WO2000015875A1 - Porous copper foil, use thereof and method for preparation thereof - Google Patents

Porous copper foil, use thereof and method for preparation thereof Download PDF

Info

Publication number
WO2000015875A1
WO2000015875A1 PCT/JP1999/004967 JP9904967W WO0015875A1 WO 2000015875 A1 WO2000015875 A1 WO 2000015875A1 JP 9904967 W JP9904967 W JP 9904967W WO 0015875 A1 WO0015875 A1 WO 0015875A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
porous
porous copper
foil
aluminum
Prior art date
Application number
PCT/JP1999/004967
Other languages
English (en)
French (fr)
Inventor
Akiko Sugimoto
Shinichi Obata
Atsushi Yoshioka
Makoto Dobashi
Naotomi Takahashi
Takashi Kataoka
Hisao Sakai
Masaru Takahashi
Youichi Babasaki
Yoshinari Matsui
Yasuji Hara
Original Assignee
Mitsui Mining & Smelting Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining & Smelting Co., Ltd. filed Critical Mitsui Mining & Smelting Co., Ltd.
Priority to KR1020007004617A priority Critical patent/KR20010031571A/ko
Priority to JP2000570395A priority patent/JP3262558B2/ja
Priority to EP99943293A priority patent/EP1038994A1/en
Publication of WO2000015875A1 publication Critical patent/WO2000015875A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/08Perforated or foraminous objects, e.g. sieves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a porous copper foil, its use, and its manufacturing method.
  • the active material When manufacturing such a lithium ion secondary battery, the active material must be well infiltrated into the electrolyte, but since the battery is a constant volume reactor, only a limited amount of electrolyte can be injected. . Therefore, how to distribute a small amount of electrolyte to the active material in terms of time and space becomes an issue in terms of both cost and performance.
  • the active material and the current collector may peel during charging and discharging, which may cause a decrease in charging and discharging efficiency.
  • a current collector used for the negative electrode a copper foil having moderate unevenness on the surface and having a hole penetrating in the thickness direction is used. It is possible.
  • a current collector for example, a current collector made of a punching metal sheet having a hole of a predetermined diameter is known.
  • a hole forming process after the production of the original foil, and it is necessary to discard the punched-out portion, which is expected to increase the cost due to material loss.
  • Japanese Patent Application Laid-Open No. Hei 8-124575 discloses that a metal foil having a thickness of 40 to 80 has a zigzag shape.
  • a non-aqueous electrolyte secondary battery is obtained by subjecting the expanded metal to an expanding process in which the expanded metal is expanded and then subjected to a pressing process as a secondary process. Current collectors have been proposed.
  • Japanese Unexamined Patent Publication No. Hei 8-213306 discloses a porous fiber structure or a three-dimensional network structure in which a skeleton surrounding the pores of these structures is formed of metal fibers made of metal powder.
  • a metal porous body for a battery electrode substrate that has been proposed is disclosed in Japanese Patent Application Laid-Open No. Hei 9-114350, in which metal fibers are entangled and the entangled metal fibers are directly melt-bonded to form a hole.
  • a porous metal fiber body for a battery electrode substrate has been proposed in which a surrounding skeleton is formed to form a porous fiber structure or a three-dimensional network structure.
  • the production cost of this porous metal fiber is expected to be high due to the complicated process of three-dimensionally entanglement of the metal fibers with a high-pressure water stream and then welding the metals.
  • Japanese Patent Application Laid-Open No. Hei 9-1153364 describes that a skeleton surface of a sponge-like foamed resin having a three-dimensional network structure is subjected to a conductive treatment, and then a metal plating is performed.
  • the obtained battery electrode has been proposed.
  • production of such an electrode requires a complicated process of plating the surface of the sheet-like foamed resin and then removing the resin.
  • Japanese Patent Application Laid-Open No. H08-233620 discloses that a metal foil layer is formed by depositing a metal on the surface of a drum force sword body using a drum cathode body and an anode body, An oxide film with a thickness of at least 14 nm is formed on the surface of the drumcassette body exposed after peeling when peeling it from the electrode metal foil, and it is manufactured as an electrolytic metal foil on it.
  • a porous electrolytic metal foil having a three-dimensional network structure having communication holes in the thickness direction has been proposed.
  • the aperture ratio and aperture diameter of this metal foil depend on the thickness of the oxide film formed on the drum cathode body, but since this oxide film always peels off little by little with the foil, the aperture ratio and aperture diameter can be controlled.
  • porous copper foils can be said to have complicated manufacturing processes and have sufficient performance when used as current collectors for lithium ion secondary batteries. Therefore, the appearance of a porous copper foil having even better performance is desired.
  • the present invention is intended to solve the above-mentioned problems in the prior art, and has an appropriate concave and convex surface, which is suitable as, for example, a current collector for a lithium ion secondary battery, and It is an object of the present invention to provide a copper foil having a hole penetrating in the thickness direction so that light can pass therethrough and its use, and to provide a method for producing such a porous copper foil. . Disclosure of the invention
  • the porous copper foil according to the present invention is a porous copper foil formed by electrodeposition so that copper particles having an average particle diameter in a plane direction of 1 to 50 xm are bonded to each other in a plane. And the difference between the surface roughness of the surface on the cathode side and the surface roughness of the opposite side when forming the foil is 5%. It is characterized by being in the range of ⁇ 20 xm.
  • the thickness of the porous copper foil is preferably in the range of 1 to 5 times the average particle size in the thickness direction of the copper particles, and specifically, the thickness is preferably in the range of 3 to 40. No.
  • This porous copper foil can be used for a battery such as a cathode of a secondary battery.
  • the composite metal foil according to the present invention is characterized by being formed from an aluminum layer made of aluminum or an aluminum alloy having a thickness in the range of 3 to 50 / xm, and the porous copper foil layer. .
  • the porous copper foil as described above can be manufactured by depositing copper on a force sword made of aluminum or an aluminum alloy, or titanium or a titanium alloy to precipitate copper particles.
  • the porous copper foil is formed by depositing copper on a drum-shaped force sword having a surface made of aluminum or aluminum alloy, or titanium or titanium alloy to precipitate copper particles.
  • a method of peeling the copper foil from the drum-shaped cathode body by depositing copper on a belt-shaped force sword body having a surface made of aluminum, an aluminum alloy, or titanium or a titanium alloy to precipitate copper particles.
  • the force source having a surface made of aluminum or an aluminum alloy is subjected to a surface treatment by any one of the following methods (a) to (c).
  • a surface treatment by any one of the following methods (a) to (c).
  • the cathode body is made of titanium or a titanium alloy
  • the cathode body is preferably subjected to a surface treatment for attaching an oxide film to a part of the surface of the cathode body. Further, it is more preferable that this oxide film has been subjected to a treatment for forming an oxide film having a thickness of less than 14 ⁇ m by an anodizing method.
  • the composite metal foil of the present invention can be produced by depositing copper on a tape-shaped substrate made of aluminum or an aluminum alloy to precipitate copper particles.
  • the aluminum layer to be formed and the porous copper foil layer are peeled off, and the obtained aluminum foil is used as an anode current collector of a secondary battery, and the porous copper foil is used as a cathode current collector of a secondary battery be able to.
  • the tape-like substrate made of aluminum or aluminum alloy is surface-treated by any one of the following methods (a) to (c);
  • FIG. 1 is a schematic sectional view of a porous copper foil according to the present invention.
  • FIG. 2 is a schematic view showing an example of a production apparatus used for producing a porous copper foil according to the present invention.
  • FIG. 3 is a schematic view showing another example of the production apparatus used for producing the porous copper foil according to the present invention.
  • FIG. 4 is a schematic view showing an example of a production apparatus used for producing a composite metal foil according to the present invention.
  • Fig. 5 shows the shape of the copper particles constituting the porous copper foil produced in Example 1 when observed with an electron microscope ((A): sample number 1, (B): sample number 2). It is.
  • FIG. 6 shows the shape when the surface structure of the porous copper foil produced in Example 2 was observed with an electron microscope ((A): sample number 3, (B): sample number 4). .
  • FIG. 7 shows the shapes of the surface structure of the porous copper foil produced in Example 2 when observed by an electron microscope ((A): sample number 5, (B): sample number 6). .
  • FIG. 8 shows the shape when the surface structure of the porous copper foil produced in Example 2 was observed with an electron microscope ((A): sample number 7, (B): sample number 8). .
  • FIG. 9 shows the shape when the surface structure of the porous copper foil produced in Example 3 was observed with an electron microscope ((A): sample number 9, (B): sample number 10). .
  • FIG. 10 shows the surface structure of the porous copper foil (sample number 11) produced in Example 3 when observed by an electron microscope.
  • FIG. 11 is a chart showing an M-plane X-ray diffraction pattern of the porous copper foil produced in Example 2.
  • Figure 12 shows the cross-sectional shape of the porous copper foil produced in Example 2 when observed with a microscope. It shows the shape.
  • FIG. 13 shows the shapes of the M-plane (A) and S-plane (B) of the porous copper foil produced in Example 2 when observed with an electron microscope.
