissolve the insoluble matter, and then re-precipitated to re-precipitate the desired molecular aggregate (C) by cooling again. This is an excellent point of this manufacturing method.
  • the second method of reacting a compound (Y) having two or more phenolic hydroxyl groups in one molecule, an inorganic base or an organic base with a tetra-substituted phosphonium halide will be described more specifically. .
  • Compound (Y) and an inorganic base or an organic base are dissolved in a solvent such as alcohol, and then a tetra-substituted phosphonium halide dissolved in an appropriate solvent is added and reacted. Removed as a solid by operation.
  • the inorganic base for example, sodium hydroxide, hydroxylating lime and the like can be mentioned.
  • the organic base include pyridine and triethylamine.
  • the substituent of the tetra-substituted phosphonium halide to be used is not limited at all, and the substituents may be the same or different.
  • replacement or Is preferably a tetra-substituted phosphonidion having an unsubstituted aryl group or an alkyl group as a substituent because it is stable against heat and hydrolysis.
  • tetrapheno-lephosphonium tetratri / lephosphonium, tetraeth / refeni / lephosphonium, tetramethoxyphenylphosphonium, tetranaphthylphosphon-em, tetrabenzylphosphon-em, ethynoletrifenolene-phosphonium, n- Butinoletriphenylenolephosphonium, 2-hydroxishethinoletrifenolinolephosphonium, trimethinolepheninolephosphonium, methylgetylpheninolephosphonium, methyldiphenylphosphonium, methyldiphenylphosphonium, tetra- ⁇ -butylphosphonium and the like can be exemplified.
  • the halide may be exemplified by chloride or chloride, and may be selected from the properties of tetra-substituted phosphonium halide, such as the price and moisture absorption, and the availability thereof, and any of them may be used.
  • the obtained molecular aggregate (C) is converted into a compound ( ⁇ ) having two or more epoxy groups in one molecule and a cocondensate ( ⁇ ) having two or more phenolic hydroxyl groups in one molecule. ), Pulverized and mixed, further melt-kneaded on a hot plate at 100 ° C. for 5 minutes, and then cooled and pulverized to prepare a sample of the composition, and its characteristics were evaluated.
  • the curing torque was measured by a curastometer, and the residual rate of curing heat generation was measured by a differential scanning calorimeter (DSC) (Examples 1 to 6, Comparative Examples 1 and 2).
  • the measuring method is as follows.
  • Neutralization titration In order to evaluate the active group equivalent of the curing accelerator, the alkali equivalent of the synthesized molecular aggregate (C) was measured using oxalic acid and sodium hydroxide in a methanol-water-based solvent. Specifically, the molecular aggregate (C) is converted into an excess of oxalic acid of known weight. And the residual oxalic acid was quantified with an aqueous solution of sodium hydroxide of known normality, and the normality (NZg) per weight of the molecular assembly (C) was calculated. The reciprocal of this value is the phosphonium phenoxide equivalent.
  • composition ratio Tetra-substituted phosphonium (X) in the synthesized molecular aggregate (C) and compound having two or more funolic hydroxyl groups in one molecule (Y) [(X) moles per mole of (X) (a)] and the phenoxide-type conjugate base obtained by removing one hydrogen from (Y) [(X) the number of moles (b) to 1 mole] in a heavy methanol solvent.
  • Curing torque Using a sample of the composition prepared by the above-mentioned preparation method, and using a Curameter (Orientec's JSR Curastrameter PS type) at 175 ° C, 45 seconds The torque was determined. The torque in the curast meter is a parameter of curability, with higher values indicating higher curability.
  • Residual heat value after curing (evaluation of storage stability): Initial curing heat value immediately after preparation using a sample of the composition prepared by the above preparation method, and curing heat after storage treatment at 40 ° C for 3 days. The amount was measured, and the percentage of the calorific value after curing (mjZmg) relative to the initial calorific value (mjZmg) was calculated. The curing calorific value was measured using a differential scanning calorimeter (DSC) at a heating rate of 10 ° C / min. The larger the value, the better the storage stability.
  • DSC differential scanning calorimeter
  • Spiral flow evaluation of fluidity: Using a material prepared by preparing an epoxy resin composition, using a mold for spiral flow measurement in accordance with EMMI-1-66, mold temperature 1 75 ° C, measured at an injection pressure of 70 kgZcm 2 and a curing time of 2 minutes. Spiral flow is a parameter of liquidity. Larger values indicate better fluidity. The unit is cm. 6.
  • Shore D hardness Molded at a mold temperature of 175 ° C, injection pressure of 70 kgcm 2 , and curing time of 2 minutes using a material prepared by preparing an epoxy resin composition, and measured after 10 seconds of mold opening The value of the Shore D hardness obtained was taken as the curability. The Shore D hardness is an index of curability, and the higher the numerical value, the better the curability.
  • the internal temperature is 12.4 ° C (boiling point temperature of 2-propanol). After stirring for .5 hours, most of the 2-propanol was removed, and the low-boiling components were further removed under reduced pressure by heating. The obtained product was designated as compound C1.
  • a neutralization titration of C1 was performed to determine an alkali equivalent.
  • 1 H-NMR data of C 1 is shown in FIG.
  • the measurement solvent is heavy methanol, and the peaks around 4.8 ppm and 3.3 ppm are the peaks of the solvent.
  • the peak group around 6.4 to 7.1 ppm was obtained by removing the raw material bisphenol F [(X) moles per mole (a)] and one bisphenol F from the hydrogen.
  • Bisphenol F-D is a trade name of an isomer mixture of bis (monohydroxyfuryl) methane produced by Honshu Chemical Industry Co., Ltd. c **) Bisphenol A.
  • the composition of the present invention has excellent curability and preservability, whereas triphenyl phosphine which is a conventional curing accelerator is used.
  • the curability and storage stability were clearly inferior.
  • X tetraphenylphosphonium
  • ⁇ A monofunctional organic acid
  • the curability is slightly higher, but the storage stability is higher. Very inferior, like triphenyl phosphine. From these results, it is understood that the molecular aggregate (C) of the present invention is significantly superior in the ability to impart curability and preservability as compared with the conventional curing accelerator.
  • the crystalline epoxy resin A used in Example 8 is a resin mainly composed of 4,4,1-bis (2,3-epoxypropoxy) -1,3,3 ', 5,5, -tetramethylstilbene. 60 wt% and 4, 4 'single-bis (2, 3-epoxy Provo carboxymethyl) one 5 - Tashiya ribs Chiru 2, 3', 5, tree fat 40 wt mainly one trimethyl stilbene. / 0 (epoxy equivalent 209, melting point 120 ° C).
  • the ortho-cresol novolak type epoxy resin used in Example 9 has an epoxy equivalent of 200 and a softening point of 65 ° C. (EOCN-1020-65 manufactured by Nippon Kayaku Co., Ltd. ').
  • the phenol nopolak resin used in Example 9 had a hydroxyl equivalent of 104 and a softening point of 105 ° C.
  • the epoxy resin composition of the present invention has excellent fluidity, curability, and storage stability, while the conventional curing In Comparative Example 3 using triphenylphosphine as an accelerator, the fluidity and storage stability are clearly inferior.
  • the epoxy resin composition of the present invention is excellent in curability and preservability, and when used as a sealing material for electronic and electric parts, can contribute to improvement in production efficiency and improvement in handleability during distribution and storage. It is useful because it can meet the requirements in the field of electronic and electrical materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Epoxy Resins (AREA)

