WO2000005573A1 - Detecteur de gaz et son procede de fabrication - Google Patents

Detecteur de gaz et son procede de fabrication Download PDF

Info

Publication number
WO2000005573A1
WO2000005573A1 PCT/DE1999/001727 DE9901727W WO0005573A1 WO 2000005573 A1 WO2000005573 A1 WO 2000005573A1 DE 9901727 W DE9901727 W DE 9901727W WO 0005573 A1 WO0005573 A1 WO 0005573A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
gas sensor
base
base layer
measuring electrode
Prior art date
Application number
PCT/DE1999/001727
Other languages
German (de)
English (en)
Inventor
Jens Stefan Schneider
Harald Neumann
Johann Riegel
Frank Stanglmeier
Bernd Schumann
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP99938187A priority Critical patent/EP1040346B1/fr
Priority to DE59914732T priority patent/DE59914732D1/de
Priority to JP2000561489A priority patent/JP2002521662A/ja
Priority to US09/509,270 priority patent/US6395161B1/en
Publication of WO2000005573A1 publication Critical patent/WO2000005573A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4075Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4071Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4077Means for protecting the electrolyte or the electrodes

Definitions

  • the invention relates to a gas sensor according to the preamble of claim 1 and to a method for producing the gas sensor.
  • a sensor is known in which an electrode made of gold or silver which does not catalyze the equilibrium of the gas mixture is provided and which interacts with an electrode made of platinum which catalyzes the equilibrium of the measurement gas.
  • the catalytically inactive electrode materials cause a competitive reaction to take place on the electrode between the oxygen and the oxidizable or reducible gas components.
  • the free oxygen carried in the sample gas is hardly converted with, for example, C3H 5 or CO, so that both free oxygen and C3Hg or CO reach the three-phase limit at the catalytically inactive electrode (un- state of equilibrium).
  • the measuring electrode consists of a platinum compound or a ternary alloy of platinum, gold, nickel, copper, rhodium, ruthenium, palladium or titanium.
  • the materials can also be applied as multiple layers on the solid electrolyte, the alloying step taking place after the materials have been applied.
  • a gas sensor is also known from US Pat. No. 4,199,425, in which a platinum electrode is provided which is covered with a porous cover layer.
  • Another catalytic material, rhodium is introduced into the pores of the cover layer by impregnation.
  • the rhodium has the task of making the gas sensor sensitive to NO x in addition to its sensitivity to oxygen.
  • the rhodium lies in the walls of the pores of the entire cover layer, so that no specific layer thickness can be formed in the porous cover layer.
  • the gas sensor according to the invention with the characterizing features of claim 1 has the advantage that a sintered sensor element base body can be used, only the further layer after sintering being integrated by an additional deposition step.
  • the outer electrode of the sensor element base body can be modified after sintering.
  • the sensor element of a lambda probe of the Nernst type for example, can be used as the sensor element base body, the modification of the outer electrode transforming it into a mixed potential electrode. It is also advantageous that materials can be used for the further layers that would otherwise not withstand the high sintering temperature.
  • Another advantage is that the immediately Another layer system arranged adjacent to the electrically conductive base layer does not completely fill the pores of the porous cover layer.
  • the material of the additional layer is used to specifically modify the functional properties of the electrode of the gas sensor.
  • the modification can serve to set the specific gas selectivity and / or the control position of the sensor.
  • Layer the layer system is subjected to a thermal aftertreatment.
  • a temperature range of 1200 ° C ⁇ 100 ° C has proven to be favorable for a Pt / Au electrode.
  • the metal atoms of the further layer diffuse into the metal of the neighboring base layer.
  • a cermet layer is used as the electrically conductive base layer, which due to its ceramic component forms a firm connection with the solid electrolyte during sintering of the ceramic body.
  • the formation of several further layers and a suitable choice of material for the layers also make it possible to modify the catalytic activity of the electrode in a more targeted manner in addition to setting the selectivity.
  • FIG. 1 shows a section through an invented gas sensor according to the invention
  • Figure 2 is an enlarged sectional view of a first embodiment of an electrode of the gas sensor of the invention
  • Figure 3 is an enlarged sectional view of a second embodiment of an electrode of the gas sensor of the invention.
  • FIG. 1 shows a gas sensor with a sensor element base body 10, which has a structure of the kind used for oxygen sensors of the Nernst type (lambda probes).
  • the base body 10 is constructed, for example, from a plurality of ceramic solid electrolyte foils 11, 12, 13, which consist, for example, of ZrO 2 stabilized with Y 2 O 3 .
  • An outer measuring electrode 15 with an overlying porous cover layer 16 is arranged on the outer large surface of the first film 11.
  • the cover layer 16 consists, for example, of porous ZrÜ 2 or Al 2 O 3 .
  • a reference channel 17 is introduced into the second film 12 and is connected to a reference atmosphere, for example air.
  • a heating device 22 is also integrated in the base body 10, electrical insulation layers 21 in which the heating device 22 is embedded being applied to the third film 13. The heater 22 is operated as an electrical resistance heater.
  • the measuring electrode 15 has the layer structure shown in FIG. 2. Then there is an electrically conductive base layer 25 made of, for example, a Pt cermet on the film 11 of the base body 10.
  • the cover layer 16 lies on the base layer 25. According to FIG. 2, the cover layer 16 is adjacent in the pores a further layer 27 is formed on the base layer 25. This layer 27 is in direct contact with the base layer 25.
