WO2000019481A2 - Low contamination high density plasma processing chamber and methods for processing a semiconductor substrate - Google Patents

Low contamination high density plasma processing chamber and methods for processing a semiconductor substrate Download PDF

Info

Publication number
WO2000019481A2
WO2000019481A2 PCT/US1999/020890 US9920890W WO0019481A2 WO 2000019481 A2 WO2000019481 A2 WO 2000019481A2 US 9920890 W US9920890 W US 9920890W WO 0019481 A2 WO0019481 A2 WO 0019481A2
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
liner
support
recited
plasma processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US1999/020890
Other languages
English (en)
French (fr)
Other versions
WO2000019481A9 (en
WO2000019481A3 (en
Inventor
Thomas E. Wicker
Robert A. Maraschin
William S. Kennedy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lam Research Corp
Original Assignee
Lam Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lam Research Corp filed Critical Lam Research Corp
Priority to DE69928289T priority Critical patent/DE69928289T2/de
Priority to AU14401/00A priority patent/AU1440100A/en
Priority to EP99969835A priority patent/EP1145273B1/en
Priority to JP2000572891A priority patent/JP4612190B2/ja
Publication of WO2000019481A2 publication Critical patent/WO2000019481A2/en
Anticipated expiration legal-status Critical
Publication of WO2000019481A3 publication Critical patent/WO2000019481A3/en
Publication of WO2000019481A9 publication Critical patent/WO2000019481A9/en
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32477Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/022Avoiding or removing foreign or contaminating particles, debris or deposits on sample or tube
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10S156/914Differential etching apparatus including particular materials of construction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10S156/916Differential etching apparatus including chamber cleaning means or shield for preventing deposits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12347Plural layers discontinuously bonded [e.g., spot-weld, mechanical fastener, etc.]

