WO2000001081A1 - Systeme de relais d'amplification optique - Google Patents

Systeme de relais d'amplification optique Download PDF

Info

Publication number
WO2000001081A1
WO2000001081A1 PCT/JP1999/003261 JP9903261W WO0001081A1 WO 2000001081 A1 WO2000001081 A1 WO 2000001081A1 JP 9903261 W JP9903261 W JP 9903261W WO 0001081 A1 WO0001081 A1 WO 0001081A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring
light
optical
signal light
relay station
Prior art date
Application number
PCT/JP1999/003261
Other languages
English (en)
French (fr)
Inventor
Masayuki Shigematsu
Masayuki Nishimura
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to US09/402,063 priority Critical patent/US6259554B1/en
Priority to EP99925374A priority patent/EP1014595A4/en
Priority to CA002301595A priority patent/CA2301595A1/en
Priority to KR1020007001913A priority patent/KR20010023279A/ko
Priority to AU41678/99A priority patent/AU751913B2/en
Publication of WO2000001081A1 publication Critical patent/WO2000001081A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/297Bidirectional amplification
    • H04B10/2972Each direction being amplified separately
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0775Performance monitoring and measurement of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0777Monitoring line amplifier or line repeater equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/298Two-way repeaters, i.e. repeaters amplifying separate upward and downward lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/07Monitoring an optical transmission system using a supervisory signal
    • H04B2210/078Monitoring an optical transmission system using a supervisory signal using a separate wavelength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/08Shut-down or eye-safety

