WO1996012574A1 - Procede de production de tubes d'acier sans soudure et materiel de production afferent - Google Patents

Procede de production de tubes d'acier sans soudure et materiel de production afferent Download PDF

Info

Publication number
WO1996012574A1
WO1996012574A1 PCT/JP1995/002155 JP9502155W WO9612574A1 WO 1996012574 A1 WO1996012574 A1 WO 1996012574A1 JP 9502155 W JP9502155 W JP 9502155W WO 9612574 A1 WO9612574 A1 WO 9612574A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
steel pipe
billet
manufacturing
rolling
Prior art date
Application number
PCT/JP1995/002155
Other languages
English (en)
French (fr)
Inventor
Kunio Kondo
Yasutaka Okada
Seiji Tanimoto
Original Assignee
Sumitomo Metal Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries, Ltd. filed Critical Sumitomo Metal Industries, Ltd.
Priority to EP95934852A priority Critical patent/EP0787541B1/en
Priority to DE69525171T priority patent/DE69525171T2/de
Priority to MX9702792A priority patent/MX9702792A/es
Publication of WO1996012574A1 publication Critical patent/WO1996012574A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B23/00Tube-rolling not restricted to methods provided for in only one of groups B21B17/00, B21B19/00, B21B21/00, e.g. combined processes planetary tube rolling, auxiliary arrangements, e.g. lubricating, special tube blanks, continuous casting combined with tube rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • B21B1/466Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a non-continuous process, i.e. the cast being cut before rolling

Definitions

  • the present invention relates to a method for manufacturing a seamless steel pipe and a manufacturing facility for performing the method. More specifically, a simple and continuous manufacturing process and manufacturing facilities have been developed to produce seamless steel pipes with excellent performance such as strength, toughness and corrosion resistance, with good productivity and at low cost. It relates to a manufacturing facility for applying. Background art
  • Seamless steel pipes are used for applications such as oil well pipes, line pipes, heat exchanger pipes, pipes, and bearing pipes. Its materials are mainly low-alloy steels containing alloying components such as carbon steel, Cr, and Mo, and high-Cr stainless steels. Mannesmann-mandrel mill method is often used to manufacture these seamless steel pipes. In the manufacture of seamless steel pipes using the Mannesmann-mandrel mill method, the manufacturing process is generally extremely complicated because of the severe processing required in the piercing and rolling process and the high performance required of the product. It is.
  • Fig. 1 shows an example of the Mannesmann-mandrel mill manufacturing process.There are many processes from the ingot c to the product, and various processing, heating and cooling are performed on the workpiece. Repeated. Also, the dotted lines in Fig. 1 indicate line changes that involve processing such as transport and temporary stocking between processes.In the Mannesmann-mandrel mill manufacturing process, line changes are performed many times. . Therefore, the production of seamless steel pipes requires many facilities with advanced functions and a large amount of energy. Therefore, the manufacturing There is a fatal problem that the cost increases.
  • Japanese Unexamined Patent Publication (Kokai) No. 63-157770 discloses a continuous manufacturing method in which a billet having a round cross-sectional shape is manufactured, and the billet is perforated and stretched and rolled. A method for manufacturing a steelless pipe is shown.
  • sufficient technical improvements have not been made to the heating conditions of the piercing roll and the piercing and rolling conditions of the piercer, which is an inclined roll piercing mill. For this reason, the material to be drilled is liable to crack at the time of drilling.
  • heat treatment which includes quenching and tempering, which determines the quality of products, is usually performed in an off-line manner that can be strictly controlled. Therefore, a quenching device and a tempering furnace are installed separately from the pipe production line. Manufacturing methods that include such off-line processing are major obstacles in simplifying manufacturing equipment and saving energy.
  • Japanese Patent Application Laid-Open No. 56-036266 discloses a method of incorporating a cooling and reheating step between the rough rolling (drawing rolling) and the finish rolling.
  • Japanese Patent Application Laid-Open No. 3580203 discloses a method of performing a combination of cooling and reheating after finish rolling.
  • 581-171832 discloses Methods of cooling and reheating twice during the finish rolling) and after the rolling (finish rolling) are disclosed.