Description

明 細 書 エポキシ樹脂組成物及び半導体装置
技術分野
本発明は、 硬化性と保存性が良好で、 電子,電気材料分野に有用なエポキシ樹 脂組成物、 及びこれを用いた半導体装置に関するものである。
背景技術
電子 ·電気材料、 特に I c封止材料は近年、 生産効率の向上を目的とした速硬 化性と、 物流 ·保管時の取り扱い性向上のための保存性の向上とが求められるよ うになつてきている。 従来、 電子 ·電気分野向けエポキシ樹脂には、 硬化促進剤 としてホスフィン類、 アミン類、 イミダゾール系化合物、 ジァザビシクロウンデ セン等の含窒素複素環式化合物、 第四級アンモニゥム、 ホスホニゥム或いはアル ソニゥム化合物等の種々の化合物が使用されている。
これらの一般に使用される硬化促進剤は、 常温等の比較的低温においても硬化 促進作用を示す場合が多い。 このことは、 エポキシ樹脂組成物の製造時及び得ら れたエポキシ樹脂組成物の保存時の粘度上昇や、 流動性の低下、 硬化性のバラッ キ等、 製品としての品質を低下させる原因となっている。 この問題を解決すべく、 最近では低温での粘度、 流動性の経時変化を抑え、 賦形、 成形時の加熱によって のみ硬化反応を起こすような、 いわゆる潜伏性硬化促進剤の研究が盛んになされ ている。 その手段として、 硬化促進剤の活性点をイオン対により保護することで、 潜伏性を発現する研究がなされており、 特開平 8— 4 1 2 9 0号公報では、 種々 の有機酸とホスホニゥムイオンとの塩構造を有する潜伏性硬化促進剤が開示され ている。 しかし、 このホスホニゥム塩は特定の高次の分子構造を有さず、 イオン 対が比較的容易に外部環境の影響を受けるため、 最近の低分子エポキシ樹脂ゃフ エノールァラルキル樹脂を用いる半導体封止材料においては、 保存性が低下する 問題が生じている。
発明の開示
本発明は、 速硬化性と保存安定性とを両立させた、 電子 ·電気材料分野に有用 なエポキシ樹脂組成物、 及びこれを用いた半導体装置を提供することを目的とす るものである。
即ち、 本発明は、 1分子内にエポキシ基を 2個以上有する化合物 (A) 、 1分 子内にフユノール性水酸基を 2個以上有する共縮合物 (B ) 、 ならびに、 テトラ 置換ホスホニゥム (X) と 1分子内にフエノール性水酸基を 2個以上有する化合 物 (Y) 及び 1分子内にフエノール性水酸基を 2個以上有する化合物 (Y) の共 役塩基との分子会合体 (C ) から成り、 該共役塩基が前記フエノール性水酸基を 1分子内に 2個以上有する化合物 (Y) から 1個の水素を除いたフユノキシド型 化合物であることを特徴とするェポキシ樹脂組成物、 及びこれを用レ、て半導体素 子を封止してなることを特徴とする半導体装置である。 本発明者は、 硬化促進剤 として反応活性点が保護された塩構造を利用することで、 きわめて優れた硬化性 と保存安定性を有するエポキシ樹脂組成物が得られることを見いだし、 本発明を 完成するに至った。
図面の簡単な説明
図 1は合成例 1で得られた化合物 C 1の1 H—NM Rチャートである。
図 2は合成例 2で得られた化合物 C 2の1 H— NM Rチャートである。
発明の詳細な説明
本発明に用いる 1分子内にエポキシ基を 2個以上有する化合物 (A) は、 1分 子内にエポキシ基を 2個以上有するものであれば何ら制限されず、 例えば、 ビス フエノール A型エポキシ樹脂、 ビスフエノール F型エポキシ樹脂、 臭素化ビスフ ェノール型エポキシ樹脂、 ビフエニル型エポキシ樹脂、 スチルベン型エポキシ樹 脂、 フエノールノボラック型エポキシ樹脂、 クレゾ一ルノボラック型エポキシ樹 脂、 脂環式エポキシ樹脂、 グリシジルエステル型エポキシ樹脂、 グリシジルアミ ン型エポキシ樹脂、 ナフタレン型エポキシ樹脂、 ナフトール等とカルボニル化合 物の縮合により合成される樹脂のグリシジルエーテル化合物、 4, 4, 一ビス ( 1, 2—エポキシェチル) ジフエニルエーテル、 4, 4 ' —ビス (1, 2—ェ ポキシェチル) ビフエニル、 ジシクロペンタジェンとフエノール類を反応させ得 られるフエノ一ル樹脂のグリシジルェ一テル化合物、 更には単核のレゾルシンや カテコール等のグリシジルェ一テル化合物等を挙げることができ、 これらは単独 でも混合して用いてもよレ、。
これらのエポキシ樹脂の内では、 融点が 5 0〜1 5 0 °Cの結晶性エポキシ樹脂 が好ましい。 このような結晶性エポキシ樹脂は、 ビフ -ニル骨格、 ビスフエノー ル骨格、 スチルベン骨格等の剛直な構造を主鎖に有し、 比較的低分子であるため に、 結晶性を示すものである。 結晶性エポキシ樹脂は、 常温では結晶化している 固体であるが、 融点以上の温度域では急速に融解して低粘度の液状に変化するも のである。 結晶性エポキシ樹脂の融点は、 示差走査熱量計を用いて、 常温から昇 温速度 5 °CZ分で昇温した時の結晶 1^军の吸熱ピークの頂点の温度を示す。 これらの条件を満たす結晶性エポキシ樹脂としては、 特に、 一般式 (1 ) 及び 一般式 (2 ) から選ばれる一種以上、 又は一般式 (3 ) で表されるスチルベン型 エポキシ樹脂と一般式 (4 ) で表されるスチルベン型エポキシ樹脂との混合物が 好ましい。
R1 R1
(1)
Figure imgf000005_0001
Figure imgf000005_0002
OCH,CHCH,
一 \ I - (3)
O
Figure imgf000005_0003
Figure imgf000006_0001
一般式 (1 ) で表されるビフエ-ル型エポキシ樹脂の置換基 R 及び一般式
( 2 ) で表されるビスフユノール型エポキシ樹脂の置換基 R 2は、 水素原子、 炭 素数多くとも 6の鎖状もしくは環状アルキル基、 フユニル基、 及びハロゲンの中 から選択される基又は原子であり、 互いに同じであっても異なっていてもよく、 例えば、 メチル基、 ェチル基、 プロピル基、 ブチル基、 シクロへキシル基、 フエ ニル基、 塩素原子、 臭素原子等が挙げられ、 特にメチル基が好ましい。 一般式
( 3 ) 、 及び一般式 (4 ) で表されるスチルベン型エポキシ樹脂の置換基 R 3〜 R 1 4は、 水素原子、 炭素数多くとも 6の鎖状もしくは環状アルキル基、 及びハ ロゲンの中から選択される基又は原子であり、 互いに同一であっても異なってい てもよく、 例えば、 水素原子、 メチル基、 ェチル基、 プロピル基、 ブチル基、 ァ ミル基、 へキシル基 (各異性体を含む) 、 シクロへキシル基、 塩素原子、 臭素原 子等が挙げられ、 特に、 エポキシ樹脂の溶融粘度の低さから、 メチル基、 ェチル 基、 プロピル基、 又はブチル基が好ましい。
この型のエポキシ樹脂は、 一般式 (3 ) のスチルベン型エポキシ樹脂と一般式 ( 4 ) のスチルベン型エポキシ樹脂との混合物であり、 一般式 (3 ) のスチルベ ン型エポキシ樹脂及び一般式 (4 ) のスチルベン型エポキシ樹脂には、 共に置換 基の種類等により種々の構造のものがあり、 一般式 (3 ) 及び一般式 (4 ) の各 各のスチルベン型エポキシ樹脂は、 一種類の構造のものでも、 二種類以上の構造 のものの混合物でもかまわない。