  • FIG. 14 shows the shape of the surface structure of the copper foil (sample number 12) produced in Comparative Example 1 when observed with an electron microscope.
  • FIG. 15 is a chart showing the X-ray diffraction pattern of the M plane of the copper foil (sample number 12) manufactured in Comparative Example 1.
  • FIG. 16 is a graph showing the relationship between the anodic oxidation voltage value and the light transmittance on the titanium plate surface polished by the # 280 puff.
  • FIG. 17 is a graph showing the relationship between the anodic oxidation voltage value and the light transmittance on the surface of a titanium plate polished with a # 600 puff.
  • porous copper foil according to the present invention the porous copper foil according to the present invention, its use, and its manufacturing method will be specifically described.
  • the porous copper foil according to the present invention has an average particle diameter (R) in the planar direction formed by electrodeposition:! It is a porous copper foil formed by bonding copper particles of 50 to 50 m, preferably 5 to 30 xm, and more preferably 10 to 25 m.
  • the porous copper foil of the present invention has a large number of holes that penetrate in the thickness direction and can transmit light, the diameter of the holes is usually 1 to 20 ⁇ m, and the distribution density of the holes is generally 1 ⁇ m.
  • is a 500 Zmm 2.
  • the average particle diameter in the plane direction is less than 1, suitable holes are difficult to be formed in the copper foil, and if it exceeds 50 m, holes exceeding 20 / xm diameter tend to be formed.
  • the average particle diameter in the planar direction is 5 to 30 ⁇ m, and more preferably 10 to 25 im, the porous state becomes suitable for use as a current collector for a secondary battery. The result is a porous copper foil with excellent physical properties (surface roughness, tensile strength, elongation).
  • the light transmittance of such a porous copper foil is at least 0.1%, preferably 0.1 to 30%, more preferably 1 to 30%. If the light transmittance is less than 0.01%, almost no through-hole is formed so that light can be transmitted, and the secondary It is no longer suitable for use as a current collector for a pond. When the light transmittance exceeds 30%, the tensile strength of the porous copper foil extremely decreases and becomes impractical.
  • the light transmittance is measured by the following method. First, as the first method, there is a method in which the slit is set to 8 nm and the wavelength is set to 530 nm using Hitachi spectrophotometer U-4000 (hereinafter referred to as light transmittance measurement method). .
  • the intensity of the laser beam is measured by irradiating the porous copper foil with a He Ne laser and receiving the laser beam passing through the porous copper foil with a power meter. Then, there is a method of calculating the light transmittance (hereinafter, referred to as a light transmittance measurement method).
  • the porous copper foil according to the present invention copper particles having a particle diameter in the plane direction of 1 to 50 xm are the basic units, and they are almost planarly (two-dimensionally) bonded to form a foil. In other words, this is achieved by suppressing the nucleation density in the initial stage of the electrolysis and by setting conditions such that particle growth occurs preferentially over nucleation.
  • the copper particles grow remarkably in the form of islands and eventually come into contact with nearby copper particles to form a continuous foil. However, portions where the copper particles cannot be completely filled remain as holes. Therefore, the porous copper foil has a gap between the copper particles, and the gap forms a hole penetrating in the thickness direction, so that light can be transmitted. Therefore, the light transmittance of the porous copper foil according to the present invention is at least 0.01%.
  • FIG. 1 shows a schematic cross-sectional view of the porous copper foil according to the present invention.
  • the porous copper foil has a film thickness (D) of 3 to 40 / xm, preferably 5 to 20 m. preferable. If it is less than 3 / m, it becomes difficult to produce the porous copper foil itself, and the handling becomes difficult. On the other hand, if it exceeds 40, the growth of copper particles tends to progress too much, and it is difficult to form a hole penetrating in the thickness direction so that light can be transmitted.
  • the thickness (D) of the porous copper foil is 1.0 to 5.0 times, preferably 1.0 to 3.0 times the average particle size (d) in the thickness direction of the copper particles forming the porous copper foil.
  • the surface roughness of the M surface of the porous copper foil is usually 5 to 10 tm at Rz
  • the S surface is The surface roughness of R is usually 1 to 5 / m at Rz
  • the difference in surface roughness between S and M surfaces is usually 5 to 20 / m at Rz, preferably 5 to 10 / xm It is.
  • the S surface refers to the surface on the electrodeposition start side, that is, the surface in contact with the force sword body surface
  • the M surface refers to the opposite surface.
  • the M-plane roughness is susceptible to the S-plane roughness, that is, the roughness of the surface of the force source body and the thickness of the copper foil. Therefore, the roughness control of the S-plane and the M-plane of the porous copper foil to be manufactured can be performed to some extent by controlling the roughness of the surface of the force source body. If the difference in the surface roughness between the S-plane and the M-plane in this porous copper foil is in the range of 5 to 20 m in Rz, when used as a current collector for a secondary battery, Is very excellent in adhesiveness.
  • the average particle diameter in the plane direction is an average value of the particle diameter (R 1 ) in the plane direction of the copper particles forming the porous copper foil of the present invention as shown in FIG. Is the average value of the particle size (d ') in the thickness direction of the copper particles forming the porous copper foil, and the film thickness (D) is the thickness (D) of the porous copper foil excluding the holes. ') Is the average value.
  • P is a copper particle
  • H is a hole that penetrates in the thickness direction and is capable of transmitting light.
  • the copper particles forming the porous copper foil according to the present invention are close to random orientation, and the peak intensity of the X-ray diffraction peak on the M plane has a relationship of (1 1 1)> (200)> (220). It is characteristic. Such a relationship between the X-ray diffraction peaks indicates that the copper particles constituting the foil are randomly oriented.
  • the peak intensity of the X-ray diffraction peak has the relationship of (220) ⁇ (1 1 1)> (200).
  • (1 1 1) etc. indicate the Miller index.
  • Such a porous copper foil can be used, for example, for a battery such as a current collector for a cathode of a secondary battery. Since the porous copper foil according to the present invention has a large number of holes penetrating in the thickness direction so that light can pass therethrough, for example, when used as a current collector of a lithium ion secondary battery, the electrolytic solution becomes It is easy to circulate, allows a limited amount of electrolyte to permeate the active material uniformly, and does not hinder the transfer of Li ions and electrons during charging and discharging. In addition, because it has moderate irregularities on the surface, it has excellent adhesion to active materials.
  • the porous copper foil according to the present invention is a three-dimensional sponge-like foil described in Japanese Patent Application Laid-Open No. Hei 9-153336, which is described in Japanese Patent Application Laid-Open No. Hei 8-23036.
  • the opening diameter is larger than that of a porous electrolytic metal foil with a three-dimensional network structure, and the paste applied to the front and back of the foil can be in direct contact, and the adhesion between the paste and the current collector is expected to increase. it can.
  • the composite metal foil according to the present invention is formed from an aluminum layer made of aluminum or an aluminum alloy having a thickness of 3 to 50 111, preferably 5 to 20 / m, and the porous copper foil layer. Have been.
  • the composite metal foil according to the present invention is obtained by peeling the porous copper foil from the composite metal foil composed of the aluminum layer or the aluminum alloy and the porous copper foil layer, or dissolving the aluminum or the aluminum layer. Thereby, a porous copper foil can be obtained.
  • the porous copper foil thus obtained can be used, for example, for a battery such as a negative electrode current collector of a secondary battery, and the peeled aluminum foil or aluminum alloy foil is used, for example, for a lithium ion secondary battery. It can also be used as a current collector for the anode. If the thickness of the aluminum layer in this composite metal foil is less than 3 m, manufacturing difficulties are involved, and handling properties are also poor. If it exceeds 50 x m, it is not preferable in terms of cost.
  • the porous copper foil is made of a cathode body made of aluminum or aluminum alloy, or titanium or titanium alloy, preferably a drum-shaped cathode body having a surface made of aluminum or aluminum alloy, or titanium or titanium alloy. Can be produced by depositing copper particles by electrodeposition and then peeling off the cathode body.
  • the composite metal foil can be manufactured by using an aluminum foil or an aluminum alloy foil as a cathode body and depositing copper on the cathode body to precipitate copper particles.
  • FIG. 2 and 3 are schematic diagrams showing an example of an apparatus capable of manufacturing the porous copper foil according to the present invention
  • FIG. 4 is an outline view of an apparatus capable of manufacturing the composite metal foil according to the present invention. It is a schematic diagram showing an example.
  • a part is immersed in an electrolytic solution 6 contained in a drum-shaped power sword body 1 and an electrolytic cell 5.
  • the anode body 4 is provided so as to be immersed in the electrolytic solution 6 so as to face the cathode body 1.
  • the drum-shaped force sword body 1 is rotated to move the surface thereof sequentially into the electrolytic solution 6, and at the same time, between the anode body 4 and the drum-shaped force sword body 1 This is carried out by energizing the electrolytic reaction.
  • Copper ions are deposited on the surface of the drum-shaped cathode body 1 to form copper particles, and the copper particles formed sequentially in the direction of movement of the surface of the cathode body 1 are joined together to form a porous copper foil. It is formed continuously. After the formed porous copper foil 10 comes out of the electrolytic solution 6, it is peeled off from the surface of the force sword body 1 and wound around a roll 7.