  • the above-mentioned treatment methods combine on-line cooling and reheating, and are characterized by repeating the transformation from austenite to filament and the reverse transformation from ferrite to austenite two or more times in total.
  • An object of the present invention is to provide a method of manufacturing a seamless steel pipe having excellent performance and a manufacturing facility for performing the manufacturing method.
  • the present invention provides a method for manufacturing a seamless steel pipe with simplified production steps and equipment, at a low production cost, with high productivity, and with higher performance than conventional products, and a method for performing the production method.
  • the purpose is to provide manufacturing facilities.
  • the production method of the present invention is composed of the following steps (1) to (4), which are successively performed, and the steps from the production of the billet to the product are connected online.
  • the manufacturing equipment for carrying out the method of the present invention has the respective devices continuously connected and arranged according to the above-mentioned steps.
  • FIG. 1 is a diagram showing an example of a conventional seamless steel pipe manufacturing process.
  • FIG. 2 is a diagram showing a manufacturing process of the seamless steel pipe of the present invention.
  • FIG. 3 is a diagram schematically illustrating an arrangement of a facility for manufacturing a seamless steel pipe of the present invention.
  • FIG. 4 is a diagram showing a chemical composition and a transformation point of a test billet used in an example of the present invention.
  • FIG. 5 is a diagram showing the result of measuring the maximum crack generation depth of the hollow shell obtained in Test 1 in the example.
  • FIG. 6 is a diagram showing piercing rolling, elongation rolling, and finish rolling conditions in Test 2 of the example.
  • FIG. 7 is a diagram showing recrystallization treatment conditions, quenching conditions, and tempering conditions in Test 2 of the example.
  • FIG. 8 is a diagram showing the results of an examination of the strength, crystal grain size, and corrosion resistance of the test material obtained in Test 2 of the example.
  • the present inventors have repeated experimental research on simplification of a process for manufacturing a seamless steel pipe and optimum treatment conditions in each process. As a result, based on the new knowledge obtained by the present inventors, the following manufacturing method and manufacturing equipment capable of solving all the problems have been completed.
  • FIG. 2 shows the manufacturing process of the present invention.
  • the basic technical concept of the present invention is as follows.
  • a billet with a round cross section is manufactured by a continuous manufacturing method. This method can omit the ingot, rolling or forging steps required when using a steel ingot or a square continuous forged billet as a raw material.
  • Inclined roll piercing and rolling method is adopted for piercing and rolling.
  • this piercing and rolling by selecting an appropriate strain rate, it is possible to prevent the occurrence of cracks in the material to be pierced.
  • both rolling mills are arranged close to each other in series on the same line. This arrangement suppresses the temperature reduction of the material to be rolled and effectively accumulates processing strain. By taking this measure, the recrystallization process in the next step significantly reduces the size of crystal grains. Can be achieved.
  • the steel pipe to be treated is recrystallized.
  • the recrystallization treatment is performed by slow cooling, heat retention, and heating during the transport.
  • a heating furnace will be provided in this step so that the temperature of the steel pipe can be adjusted.
  • Tempering is continued with the tempering furnace installed on the same line.
  • the present invention has realized the above basic technical idea.
  • FIG. 3 is a schematic diagram showing an arrangement of manufacturing equipment for implementing the method of the present invention. The contents of the present invention will be described in detail for each step with reference to FIGS. 2 and 3 described above. Process 1 Production of billets
  • a billet having a round cross section is manufactured by a continuous machine equipped with a mold having a round cross section at the molten steel injection portion.
  • the inner diameter of the mold is selected according to the outer diameter of the billet, which is determined according to the outer diameter of the steel pipe to be manufactured.
  • a billet having a predetermined outer diameter and length is continuously manufactured.
  • Reference numeral 1 in Fig. 3 indicates that the cross section of the molten steel injection It is a continuous forging machine and has a structure in which the mold can be changed according to the outside diameter of the billet to be forged. With this continuous forging machine, round billets having an outer diameter corresponding to the pipe making setup are continuously manufactured.
  • a cutting machine is provided to cut the billet to a predetermined length after the solidification of the center of the billet is almost or completely completed.