  • the base layer 25 and the further layer 27 form the measuring electrode 15. The production of the layer 27 will be discussed later.
  • the layer 27 can consist of a material that inhibits or inhibits the equilibrium of the gas mixture on the electrode surface.
  • materials are, for example, noble metals (gold, rhodium, iridium), semi-precious metals (palladium, silver), base metals (copper, bismuth, nickel, chromium) or a mixture of these metals.
  • the further layer 27 consists of gold.
  • Mixed potential electrodes are electrodes that cannot or only partially catalyze the equilibrium of the gas mixture.
  • the measuring electrode 15 forms, together with the reference electrode 18 arranged in the reference channel 17 from Pt, for example, a so-called mixed potential sensor.
  • the material of the layer 27 of the measuring electrode 15 which does not or does not completely catalyze the equilibrium of the gas mixture has the effect that a competitive reaction takes place at the measuring electrode 15 between the oxygen and the oxidizable gas components. Accordingly, the CO carried in the sample gas is hardly converted to CO 2 with the free oxygen. As a result, both free oxygen and CO reach the three-phase
  • Limit of the measuring electrode 15 and contributes to the signal formation there.
  • a potential difference is formed between the measuring electrode 15 and the reference electrode 18, at which a constant oxygen partial pressure is present with the reference air, and is measured as an EMF by a measuring instrument 30. that can.
  • the EMF is therefore dependent on the oxidizable gas components.
  • the selectivity of the measuring electrode 15 can thus be specifically adjusted to a gas species by a corresponding choice of material for the further layer 27, so that the cross-sensitivity to other gas components is reduced.
  • the low temperature behavior of an oxygen sensor can be improved by a Rh layer on a Pt electrode.
  • FIG. 3 A second exemplary embodiment of a layer system for the measuring electrode 15 is shown in FIG. 3.
  • the layer 27 is formed above the base layer 25 in the pores of the cover layer 16 and a second layer 28 is formed above the layer 27 and a third layer 29 is formed above the layer 28.
  • layer 27 consists for example of gold, layer 28 for example of rhodium or iridium and layer 29 of nickel or chromium.
  • layer 29 of nickel or chromium.
  • This example shows that a complicated, multilayered electrode structure can be realized in a simple manner.
  • the layer structure shown in FIG. 3 and / or by an appropriate choice of material for the layers 27, 28, 29, z. B. specifically modify the catalytic properties of the electrode.
  • the sensor element base body 10 described is used to manufacture the sensor according to FIG.
  • the foils 11, 12, 13 are provided with the corresponding functional layers in the green (unsintered) state.
  • the first film 11 is printed on one large area with a Pt cermet paste for producing the base layer 25 and on the other large area also with a Pt cermet paste for producing the reference electrode 18.
  • the top layer 16 is applied to the large area of the film 11 via the Pt-cermet paste of the base layer 25 by, for example, screen printing or brushing.
  • the Material of the cover layer 16 contains pore formers which evaporate or burn during later sintering and thereby form the pores.
  • the insulation layers 21 and the heating device 22 between the insulation layers 21 are printed on the film 13 in screen printing steps.
  • the films 11 and 13 printed in this way with the functional layers are laminated together with the film 12, into which the reference channel 17 was previously punched, and sintered at a temperature of, for example, 1400 ° C.
  • the base body 10 After sintering, the base body 10 is present, which corresponds to the construction of a sensor element of an oxygen sensor for determining the lambda value in gas mixtures.
  • the base body 10 present in the sintered state is provided with a layer 27 according to FIG. 2 or with a plurality of layers 27, 28, 29 according to FIG. 3, the layer 27 or the layers 27, 28, 29 in the layer planes in the Pores of the porous cover layer 16 are formed.
  • the layers 27, 28, 29 are produced by electrodeposition.
  • the ceramic body is placed in a galvanic bath.
  • the base layer 25 is electrically connected as a cathode, the connection contact of the base layer present on the sensor element base body 10
  • the anode for example, a metal is immersed in the electroplating bath, which corresponds to the metal of the layer 27, 28, 29 to be deposited in each case (galvanic process with sacrificial anode).
  • the electrolytes used are, for example, water-soluble, ionic salts of the metals in question, such as, for example, HAuCl 4 , IrCl3 x H2O or RI1CI3 x H 2 0.
  • a layer system according to FIG. 2 is selected for the production of a sensor for the determination of hydrocarbons.
  • a gold layer is electrodeposited on the base layer 25 made of Pt cermet.
  • the sintered base body 10 is placed in an electroplating bath with a HAUCI4 electrolyte, a gold anode being used.
  • the layer 27 made of gold is deposited on the Pt-Cermet base layer 25 with a layer thickness of, for example, 1-5 ⁇ m.
  • the layer 27 forms in the pores of the cover layer 16.
  • the ceramic body is subjected to an annealing treatment at a temperature of, for example, 1200 ° C.
  • an alloy is formed between the Pt of the base layer 25 and the gold of the layer 27, namely a platinum-rich gold phase and a gold-rich platinum phase.
  • the catalytic activity of the Pt of the Pt-cermet base layer 25 is modified and a mixed potential electrode is formed as the measuring electrode 15, which is selective towards hydrocarbons.
  • the layer system according to FIG. 3 is likewise produced by electroplating, the corresponding anode materials and / or the corresponding electroplating baths being used in succession in the electroplating.
  • the corresponding anode materials and / or the corresponding electroplating baths being used in succession in the electroplating.
  • Layer systems further combinations and layer systems for electrodes of gas sensors are also conceivable, which are deposited in a porous layer on an electrically conductive base layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