  • a part of a belt-shaped force sword body is immersed in an electrolytic solution 6 contained in a two-electrolyte cell 5.
  • the anode body 4 is disposed so as to be immersed in the electrolytic solution 6 so as to face the force sword body 2.
  • the belt-shaped force sword body 2 is circulated and moved to sequentially pass through the electrolytic solution 6, and at the same time, between the anode body 4 and the belt-shaped force sword body 2 To carry out the electrolytic reaction.
  • the copper ions are electrodeposited on the surface of the belt-like force source body 2 to form copper particles, and the copper particles sequentially formed in the direction of movement of the surface of the force source body 2 join together to form a porous copper foil. It is formed continuously.
  • the formed porous copper foil 10 is peeled off from the surface of the force sword body 2 after coming out of the electrolytic solution and wound up by the roll 7.
  • the drum-shaped force sword body 3 is disposed so as to be immersed in the electrolytic solution 6 accommodated in the electrolytic cell 5.
  • the anode body 4 is disposed so that a part thereof is immersed in the electrolytic solution 6 so as to face the force body 3.
  • a tape-shaped substrate 11 made of aluminum or an aluminum alloy is wound on the surface of the force sword body 3 so as to be immersed in the electrolyte 6.
  • the tape-shaped base material 11 is moved to pass through the electrolytic solution 6 in sequence, and a current flows between the anode body 4 and the cathode body 3 to advance the electrolytic reaction, thereby forming a porous layer on the aluminum layer.
  • a composite metal foil having a laminated copper foil layer is obtained.
  • Copper ion is a tape-like substrate 1
  • Copper particles are formed on the surface of the tape-shaped substrate 11 by electrodeposition, and the copper particles sequentially formed in the direction of movement of the surface of the tape-shaped substrate 11 are joined to each other to form a porous copper foil continuously.
  • the formed composite metal foil 12 is wound around a roll 7.
  • Solution composition of the electrolyte used in these methods Cu S_ ⁇ 4 usually 50 to 400 g / liter, preferably 200 to 300 gZ l, H 2 S_ ⁇ 4 concentration is usually 50 to 300 g / The volume is preferably 100 to 200 gZl.
  • glue C 1 (chlorine), and the like can be added to the electrolytic solution, and the surface morphology can be adjusted by these additives.
  • concentration of the additives is usually between 1 and 300 ppm.
  • drum-shaped or belt-shaped force sword body examples include aluminum, aluminum alloy, titanium, and titanium alloy.
  • the drum-shaped or belt-shaped cathode body has a surface on which a copper foil is electrodeposited is subjected to a surface treatment.
  • fats and oils used here include fatty acids and fatty acid derivatives such as fatty acid metal salts and fatty acid esters. These fats and oils, the force cathode surface is coated in an amount of usually 1 0- 3 ⁇ 1 0 gZm 2 .
  • the bath composition is such that copper pyrophosphate is 40 to 100 gZ liter, and potassium pyrophosphate is 100 to 400 gZ liter.
  • the current density is usually 1 to 6 AZdm 2 and the electrolysis time is usually 5 to 60 seconds.
  • a method of attaching an oxide film to a part of the surface of the force sword body is to apply an acid solution to the surface of the force sword body.
  • an anodizing method examples include a boric acid solution, an ammonium tartrate solution, a sulfuric acid solution, a phosphoric acid solution, and a chromic acid solution.
  • Current density in anodizing is usually 1 ⁇ 5 A / dm 2, the electrolysis time is usually 1-1 0 minutes.
  • the surface of the force sword body Prior to the surface treatments (b) and (c), the surface of the force sword body may be subjected to a degreasing treatment.
  • a degreasing treatment In the method for manufacturing a porous copper foil using the manufacturing apparatus shown in FIG. 2 or 3 as described above, since the surface state of the force sword body is unlikely to change, it is easy to control the aperture ratio of the obtained porous copper foil. It is.
  • the thickness of the oxide film is preferably less than 14 nm, for example, when the light transmittance is 10% or more (according to the light transmittance measurement method described above). It is more preferred to apply an oxide coating having a thickness of 2.8 to 12.6 nm. This is because if an oxide film having a thickness of 14 nm or more adheres to the surface of titanium or a titanium alloy, it does not form a through-hole in the thickness direction so that light can be transmitted.
  • an oxide film is formed by a generally known anodic oxidation method. It can adhere to the surface of the cathode body.
  • the force sword body 1 has a surface formed of titanium or a titanium alloy shown in FIG. Form on the surface. That is, in the force sword body 1 that rotates during manufacturing, the force sword body 1 is formed on the surface of the force sword body 1 before being immersed in the electrolytic solution 6.
  • the oxide film once formed on the surface of the force sword body 1 may be removed from the surface of the force sword body 1.
  • the thickness tends to decrease due to the peeling of the porous copper foil and the dissolving action of the electrolytic solution.If the voltage is applied to the extent that the thickness of the decreasing thickness can be added, the thickness of the oxide film will be continuous.
  • the porous copper foil according to the present invention can be continuously manufactured.
  • Copper was deposited using the aluminum foil as an electrode under the conditions shown in Table 1.
  • the degreasing treatment of the aluminum foil N a OH is 3 0 g / liter, Rosshieru salt 4 6 gZ liters, N a 2 C_ ⁇ 3 dip to 3 0 seconds in a bath of the composition of 4 6 g / l
  • the copper c- pyrophosphate plating carried out in this manner has a bath composition of 56 gZ liter of copper pyrophosphate, 290 gZ liter of potassium pyrophosphate, a pH of 7.4, a bath temperature of 52 ° C, and a current density of lA. / dm 2 , and the electrolysis time was 30 seconds.
  • Figure 5 shows the shape of the surface structure of the obtained porous copper foil when observed with an electron microscope.
  • the copper foil obtained as shown in Fig. 5 has a porous copper formed by bonding each copper particle in a state where it has holes that penetrate in the thickness direction so that light can be transmitted. Foil.
  • Copper was deposited under the conditions shown in Table 2 using anodized aluminum foil as electrodes (sample numbers 3 to 8).
  • anodizing of aluminum the bath composition H 2 S_ ⁇ 4 1 5 0 m l Tsu torr, room temperature, current density conducted under the conditions of l AZ dm 2, was electrodeposition washed with water.
  • the oxide film on the aluminum foil surface was estimated to have a thickness of about 5.6 nm because the voltage value during anodization was about 4 V.
  • the thickness of the oxide film shown here is calculated from the numerical value that indicates that the relationship between the oxide film and the anodic oxidation voltage is generally about 1.4 nm / V in the anodic oxidation of aluminum. (Reference: Japan Light Metal Association, Aluminum Technology Handbook, Power Loss Publishing 1996) ( Example 3)
  • FIGS. 6 to 8 The shapes of the surface structure of the porous copper foil obtained in Example 2 when observed with an electron microscope are shown in FIGS. 6 to 8, and the surface structure of the porous copper foil obtained in Example 3 was observed with an electron microscope.
  • FIGS. 9 and 10 show the shape when the observation was made
  • FIG. 11 shows the X-ray diffraction pattern of the M plane obtained in Example 2
  • FIG. 11 shows the shape when the cross section of the porous copper foil was observed with a microscope. It is shown in Figure 12.
  • the copper foil obtained as shown in Figs. 6 to 10 and Fig. 12 has a hole that penetrates in the thickness direction so that light can be transmitted. It is a formed porous copper foil.
  • FIG. 11 shows the shapes of the M and S surfaces of the porous copper foil when observed with an electron microscope.
  • FIG. 14 shows the surface structure of the obtained copper foil when observed with an electron microscope
  • FIG. 15 shows the X-ray diffraction pattern of the M plane.
  • the anodized titanium plate is used as an electrode under the conditions shown in Table 3, no gap is formed due to the joining of copper particles, and light can be transmitted.
  • a copper foil having no hole penetrating in the thickness direction can be obtained.
  • the copper foil has a (2200) orientation.
  • Example 4 As shown in Table 4, as a result of forming an oxide film using a titanium plate and performing copper electrodeposition, each copper particle was in contact with a hole that penetrated in the thickness direction so that light could be transmitted. Thus, a porous copper foil formed was obtained.
  • the surface structure of the porous copper foil obtained in Example 4 was similar to that shown in the electron microscope observation in Example 2. Further, as a result of examining the X-ray diffraction pattern of the porous copper foil obtained in Example 4, the same diffraction pattern as in FIG. 11 was obtained. This indicates that the copper particles in Example 4 are also close to random orientation.
  • the result when performing in the state is shown.
  • the anodizing electrolytic solution having the same composition as the copper electrolytic solution shown in Table 4 and having a chlorine concentration of 0 ppm was used to form an oxide film. Thereafter, copper was electrodeposited on the surface of the oxide film using a copper electrolyte having a changed chlorine concentration.
  • the light transmittance of the porous copper foil is a numerical value obtained by the light transmittance measurement method described above.
  • an oxide film having a thickness of about 1.4 nm per anodizing voltage IV is formed.
  • the anodic oxidation voltage should be in the range of about 2 to 9 V, and the thickness of the oxide film It was found that the thickness should be in the range of about 2.4 to 12.6 nm.
  • the porous copper foil manufactured under such a condition range has pores suitable as a current collector for a secondary battery.
  • porous copper foil according to the present invention has moderate irregularities on the surface and has holes penetrating in the thickness direction so that light can be transmitted, for example, a lithium ion secondary battery Suitable as a current collector.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