  • the continuous forming machine may be provided with a roll stand for applying a slight rolling process to the billet for the purpose of improving the structure of the billet.
  • the roll stand is provided before or after the billet cutting means.
  • the ⁇ been Biretsu DOO once cooled to room temperature or above in the following A rl transformation point.
  • the reason for this is to provide hot workability that can withstand the severe processing that is performed in the punching process by the inclined roll piercing mill (hereinafter referred to as piercer) in the subsequent process.
  • piercer inclined roll piercing mill
  • transformation finish temperature to the preparative phase by heating to carry out the perforation of the subsequent Biretsu Bok, metal organizations I decided to make it fine.
  • Cooling temperature at this time in order to minimize the energy required to heat the bi column Bok in the next step, the following A rl transformation point, towards the temperature near the A rl transformation point is preferred.
  • the lower limit of the cooling temperature may be higher than room temperature.
  • FIG. 3 shows an example in which the apparatus constituting the present process is constituted by a transport path 2 of a lateral feed type and a billet heating furnace 3.
  • a solution is provided by providing a forced cooling means in the middle of the transport path 2 and cooling the billet.
  • the billet is sufficiently heated and uniformly heated in the heating furnace 3 to a temperature at which piercing and rolling can be performed by the piercer 5 which is a piercing mill in the next step.
  • the optimal heating temperature depends on the material, and is determined in consideration of the properties of the material to be pierced, such as high-temperature ductility and high-temperature strength.
  • the heating temperature is usually in the range from 110 to I300.
  • a billet transverse feed furnace is preferably used.
  • the length of the billet is preferably made as long as possible. For this reason, the length is set to a multiple of the length of the piercing roll.
  • a cutting machine 4a such as a gas cutting machine or a hot saw is provided between the billet heating furnace 3 and the piercer 5, and after the billet is cut to a predetermined length, the billet is cut. Is supplied to Piasa 5.
  • an auxiliary heating device such as a tunnel-type induction heating furnace, capable of heating and raising the temperature of the billet in a short time after the cutting means. It is also possible to provide b so that the billet is heated and heated.
  • a wrought billet that has not been subjected to hot rolling is pierced and rolled with a piercer 15 to produce a hollow shell. Since the piercing and rolling is an extremely severe process, the material to be pierced tends to have flaws during the piercing process.
  • the occurrence of flaws is suppressed by drilling under the condition that the strain rate is limited to 200 seconds or less. I have. Therefore, in the present invention, It is a requirement that the strain rate be 200 ns or less.
  • strain rate refers to the rate defined by the following equation.
  • auxiliary heating device 4b such as the above-mentioned tunnel-type induction heating device immediately before the piercer 5 to raise the temperature of the billet.
  • the strain rate may be not more than 200 ns, and no particular lower limit is set. However, if the strain rate is less than 0.1 / second, the life of the tool of the piercer 5, such as the plug and the guide, is significantly shortened. Therefore, the strain rate is preferably set to 0.1 ns or more.
  • the piercer 5 as a piercing mill may be of any type as long as it is an inclined roll piercing mill.
  • a cross-type inclined roll perforating mill capable of performing thin hole perforation and perforation with a high pipe expansion ratio is particularly suitable for the present invention. The reason for this is that since one kind of round-shaped billet force with an outer diameter and the ability to drill holes of various sizes with different diameters are needed, the integration of the required size of the billet must be integrated. This is because it is easy.
  • the temperature of the hollow shell after the piercing and rolling step varies depending on the material, piercing conditions, and the like, but is usually about 150 to 125.
  • the hollow shell is conveyed to a table on the entry side of a continuous elongation rolling mill (mandrel mill) 7 provided at the end of the hollow shell by a conveying path 6 of a lateral feeding type.
  • a mandrel bar whose rear end is restrained and held by the bar retainer is inserted into the pipe.
  • the continuous strain rolling mill 7 and the finish rolling mill 8 were used to finish the average strain rate of 0.01 ns or more, the workability of 10% or more, and finish Elongation rolling and finish rolling are performed under the conditions of a cutting temperature of 800 to 150 and finished to a steel pipe of predetermined dimensions.
  • a mandrel mill 7 which is a continuous elongation mill consisting of a plurality of roll stands is suitable.