L'invention concerne un détecteur de gaz ainsi que son procédé de fabrication. Ce détecteur de gaz présente un électrolyte solide (11) possédant au moins une électrode de mesure (15) et une couche de revêtement poreuse (16). L'électrode de mesure (15) est réalisée avec une couche de base (25) électroconductrice et une autre couche (27), cette autre couche (27) formée au voisinage de la couche de base (25) dans les pores de la couche de revêtement poreuse (16) étant séparée par voie galvanique. Pour la séparation galvanique de l'autre couche (27), un corps de base (10) fritté avec la couche de base (25) et la couche de revêtement (16) est plongé dans un bain de galvanisation, et la couche de base (25) est mise en circuit comme cathode.
PCT/DE1999/001727 1998-07-23 1999-06-12 Detecteur de gaz et son procede de fabrication WO2000005573A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP99938187A EP1040346B1 (fr) 1998-07-23 1999-06-12 Detecteur de gaz a electrolyte solide et son procede de fabrication
DE59914732T DE59914732D1 (de) 1998-07-23 1999-06-12 Festelektrolyt-gassensor und verfahren zu dessen herstellung
JP2000561489A JP2002521662A (ja) 1998-07-23 1999-06-12 ガスセンサおよびその製造方法
US09/509,270 US6395161B1 (en) 1998-07-23 1999-06-12 Gas sensor and corresponding production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19833087A DE19833087A1 (de) 1998-07-23 1998-07-23 Gassensor und Verfahren zu dessen Herstellung
DE19833087.1 1998-07-23