Definitions

  • the present invention relates to an optical amplifying and relaying system for performing optical amplifying and relaying of signal light bidirectionally by a plurality of relay stations connected in multiple stages.
  • a technique is employed in which a plurality of relay stations are connected in multiple stages and an optical amplifier is provided to amplify the signal light transmitted to each relay station. If an error such as a disconnection occurs at any point in the optical transmission line of such an optical amplification repeater system, it is necessary to stop the operation of the optical amplifier and take measures to recover the error. To do this, it is necessary to pinpoint the location where the abnormality has occurred.
  • the former is to stop the operation of the relay station downstream from the disconnection point of the optical transmission line, but cannot detect an abnormality that does not lead to the disconnection.
  • the operation of the optical amplifier of the relay station upstream of the disconnection point of the optical transmission line is stopped.
  • the reflected return light of sufficient intensity may not return to the optical amplifier, and as a result, an abnormality may occur even though the optical transmission line is disconnected. It may not be detected. Disclosure of the invention
  • an object of the present invention is to provide an optical amplification repeater system that can reliably detect an abnormality such as disconnection of an optical transmission line.
  • an optical amplifying repeater system includes an optical amplifying repeater system for transmitting signal light bi-directionally between terminal stations by connecting transmission lines as a pair and connecting in multiple stages via a plurality of repeaters. , A plurality of relay stations, a pair of optical amplifiers for amplifying the transmitted signal light, and a monitoring of the state of each signal light input to each optical amplifier, and a signal input to one optical amplifier. And a monitoring device that stops the operation of the optical amplifier when the light is abnormal and stops the operation of the other optical amplifier after a predetermined time has elapsed.
  • each relay station by monitoring the state of the signal light, each relay station reliably detects an abnormality, automatically stops the operation of the optical amplifier, and then transmits the signal to the transmission line in the opposite direction.
  • the operation of the optical amplifier is also stopped, and the amplification of the signal light is stopped in the transmission path in both directions. Since the signal light intensity transmitted to the downstream side decreases in each transmission path, the operation of the optical amplifier is similarly stopped at the downstream relay station.
  • the abnormality occurrence information can be reliably transmitted to the upstream side of the abnormality occurrence point.
  • the error occurrence information is transmitted to the terminal station without fail, so that transmission of signal light can be stopped.
  • An optical repeater system comprises a plurality of relay stations, a pair of optical amplifiers for amplifying signal light, and a monitoring device, which are transmitted from a relay station or a terminal station adjacent on the upstream side.
  • a pair of supervisory light receivers that receive the prescribed supervisory light received, and a pair of supervisory light receivers that add prescribed information to the supervisory light received by the supervisory light receiver and transmit them to relay stations or terminal stations adjacent on the downstream side.
  • a monitoring device for adding information indicating an abnormal state to the monitoring light to be transmitted.
  • the relay station monitors both the signal light and the monitor light transmitted on each transmission line. If an error occurs in the transmission line, transmission failure will occur in both the signal light and the monitoring light. Other causes, such as an error in the optical amplifier of the upstream relay station or an error in the monitoring optical transmitter, cause an error in only the signal light or the monitoring light. Can be determined. If the transmission path is abnormal, the information is added to the monitoring light and transmitted to the downstream relay station. The downstream relay station adds the information of the transmission line on the opposite side to the monitoring light sent from the upstream relay station and outputs it. Each terminal station can obtain information on transmission path abnormalities.
  • the monitoring device stops the operation of the optical amplifier, and after a predetermined time, stops the operation of the other optical amplifier.
  • the monitoring light output to the transmission line on the opposite side of the transmission line where the abnormality has occurred is set to a state where the monitoring device of the downstream relay station determines that the abnormality is abnormal.
  • signal light amplification in both transmission paths can be automatically stopped by detecting a transmission path abnormality. For example, even if the optical connector of the transmission line on the unbroken side is removed, useless emission of high-output signal light from the attaching / detaching portion can be prevented, and work safety is improved.
  • This monitoring device sets the monitoring light to a state where the monitoring device of the downstream relay station is determined to be abnormal, and after a lapse of a predetermined time, returns the monitoring light to a state where the monitoring device of the downstream relay station is determined to be normal. Preferably. In this way, information transmission by the monitoring light is established even after the signal light is cut off.
  • This monitoring device stops the operation of the optical amplifier connected to the transmission line when both the signal light and the monitoring light transmitted on one transmission line are abnormal, and after a predetermined time elapses, the other. Stop the operation of the optical amplifier.
  • the monitoring device of the relay station or terminal station that has received the monitoring light signal to which this information has been added stops the operation of the optical amplifier connected to the upstream side of the abnormality occurrence point.
  • the monitoring device restores the operation of the optical amplifier connected to the transmission path paired with the transmission path. Further, it is preferable that the monitoring light output to the transmission line forming the pair is added with information for restoring the operation of the optical amplifier on the upstream side of the abnormality occurrence point and transmitted. With this configuration, when the optical transmission path is restored, the optical transmission of both transmission paths can be automatically restored without performing any special operation.
  • FIG. 1 is a configuration diagram of a preferred embodiment of the optical amplification repeater system according to the present invention.
  • FIG. 2 is a block diagram of the inside of the monitoring device of each relay station in the device of FIG.
  • FIGS. 3A to 3E show this embodiment when only one direction of the optical transmission line is disconnected.
  • FIG. 5 is a diagram for sequentially explaining the operation of the optical amplification relay system according to the embodiment.
  • 4A to 4C are diagrams for sequentially explaining another operation of the optical amplification repeater system according to the present embodiment when only one-way optical transmission line is disconnected.
  • 5A to 5D are diagrams for sequentially explaining the operation of the optical amplifying repeater system according to the present embodiment when both of the bidirectional optical transmission lines are disconnected.
  • 6A to 6C are diagrams for sequentially explaining the restoration procedure of the optical amplification relay system according to the present embodiment after the restoration of the optical transmission line.
  • FIGS. 7A to 7C are diagrams for sequentially explaining another operation of the optical amplification repeater system according to the present embodiment when only one-way optical transmission line is disconnected.
  • FIG. 8C is a diagram for sequentially explaining the automatic restoration procedure of the signal light transmission after the restoration of the transmission path.
  • FIGS. 9A and 9B are diagrams for sequentially explaining another operation of the optical amplification repeater system according to the present embodiment when the bidirectional optical transmission path is disconnected.
  • 0C is a diagram for sequentially explaining an automatic restoration procedure of the signal light transmission after the restoration of the transmission path.
  • FIG. 1 is a configuration diagram of an optical amplification repeater system according to the present invention.
  • This optical amplification repeater system transmits signal light bi-directionally between the terminal stations 1 and 2, and the relay station 1 is placed on the optical transmission path between the terminal stations 1 and 2. 0, 20 and 30 are provided.
  • the optical transmission line is composed of, for example, an optical fiber, and has a transmission line L1 in a direction from the terminal station 1 to the terminal station 2 (hereinafter, referred to as “downward direction”) and a reverse direction (hereinafter, “upward direction”). ) Transmission line L2.
  • Downward direction a direction from the terminal station 1 to the terminal station 2
  • upward direction hereinafter, “upward direction”.
  • Transmission line L2 an optical amplification relay system that performs wavelength multiplexing optical transmission will be described.
  • the present embodiment is also applicable to an optical amplification relay system that performs single-wave transmission.
  • Terminal station 1 a transmitter 1 1 1, n pieces of the wavelength converter transmitters (WXM) 1 12i ⁇ l 1 2 n , multiplexing section 1 13, the optical amplifier 1 14, the optical amplifier 121, a demultiplexer 122, n It is composed of 12 REPs 12 n , a receiver 124 and a supervisory control unit 130.
  • WXM wavelength converter transmitters
  • the transmitter 111 outputs n electrical signals to be transmitted to the terminal 2 on the other side.
  • W XM1 12 1 to 1 12 n generate signal lights of different wavelengths 1 to n corresponding to the n electric signals.
  • Multiplexing section 1 13 combines the n-number of signal light output from WXM 1 1 2i ⁇ 1 1 2 n .
  • the optical amplifier 114 optically amplifies the multi-wavelength signal light output from the multiplexing unit 113 and sends the amplified signal light to the terminal station 2.
  • the optical amplifier 121 optically amplifies the multi-wavelength signal light arriving from the terminal station 2.
  • the splitter 122 splits the multi-wavelength signal light output from the optical amplifier 121 into a signal light having a wavelength ⁇ ⁇ to ⁇ .
  • REP 123i ⁇ l 23 n is to receive it its signal light is converted into a predetermined electric signal is sent to the receiver 124.
  • the supervisory control device 130 receives the supervisory optical signal output from the supervisory control device 13 of the relay station 10, and transmits the supervisory optical signal to the supervisory control device 13 of the relay station 10.
  • the terminal 2 has the same configuration as the terminal 1, except that the transmitter 2 1 1, n WXMs 2 12 to 2 12 n , the multiplexer 2 13, the optical amplifier 2 14, the optical amplifier 22 1, and the demultiplexer It comprises a receiver 222, n REP 22 SiS 23 n , a receiver 224 and a supervisory controller 230.
  • the relay station 10 includes a pair of optical amplifiers 11 and 12 and a supervisory control device 13.
  • Each of the relay stations 20 and 30 includes a pair of optical amplifiers 21 and 22 or 31 and 32 and a supervisory control device 23 and 33, respectively.
  • Each of the optical amplifiers 11, 21, and 31 is substantially connected in series via a transmission line L1.
  • Each of the optical amplifiers 32, 22 and 12 is substantially connected in series via a transmission line L2.
  • the intensity of the signal light transmitted from terminal station 1 decreases as it is transmitted through transmission line 1. However, it is amplified by the optical amplifiers 11, 21, and 31 of the relay stations 10, 20, 30 on the way, and reaches the terminal station 2 with sufficient strength. Similarly, the signal light transmitted from the terminal station 2 is also amplified by the optical amplifiers 32, 22 and 12 and reaches the terminal station 1 with a sufficient intensity.
  • FIG. 2 is a block diagram showing the internal configuration of relay station 10 in more detail, and relay stations 20 and 30 have the same configuration.
  • each of the optical amplifiers 11 and 12 is provided with demultiplexing elements 1 la and 12 a for demultiplexing the signal light and the monitoring light, and the output side is configured to combine the signal light and the monitoring light.
  • Wave-combining elements 11b and 12b are provided.
  • the monitoring control device 13 includes a monitoring control unit 13a, a pair of monitoring light receivers 13b, 13c, and a pair of monitoring light transmitters 13d, 13e. .
  • the supervisory control unit 13a adds the information about the relay station 10 and the transmission path to the supervisory optical signals received by the supervisory optical receivers 13b and 13c, and adds the supervisory optical transmitters 13d and 13 Send from e.
  • the supervisory control unit 13 of the terminal station 1 monitors the supervisory control unit 13 of the repeater station 10, the supervisory control unit 23 of the repeater station 20, and the supervision of the repeater station 30.
  • the monitoring data is transmitted to the monitoring control device 230 of the terminal station 2 via the transmission line L1 via the control device 33.
  • the transmission line L2 allows the monitoring and control device 23 of the terminal station 2 to the monitoring and control device 33 of the relay station 30, the monitoring and control device 23 of the relay station 20, and the monitoring and control device 1 of the relay station 10
  • the monitoring data is transmitted to the monitoring control device 130 of the terminal station 1 via 3.
  • monitoring data is finally collected at the terminal stations at both ends.
  • a wavelength different from the wavelength of the signal light is used.
  • the optical amplifiers 11 and 12 have a function of detecting the presence or absence of abnormality in the arriving signal light, and transmit the detection result to the monitoring control unit 13a.
  • the monitoring control unit 13 a also has a function of controlling the operation of each component in the relay station 10.
  • the monitoring control device 13 detects an abnormality in the monitoring light received by the monitoring light receivers 13b and 13c, and detects a result of the signal light abnormality detection by the optical amplifiers 11 and 12. Receiving And controls the optical amplification operation of the optical amplifiers 11 and 12 and the transmission of monitoring light.
  • Table 1 shows the relationship between the detection result and the control operation.
  • the optical amplifiers 11 and 12 perform only the detection of abnormality of the signal light, and the control of the amplification operation can be performed by the monitoring control unit 13a.
  • the signal light abnormality detection may be performed by an element different from the optical amplifiers 11 and 12.
  • the normal / abnormal judgment is made by comparing the intensities of the signal light and the monitoring light with a predetermined threshold value.
  • the optical amplifier 11 holds the amplification operation and monitors.
  • the control device 13 holds the monitoring light transmission. At the same time, the amplification operation of the optical amplifiers 12 is maintained.
  • condition 2 column if the signal light arriving from the terminal 1 via the optical transmission line L1 is normal and the monitoring light is abnormal, the monitoring control device of the terminal 1 on the upstream side A failure of 130 is expected. There is no problem in transmitting the signal light from the terminal station 1 to the relay station 10.
  • the optical amplifier 11 holds the amplification operation, and the supervisory control device 13 The transmission is maintained, and the amplification operation of the optical amplifier 12 is also maintained. In this case, the normal condition of condition 1 is automatically restored by performing the work of restoring the faulty part.
  • the WXM of the terminal 1 on the upstream side Failures of 1 12 i to l 12 n and optical amplifier 1 14 are expected. Since the monitoring light is transmitted normally, it can be seen that the optical transmission path itself from the terminal station 1 to the relay station 10 is not disconnected. Therefore, the downstream optical amplifier 11 stops the amplification operation by itself, and the monitoring control device 13 holds the amplification operation of the other optical amplifier 12 and also holds the monitoring light transmission. In this case, when the cause is resolved, the condition 1 is automatically returned to the normal state.