  • a sizer consisting of multiple rolls or a stretch-ready user is used as in the case of a mandrel mill.
  • the mandrel mill 7 which is a continuous elongation rolling mill and the sizer 18 (or a stretcher user) which is a finishing rolling mill are not arranged at a distance from each other, and have a direct connection type arrangement. I do. Specifically, the two rolling mills are arranged in series on the same line at an interval less than the length of the steel pipe stretched and rolled by the continuous stretching rolling mill. With this arrangement, further processing can be immediately performed in the finishing mill before the processing strain imparted in the continuous elongating mill is recovered. By processing that satisfies this condition, the subsequent refining of the recrystallized grains of the steel pipe can be effectively achieved.
  • the average strain rate (V s) defined by the following equation (a) must be not less than 0.01 Z seconds. If the average strain rate is less than 0.01 Z seconds, recrystallization occurs between each pass, so that no strain is accumulated. Under such conditions, in later steps, the crystal grains due to recrystallization Does not provide a sufficient miniaturization effect. Also, the working ratio in this step needs to be 10% or more. The amount of strain is converted to the degree of work (cross-section reduction rate) and is 10
  • finishing temperature of the material after finish rolling is in the range of 800 to 150. This is because, in this temperature range, the effect of refining the crystal grains by recrystallization is extremely large.
  • the average strain rate is 0.01 nsec
  • the finish temperature at 0% or more and the finish rolling mill was determined as sooiooso ⁇ .
  • the upper limit of the average strain rate and the workability need not be particularly defined. However, when the average strain rate exceeds 10 / sec, the tool life of the mandrel bar of a mandrel mill, which is a continuous elongation rolling mill, is significantly reduced.
  • the working ratio is preferably at most 10 / sec. Further, when the working ratio exceeds 95%, the generation of flaws becomes remarkable. Therefore, it is preferable to set the working ratio to 95% or less.
  • V ⁇ ( ⁇ ⁇ + S ⁇ ) no M t (a)
  • the mandrel mill which is the continuous elongation mill used in the present invention, is an inner surface regulating tool. Any type that has a mandrel bar restraining means (bar retainer) that can restrain the rear end of the mandrel bar and pull back the mandrel bar after the end of elongation rolling to the mill entry side by passing it back through a row of rolls of holes. Anything can be used.
  • the mandrel bar restraining means has a function of controlling the moving speed of the mandrel bar at a speed independent of the rolling speed of the tube during elongation rolling of the hollow shell.
  • a mandrel mill is used.
  • the sizer or stretch reducer which is a finishing mill, may be of any type as long as it does not use an inner surface regulating tool. Among them, it is preferable to use an extractor-type sizer or a stretch reducer having a function of extracting and separating a pipe from a mandrel bar in a pipe rolled by a continuous stretching rolling mill.
  • transport path 6 may be a vertical feed type such as a roller, a conveyor, etc., instead of a horizontal feed type.
  • the steel pipe is subjected to a recrystallization treatment at a temperature not lower than the A, 3 transformation point before quenching.
  • recrystallization is effectively caused by a combination of the processing strain imparted in the continuous elongation rolling and the finish rolling in the previous step and any of the slow cooling, heat holding or heating methods in this step. Reduce the size of grains.
  • the combination of these two processes is a process unique to the present invention, and is a very effective thermomechanical treatment method for improving the quality of products.
  • the recrystallization treatment is performed by using a transfer device 9 that can gradually cool the steel pipe provided on the exit side of the sizer 18 that is a finish rolling mill, or a heating furnace or heating furnace or a heating furnace provided in the transfer path.
  • C Small cooling method This is a method in which the steel pipe is gradually cooled to a predetermined quenching temperature not lower than the A, 3 transformation point after finishing rolling. In this step, it is necessary to complete recrystallization by the start of quenching and to refine the crystal grains, so that a lower cooling rate is preferred. If the cooling rate is higher than air cooling, coarse crystal grains or a mixed grain structure will result, and the toughness of the steel will decrease. Therefore, the cooling rate was set lower than the air cooling without air cooling.
  • the cooling rate is preferably less than 0.5 t / s.