Definitions

  • the present invention relates generally to the fabrication of semiconductor wafers, and, more particularly, to high density plasma etching chambers having lining materials that reduce particle and metallic contamination during processing, and associated chamber lining structures.
  • the manufacturing of the integrated circuit devices includes the use of plasma etching chambers, which are capable of etching selected layers defined by a photoresist mask.
  • the processing chambers are configured to receive processing gases (i.e., etch chemistries) while a radio frequency (RF) power is applied to one or more electrodes of the processing chamber.
  • RF radio frequency
  • the pressure inside the processing chamber is also controlled for the particular process.
  • the process gases in the chamber are activated such that a plasma is created.
  • the plasma is thus configured to perform the desired etching of the selected layers of the semiconductor wafer.
  • a processing chamber that is used for etching materials such as silicon oxides requires relatively high energies to achieve the desired etch result, compared to other films etched during fabrication.
  • silicon oxides include, for example, thermally grown silicon dioxide (SiO 2 ), TEOS, PSG, BPSG, USG (undoped spin-on-glass), LTO, etc.
  • the need for high energies stems from the need to bombard and break the strong bonds of the silicon oxide films and drive chemical reactions to form volatile etch products.
  • These chambers are therefore referred to as "high density oxide etch chambers," that are capable of producing high plasma densities in order to provide a high ion flux to the wafer and achieve high etch rates at low gas pressures.
  • chambers are now designed to permit the use of simple lining parts, such as, disks, rings, and cylinders. Because these parts are configured to confine the plasma over the wafer being processed, these parts are continuously exposed and attacked by the processing plasma energies. Due to this exposure, these parts ultimately erode or accumulate polymer buildup, requiring replacement or thorough cleaning. Eventually, all parts wear out to the point that they are no longer usable. These parts are hence referred to as “consumables. " Therefore, if the part's lifetime is short, then the cost of the consumable is high (i.e., part cost/part lifetime).
  • Some of this aluminum becomes embedded in an organic polymer that is deposited on the wafer during etching and on the surfaces of the consumable parts (i.e., chamber liners, covers, and the like). When this happens, the polymer on the surface of the consumable parts may not be able to be completely cleaned during a conventional in-situ plasma clean or "ash" step. Thus, a friable, flaking film or powdery coating that includes C, Al, O, and F is left behind after the in-situ plasma clean, and therefore results in high particle counts.
  • the aluminum deposited in structures being etched and the films on the silicon wafer can cause degradation of devices subsequently formed, for example, by increasing leakage current in DRAM cells.
  • quartz is also used as the material of the interior surfaces of the consumable parts.
  • quartz surfaces have been found to be an unfortunate source of particles due to the low thermal conductivity of quartz and the high etch rates in high density plasmas used to etch oxides. Additionally, low thermal conductivity quartz makes surface temperature control of these parts very difficult. This results in large temperature cycling and flaking of the etch polymer deposited on the surface of the consumable parts, and therefore causes the unfortunate generation of contaminating particles.
  • a further disadvantage of quartz consumable parts is that the high etch rate in high density oxide etchers tends to cause pitting in the quartz, which then results in spalling of quartz particles.
  • the present invention fills these needs by providing temperature controlled, low contamination, high etch resistant, plasma confining parts (i.e., consumables) for use in plasma processing chambers. It should be appreciated that the present invention can be implemented in numerous ways, including as a process, an apparatus, a system, a device or a method. Several inventive embodiments of the present invention are described below.
  • a plasma processing chamber including an electrostatic chuck for holding a wafer, and having consumable parts that are highly etch resistant, less susceptible to generating contamination and can be temperature controlled.
  • the consumable parts include a chamber liner having a lower support section and a wall that is configured to surround the electrostatic chuck.
  • the consumable parts also include a liner support structure having a lower extension, a flexible wall, and an upper extension.
  • the flexible wall is configured to surround an external surface of the wall of the chamber liner, and the liner support flexible wall is spaced apart from the wall of the chamber liner.
  • the lower extension of the liner support is however, configured to be in direct thermal contact with the lower support section of the chamber liner.
  • a baffle ring is part of the consumable parts, and is configured to be assembled with and in thermal contact with the chamber liner and the liner support.
  • the baffle ring defines a plasma screen around the electrostatic chuck.
  • a heater is then capable of being thermally connected to the upper extension of the liner support for thermally conducting a temperature from the liner support to the chamber liner and the baffle ring.
  • an outer support that is thermally connected to a cooling ring that is coupled to a top plate of the chamber. The outer support and the cooling ring are therefore capable of providing precision temperature control to the chamber liner, along with a cast heater.
  • consumable parts including the chamber liner and the baffle ring are made completely from or coated with a material selected from silicon carbide (SiC), silicon nitride (Si 3 N 4 ), boron carbide (B 4 C) and/or boron nitride (BN) material.
  • SiC silicon carbide
  • Si 3 N 4 silicon nitride
  • B 4 C boron carbide
  • BN boron nitride
  • a plasma etching chamber having consumable parts in another embodiment, includes a chamber liner having a lower support section and a cylindrical wall that surrounds a center of the plasma etching chamber.
  • a liner support that is configured to surround the chamber liner.
  • the liner support is thermally connected to the lower support section of the chamber liner.
  • the liner support further includes a plurality of slots that divide the liner support into a plurality of fingers.
  • the chamber liner is made from a material selected from one of a silicon carbide (SiC) material, a silicon nitride (Si 3 N 4 ) material, a boron carbide (B 4 C) material, and a boron nitride (BN) material, and the liner support is made from an aluminum material.
  • SiC silicon carbide
  • Si 3 N 4 silicon nitride
  • B 4 C boron carbide
  • BN boron nitride
  • the method includes use of a chamber liner from a material selected from one of a silicon carbide (SiC) material, a silicon nitride (Si 3 N 4 ) material, a boron carbide (B 4 C) material, and a boron nitride (BN) material.
  • the chamber liner can have a wall that surrounds a plasma region of the chamber and a lower support section.
  • the method can include use of an aluminum liner support optionally having a lower extension, a flexible wall and an upper extension wherein a plurality of slots are provided in the flexible wall and the lower extension of the liner support to enable the liner support to expand at elevated temperatures.
  • the method optionally includes use of a baffle ring of silicon carbide (SiC), silicon nitride (Si,N 4 ), boron carbide (B 4 C) and/or boron nitride (BN).
  • a plurality of slots can be provided in the baffle ring to define a plasma screen.
  • the method can include thermal control of the chamber liner via a thermal path through the liner support and the baffle ring.
  • a plasma processing chamber includes a chamber liner and a liner support, the liner support including a flexible wall configured to surround an external surface of the chamber liner, the flexible wall being spaced apart from the wall of the chamber liner.
  • a heater can be thermally connected to the liner support so as to thermally conduct heat from the liner support to the chamber liner.
  • the liner support is preferably made from flexible aluminum material and the chamber liner preferably comprises a ceramic material.
  • the liner support can have various features.
  • the flexible wall can include slots which divide the liner support into a plurality of fingers which enable the flexible wall to absorb thermal stresses and/or a lower extension of the liner support can be fixed to a lower support section of the chamber liner.
  • a baffle ring in thermal contact with the chamber liner and the liner support can be used to define a plasma screen around an electrostatic chuck located in a central portion of the chamber.
  • the chamber liner and/or baffle ring are preferably made from one or more of silicon carbide (SiC), silicon nitride (Si,N 4 ), boron carbide (B 4 C), and boron nitride (BN).
  • the plasma processing chamber can include various features.
  • the chamber liner can have low electrical resistivity and be configured to provide an RF path to ground.
  • a gas distribution plate having high electrical resistivity can be provided over an electrostatic chuck and/or a pedestal supporting a focus ring and the electrostatic chuck.
  • the gas distribution plate, the focus ring and/or the pedestal are preferably made from one or more of the silicon carbide (SiC), silicon nitride (Si 3 N 4 ), boron carbide (B 4 C), and boron nitride (BN).
  • the plasma can be generated in the chamber by an RF energy source which inductively couples RF energy through the gas distribution plate and generates a high density plasma in the chamber.
  • the RF energy source preferably comprises a planar antenna.
  • the chamber can be used for plasma processing semiconductor wafers.
  • the chamber can be a plasma etching chamber.
  • the liner can have various configurations.
  • the liner support can include an outer support thermally connected to a lower extension of the liner support and the outer support can be in thermal contact with a water cooled top plate mounted on the chamber.
  • the liner support can also include an upper extension, a flexible wall, and a lower extension, wherein the flexible wall and the lower extension have a plurality of slots that define a plurality of fingers in the liner support.
  • a cast heater ring can be located in thermal contact with the liner support, the heater ring including a resistance heated element which heats the liner support so as to thermally control the temperature of the chamber liner.
  • a semiconductor substrate is processed in a plasma processing chamber having a chamber liner and a liner support, the liner support including a flexible wall configured to surround an external surface of the chamber liner, the flexible wall being spaced apart from the wall of the chamber liner wherein a semiconductor wafer is transferred into the chamber and an exposed surface of the substrate is processed with a high density plasma.
  • the chamber liner is preferably a ceramic material and the liner support preferably includes an outer support extending between the liner support and a temperature controlled part of the chamber, the outer support being dimensioned to minimize temperature drift of the chamber liner during sequential processing of a batch of semiconductor wafers.
  • the ceramic liner is preferably removed from the chamber and replaced with another ceramic liner after processing a predetermined number of semiconductor wafers.
  • the chamber liner can include a wafer entry port enabling passage of the wafer into the chamber.
  • Figure 1 shows a high density plasma etching chamber in accordance with one embodiment of the present invention
  • Figures 2A through 2C illustrate in more detail a baffle ring in accordance with one embodiment of the present invention
  • Figure 3A shows a more detailed cross-sectional diagram of a liner support in accordance with one embodiment of the present invention
  • Figure 3B shows a side view of the liner support from cross section A-A of Figure 3A, in accordance with one embodiment of the present invention
  • Figure 3C illustrates the flexibility of the liner support when subjected to temperature stresses in accordance with one embodiment of the present invention
  • Figure 4 illustrates how the chamber liner is assembled with the liner support in accordance with one embodiment of the present invention
  • Figure 5A shows a partial cross-sectional view of the chamber liner, the liner support, and the baffle ring, assembled in accordance with one embodiment of the present invention
  • Figure 5B shows a side view of an outer support in accordance with one embodiment of the present invention
  • Figure 6 illustrates a three-dimensional assembled view of the chamber liner, the baffle ring, and the liner support, in accordance with one embodiment of the present invention
  • Figure 7 shows another three-dimensional view of the assembled chamber liner, liner support, and the baffle ring, in accordance with one embodiment of the present invention.
  • Figure 8 shows an exploded view of portions of the high-density plasma etching chamber of Figure 1 in accordance with one embodiment of the present invention.
  • the invention provides one or more temperature controlled, low contamination, high etch resistant, plasma confining parts (i.e. , consumables) for use in plasma processing chambers.
  • plasma confining parts i.e. , consumables
  • numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be understood, however, to one skilled in the art, that the present invention may be practiced without some or all of these specific details. In other instances, well known process operations have not been described in detail in order not to unnecessarily obscure the present invention.
  • the plasma confining parts of the present invention are preferably in the form of, for example, chamber liners, baffle rings, gas distribution plates, focus rings, liner supports, and other non-electrically driven parts. These parts are preferably configured to be substantially non-contaminating and etch resistant, and they are preferably temperature controlled without damaging the parts.
  • the plasma confining parts are preferably made from materials that consist of elements that are innocuous to devices being fabricated on the wafer, such as silicon (Si), carbon (C), nitrogen (N), or oxygen (O). In this manner, when the plasma confining parts are bombarded by ions (i.e. , sputtered by the plasma), volatile products that combine with the process gases are produced.
  • the plasma confining parts of the present invention are preferably made from one or more materials such as, for example, silicon carbide (SiC), silicon nitride (Si 3 N 4 ), boron carbide (B 4 C), and boron nitride (BN). These materials all have the desirable characteristics of having high etch resistance, non-contaminating elements, and volatile etch products.
  • the plasma confining parts also referred to as consumable parts
  • SiC solid silicon carbide
  • the SiC used for the baffle ring 132 and liner 130 is preferably electrically conductive so that when it is in contact with the plasma it presents a good ground path for the RF current.
  • SiC can be used for a gas distribution plate ("GDP") (i.e. , 120 of Fig. 1) in order to permit inductive coupling of RF power through it.
  • GDP gas distribution plate
  • the SiC also etches at a slow rate by the plasma making it a cost-effective consumable part.
  • the SiC is of high purity, wafer contamination resulting from chemical sputtering of the SiC by the plasma can be minimized. Further, the grounded SiC can reduce sputtering of other surfaces in the chamber by causing a reduction in the plasma potential and hence ion bombardment energy to any non- silicon carbide surfaces.
  • the SiC component also provides a very stable plasma potential so that etch results are more repeatable within an individual chamber and from chamber to chamber.
  • FIG. 1 shows a high density plasma etching chamber 100 in accordance with one embodiment of the present invention.
  • a chamber housing 102 is shown containing a semiconductor substrate such as a silicon wafer 104, that may be subjected to a plasma etching operation.
  • the etching operating is preferably a high density plasma operation that is configured to etch materials such as silicon oxides, that may be formed on the surface of the wafer 104.
  • the high density e.g.
  • plasmas having a densities between about lC ⁇ -lO 12 ions/cm 3 ) plasma is established in the chamber by ensuring that the cr mber is held at a relatively low pressure of below about 80 mTorr, and most preferably between about 1 mTorr and about 40 mTorr.
  • the pressure in the chamber is generally maintained by implementing a suitable vacuum pump at the bottom of the chamber.
  • the wafer 104 is shown supported over an electrostatic chuck 106. Beneath the electrostatic chuck 106 is a lower electrode 108 which contains a backside cooling ring 110 for controlling the temperature of the electrostatic chuck 106.
  • the electrostatic chuck 106 is confined by a pedestal 112 and a focus ring 114 that surrounds the wafer 104.
  • the pedestal 112 and the focus ring 114 are preferably made from a material selected from a group including: (a) silicon carbide (SiC), (b) silicon nitride (S ⁇ N 4 ), (c) boron carbide (B 4 C), or (d) boron nitride (BN).
  • Si 3 N 4 is selected as the material for the pedestal 112 and the focus ring 114.
  • an insulating alumina ring 116 sits between an aluminum pedestal 118 and the lower electrode 108 and the silicon carbide pedestal 112.
  • a chamber liner 130 is preferably a cylindrical liner which can be attached to a baffle ring 132.
  • the baffle ring 132 generally includes an inner ring 132a that makes good electrical contact as well as good thermal contact with the chamber liner 130.
  • the baffle ring 132 also has an integral array of teeth 132b which will be described in greater detail with reference to Figures 2A through 2C.
  • GDP gas distribution plate
  • Above the wafer 104 is a gas distribution plate (GDP) 120 which functions as a showerhead to release the etch gas chemicals into the processing chamber. Above the gas distribution plate 120 sits a ceramic window 122.
  • an RF coil system 120 i.e., an RF antenna
  • the RF coils 120 are preferably cooled via a cooling channel that is integrated at the center of the RF coils 120.
  • a gas feed port 126 is used to feed processing gases into channels that are defined between the ceramic window 122 and the gas distribution plate 120.
  • TCP 9100TM plasma etching reactor which is available from LAM Research Corporation, of Fremont, California.
  • An RF impedance matching system 127 is configured to mount over the processing chamber and make suitable contact with the RF coils 122 in order to control the delivery of power as well as other reactor controlling parameters.
  • the ceramic window 122 is designed to be in contact with the gas distribution plate that mounts within a top plate 124.
  • the top plate 124 defines an interface between atmospheric pressure and a desired vacuum condition within the high density plasma etching chamber 100.
  • the desired pressure interface is established by placing a suitable number of O-rings between interfaces of the chamber housing 102, the top plate 124, the GDP 120, the ceramic window 122, and the RF match system 127.
  • a liner support 134 is also provided within the high density plasma etching chamber 100 to enable precision control and transfer of a desired temperature to the chamber liner 130 and the baffle ring 132.
  • the liner support 134 is made of aluminum to facilitate its flexibility and improve its thermal conductivity.
  • the liner support 134 includes an upper extension 134a, a flexible wall 134b, a lower extension 134c, and a liner support extension 134d.
  • the lower extension 134c is shown assembled in direct thermal contact with the chamber liner 130, and the baffle ring 132.
  • the flexible wall 134b is slightly separated from the chamber liner 130.
  • a heater 140 is capable of being secured in direct thermal contact with the upper extension 134a of the liner support 134.
  • a power connection 142 is used to couple to a heater power system 129.