一般式 (3 ) のスチルベン型エポキシ樹脂と一般式 (4 ) のスチルベン型ェポ キシ樹脂との混合は、 両方の化合物を混合することにより融点が低くなればよく、 混合方法については特に制限されない。 例えば、 スチルベン型エポキシ樹脂の原 料であるスチルべン型フエノール類をグリシジルエーテル化する前に混合してお いたり、 両方のスチルベン型エポキシ樹脂を溶融混合する方法等があるが、 いず れの場合においても融点は 5 0〜1 5 0 °Cとなるように調整する。
一般式 (3 ) のスチルベン型エポキシ樹脂としては、 入手のし易さ、 性能、 原 料価格の点から、 5—タ一シヤリブチルー 4, 4 ' —ジヒ ドロキシ一 2, 3, , 5 ' 一トリメチルスチルベン、 3—ターシヤリブチル _ 4, 4 ' ージヒ ドロキシ 一 3 ' , 5, 5, —トリメチルスチルベンのグリシジルェ一テル化物が特に好ま しい。
一般式 (4 ) のスチルベン型エポキシ樹脂としては、 性能、 原料価格の点から、 4, 4, ージヒ ドロキシー 3, 3 ' , 5, 5 ' —テトラメチルスチルベン、 4, 4 ' ージヒ ドロキシ _ 3, 3 ' —ジターシャリプチルー 6,· 6 ' —ジメチルスチ ノレベン、 4, 4 ' ージヒ ドロキシ _ 3, 3 ' —ジタ一シヤリブチルー 5, 5 ' 一 ジメチルスチルベンのグリシジルエーテル化物が特に好ましい。
本発明に用いる 1分子内にフユノール性水酸基を 2個以上有する共縮合物 ( B ) は、 1分子内にエポキシ基を 2個以上有する化合物 (A) の硬化剤として 作用するものである。 具体的には、 フエノール類とアルデヒ ド類又はケトン類の 共縮合反応物であるフエノール樹脂やビスフヱノ一ル類、 フエノール類とジメ ト キシパラキシレン等の共縮合反応物であるフエ二レン又はジフエ二レン骨格を有 するフエノールァラルキル樹脂が含まれ、 単核のレゾルシン、 カテコール等も硬 化反応を生じるならば使用できるが、 「フエノール」 の定義が一般に芳香環に結 合する水素原子が水酸基で置換された化合物であることから、 ナフトール等の縮 合多環芳香族由来の水酸基含有化合物とカルボニル化合物の共縮合反応物なども 含まれる。 これらのフエノール樹脂の内では、 分子内の水酸基が少ないために硬 化物の吸水率が小さく、 分子が適度の屈曲性を有するために硬化反応における反 応性も良く、 又、 低粘度化も可能であることから、 特にフエノールァラルキル樹 脂が好ましい。
本発明の、 1分子内にエポキシ基を 2個以上有する化合物 (A) と、 硬化剤と して作用する、 1分子内にフユノール性水酸基を 2個以上有する共縮合物 (B ) との比率は、 化合物 (A) 1当量に対し、 共縮合物 (B ) を 0 . 5〜2当量、 好 ましくは、 0 . 8〜1 . 2程度の当量比となるように調整することにより硬化性、 硬化物の耐熱性、 電気特性等がより良好となる。 本発明に用いる分子会合体 (C ) は、 テトラ置換ホスホニゥム (X) と 1分子 内にフエノール性水酸基を 2個以上有する化合物 (Y) 及び 1分子内にフ ノー ル性水酸基を 2個以上有する化合物 (Y ) の共役塩基との分子会合体 (C ) であ つて、 該共役塩基が前記フユノール性水酸基を 1分子内に 2個以上有する化合物 (Y) から 1個の水素を除いたフユノキシド型化合物である。
その構成成分の一つであるテトラ置換ホスホニゥム (X ) の置換基については 何ら限定されず、 置換基は互いに同一であっても異なっていてもよい。 例えば、 置換又は無置換のァリール基やアルキル基を置換基として有するテトラ置換ホス ホニゥムイオンが、 熱や加水分解に対して安定であり好ましい。 具体的には、 テ トラフエ二ノレホスホニゥム、 テトラ トリノレホスホニゥム、 テトラエチゾレフエ二ノレ ホスホニゥム、 テトラメ トキシフエ二/レホスホニゥム、 テトラナフチ /レホスホニ ゥム、 テトラべンジノレホスホニゥム、 ェチノレトリフエ二/レホスホニゥム、 n—ブ チノレトリフエ二ノレホスホユウム、 2—ヒ ドロキシェチノレトリフエ二ノレホスホニゥ ム、 トリメチノレフエ二ノレホスホニゥム、 メチノレジェチノレフェニノレホスホニゥム、 メチルジァリルフエニルホスホニゥム、 テトラ一 n—ブチルホスホニゥム等を例 示できる。
本発明の分子会合体 (C ) の構成成分である、 1分子内にフエノール性水酸基 を 2個以上有する化合物 (Y) としては、 例えば、 式 (5 ) で表される化合物、 ビス (4—ヒ ドロキシ一 3, 5—ジメチルフエニル) メタン (通称テトラメチル ビスフエノーノレ F ) 、 4, 4, ースノレホニルジフエノール及び式 ( 6 ) で表され る化合物、 例えば 4, 4, 一イソプロピリデンジフエノール (通称ビスフエノー ; A) 、 ビス (4—ヒ ドロキシフエ二ノレ) メタン、 ビス (2—ヒ ドロキシフエ二 ル) メタン、 (2—ヒ ドロキシフエニル) (4ーヒ ドロキシフエニル) メタン及 びこれらの內ビス (4—ヒ ドロキシフエニル) メタン、 ビス (2—ヒ ドロキシフ ェニル) メタン、 (2—ヒ ドロキシフエニル) (4ーヒ ドロキシフエ二ノレ) メタ ンの 3種の混合物 (例えば、 本州化学工業 (株) ·製、 ビスフエノール F— D) 等のビスフエノール類、 1, 2—ベンゼンジォ一ル、 1, 3—ベンゼンジオール、 1, 4一ベンゼンジォ一ル等のジヒ ドロキシベンゼン類、 1, 2, 4—ベンゼン トリオ一ル等のトリヒ ドロキシベンゼン類、 1, 6—ジヒ ドロキシナフタレン等 のジヒ ドロキシナフタレン類の各種異性体、 2, 2' —ビフエノール、 4, 4, 一ビフヱノール等のビフヱノ一ル類の各種異性体等の化合物が挙げられる。 更に、 他の構成成分である共役塩基は、 上記の化合物 (Y) から 1個の水素を 除いたフエノキシド型化合物である。
Figure imgf000009_0001
Figure imgf000009_0002
(式中、 R1 5は CH2又は C (CH3) 2を表す。 )
本発明の分子会合体 (C) は、 前述のようにホスホニゥムーフエノキシド型の 塩を構造中に有するが、 従来の技術におけるホスホニゥムー有機酸ァ二ォン塩型 の化合物と異なる点は、 本発明の分子会合体 (C) では水素結合による高次構造 がイオン結合を取り囲んでいる点である。 従来の技術における塩では、 イオン結 合の強さのみにより反応性を制御しているのに対し、 本発明の分子会合体 (C) では、 常温ではァニオンの高次構造による囲い込みが活性点の保護を行う一方、 成形の段階においては、 この高次構造が崩れることで活性点がむき出しになり、 反応性を発現する、 いわゆる潜伏性が付与されている。
又、 硬化促進剤として作用する、 分子会合体 (C) は、 前述の化合物 (A) 、 共縮合物 (B) の合計重量 100重量部に対して、 0. 5〜20重量部程度が硬 化性、 保存性、 他の特性のバランスがよく好適である。
本発明の成分 (A) 、 (B) 及び (C) からなるエポキシ樹脂組成物には、 シ リカ粉末等の無機充填材、 カルナバワックス等の離型剤、 シラン系カップリング 剤、 シリコーンオイル等の低応力剤、 カーボンブラック等の着色剤等を適宜添加 出来るが、 この添カ卩は用途に応じて最適化を図れば何ら差し支えなレ、。 封止材料 として本発明のエポキシ樹脂組成物を用いる場合、 無機充填材は、 化合物 (A) 、 ( B ) の合計重量 1 0 0重量部に対して、 1 0 0〜2 4 0 0重量部程度、 離型剤 や力ップリング剤は、 0 . 1〜 2 0重量部程度が好適である。