  • the optical transmission from the terminal station 1 to the relay station 10 is performed.
  • Road L 1 is expected to be disconnected.
  • the optical amplifier 11 in the downstream direction stops the amplification operation by itself, and notifies the monitoring control device 13 to that effect.
  • the monitoring control device 13 stops the amplification operation of the other optical amplifier 12 and also stops the transmission of the monitoring light to the terminal station 1.
  • Condition A the signal light arriving from the terminal 1 via the optical transmission line L1 is positive. Under normal circumstances, both the optical amplifiers 11 and 12 maintain the amplification operation.
  • condition B column when the signal light arriving from the terminal station 1 via the optical transmission line L1 is abnormal, the optical transmission line L1 from the terminal station 1 to the relay station 10 is disconnected. Expected to be. Therefore, the downstream optical amplifier 11 stops the amplification operation by itself, and notifies the monitoring control device 13 of the fact. Upon receiving the notification, the monitoring control device 13 stops the amplification operation of the optical amplifier 12 in the upstream direction.
  • the amplification operation of the optical amplifiers 11 and 12 can be stopped by, for example, stopping the pump light.
  • the transmission of the upstream monitoring light to the terminal station 1 can be stopped by stopping the light emission of the monitoring light transmitter 13e that emits the monitoring light.
  • the monitoring light may be transmitted so that the monitoring control device 130 of the terminal station 1 can be detected as abnormal.
  • the relay station 10 performs the same monitoring control on the uplink transmission line L2. The same monitoring control is performed in the other relay stations 20 and 30 as well.
  • FIGS. 3A to 3E the operating state of the optical amplifier is shown in the triangle representing each optical amplifier.
  • the state of the signal light is shown on the input side and output side of each optical amplifier, and the state of the monitoring light is shown in the lower stage.
  • the transmission path L 1 of the relay station 20 satisfies the condition 4 in Table 1 Applicable.
  • the optical amplifier 21 of the relay station 20 detects that the input signal light is abnormal, stops the amplification operation by itself, and notifies the monitoring control device 23 of that.
  • the signal light does not reach the relay station 30 from the relay station 20, but the monitoring light arrives normally. I do.
  • transmission line L1 corresponds to condition 3 in Table 1. Therefore, the optical amplifier 31 of the relay station 30 detects that the input signal light is abnormal, stops the amplification operation by itself, and notifies the monitoring control device 33 of the fact.
  • the supervisory control device 23 of the relay station 20 detects that both the signal light and the monitor light to be reached from the relay station 10 are abnormal (the condition 4 in Table 1 is satisfied). Then, upon detecting or receiving the notification, the amplification operation of the optical amplifier 22 is stopped, and the transmission of the monitoring light to the relay station 10 is also stopped. As a result, the signal light and the monitoring light do not reach the relay station 10 from the relay station 20, and the relay station 10 satisfies the condition 4 in Table 1. Therefore, the optical amplifier 12 of the relay station 10 detects that the input signal light is abnormal, stops the amplification operation by itself, and notifies the monitoring control device 13 of the fact.
  • the monitoring control device 13 of the relay station 10 detects that both the signal light and the monitoring light to be reached from the relay station 20 are abnormal (the condition 4 in Table 1 is satisfied). Is detected or notified, the amplification operation of the optical amplifier 11 is stopped, and the monitoring light transmission to the relay station 20 is also stopped. In this way, neither the signal light nor the monitoring light is transmitted through the upstream and downstream optical transmission paths between the relay station 10 and the relay station 20.
  • the monitoring controller 23 restores the monitoring light transmission to the transmission line L2.
  • the monitoring light transmission function via the transmission line L2 is established again. In this state, no signal light is transmitted on any of the transmission lines, so even if an operator removes the optical connector during recovery work, a high-output optical beam may be emitted from the optical connector. And work safety is improved.
  • the monitoring light is normally transmitted from the relay station 10 to the relay station 20 via the downlink transmission line L1.
  • the monitoring light transmission function via the transmission line L1 is also restored.
  • the optical amplifier By restarting 11, the transmission path of the optical amplification repeater system can be restored.
  • the signal light does not reach the relay station 20 from the relay station 10, and the relay station 20 satisfies the condition B of Table 2. Therefore, the optical amplifier 21 of the relay station 20 detects that the input signal light is abnormal, stops the amplification operation by itself, and notifies the monitoring control device 23 of the fact. As a result, the signal light does not reach the relay station 30 from the relay station 20. Therefore, the relay station 30 satisfies the condition B in Table 2. Accordingly, the optical amplifier 31 of the relay station 30 detects that the input signal light is abnormal, stops the amplification operation by itself, and notifies the monitoring control device 33 of the fact.
  • the supervisory control device 23 of the relay station 20 detects that the signal light to be reached from the relay station 10 is abnormal (corresponding to the condition B in Table 2). Alternatively, upon receiving the notification, the amplification operation of the optical amplifier 22 is stopped. The signal light does not reach the relay station 10 from the relay station 20, and the relay station 10 satisfies the condition B in Table 2. The optical amplifier 12 of the relay station 10 detects that the input signal light is abnormal, stops the amplification operation by itself, and notifies the monitoring control device 13 of the fact.
  • the supervisory control device 13 of the relay station 10 detects that the signal light to be reached from the relay station 20 is abnormal (corresponding to the condition B in Table 2). Alternatively, upon receiving the notification, the amplification operation of the optical amplifier 11 is stopped. In this way, signal light is not transmitted through both optical transmission lines L1 and L2 between the relay station 10 and the relay station 20. Therefore, the safety of workers during restoration work of the optical transmission line is ensured. After restoration from the failure, it is necessary to confirm restoration of transmission line L1 and manually restore the optical repeater amplification system.
  • both the signal light and the monitoring light do not reach the relay station 20 from the relay station 10, and the relay station 20 satisfies the condition 4 in Table 1. Therefore, the optical amplifier 21 of the relay station 2 ⁇ detects that the input signal light is abnormal, stops the amplification operation by itself, and notifies the monitoring control device 23 of the fact. As a result, the signal light does not reach the relay station 30 from the relay station 20, but the monitoring light reaches normally.
  • Relay station 30 corresponds to condition 3 in Table 1. Therefore, the optical amplifier 31 of the relay station 30 detects that the input signal light is abnormal, stops the amplification operation by itself, and notifies the monitoring control device 33 of that.
  • the optical amplifier 12 of the relay station 10 detects that the input signal light is abnormal, stops the amplification operation by itself, and notifies the monitoring control device 13 of the fact.
  • the monitoring controller 23 of the relay station 20 detects that both the signal light and the monitoring light to be reached from the relay station 10 are abnormal (the condition 4 in Table 1 is satisfied). ), The amplification operation of the optical amplifier 22 is stopped, and the monitoring light transmission to the relay station 10 is also stopped.
  • the monitoring control device 13 of the relay station 10 detects or notifies that both the signal light and the monitoring light to be reached from the relay station 20 are abnormal (corresponding to the condition 4 in Table 1). Then, the amplification operation of the optical amplifier 11 is stopped, and the transmission of the monitoring light in the down direction to the relay station 20 is also stopped. In this way, both optical transmission lines L 1 and L 2 between the relay station 10 and the relay station 20 are in a state in which neither the signal light nor the monitoring light is transmitted. The light transmission state is the same as in Fig. 3C.
  • the monitoring controller 23 restores the transmission of the monitoring light to the upstream transmission line L2.
  • the monitoring control device 13 restores the transmission of the monitoring light to the downstream transmission line L1. In this state, no signal light is transmitted on any of the transmission lines. Even when the connector is removed, a high-power light beam is not emitted from the connector, and work safety is improved.
  • the monitoring light transmission between the relay station 10 and the relay station 20 via the uplink and downlink transmission paths L 1 and L 2 is performed normally,
  • the monitoring light transmission function in both directions is immediately restored.
  • This state is the same as the state shown in FIG. 3E.
  • the transmission path of the optical amplification repeater system is restored by restarting the optical amplifiers 11 and 22 according to the command from the terminal 1 or 2. be able to.
  • Figs. 6A to 6C the recovery procedure when recovery work is performed from the state of Fig. 3C or Fig. 5B without normal recovery of the monitoring light before recovery work will be described with reference to Figs. 6A to 6C. I do.
  • the restoration procedure is common when only one-way optical transmission line is disconnected and when both bidirectional optical transmission lines are disconnected.
  • the restoration of the optical amplification repeater system includes the amplification operation of the optical amplifier 11 of the relay station 10 and the forced transmission of the monitoring light of the monitoring controller 13, the amplification operation of the optical amplifier 22 of the relay station 20, and The forced transmission of the monitoring light of the monitoring control device 23 can be performed sequentially.
  • the amplification operation of the optical amplifier 11 of the relay station 10 and the monitoring light of the monitoring control device 13 are forcibly transmitted.
  • the signal light normally reaches the relay station 20 from the relay station 10, and the optical amplifier 21 of the relay station 20 automatically restarts the amplification operation.
  • the optical amplifier 31 of the relay station 30 automatically restarts the amplification operation.
  • the amplification operation of the optical amplifier 22 of the relay station 20 and the monitoring light of the monitoring control device 23 are forcibly transmitted.
  • the signal light reaches the relay station 10 normally from the relay station 20, and the optical amplifier 12 of the relay station 10 automatically restarts the amplification operation. I do.
  • the optical amplification repeater system is restored.
  • each of the two optical amplifiers When monitoring light is not transmitted / received, input to each of the two optical amplifiers The two optical amplifiers are controlled based on the detection result. That is, one optical amplifier that detects an abnormality of the input signal light stops the amplification operation by itself, and stops the other optical amplifier directly or via the monitoring control device.
  • the embodiment has been described in which the amplification operation is automatically stopped when an abnormality is detected in the transmission path.
  • the detection result may be added to the monitoring light as a signal and transmitted to the terminal stations 1 and 2.
  • the use of the signal added to the monitoring light facilitates automatic recovery operation.
  • the automatic recovery operation will be described below for the case where one of the transmission lines is disconnected and the case where both are disconnected.
  • a case where one of the transmission lines is disconnected here, a case where the downstream transmission line is disconnected
  • FIGS. 7A to 7C and FIGS. 8A to 8C it is assumed that only the downstream optical transmission line L1 from the relay station 10 to the relay station 20 is disconnected at the point marked X.
  • the optical amplifier 21 of the relay station 20 detects that the input signal light is abnormal, stops the amplification operation by itself, and notifies the monitoring control device 23 of the fact.
  • the signal light does not reach the relay station 30 from the relay station 20, but the monitor light reaches normally.
  • the optical amplifier 31 of the relay station 30 detects that the input signal light is abnormal, stops the amplification operation by itself, and notifies the monitoring control device 33 of that.
  • the monitoring control device 23 stops the optical amplification operation of the optical amplifier 22 and determines that the transmission line input to the optical amplifier 21 is abnormal, and determines the location where the abnormality has occurred.
  • the monitoring light to which the information is added is transmitted to the monitoring control device 13 of the relay station 10 via the transmission line L2.
  • the optical amplifier 12 also stops its amplification operation because the input signal light stops.
  • a monitoring control unit that receives a monitoring light signal to which information indicating an abnormality occurrence location is added.
  • the device 13 stops the amplification operation of the optical amplifier 11 as shown in FIG. 7C. As a result, transmission of the optical signal to the broken portion is stopped.
  • the monitoring optical transmission functions of both transmission lines are automatically recovered in advance.
  • the monitoring control device 23 of the relay station 20 determines that the transmission line has been restored, and provides information indicating this abnormal state. Of the monitoring light is stopped (Fig. 8A).
  • the supervisory control device 23 receives from the supervisory control device 13 that the transmission line L2 is normal, the monitoring operation of the optical amplifier 22 is restarted as shown in FIG. 8B. As a result, the transmission function of the transmission line L2 is restored.
  • the supervisory control device 13 of the relay station 10 determines that the transmission path has been restored because no abnormality information has been added to the supervisory optical signal sent from the supervisory control device 23, and FIG.
  • the amplification operation of the optical amplifier 12 is restarted as shown. As a result, the signal light transmission of the transmission line L1 is restored.
  • the supervisory control devices 13 and 23 of the relay stations 10 and 20 are connected to the optical amplifiers 11 and 21 on the opposite side based on the signals from the optical amplifiers 12 and 21.
  • the optical amplification operation of (2) and (2) is stopped, and a signal indicating a transmission path abnormality is added to the monitoring light and transmitted.
  • the monitoring light is not transmitted between the relay station 10 and the relay station 20 due to an abnormal optical transmission path.
  • the monitoring light transmission function of the transmission line L2 automatically recovers as shown in FIG. 1OA.
  • the monitoring light indicating that the line L2 is restored is normally transmitted from the monitoring control device 13 to the monitoring control device 23.
  • the monitoring control device 23 restarts the amplification operation of the optical amplifier 22.
  • the downstream optical amplifier 12 also restarts the amplification operation, and the signal light transmission function of the transmission line L2 is restored.
  • the monitoring control device 23 transmits monitoring light indicating that the transmission line L1 has been restored, together with the restart of the amplification operation of the optical amplifier 22. This monitoring light is sent to the monitoring control device 13 via the transmission line L2. Upon receiving this, the monitoring control device 13 restarts the amplification operation of the optical amplifier 11. As a result, the downstream optical amplifiers 21 and 31 also resume the amplification operation, and the signal light transmission function of the transmission line L1 is restored. In this way, it is possible to automatically restore the signal light transmission function after the restoration of the transmission path.
  • This invention is suitably applicable to the optical amplification repeater system in an optical communication system.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Description