Publications (1)

Publication Number Publication Date
WO2000005573A1 true WO2000005573A1 (fr) 2000-02-03

Family

ID=7874996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1999/001727 WO2000005573A1 (fr) 1998-07-23 1999-06-12 Detecteur de gaz et son procede de fabrication

Country Status (5)

Country Link
US (1) US6395161B1 (fr)
EP (1) EP1040346B1 (fr)
JP (1) JP2002521662A (fr)
DE (2) DE19833087A1 (fr)
WO (1) WO2000005573A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1213581A2 (fr) * 2000-11-20 2002-06-12 Delphi Technologies, Inc. Détecteur de gaz avec électrode de référence sélective et son procédé de fabrication
EP1213582A3 (fr) * 2000-12-07 2003-12-17 Denso Corporation Elément capteur de gaz

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6048734A (en) 1995-09-15 2000-04-11 The Regents Of The University Of Michigan Thermal microvalves in a fluid flow method
DE19932749B4 (de) * 1998-07-23 2006-05-04 Robert Bosch Gmbh Schichtsystem und Verfahren zu dessen Herstellung sowie dessen Verwendung
DE19951015C1 (de) 1999-10-22 2001-01-25 Bosch Gmbh Robert Verfahren zur Charakterisierung von Metallelektroden keramischer Sensorelemente
DE10020082B4 (de) * 2000-04-22 2012-04-05 Robert Bosch Gmbh Elektrochemischer Meßfühler
DE10033906A1 (de) 2000-07-12 2002-02-28 Bosch Gmbh Robert Platinmetallhaltige Cerametelektroden für die elektrochemische Reduktion von Sauerstoff
US7041256B2 (en) * 2001-01-30 2006-05-09 Industrial Scientific Corporation Poison resistant combustible gas sensors and method for warning of poisoning
US6692700B2 (en) * 2001-02-14 2004-02-17 Handylab, Inc. Heat-reduction methods and systems related to microfluidic devices
US7323140B2 (en) 2001-03-28 2008-01-29 Handylab, Inc. Moving microdroplets in a microfluidic device
US8895311B1 (en) 2001-03-28 2014-11-25 Handylab, Inc. Methods and systems for control of general purpose microfluidic devices
US6852287B2 (en) 2001-09-12 2005-02-08 Handylab, Inc. Microfluidic devices having a reduced number of input and output connections
US7010391B2 (en) 2001-03-28 2006-03-07 Handylab, Inc. Methods and systems for control of microfluidic devices
US7829025B2 (en) 2001-03-28 2010-11-09 Venture Lending & Leasing Iv, Inc. Systems and methods for thermal actuation of microfluidic devices
JP2003107047A (ja) * 2001-10-01 2003-04-09 Denso Corp ガス濃度検出素子
EP1654066B1 (fr) 2003-07-31 2014-11-12 Handylab, Inc. Traitement d'echantillons contenant des particules
US8852862B2 (en) 2004-05-03 2014-10-07 Handylab, Inc. Method for processing polynucleotide-containing samples
CA2565572C (fr) 2004-05-03 2018-03-06 Handylab, Inc. Un dispositif microfluidique et ses methodes pour le traitement d'echantillons contenant des polynucleotides
US20080017510A1 (en) * 2004-05-26 2008-01-24 Nair Balakrishnan G NOx Gas Sensor Method and Device
JP4830525B2 (ja) * 2005-04-14 2011-12-07 株式会社豊田中央研究所 限界電流式ガスセンサ及びその利用
US7611612B2 (en) * 2005-07-14 2009-11-03 Ceramatec, Inc. Multilayer ceramic NOx gas sensor device
DE102005049775A1 (de) * 2005-10-18 2007-04-19 Robert Bosch Gmbh Sensor zur Messung der Konzentration einer Gaskomponente in einem Gasgemisch und Verfahren zur Herstellung einer Elektrode eines solchen Sensors