本発明のエポキシ樹脂組成物は、 前記各成分を混合後、 加熱ニーダー、 押し出 し機、 熱ロール等により、 加熱混練して得られる。
本発明の分子会合体 (C ) の製造方法は何ら限定されないが、 代表的な 2方法 を挙げることができる。 1つ目は、 テトラ置換ホスホニゥム ·テトラ置換ボレー ト (Z ) と、 1分子内にフユノール性水酸基を 2個以上有する化合物 (Y ) とを、 高温下で反応させた後、 更に沸点 6 0 °C以上の溶媒中で熱反応させる方法である。 2つ目は、 1分子内にフエノール性水酸基を 2個以上有する化合物 (Y) と、 無 機塩基又は有機塩基と、 テトラ置換ホスホニゥムハライドとを反応させる方法で ある。
この 2通りの方法について更に詳細を述べる。
1つ目のテトラ置換ホスホニゥム -テトラ置換ボレート (Z ) と、 1分子内に フエノール性水酸基を 2個以上有する化合物 (Y) を高温下で反応させた後、 更 に沸点 6 0 °C以上の溶媒中で熱反応させる方法において、 前段階の反応工程は、 ホウ素上の置換反応を含む反応である。 この置換反応には化合物 (Y) のフエノ ール性水酸基が深く関与しており、 ホウ素上に 4つの置換基を有するボレート ( Z ) と、 1分子内にフエノール性水酸基を 2個以上有する化合物 (Y) とのモ ル比の最適値は、 一義的に決定される。
つまり化合物 (Y) 中にあるフ-ノール性水酸基数を n ( nは 2以上の整数) とすると、 ボレート (Z ) 1モルに対する化合物 (Y) のモル数が l Z n未満の 場合では、 反応に必要なフユノール性水酸基が不足し、 ホウ素上での置換反応が 十分に行われないため、 後段の溶媒中での熱反応が十分に行われないことがある。 又、 ボレート (Z ) 1モルに対する化合物 (Y) のモル数が 4を越える場合では、 過剰に添加された化合物 (Y) が除去しきれず、 分子会合体 (C ) の特性を低下 させると考えられる。 本発明者らは、 この範囲内になるようボレート (Z ) と化 合物 (Y) のモル比を設定することにより、 反応が最適に行われることを確認し ている。 この反応は、 ホウ素上のフエニル基置換基の脱離割合でモニターするこ とができる。 例えば、 テトラフェニルホスホニゥム ·テトラフエ二ルボレ一トを 使用した場合、 ホウ素上のフユニル基が、 フユノール性水酸基で置換される際に 発生するベンゼンの量でモニタ一でき、 通常、 理論発生量に対して 8 0重量%以 上のベンゼンが発生すれば、 十分に反応が進行している。
分子会合体 (C ) の合成における後段の溶媒中での熱反応の際に用いる溶媒の 種類に関しては、 沸点 6 0 °C以上であれば、 特に限定はされないが、 1分子内に 水酸基を少なくとも 1個有する沸点 6 0 °C以上の溶媒が好ましく、 特にメタノー ル、 エタノール、 プロパノール、 ブタノール等、 通常用いられるアルコール系溶 媒が好適である。
又、 溶媒中での熱反応時間は、 1時間以上とすることが望ましいが、 この熱反 応とは、 必ずしも還流反応である必要はなく、 実質的に 6 0 °C以上に加熱できる 条件であれば、 還流状態である必要はない。 前述の条件により、 このプロセスに おいて、 反応合成物が十分に溶媒中に拡散され、 ホウ素由来の成分や、 余剰の (Y) 成分が除去されて、 分子会合体 (C ) が形成される。 又、 アルコール系溶 媒を加熱することで溶解度を一時的に上昇させ、 不溶分を溶解した上で、 再び冷 却により目的の分子会合体 (C) を再析出させることが可能であることも、 この 製造方法の優れた点である。
2つ目の、 1分子内にフユノール性水酸基を 2個以上有する化合物 (Y) と、 無機塩基又は有機塩基と、 テトラ置換ホスホニゥムハライ ドとを反応させる方法 について、 更に具体的に記述する。 化合物 (Y) と、 無機塩基又は有機塩基をァ ルコール等の溶媒に溶解し、 続いて適当な溶媒に溶解したテトラ置換ホスホニゥ ムハライドを添加し反応させ、 最終的には再結晶や再沈等の操作により、 固形物 として取り出す。
無機塩基としては、 例えば、 水酸化ナトリウム、 水酸化力リゥム等が挙げられ る。 又、 有機塩基としては、 例えば、 ピリジン、 トリェチルァミン等が挙げられ る。
用いるテトラ置換ホスホニゥムハライ ドの置換基については何ら限定されるこ とはなく、 置換基は互いに同一であっても異なっていてもよい。 例えば、 置換又 は無置換のァリ一ル基やアルキル基を置換基に有するテトラ置換ホスホニゥムィ オンが、 熱や加水分解に対して安定であり好ましい。 具体的には、 テトラフエ- ノレホスホニゥム、 テトラトリ/レホスホニゥム、 テトラエチ /レフェ二/レホスホニゥ ム、 テトラメ トキシフエニルホスホニゥム、 テトラナフチルホスホ-ゥム、 テト ラベンジルホスホ-ゥム、 ェチノレトリフエ二ノレホスホニゥム、 n—ブチノレトリフ ェニノレホスホニゥム、 2—ヒ ドロキシェチノレトリフエ二ノレホスホニゥム、 トリメ チノレフェニノレホスホニゥム、 メチルジェチルフエ二ノレホスホニゥム、 メチルジァ リ フエ-ルホスホニゥム、 テトラー η—ブチルホスホニゥム等を例示できる。 ハライ ドとしてはクロライ ドゃブ口マイ ドを例示でき、 テトラ置換ホスホニゥム ハライドの価格や吸湿等の特性、 及び入手のし易さから選択すれば良く、 いずれ を用いても差し支えない。
発明を実施するための最良の形態
以下に、 本発明の実施例を示すが、 本発明はこれにより何ら限定されるもので はない。
·まず、 2通りの方法による分子会合体 (C ) の合成例を示す。 分子会合体 ( C) の構造分析のため中和滴定による硬化促進剤の活性基当量評価、 及び組成 比決定のため 1 Η— NM R測定を行った。
•次に、 得られた分子会合体 (C ) を、 1分子内にエポキシ基を 2個以上有す る化合物 (Α ) 、 1分子内にフエノール性水酸基を 2個以上有する共縮合物 ( Β ) に加えて粉砕混合し、 更に 1 0 0 °Cで 5分間熱板上で溶融混練した後、 冷 却粉砕して組成物のサンプルを調製し、 その特性を評価した。 特性評価のため、 キュラストメータによる硬化トルクの測定、 及び示差走査熱量計 (D S C ) によ る硬化発熱量残存率を測定した (実施例 1〜6、 比較例 1、 2 ) 。
•又、 エポキシ樹脂組成物、 及び半導体装置に関わる評価として、 エポキシ樹 脂組成物を調製し、 特性を評価した (実施例 7〜1 4、 比較例 3、 4 ) 。
測定方法は下記のとおりである。
1 . 中和滴定:硬化促進剤の活性基当量評価のため、 合成した分子会合体 ( C ) をメタノールノ水系溶媒中で蓚酸及び水酸化ナトリウムを用いて、 そのァ ルカリ当量を測定した。 具体的には、 分子会合体 (C) を重量既知の過剰の蓚酸 と反応させ、 残余の蓚酸を規定度既知の水酸化ナトリウム水溶液で定量して、 分 子会合体 (C) の重量当たり規定度 (NZg) を算出した。 この値の逆数がホス ホニゥムフエノキシド当量である。