明糸田
光増幅中継システム 技術分野
本発明は、 多段接続された複数の中継局により双方向に信号光の光増幅中継を 行う光増幅中継システムに関するものである。 背景技術
光通信システムで長距離伝送を行うには、 複数の中継局を多段接続して、 各中 継局に伝送される信号光を増幅する光増幅器を設ける手法が採られている。 この ような光増幅中継システムの光伝送路の何れかの地点で断線等の異常が生じた場 合は、 光増幅器の動作を停止し、 異常を回復する処置を行う必要がある。 そのた めには、 異常が生じた箇所を正確に特定する必要がある。
光増幅中継システムにおける異常検知の技術としては、 特開平 5— 1 3 0 0 4 3号公報、 特開平 4— 3 2 4 3 3 5号公報に開示された技術が知られている。 前者の光増幅中継システムでは、 光増幅器に信号光が到達したか否かを検出す ることで光伝送路等の異常を検知し、 もし信号光が到達していなければ光増幅器 の動作を停止する。 また、 後者の光増幅中継システムでは、 光増幅器から出力さ れた信号光の反射戻り光を監視し、 もし反射戻り光が大きければ光伝送路が異常 であると判断して光増幅器の動作を停止する。
前者は、 光伝送路の断線地点より下流側の中継局の動作を停止させるものであ るが、 断線に至らない程度の異常を検出することができない。
また、 後者の光増幅中継システムでは、 光伝送路の断線地点より上流側の中継 局の光増幅器の動作を停止させるものである。 光増幅器から断線位置までの距離 が長い場合には、充分な強度の反射戻り光が光増幅器に戻って来ないことがあり、 この結果、光伝送路が断線しているにも拘わらず異常を検出できないことがある。 発明の開示
これらの問題点に鑑みて、 本発明は、 光伝送路の断線等の異常を確実に検出で きる光増幅中継システムを提供することを目的とする。
上記課題を解決するため、 本発明の光増幅中継システムは、 伝送路を対にして 複数の中継器を介して多段接続することで端局間で双方向に信号光を伝送する光 増幅中継システムにおいて、 これら複数の中継局それそれに、 伝送される信号光 を増幅する一対の光増幅器と、 各光増幅器に入力されるそれそれの信号光状態を 監視し、 一方の光増幅器に入力される信号光が異常な場合は、 当該光増幅器の動 作を停止させ、 所定の時間経過後に他方の光増幅器の動作を停止させる監視装置 と、 を備えていることを特徴とする。
この光増幅中継システムでは、 信号光の状態を監視することで、 個々の中継局 において、 確実に異常を検出し、 自動的にその光増幅器の動作を停止させた後、 反対方向の伝送路の光増幅器の動作も停止させ、 両方向の伝送路で信号光の増幅 を停止させる。それそれの伝送路で下流側へ送られる信号光強度が低下するので、 下流側中継局でも同様に光増幅器の動作を停止していく。 これにより、 異常発生 地点の上流側にも確実に異常発生情報を伝えることができる。 最終的には、 端局 まで異常発生情報が確実に伝えられるので、 信号光の伝送を停止することが可能 である。
本発明に係る光中継システムは、 これらの複数の中継局それそれに、 信号光を 増幅する一対の光増幅器と、 監視装置であって、 上流側に隣接する中継局あるい は端局から送信されてきた所定の監視光を受信する一対の監視光受信機と、 下流 側に隣接する中継局あるいは端局に対して監視光受信機で受信した監視光に所定 の情報を付加して送信する一対の監視光送信機とを有し、 伝送路のそれぞれで伝 送されてきた信号光及び監視光の状態を監視し、 少なくとも一方の伝送路で伝送 されてきた信号光及び監視光がともに異常な場合には、 両方の伝送路の下流側に 送信する監視光に異常状態を表す情報を付加する監視装置と、 を備えていること を特徴とする。
この光中継増幅システムにおいては、 中継局において各伝送路で伝送される信 号光と監視光の両方を監視する。 伝送路に異常が発生した場合は、 信号光、 監視 光ともに伝送不良となる。 他の原因、 例えば上流側の中継局の光増幅器の異常や 監視光送信機の異常では、信号光あるいは監視光一方のみに異常が発生するので、 伝送路の異常のみをこれらと区別して的確に判定できる。 伝送路異常の場合は、 その情報を監視光に付加して下流の中継局に伝送する。 下流の中継局では、 上流 の中継局から送られてきた監視光に反対側の伝送路ラインの情報を付加して出力 する。 それぞれの端局では、 伝送路異常の情報を得ることができる。
この監視装置は、 一方の光増幅器に入力される信号光及び監視光とも異常の場 合は、 当該光増幅器の動作を停止させ、 所定の時間経過後に他方の光増幅器の動 作を停止させ、 異常が発生した伝送路と反対側の伝送路へ出力される監視光を、 下流側中継局の監視装置が異常と判定する状態に設定する。
このように構成すると、 伝送路の異常検出により自動的に両方の伝送路におけ る信号光増幅を停止することができる。 例えば、 万一、 断線していない側の伝送 路の光コネクタを取り外したような場合でも、 脱着部からの高出力信号光の無用 な出射を防ぐことができ、 作業の安全性が高まる。
この監視装置は、 監視光を下流側中継局の監視装置が異常と判定する状態に設 定した後、 所定時間経過後にこの監視光を下流側中継局の監視装置が正常と判定 する状態に復帰させることが好ましい。 このようにすると、 信号光遮断後も監視 光による情報伝送は確立される。
この監視装置は、 一方の伝送路で伝送されてきた信号光及び監視光がともに異 常な場合は、 当該伝送路に接続された光増幅器の動作を停止させ、 所定の時間経 過後に他方の光増幅器の動作を停止させる。 異常の発生した伝送路とは反対側の 伝送路へ出力される監視光に異常な信号光が入力される光増幅器を特定しうる情 報を付加して送信する。 この情報が付加された監視光信号を受信した中継局ある いは端局の監視装置は、 異常発生地点の上流側に接続されている光増幅器の動作 を停止させる。
このように構成した場合も、 光伝送路の異常を確実に検出して、 両方向の光伝 送を停止させることができる。 万一、 異常が発生していない側の伝送路の光コネ クタを取り外したような場合でも、 脱着部からの高出力信号光の無用な出射を防 ぐことができ、 作業の安全性が高まる。
さらに、 監視装置は、 異常な信号光が伝送されている伝送路の監視光が正常に 復旧した場合は、 当該伝送路と対になる伝送路に接続された光増幅器の動作を復 旧させる。 さらに、 この対になる伝送路へ出力される監視光に異常発生地点の上 流側の光増幅器の動作を復旧させる情報を付加して伝送することが好ましい。 このように構成すると、光伝送路が復旧した場合、特別な操作を行うことなく、 自動的に両方の伝送路の光伝送を復旧させることができる。
本発明は以下の詳細な説明および添付図面によりさらに十分に理解可能となる。 これらは単に例示のために示されるものであって、 本発明を限定するものと考え るべきではない。
本発明のさらなる応用範囲は、 以下の詳細な発明から明らかになるだろう。 し かしながら、 詳細な説明および特定の事例は本発明の好適な実施形態を示すもの ではあるが、 例示のためにのみ示されているものであって、 本発明の思想および 範囲における様々な変形および改良はこの詳細な説明から当業者には自明である ことは明らかである。 図面の簡単な説明
図 1は、 本発明に係る光増幅中継システムの好適な実施形態の構成図である。 図 2は、 図 1の装置における各中継局の監視装置内部のブロック図である。 図 3 A〜図 3 Eは、 一方向の光伝送路のみが断となった場合における本実施形 態に係る光増幅中継システムの動作を順に説明する図である。
図 4 A〜図 4 Cは、 一方向の光伝送路のみが断となった場合における本実施形 態に係る光増幅中継システムの別の動作を順に説明する図である。
図 5 A〜図 5 Dは、 双方向の光伝送路が共に断となった場合における本実施形 態に係る光増幅中継システムの動作を順に説明する図である。
図 6 A〜図 6 Cは、 光伝送路が復旧した後における本実施形態に係る光増幅中 継システムの復旧手順を順に説明する図である。
図 7 A〜図 7 Cは、 一方向の光伝送路のみが断となった場合における本実施形 態に係る光増幅中継システムの別の動作を順に説明する図であり、 図 8 A〜図 8 Cは、 その伝送路復旧後の信号光伝送の自動復旧手順を順に説明する図である。 図 9 A、 図 9 Bは、 双方向の光伝送路が断となった場合における本実施形態に 係る光増幅中継システムの別の動作を順に説明する図であり、 図 1 0八〜図1 0 Cは、 その伝送路復旧後の信号光伝送の自動復旧手順を順に説明する図である。 発明を実施するための最良の形態
以下、 添付図面を参照して本発明の好適な実施の形態について詳細に説明す る。 説明の理解を容易にするため、 各図面において同一の構成要素に対しては可 能な限り同一の参照番号を附し、 重複する説明は省略する。
図 1は、 本発明に係る光増幅中継システムの構成図である。 本光増幅中継シス テムは、 端局 1と端局 2との間で双方向に信号光の伝送を行うものであり、 端局 1と端局 2との間の光伝送路上に中継局 1 0、 2 0および 3 0が設けられている。 光伝送路は、 例えば光ファイバで構成され、 端局 1から端局 2へ向かう方向 (以 下 「下り方向」 という。) の伝送路 L 1と、 その逆の方向 (以下 「上り方向」 と いう。) の伝送路 L 2からなる。 以下、 波長多重光伝送を行う光増幅中継システ ムについて説明するが、 本実施形態は、 単波伝送を行う場合の光増幅中継システ ムに対しても適用可能である。 端局 1は、 送信器 1 1 1、 n個の波長変換送信器 (WXM) 1 12i〜l 1 2n、 合波部 1 13、 光増幅器 1 14、 光増幅器 121、 分波器 122、 n個のリビー 夕 (REP) 12 Si l 23n、 受信器 124および監視制御装置 130から構 成されている。
送信器 1 1 1は、 相手方の端局 2に送信すべき n個の電気信号を出力する。 W XM1 121〜1 12nは、 この n個の電気信号に対応して、 異なる波長え 1 〜入 nの信号光を生成する。 合波部 1 13は、 WXM 1 1 2i〜 1 1 2nから出力され た n個の信号光を合成する。 光増幅器 1 14は、 合波部 1 13から出力された多 波長の信号光を光増幅し端局 2へ向けて送出する。
一方、 光増幅器 121は、 端局 2から到達した多波長の信号光を光増幅する。 分波器 122は、 光増幅器 12 1から出力された多波長の信号光を分波して波長 λΐ 〜え ηの信号光にする。 REP 123i〜l 23nは、 それそれの信号光を受 信して、 所定の電気信号に変換し、 受信器 124へと送出する。
監視制御装置 130は、 中継局 10の監視制御装置 13から出力された監視光 信号を受信し、 中継局 10の監視制御装置 13へ監視光信号を送信する。
端局 2は、 端局 1と同様の構成であり、 送信器 2 1 1、 n個の WXM2 12, 〜2 12n、 合波部 2 13、 光増幅器 2 14、 光増幅器 22 1、 分波器 222、 n個の REP 22 Si S 23n、 受信器 224および監視制御装置 230を備え ている。
中継局 10は、 一対の光増幅器 1 1、 12と監視制御装置 1 3を備える。 中継 局 20、 30は、 それぞれ一対の光増幅器 2 1、 22又は 31、 32と監視制御 装置 23又は 33を備える。
光増幅器 1 1、 21および 31それぞれは、 伝送路 L 1を介して実質的に直列 に接続されている。 光増幅器 32、 22および 12それぞれは、 伝送路 L 2を介 して実質的に直列接続されている。