US8088616B2 (en) 2006-03-24 2012-01-03 Handylab, Inc. Heater unit for microfluidic diagnostic system
ES2692380T3 (es) 2006-03-24 2018-12-03 Handylab, Inc. Método para realizar PCR con un cartucho con varias pistas
US7998708B2 (en) 2006-03-24 2011-08-16 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US10900066B2 (en) 2006-03-24 2021-01-26 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US11806718B2 (en) 2006-03-24 2023-11-07 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
WO2008061165A2 (fr) 2006-11-14 2008-05-22 Handylab, Inc. Cartouche microfluidique et son procédé de fabrication
WO2008060604A2 (fr) 2006-11-14 2008-05-22 Handylab, Inc. Système microfluidique utilisé pour amplifier et détecter des polynucléotides en parallèle
EP2115402A2 (fr) * 2007-02-16 2009-11-11 Ceramatec, Inc. Capteur de no<sb>x</sb>à sélectivité et sensibilité améliorées
US8133671B2 (en) 2007-07-13 2012-03-13 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US9186677B2 (en) 2007-07-13 2015-11-17 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US8105783B2 (en) 2007-07-13 2012-01-31 Handylab, Inc. Microfluidic cartridge
US20090136385A1 (en) 2007-07-13 2009-05-28 Handylab, Inc. Reagent Tube
USD621060S1 (en) 2008-07-14 2010-08-03 Handylab, Inc. Microfluidic cartridge
US8182763B2 (en) 2007-07-13 2012-05-22 Handylab, Inc. Rack for sample tubes and reagent holders
US9618139B2 (en) 2007-07-13 2017-04-11 Handylab, Inc. Integrated heater and magnetic separator
WO2009012185A1 (fr) 2007-07-13 2009-01-22 Handylab, Inc. Matières absorbant les polynucléotides, et procédés d'utilisation de celles-ci
US8287820B2 (en) 2007-07-13 2012-10-16 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
USD618820S1 (en) 2008-07-11 2010-06-29 Handylab, Inc. Reagent holder
USD787087S1 (en) 2008-07-14 2017-05-16 Handylab, Inc. Housing
DE102008042770A1 (de) 2008-10-13 2010-04-15 Robert Bosch Gmbh Material einer Cermet-Schicht für elektrochemische Gassensoren
EP3709025A1 (fr) 2011-04-15 2020-09-16 Becton, Dickinson and Company Balayage de thermocycleur microfluidique en temps réel et procédés de thermocyclage synchronisé et de détection optique de balayage
EP2761305B1 (fr) 2011-09-30 2017-08-16 Becton, Dickinson and Company Bandelette réactive unitisée
USD692162S1 (en) 2011-09-30 2013-10-22 Becton, Dickinson And Company Single piece reagent holder
CN104040238B (zh) 2011-11-04 2017-06-27 汉迪拉布公司 多核苷酸样品制备装置
JP5724832B2 (ja) * 2011-11-07 2015-05-27 トヨタ自動車株式会社 酸素濃度センサ
AU2013214849B2 (en) 2012-02-03 2016-09-01 Becton, Dickinson And Company External files for distribution of molecular diagnostic tests and determination of compatibility between tests
US9164080B2 (en) 2012-06-11 2015-10-20 Ohio State Innovation Foundation System and method for sensing NO
DE102014211782A1 (de) 2014-06-18 2015-12-24 Robert Bosch Gmbh Sensorelement zur Erfassung mindestens einer Eigenschaft eines Messgases in einem Messgasraum
JP5883976B2 (ja) * 2014-07-29 2016-03-15 日本碍子株式会社 ガスセンサの検知電極、導電性ペーストの製造方法、および、ガスセンサ
DE102015209267A1 (de) * 2015-05-21 2016-11-24 Robert Bosch Gmbh Bauteil mit einem MECS-Bauelement auf einem Montageträger
JP5992123B1 (ja) * 2015-11-17 2016-09-14 日本碍子株式会社 ガスセンサの検知電極、導電性ペーストの製造方法、ガスセンサ、および、ガスセンサの製造方法