  • the liner support is therefore well suited to control a desired temperature that can be thermally transferred to the chamber liner 130 and the baffle ring 132 without causing damage to the (more brittle) chamber liner 130 or baffle ring 132.
  • an outer support 131 which is thermally connected to the lower extension 134c of the liner support 134.
  • the outer support is also thermally coupled to the top plate 124, which is designed to receive a cooling ring 121.
  • the outer support 131 is used to achieve precision temperature control of the chamber liner 130 during wafer processing operations (e.g. , etching).
  • the precision temperature control provided by the outer support 131 and cooling ring 121 will therefore advantageously assist in preventing the chamber liner temperature from gradually drifting upwards (due to the plasma energies) faster than the liner's ability to radiate the heat to its surroundings.
  • the chamber liner 130 and the baffle ring 132 are preferably made of a pure silicon carbide material.
  • the gas distribution plate 120, the focus ring 114 and the pedestal 112 are also made of a pure silicon nitride or carbide materials, or at least silicon carbide coated. In this manner, substantially all of the surfaces that confine the high density plasma will be pure silicon carbide, or coated silicon carbide.
  • other materials that consist only of elements that are innocuous to devices on the wafer being processed, such as silicon (Si), carbon (C), nitrogen (N), or oxygen, which form volatile etch products with the etch gases, may be used.
  • the volatile products produced when the internal surfaces that confine the plasma are bombarded will mix with the excess etch gases that are commonly removed from the chamber (using a vacuum pump or the like). Because the products produced when the plasma bombards the internal surfaces of the chamber (i.e., the consumable parts) are volatile, these products will not end up on the surface of the wafer causing contamination, nor end up embedded in the polymer deposited on the consumable parts.
  • FIGs 2A through 2C illustrate in more detail the baffle ring 132 in accordance with one embodiment of the present invention.
  • the baffle ring 132 functions as a plasma screen for the passage of gases and byproducts to a vacuum pump connected at the bottom of the chamber 102.
  • the baffle ring 132 has an array of teeth 132b that assist in maintaining the plasma in the top half of the chamber 102, where the silicon carbide surfaces (of the consumables) confine the plasma substantially over the wafer 104.
  • the baffle ring 132 also has an inner ring 132a which is used to make good thermal contact with the chamber liner 130.
  • Figure 2B is a three-dimensional view of a pair of teeth 132b.
  • the open areas provided by the spaces 132c are configured such that a percentage ranging between 50 and 70 percent open area is maintained to allow a sufficient passageway for the gases and by-products to be pumped out of the chamber 102.
  • the solid silicon carbide material (or coated SiC material) must be machined such that a suitable aspect ratio that is at least 1.5 or greater, is maintained.
  • the width of the spaces 132c are preferably set to about 0.13 inch, and the height is set to about 0.28 inch. These preferred dimensions therefore provide an aspect ratio of about 2.0.
  • the inner diameter (ID) of the baffle ring 132 in this 200 mm wafer chamber embodiment, is set to about 10.75 inches, such that about 1/16 inch clearance is provided between the pedestal 112 shown in Figure 1.
  • the inner diameter (ID) may of course be larger, depending upon the size of the wafer being processed. For example, for a 300 mm wafer, the inner diameter may be as large as about 14 inches.
  • the baffle ring 132 may be manufactured such that the teeth 132b are replaced with an array of holes or slots. When an array of holes or slots are manufactured in place of the teeth 132b, it is still desired to maintain an open area (i.e. , pathway), that amounts to between about 50 percent and 70 percent.
  • the baffle ring 132 is also shown having a plurality of screw holes 150 which are designed around the outer ring 132a. As shown in Figure 1, the screw holes 150 will be configured to receive a suitable screw that will help interconnect the baffle ring 132 to the chamber liner 130 and the liner support 134.
  • FIG 3 A shows a more detailed cross-sectional diagram of the liner support 134 in accordance with one embodiment of the present invention.
  • the liner support 134 has a flexible wall 134b which is configured to flex in response to heat deformation that may occur when the heater 140 applies the desired heat level.
  • the flexible wall 134b is cylindrical and is slotted into a plurality of fingers.
  • the liner support is preferably made of an aluminum material which will have good thermal conductivity and will also provide good flexibility when a desired temperature is applied by the heater 140.
  • the lower extension 134c is bolted to the chamber liner 130 and the baffle ring 132, the lower extension 134c will remain in place while the upper extension 134a, which is coupled to the heater 140 at a heat- conductive interface 141, may be able to flex outwardly as illustrated in Figure 3C.
  • the heater 140 is preferably secured to the upper extension 134a using a suitable number of screws 144 to ensure that the heat conductive interface 141 is maintained all the way around the upper extension 134a.
  • the screws 144 will be capable of maintaining the heater 140 in contact with the upper extension 134a with a pressure of about 1,000 pounds per square inch.
  • the liner support 134 may have an inner diameter of about 14 Vi inches.
  • the thickness 170 of the flexible wall 134b may range between about 1/16 inch and about 3/32 inch.
  • the 1/16 inch dimension is preferably used for processing temperatures ranging up to about 300° C, while the 3/32 dimension is reserved for chambers having processing temperatures up to about 1000° C.
  • the separation 176 between the lower extension 134c and the upper extension 134a is preferably set to about 2 1 / 2 inches, depending upon the chamber height. However, the greater the separation 176 is, the greater the thermal resistance in the liner support 134. Therefore, the separation 176 is kept just short enough such that the aluminum material of the liner support will not become too stressed as temperatures reach 300° C and above.
  • the exemplary thickness 172 for the upper extension 134a is preferably set to about 9/16 inch, while the exemplary thickness of the lower extension 134c is set to about 5/8 inch.
  • FIG 3B shows a side view of the liner support 134 from cross section A-A of Figure 3A, in accordance with one embodiment of the present invention.
  • slots 152 are defined into the sides of the liner support 134 defining a plurality of fingers.
  • the slots 152 vertically extend through the flexible wall 134b and through the lower extension 134c.
  • the separation between the slots 152 must be configured such that a suitable level of flexibility remains in the flexible wall 134b. Therefore, the separation between slots 152 is preferably set to about 15 degrees. However, the actual separation between the slots 152 may vary and also change depending upon the diameter of the liner support 134 and the degree of flexibility that is desired.
  • the screw holes 150 which are defined in the lower extensions 134c.
  • Figure 3C shows the liner support extending outwardly from a Y axis (relative to a horizontal X-axis) to achieve a separation 133.
  • the separation may be as much as 1/16 inch, or more.
  • the liner support 134 will advantageously be able to withstand the thermal stress placed on the aluminum material of the liner support 134, while insulating the less flexible chamber liner 130 and the baffle ring 132 from temperature deforming stresses.
  • Figure 4 illustrates how the chamber liner 130 is assembled with the liner support 134 in accordance with one embodiment of the present invention.
  • the chamber liner 130 when the chamber liner 130 is made of silicon carbide, it will provide a high integrity RF return path to ground for the powered electrode 108 (bottom electrode).
  • the grounded SiC can reduce sputtering of other surfaces in the chamber by causing a reduction in the plasma potential and hence ion bombardment energy on any non-silicon carbide surfaces.
  • the materials used for the chamber liner 130 can have their electrical resistivity modified over a wide range.
  • the resistivity of SiC can be tailored for the specific application.
  • the SiC is modified to provide a low resistivity that will facilitate the good conductive path to ground for the RF power.
  • high resistivity is needed when the part must have RF power inductively coupled through it, in order to minimize power dissipation in the part.
  • high resistivity SiC is preferably used for the gas distribution plate (GDP) 120.
  • the screw holes 150 are configured to go through the chamber liner 130 at a lower support section and then go into the liner support 134.
  • a suitable number of screws are used to interconnect the chamber liner 130 and the liner support 134 such that a good thermally conductive interface 156 is maintained. In this manner, the heat conducted through the liner support 134 may be thermally communicated to the chamber liner 130 and the baffle ring 132.
  • the liner support 134 is preferably spaced apart from the chamber liner 130 by a space 154.
  • the space 154 is preferably set to about 1/16 inch. This separation is generally desired because the liner support 134 is configured to flex as described with reference to Figure 3C.
  • a diameter 179 of the chamber liner 130 is about 14 inches.
  • the thickness of the chamber liner 130 is preferably set, in this embodiment, to be between about 0.1 inch and about 0.3 inch, and most preferably, to about 0.2 inch.
  • the height 177 of this exemplary chamber liner may be between about 3 inches and about 12 inches, and most preferably about 5 inches.
  • the outer support 131 which is thermally connected to the lower extension 134c of the liner support 134.
  • the outer support is spaced apart from the flexible wall 134b so that it can flex without substantial obstruction.
  • the outer side of the outer support 131 has an upper extending wall having a surface 123' , which is configured to make good thermal contact with the top plate 124.
  • a cooling ring 121 shown in more detail in Figure 5A, can be used to control the temperature of the chamber liner 130 and the internal regions of the chamber. Accordingly, through the combined simultaneous control of both the heater 140 and cooling ring 121, the temperature of the chamber liner 130 can be maintained to within less than + 10 degrees C from a no plasma condition through a sustained plasma on condition.
  • the first wafer etched can be etched with the same chamber liner 130 temperature as the last wafer etched, to within the ⁇ 10 degrees C variation.
  • Figure 5 A shows a partial cross-sectional view of the chamber liner 130, the liner support 134, and the baffle ring 132 assembled in accordance with one embodiment of the present invention. As shown, the chamber liner 130 and the liner support 134 are assembled to achieve a good thermal conductive interface 156 as described above.
  • the outer support 131 is thermally connected to the lower extension 134c through a plurality of screws 135.
  • the outer support 131 in a most preferred embodiment, has a flexible wall 131a, which is shown to be thermally connected to the top plate 124.
  • a side view of the outer support 131 is also provided in Figure 5B, to illustrate how a plurality of fingers 13 Id, separated by a plurality of slots 131c, assist in providing the necessary flexibility to the flexible wall 131a.
  • the top plate 124 is further configured to receive the cooling ring 121 on a top lip of the top plate 124. Of course, other configurations for applying the cooling ring 121, or other type of cooling system, to the top plate 124 may be used.
  • the combined use of the heater 140 and the cooling ring 121 will enable precision temperature control in narrow temperature ranges.
  • the chamber liner 130 is typically run at high temperatures, such as 200 degrees C or more, while heat is lost to the surroundings primarily through radiation.
  • the plasma dumps more heat into the chamber liner 130 by ion bombardment.
  • the chamber liner 130 will slowly increase in temperature over time because it generally cannot transfer this heat to its surroundings by radiation as fast as it gains heat from the plasma.
  • the outer support 131 which is thermally coupled to the cooling ring 121, is well suited to eliminate the chamber liner's temperature drift.
  • the heat loss to the outer support 131 from the liner support 134 can be set by adjusting the cross-section and length of the outer support 131. This adjustment, can therefore be made to control the heat loss path from the liner support 134 to the temperature controlled top plate 124.
  • the chamber liner 130 will also provide a good thermal conductive interface 157 with the baffle ring 132.
  • the baffle ring 132, the chamber liner 130, and the liner support 134 are secured together using a plurality of screws 150' .
  • the screws 150' are fitted through a spacer ring 131b which is in direct contact with the inner ring 132a of the baffle ring 132, a spacer 131a' , and the chamber liner 130.
  • the spacer ring 131b and the spacer 131a' are preferably made of aluminum and provide a good surface for applying pressure to the screws 150' and the brittle surfaces of the baffle ring 132 and the chamber liner 130. That is, because the baffle ring 132 is preferably a ceramic, applying too greater of a force with screws directly to the baffle ring may cause a crack in the baffle ring or the chamber liner 130.
  • these parts are referred to as consumable parts, however, when silicon carbide (or other alternative materials described herein) is used for the parts that confine the high density plasma, these parts will have a longer lifetime, and therefore, a lower cost of consumables.
  • the liner support 134 When replacement is needed, these parts may be swiftly replaced with replacement parts (i.e., using a quick clean kit). Because the liner support 134 is not designed to be in contact with the high density plasma, it may not wear out as fast as the chamber liner 130 and the baffle ring 132. Thus, the liner support 134 may be removed from worn out consumable parts (that may be cleaned off-line and re-used or discarded), and then used with the replacement consumable parts. When the chamber is being used in fabrication where chamber down time translates into lower yields, the ability to quickly replace these consumables will have the benefit of reducing the mean time to clean the chamber.
  • Figure 6 illustrates a three-dimensional assembled view of the chamber liner 130, the baffle ring 132, and the liner support 134, in accordance with one embodiment of the present invention.
  • the top surface of the upper extension 134a of the liner support 134 is configured with a plurality of screw holes that will receive the heater 140.
  • the plurality of slots 152 are configured to flex in response to temperature variations.
  • a wafer entry port 160 is defined in the wall of the chamber liner 130 to enable the passage of a wafer into and out of the chamber 100.
  • the wafer is preferably passed into the chamber using a robot arm which must partially fit into the port 160, and release the wafer once over the electrostatic chuck 106.
  • the port 160 should be large enough to receive the wafer and robot arm, but also maintained small enough to not disrupt the plasma profile over the wafer.
  • an insert with a slot in the shape of the port 160 is attached to the outside of the liner.
  • the insert can be of SiC, Si 3 N 4 , B 4 C and/or BN.
  • the liner support 134 typically also includes through holes 162 which are also defined in the chamber liner 130.
  • the through holes 162 may include holes for probing the pressure within the chamber during processing, and for optically detecting the endpoint in a particular process.
  • plurality of holes 161 which are used to receive the screws 144 for holding down the heater 140 to the upper extension 134a of the liner support 134.
  • Figure 7 shows another three-dimensional view of the assembled chamber liner 130, liner support 134, and the baffle ring 132. From this view, the port hole 160 used for passing a wafer to the electrostatic chuck 106, is shown in greater detail. Also shown are the teeth 132b of the baffle ring 132. The teeth 132b therefore extend in close proximity to the pedestal 112 to screen the plasma from the lower part of the chamber as shown in Figure 1.
  • Figure 8 shows an exploded view of portions of the high-density plasma etching chamber 100 of Figure 1 in accordance with one embodiment of the present invention. This view shows the spacer ring 131b that is used in the assembly of the baffle ring 132, the chamber liner 130, and the liner support 134.
  • the heater 140 is applied over the top extension 134a of the liner support 134.
  • the heater 140 is preferably a cast heater. Of course, other types of heating systems may also work. When the heater 104 is appropriately secured, a good thermal contact will be made with the liner support 134.
  • the power connection 142 is also shown, which will be passed through a hole 124a in the top plate 124.
  • the top plate 124 is shown capable of receiving the gas distribution plate 120.
  • the gas distribution plate 120 has channels 120a which enable processing gases fed by gas feed ports 126 to be directed into the chamber 100.
  • the ceramic window 122 may then be lowered over the gas distribution plate 120.
  • the high density plasma etch chamber 100 is particularly well suited to etch silicon oxide materials, such as, for example, thermally grown silicon dioxide (SiO 2 ), TEOS, PSG, BPSG, USG (undoped spin-on-glass), LTO, etc., while reducing the introduction of unwanted contaminants.
  • silicon oxide materials such as, for example, thermally grown silicon dioxide (SiO 2 ), TEOS, PSG, BPSG, USG (undoped spin-on-glass), LTO, etc.
  • the pressure within the chamber is preferably maintained below about 80 mTorr, and the RF coil 128 (i.e., top electrode) is preferably set to between about 2500 watts and about 400 watts, and most preferably to about 1,500 watts.
  • the bottom electrode 108 is preferably maintained between about 2500 watts and about 700 watts, and most preferably at about 1,000 watts.
  • process gases such as, CHF 3 , C 2 HF 5 and/or C 2 F 6 are introduced into the chamber to generate the desired etching characteristics.
  • the materials that can be used for the plasma confining parts are generally innocuous to layers being fabricated on the wafer 104. That is, volatile etch products that result from etching the surfaces of the wafer 104 will be similar to the volatile products produced when the consumables are bombarded (i.e., sputtered) with the plasma energies. As an advantageous result, these volatile products produced from ion bombardment of the consumables will join the normal volatile etch products.
  • the material may also be a SiC coated material such as SiC coated graphite, or principally SiC with 10 to 20% Si added to fill porosity in reaction bonded SiC.
  • the consumable parts may also be made from materials such as, silicon nitride (Si 3 N 4 ), boron carbide (B 4 C), and boron nitride (BN). These materials all have the desirable characteristics of having high etch resistance, non-contaminating elements, and volatile etch products.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Plasma Technology (AREA)
  • Physical Vapour Deposition (AREA)
PCT/US1999/020890 1998-09-25 1999-09-24 Low contamination high density plasma processing chamber and methods for processing a semiconductor substrate Ceased WO2000019481A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE69928289T DE69928289T2 (de) 1998-09-25 1999-09-24 Ätzkammern mit plasma dichte und geringer kontamination und herstellungsverfahren derselben
AU14401/00A AU1440100A (en) 1998-09-25 1999-09-24 Low contamination high density plasma etch chambers and methods for making the same
EP99969835A EP1145273B1 (en) 1998-09-25 1999-09-24 Low contamination high density plasma etch chambers and methods for making the same
JP2000572891A JP4612190B2 (ja) 1998-09-25 1999-09-24 低汚染高密度プラズマ・エッチング・チャンバおよびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/161,074 US6129808A (en) 1998-03-31 1998-09-25 Low contamination high density plasma etch chambers and methods for making the same
US09/161,074 1998-09-25