  • This method is a method in which the steel pipe after finishing rolling is held at 850 to 980 for 10 seconds to 30 minutes. Recrystallization does not occur when the temperature is less than 850 and the holding time is less than 10 seconds. If the temperature exceeds 980 and the holding time exceeds 30 minutes, the crystal grains become coarse. Therefore, as described above, the steel pipe was held at 850 to 980 for 10 seconds to 30 minutes.
  • the soaking includes an operation of soaking the steel pipe in a heating furnace set in the above temperature range lower than the finishing temperature of the steel pipe in the previous step.
  • the above-mentioned heat preservation, heat-up heating or soaking can be carried out by using a generally used type of heat preservation furnace or heating furnace, or a heat preservation and heating combined furnace.
  • the method using such a furnace is a preferable method because it is easy to secure the temperature of the material at the time of quenching.
  • the method using a furnace has an advantage that it is easy to make the temperature uniform in the length direction of the steel pipe and between the production lots, so that the variation in product quality can be greatly reduced.
  • set the temperature to maintain or raise the temperature, and set the heating temperature to a higher temperature to improve the tempering softening resistance by re-dissolving carbides and the like precipitated during elongation rolling and finish rolling, and conversely, lower the temperature. To positively precipitate the precipitates and use the grain boundary pinning effect. Thus, coarsening of the crystal grains can be prevented.
  • the steel pipe is sent to the quenching device 11 via the transfer path 9. During this time, make sure that the temperature of the steel pipe does not drop below the Ar 3 transformation point. That is, the finishing mill 8 and the quenching device 11 are connected in-line via the transfer path 9 and the like. In the quenching device 11, quenching is performed on the steel pipe having a temperature equal to or higher than the Ar 3 transformation point.
  • Quenching requires quenching from a temperature above the Ar 3 transformation point to give the steel tube sufficient strength and toughness.
  • a thick steel pipe needs to be cooled at a sufficiently high speed.
  • the quenched steel pipe is transferred to a tempering furnace 12 which is arranged close to the line after the quenching device 11. That is, the quenching device and the tempering furnace 12 are connected by an in-line via a transfer path.
  • the steel pipe is heated to a predetermined temperature and soaked to perform a tempering treatment.
  • tempering is an important process that determines the performance of the final product, it is necessary to determine the optimal tempering temperature according to the performance of the target and to sufficiently heat the temperature.
  • the variation in the tempering temperature is at most ⁇ 10, preferably ⁇ 5.
  • Example 1 After the tempering process, the steel pipe as a product is finished by performing straightening by a straightening machine 13.
  • Example 1 The production method of the present invention was confirmed by the following two tests. (Test 1)
  • the test billet shall be prepared by injecting molten steel with a chemical composition A corresponding to AISI 154 and a chemical composition B corresponding to AISI 430 shown in Fig. 4 into a square with an inner diameter of 90 mm.
  • a chemical composition A corresponding to AISI 154
  • a chemical composition B corresponding to AISI 430 shown in Fig. 4
  • the billet was removed from the mold.
  • Each Biretsu Bok are both temperature below A rl transformation point shown in FIG. 4, the steel A is 6 0 0, steel B was cooled to 5 0 0. Thereafter, the temperature was kept at 125 ° C. for 1 hour by a heating furnace.
  • a piercing test was performed using an experimental piercing mill (Piersa) to produce a hollow shell. With respect to the obtained hollow shell, the occurrence of cracks was investigated, and the maximum crack depth was measured.
  • Figure 5 shows the measurement results of the maximum crack initiation depth of the hollow shell.
  • the outer diameter and chemical composition of the pellet used in the test are the same as those of the pellet used in Test 1.
  • the billet was removed from the mold and cooled to a temperature below the Ar 3 transformation point. Further, it was kept at 125 ° C. for 1 hour in a heating furnace. Then, under the conditions shown in Figs. 6 and 7, hot press working tests were performed to simulate piercing rolling (piercing), elongation rolling (mandrel milling), and finishing rolling (sizer working).
  • Test Nos. 1 to 18 are examples of the present invention
  • Test Nos. 19 to 24 are comparative examples in which some of the manufacturing conditions are outside the scope of the present invention. This is an example.