端局 1から送出された信号光は、 伝送路 1を伝送されていく際に強度が低下 するものの、 途中の中継局 1 0、 2 0、 3 0の光増幅器 1 1、 2 1および 3 1に より増幅されて、 端局 2には充分な強度で到達する。 端局 2から送出された信号 光も同様に光増幅器 3 2 , 2 2および 1 2により増幅されて、 端局 1には充分な 強度で到達する。
図 2は、 中継局 1 0の内部構成をより詳細に示すブロック図であり、 中継局 2 0、 3 0も同じ構成をしている。
各光増幅器 1 1、 1 2の入力側には、 信号光と監視光とを分波する分波素子 1 l a、 1 2 aが設けられ、 出力側には、 信号光と監視光とを合波する合波素子 1 1 b、 1 2 bが設けられている。 一方、 監視制御装置 1 3は、 監視制御部 1 3 a と、 一対の監視光受信機 1 3 b、 1 3 cと、 一対の監視光送信機 1 3 d、 1 3 e とを備えている。
監視制御部 1 3 aは、 監視光受信機 1 3 b、 1 3 cで受信した監視光信号に中 継局 1 0及び伝送路に関する情報を付加して監視光送信機 1 3 d、 1 3 eから送 信する。 図 1に示される光増幅中継システムでは、 端局 1の監視制御装置 1 3 0 から中継局 1 0の監視制御装置 1 3、 中継局 2 0の監視制御装置 2 3、 中継局 3 0の監視制御装置 3 3を介して伝送路 L 1により端局 2の監視制御装置 2 3 0へ と監視データが送信される。 一方、 伝送路 L 2により、 端局 2の監視制御装置 2 3 0から中継局 3 0の監視制御装置 3 3、 中継局 2 0の監視制御装置 2 3、 中継 局 1 0の監視制御装置 1 3を介して端局 1の監視制御装置 1 3 0へと監視デ一夕 が送信される。 このようにして最終的に両端の端局に監視データが収集されるこ とになる。 この監視光には、 信号光の波長とは異なる波長が用いられる。
また、 光増幅器 1 1、 1 2は、 到達する信号光の異常の有無を検出する機能を 備えており、その検出結果を監視制御部 1 3 aに伝達する。監視制御部 1 3 aは、 中継局 1 0内の各構成要素の動作を制御する機能も備えている。
具体的には、 監視制御装置 1 3は、 監視光受信機 1 3 b、 1 3 cで受信した監 視光の異常を検出し、 光増幅器 1 1および 1 2による信号光の異常検出結果を受 け、 光増幅器 1 1および 1 2の光増幅動作と監視光送信を制御する。 表 1は、 そ の検出結果と制御動作の関係を示したものである。 ここでは、 光増幅器 1 1、 1 2は、 入力される信号光に異常が発生したときは自動的に増幅動作を停止するも のとして説明する。 光増幅器 1 1、 1 2は信号光の異常検出のみを行い、 その増 幅動作の制御は監視制御部 1 3 aにより行うこともできる。 信号光の異常検出を 光増幅器 1 1、 1 2とは別の素子で行ってもよい。 なお、 伝送路 L 1の伝送状態 について述べているが、 伝送路 L 2の伝送状態についても同じことが成立する。
Figure imgf000010_0001
表 1 検出結果と制御動作の関係
正常、 異常の判定は例えば、 信号光及び監視光の強度を所定の閾値と比較し、 閾値以上であれば正常、 未満であれば異常と判定する。
条件 1の欄に示したように、 端局 1から光伝送路 L 1を介して到達する信号光 および監視光の双方が正常の場合には、 光増幅器 1 1は増幅動作を保持し、 監視 制御装置 1 3は監視光送信を保持する。 と同時に光増幅器 1 2の増幅動作も保持 する。
条件 2の欄に示したように、 端局 1から光伝送路 L 1を介して到達する信号光 が正常で、 監視光が異常の場合には、 上流側にある端局 1の監視制御装置 1 3 0 の故障等が予想される。端局 1から中継局 1 0への信号光の伝送には支障がない。 条件 1と同様に、 光増幅器 1 1は増幅動作を保持し、 監視制御装置 1 3は監視光 送信を保持し、 光増幅器 1 2の増幅動作も保持する。 この場合、 故障個所の復旧 作業を行うことにより、 自動的に条件 1の正常な状態に復帰する。
条件 3の欄に示したように、 端局 1から光伝送路 L 1を介して到達する信号光 のみが異常であり監視光が正常の場合には、 上流側にある端局 1の WX M 1 1 2 i〜l 1 2 nや光増幅器 1 1 4の故障が予想される。 監視光は正常に伝送されてい るので、 端局 1から中継局 1 0への光伝送路自体は断となっていないことがわか る。 そこで、 下り方向の光増幅器 1 1は、 自ら増幅動作を停止し、 また、 監視制 御装置 1 3は、他方の光増幅器 1 2の増幅動作を保持し、監視光送信も保持する。 この場合、 原因が解決されれば、 自動的に条件 1の正常な状態に復帰する。
条件 4の欄に示したように、 端局 1から光伝送路 L 1を介して到達する信号光 および監視光の双方が異常の場合には、 端局 1から中継局 1 0への光伝送路 L 1 が断であると予想される。 下り方向の光増幅器 1 1は、 自ら増幅動作を停止し、 その旨を監視制御装置 1 3に通知する。 通知を受け取った監視制御装置 1 3は、 他方の光増幅器 1 2の増幅動作を停止させ、 端局 1への監視光の送信をも停止さ せる。
信号光と監視光の両方の異常の有無を検出すれば、 その他の機器の故障状態に 拘らず伝送路の異常を確実に検出することが可能となる。 監視光の送受信を行わ ない場合には表 2に示す制御動作を行う。
Figure imgf000011_0001
表 2 検出結果と制御動作の関係
条件 A欄に示すように、 端局 1から光伝送路 L 1を介して到達する信号光が正 常な場合は、 光増幅器 1 1、 1 2とも増幅動作を保持する。 一方、 条件 B欄に示 すように、 端局 1から光伝送路 L 1を介して到達する信号光が異常な場合には、 端局 1から中継局 1 0への光伝送路 L 1が断であると予想される。 そこで、 下り 方向の光増幅^ § 1 1は、 自ら増幅動作を停止し、 その旨を監視制御装置 1 3に通 知する。 通知を受け取った監視制御装置 1 3は、 上り方向の光増幅器 1 2の増幅 動作を停止させる。
なお、 光増幅器 1 1および 1 2の増幅動作の停止は、 例えば励起光を停止する ことで可能である。 また、 端局 1への上り方向の監視光の送信を停止するには、 監視光を出射する監視光送信機 1 3 eの発光を停止することで可能である。 端局 1の監視制御装置 1 3 0が異常であると検知することができる監視光を送出する ようにしてもよい。
中継局 1 0は、上り方向の伝送路 L 2についても同様の監視制御を行う。また、 他の中継局 2 0、 3 0においても同様の監視制御が行われる。
次に、光伝送路が断となった場合における本実施形態の動作について説明する。 一方向の光伝送路のみが断となった場合における動作について図 3 A〜図 3 Eを 参照して説明する。 これらの図において、 各光増幅器を表す三角形の中には、 光 増幅器の動作状態が示されている。 各光増幅器の入力側および出力側それそれに は信号光の状態が、 下段には監視光の状態がそれぞれ示されている。
ここでは、 中継局 1 0から中継局 2 0へ到る下り方向の光伝送路 L 1のみが X 印の地点で断となった場合を想定する。 また、 この光増幅中継システムは監視光 の送受信を行うものであるとする。
この場合、 図 3 Aに示すように、 中継局 1 0から中継局 2 0へは信号光および 監視光の双方が到達しないので、 中継局 2 0では伝送路 L 1は表 1の条件 4に該 当する。 中継局 2 0の光増幅器 2 1は、 入力する信号光が異常であることを検知 して、 自ら増幅動作を停止し、 その旨を監視制御装置 2 3に通知する。 これによ り、 中継局 2 0から中継局 3 0へは信号光が到達しないが、 監視光は正常に到達 する。 中継局 3 0では伝送路 L 1は表 1の条件 3に該当する。 したがって、 中継 局 3 0の光増幅器 3 1は、 入力する信号光が異常であることを検知して、 自ら増 幅動作を停止し、 その旨を監視制御装置 3 3に通知する。
また、 図 3 Bに示すように、 中継局 2 0の監視制御装置 2 3は、 中継局 1 0か ら到達すべき信号光および監視光の双方が異常である (表 1の条件 4に該当す る) ことを検知し或いは通知を受けて、 光増幅器 2 2の増幅動作を停止させ、 中 継局 1 0への監視光送信も停止する。 これにより、 中継局 2 0から中継局 1 0へ は信号光および監視光が到達せず、 中継局 1 0では表 1の条件 4に該当すること になる。 したがって、 中継局 1 0の光増幅器 1 2は、 入力する信号光が異常であ ることを検知して、 自ら増幅動作を停止するとともに、 その旨を監視制御装置 1 3に通知する。
その結果、 図 3 Cに示すように、 中継局 1 0の監視制御装置 1 3は、 中継局 2 0から到達すべき信号光および監視光の双方が異常である (表 1の条件 4に該当 する) ことを検知し或いは通知を受けて、 光増幅器 1 1の増幅動作を停止させ、 中継局 2 0への監視光送信も停止させる。 このようにして、 中継局 1 0と中継局 2 0との間の上り、 下り方向の光伝送路とも信号光および監視光の何れもが伝送 されない状態となる。
この状態から図 3 Dに示されるように、 監視制御装置 2 3は、 伝送路 L 2への 監視光送信を復旧させる。伝送路 L 2を介した監視光伝送機能が再度、確立する。 この状態では、 いずれの伝送路においても信号光が伝送されていないので、 復旧 作業時に作業者が光コネクタを取り外したような場合でも、 光コネクタから高出 力の光ビームが出射されることがなく、 作業の安全性が向上する。
復旧作業が終了すると、 図 3 Eに示されるように、 下り方向の伝送路 L 1を介 した中継局 1 0から中継局 2 0への監視光の伝送も正常に行われるので、 下り方 向の伝送路 L 1を介した監視光伝送機能も復旧する。 こうして、 両方の監視光伝 送機能が確立したことを確認後、 端局 1あるいは 2からの指令により、 光増幅器 1 1を再起動させることで、 光増幅中継システムの伝送路を復旧させることがで きる。
次に、 光増幅中継システムが監視光の送受信を行わない場合の、 一方向の光伝 送路のみが断となつた時の動作を図 4 A〜図 4 Cを参照して説明する。
この場合、 図 4 Aに示すように、 中継局 1 0から中継局 2 0へは信号光が到達 せず、 中継局 2 0では表 2の条件 Bに該当する。 したがって、 中継局 2 0の光増 幅器 2 1は、 入力する信号光が異常であることを検知して、 自ら増幅動作を停止 し、 その旨を監視制御装置 2 3に通知する。 これにより、 中継局 2 0から中継局 3 0へは信号光が到達しないので、 中継局 3 0では表 2の条件 Bに該当する。 し たがって、 中継局 3 0の光増幅器 3 1は、 入力する信号光が異常であることを検 知して、 自ら増幅動作を停止し、 その旨を監視制御装置 3 3に通知する。
また、 図 4 Bに示すように、 中継局 2 0の監視制御装置 2 3は、 中継局 1 0か ら到達すべき信号光が異常である (表 2の条件 Bに該当する) ことを検知し或い は通知を受けて、 光増幅器 2 2の増幅動作を停止させる。 中継局 2 0から中継局 1 0へは信号光が到達せず、 中継局 1 0では表 2の条件 Bに該当する。 中継局 1 0の光増幅器 1 2は、 入力する信号光が異常であることを検知して、 自ら増幅動 作を停止し、 その旨を監視制御装置 1 3に通知する。