JP5938133B1 (ja) * 2015-11-17 2016-06-22 日本碍子株式会社 ガスセンサの検知電極、ガスセンサ、および、ガスセンサの製造方法
JP6563839B2 (ja) 2016-03-28 2019-08-21 日本碍子株式会社 触媒劣化診断方法および触媒劣化診断システム
JP6563840B2 (ja) 2016-03-28 2019-08-21 日本碍子株式会社 触媒劣化診断方法および触媒劣化診断システム
DE102016217775A1 (de) * 2016-09-16 2018-03-22 Robert Bosch Gmbh Sensorelement zur Erfassung von Partikeln eines Messgases in einem Messgasraum
CN113406147B (zh) * 2021-05-08 2022-11-29 中北大学 一种氢气敏感元件及制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2066478A (en) * 1979-12-26 1981-07-08 Nissan Motor Method of producing solid electrolyte oxygen sensing element of laminated structure
EP0331050A2 (fr) * 1988-03-01 1989-09-06 Unisia Jecs Corporation Appareil pour détecter la concentration d'oxygène
EP0372425A2 (fr) * 1988-12-02 1990-06-13 Ngk Spark Plug Co., Ltd Elément de détection d'oxygène et sa méthode de fabrication
DE4004172A1 (de) * 1989-02-14 1990-08-16 Ngk Spark Plug Co Sauerstoffsensor zur luft-brennstoffgemisch-kontrolle mit einer schutzschicht, die eine sauerstoff einschliessende substanz umfasst, und verfahren zur herstellung des sensors
DE4100106C1 (fr) * 1991-01-04 1992-05-27 Robert Bosch Gmbh, 7000 Stuttgart, De
DE4131503A1 (de) * 1991-09-21 1993-04-01 Bosch Gmbh Robert Abgassensor und verfahren zu dessen herstellung
DE4408504A1 (de) * 1994-03-14 1995-09-21 Bosch Gmbh Robert Sensor zur Bestimmung der Konzentration von Gaskomponenten in Gasgemischen
DE19700700A1 (de) * 1997-01-13 1998-07-16 Bosch Gmbh Robert Sensorelement und Verfahren zu dessen Herstellung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2304464C2 (de) 1973-01-31 1983-03-10 Robert Bosch Gmbh, 7000 Stuttgart Meßfühler für die Überwachung der Funktionsfähigkeit von Katalysatoren in Abgas
US4199425A (en) 1978-11-30 1980-04-22 General Motors Corporation Solid electrolyte exhaust gas sensor with increased NOx sensitivity
US4541905A (en) * 1983-12-13 1985-09-17 The Ohio State University Research Foundation Electrodes for use in electrocatalytic processes
JPH0668480B2 (ja) * 1987-04-24 1994-08-31 日本碍子株式会社 酸素センサにおける電極構造
DE4021929C2 (de) 1990-07-10 1998-04-30 Abb Patent Gmbh Sensor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2066478A (en) * 1979-12-26 1981-07-08 Nissan Motor Method of producing solid electrolyte oxygen sensing element of laminated structure
EP0331050A2 (fr) * 1988-03-01 1989-09-06 Unisia Jecs Corporation Appareil pour détecter la concentration d'oxygène
EP0372425A2 (fr) * 1988-12-02 1990-06-13 Ngk Spark Plug Co., Ltd Elément de détection d'oxygène et sa méthode de fabrication
DE4004172A1 (de) * 1989-02-14 1990-08-16 Ngk Spark Plug Co Sauerstoffsensor zur luft-brennstoffgemisch-kontrolle mit einer schutzschicht, die eine sauerstoff einschliessende substanz umfasst, und verfahren zur herstellung des sensors
DE4100106C1 (fr) * 1991-01-04 1992-05-27 Robert Bosch Gmbh, 7000 Stuttgart, De
DE4131503A1 (de) * 1991-09-21 1993-04-01 Bosch Gmbh Robert Abgassensor und verfahren zu dessen herstellung
DE4408504A1 (de) * 1994-03-14 1995-09-21 Bosch Gmbh Robert Sensor zur Bestimmung der Konzentration von Gaskomponenten in Gasgemischen
DE19700700A1 (de) * 1997-01-13 1998-07-16 Bosch Gmbh Robert Sensorelement und Verfahren zu dessen Herstellung