Publications (3)

Publication Number Publication Date
WO2000019481A2 true WO2000019481A2 (en) 2000-04-06
WO2000019481A3 WO2000019481A3 (en) 2001-12-20
WO2000019481A9 WO2000019481A9 (en) 2002-01-31

Family

ID=22579708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/020890 Ceased WO2000019481A2 (en) 1998-09-25 1999-09-24 Low contamination high density plasma processing chamber and methods for processing a semiconductor substrate

Country Status (10)

Country Link
US (3) US6129808A (enExample)
EP (1) EP1145273B1 (enExample)
JP (1) JP4612190B2 (enExample)
KR (1) KR100566908B1 (enExample)
CN (1) CN1328755C (enExample)
AU (1) AU1440100A (enExample)
DE (1) DE69928289T2 (enExample)
RU (1) RU2237314C2 (enExample)
TW (1) TW460972B (enExample)
WO (1) WO2000019481A2 (enExample)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1366208A1 (de) * 2001-02-26 2003-12-03 Unaxis Balzers Aktiengesellschaft Verfahren zur herstellung von teilen und vakuumbehandlungssystem
WO2004093121A1 (en) * 2003-04-14 2004-10-28 Cardinal Cg Company Sputtering chamber comprising a liner
JP2006501608A (ja) * 2002-09-30 2006-01-12 東京エレクトロン株式会社 プラズマ処理システムにおける改良された堆積シールドのための方法及び装置
US7416633B2 (en) 2004-03-08 2008-08-26 Hitachi High-Technologies Corporation Plasma processing apparatus
JP2012248886A (ja) * 2000-12-29 2012-12-13 Lam Research Corporation プラズマエッチング反応器及びその構成部品並びに半導体基板を処理する方法
US8440019B2 (en) 2008-04-07 2013-05-14 Applied Materials, Inc. Lower liner with integrated flow equalizer and improved conductance
EP2417627A4 (en) * 2009-04-06 2015-09-23 Lam Res Corp CONTAINMENT RING EARTHED WITH LARGE SURFACE
WO2018175647A1 (en) * 2017-03-21 2018-09-27 Component Re-Engineering Company, Inc. Ceramic material assembly for use in highly corrosive or erosive semiconductor processing applications
US10283381B2 (en) 2015-10-22 2019-05-07 Spts Technologies Limited Apparatus for plasma dicing
US11387079B2 (en) 2016-06-03 2022-07-12 Evatec Ag Plasma etch chamber and method of plasma etching