明 細 書
多孔質銅箔およびその用途ならびにその製造方法 ― - 技術分野
本発明は、 多孔質銅箔およびその用途ならびにその製造方法に関する。 背景技術
近年、 携帯電話、 ノート型パソコンなどの小型蓄電池を必要とする携帯型電子 機器が数多く開発されており、 このような電子機器に用いられる電池としては、 信頼性、 価格等からリチウムイオン二次電池が主に用いられている。 リチウムィ オン二次電池は、 L i C o O L i N i〇2、 L i M n 204などの活物質を力一ボン などの導電剤、 テフロンなどの結着剤と共に混合しペースト状にしたものを集電 体としての金属箔 (主としてアルミ箔) に塗布した正極と、 活物質であるカーボ ンをテフロンなどの結着剤と共に混合しペースト状にしたものを集電体としての 金属箔 (主として銅箔) に塗布した負極とを、 セパレー夕と共に捲回して筒状と し、 外装缶に収容したものである。
このようなリチウムィオン二次電池を製造する際には、 活物質は電解液によく 浸潤させる必要があるが、 電池は定容反応器であるため、 限られた量の電解液し か注入できない。 従って少量の電解液を時間的、 空間的にいかに効果的に活物質 に行き渡らせるかがコストと性能の両面から問題になる。 またリチウムイオン二 次電池は、 充放電中に活物質と集電体とが剥離して充放電効率の低下を招くこと がある。 このような従来技術における問題点を解決するためには、 例えば負極に 用いる集電体として、 表面に適度の凹凸を有し、 かつ厚さ方向に貫通する孔を有 するような銅箔を用いることが考えられる。
このような集電体としては、 例えば所定径の孔が穿設されているパンチングメ タルシ一トからなる集電体が知られている。 この方法は原箔を製造後窄孔工程を 行わなければならないこと、 および打ち抜いた部分は破棄せざるを得ず、 このた め材料ロスとなることからコストアップとなることが予想される。 また、 特開平 8— 1 2 4 5 7 5号公報には、 4 0〜 8 0 の厚さを有する金属箔に、 千鳥状 に切れ目を入れた後、 これを展開して網目模様に形成されたエキスパンド加工を 施した後、 二次加工として、 該エキスパンドメタルにプレス処理を施してなる非 水電解液 2次電池用極板の集電体が提案されている。 しかしながらこれらの集電 体は、 全箔面積に対する開口率が大きいため、 極板単位面積当りに同量の活物質 を担持させるためにはペース卜の塗布厚を大きくしなければならない。 その結果-. 集電効率が低下し、 高い電池性能が得られないことがある。 さらに機械的に加工 することによるバリの発生を完全に防ぐことは難しく、 このバリによつてセパレ 一夕が破断し、 ショー卜の原因となることがある。
特開平 8— 2 1 3 0 2 6号公報には、 多孔性繊維構造体あるいは三次元網状構 造体で、 これら構造体の空孔を囲む骨格が、 金属粉末からなる金属繊維で形成さ れている電池電極基板用金属多孔体が提案され、 特開平 9 一 1 4 3 5 1 0号公報 には、 金属繊維が交絡されていると共に交絡された金属繊維同士が直接溶融接合 され空孔を囲む骨格を形成し、 多孔性繊維構造体あるいは三次元網状構造体とな つている電池電極基板用金属繊維多孔体が提案されている。 しかしながらこの金 属繊維多孔体は、 金属繊維を高圧水流などで三次元的に交絡させた後金属同士を 溶着させるという工程の煩雑さから製造コストがかかることが予想される。
特開平 9 一 1 5 3 3 6 4号公報には、 三次元網目構造を有するスポンジ状発泡 樹脂の骨格表面を導電化処理し、 次いで金属メツキを施した後、 発泡樹脂を焼結 除去して得られた電池用電極が提案されている。 しかしながらこのような電極を 製造するには、 シ一卜状発泡樹脂の表面にメツキした後樹脂を取り除くという煩 雑な工程が必要となる。
特開平 8 - 2 3 6 1 2 0号公報には、 ドラムカソード体とアノード体を用いて ドラム力ソード体の表面に金属を電析してその金属箔層を形成し、 それをドラム カソード体から剥離して電解金属箔にする際に、 剥離後に露出したドラムカソ一 ド体の表面に、 少なくとも厚みが 1 4 n mである酸化皮膜を形成し、 その上に電 解金属箔として製造されてなる、 厚み方向に連通孔を有する三次元網目構造を有 する多孔質電解金属箔が提案されている。 この金属箔の開口率や開口径は、 ドラ ムカソ一ド体に形成する酸化皮膜の厚さに依存するが、 この酸化皮膜は常に箔と ともに少しずつ剥がれていくので開口率や開口径の制御が困難である。 また、 開 口径が比較的小さく三次元網目構造を有しているため、 箔の表と裏に塗布される ペース卜の直接接触は難しく、 ペース卜と集電体との密着性を向上させるには限 界があるものと考えられる。
このように従来知られている多孔質銅箔は、 その製造工程が煩雑であったり、 またリチウムイオン二次電池用の集電体として用いたときに充分な性能を有して いるとは言えないため、 さらに優れた性能を有する多孔質銅箔の出現が望まれて いる。
本発明は、 上記のような従来技術における問題点を解決しょうとするものであ つて、 例えばリチウムイオン二次電池用の集電体として好適な、 表面に適度の凹 凸を有し、 かつ、 光が透過可能となるように厚さ方向に貫通する孔を有する銅箔 およびその用途を提供することを目的とするとともに、 このような多孔質銅箔の 製造方法を提供することを目的としている。 発明の開示
本発明に係る多孔質銅箔は、 平面方向平均粒径 1〜5 0 x mの銅粒子を互いに 平面的に接合するように電析によって形成された多孔質銅箔であり、 該多孔質銅 箔の光透過率が 0 . 0 1 %以上であると共に、 箔を形成する際に陰極面側であつ た表面の表面粗度とその反対側の表面の表面粗度との差が R zで 5〜2 0 x mの 範囲にあることを特徴としている。
この多孔質銅箔は、 その厚みが銅粒子の厚さ方向平均粒径の 1〜 5倍の範囲に あることが好ましく、 具体的には厚みが 3〜4 0 の範囲にあることが好まし い。 この多孔質銅箔は、 例えば二次電池の陰極などの電池用として用いることが できる。
本発明に係る複合金属箔は、 膜厚が 3〜 5 0 /x mの範囲にあるアルミニウムま たはアルミニウム合金からなるアルミニウム層と、 前記多孔質銅箔層とから形成 されることを特徴としている。
上記のような多孔質銅箔は、 アルミニウムまたはアルミニウム合金、 もしくは チタンまたはチタン合金からなる力ソード体に銅を電析して銅粒子を析出させる ことにより製造することができる。 具体的には、 表面がアルミニウムまたはアルミニウム合金、 もしくはチタンま たはチタン合金からなるドラム状力ソード体に銅を電析して銅粒子を析出させ-る ことによって前記多孔質銅箔を形成し、 次いで該銅箔をドラム状カソード体から 剥離する方法、 表面がアルミニウムまたはアルミニウム合金、 もしくはチタンま たはチタン合金からなるベルト状力ソード体に銅を電析して銅粒子を析出させる ことによって前記多孔質銅箔を形成し、 次いで該銅箔をベルト状カソード体から 剥離する方法などがある。
本発明における多孔質銅箔の製造方法では、 表面がアルミニウムまたはアルミ ニゥム合金からなる前記力ソ―ド体に、 下記 (a ) ないし (c ) のいずれかの方 法により表面処理されたものであることが好ましい ;
( a ) 力ソード体表面の一部に油脂類を塗布する
( b ) カソード体表面の一部にピロリン酸銅メツキを施す
( c ) カソード体表面の一部に酸化皮膜を付着させる。
そして、 表面がチタンまたはチタン合金からなる前記カソード体を用いて製造 する場合は、 カソード体の表面の一部に酸化被膜を付着させる表面処理をされた ものであることが好ましい。 さらに、 この酸化被膜は、 陽極酸化法により 1 4 η m厚さ未満の酸化被膜を形成する処理をされたものであることがより好ましいも のである。
また本発明の複合金属箔は、 アルミニウムまたはアルミニウム合金からなるテ —プ状基材に銅を電析して銅粒子を析出させることにより製造することができる 前記複合金属箔は、 複合金属箔を形成するアルミニウム層と多孔質銅箔層とを 剥離して、 得られたアルミニウム箔を二次電池の陽極集電体として使用し、 多孔 質銅箔を二次電池の陰極集電体として使用することができる。
この複合金属箔を製造する場合についても、 アルミニウムまたはアルミニウム 合金からなるテープ状基材に、 下記 (a ) ないし (c ) のいずれかの方法により 表面処理されたものであることが好ましい;
( a ) 力ソード体表面の一部に油脂類を塗布する
( b ) カソ一ド体表面の一部にピロリン酸銅メツキを施す
( c ) 力ソード体表面の一部に酸化皮膜を付着させる。 図面の簡単な説明 ― 図 1は、 本発明に係る多孔質銅箔の模式断面図である。
図 2は、 本発明に係る多孔質銅箔の製造に用いられる製造装置の一例を示す概 略図である。
図 3は、 本発明に係る多孔質銅箔の製造に用いられる製造装置の他の例を示す 概略図である。
図 4は、 本発明に係る複合金属箔の製造に用いられる製造装置の一例を示す概 略図である。
図 5は、 実施例 1で製造した多孔質銅箔を構成する銅の粒子構造を電子顕微鏡 で観察したときの形状を示す ( (A) :サンプル番号 1、 (B) :サンプル番号 2 ) ものである。
図 6は、 実施例 2で製造した多孔質銅箔の表面構造を電子顕微鏡で観察したと きの形状を示すもの ( (A) :サンプル番号 3、 (B) :サンプル番号 4) であ る。
図 7は、 実施例 2で製造した多孔質銅箔の表面構造を電子顕微鏡で観察したと きの形状を示すもの ( (A) :サンプル番号 5、 (B) :サンプル番号 6) であ る。
図 8は、 実施例 2で製造した多孔質銅箔の表面構造を電子顕微鏡で観察したと きの形状を示すもの ( (A) :サンプル番号 7、 (B) :サンプル番号 8) であ る。
図 9は、 実施例 3で製造した多孔質銅箔の表面構造を電子顕微鏡で観察したと きの形状を示すもの ( (A) :サンプル番号 9、 (B) :サンプル番号 1 0) で ある。
図 1 0は、 実施例 3で製造した多孔質銅箔 (サンプル番号 1 1) の表面構造を 示す電子顕微鏡で観察したときの形状を示すものである。
図 1 1は、 実施例 2で製造した多孔質銅箔の M面の X線回折パターンを示すチ ヤー卜である。
図 1 2は、 実施例 2で製造した多孔質銅箔の断面を顕微鏡で観察したときの形 状を示すものである。
図 1 3は、 実施例 2で製造した多孔質銅箔の M面 (A) および S面 (B) を電 子顕微鏡で観察したときの形状を示すものである。
図 1 4は、 比較例 1で製造した銅箔 (サンプル番号 1 2) の表面構造を電子顕 微鏡で観察したときの形状を示すものである。
図 1 5は、 比較例 1で製造した銅箔 (サンプル番号 1 2 ) の M面の X線回折パ ターンを示すチヤ一トである。
図 1 6は、 # 280のパフにより研磨を行ったチタン板表面における陽極酸化 電圧値と光透過率の関係を表したグラフである。
図 1 7は、 # 600のパフにより研磨を行ったチタン板表面における陽極酸化 電圧値と光透過率の関係を表したグラフである。 発明を実施するための最良の形態
以下、 本発明に係る多孔質銅箔およびその用途ならびにその製造方法について 具体的に説明する。