そして、 図 4 Cに示すように、 中継局 1 0の監視制御装置 1 3は、 中継局 2 0 から到達すべき信号光が異常である (表 2の条件 Bに該当する) ことを検知し或 いは通知を受けて、 光増幅器 1 1の増幅動作を停止させる。 このようにして、 中 継局 1 0と中継局 2 0との間の両方の光伝送路 L 1、 L 2ともに信号光が伝送さ れない状態となる。 したがって、 光伝送路の復旧作業の際における作業者の安全 が確保される。 障害復旧後は、 伝送路 L 1の復旧を確認して手動で光中継増幅シ ステムを復旧させる必要がある。
次に、 双方向の光伝送路が共に断となった場合における動作を図 5 A〜図 5 D を参照して説明する。 ここでは、 中継局 1 0と中継局 2 0との間の双方向の光伝 送路が共に X印の地点で断となった場合を想定する。
この場合、 図 5 Aに示すように、 中継局 1 0から中継局 2 0へは信号光および 監視光の双方が到達せず、 中継局 2 0では表 1の条件 4に該当する。 したがって、 中継局 2◦の光増幅器 2 1は、 入力する信号光が異常であることを検知して、 自 ら増幅動作を停止し、 その旨を監視制御装置 2 3に通知する。 これにより、 中継 局 2 0から中継局 3 0へは信号光が到達しないが、 監視光は正常に到達する。 中 継局 3 0では表 1の条件 3に該当する。 したがって、 中継局 3 0の光増幅器 3 1 は、 入力する信号光が異常であることを検知して、 自ら増幅動作を停止し、 その 旨を監視制御装置 3 3に通知する。 また、 中継局 2 0から中継局 1 0へも信号光 および監視光の双方が到達せず、 中継局 1 0では表 1の条件 4に該当する。 した がって、 中継局 1 0の光増幅器 1 2は、 入力する信号光が異常であることを検知 して、 自ら増幅動作を停止し、 その旨を監視制御装置 1 3に通知する。
そして、 図 5 Bに示すように、 中継局 2 0の監視制御装置 2 3は、 中継局 1 0 から到達すべき信号光および監視光の双方が異常である (表 1の条件 4に該当す る) ことを検知し或いは通知を受けて、 光増幅器 2 2の増幅動作を停止させ、 中 継局 1 0への監視光送信も停止させる。また、 中継局 1 0の監視制御装置 1 3は、 中継局 2 0から到達すべき信号光および監視光の双方が異常である (表 1の条件 4に該当する) ことを検知し或いは通知を受けて、 光増幅器 1 1の増幅動作を停 止させ、 中継局 2 0への下り方向の監視光送信も停止させる。 このようにして、 中継局 1 0と中継局 2 0との間の両方の光伝送路 L 1、 L 2ともに信号光および 監視光の何れもが伝送されない状態となり、 この時の監視光、 信号光の伝送状態 は図 3 Cと同一になる。
この状態から図 5 Cに示されるように、 監視制御装置 2 3は、 上り方向の伝送 路 L 2への監視光の送信を復旧させる。 一方、 監視制御装置 1 3は、 下り方向の 伝送路 L 1への監視光の送信を復旧させる。 この状態では、 いずれの伝送路にお いても信号光が伝送されていないので、 万一、 復旧作業時に作業者が伝送路の光 コネクタを取り外したような場合でも、 コネクタから高出力の光ビームが出射さ れることがなく、 作業の安全性が向上する。
復旧作業が終了すると、 図 5 Dに示されるように、 上り、 下り両方向の伝送路 L 1、 L 2を介した中継局 1 0と中継局 2 0間の監視光伝送が正常に行われ、 両 方向の監視光伝送機能が即座に復旧する。 この状態は、 図 3 Eに示される状態と 同一である。 こうして、 両方の監視光伝送機能が確立したことを確認後、 端局 1 あるいは 2からの指令により、 光増幅器 1 1及び 2 2を再起動させることで、 光 増幅中継システムの伝送路を復旧させることができる。
次に、 図 3 Cまたは図 5 Bの状態から、 監視光を復旧作業前に正常に復旧させ ることなく復旧作業を行った場合の復旧手順について図 6 A〜図 6 Cを参照して 説明する。 復旧手順は、 一方向の光伝送路のみが断となった場合および双方向の 光伝送路が共に断となつた場合で共通である。
光増幅中継システムの復旧は、 中継局 1 0の光増幅器 1 1の増幅動作および監 視制御装置 1 3の監視光の強制送信、 ならびに、 中継局 2 0の光増幅器 2 2の増 幅動作および監視制御装置 2 3の監視光の強制送信を、 順次に行うことで可能で める。
例えば、 図 6 Aに示すように、 中継局 1 0の光増幅器 1 1の増幅動作および監 視制御装置 1 3の監視光を強制的に送信する。これにより、図 6 Bに示すように、 中継局 1 0から中継局 2 0へ信号光が正常に到達するので、 中継局 2 0の光増幅 器 2 1は、 増幅動作を自動的に再開する。 さらに、 中継局 2 0から中継局 3 0へ 信号光が正常に到達するので、 中継局 3 0の光増幅器 3 1は、 増幅動作を自動的 に再開する。 中継局 2 0の光増幅器 2 2の増幅動作および監視制御装置 2 3の監 視光を強制的に送信する。 これにより、 図 6 Cに示すように、 中継局 2 0から中 継局 1 0へ信号光が正常に到達するので、 中継局 1 0の光増幅器 1 2は、 増幅動 作を自動的に再開する。 このようにして、 光増幅中継システムが復旧する。
なお、 監視光の送受信を行わない場合には、 2つの光増幅器それぞれに入力す る信号光の異常を検出し、 その検出結果に基づいて 2つの光増幅器それそれの動 作を制御する。 すなわち、 入力する信号光の異常を検知した一方の光増幅器は、 自ら増幅動作を停止し、 直接、 或いは監視制御装置を介して他方の光増幅器を停 止させる。
伝送路の異常を検出した際に、 自動的に増幅動作を停止させる実施形態につい て説明してきた。 監視光の送受信を行う場合は、 検出結果を監視光に信号として 付加して端局 1、 2に伝送する構成としてもよい。 監視光に付加された信号を利 用すると、 自動的な復旧動作を行うことが容易になる。 以下、 伝送路の一方が断 線した場合と、 双方が断線した場合に分けてその自動復旧動作を説明する。 まず、 伝送路の一方が断線した場合 (ここでは、 下り側伝送路が断線した場合 を例に説明する) を図 7 A〜図 7 C、 図 8 A〜 8 Cを参照して説明する。 ここで も、 中継局 1 0から中継局 2 0へ到る下り方向の光伝送路 L 1のみが X印の地点 で断となった場合を想定する。
この場合、 図 7 Aに示されるように、 中継局 1 0から中継局 2 0へは信号光お よび監視光の双方が到達しない。 そこで、 中継局 2 0の光増幅器 2 1は、 入力す る信号光が異常であることを検知して、 自ら増幅動作を停止し、 その旨を監視制 御装置 2 3に通知する。 これにより、 中継局 2 0から中継局 3 0へは信号光が到 達しないが、 監視光は正常に到達する。 中継局 3 0の光増幅器 3 1は、 入力する 信号光が異常であることを検知して、 自ら増幅動作を停止し、 その旨を監視制御 装置 3 3に通知する。
監視制御装置 2 3は、 図 7 Bに示されるように、 光増幅器 2 2の光増幅動作を 停止し、 光増幅器 2 1へ入力する伝送路が異常であると判定して、 異常発生箇所 を表す情報を付加した監視光を伝送路 L 2を介して中継局 1 0の監視制御装置 1 3へと伝送する。 これにより、 光増幅器 1 2も入力信号光が停止するためにその 増幅動作を停止する。
そして、 異常発生箇所を示す情報が付加された監視光信号を受信した監視制御 装置 1 3は、 図 7 Cに示されるように、 光増幅器 1 1の増幅動作を停止させる。 これによつて、 断線部分への光信号の伝送は停止させられる。
この状態では、 中継局 1 0と中継局 2 0との間の双方向の光伝送路ともに信号 光が伝送されず、 一方、 片側の正常なラインの監視光の伝送は保持される。
そして、 この状態から伝送路 L 1の異常が復旧されると、 両方の伝送路の監視 光伝送機能が先行して自動的に復旧する。 中継局 2 0の監視制御装置 2 3は、 異 常と判定していた伝送路から正常な監視光信号が入力されると、 当該伝送路が復 旧したと判定し、この異常状態を示す情報の監視光への付加を停止する(図 8 A)。 このとき、 監視制御装置 2 3は、 監視制御装置 1 3より伝送路 L 2が正常である 旨を受信するので、図 8 Bに示されるように光増幅器 2 2の増幅動作を再開する。 これにより、 伝送路 L 2の伝送機能が復旧する。
中継局 1 0の監視制御装置 1 3は、 監視制御装置 2 3から送られてきた監視光 信号に異常情報が付加されていないことから、 当該伝送路が復旧したと判定し、 図 8 Cに示されるように光増幅器 1 2の増幅動作を再開する。 これにより、 伝送 路 L 1の信号光伝送も復旧する。
このように、 端局での操作を行うことなく、 伝送路の復旧後、 信号光伝送を再 開することが可能となる。
次に、 両方の伝送路が共に中継局 1 0から中継局 2 0間で断線した場合の自動 復旧動作を図 9 A、 図 9 B、 図 1 0 A〜1 0 Cを参照して説明する。
図 9 Aに示されるように、 中継局 1 0と中継局 2 0の間で信号光および監視光 の双方が到達しない。 したがって、 中継局 1 0の光増幅器 1 2と中継局 2 0の光 増幅器 2 1とは、 入力する信号光が異常であることを検知して、 自ら増幅動作を 停止し、 その旨を監視制御装置 1 3、 2 3にそれぞれ通知する。 これにより、 中 継局 2 0から中継局 3 0へは信号光が送信されない。 監視光は正常に到達するの で中継局 3 0の光増幅器 3 1は、 入力する信号光が異常であることを検知して、 自ら増幅動作を停止し、 その旨を監視制御装置 3 3に通知する。 そして、 図 9 Bに示すように、 中継局 1 0、 2 0の各監視制御装置 1 3、 2 3 は、 光増幅器 1 2、 2 1からの信号を基にして反対側の光増幅器 1 1、 2 2の光 増幅動作を停止させ、 監視光に伝送路の異常を表す信号を付加して送信する。 た だし、 この時点ではこの監視光は中継局 1 0、 中継局 2 0の間では光伝送路の異 常により伝送されない。
この状態から先に伝送路 L 2が復旧すると、 図 1 O Aに示されるように、 伝送 路 L 2の監視光伝送機能が自動的に復旧する。 続いて、 図 1 0 Bに示されるよう に伝送路 L 1が復旧すると、 監視制御装置 1 3から監視制御装置 2 3へとライン L 2が復旧したことを示す監視光が正常に伝送される。 監視制御装置 2 3はこれ を受けて光増幅器 2 2の増幅動作を再開させる。 この結果、 下流側の光増幅器 1 2も増幅動作を再開し、 伝送路 L 2の信号光伝送機能が復旧する。
監視制御装置 2 3は、 光増幅器 2 2の増幅動作の再開とともに、 伝送路 L 1が 復旧したことを示す監視光を伝送する。 この監視光は伝送路 L 2を介して監視制 御装置 1 3へと送られる。 これを受けた監視制御装置 1 3は、 光増幅器 1 1の増 幅動作を再開させる。 この結果、 下流側の光増幅器 2 1、 3 1も増幅動作を再開 し、伝送路 L 1の信号光伝送機能が復旧する。 このようにして、伝送路の復旧後、 自動的に信号光伝送機能を復旧させることが可能である。
以上の本発明の説明から、 本発明を様々に変形しうることは明らかである。 そ のような変形は、 本発明の思想および範囲から逸脱するものとは認めることはで きず、 すべての当業者にとって自明である改良は、 以下の請求の範囲に含まれる ものである。 産業上の利用可能性
本発明は、 光通信システムにおける光増幅中継システムに好適に適用可能であ る。