Families Citing this family (185)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3257328B2 (ja) * 1995-03-16 2002-02-18 株式会社日立製作所 プラズマ処理装置及びプラズマ処理方法
US6482747B1 (en) * 1997-12-26 2002-11-19 Hitachi, Ltd. Plasma treatment method and plasma treatment apparatus
US6129808A (en) 1998-03-31 2000-10-10 Lam Research Corporation Low contamination high density plasma etch chambers and methods for making the same
US6464843B1 (en) 1998-03-31 2002-10-15 Lam Research Corporation Contamination controlling method and apparatus for a plasma processing chamber
US6364954B2 (en) * 1998-12-14 2002-04-02 Applied Materials, Inc. High temperature chemical vapor deposition chamber
US20040149214A1 (en) * 1999-06-02 2004-08-05 Tokyo Electron Limited Vacuum processing apparatus
US6972071B1 (en) * 1999-07-13 2005-12-06 Nordson Corporation High-speed symmetrical plasma treatment system
US6451157B1 (en) * 1999-09-23 2002-09-17 Lam Research Corporation Gas distribution apparatus for semiconductor processing
WO2001024216A2 (en) * 1999-09-30 2001-04-05 Lam Research Corporation Pretreated gas distribution plate
KR20010062209A (ko) 1999-12-10 2001-07-07 히가시 데쓰로 고내식성 막이 내부에 형성된 챔버를 구비하는 처리 장치
US6673198B1 (en) * 1999-12-22 2004-01-06 Lam Research Corporation Semiconductor processing equipment having improved process drift control
US6363882B1 (en) * 1999-12-30 2002-04-02 Lam Research Corporation Lower electrode design for higher uniformity
US6772827B2 (en) * 2000-01-20 2004-08-10 Applied Materials, Inc. Suspended gas distribution manifold for plasma chamber
ATE342384T1 (de) * 2000-04-06 2006-11-15 Asm Inc Sperrschicht für glasartige werkstoffe
US7180081B2 (en) 2000-06-09 2007-02-20 Cymer, Inc. Discharge produced plasma EUV light source
JP2002134472A (ja) * 2000-10-20 2002-05-10 Mitsubishi Electric Corp エッチング方法、エッチング装置および半導体装置の製造方法
CN101250680B (zh) * 2000-12-12 2013-06-26 东京毅力科创株式会社 等离子体处理容器内部件以及等离子体处理装置
US6613442B2 (en) * 2000-12-29 2003-09-02 Lam Research Corporation Boron nitride/yttria composite components of semiconductor processing equipment and method of manufacturing thereof
US20020160620A1 (en) * 2001-02-26 2002-10-31 Rudolf Wagner Method for producing coated workpieces, uses and installation for the method
US6602381B1 (en) 2001-04-30 2003-08-05 Lam Research Corporation Plasma confinement by use of preferred RF return path
US6821378B1 (en) * 2001-05-25 2004-11-23 Lam Research Corporation Pump baffle and screen to improve etch uniformity
KR20020095324A (ko) * 2001-06-14 2002-12-26 삼성전자 주식회사 고주파 파워를 이용하는 반도체장치 제조설비
US6626188B2 (en) 2001-06-28 2003-09-30 International Business Machines Corporation Method for cleaning and preconditioning a chemical vapor deposition chamber dome
EP1274113A1 (en) * 2001-07-03 2003-01-08 Infineon Technologies SC300 GmbH & Co. KG Arrangement and method for detecting sidewall flaking in a plasma chamber
JP3990881B2 (ja) * 2001-07-23 2007-10-17 株式会社日立製作所 半導体製造装置及びそのクリーニング方法
KR100431660B1 (ko) * 2001-07-24 2004-05-17 삼성전자주식회사 반도체 장치의 제조를 위한 건식 식각 장치
US20030092278A1 (en) * 2001-11-13 2003-05-15 Fink Steven T. Plasma baffle assembly
DE10156407A1 (de) * 2001-11-16 2003-06-05 Bosch Gmbh Robert Haltevorrichtung, insbesondere zum Fixieren eines Halbleiterwafers in einer Plasmaätzvorrichtung, und Verfahren zur Wärmezufuhr oder Wärmeabfuhr von einem Substrat
US6730174B2 (en) * 2002-03-06 2004-05-04 Applied Materials, Inc. Unitary removable shield assembly
US6780787B2 (en) * 2002-03-21 2004-08-24 Lam Research Corporation Low contamination components for semiconductor processing apparatus and methods for making components
US6613587B1 (en) * 2002-04-11 2003-09-02 Micron Technology, Inc. Method of replacing at least a portion of a semiconductor substrate deposition chamber liner
US8703249B2 (en) * 2002-04-17 2014-04-22 Lam Research Corporation Techniques for reducing arcing-related damage in a clamping ring of a plasma processing system
US7093560B2 (en) * 2002-04-17 2006-08-22 Lam Research Corporation Techniques for reducing arcing-related damage in a clamping ring of a plasma processing system
US7086347B2 (en) 2002-05-06 2006-08-08 Lam Research Corporation Apparatus and methods for minimizing arcing in a plasma processing chamber
US6825051B2 (en) * 2002-05-17 2004-11-30 Asm America, Inc. Plasma etch resistant coating and process
KR20030090305A (ko) * 2002-05-22 2003-11-28 동경엘렉트론코리아(주) 플라즈마 발생장치의 가스 배기용 배플 플레이트
US20050121143A1 (en) * 2002-05-23 2005-06-09 Lam Research Corporation Pump baffle and screen to improve etch uniformity
FR2842387B1 (fr) * 2002-07-11 2005-07-08 Cit Alcatel Chemisage chauffant pour reacteur de gravure plasma, procede de gravure pour sa mise en oeuvre
US7252738B2 (en) * 2002-09-20 2007-08-07 Lam Research Corporation Apparatus for reducing polymer deposition on a substrate and substrate support
US7166166B2 (en) 2002-09-30 2007-01-23 Tokyo Electron Limited Method and apparatus for an improved baffle plate in a plasma processing system
US6837966B2 (en) 2002-09-30 2005-01-04 Tokyo Electron Limeted Method and apparatus for an improved baffle plate in a plasma processing system
US7204912B2 (en) * 2002-09-30 2007-04-17 Tokyo Electron Limited Method and apparatus for an improved bellows shield in a plasma processing system
US6798519B2 (en) 2002-09-30 2004-09-28 Tokyo Electron Limited Method and apparatus for an improved optical window deposition shield in a plasma processing system
US7147749B2 (en) 2002-09-30 2006-12-12 Tokyo Electron Limited Method and apparatus for an improved upper electrode plate with deposition shield in a plasma processing system
US7166200B2 (en) 2002-09-30 2007-01-23 Tokyo Electron Limited Method and apparatus for an improved upper electrode plate in a plasma processing system
KR100470999B1 (ko) * 2002-11-18 2005-03-11 삼성전자주식회사 유도 결합 플라즈마 식각장치의 챔버구조
US7780786B2 (en) 2002-11-28 2010-08-24 Tokyo Electron Limited Internal member of a plasma processing vessel
US20060226003A1 (en) * 2003-01-22 2006-10-12 John Mize Apparatus and methods for ionized deposition of a film or thin layer
US6844260B2 (en) * 2003-01-30 2005-01-18 Micron Technology, Inc. Insitu post atomic layer deposition destruction of active species
JP4532479B2 (ja) 2003-03-31 2010-08-25 東京エレクトロン株式会社 処理部材のためのバリア層およびそれと同じものを形成する方法。
KR100918528B1 (ko) 2003-03-31 2009-09-21 도쿄엘렉트론가부시키가이샤 처리부재 상에 인접한 코팅을 결합시키는 방법
US7972467B2 (en) * 2003-04-17 2011-07-05 Applied Materials Inc. Apparatus and method to confine plasma and reduce flow resistance in a plasma reactor
US20040206213A1 (en) * 2003-04-18 2004-10-21 Chih-Ching Hsien Wrench having a holding structure
US6953608B2 (en) * 2003-04-23 2005-10-11 Taiwan Semiconductor Manufacturing Co., Ltd. Solution for FSG induced metal corrosion & metal peeling defects with extra bias liner and smooth RF bias ramp up
JP3940095B2 (ja) * 2003-05-08 2007-07-04 忠弘 大見 基板処理装置
JP2007525822A (ja) * 2003-05-30 2007-09-06 アヴィザ テクノロジー インコーポレイテッド ガス分配システム
US7083702B2 (en) * 2003-06-12 2006-08-01 Applied Materials, Inc. RF current return path for a large area substrate plasma reactor
US7182816B2 (en) * 2003-08-18 2007-02-27 Tokyo Electron Limited Particulate reduction using temperature-controlled chamber shield
US8460945B2 (en) * 2003-09-30 2013-06-11 Tokyo Electron Limited Method for monitoring status of system components
US6974781B2 (en) * 2003-10-20 2005-12-13 Asm International N.V. Reactor precoating for reduced stress and uniform CVD
US7107125B2 (en) * 2003-10-29 2006-09-12 Applied Materials, Inc. Method and apparatus for monitoring the position of a semiconductor processing robot
US7267741B2 (en) * 2003-11-14 2007-09-11 Lam Research Corporation Silicon carbide components of semiconductor substrate processing apparatuses treated to remove free-carbon
US7645341B2 (en) * 2003-12-23 2010-01-12 Lam Research Corporation Showerhead electrode assembly for plasma processing apparatuses
JP3962722B2 (ja) * 2003-12-24 2007-08-22 三菱重工業株式会社 プラズマ処理装置
JP4698251B2 (ja) * 2004-02-24 2011-06-08 アプライド マテリアルズ インコーポレイテッド 可動又は柔軟なシャワーヘッド取り付け
US8540843B2 (en) * 2004-06-30 2013-09-24 Lam Research Corporation Plasma chamber top piece assembly
US20060000802A1 (en) * 2004-06-30 2006-01-05 Ajay Kumar Method and apparatus for photomask plasma etching
US8349128B2 (en) 2004-06-30 2013-01-08 Applied Materials, Inc. Method and apparatus for stable plasma processing
JP5179175B2 (ja) * 2004-07-09 2013-04-10 エナジェティック・テクノロジー・インコーポレーテッド 誘導駆動プラズマ光源
US20060037702A1 (en) * 2004-08-20 2006-02-23 Tokyo Electron Limited Plasma processing apparatus
US7534301B2 (en) * 2004-09-21 2009-05-19 Applied Materials, Inc. RF grounding of cathode in process chamber
US7375027B2 (en) 2004-10-12 2008-05-20 Promos Technologies Inc. Method of providing contact via to a surface
US7552521B2 (en) 2004-12-08 2009-06-30 Tokyo Electron Limited Method and apparatus for improved baffle plate
US7959984B2 (en) * 2004-12-22 2011-06-14 Lam Research Corporation Methods and arrangement for the reduction of byproduct deposition in a plasma processing system
US8038796B2 (en) * 2004-12-30 2011-10-18 Lam Research Corporation Apparatus for spatial and temporal control of temperature on a substrate
US7601242B2 (en) 2005-01-11 2009-10-13 Tokyo Electron Limited Plasma processing system and baffle assembly for use in plasma processing system
KR100737311B1 (ko) 2005-01-19 2007-07-09 삼성전자주식회사 반도체 제조장치
CN101558666B (zh) * 2005-03-02 2012-07-18 罗姆韦尔有限公司 对于出境漫游用户的csi的动态生成
US7430986B2 (en) * 2005-03-18 2008-10-07 Lam Research Corporation Plasma confinement ring assemblies having reduced polymer deposition characteristics
US9659758B2 (en) 2005-03-22 2017-05-23 Honeywell International Inc. Coils utilized in vapor deposition applications and methods of production
US20060213437A1 (en) * 2005-03-28 2006-09-28 Tokyo Electron Limited Plasma enhanced atomic layer deposition system
US20060278520A1 (en) * 2005-06-13 2006-12-14 Lee Eal H Use of DC magnetron sputtering systems
KR100672828B1 (ko) * 2005-06-29 2007-01-22 삼성전자주식회사 챔버 인서트 및 이를 포함하는 기판 가공 장치
US20070028838A1 (en) * 2005-07-29 2007-02-08 Craig Bercaw Gas manifold valve cluster
US7641762B2 (en) * 2005-09-02 2010-01-05 Applied Materials, Inc. Gas sealing skirt for suspended showerhead in process chamber
US20070079936A1 (en) * 2005-09-29 2007-04-12 Applied Materials, Inc. Bonded multi-layer RF window
CN100369192C (zh) * 2005-12-26 2008-02-13 北京北方微电子基地设备工艺研究中心有限责任公司 半导体加工系统反应腔室
US8440049B2 (en) 2006-05-03 2013-05-14 Applied Materials, Inc. Apparatus for etching high aspect ratio features
EP2022872A4 (en) * 2006-05-09 2010-07-28 Ulvac Inc THIN FILM PRODUCTION EQUIPMENT AND INTERIOR BLOCK CORRESPONDING
US7879184B2 (en) * 2006-06-20 2011-02-01 Lam Research Corporation Apparatuses, systems and methods for rapid cleaning of plasma confinement rings with minimal erosion of other chamber parts
US20080118663A1 (en) * 2006-10-12 2008-05-22 Applied Materials, Inc. Contamination reducing liner for inductively coupled chamber
US7776178B2 (en) * 2006-10-25 2010-08-17 Applied Materials, Inc. Suspension for showerhead in process chamber
US7909961B2 (en) * 2006-10-30 2011-03-22 Applied Materials, Inc. Method and apparatus for photomask plasma etching
US7943005B2 (en) 2006-10-30 2011-05-17 Applied Materials, Inc. Method and apparatus for photomask plasma etching
US8004293B2 (en) * 2006-11-20 2011-08-23 Applied Materials, Inc. Plasma processing chamber with ground member integrity indicator and method for using the same
US7942112B2 (en) * 2006-12-04 2011-05-17 Advanced Energy Industries, Inc. Method and apparatus for preventing the formation of a plasma-inhibiting substance
KR100847890B1 (ko) * 2006-12-13 2008-07-23 세메스 주식회사 챔버 라이너를 포함하는 밀폐형 반도체 공정 시스템 및그것을 이용한 웨이퍼 가공 방법
US8043430B2 (en) * 2006-12-20 2011-10-25 Lam Research Corporation Methods and apparatuses for controlling gas flow conductance in a capacitively-coupled plasma processing chamber
SG10201703432XA (en) * 2007-04-27 2017-06-29 Applied Materials Inc Annular baffle
KR101204496B1 (ko) * 2007-05-18 2012-11-26 가부시키가이샤 아루박 플라즈마 처리 장치 및 방착 부재의 제조 방법
US7874726B2 (en) * 2007-05-24 2011-01-25 Asm America, Inc. Thermocouple
US8034410B2 (en) 2007-07-17 2011-10-11 Asm International N.V. Protective inserts to line holes in parts for semiconductor process equipment
US9184072B2 (en) * 2007-07-27 2015-11-10 Mattson Technology, Inc. Advanced multi-workpiece processing chamber
US20090052498A1 (en) * 2007-08-24 2009-02-26 Asm America, Inc. Thermocouple
US7807222B2 (en) * 2007-09-17 2010-10-05 Asm International N.V. Semiconductor processing parts having apertures with deposited coatings and methods for forming the same
US7993057B2 (en) * 2007-12-20 2011-08-09 Asm America, Inc. Redundant temperature sensor for semiconductor processing chambers
US20090194414A1 (en) * 2008-01-31 2009-08-06 Nolander Ira G Modified sputtering target and deposition components, methods of production and uses thereof
JP2009200184A (ja) * 2008-02-20 2009-09-03 Tokyo Electron Ltd プラズマ処理装置及びプラズマ処理装置のバッフル板
US7946762B2 (en) * 2008-06-17 2011-05-24 Asm America, Inc. Thermocouple
KR100995700B1 (ko) * 2008-07-14 2010-11-22 한국전기연구원 3차원 표면형상을 갖는 원통형 가공물을 위한 유도 결합형플라즈마 공정 챔버 및 방법
CN101656194B (zh) * 2008-08-21 2011-09-14 北京北方微电子基地设备工艺研究中心有限责任公司 一种等离子腔室及其温度控制方法
CN103346116B (zh) * 2008-10-07 2016-01-13 应用材料公司 用于从蚀刻基板有效地移除卤素残余物的设备
JP5683469B2 (ja) * 2008-10-09 2015-03-11 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 大型プラズマ処理チャンバのrf復路
US8262287B2 (en) * 2008-12-08 2012-09-11 Asm America, Inc. Thermocouple
RU2409877C2 (ru) * 2009-01-11 2011-01-20 Физико-технический институт Уральского отделения Российской Академии Наук ФТИ УрО РАН Устройство для подготовки образца
US8100583B2 (en) * 2009-05-06 2012-01-24 Asm America, Inc. Thermocouple
US8382370B2 (en) * 2009-05-06 2013-02-26 Asm America, Inc. Thermocouple assembly with guarded thermocouple junction
US9297705B2 (en) 2009-05-06 2016-03-29 Asm America, Inc. Smart temperature measuring device
JP5595795B2 (ja) 2009-06-12 2014-09-24 東京エレクトロン株式会社 プラズマ処理装置用の消耗部品の再利用方法
US8360003B2 (en) * 2009-07-13 2013-01-29 Applied Materials, Inc. Plasma reactor with uniform process rate distribution by improved RF ground return path
JP5443096B2 (ja) * 2009-08-12 2014-03-19 株式会社ニューフレアテクノロジー 半導体製造装置および半導体製造方法
JP5397215B2 (ja) * 2009-12-25 2014-01-22 ソニー株式会社 半導体製造装置、半導体装置の製造方法、シミュレーション装置及びシミュレーションプログラム
KR101499305B1 (ko) * 2010-03-16 2015-03-05 도쿄엘렉트론가부시키가이샤 성막 장치
US20110226739A1 (en) * 2010-03-19 2011-09-22 Varian Semiconductor Equipment Associates, Inc. Process chamber liner with apertures for particle containment
TWI503907B (zh) * 2010-04-14 2015-10-11 Wonik Ips Co Ltd 基板處理設備
TWI502617B (zh) * 2010-07-21 2015-10-01 應用材料股份有限公司 用於調整電偏斜的方法、電漿處理裝置與襯管組件
US9245717B2 (en) 2011-05-31 2016-01-26 Lam Research Corporation Gas distribution system for ceramic showerhead of plasma etch reactor
US8562785B2 (en) * 2011-05-31 2013-10-22 Lam Research Corporation Gas distribution showerhead for inductively coupled plasma etch reactor
KR101297264B1 (ko) * 2011-08-31 2013-08-16 (주)젠 이중 유도 결합 플라즈마 소스를 갖는 플라즈마 반응기
US20130105085A1 (en) * 2011-10-28 2013-05-02 Applied Materials, Inc. Plasma reactor with chamber wall temperature control
US9508530B2 (en) * 2011-11-21 2016-11-29 Lam Research Corporation Plasma processing chamber with flexible symmetric RF return strap
KR102044568B1 (ko) * 2011-11-24 2019-11-13 램 리써치 코포레이션 대칭형 rf 복귀 경로 라이너
CN103177954B (zh) * 2011-12-26 2015-12-16 中芯国际集成电路制造(上海)有限公司 使用温度可控的限制环的刻蚀装置
US9928987B2 (en) 2012-07-20 2018-03-27 Applied Materials, Inc. Inductively coupled plasma source with symmetrical RF feed
US10131994B2 (en) * 2012-07-20 2018-11-20 Applied Materials, Inc. Inductively coupled plasma source with top coil over a ceiling and an independent side coil and independent air flow
US10249470B2 (en) 2012-07-20 2019-04-02 Applied Materials, Inc. Symmetrical inductively coupled plasma source with coaxial RF feed and coaxial shielding
US10170279B2 (en) 2012-07-20 2019-01-01 Applied Materials, Inc. Multiple coil inductively coupled plasma source with offset frequencies and double-walled shielding
US9082590B2 (en) 2012-07-20 2015-07-14 Applied Materials, Inc. Symmetrical inductively coupled plasma source with side RF feeds and RF distribution plates
US20140097752A1 (en) * 2012-10-09 2014-04-10 Varian Semiconductor Equipment Associates, Inc. Inductively Coupled Plasma ION Source Chamber with Dopant Material Shield
CN103151235B (zh) * 2013-02-20 2016-01-27 上海华力微电子有限公司 一种提高刻蚀均匀性的装置
USD702188S1 (en) 2013-03-08 2014-04-08 Asm Ip Holding B.V. Thermocouple
US9761416B2 (en) * 2013-03-15 2017-09-12 Applied Materials, Inc. Apparatus and methods for reducing particles in semiconductor process chambers
US10163606B2 (en) 2013-03-15 2018-12-25 Applied Materials, Inc. Plasma reactor with highly symmetrical four-fold gas injection
TWI627305B (zh) * 2013-03-15 2018-06-21 應用材料股份有限公司 用於轉盤處理室之具有剛性板的大氣蓋
CN111952149A (zh) * 2013-05-23 2020-11-17 应用材料公司 用于半导体处理腔室的经涂布的衬里组件
US20140356985A1 (en) 2013-06-03 2014-12-04 Lam Research Corporation Temperature controlled substrate support assembly
US20150041062A1 (en) * 2013-08-12 2015-02-12 Lam Research Corporation Plasma processing chamber with removable body
CN103646872A (zh) * 2013-11-26 2014-03-19 上海华力微电子有限公司 一种去胶设备
CN110797291A (zh) * 2013-12-06 2020-02-14 应用材料公司 用于使预热构件自定中心的装置
JP6230900B2 (ja) * 2013-12-19 2017-11-15 東京エレクトロン株式会社 基板処理装置
TWI564929B (zh) * 2014-07-24 2017-01-01 科閎電子股份有限公司 用於電漿反應裝置之襯套單元
CN106711006B (zh) * 2015-11-13 2019-07-05 北京北方华创微电子装备有限公司 上电极组件及半导体加工设备
KR102151631B1 (ko) * 2016-01-22 2020-09-03 세메스 주식회사 기판 처리 장치 및 방법
US10763082B2 (en) * 2016-03-04 2020-09-01 Taiwan Semiconductor Manufacturing Co., Ltd. Chamber of plasma system, liner for plasma system and method for installing liner to plasma system
CN109072427B (zh) 2016-03-25 2020-10-13 应用材料公司 用于高温处理的腔室衬垫
US10886113B2 (en) * 2016-11-25 2021-01-05 Applied Materials, Inc. Process kit and method for processing a substrate
US11004662B2 (en) * 2017-02-14 2021-05-11 Lam Research Corporation Temperature controlled spacer for use in a substrate processing chamber
US20190048467A1 (en) * 2017-08-10 2019-02-14 Applied Materials, Inc. Showerhead and process chamber incorporating same
US11183373B2 (en) 2017-10-11 2021-11-23 Honeywell International Inc. Multi-patterned sputter traps and methods of making
US20190119815A1 (en) * 2017-10-24 2019-04-25 Applied Materials, Inc. Systems and processes for plasma filtering
US11810766B2 (en) * 2018-07-05 2023-11-07 Applied Materials, Inc. Protection of aluminum process chamber components
JP6965313B2 (ja) * 2018-08-13 2021-11-10 エスケーシー ソルミックス カンパニー,リミテッド エッチング装置用リング状部品及びこれを用いた基板のエッチング方法
JP2022501833A (ja) * 2018-10-05 2022-01-06 ラム リサーチ コーポレーションLam Research Corporation プラズマ処理チャンバ
CN208835019U (zh) * 2018-11-12 2019-05-07 江苏鲁汶仪器有限公司 一种反应腔内衬
CN110012928A (zh) * 2019-04-24 2019-07-16 四川长虹电器股份有限公司 一种可移动平行板电容器解冻腔体及射频解冻装置
KR102785068B1 (ko) * 2019-05-27 2025-03-20 슝크 싸이카브 테크놀로지 비.브이. 화학 기상 증착 챔버 물품
CN112071733B (zh) * 2019-06-10 2024-03-12 中微半导体设备(上海)股份有限公司 用于真空处理设备的内衬装置和真空处理设备
US12100577B2 (en) * 2019-08-28 2024-09-24 Applied Materials, Inc. High conductance inner shield for process chamber
USD913979S1 (en) 2019-08-28 2021-03-23 Applied Materials, Inc. Inner shield for a substrate processing chamber
CN112802729B (zh) * 2019-11-13 2024-05-10 中微半导体设备(上海)股份有限公司 带温度维持装置的隔离环
USD979524S1 (en) 2020-03-19 2023-02-28 Applied Materials, Inc. Confinement liner for a substrate processing chamber
USD943539S1 (en) 2020-03-19 2022-02-15 Applied Materials, Inc. Confinement plate for a substrate processing chamber
US11380524B2 (en) 2020-03-19 2022-07-05 Applied Materials, Inc. Low resistance confinement liner for use in plasma chamber
CN111471980B (zh) * 2020-04-15 2022-05-27 北京北方华创微电子装备有限公司 适于远程等离子体清洗的反应腔室、沉积设备及清洗方法
US20220068614A1 (en) * 2020-08-28 2022-03-03 Coorstek Kk Semiconductor manufacturing member and manufacturing method therefor
CN112233962B (zh) * 2020-09-17 2023-08-18 北京北方华创微电子装备有限公司 套装于基座上的收集组件及半导体腔室
WO2022060688A1 (en) 2020-09-21 2022-03-24 Lam Research Corporation Carrier ring for floating tcp chamber gas plate
US11776793B2 (en) * 2020-11-13 2023-10-03 Applied Materials, Inc. Plasma source with ceramic electrode plate
KR102549935B1 (ko) * 2021-04-28 2023-06-30 주식회사 월덱스 플라즈마 에칭장치용 다체형 한정 링
FI129948B (en) * 2021-05-10 2022-11-15 Picosun Oy SUBSTRATE PROCESSING APPARATUS AND METHOD
US20230065818A1 (en) * 2021-08-30 2023-03-02 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor apparatus for deposition process
CN114284176B (zh) * 2021-12-21 2025-09-16 北京北方华创微电子装备有限公司 工艺腔室及半导体加工设备
KR102712810B1 (ko) * 2021-12-28 2024-10-07 세메스 주식회사 기판 처리 장치
CN114360999B (zh) * 2021-12-30 2023-06-27 武汉华星光电半导体显示技术有限公司 等离子处理设备
KR102517977B1 (ko) 2022-01-28 2023-04-04 삼성전자주식회사 플라즈마 배플, 이를 포함하는 기판 처리 장치 및 이를 이용한 기판 처리 방법