2. 組成比の決定:合成した分子会合体 (C) 中のテトラ置換ホスホニゥム (X) と、 1分子内にフユノール性水酸基を 2個以上有する化合物 (Y) [ (X) 1モルに対するモル数 (a) ] 及び前記 (Y) から 1個の水素を除いた フエノキシド型の共役塩基 [ (X) 1モルに対するモル数 (b) ] の組成比を求 めるために、 重メタノール溶媒中で1 H— NMR測定を行い、 テトラ置換ホスホ 二ゥムの置換基のプロトンのピ一ク面積値と、 1分子内にフエノール性水酸基を 2個以上有する化合物 (Y) [ (X) 1モルに対するモル数 (a) ] 及び前記 (Y) から 1個の水素を除いたフヱノキシド型の共役塩基 [ (X) 1モルに対す るモル数 (b) ] のフエニルプロ トンのピーク面積値を算出した。 この値を用い て、 成分の組成比 [モル比 (a + b) / (X) ] を算出した。
3. 硬化トルク :前記の調製方法により作製した組成物のサンプルを用いて、 キュラス トメ一ター (オリエンテック社 '製、 J S Rキュラス トメーター P S 型) を用いて、 1 75°C、 45秒後のトルクを求めた。 キュラストメーターにお けるトルクは硬化性のパラメータであり、 値の大きい方が硬化性が高いことを示 す。
4. 硬化発熱量残存率 (保存性評価) :前記の調製方法により作製した組成物 のサンプルを用いて、 調製直後の初期硬化発熱量、 及び 40°Cで 3日間保存処理 した後の硬化発熱量を測定し、 初期硬化発熱量 (mjZmg) に対する保存処理 後の硬化発熱量 (mjZmg) の百分率を算出した。 尚、 硬化発熱量の測定は、 昇温速度 10°C/分の条件で示差走査熱量計 (DSC) を用いて測定した。 この 値が大きいほど保存性が良好であることを示す。
5. スパイラルフロー (流動性評価) :エポキシ樹脂組成物を調製して作成し た材料を用いて、 EMMI - 1 -66に準じたスパイラルフロー測定用の金型を 用い、 金型温度 1 75°C、 注入圧力 70 k gZcm2、 硬化時間 2分で測定した。 スパイラルフローは流動性のパラメータであり、 数値が大きい方が流動性が良好 である。 単位は cm。 6. ショァ D硬度:エポキシ樹脂組成物を調製して作成した材料を用いて、 金 型温度 1 75 °C、 注入圧力 70 k g c m 2、 硬化時間 2分で成形し、 型開き 1 0秒後に測定したショァ D硬度の値を硬化性とした。 ショァ D硬度は硬化性の指 標であり、 数値が大きい方が硬化性が良好である。
7. 30°C保存性:エポキシ樹脂組成物を調製して作成した材料を用いて、 3 0°Cで 1週間保存した後、 スパイラルフローを測定し、 調製直後のスパイラルフ 口一に対する百分率として表す。
[分子会合体 (C) の合成]
合成例 1
本州化学工業 (株) ·製ビスフユノール F— D (化合物 (Y) に相当) 300 g (1. 5モル) と、 テトラフエ二ノレホスホニゥム 'テトラフエニルボレート (Z) 329 g (0. 5モル) とを 3 セパラブルフラスコに仕込み、 200。C で 3時間反応させた。 この反応でのベンゼン留出量は、 理論生成量の 97重量% (即ちベンゼン留出率 97%) であった。 この反応による粗生成物を微粉砕し、 セパラブルフラスコに仕込み、 2—プロパノールを粗生成物の仕込み重量の 3倍 量加え、 内温 82. 4°C (2—プロパノールの沸点温度) で 1. 5時間攪拌した c その後、 2—プロパノールの大部分を除去し、 更に加熱減圧下で低沸点分を除去 した。 得られた生成物を化合物 C 1とした。 C 1の中和滴定を行い、 アルカリ当 量を求めた。 又、 C 1の1 H— NMRデータを図 1に示した。 測定溶媒は重メタ ノールであり、 4. 8 p pm付近及び 3. 3 p p m付近のピークは溶媒のピーク である。 ここで、 6. 4〜7. 1 p pm付近のピーク群は、 原料であるビスフエ ノール F [ (X) 1モルに対するモル数 (a) ] 及びこのビスフエノール Fから 1個の水素を除いたフユノキシド型の共役塩基 [ (X) 1モルに対するモル数 (b) ] のフエニルプロ トン、 7. 6〜8. 0 p p m付近のピーク群は、 テトラ フエニルホスホニゥム基のフエニルプロ トンと帰属され、 それらのピーク面積値 の比から、 モル比が (a + b) / (X) =2. 2Z1であると計算された。
合成例 2
5 のセパラブルフラスコに、 本州化学工業 (株) '製ビスフエノール F— D (化合物 (Y) に相当) 300 g (1. 5モル) 、 北興化学工業 (株) ·製テト ラフェニノレホスホニゥムブロマイド 314 g (0. 75モル) 、 メタノ一ノレ 30 00 gを仕込み、 完全に溶解させた。 そこに水酸化ナトリウムを 30 g含有する メタノールノ水混合溶液を攪拌しながら滴下した。 得られた溶液を多量の水中に 滴下する再沈作業を行い、 目的物を固形物として得た。 濾過して固形物を取り出 し、 乾燥させて得られた生成物を化合物 C 2とした。 C 2の中和滴定を行い、 ァ ノレカリ当量を求めた。 又、 C 2の1 H— NMRデ一タを図 2に示した。 測定溶媒 は重メタノ一ルであり、 4. 8 p p m付近及び 3. 3 p p m付近のピークは溶媒 のピークである。 ここで、 6. 4〜7. 1 p pm付近のピーク群は、 原料である ビスフエノ一ル F [ (X) 1モルに対するモル数 (a) ] 及びこのビスフエノー ル Fから 1個の水素を除いたフユノキシド型の共役塩基 [ (X) 1モルに対する モル数 (b) ] のフエニルプロトン、 7. 6〜8. 0 p p m付近のピーク群は、 テトラフェニルホスホユウム基のフエニルプロトンと帰属され、 それらのピーク 面積値の比から、 モル比が (a +b) / (X) =2ノ1であると計算された。
合成例 3
Ifのセパラブルフラスコに、 本州化学工業 (株) '製ビスフエノ一ル F— D (化合物 (Y) に相当) 1 20 g (0. 6モル) 、 北興化学工業 (株) ·製テト ラフェニノレホスホ-ゥムブロマイド 1 26 g (0. 3モノレ) 、 メタノ一ノレ 246 gを仕込み、 加熱下完全に溶解させた。 そこに水酸化ナトリウム 1 2 gを含有す るメタノール Z水混合溶液を攪拌しながら、 内温 65°Cの状態で滴下した。 得ら れた溶液に、 更に水を滴下し、 滴下終了後冷却することで、 目的物を固形物とし て得た。 濾過して固形物を取り出し、 更に水中で洗浄し、 乾燥させて得られた生 成物を化合物 C 3とした。 C 3の中和滴定を行い、 アルカリ当量を求めた。 又、 測定溶媒は重メタノールを用い、 — NMR測定を行った。 得られたデータか らモル比が (a + b) / (X) =2/1であると計算され、 合成例 2の化合物 C 2のデータと一致し、 同一の物質であることが確認された。
合成例 4〜 7
表 1に従い、 合成例 1〜3と同様にして、 化合物 C4〜C 7を得た。
比較合成例 1
安息香酸ナトリウム 72. 05 g (0. 5モル) を 200 gのメタノールに溶 解したものを室温で攪拌し、 テトラフェニルホスホニゥムブロマイ ド 2 0 9 . 6 g ( 0 . 5モル) をメタノール 2 0 0 gに溶解したものを、 前記攪拌物に滴下し た。 完全に滴下後、 溶液を加熱し析出分を再溶解した後、 これに純水 1 5 0 gを 加えて再析出物を得た。 この再析出物を、 吸引ろ過し、 純水で数回洗浄し、 8 0 °Cの真空乾燥機で 2時間乾燥して化合物 Dを得た。