本発明に係る多孔質銅箔は、 電析によって形成された平面方向平均粒径 (R) が:!〜 50 m、 好ましくは 5〜 30 xm、 さらに好ましくは 1 0~25 mの 銅粒子が互いに接合してなる多孔質の銅箔である。 本発明の多孔質銅箔は、 厚さ 方向に貫通し、 光の透過が可能な孔を多数有しており、 孔の径は通常 1〜20 μ mであり、 孔の分布密度は通常 1〜 500個 Zmm2である。
この平面方向平均粒径が 1 未満であると、 銅箔に適当な孔が形成されづら くなり、 50 mを越えると 20 /xm径を越える孔が形成され易くなる傾向とな る。 また、 平面方向平均粒径が 5〜30 ^m、 さらに好ましくは 1 0〜25 im の範囲にあれば、 二次電池用の集電体に用いるのに、 好適な多孔質状態となり、 銅箔物性 (表面粗度、 引っ張り強さ、 伸び率) も優れた多孔質銅箔となるのであ る。
このような多孔質銅箔の光透過率は 0 · 0 1 %以上、 好ましくは 0. 1〜30 %、 より好ましくは 1〜30 %である。 光透過率が 0. 0 1 %未満であると、 光 が透過可能となるように貫通した孔が殆ど形成されていないことになり、 二次電 池用の集電体として用いるには好適なものでなくなる。 そして、 光透過率が 30 %を越えると多孔質銅箔の引き張り強度が極端に低下し実用的なものでなくな-る ここで光透過率は、 次のような方法により測定される。 まず、 第 1の方法とし て、 日立分光光度計 U— 4000を用いて、 スリットを 8 nmの設定とし、 波長 は 530 nmとして測定する方法がある (以下、 光透過率測定法ァとする) 。 ま た、 第 2の方法として、 He Neレーザーを多孔質銅箔に照射し、 多孔質銅箔を 通過するレーザー光をパワーメータで受光することにより、 そのレ一ザ一光の強 度を測定することで、 光透過率を算出する方法がある (以下、 光透過率測定法ィ とする) 。
本発明に係る多孔質銅箔は、 平面方向粒径が 1〜50 xmの銅粒子が基本単位 となり、 それらがほぼ平面的 (二次元的) に接合して箔を形成している。 このこ とは言い換えると、 電解初期の析出における核発生密度を抑制し、 核発生よりも 粒子成長が優先的に起こるような条件を設定することで実現する。 銅粒子は顕著 に島状成長し、 やがて近傍の銅粒子と接するようになって連続した箔を形成する ものであるが、 銅粒子と銅粒子の間が埋まりきらなかった部分が孔として残る。 従って、 この多孔質銅箔は、 銅粒子同士の間に隙間が存在し、 その隙間が厚さ方 向に貫通する孔を形成することで、 光を透過することができるのである。 このた め本発明に係る多孔質銅箔の光透過率は 0. 0 1 %以上となる。
図 1に本発明に係る多孔質銅箔の模式断面図を示すが、 この多孔質銅箔は、 膜 厚 (D) が 3〜40 /xm、 好ましくは 5〜20 mの範囲にあることが好ましい。 3 / m未満であると、 多孔質銅箔自体の製造が困難となり、 その取り扱いも難し くなるからである。 また、 40 を越えると銅粒子の成長が進行しすぎる傾向 となり、 光が透過可能となるように厚さ方向に貫通する孔が形成されにくくなる。 この多孔質銅箔の膜厚 (D) は、 該多孔質銅箔を形成する 銅粒子の厚さ方向 平均粒径 (d) の 1. 0〜5. 0倍、 好ましくは 1. 0〜3. 0倍であることが 好ましい。 この銅粒子の厚さ方向平均粒径 (d) の 5. 0倍を越えるようになる と、 銅粒子が厚み方向に多数積層する状態や各銅粒子の粗大な成長等により、 光 が透過可能となるように、 厚さ方向に貫通した孔を形成しにくくなる傾向となる。 さらに多孔質銅箔の M面の表面粗度は、 R zで通常 5〜 1 0 tmであり、 S面 の表面粗度は、 R zで通常 1〜5 / mであり、 S面と M面との表面粗度の差は、 R zで通常 5〜 20 /m、 好ましくは 5〜 1 0 /xmである。 この S面は、 電着開 始側の表面、 即ち力ソード体表面に接していた側の表面をいい、 M面はその反対 側の面をいうものである。 一般的に、 M面粗度は、 S面粗度、 即ち力ソード体表 面の粗度や銅箔厚みに影響されやすいものである。 従って、 製造する多孔質銅箔 の S面及び M面の粗度コン卜ロールは、 力ソード体表面の粗度を制御することで、 ある程度の行うことができる。 この多孔質銅箔における S面と M面との表面粗度 の差が、 R zで 5〜20 mの範囲にあると、 2次電池用の集電体として使用す る場合に活物質との接着性に非常に優れたものとなる。
ここで平面方向平均粒径と厚さ方向平均粒径について説明する。 平面方向平均 粒径とは、 図 1に示すように本発明の多孔質銅箔を形成する銅粒子の平面方向の 粒径 (R1 ) における平均値であり、 厚さ方向平均粒径とは、 多孔質銅箔を形成す る銅粒子の厚さ方向の粒径 (d' ) の平均値であり、 膜厚 (D) とは、 孔の部分を 除く多孔質銅箔の厚さ (D' ) の平均値である。 なお図 1中、 Pは銅粒子であり、 Hは、 厚さ方向に貫通し、 光の透過が可能な孔を示している。
本発明に係る多孔質銅箔を形成する銅粒子は、 ランダム配向に近く、 M面の X 線回折ピークのピーク強度が、 (1 1 1) 〉 ( 200 ) > (220) の関係であ ることが特徴である。 このような X線回折ピークの関係は、 箔を構成する銅粒子 がランダム配向であることを示している。 なお、 一般的な銅箔では、 X線回折ピ ークのピーク強度には、 (220) 〉 (1 1 1) > (200) の関係がある。 こ こで (1 1 1) 等はミラー指数を示す。
このような多孔質銅箔は、 例えば二次電池の陰極の集電体などの電池用として 用いることができる。 本発明に係る多孔質銅箔は、 光が透過可能となるように厚 さ方向に貫通した孔を多数有しているので、 例えばリチウムイオン二次電池の集 電体として用いると、 電解液が流通しやすく、 限られた量の電解液を均一に活物 質へ浸透させ、 かつ充放電中における L iイオンや電子の授受を妨げにくい。 ま た表面に適度の凹凸を有しているので、 活物質との接着性にも優れている。
またパンチングメタル、 ェクスパンデッドメタルのようにバリ発生や、 活物質 担持面積の大幅な減少などの心配がなく、 活物質を担持可能な面積がほぼ 1 00 %に近くなる。
さらに本発明に係る多孔質銅箔は、 特開平 9 一 1 5 3 3 6 4号公報に記載され ている三次元スポンジ状箔ゃ特開平 8— 2 3 6 1 2 0号公報に記載されている三 次元網目構造を有する多孔質電解金属箔に比べて開口径が大きく、 箔の表と裏に 塗布されたペース卜が直接接触可能で、 ペース卜と集電体の密着性の増大が期待 できる。
本発明に係る複合金属箔は、 膜厚が3〜5 0 111、 好ましくは 5〜2 0 / mの 範囲にあるアルミニウムまたはアルミニウム合金からなるアルミニウム層と、 前 記多孔質銅箔層とから形成されている。
本発明に係る複合金属箔は、 アルミニウムまたはアルミニウム合金からなるァ ルミニゥム層と多孔質銅箔層とからなる複合金属箔から多孔質銅箔を剥離するか、 またはアルミニウムまたは該アルミニウム層を溶解することにより、 多孔質銅箔 を得ることができる。 このようにして得られた多孔質銅箔は例えば二次電池の陰 極の集電体などの電池用として用いることができ、 剥離したアルミニウム箔また はアルミニウム合金箔は、 例えばリチウムイオン二次電池の陽極の集電体などと して用いることもできる。 この複合金属箔におけるアルミニウム層の膜厚は、 3 m未満であると製造的に困難を伴い、 ハンドリング性も悪くなる。 また、 5 0 x mを越えるとコス卜的に好ましくない。
上記多孔質銅箔は、 アルミニウムまたはアルミニウム合金、 もしくはチタンま たはチタン合金からなるカソード体、 好ましくはアルミニウムまたはアルミニゥ ム合金、 もしくはチタンまたはチタン合金からなる表面を有したドラム状カソー ド体に銅を電析して銅粒子を析出させた後、 カソ一ド体から剥離することにより 製造することができる。
そして、 上記複合金属箔は、 アルミニウム箔またはアルミニウム合金箔をカソ 一ド体として用い、 このカソ一ド体に銅を電析して銅粒子を析出させることによ り製造することができる。
ここで、 上記多孔質銅箔および複合金属箔の製造方法の一例を図面を参照しつ つ説明する。 図 2および図 3は、 本発明に係る多孔質銅箔を製造しうる装置の一 例を示す概略図であり、 図 4は、 本発明に係る複合金属箔を製造しうる装置の一 例を示す概略図である。
図 2に示す多孔質銅箔を製造する装置では、 ドラム状の力ソード体 1力 電解 槽 5に収容された電解液 6にその一部を浸漬した状態で配設されている。 ァノ一 ド体 4はカソード体 1に対向するように電解液 6に浸漬した状態で配設されてい る。 多孔質銅箔を製造するには、 ドラム状の力ソード体 1を回転させてその表面 を順次電解液 6の中に移動させるとともに、 アノード体 4とドラム状の力ソード 体 1との間に通電して電解反応を進めることにより行われる。 銅イオンはドラム 状のカソード体 1の表面に電析して銅粒子を形成し、 カソ一ド体 1の表面の移動 方向に順次形成された銅粒子が互いに接合していき多孔質銅箔が連続的に形成さ れる。 形成された多孔質銅箔 1 0は、 電解液 6から出た後力ソード体 1の表面か ら剥離されロール 7に巻き取られる。
図 3に示す多孔質銅箔を製造する装置では、 ベルト状の力ソード体 2力 電解 槽 5に収容された電解液 6にその一部を浸漬した状態で配設されている。 ァノー ド体 4は力ソード体 2に対向するように電解液 6に浸漬した状態で配設されてい る。 多孔質銅箔を製造するには、 ベルト状の力ソード体 2を循環移動させて順次 電解液 6の中を通過させるとともに、 ァノ一ド体 4とベルト状の力ソード体 2と の間に通電して電解反応を進めることにより行われる。 銅イオンはベルト状の力 ソード体 2の表面に電析して銅粒子を形成し、 力ソード体 2の表面の移動方向に 順次形成された銅粒子が互いに接合していき多孔質銅箔が連続的に形成される。 形成された多孔質銅箔 1 0は、 電解液から出た後力ソード体 2の表面から剥離さ れロール 7に巻き取られる。
図 4に示す複合金属箔を製造する装置では、 ドラム状の力ソード体 3が、 電解 槽 5に収容された電解液 6に浸潰した状態で配設されている。 アノード体 4は力 ソ一ド体 3に対向するようにその一部を電解液 6に浸漬した状態で配設されてい る。 またアルミニウムまたはアルミニウム合金からなるテープ状基材 1 1が電解 液 6に浸漬するように力ソード体 3表面に捲き回されている。 このテ一プ状基材 1 1を移動させてその順次電解液 6の中を通過させるとともに、 アノード体 4と カソード体 3との間に通電して電解反応を進めることによってアルミニウム層上 に多孔質銅箔層が積層された複合金属箔が得られる。 銅イオンはテープ状基材 1 1の表面へ電析により銅粒子が形成され、 テープ状基材 1 1の表面の移動方向に 順次形成された銅粒子が互いに接合していき多孔質銅箔が連続的に形成される。 形成された複合金属箔 1 2は、 ロール 7に巻き取られる。
これらの方法で用いられる電解液の液組成は、 Cu S〇4が通常 50〜400 g /リッ トル、 好ましくは 200〜 300 gZリットルであり、 H2S〇4濃度が通常 50〜300 g/リッ トル、 好ましくは 1 00〜200 gZリットルである。 電 流密度は、 通常5〜80八/31112、 好ましくは 1 0〜30 AZdm2の範囲である 電解液の温度は、 通常 2 0〜 60° (:、 好ましくは 30〜 50°Cである。