  • Tests N 0.25 and N 26 are conventional examples in which a steel pipe was manufactured according to the conventional process shown in FIG.
  • the cooling rate shown in FIG. 7 is the cooling rate when the test material is gradually cooled from the finishing temperature to a temperature equal to or higher than the Ar3 transformation temperature after piercing rolling and finish rolling under the conditions shown in FIG.
  • the tempering temperature under two conditions was set so that the conditions could be compared.
  • the Sc value for evaluating the corrosion resistance was determined in accordance with the provisions of NACE (American Corrosion Association), TM 01 — 77 — 92, and METHOD—B.
  • NACE American Corrosion Association
  • TM 01 — 77 — 92 the average grain cut section length between 1 mm lengths was determined, and the measured value was expressed as the grain size.
  • Figure 8 shows the test results.
  • the comparative examples of Test Nos. 19 to 24 manufactured under the conditions outside the range of the present invention had larger crystal grain diameters and were inferior in toughness and corrosion resistance as compared with the present invention examples. .
  • the reason for this is that the effect of processing and recrystallization to refine crystal grains is smaller than that of the present invention.
  • the seamless steel pipe manufactured by the method of the present invention has mechanical properties, corrosion resistance, and other performances equal to or higher than those of the seamless steel pipe manufactured by the conventional method. It was confirmed that it was excellent. Industrial applicability
  • a seamless steel pipe can be manufactured by a single continuous line from a billet to a product by a simplified manufacturing process and manufacturing equipment under stable manufacturing conditions. Therefore, the seamless steel pipe manufactured by the manufacturing method of the present invention and the manufacturing equipment of the present invention can have excellent performance equal to or higher than that of the conventional product. In addition, since the construction cost and running cost of the manufacturing equipment can be reduced, the manufacturing cost of the seamless steel pipe can be reduced. In addition, seamless pipes can be manufactured in large quantities with excellent productivity. As described above, the method and the equipment for manufacturing a seamless steel pipe of the present invention are extremely suitable for industrially manufacturing a seamless steel pipe.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