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4399546A (en) * 1979-09-28 1983-08-16 Dresser Industries, Inc. Silicon carbide furnace
EP0063273B1 (en) * 1981-04-02 1986-02-12 The Perkin-Elmer Corporation Discharge system for plasma processing
JPS59151084A (ja) * 1983-02-18 1984-08-29 株式会社日立製作所 核融合装置
GB8431422D0 (en) * 1984-12-13 1985-01-23 Standard Telephones Cables Ltd Plasma reactor vessel
US4981551A (en) * 1987-11-03 1991-01-01 North Carolina State University Dry etching of silicon carbide
JPH0662344B2 (ja) * 1988-06-03 1994-08-17 株式会社日立製作所 セラミツクスと金属の接合体
JPH0814633B2 (ja) * 1989-05-24 1996-02-14 株式会社日立製作所 核融合炉
US4948458A (en) * 1989-08-14 1990-08-14 Lam Research Corporation Method and apparatus for producing magnetically-coupled planar plasma
US5367139A (en) * 1989-10-23 1994-11-22 International Business Machines Corporation Methods and apparatus for contamination control in plasma processing
US5089441A (en) * 1990-04-16 1992-02-18 Texas Instruments Incorporated Low-temperature in-situ dry cleaning process for semiconductor wafers
US5051600A (en) * 1990-08-17 1991-09-24 Raychem Corporation Particle beam generator
US6063233A (en) * 1991-06-27 2000-05-16 Applied Materials, Inc. Thermal control apparatus for inductively coupled RF plasma reactor having an overhead solenoidal antenna
US5460684A (en) * 1992-12-04 1995-10-24 Tokyo Electron Limited Stage having electrostatic chuck and plasma processing apparatus using same
US5444217A (en) * 1993-01-21 1995-08-22 Moore Epitaxial Inc. Rapid thermal processing apparatus for processing semiconductor wafers
US5366585A (en) * 1993-01-28 1994-11-22 Applied Materials, Inc. Method and apparatus for protection of conductive surfaces in a plasma processing reactor
EP0624896B1 (en) * 1993-05-13 1999-09-22 Applied Materials, Inc. Contamination control in plasma contouring the plasma sheath using materials of differing rf impedances
RU2073282C1 (ru) * 1993-06-08 1997-02-10 Объединенный Институт Ядерных Исследований Способ изготовления и установки на пучок ускоренных ионов графитовой фольги
JP3181473B2 (ja) * 1993-08-19 2001-07-03 東京エレクトロン株式会社 プラズマ処理装置
US5865896A (en) * 1993-08-27 1999-02-02 Applied Materials, Inc. High density plasma CVD reactor with combined inductive and capacitive coupling
JP3308091B2 (ja) * 1994-02-03 2002-07-29 東京エレクトロン株式会社 表面処理方法およびプラズマ処理装置
JPH07273086A (ja) * 1994-03-30 1995-10-20 Sumitomo Metal Ind Ltd プラズマ処理装置及び該装置を用いたプラズマ処理方法
ATE251798T1 (de) * 1994-04-28 2003-10-15 Applied Materials Inc Verfahren zum betreiben eines cvd-reaktors hoher plasma-dichte mit kombinierter induktiver und kapazitiver einkopplung
US5538230A (en) * 1994-08-08 1996-07-23 Sibley; Thomas Silicon carbide carrier for wafer processing
US5641375A (en) * 1994-08-15 1997-06-24 Applied Materials, Inc. Plasma etching reactor with surface protection means against erosion of walls
US5891350A (en) * 1994-12-15 1999-04-06 Applied Materials, Inc. Adjusting DC bias voltage in plasma chambers
JP3257328B2 (ja) * 1995-03-16 2002-02-18 株式会社日立製作所 プラズマ処理装置及びプラズマ処理方法
US5569356A (en) * 1995-05-19 1996-10-29 Lam Research Corporation Electrode clamping assembly and method for assembly and use thereof
JPH09153481A (ja) * 1995-11-30 1997-06-10 Sumitomo Metal Ind Ltd プラズマ処理装置
US5584936A (en) * 1995-12-14 1996-12-17 Cvd, Incorporated Susceptor for semiconductor wafer processing
US6095084A (en) * 1996-02-02 2000-08-01 Applied Materials, Inc. High density plasma process chamber
RU2094960C1 (ru) * 1996-02-23 1997-10-27 Закрытое акционерное общество "Техно-ТМ" Способ плазменной обработки поверхности и устройство для его осуществления
JPH09246238A (ja) * 1996-03-01 1997-09-19 Nippon Eng Kk プラズマエッチング用平板状基台およびその製造方法
US5725675A (en) * 1996-04-16 1998-03-10 Applied Materials, Inc. Silicon carbide constant voltage gradient gas feedthrough
US5788799A (en) * 1996-06-11 1998-08-04 Applied Materials, Inc. Apparatus and method for cleaning of semiconductor process chamber surfaces
US5993594A (en) * 1996-09-30 1999-11-30 Lam Research Corporation Particle controlling method and apparatus for a plasma processing chamber
JPH10130872A (ja) * 1996-10-29 1998-05-19 Sumitomo Metal Ind Ltd プラズマ処理方法
US5904800A (en) * 1997-02-03 1999-05-18 Motorola, Inc. Semiconductor wafer processing chamber for reducing particles deposited onto the semiconductor wafer
US6035868A (en) * 1997-03-31 2000-03-14 Lam Research Corporation Method and apparatus for control of deposit build-up on an inner surface of a plasma processing chamber
US6189484B1 (en) * 1999-03-05 2001-02-20 Applied Materials Inc. Plasma reactor having a helicon wave high density plasma source
US6129808A (en) * 1998-03-31 2000-10-10 Lam Research Corporation Low contamination high density plasma etch chambers and methods for making the same
US6464843B1 (en) * 1998-03-31 2002-10-15 Lam Research Corporation Contamination controlling method and apparatus for a plasma processing chamber
JP4554815B2 (ja) * 1998-03-31 2010-09-29 ラム リサーチ コーポレーション 汚染制御方法およびプラズマ処理チャンバ
US6074953A (en) * 1998-08-28 2000-06-13 Micron Technology, Inc. Dual-source plasma etchers, dual-source plasma etching methods, and methods of forming planar coil dual-source plasma etchers
US6230651B1 (en) * 1998-12-30 2001-05-15 Lam Research Corporation Gas injection system for plasma processing