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1213581A2 (fr) * 2000-11-20 2002-06-12 Delphi Technologies, Inc. Détecteur de gaz avec électrode de référence sélective et son procédé de fabrication
EP1213581A3 (fr) * 2000-11-20 2003-12-03 Delphi Technologies, Inc. Détecteur de gaz avec électrode de référence sélective et son procédé de fabrication
EP1213582A3 (fr) * 2000-12-07 2003-12-17 Denso Corporation Elément capteur de gaz
US6949175B2 (en) 2000-12-07 2005-09-27 Denso Corporation Gas sensing element

Also Published As

Publication number Publication date
JP2002521662A (ja) 2002-07-16
DE59914732D1 (de) 2008-05-29
EP1040346A1 (fr) 2000-10-04
EP1040346B1 (fr) 2008-04-16
US20020023838A1 (en) 2002-02-28
US6395161B1 (en) 2002-05-28
DE19833087A1 (de) 2000-01-27

Similar Documents

Publication Publication Date Title
EP1040346B1 (fr) Detecteur de gaz a electrolyte solide et son procede de fabrication
DE2746381C2 (de) Sauerstoff-Sensor
DE10247144A1 (de) Gasdetektorelement und diese enthaltendes Gasdetektorgerät
DE3813930C2 (fr)
DE3048439C2 (de) Verfahren zur Herstellung eines Festelektrolyt-Sauerstoff-Meßelements mit Schichtstruktur
DE3902484C2 (de) Keramischer elektrischer Heizkörper und dessen Verwendung
DE2913633C2 (de) Elektrochemischer Meßfühler für die Bestimmung des Sauerstoffgehaltes in Gasen, insbesondere in Abgasen von Verbrennungsmotoren sowie Verfahren zur Herstellung desselben
DE3526486C2 (de) Sauerstoffsensor und Verfahren zur Herstellung desselben
DE3907312A1 (de) Keramische widerstandsheizeinrichtung mit untereinander verbundenen waermeentwickelnden leitern und eine derartige heizeinrichtung verwendendes elektrochemisches element oder analysiergeraet
DE3020132A1 (de) Vorrichtung zur abtastung des luft-brennstoff-verhaeltnisses eines luft-brennstoff-gemisches
DE19932749B4 (de) Schichtsystem und Verfahren zu dessen Herstellung sowie dessen Verwendung
DE69814318T2 (de) Festelektrolyt mit innerer Referenzkammer und Elektroden auf Innen- und Aussenflächen
DE68924370T2 (de) Gassensor für die Messung des Luft/Treibstoff-Verhältnisses und Herstellungsverfahren für den Gassensor.
DE19960329C2 (de) Elektrochemischer Meßfühler
DE19963008B4 (de) Sensorelement eines Gassensors zur Bestimmung von Gaskomponenten
DE2738882B2 (de) Sauerstoffmeßfühler und Verfahren zu dessen Herstellung
DE3624217C2 (fr)
DE3702838A1 (de) Sauerstoffsensor und verfahren zu seiner herstellung
DE2703390C3 (de) Meßfühler zur Feststellung des Luft/ Brennstoff-Verhältnisses des einer Brennkraftmaschine zugeführten Ansauggemisches
DE69612531T2 (de) Elektrochemische Vorrichtung
DE3615960A1 (de) Fuehler zur ermittlung eines luft-kraftstoff-verhaeltnisses
WO2001004915A2 (fr) Conducteur chauffant, notamment pour capteur, et procede pour fabriquer ledit conducteur chauffant
DE4420944C2 (de) Keramischer Heizkörper
DE19751128A1 (de) Sensorelement und Verfahren zur Herstellung eines Sensorelements
DE10154638B4 (de) Katalytisch aktive Schicht

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1999938187

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09509270

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1999938187

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999938187

Country of ref document: EP