明 細 書 継目無鋼管の製造方法およびその製造設備 技術分野
本発明は、 継目無鋼管の製造方法およびその方法を実施するための製 造設備に関する。 さらに詳しくは、 簡素化され、 かつ連続化された製造 工程および製造設備によって、 強度、 靭性および耐食性等の性能に優れ た継目無鋼管を、 生産性よく、 安価に製造する方法およびその方法を実 施するための製造設備に関する。 背景技術
油井管、 ラインパイプ、 熱交換器用管、 配管、 軸受用管などの用途に は、 継目無鋼管が用いられている。 その材質としては、 おもに炭素鋼、 C r、 M oなどの合金成分を含む低合金鋼、 高 C rステンレス鋼などが 対象となる。 これらの継目無鋼管の製造には、 マンネスマン一マン ドレ ルミル方式がよく用いられる。 マンネスマン一マンドレルミル方式によ る継目無鋼管の製造においては、 穿孔圧延工程で厳しい加工が施される こと、 製品に高度な性能が求められることなどの理由から、 一般に、 製 造工程が極めて複雑である。
図 1 に、 マンネスマン一マン ドレルミル方式の製造工程の 1例を示す c 鋼塊から製品に至るまでの間に多くの工程があり、 被加工材に対しては、 様々な加工と加熱、 冷却が繰り返される。 また、 図 1中に点線で示すの は、 工程間における搬送、 一時ス トック等の処理を伴うライン変更であ り、 マンネスマン一マン ドレルミル方式の製造工程では、 ライ ン変更が 何度も行われる。 したがって、 継目無鋼管の製造には、 高度な機能を備 えた多くの設備と多量のエネルギーを必要とする。 そのために、 製造コ ス卜が高くなるという宿命的な問題がある。
製造コス トを安くするためには、 生産性を高くすること、 設備費を下 げること、 ランニングコストを安くすることが必要である。 さらに具体 的には、 製造工程および製造設備の簡素化を図ると同時に、 従来の製品 の品質を超える性能を備えた製品を製造することが、 継目無鑲管の製造 に課せられた課題である。
これらの課題を解決することを目的として、 継目無鋼管の製造に対し て、 様々な技術開発が行われてきた。 特に、 図 1に示した工程の内、 鋼 塊からビレツ トを製造する段階、 熱間での穿孔圧延、 延伸圧延および仕 上げ圧延の段階、 仕上げ圧延後製品の鋼管に所定の性能を付与する熱処 理段階に多くの提案がなされている。
鋼塊から横断面形状が丸形のビレツ トを製造する工程については、 連 続铸造法によって丸形のビレツ トを製造し、 分塊圧延または鍛造工程を 省略する提案がある。 例えば、 特開昭 6 3— 1 5 7 7 0 5号公報には、 連続铸造法によって、 横断面の形状が丸形のビレツ 卜を製造し、 このビ レツ 卜を穿孔後、 延伸圧延する継目無鋼管の製造方法が示されている。 しかし、 ここに提案されている方法は、 穿孔圧延するためのビレツ 卜の 加熱条件および傾斜ロール穿孔圧延機であるピアサ一での穿孔圧延条件 に十分な技術改善が加えられていない。 そのために、 穿孔の際に被穿孔 材に割れが発生しやすい。
また、 工程の連続化の観点から、 「鉄と鋼、 第 7 1年 ( 1 9 8 5 ) 第 8号、 9 6 5〜 9 7 1頁」 には、 連続延伸圧延機であるマン ドレルミノレ と仕上げ圧延機であるエキス トラクティ ングサイザ一とを直結した製造 設備が開示されている。 しかし、 この設備は、 焼入れ温度を確保するこ とを目的として、 連続延伸圧延機と仕上げ圧延機とを直結したにすぎな い。 そのため、 仕上げ圧延後高温のまま焼入れされるので、 結晶粒の粗 大化が起こり、 製品である鋼管の靱性が低下するという問題がある。 仕上げ圧延後の鋼管に、 製品として要求される所定の性能を付与する 熱処理工程についても、 多くの提案がある。 継目無鋼管には、 高い信頼 性および高い性能を備えていることが要求される。 そのため、 図 1に示 したように、 通常、 製品の品質を決定付ける焼入れ、 焼戻し処理からな る熱処理は、 厳密な管理が可能なオフライン方式で行われている。 した がって、 製管ラインとは別に焼入れ装置と焼戻し炉が設置されている。 このようなオフラインでの処理を含む製造方法は、 製造設備の簡素化お よびエネルギーの節減の上で大きな障害となっている。
このため、 近年継目無鋼管の製造において、 仕上げ圧延後の被加工材 が保有する熱を利用して、 オンラインで焼入れを行う、 いわゆる直接焼 入れ法を採用する試みがなされている。 直接焼入れ法を採用すると、 ォ フラインでの焼入れ装置が不要になり、 また製造工程が簡素化されるの で、 大幅なコス トダウンを図ることができるという利点がある。