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012248886A (ja) * 2000-12-29 2012-12-13 Lam Research Corporation プラズマエッチング反応器及びその構成部品並びに半導体基板を処理する方法
EP1366208A1 (de) * 2001-02-26 2003-12-03 Unaxis Balzers Aktiengesellschaft Verfahren zur herstellung von teilen und vakuumbehandlungssystem
JP2006501608A (ja) * 2002-09-30 2006-01-12 東京エレクトロン株式会社 プラズマ処理システムにおける改良された堆積シールドのための方法及び装置
WO2004093121A1 (en) * 2003-04-14 2004-10-28 Cardinal Cg Company Sputtering chamber comprising a liner
US7416633B2 (en) 2004-03-08 2008-08-26 Hitachi High-Technologies Corporation Plasma processing apparatus
US8440019B2 (en) 2008-04-07 2013-05-14 Applied Materials, Inc. Lower liner with integrated flow equalizer and improved conductance
CN103402299A (zh) * 2008-04-07 2013-11-20 应用材料公司 具有整合的均流器并具有改善的传导性的下部内衬件
EP2417627A4 (en) * 2009-04-06 2015-09-23 Lam Res Corp CONTAINMENT RING EARTHED WITH LARGE SURFACE
US10283381B2 (en) 2015-10-22 2019-05-07 Spts Technologies Limited Apparatus for plasma dicing
US11769675B2 (en) 2015-10-22 2023-09-26 Spts Technologies Limited Apparatus for plasma dicing
US11387079B2 (en) 2016-06-03 2022-07-12 Evatec Ag Plasma etch chamber and method of plasma etching
WO2018175647A1 (en) * 2017-03-21 2018-09-27 Component Re-Engineering Company, Inc. Ceramic material assembly for use in highly corrosive or erosive semiconductor processing applications