合 成 例 1¾嫌例 1
1 2 3 4 5 6 7
化合物の記号 C 1 C 2 C 3 C 4 C 5 C 6 C 7 D 合成例 2 合成例 1 合成例 3 合成例 1
合成方法
に準じる に準じる に準じる に準じる
(4-ヒドロキシ
テトラ^^ホスホニゥム テトラフェュル テトラフエ二/レ テトラフ Iニル テトラフ Iニル メチルトリフエニル テトラノルマルフ テトラフェニル フエノキシ)トリフ
(X) ホスホニゥム ホスホニゥム ホスホニゥム ホスホニゥム ホスホニゥム チルホスホニゥム ホスホニゥム ェ二/レホスホニゥム
4, 4,-ィ ソ
ビスフエノ 式( 5 ) で
ビスフエノ ビスフエノ 1, 4-ベンゼ プロピリデ 1,4-ベンゼ
化合物 (Y) —ル 表される 安息香酸
一 一/ ンジ ル ンジフエノ ンジ ル
F-D ール **) 化合物 アル力リ当量
1. 28 1. 35 1. 34 1. 79 1. 25 1. 69 1. 11
( X 10— 3N/g)
モル比(a+b) / (X) 2. 2/1 2/1 2/1 2/1 2. 3/1 + 2/1 2. 2/1 1/1 化^) C 2
備考
と同 質
*) ビスフエノール F - Dは、 本州化学工業 (株) 製のビス (モノヒ ドロキシフユ-ル) メタンの異性体混合物の商品名 c **)通称ビスフエノ一ル A。
[エポキシ樹脂組成物のサンプル調製]
実施例 1〜6、 及び比較例 1、 2
表 2に示した配合により、 前記の方法で組成物のサンプルを調製し評価した。 比較例 1では、 実施例 1における分子会合体 C 2に代えてトリフエニルホスフィ ンを、 比較例 2では前述の比較合成例 1で合成された化合物 Dを用いた。 得られ た各組成物の評価結果は、 表 2に示した通りであつた。
表 2
Figure imgf000019_0001
1) 日本化薬 (株) ·製オルソクレゾールノボラック型エポキシ樹脂。
2) 油化シェルエポキシ (株) '製ビフヱ-ル型エポキシ樹脂。
3) 水酸基当量 1 0 4、 軟化点 9 5 °C
4) 三井化学 (株) '製フエノールァラルキル樹脂。
5) トリフエニルホスフィンを除き、 合成例 1〜 2及び 4〜 7及び比較合成例 1で合成した化合物。
表 2に示した各実施例の評価結果から明らかなように、 本発明の組成物は、 優 れた硬化性と保存性を有するのに対して、 従来の硬化促進剤であるトリフヱニル ホスフィンを用いた比較例 1では、 明らかに硬化性、 保存性が劣る。
又、 比較例 2は、 テトラフェニルホスホニゥム (X) と 1官能の有機酸 (◦ A) 力 モル比 X : O A = 1 : 1の塩であり、 硬化性はやや高いものの、 保存性 はトリフエニルホスフィン同様非常に劣っている。 この結果からも、 本発明の分 子会合体 (C) 、 従来の硬化促進剤に比べ、 硬化性、 保存性を付与する能力に 大きく優れていることが分かる。
[エポキシ榭脂組成物の調製]
実施例 7
式 (7 ) のビフエニル型エポキシ樹脂を主成分とする樹脂 (エポキシ当量 1 8 5、 融点 1 0 5 °C) 5 1重量部、 式 ( 8 ) のフエノールァラルキル樹脂 (水酸基 当量 1 6 7、 軟化点 7 3 °C) 4 9重量部、 化合物 C 2を 3 . 1重量部、 溶融球状 シリカ (平均粒径 1 5 // m) 5 0 0重量部、 力一ボンブラック 2重量部、 臭素化 ビスフエノール A型エポキシ樹脂 2重量部、 カルナバワックス 2重量部を混合し、 熱ロールを用いて、 9 5 °Cで 8分間混練して冷却後粉砕し、 エポキシ樹脂組成物 を得た。 得られたエポキシ樹脂組成物のスパイラルフロー、 ショァ D硬度、 3 0 °C保存性の結果を表 3に示す。
(7)
(8)
Figure imgf000020_0001
実施例 8〜 14、 及び比較例 3及び 4
表 3の配合に従い、 実施例 7と同様にしてエポキシ樹脂組成物を得て、 実施例 7と同様にして評価した。 結果を表 3に示す。
なお、 実施例 8で使用した結晶性エポキシ樹脂 Aは、 4, 4, 一ビス (2, 3 —エポキシプロポキシ) 一3, 3' , 5, 5, ーテトラメチルスチルベンを主成 分とする樹脂 60重量%と 4, 4 ' 一ビス (2, 3—エポキシプロボキシ) 一 5 —ターシヤリブチルー 23' , 5, 一トリメチルスチルベンを主成分とする樹 脂 40重量。 /0との混合物である (エポキシ当量 209、 融点 1 20°C) 。
実施例 9で使用したオルソクレゾールノボラック型ェポキシ樹脂は、 エポキシ 当量 200、 軟化点 65°C (日本化薬 (株) '製 EOCN— 1020— 65) で ある。
実施例 9で使用したフ-ノールノポラック樹脂は、 水酸基当量 1 04、 軟化点 1 05°Cである。
表 3
実 施 例 比 較 例
7 p Q 1丄 n 丄 丄 丄 乙 丄 d 1 A Λ 式 ( 7 )ノ の V ェポキ、、ノ樹 / fl]0 01丄 ¾丄 b丄 bl 丄 丄 姑t'O Η H¾0'| 1~Φ-1-エポヽキつシ尉 W1 "脂日ハ A οο
オルソタレ、 Γ—ルノホ、、ラ、リク ¾十-ェ ~ ポ *キ \ ^ i l /B]&(z| n
Ό l
式 ( ) の ノーノレ; AQ
、8リ ノ 15JJ n旨 [=( A AO フて ' ~ノレノボゝラノ 、ノソ々 io†Bg曰
1 .
C 9' n
. 丄 .
A L.
し 3.4
し り 2.5
し 1 3.8
レ Πソ ノ: /レ士|ヽ イ ノ 1.3
U 4. U
、ンリ力 500 500 400 500 500 500 500 500 500 500 カーボンブラック 2 2 2 2 2 .2 2 2 2 2 臭素化 スフ:ノ-ル Α型エホ。キシ樹脂 2 2 2 2 2 2 2 2 2 2 カノレナバヮックス 2 2 2 2 2 2 2 2 2 2 スノヽ ラノレフロー (cm) 97 95 71 88 91 90 90 97 69 68 ショァ D硬度 84 82 83 80 81 80 81 82 84 63
3 0°C保存性 (%) 97 93 97 92 94 95 96 93 56 65
表 3に示した各実施例の評価結果から明らかなように、 本発明のエポキシ樹脂 組成物は、 優れた流動性、 硬化性、 及び保存性を有しているのに対して、 従来の 硬化促進剤であるトリフエニルホスフィンを用いた比較例 3では、 明らかに流動 性、 保存性が劣る。
又、 比較例 4は、 テトラフヱニルホスホニゥム (X) と 1官能の有機酸 (O A) 、 モル比 X : Ο Α = 1 : 1の塩であり、 保存性及び流動性は、 トリフユ二 ルホスフィン同様、 非常に劣っている。 この結果からも、 本発明の分子会合体
( C ) を用いたエポキシ樹脂組成物は、 従来の硬化促進剤を用いたものに比べ、 流動性、 硬化性、 及び保存性に非常に優れていることが分かる。
産業上の利用可能性
本発明のエポキシ樹脂組成物は、 硬化性と保存性に優れ、 電子 ·電気部品の封 止材料として用いれば、 生産効率の向上と、 物流 ·保管時の取り扱い性の向上に 寄与することができ、 電子 ·電気材料分野における要求に対応でき有用である。