また電解液には、 膠、 C 1 (塩素) などを添加することができ、 これらの添加 剤により表面形態を調節することができる。 添加剤の濃度は通常 1〜 300 p p mである。
前記ドラム状またはベルト状の力ソード体の素材としては、 アルミニウム、 ァ ルミニゥム合金、 チタン、 チタン合金などが挙げられる。 本発明では、 前記ドラ ム状またはベルト状のカソ一ド体は、 銅箔が電析する表面が表面処理をされたも のであることが好ましい。
ドラム状またはベル卜状のカソード体の素材としてアルミニウムまたはアルミ 二ゥム合金を使用する場合、 及び複合金属箔を製造する際にアルミニウム又はァ ルミニゥム合金のテープ状基材を使用する場合、 その表面を処理する方法として は、 下記 (a) ないし (c) などがある。
まず、 (a) 力ソード体表面の一部に油脂類を塗布する方法である。 ここで使 用される油脂類としては、 脂肪酸および、 脂肪酸金属塩、 脂肪酸エステルなどの 脂肪酸誘導体などが挙げられ。 これらの油脂類は、 力ソード体表面に通常 1 0— 3〜 1 0 gZm2の量で塗布される。
次に、 (b) カゾード体表面の一部にピロリン酸銅メツキを施す方法である。 この際の浴組成は、 ピロリン酸銅が 40〜 1 00 gZリットル、 ピロリン酸カリ ゥムが 100〜40 0 gZリツトルであり、 液の pHが?〜 9であり、 電流密度 は通常 1〜6 AZdm2であり、 電解時間は通常 5〜60秒である。
そして、 (c) 力ソード体表面の一部に酸化皮膜を付着させる方法である。 力 ソード体表面に酸化皮膜を付着させる方法としては、 力ソード体表面を酸性溶液 中で陽極酸化する方法が挙げられる。 ここで用いられる溶液としては、 ホウ酸溶 液、 酒石酸アンモニゥム溶液、 硫酸溶液、 リン酸狯液、 クロム酸溶液などが挙げ られる。 陽極酸化する際の電流密度は通常 1〜 5 A / d m2であり、 電解時間は通 常 1〜 1 0分である。
なお前記 (b ) 、 (c ) の表面処理に先立って力ソード体表面に脱脂処理を施 してもよい。 上述したような図 2または 3に示した製造装置を用いた多孔質銅箔 の製造方法は、 力ソード体の表面状態が変化し難いので、 得られる多孔質銅箔の 開口率の制御が容易である。
また、 ドラム状またはベル卜状の力ソード体の素材としてチタン、 チタン合金 を使用する場合、 その表面を処理する方法としては、 力ソード体表面の一部に酸 化皮膜を付着させる方法がある。 この力ソード体表面の一部に酸化被膜を形成す る方法は、 力ソード体表面を酸性溶液中で陽極酸化する方法が挙げられる。 ここ で用いられる溶液としては、 硫酸溶液、 ホウ酸溶液、 酒石酸アンモニゥム溶液、 リン酸溶液、 クロム酸溶液などが挙げられる。 陽極酸化する際の電圧は通常 0 . 0 1〜 1 0 V未満であり、 電解時間は通常 5〜 3 0秒である。
陽極酸化により酸化被膜を付着する場合、 その酸化被膜の厚みは 1 4 n m未満 厚さであることが好ましく、 例えば光透過率を 1 0 %以上 (上記光透過率測定法 ィによる) とする場合、 2 . 8〜 1 2 . 6 n m厚さの酸化被覆を付着させるよう にすることがより好ましいものである。 1 4 n m以上の厚さの酸化皮膜がチタン またはチタン合金の表面に付着していると、 光が透過可能となるように厚さ方向 に貫通した孔を形成しなくなるためである。
このドラム状またはベルト状の力ソード体の素材としてチタン、 チタン合金を 使用して本発明に係る多孔質銅箔を製造するには、 一般的に知られている陽極酸 化法により酸化被膜をカソード体表面に付着することができる。
例えば、 図 2に示すドラム状の力ソード体 (チタンまたはチタン合金により表 面が形成されたもの) の場合で説明すると、 酸化被膜は、 電解液 6に浸漬してい ない部分の力ソード体 1表面で形成する。 即ち、 製造時に回転する力ソード体 1 において、 電解液 6に浸漬する前の力ソード体 1表面に形成するものである。 ま た、 一旦力ソード体 1表面に形成された酸化皮膜は、 力ソード体 1表面からの多 孔質銅箔の剥離や電解液による溶解作用により、 その厚みを減少する傾向となる 力 その減少する厚み分を追加できる程度の電圧'を加えるようにしておけば、 酸 化被膜の厚みを連続して所定厚みに維持でき、 本発明に係る多孔質銅箔を連続製 造することができる。 実施例
以下、 実施例に基づいて本発明をさらに具体的に説明するが、 本発明はこれら 実施例に限定されるものではない。
実施例 1
アルミ箔を電極として表 1に示す条件で銅の電析を行った。 なお、 アルミ箔の 脱脂処理は N a OHが 3 0 g/リッ トル、 ロッシエル塩が 4 6 gZリットル、 N a2C〇3 が 4 6 g/リットルの組成の浴中に 3 0秒間浸漬することにより行った c ピロリン酸銅メツキは、 浴組成がピロリン酸銅 5 6 gZリットル、 ピロリン酸 カリウム 2 9 0 gZリッ トル、 pHが 7. 4、 浴温 5 2°C、 電流密度が l A/d m2 、 電解時間が 3 0秒の条件で行った。
得られた多孔質銅箔の表面構造を電子顕微鏡で観察したときの形状を図 5に示 す。 図 5に示すように得られた銅箔は、 光が透過可能となるように厚さ方向に貫 通する孔を有した状態で、 各銅粒子が接合することによって形成された多孔質の 銅箔である。
<表 1 >
Figure imgf000015_0001
実施例 2
陽極酸化したアルミ箔を電極として表 2に示す条件で銅の電析を行った (サン プル番号 3〜8) 。 なお、 アルミの陽極酸化は、 浴組成が H2S〇4 1 5 0m l ッ トル、 室温、 電流密度が l A Z d m2 の条件で行い、 水洗した後電析を行った。 この場合におけるアルミ箔表面の酸化被膜は、 陽極酸化時の電圧値が約 4 Vであ つたことから、 約 5 . 6 n mの厚さを有したものと推測している。 ここで示す酸 化被膜の厚みは、 アルミニウムの陽極酸化において、 酸化被膜と陽極酸化電圧の 関係が、 一般的に約 1 . 4 n m/ Vとであるとされている数値より算出したもの である (参考文献:軽金属協会編 アルミニウム技術便覧 力ロス出版 1996) ( 実施例 3
陽極酸化したアルミ箔を電極として表 2に示す条件で銅の電析を行った (サン プル番号 9〜 1 1 )
実施例 2で得られた多孔質銅箔の表面構造を電子顕微鏡で観察したときの形状 を図 6〜 8に示し、 実施例 3で得られた多孔質銅箔の表面構造を電子顕微鏡で観 察したときの形状を図 9および 1 0に示し、 実施例 2で得られた M面の X線回折 パターンを図 1 1に示し、 多孔質銅箔の断面を顕微鏡で観察したときの形状を図 1 2に示す。 図 6〜 1 0および図 1 2に示すように得られた銅箔は、 光が透過可 能となるように厚さ方向に貫通する孔を有した状態で、 各銅粒子が接合すること によって形成された多孔質の銅箔である。 また、 図 1 1から銅粒子はランダム配 向に近いことがわかる。 さらに多孔質銅箔の M面および S面の表面を電子顕微鏡 で観察したときの形状を図 1 3に示す。
<表 2 >
Figure imgf000017_0001
»— · ― ― ― -— 一 ― .
A C u S 0 4 3 1 4 g / 1 , H 2 S 0 4 1 5 0 g / 1 , 5 2 t 比較例 1
陽極酸化したチタン板を電極として、 表 3に示す条件で銅の電析を行った。 得 られた銅箔の表面構造を電子顕微鏡で観察したときの形状を図 1 4に示し、 M面 の X線回折パターンを図 1 5に示す。 図 1 4に示すように、 表 3による条件にお いて、 電極として陽極酸化したチタン板を用いた場合には、 銅粒子同士の接合に より生じる隙間が形成されず、 光を透過可能となるように厚さ方向に貫通した孔 を有しない銅箔が得られる。 また、 図 1 5からこの銅箔は ( 2 2 0 ) 配向である ことがわかる。
<表 3 >
Figure imgf000018_0001
実施例 4
チタン板を力ソード電極として、 表 4に示す条件で銅の電析を行った。 カソー ド電極表面における陽極酸化処理は、 表 4で示す電解液と同じものを陽極酸化用 電解液として用い、 陽極酸化用電極として S U S板を使用した。 陽極酸化電圧値 は 5 Vで、 約 3 0秒間保持して酸化被膜を形成した後、 銅の電析を行った。 <表 4 >
Figure imgf000018_0002
表 4に示すように、 チタン板を用いて酸化皮膜を形成し銅電析を行った結果、 光が透過可能となるように厚さ方向に貫通する孔を有する状態で、 各銅粒子が接 合することによって形成された多孔質の銅箔が得られた。 この実施例 4で得られ た多孔質銅箔の表面構造は、 実施例 2の電子顕微鏡観察で示したものと同様なも のであった。 また、 この実施例 4で得られた多孔質銅箔について X線回折パター ンを調べた結果、 図 1 1と同じ回折パターンが得られた。 このことから実施例 4 における銅粒子も、 ランダム配向に近いことがわかる。
さらに、 チタン板表面に酸化被膜を形成する際の陽極酸化電圧と多孔質銅箔の 光透過率について調べた結果について説明する。 図 1 6及び図 1 7に は、 各陽極酸化電圧において酸化被膜を形成し、 重量厚さ 1 4 z m狙いで多孔質 銅箔を製造した場合における多孔質銅箔の光透過率を測定することによって得ら れたものである。 図 1 6は、 チタン板表面を # 2 8 0のパフにより研磨を施した 状態で製造したもので、 チタン板表面粗度が R zで約 2〜2 . 5 x m程度の状態 で行った場合の結果を示している。 また、 図 1 7は、 チタン板表面を # 6 0 0の パフにより研磨を施した状態で製造したもので、 チタン板表面粗度が R zで約 1 . 2〜 1 . 5 / m程度の状態で行った場合の結果を示している。 そして、 陽極酸化 用電解液は表 4に示す銅電解液の組成と同じで塩素濃度 0 p p mのものを使用し、 酸化被膜を形成した。 その後、 その酸化被膜表面へ塩素濃度を変化させた銅電解 液で銅の電析を行った。 多孔質銅箔の光透過率は、 上記した光透過率測定法ィに より得られた数値である。
図 1 6及び図 1 7を見ると判るように、 陽極酸化電圧が 5 V前後のときに、 多 孔質銅箔の光透過率が大きくなる傾向を示した。 また、 電解液の塩素濃度を高く すると、 光透過率が大きくなることも確認された。 そして、 陽極酸化電圧値が 1 0 V以上になると、 光が透過可能となるように厚さ方向に貫通した孔が形成され にくくなる銅箔となることが判った。 このことは、 上記比較例 1に示す表 3の陽 極酸化条件で製造した際に、 光が透過可能となるように厚さ方向に貫通する孔が 形成されない銅箔が得られたことに対応するものである。
一般的に、 チタン表面へ陽極酸化被膜を形成した場合、 陽極酸化電圧 I Vあた りで約 1 . 4 n m厚さの酸化被膜が形成されることが知られている。 このことと 図 1 6及び 1 7に示す結果から考えれば、 多孔質銅箔の光透過率を 1 0 %以上に するには陽極酸化電圧を約 2〜9 Vの範囲とし、 酸化被膜の厚さを約 2 . 4〜 1 2 . 6 n mの範囲にすればよいことが判明した。 このような条件範囲で製造され る多孔質銅箔は、 2次電池用の集電体として好適な孔を有したものとなる。 産業上の利用可能性
本発明に係る多孔質銅箔は、 表面に適度の凹凸を有し、 かつ光が透過可能とな るように厚さ方向に貫通する孔を有しているので、 例えばリチウムイオン二次電 池用の集電体として好適である。