Claims

言青求の範囲
1 . 伝送路を対にして複数の中継局を介して多段接続することで端局 間で双方向に信号光を伝送する光増幅中継システムにおいて、
前記複数の中継局それぞれは、
前記伝送路のそれそれに対応して接続され、 伝送される信号光を増幅する一対 の光増幅器と、
前記各光増幅器に入力されるそれぞれの信号光状態を監視し、 一方の前記光増 幅器に入力される信号光が異常な場合は、 当該光増幅器の動作を停止させ、 所定 の時間経過後に他方の前記光増幅器の動作を停止させる監視装置と、
を備えていることを特徴とする光増幅中継システム。
2 . 伝送路を対にして複数の中継局を介して多段接続することで端局 間で双方向に信号光を伝送する光増幅中継システムにおいて、
前記複数の中継局それそれは、
前記伝送路にそれぞれ対応して接続され、 伝送される信号光を増幅する一対の 光増幅器と、
監視装置であって、
上流側に隣接する中継局あるいは端局から送信されてきた所定の監視光を受 信する一対の監視光受信機と、
下流側に隣接する中継局あるいは端局に対して前記監視光受信機で受信した 監視光に所定の情報を付加して送信する一対の監視光送信機と、 を有し、
前記伝送路のそれぞれで伝送されてきた信号光及び監視光の状態を監視し、 少なくとも一方の伝送路で伝送されてきた信号光及び監視光がともに異常な場合 には、 両方の伝送路の下流側に送信する監視光に異常状態を表す情報を付加する 監視装置と、
を備えていることを特徴とする光増幅中継システム。
3 . 前記監視装置は、 一方の前記伝送路で伝送されてきた信号光及び 監視光が異常な場合は、当該伝送路に接続された前記光増幅器の動作を停止させ、 所定の時間経過後に他方の前記光増幅器の動作を停止させ、 異常が発生した伝送 路と反対側の伝送路へ出力される監視光を下流側中継局の監視装置が異常と判定 する状態に設定することを特徴とする請求項 2記載の光中継システム。
4 . 前記監視装置は、 前記監視光を下流側中継局の監視装置が異常と 判定する状態に設定した後、 所定時間経過後に当該監視光を下流側中継局の監視 装置が正常と判定する状態に復帰させることを特徴とする請求項 3記載の光中継 システム。
5 . 前記監視光の下流側中継局の監視装置が異常と判定する状態とは、 前記監視光の出力のない状態であることを特徴とする請求項 2〜4のいずれかに 記載の光中継システム。
6 . 前記監視装置は、 一方の前記伝送路で伝送されてきた信号光及び 監視光がともに異常な場合は、 当該伝送路に接続された前記光増幅器の動作を停 止させ、 所定の時間経過後に他方の前記光増幅器の動作を停止させ、 異常が発生 した伝送路とは反対側の伝送路へ出力される監視光に異常な信号光が入力されて いる光増幅器を特定しうる情報を付加して送信し、 当該情報が付加された監視光 を受信した中継局あるいは端局の前記監視装置は、 異常発生地点の上流側に接続 されている光増幅器の動作を停止させることを特徴とする請求項 2記載の光中継 システム。
7 . 前記監視装置は、 異常な信号光が伝送されている前記伝送路の監 視光が正常に復旧した場合は、 当該伝送路と対になる伝送路に接続された光増幅 器の動作を復旧させ、 前記対になる伝送路へ出力される監視光に異常発生地点の 上流側の光増幅器の動作を復旧させる情報を付加することを特徴とする請求項 6 記載の光中継システム。
8 . 伝送路を対にして複数の中継局を介して多段接続することで端局 から双方向に信号光を伝送する光増幅中継システムにおいて、 前記複数の中継局それぞれは、
前記伝送路にそれぞれ対応して接続され、 伝送される信号光を増幅する一対の 光増幅器と、
監視装置であって、
上流側に隣接する中継局あるいは端局から送信されてきた所定の監視光を受 信する一対の監視光受信機と、
下流側に隣接する中継局あるいは端局に対して前記監視光受信機で受信した 監視光に所定の情報を付加して送信する一対の監視光送信機と、 を有し、
前記伝送路のそれぞれで伝送されてきた信号光及び監視光の状態を監視し、 信号光及び監視光ともに異常の場合には、 当該伝送路に接続された前記光増幅器 の動作を停止させ、 所定の時間経過後に他方の前記光増幅器の動作を停止させ、 前記伝送路の双方の下流側に送信する監視光に異常な信号光が入力されている光 増幅器を特定しうる情報を付加して送信し、 当該情報が付加された監視光を受信 した場合は、 異常発生地点の上流側に接続されている前記光増幅器の動作を停止 させ、 異常な信号光が伝送されている前記伝送路の監視光が正常に復旧した場合 は、 当該伝送路と対になる伝送路に接続された光増幅器の動作を復旧させ、 前記 対になる伝送路へ出力される監視光に異常発生地点の上流側の光増幅器の動作を 復旧させる情報を付加する監視装置と、
を備えていることを特徴とする光増幅中継システム。
PCT/JP1999/003261 1998-06-26 1999-06-18 Systeme de relais d'amplification optique WO2000001081A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US09/402,063 US6259554B1 (en) 1998-06-26 1999-06-18 Optical amplifier repeater system
EP99925374A EP1014595A4 (en) 1998-06-26 1999-06-18 OPTICAL INTERMEDIATE SYSTEM
CA002301595A CA2301595A1 (en) 1998-06-26 1999-06-18 Optical amplification relay system
KR1020007001913A KR20010023279A (ko) 1998-06-26 1999-06-18 광 증폭 중계 시스템
AU41678/99A AU751913B2 (en) 1998-06-26 1999-06-18 Optical amplification relay system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/180836 1998-06-26
JP18083698 1998-06-26

Publications (1)

Publication Number Publication Date
WO2000001081A1 true WO2000001081A1 (fr) 2000-01-06

Family

ID=16090217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/003261 WO2000001081A1 (fr) 1998-06-26 1999-06-18 Systeme de relais d'amplification optique

Country Status (7)

Country Link
US (1) US6259554B1 (ja)
EP (1) EP1014595A4 (ja)
KR (1) KR20010023279A (ja)
CN (1) CN1274487A (ja)
AU (1) AU751913B2 (ja)
CA (1) CA2301595A1 (ja)
WO (1) WO2000001081A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002077056A (ja) * 2000-08-29 2002-03-15 Fujitsu Ltd 光レベル制御方法
JP2003046457A (ja) * 2001-07-31 2003-02-14 Furukawa Electric Co Ltd:The 光通信方法およびそのシステム
JP2004274265A (ja) * 2003-03-06 2004-09-30 Fujitsu Ltd 自動出力復帰方法および光通信システム
JP2004297790A (ja) * 2003-03-10 2004-10-21 Nec Corp 光ノード装置、光ネットワークシステムおよびその制御方法
JP2005260897A (ja) * 2004-02-09 2005-09-22 Auto Network Gijutsu Kenkyusho:Kk 車両用光通信ネットワークシステム及び光信号増幅装置
JP2009188766A (ja) * 2008-02-06 2009-08-20 Hitachi Kokusai Electric Inc 無線通信システム
JP2009194658A (ja) * 2008-02-14 2009-08-27 Fujitsu Ltd ラマン増幅を用いた光伝送システムおよびその制御方法
JPWO2009004720A1 (ja) * 2007-07-03 2010-08-26 富士通株式会社 レベル低下検出装置、光増幅装置、およびレベル低下検出方法
WO2012111403A1 (ja) * 2011-02-16 2012-08-23 日本電気株式会社 光伝送装置、光伝送システム、光伝送方法およびプログラム
JP2017187852A (ja) * 2016-04-01 2017-10-12 株式会社デンソー 光通信装置