Claims

請求の範囲
1. 1分子内にエポキシ基を 2個以上有する化合物 (A) 、 1分子内にフユノ —ル性水酸基を 2個以上有する共縮合物 (B ) 、 ならびに、 テトラ置換ホスホニ ゥム (X) と 1分子内にフユノール性水酸基を 2個以上有する化合物 (Y) 及び 1分子内にフエノール性水酸基を 2個以上有する化合物 (Y) の共役塩基との分 子会合体 (C ) から成り、 該共役塩基が前記フユノ一ル性水酸基を 1分子内に 2 個以上有する化合物 (Y) から 1個の水素を除いたフユノキシド型化合物である ことを特徴とするエポキシ樹脂組成物。
2. 1分子内にフユノール性水酸基を 2個以上有する化合物 (Y) 、 ジヒ ド ロキシベンゼン類、 トリヒ ドロキシベンゼン類、 ビスフエノー/レ類、 ビフエノ一 ル類、 ジヒ ドロキシナフタレン類、 フエノ一ルノポラック樹脂、 フエノールァラ ルキル樹脂の中から選択される 1種以上である請求項 1記載のエポキシ樹脂組成 物。
3. 分子会合体 (C ) 力 、 テトラ置換ホスホニゥム ·テトラ置換ボレート ( Z ) と、 1分子内にフユノール性水酸基を 2個以上有する化合物 (Y) とを、 高温下で反応させた後、 更に沸点 6 0 °C以上の溶媒中で熱反応させて得られるも のである請求項 1又は 2記載のェポキシ樹脂組成物。
4. 分子会合体 (C) 、 1分子内にフユノール性水酸基を 2個以上有する化 合物 (Y) と、 無機塩基又は有機塩基と、 テトラ置換ホスホニゥムハライドとを 反応させて得られるものである請求項 1又は 2記載のェポキシ樹脂組成物。
5. テトラ置換ホスホニゥム (X) 、 テトラフェニルホスホニゥムである請 求項 1〜4の任意の 1項に記載のエポキシ樹脂組成物。
6. 1分子内にエポキシ基を 2個以上有する化合物 (A) i) 融点 5 0〜1 5 0 °Cの結晶性エポキシ樹脂である請求項 1〜 5の任意の 1項に記載のエポキシ樹 脂組成物。
7. 融点 5 0〜 1 5 0 °Cの結晶性エポキシ樹脂が、 一般式 ( 1 ) 及び一般式 ( 2 ) から選ばれる 1種以上である請求項 6記載のエポキシ樹脂組成物。 CH,CHCH,O OCEUCHCH, (1)
\ 7 ' — \ に
0 O
(式中、 R 1は水素原子、 炭素数多くとも 6の鎖状もしくは環状アルキル基、 フエニル基、 及びハロゲンの中から選択される基又は原子であり、 互いに同一で あっても異なっていてもよレヽ。 )
(2)
Figure imgf000025_0001
(式中、 R は水素原子、 炭素数多くとも 6の鎖状もしくは環状アルキル基、 フエニル基、 及びハロゲンの中から選択される基又は原子であり、 互いに同一で あっても異なっていてもよい。 )
8. 融点 5 0〜1 5 0 °Cの結晶性エポキシ樹脂が、 一般式 (3 ) で示されるス チルベン型エポキシ樹脂と一般式 (4 ) で示されるスチルベン型エポキシ樹脂と の混合物である請求項 6記載のエポキシ樹脂組成物。
(3)
Figure imgf000025_0002
(式中、 R °〜R i Uは、 それぞれ独立に、 水素原子、 炭素数多くとも 6の鎖 状もしくは環状アルキル基、 及びハロゲンの中から選択される基又は原子を示す。 ただし、 炭素一炭素二重結合に結合している 2個のァリ一ル基は互いに異な る。 )
Figure imgf000026_0001
(式中、 R1 1 !^1 4は、 それぞれ独立に、 水素原子、 炭素数多くとも 6の 鎖状もしくは環状アルキル基、 及びハロゲンの中から選択される基又は原子を示 す。 ただし、 炭素一炭素二重結合に結合している 2個のァリール基は互いに同じ である。 )
9. 1分子内にフユノール性水酸基を 2個以上有する共縮合物 (B) が、 フエ ノールァラルキル樹脂である請求項 1〜 8の任意の 1項に記載のエポキシ樹脂組 成物。
10. 請求項 1〜 9の任意の 1項に記載のエポキシ樹脂組成物を用いて半導体素 子を封止してなることを特徴とする半導体装置。
PCT/JP2000/001448 1999-07-22 2000-03-10 Composition de resine epoxyde et dispositif semi-conducteur WO2001007501A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/762,950 US6664344B1 (en) 1999-07-22 2000-03-10 Composition of polyepoxide, phenolic co-condensate and phosphonium-polyphenolic molecular association product
DE60020516T DE60020516T2 (de) 1999-07-22 2000-03-10 Epoxidharzzusammensetzung und halbleitervorrichtung
EP00907980A EP1130041B1 (en) 1999-07-22 2000-03-10 Epoxy resin composition and semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/207498 1999-07-22
JP20749899 1999-07-22

Publications (1)

Publication Number Publication Date
WO2001007501A1 true WO2001007501A1 (fr) 2001-02-01

Family

ID=16540720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001448 WO2001007501A1 (fr) 1999-07-22 2000-03-10 Composition de resine epoxyde et dispositif semi-conducteur

Country Status (8)