Claims

請求の範囲
1 . 平面方向平均粒径 1〜 5 0 zz mの銅粒子を互いに平面的に接合するように 電析によって形成された多孔質銅箔であり、
該多孔質銅箔の光透過率が 0 . 0 1 %以上であると共に、 箔を形成する際に陰 極面側であった表面の表面粗度とその反対側の表面の表面粗度との差が R zで 5 〜2 0 zz mの範囲にあることを特徴とする多孔質銅箔。
2 . 多孔質銅箔の厚みは、 銅粒子の厚さ方向平均粒径の 1〜 5倍の範囲にある 請求の範囲 1に記載の多孔質銅箔。
3 . 多孔質銅箔の厚みは、 3〜4 0 /x mの範囲にある請求の範囲 1または 2に 記載の多孔質銅箔。
4 . 電池用である請求の範囲 1ないし 3のいずれかに記載の多孔質銅箔。
5 . 二次電池の陰極集電体用である請求の範囲 1ないし 3のいずれかに記載の 多孔質銅箔。
6 . 膜厚が 3〜 5 0 mの範囲にあるアルミニウムまたはアルミニウム合金か らなるアルミニウム層と、 請求の範囲 1ないし 3のいずれかに記載の多孔質銅箔 層とから形成されてなることを特徴とする複合金属箔。
7 . アルミニウム、 アルミニウム合金、 チタンまたはチタン合金のいずれかの ものからなる力ソード体の表面に銅を電析して銅粒子を析出させることによって 請求の範囲 1ないし 3のいずれかに記載の多孔質銅箔を形成し、 次いで該銅箔を 力ソード体から剥離することを特徴とする多孔質銅箔の製造方法。
8 . アルミニウム、 アルミニウム合金、 チタンまたはチタン合金のいずれかの ものからなる表面を有したドラム状力ソード体に銅を電析して銅粒子を析出させ ることによって請求の範囲 1ないし 3のいずれかに記載の多孔質銅箔を形成し、 次いで該銅箔をドラム状カソード体から剥離することを特徴とする多孔質銅箔の 製造方法。
9 . アルミニウム、 アルミニウム合金、 チタンまたはチタン合金のいずれかの ものからなる表面を有したベルト状カソード体に銅を電析して銅粒子を析出させ ることによって請求の範囲 1ないし 3のいずれかに記載の多孔質銅箔を形成し、 次いで該銅箔をベルト状カソード体から剥離することを特徴とする多孔質銅箔の 製造方法。
1 0. アルミニウムまたはアルミニウム合金からなる力ソード体の表面が、 下 記 (a) ないし (c) のいずれかの方法により処理されたものである請求の範囲 7ないし 9のいずれかに記載の多孔質銅箔の製造方法;
(a) 力ソード体表面の一部に油脂類を塗布する。
(b) カソード体表面の一部にピロリン酸銅メツキを施す。
(c) 力ソード体表面の一部に酸化皮膜を付着させる。
1 1. チタンまたはチタン合金からなる力ソード体の表面が、 その一部に酸化 皮膜を付着させる処理をされたものである請求の範囲 7ないし 9のいずれかに記 載の多孔質銅箔の製造方法。
1 2. チタンまたはチタン合金からなる力ソード体の表面が、 陽極酸化法によ り 14 nm厚さ未満の酸化被膜を形成する処理をされたものである請求の範囲 1 1に記載の多孔質銅箔の製造方法。
1 3. アルミニウムまたはアルミニウム合金からなるテープ状基材の表面に銅 を電析して銅粒子を析出させることによって請求の範囲 6に記載の複合金属箔を 形成することを特徴とする複合金属箔の製造方法。
14. 前記テープ状基材の表面が、 下記 (a) ないし (c) のいずれかの方法 により処理されたものである請求の範囲 1 3に記載の複合金属箔の製造方法;
(a) 力ソード体表面の一部に油脂類を塗布する
(b) カソード体表面の一部にピロリン酸銅メツキを施す
(c) 力ソード体表面の一部に酸化皮膜を付着させる。
1 5. 請求の範囲 6に記載の複合金属箔を形成するアルミニウム層と多孔質銅 箔層とを剥離して、 得られたアルミニウム箔を二次電池の陽極集電体として使用 する複合金属箔の使用方法。
PCT/JP1999/004967 1998-09-14 1999-09-13 Porous copper foil, use thereof and method for preparation thereof WO2000015875A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020007004617A KR20010031571A (ko) 1998-09-14 1999-09-13 다공질 동박(多孔質 銅箔) 및 그 용도와 그 제조방법
JP2000570395A JP3262558B2 (ja) 1998-09-14 1999-09-13 多孔質銅箔およびその用途ならびにその製造方法
EP99943293A EP1038994A1 (en) 1998-09-14 1999-09-13 Porous copper foil, use thereof and method for preparation thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP27938198 1998-09-14
JP10/279381 1998-09-14

Publications (1)

Publication Number Publication Date
WO2000015875A1 true WO2000015875A1 (en) 2000-03-23

Family

ID=17610359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/004967 WO2000015875A1 (en) 1998-09-14 1999-09-13 Porous copper foil, use thereof and method for preparation thereof

Country Status (6)

Country Link
EP (1) EP1038994A1 (ja)
JP (1) JP3262558B2 (ja)
KR (1) KR20010031571A (ja)
CN (1) CN1184359C (ja)
TW (1) TW428049B (ja)
WO (1) WO2000015875A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003041194A1 (en) * 2001-11-07 2003-05-15 Matsushita Electric Industrial Co., Ltd. Negative electrode current collector, negative electrode using the same, and nonaqueous electrolytic secondary cell
JP2005251429A (ja) * 2004-03-01 2005-09-15 Mitsui Mining & Smelting Co Ltd Al合金キャリア付孔開き金属箔及びその製造方法並びにAl合金キャリア付孔開き金属箔から分離された該孔開き金属箔を含む二次電池用電極及び二次電池
JP2008170197A (ja) * 2007-01-10 2008-07-24 Toyama Sumitomo Denko Kk 金属多孔体の異物検出装置およびその装置による異物検出工程を経た金属多孔体
US7811709B2 (en) 2002-11-29 2010-10-12 Mitsui Mining & Smelting Co., Ltd. Negative electrode for nonaqueous secondary battery, process of producing the negative electrode, and nonaqueous secondary battery
JP2012102400A (ja) * 2010-11-08 2012-05-31 Chang Chun Petrochemical Co Ltd 多孔質銅箔の製造方法
JP2013541139A (ja) * 2010-09-10 2013-11-07 フラウンホーファー−ゲゼルシャフト ツア フォルデルング デア アンゲヴァンテン フォルシュング エー ファウ 電気化学セル用の電気導体
KR101372089B1 (ko) * 2006-03-30 2014-03-07 소니 주식회사 집전체, 부극 및 전지
WO2018138989A1 (ja) * 2017-01-25 2018-08-02 日立金属株式会社 金属箔の製造方法および金属箔製造用陰極
WO2022054597A1 (ja) * 2020-09-11 2022-03-17 古河電気工業株式会社 電解銅箔、リチウムイオン二次電池用負極、及びリチウムイオン二次電池