Also Published As

Publication number Publication date
CN1328755C (zh) 2007-07-25
US6129808A (en) 2000-10-10
US20020102858A1 (en) 2002-08-01
US6583064B2 (en) 2003-06-24
DE69928289T2 (de) 2006-08-10
TW460972B (en) 2001-10-21
DE69928289D1 (de) 2005-12-15
EP1145273B1 (en) 2005-11-09
EP1145273A3 (en) 2002-03-27
WO2000019481A9 (en) 2002-01-31
RU2237314C2 (ru) 2004-09-27
WO2000019481A3 (en) 2001-12-20
KR100566908B1 (ko) 2006-03-31
JP4612190B2 (ja) 2011-01-12
JP2002533911A (ja) 2002-10-08
CN1319247A (zh) 2001-10-24
KR20010075264A (ko) 2001-08-09
US6394026B1 (en) 2002-05-28
AU1440100A (en) 2000-04-17
EP1145273A2 (en) 2001-10-17

Similar Documents

Publication Publication Date Title
EP1145273B1 (en) Low contamination high density plasma etch chambers and methods for making the same
US6451157B1 (en) Gas distribution apparatus for semiconductor processing
US6464843B1 (en) Contamination controlling method and apparatus for a plasma processing chamber
US6838012B2 (en) Methods for etching dielectric materials
JP4891287B2 (ja) プラズマ処理チャンバー、チャンバー要素及びその製造方法
KR101645043B1 (ko) 플라즈마 프로세싱 챔버, 플라즈마 프로세싱 콤포넌트 및 플라즈마 식각 챔버 프로세싱 콤포넌트 제조 방법
EP1068632B1 (en) Contamination controlling method and plasma processing chamber
EP1989727B1 (en) SEALED ELASTOMER BONDED Si ELECTRODES AND THE LIKE FOR REDUCED PARTICLE CONTAMINATION IN DIELECTRIC ETCH
US7482550B2 (en) Quartz guard ring
KR20030066770A (ko) 플라즈마 공정을 위한 전극 및 이의 제조 방법과 사용 방법
JP5043439B2 (ja) 遊離炭素を取り除くために扱われた半導体基板処理装置の炭化シリコン部品
WO2004095529A2 (en) Method and apparatus for reducing substrate backside deposition during processing
WO2008048543A1 (en) Upper electrode backing member with particle reducing features

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99811286.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2000 14401

Country of ref document: AU

Kind code of ref document: A

AK Designated states

Kind code of ref document: A2

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1999969835

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020017003624

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2000 572891

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1020017003624

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1999969835

Country of ref document: EP

AK Designated states

Kind code of ref document: A3

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

AK Designated states

Kind code of ref document: C2

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: C2

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

COP Corrected version of pamphlet

Free format text: PAGES 1/9-9/9, DRAWINGS, REPLACED BY NEW PAGES 1/9-9/9; DUE TO LATE TRANSMITTAL BY THE RECEIVING OFFICE

WWG Wipo information: grant in national office

Ref document number: 1999969835

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020017003624

Country of ref document: KR