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6541168B2 (en) 2000-04-28 2003-04-01 Corning Incorporated Vacuum ultraviolet transmitting direct deposit vitrified silicon oxyfluoride lithography glass photomask blanks
US6473224B2 (en) * 2000-12-01 2002-10-29 Alcatel Configurable safety shutdown for an optical amplifier using non-volatile storage
JP3823764B2 (ja) * 2001-07-04 2006-09-20 日本電気株式会社 光直接増幅装置
JP4632585B2 (ja) * 2001-07-16 2011-02-16 富士通株式会社 光伝送システム
AU2003222112A1 (en) * 2002-03-28 2003-10-13 Celion Networks, Inc. Apparatus and method for aggregation and transportation for plesiosynchronous framing oriented data formats
WO2003084082A2 (en) 2002-03-29 2003-10-09 Celion Networks, Inc. Distributed terminal optical transmission system
KR100899081B1 (ko) * 2002-04-04 2009-05-25 주식회사 케이티 광케이블망 감시를 위한 중계기형 감시광 증폭 장치
US7164692B2 (en) 2002-04-08 2007-01-16 Jeffrey Lloyd Cox Apparatus and method for transmitting 10 Gigabit Ethernet LAN signals over a transport system
US6965738B2 (en) * 2002-04-16 2005-11-15 Eiselt Michael H Chromatic dispersion compensation system and method
US7725042B2 (en) * 2002-04-22 2010-05-25 Marvin Ray Young Automated optical transport system
US6847678B2 (en) * 2002-04-25 2005-01-25 Raytheon Company Adaptive air interface waveform
US7460296B2 (en) * 2002-04-30 2008-12-02 Pivotal Decisions Llc Compensation for spectral power tilt from scattering
US7206516B2 (en) * 2002-04-30 2007-04-17 Pivotal Decisions Llc Apparatus and method for measuring the dispersion of a fiber span
US7711271B2 (en) * 2002-04-30 2010-05-04 Eiselt Michael H Wave division multiplexed optical transport system utilizing optical circulators to isolate an optical service channel
AU2003231190A1 (en) * 2002-04-30 2003-11-17 Celion Networks, Inc. Optical transport system architecture for remote terminal connectivity
US8494372B2 (en) * 2002-04-30 2013-07-23 Pivotal Decisions Llc Apparatus and method for optimizing optical and electrical filtering of optical signals
US7924496B2 (en) * 2002-06-04 2011-04-12 Pivotal Decisions Llc Apparatus and method for Raman gain control
US7440164B2 (en) * 2002-06-04 2008-10-21 Pivotal Decisions Llc Apparatus and method for Raman gain spectral control
US20050226630A1 (en) * 2003-06-03 2005-10-13 Celion Networks Inc. Optical bypass method and architecture
US7460745B2 (en) * 2002-06-04 2008-12-02 Pivotal Decisions Llc Configurable dispersion compensation trimmer
US7603042B2 (en) * 2002-06-04 2009-10-13 Eiselt Michael H Apparatus and method for optimum decision threshold setting
US20040042067A1 (en) * 2002-06-04 2004-03-04 Eiselt Michael H. Apparatus and method for duplex optical transport using a co-directional optical amplifier
WO2003103187A1 (en) 2002-06-04 2003-12-11 Celion Networks, Inc. Flexible, dense line card architecture
US6920277B2 (en) 2002-06-04 2005-07-19 Marvin R. Young Optical bypass method and architecture
US20040096214A1 (en) * 2002-08-20 2004-05-20 Red Sky Systems, Inc. Method and apparatus for using optical idler tones for performance monitoring in a WDM optical transmission system
US20040096215A1 (en) * 2002-08-20 2004-05-20 Evangelides Stephen G. Method and apparatus for performing system monitoring in a terminal independent interface located between a terrestrial optical terminal and an undersea optical transmission path
US20040126119A1 (en) * 2002-08-20 2004-07-01 Evangelides Stephen G. Method and apparatus for providing a terminal independent interface between a terrestrial optical terminal and an undersea optical transmission path
US7421207B2 (en) * 2002-12-13 2008-09-02 Pivotal Decisions Llc Single fiber duplex optical transport
US7656905B2 (en) 2002-12-24 2010-02-02 Samir Sheth Apparatus and method for aggregation and transportation of gigabit ethernet and other packet based data formats
US7782778B2 (en) * 2002-12-24 2010-08-24 Samir Satish Sheth Apparatus and method for fibre channel distance extension embedded within an optical transport system
US6898347B2 (en) * 2003-05-30 2005-05-24 Intel Corporation Monitoring power in optical networks
US20050232634A1 (en) * 2004-03-29 2005-10-20 Evangelides Stephen G Jr Undersea optical transmission system employing low power consumption optical amplifiers
US20080050121A1 (en) * 2004-06-17 2008-02-28 Evangelides Stephen G Submarine optical transmission systems having optical amplifiers of unitary design
KR100756191B1 (ko) * 2005-01-27 2007-09-05 에스케이 텔레콤주식회사 광 중계기의 오버파워 자동복구 시스템 및 그 방법
CN102801464B (zh) * 2011-05-27 2015-03-25 华为海洋网络有限公司 检测海底光缆线路的方法、传送装置和系统
CN103416008B (zh) * 2012-05-21 2016-08-10 华为海洋网络有限公司 中继器及环回模式切换方法
US9941962B2 (en) * 2016-04-14 2018-04-10 The United States Of America As Represented By The Secretary Of The Air Force Free space optical data transmission for secure computing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62245826A (ja) * 1986-04-18 1987-10-27 Nec Corp レ−ザカツトオフ方式
JPH05292083A (ja) * 1992-04-07 1993-11-05 Hitachi Ltd 光増幅中継器を用いたネットワークにおける警報および命令の伝達方法
JPH07143078A (ja) * 1993-11-15 1995-06-02 Oi Denki Kk 通信監視システム及び故障判定方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1247845B (it) 1991-03-29 1995-01-02 Pirelli Cavi Spa Linea di telecomunicazione a fibre ottiche con dispositivo di protezione per amplificatori ottici
IT1247844B (it) 1991-03-29 1995-01-02 Pirelli Cavi S P A Dir Proprie Linea di telecomunicazione a fibre ottiche con amplificatori ottici, dotata di mezzi di protezione in grado di interrompere l'emissione luminosa in tutta la linea in presenza di un'interruzione della fibra ottica e di riattivarla automaticamente al ripristino della sua continuita'
JP3187071B2 (ja) 1991-04-24 2001-07-11 富士通株式会社 光増幅器の高光出力保護回路
JP3373283B2 (ja) * 1994-02-25 2003-02-04 富士通株式会社 光増幅中継器
JPH0993202A (ja) * 1995-09-21 1997-04-04 Fujitsu Ltd 双方向光増幅回路
JPH09321739A (ja) * 1996-05-29 1997-12-12 Nec Corp 光アンプ中継伝送システム
US6359708B1 (en) 1997-09-18 2002-03-19 Lucent Technologies Inc. Optical transmission line automatic power reduction system
US6134032A (en) * 1999-04-02 2000-10-17 Tyco Submarine Systems Ltd. Method and apparatus for automatically identifying system faults in an optical communications system from repeater loop gain signatures

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62245826A (ja) * 1986-04-18 1987-10-27 Nec Corp レ−ザカツトオフ方式
JPH05292083A (ja) * 1992-04-07 1993-11-05 Hitachi Ltd 光増幅中継器を用いたネットワークにおける警報および命令の伝達方法
JPH07143078A (ja) * 1993-11-15 1995-06-02 Oi Denki Kk 通信監視システム及び故障判定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1014595A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4495321B2 (ja) * 2000-08-29 2010-07-07 富士通株式会社 光レベル制御方法
JP2002077056A (ja) * 2000-08-29 2002-03-15 Fujitsu Ltd 光レベル制御方法
JP2003046457A (ja) * 2001-07-31 2003-02-14 Furukawa Electric Co Ltd:The 光通信方法およびそのシステム
JP4615155B2 (ja) * 2001-07-31 2011-01-19 古河電気工業株式会社 光通信方法およびそのシステム
JP2004274265A (ja) * 2003-03-06 2004-09-30 Fujitsu Ltd 自動出力復帰方法および光通信システム
JP2004297790A (ja) * 2003-03-10 2004-10-21 Nec Corp 光ノード装置、光ネットワークシステムおよびその制御方法
JP2005260897A (ja) * 2004-02-09 2005-09-22 Auto Network Gijutsu Kenkyusho:Kk 車両用光通信ネットワークシステム及び光信号増幅装置
JP4480429B2 (ja) * 2004-02-09 2010-06-16 株式会社オートネットワーク技術研究所 車両用光通信ネットワークシステム及び光信号増幅装置
JPWO2009004720A1 (ja) * 2007-07-03 2010-08-26 富士通株式会社 レベル低下検出装置、光増幅装置、およびレベル低下検出方法
JP2009188766A (ja) * 2008-02-06 2009-08-20 Hitachi Kokusai Electric Inc 無線通信システム
JP2009194658A (ja) * 2008-02-14 2009-08-27 Fujitsu Ltd ラマン増幅を用いた光伝送システムおよびその制御方法
WO2012111403A1 (ja) * 2011-02-16 2012-08-23 日本電気株式会社 光伝送装置、光伝送システム、光伝送方法およびプログラム
US8938165B2 (en) 2011-02-16 2015-01-20 Nec Corporation Optical transmission device, optical transmission system, optical transmission method and program
JP5708665B2 (ja) * 2011-02-16 2015-04-30 日本電気株式会社 光伝送装置、光伝送システム、光伝送方法およびプログラム
JP2017187852A (ja) * 2016-04-01 2017-10-12 株式会社デンソー 光通信装置

Also Published As

Publication number Publication date
EP1014595A1 (en) 2000-06-28
US6259554B1 (en) 2001-07-10
CN1274487A (zh) 2000-11-22
EP1014595A4 (en) 2005-06-15
AU751913B2 (en) 2002-08-29
KR20010023279A (ko) 2001-03-26
AU4167899A (en) 2000-01-17
CA2301595A1 (en) 2000-01-06

Similar Documents

Publication Publication Date Title
WO2000001081A1 (fr) Systeme de relais d'amplification optique
JP4495321B2 (ja) 光レベル制御方法
JP4447105B2 (ja) 光通信システム
JP3768110B2 (ja) 光増幅器
US7260324B2 (en) Automatic optical power management in optical communications system
JP2000174706A (ja) 光信号の出力パワ―を自動制御する方法および装置
JP2011019140A (ja) 光通信装置、光波長多重伝送システム、光線路障害検出方法、そのプログラム及びプログラム記録媒体
US7551857B2 (en) Optical transmission system
EP1839402B1 (en) Method of controlling optical amplifier located along an optical link
US6654513B1 (en) Path monitoring in optical communication systems
JPH0946297A (ja) 光出力遮断システム
JP3461475B2 (ja) 光波長多重伝送システム及びそれに用いる主信号双方向シャットダウン方式
JP2000332695A (ja) 光増幅中継器
JP3851619B2 (ja) 中継システム
JP4615155B2 (ja) 光通信方法およびそのシステム
JP3045288B2 (ja) 光信号出力停止の方法とその回路
KR100340726B1 (ko) 역방향 광링크 감시에 의한 자동광원차단 장치
JPH0738506A (ja) 光中継器および光伝送システム
JP4794775B2 (ja) 光伝送システム
JP5087430B2 (ja) 中継器、光伝送システム及びその切替方法
KR100528968B1 (ko) 광전송 시스템의 유지보수 장치 및 방법
JPH0783796A (ja) 発光素子正常異常チェック方法
JP2000341180A (ja) 通信システム
KR20010003945A (ko) 전송 시스템에서 선로감시를 통한 메시지 전달 방법
JP2000032022A (ja) 光伝送システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99801214.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 09402063

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref document number: 2301595

Country of ref document: CA

Ref document number: 2301595

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 41678/99

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020007001913

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999925374

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999925374

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007001913

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 41678/99

Country of ref document: AU

WWW Wipo information: withdrawn in national office

Ref document number: 1999925374

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1020007001913

Country of ref document: KR