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20010548A1 (it) * 2001-03-15 2002-09-15 Consorzio Politecnico Innovazi Apparato per la produzione di fogli metallici per via elettrolitica
JP5119582B2 (ja) 2005-09-16 2013-01-16 住友電気工業株式会社 超電導線材の製造方法および超電導機器
TWI381069B (zh) * 2007-11-05 2013-01-01 Chun Ping Jen Method for manufacturing electroformed capillary structure
KR101045002B1 (ko) * 2008-08-13 2011-06-29 한국과학기술원 전해도금법에 의한 다공성 구리의 제조방법
JP5402380B2 (ja) 2009-03-30 2014-01-29 三菱マテリアル株式会社 アルミニウム多孔質焼結体の製造方法
CN102438778B (zh) 2009-03-30 2014-10-29 三菱综合材料株式会社 铝多孔烧结体的制造方法和铝多孔烧结体
JP5428546B2 (ja) * 2009-06-04 2014-02-26 三菱マテリアル株式会社 アルミニウム多孔質焼結体を有するアルミニウム複合体の製造方法
KR20110017761A (ko) * 2009-08-14 2011-02-22 에스비리모티브 주식회사 이차 전지용 전극판 및 이를 포함하는 이차 전지
EP2508652B1 (en) 2009-12-04 2017-03-22 Mitsui Mining & Smelting Co., Ltd Porous metal foil and method for manufacturing the same
JP5636291B2 (ja) 2011-01-13 2014-12-03 三井金属鉱業株式会社 補強された多孔質金属箔およびその製造方法
JP5466664B2 (ja) * 2011-04-08 2014-04-09 三井金属鉱業株式会社 多孔質金属箔およびその製造方法
JP5400826B2 (ja) 2011-04-08 2014-01-29 三井金属鉱業株式会社 複合金属箔およびその製造方法
KR101390507B1 (ko) * 2011-08-30 2014-04-30 니시 코교 가부시키가이샤 천공박 전해 석출 장치
CN104347882A (zh) * 2013-07-25 2015-02-11 谢振华 一种锂电池
CN103465543B (zh) * 2013-09-29 2015-07-29 西北有色金属研究院 强化沸腾传热用双重孔结构多孔铜材料的制备方法
CN103746139B (zh) * 2013-12-10 2016-02-10 宁波维科电池股份有限公司 安全性能良好的锂离子动力电池
CN105018776B (zh) * 2014-04-30 2017-09-29 中国科学院金属研究所 一种多孔铜箔的制备工艺及其应用
US11038165B2 (en) 2014-05-29 2021-06-15 Sila Nanotechnologies, Inc. Ion permeable composite current collectors for metal-ion batteries and cell design using the same
CN104818503A (zh) * 2015-04-15 2015-08-05 同济大学 一种三维网络结构多孔铜全透膜的制备方法
CN106159277A (zh) * 2015-04-15 2016-11-23 微宏动力系统(湖州)有限公司 多孔集流体及其制备方法
KR101809985B1 (ko) * 2017-03-30 2017-12-18 와이엠티 주식회사 다공성 구리박의 제조방법 및 이를 이용한 다공성 구리박
CN108796582B (zh) * 2018-06-19 2020-01-03 新疆中亚新材料科技有限公司 一种多孔双面光铜箔的制造方法
CN108950608B (zh) * 2018-08-16 2019-08-02 安徽铜冠铜箔有限公司 一种新的网状铜箔制备方法
CN109082697B (zh) * 2018-09-12 2020-05-19 河北工业大学 一种柱状铜颗粒膜的制备方法
CN108963268B (zh) * 2018-09-14 2024-01-30 深圳市润沃自动化工程有限公司 多孔金属箔生产装置、工艺及锂电池制备方法
CN111349950B (zh) * 2020-04-22 2021-07-06 山东金宝电子股份有限公司 一种附载体超薄电解铜箔的制备方法
CN111850628A (zh) * 2020-06-12 2020-10-30 九江德福科技股份有限公司 一种屏蔽阴极板的打孔铜箔制作方法
CN112331831B (zh) * 2020-11-06 2022-05-03 珠海冠宇电池股份有限公司 硅负极片及其制备方法和锂离子电池
CN113416986B (zh) * 2021-07-08 2022-10-11 江西柔顺科技有限公司 电解铜箔的制造方法
CN115012006B (zh) * 2022-07-14 2024-03-19 中国科学院青海盐湖研究所 电沉积制备多孔铜箔的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681694A (en) * 1979-12-06 1981-07-03 Matsushita Electric Ind Co Ltd Manufacture of porous copper thin film
JPH07188969A (ja) * 1993-10-22 1995-07-25 Gould Electron Inc 電着銅箔およびその製造方法
JPH08236120A (ja) * 1995-03-01 1996-09-13 Furukawa Electric Co Ltd:The 多孔質電解金属箔の製造方法、その電解金属箔を用いた二次電池用電極

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU602673B2 (en) * 1985-12-24 1990-10-25 Gould Electronics Inc Electroplating metal foil
JPS63186888A (ja) * 1987-01-30 1988-08-02 Meiko Denshi Kogyo Kk 銅箔の製造方法
JP3742144B2 (ja) * 1996-05-08 2006-02-01 ソニー株式会社 非水電解液二次電池及び非水電解液二次電池用の平面状集電体
JPH10195689A (ja) * 1996-12-27 1998-07-28 Fukuda Metal Foil & Powder Co Ltd 微細孔明き金属箔の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681694A (en) * 1979-12-06 1981-07-03 Matsushita Electric Ind Co Ltd Manufacture of porous copper thin film
JPH07188969A (ja) * 1993-10-22 1995-07-25 Gould Electron Inc 電着銅箔およびその製造方法
JPH08236120A (ja) * 1995-03-01 1996-09-13 Furukawa Electric Co Ltd:The 多孔質電解金属箔の製造方法、その電解金属箔を用いた二次電池用電極

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7150942B2 (en) 2001-11-07 2006-12-19 Matsushita Electric Industrial Co., Ltd. Negative electrode current collector, negative electrode using the same, and non-aqueous electrolytic secondary cell
WO2003041194A1 (en) * 2001-11-07 2003-05-15 Matsushita Electric Industrial Co., Ltd. Negative electrode current collector, negative electrode using the same, and nonaqueous electrolytic secondary cell
US7811709B2 (en) 2002-11-29 2010-10-12 Mitsui Mining & Smelting Co., Ltd. Negative electrode for nonaqueous secondary battery, process of producing the negative electrode, and nonaqueous secondary battery
JP2005251429A (ja) * 2004-03-01 2005-09-15 Mitsui Mining & Smelting Co Ltd Al合金キャリア付孔開き金属箔及びその製造方法並びにAl合金キャリア付孔開き金属箔から分離された該孔開き金属箔を含む二次電池用電極及び二次電池
US9742039B2 (en) 2006-03-30 2017-08-22 Sony Corporation Current collector, negative electrode and battery
KR101372089B1 (ko) * 2006-03-30 2014-03-07 소니 주식회사 집전체, 부극 및 전지
US9350050B2 (en) 2006-03-30 2016-05-24 Sony Corporation Current collector, negative electrode and battery
US9640830B2 (en) 2006-03-30 2017-05-02 Sony Corporation Current collector, negative electrode and battery
JP4557990B2 (ja) * 2007-01-10 2010-10-06 富山住友電工株式会社 金属多孔体の異物検出装置
JP2008170197A (ja) * 2007-01-10 2008-07-24 Toyama Sumitomo Denko Kk 金属多孔体の異物検出装置およびその装置による異物検出工程を経た金属多孔体
JP2013541139A (ja) * 2010-09-10 2013-11-07 フラウンホーファー−ゲゼルシャフト ツア フォルデルング デア アンゲヴァンテン フォルシュング エー ファウ 電気化学セル用の電気導体
JP2012102400A (ja) * 2010-11-08 2012-05-31 Chang Chun Petrochemical Co Ltd 多孔質銅箔の製造方法
US9365940B2 (en) 2010-11-08 2016-06-14 Chang Chun Petrochemical Co., Ltd. Method for producing porous copper foil
WO2018138989A1 (ja) * 2017-01-25 2018-08-02 日立金属株式会社 金属箔の製造方法および金属箔製造用陰極
US10900138B2 (en) * 2017-01-25 2021-01-26 Hitachi Metals, Ltd. Metallic foil manufacturing method and cathode for manufacturing metallic foil
EP3575445B1 (en) * 2017-01-25 2022-10-19 Hitachi Metals, Ltd. Metallic foil manufacturing method and cathode for manufacturing metallic foil
WO2022054597A1 (ja) * 2020-09-11 2022-03-17 古河電気工業株式会社 電解銅箔、リチウムイオン二次電池用負極、及びリチウムイオン二次電池

Also Published As

Publication number Publication date
KR20010031571A (ko) 2001-04-16
TW428049B (en) 2001-04-01
CN1275176A (zh) 2000-11-29
CN1184359C (zh) 2005-01-12
EP1038994A1 (en) 2000-09-27
JP3262558B2 (ja) 2002-03-04

Similar Documents

Publication Publication Date Title
WO2000015875A1 (en) Porous copper foil, use thereof and method for preparation thereof
JP5148481B2 (ja) 自立伝導性ナノ複合エレメントの電解製造法
JP4762368B2 (ja) 多孔質金属箔およびその製造方法
JP5691107B2 (ja) 高耐食性を有する金属多孔体及びその製造方法
JP4616584B2 (ja) 非水電解液二次電池用負極
US9512527B2 (en) Reinforced porous metal foil and process for production thereof
RU2336603C2 (ru) Электрод для использования во вторичной батарее, способ его изготовления и вторичная батарея
BR0317920B1 (pt) eletrodo negativo para bateria secundária não-aquosa, processo de produção do eletrodo negativo, e bateria secundária não-aquosa.
TWI310994B (en) Negative electrode for nonaqueous secondary battery
WO2011050204A2 (en) Nucleation and growth of tin particles into three dimensional composite active anode for lithium high capacity energy storage device
JP4054868B2 (ja) リチウム電池用負極及び該リチウム電池用負極の製造方法
CN107849725A (zh) 铝板及铝板的制造方法
TWI547600B (zh) 電解銅合金箔及具備承載箔之電解銅合金箔
JP2006216565A (ja) 二次電池用電極及びその製造方法並びに二次電池
JP2006155900A (ja) 二次電池用電極及びその製造方法並びに二次電池
WO2005057692A1 (ja) 非水電解液二次電池用負極
WO2005108647A1 (ja) キャリア箔付き多孔質金属箔及びその製造方法
JP2005063929A (ja) 非水電解液二次電池用負極及びその製造方法並びに非水電解液二次電池
JP4746328B2 (ja) 非水電解液二次電池用負極
JP4763995B2 (ja) 非水電解液二次電池用電極
JP2005129264A (ja) 多孔質金属箔及びその製造方法
JP2006228512A (ja) 非水電解液二次電池用負極
JP3742828B2 (ja) 非水電解液二次電池用負極
JP2006012646A (ja) 非水電解液二次電池用負極
JPH0523760A (ja) 多孔性金属箔の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99801374.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 09508107

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA CN ID JP KR PL US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1999943293

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020007004617

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1999943293

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007004617

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1999943293

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1020007004617

Country of ref document: KR