Country Link
US (1) US6664344B1 (ja)
EP (1) EP1130041B1 (ja)
KR (1) KR100629665B1 (ja)
CN (1) CN1105132C (ja)
DE (1) DE60020516T2 (ja)
MY (1) MY123645A (ja)
TW (1) TW526214B (ja)
WO (1) WO2001007501A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003082976A1 (en) * 2002-03-28 2003-10-09 Sumitomo Bakelite Company Limited Thermosetting resin composition and epoxy resin molding material using the composition and semiconductor device
JP4569076B2 (ja) 2002-06-05 2010-10-27 住友ベークライト株式会社 硬化促進剤、エポキシ樹脂組成物および半導体装置
EP1400567B1 (en) 2002-09-18 2006-03-08 Sumitomo Bakelite Co., Ltd. Thermosetting resin composition, epoxy resin molding material and semiconductor device
SG131750A1 (en) * 2002-09-18 2007-05-28 Sumitomo Bakelite Co Thermosetting resin composition, epoxy resin molding material and semiconductor device
KR101250033B1 (ko) * 2005-01-20 2013-04-02 스미토모 베이클리트 컴퍼니 리미티드 에폭시 수지 조성물, 그 잠복화 방법 및 반도체 장치
WO2006080270A1 (ja) * 2005-01-26 2006-08-03 Hitachi Chemical Co., Ltd. 硬化促進剤、硬化性樹脂組成物及び電子部品装置
CN101955629B (zh) * 2009-07-16 2011-12-07 中芯国际集成电路制造(上海)有限公司 可用作半导体封装材料的环氧树脂组合物
CN114276653B (zh) * 2021-12-30 2024-01-26 江苏中科科化新材料股份有限公司 环氧树脂组合物及其应用、环氧树脂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0686621A1 (de) * 1994-06-08 1995-12-13 BASF Aktiengesellschaft Verfahren zur Herstellung von strahlungshärtbaren Acrylaten
JPH07330787A (ja) * 1994-06-13 1995-12-19 Sumitomo Bakelite Co Ltd テトラ置換ホスホニウム有機酸塩の合成法
JPH0841290A (ja) * 1994-07-27 1996-02-13 Sumitomo Bakelite Co Ltd 樹脂組成物
JPH08196911A (ja) * 1995-01-30 1996-08-06 Sumitomo Bakelite Co Ltd リン系潜伏性触媒の合成法
JPH09124772A (ja) * 1995-10-30 1997-05-13 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5458795A (en) * 1977-10-19 1979-05-11 Hitachi Ltd Preparation of curing agent for epoxy resin
JPS54113256A (en) * 1978-02-24 1979-09-04 Hitachi Ltd Production of resin seal semiconductor device
US4340761A (en) * 1980-11-24 1982-07-20 The Dow Chemical Company Preparation of phosphonium phenoxide salts
JPS58119654A (ja) 1982-01-08 1983-07-16 Toshiba Corp 樹脂封止型半導体装置
JPS6054458A (ja) 1983-09-06 1985-03-28 Toshiba Corp 樹脂封止型半導体装置
JPS63248823A (ja) 1987-04-02 1988-10-17 Toshiba Corp エポキシ樹脂組成物及び樹脂封止型半導体装置
JPH02240133A (ja) 1989-03-15 1990-09-25 Denki Kagaku Kogyo Kk 半導体封止用エポキシ樹脂組成物
JPH02240132A (ja) 1989-03-15 1990-09-25 Denki Kagaku Kogyo Kk 半導体封止用エポキシ樹脂組成物
JPH082943B2 (ja) 1990-04-17 1996-01-17 信越化学工業株式会社 エポキシ樹脂組成物
US5188767A (en) 1990-04-27 1993-02-23 Hitachi Chemical Co., Ltd. Electroconductive resin paste containing mixed epoxy resin and electroconductive metal powder
JP3233382B2 (ja) 1993-12-20 2001-11-26 住友ベークライト株式会社 樹脂組成物
JP3274265B2 (ja) 1993-12-20 2002-04-15 住友ベークライト株式会社 エポキシ樹脂組成物
JP3478315B2 (ja) 1995-12-06 2003-12-15 日立化成工業株式会社 半導体封止用エポキシ樹脂組成物及び該樹脂組成物で封止した半導体装置
JP3217266B2 (ja) * 1996-06-11 2001-10-09 住友ベークライト株式会社 潜伏性触媒及び該触媒を配合してなる熱硬化性樹脂組成物
JPH10245432A (ja) 1997-03-06 1998-09-14 Toray Ind Inc エポキシ樹脂組成物および半導体装置
JPH10279670A (ja) 1997-04-01 1998-10-20 Toray Ind Inc エポキシ樹脂組成物および半導体装置
JPH1121431A (ja) * 1997-07-04 1999-01-26 Hitachi Chem Co Ltd 電子部品封止用エポキシ樹脂成形材料及び電子部品装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0686621A1 (de) * 1994-06-08 1995-12-13 BASF Aktiengesellschaft Verfahren zur Herstellung von strahlungshärtbaren Acrylaten
JPH07330787A (ja) * 1994-06-13 1995-12-19 Sumitomo Bakelite Co Ltd テトラ置換ホスホニウム有機酸塩の合成法
JPH0841290A (ja) * 1994-07-27 1996-02-13 Sumitomo Bakelite Co Ltd 樹脂組成物
JPH08196911A (ja) * 1995-01-30 1996-08-06 Sumitomo Bakelite Co Ltd リン系潜伏性触媒の合成法
JPH09124772A (ja) * 1995-10-30 1997-05-13 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1130041A4 *

Also Published As

Publication number Publication date
DE60020516T2 (de) 2006-05-04
KR100629665B1 (ko) 2006-09-29
CN1319112A (zh) 2001-10-24
DE60020516D1 (de) 2005-07-07
MY123645A (en) 2006-05-31
EP1130041A4 (en) 2001-12-12
US6664344B1 (en) 2003-12-16
CN1105132C (zh) 2003-04-09
EP1130041B1 (en) 2005-06-01
KR20010079864A (ko) 2001-08-22
EP1130041A1 (en) 2001-09-05
TW526214B (en) 2003-04-01

Similar Documents

Publication Publication Date Title
JP5170493B2 (ja) フェノール系重合体、その製法及びその用途
US10941241B2 (en) Epoxy resin molding material, molded product, molded cured product, and method for producing molded cured product
JP5055679B2 (ja) 熱硬化性樹脂組成物およびそれを用いたエポキシ樹脂成形材料ならびに半導体装置
WO2001007501A1 (fr) Composition de resine epoxyde et dispositif semi-conducteur
JP4404302B2 (ja) エポキシ樹脂の硬化剤、組成物及びその用途
JP2006225630A (ja) エポキシ樹脂組成物、その潜伏化手法および半導体装置
JP4617531B2 (ja) エポキシ樹脂組成物及び半導体装置
JP5268404B2 (ja) フェノール系重合体、その製法およびその用途
JP4491897B2 (ja) エポキシ樹脂組成物及び半導体装置
JP3672224B2 (ja) 熱硬化性樹脂組成物およびそれを用いたエポキシ樹脂成形材料ならびに半導体装置
JP2000319361A (ja) 熱硬化性樹脂組成物
JP4622030B2 (ja) エポキシ樹脂組成物及び半導体装置
JP4622025B2 (ja) エポキシ樹脂組成物及び半導体装置
JP2001316453A (ja) エポキシ樹脂組成物及び半導体装置
JP4595223B2 (ja) 熱硬化性樹脂組成物、エポキシ樹脂成形材料および半導体装置
JP4765135B2 (ja) エポキシ樹脂組成物及び半導体装置
JP4341254B2 (ja) エポキシ樹脂組成物用硬化促進剤、エポキシ樹脂組成物および半導体装置
US6753086B2 (en) Thermosetting resin composition, epoxy resin molding material and semiconductor device
JP4622024B2 (ja) エポキシ樹脂組成物及び半導体装置
JP2001261790A (ja) エポキシ樹脂組成物及び半導体装置
JP4617532B2 (ja) エポキシ樹脂組成物及び半導体装置
JP2001270931A (ja) エポキシ樹脂組成物及び半導体装置
JP2000327755A (ja) 熱硬化性樹脂組成物
JP2012172122A (ja) フェノール系重合体、その製法およびその用途
JP2002284855A (ja) 熱硬化性樹脂組成物及びそれを用いたエポキシ樹脂成形材料並びに半導体装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00801488.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09762950

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000907980

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020017003518

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020017003518

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000907980

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000907980

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1020017003518

Country of ref document: KR