例えば、 特開昭 5 6— 1 6 6 3 2 4号公報、 同 5 8 - 1 2 0 7 2 0号 公報、 同 5 8 - 2 2 4 1 1 6号公報、 同 5 9— 0 2 04 2 3号公報、 同 6 0 - 0 3 3 3 1 2号公報、 同 6 0— 0 7 5 5 2 3号公報、 同 6 2— 1 5 1 5 2 3号公報等には、 継目無鋼管の製造工程において、 仕上げ圧延 後、 直ちに鋼管を強制的に冷却する直接焼入れ法が開示されている。 し かし、 この直接焼入れ法によって製造された製品については、 従来のォ フラインで焼入れされた製品並みの品質が得られていないのが実状であ る。 すなわち、 従来の方法で製造された製品に比べ、 鋼の結晶粒が粗大 なため、 靭性ゃ耐食性に劣るという問題がある。
鋼の結晶粒を微細化することを目的として、 オンラインで被加工材に 加工熱処理を施す技術が提案されている。 例えば、 特開昭 5 6— 0 0 3 6 2 6号公報には、 粗圧延 (延伸圧延) と仕上げ圧延の中間に冷却と再 加熱の工程を組み込む方法、 特開昭 5 8 - 0 9 1 1 2 3号公報、 同 5 8 - 1 0 4 1 2 0号公報、 同 6 3— 0 1 1 6 2 1号公報および特開平 0 4 - 3 5 8 0 2 3号公報には、 仕上げ圧延後に冷却と再加熱を組み合わせ た処理を行う方法、 特開昭 5 8— 1 1 7 8 3 2号公報には、 圧延途中 ( 延伸圧延と仕上げ圧延の間) および圧延後 (仕上げ圧延) の 2回、 冷却 と再加熱を施す方法が開示されている。 上記のこれらの処理方法は、 ォ ンラインで冷却と再加熱を組み合わせたものであり、 オーステナイ トか らフヱライ 卜への変態およびフェライ トからオーステナイ 卜への逆変態 を合計 2回以上繰り返すことを特徴としている。
上記の方法は、 いずれも、 被処理材の鋼管に対して、 変態が開始もし くは完了する温度域まで強制的な冷却処理を必要とし、 また、 引き続き 逆変態が完了する温度域までの再加熱を必要とする。 したがって、 上記 の方法では、 多くのエネルギーを消費するのでエネルギーコス 卜が高い ことおよび複雑な製造設備となるため製造設備の建設費が高いこととい つた問題点がある。 また、 直接焼入れ法によって製造された継目無鋼管 の機械的性質には、 強度等についてバラツキが大きい。 その理由は、 鋼 管の長さ方向あるいは製造ロッ 卜間で、 焼入れ温度が不均一になるため である。 したがって、 品質の均一な継目無鋼管を、 生産性よく、 大量に 製造することは困難という問題がある。 このように、 上記の方法は、 従 来のオフラインで焼入れする方法に比較して、 設備費およびランニング コス 卜に優位性を見い出すことができないばかり力、、 製品の性能にも劣 るものであった。
一方、 継目無鋼管の製造方法において、 各工程をオフライ ンにして独 立して配置すると、 工程間での処理スピードが相違するために、 ビレツ ト等の被加工材をス トックするスペースを必要とするという問題がある。 例えば、 穿孔圧延用素材であるビレツ 卜を保管するビレツ 卜ヤー ドゃ、 熱処理前の鋼管を一時保管しておく場所等が必要なため、 広いスペース を確保しなければならない。 また、 各々の工程間では素材を搬送する手 段が必要であり、 ク レーン、 トラック等の補助搬送設備等、 多くの搬送 手段を必要とするという問題もある。
以上述べたように、 従来提案されている方法では、 簡素化された製造 工程と製造設備によって、 高い生産性で、 かつ安価な製造コストで、 性 能に優れた継目無鋼管を製造するという要求には応えることができない ( 本発明は、 上記の課題を解決するためになされたもので、 簡素化され た製造工程および製造設備によって、 安い製造コス トで、 生産性よく、 かつ従来の製品より優れた性能を備えた継目無鋼管を製造する方法とそ の製造方法を実施するための製造設備を提供することを目的としている < 発明の開示
本発明は、 簡素化された製造工程および製造設備によって、 安い製造 コストで、 生産性よく、 かつ従来の製品より優れた性能を備えた継目無 鋼管を製造する方法とその製造方法を実施するための製造設備を提供す ることを目的としている。
本発明の製造方法は、 順次連続した下記の①〜⑧を含む工程で構成さ れており、 ビレツ 卜の製造から製品に至るまでの工程が、 オンラインで 結ばれている。
① 連続铸造法によって、 横断面の形状が丸形のビレツ トを製造するェ 程、
② 前記ビレツ トを A r l変態点以下の温度に冷却する工程、
③ A r l変態点以下の温度に冷却された前記ビレツ 卜を穿孔可能な温度 に加熱する工程、
④ 穿孔可能な温度に加熱されたビレツ 卜を 2 0 0ノ秒以下の歪速度で 穿孔圧延し、 中空素管を製造する工程、
⑤ 連続延伸圧延機と仕上げ圧延機とが直結して配置された圧延機によ つて、 前記中空素管に対して、 平均歪速度 0 . 0 1ノ秒以上、 加工 度 1 0 %以上、 仕上がり温度 8 0 0〜 1 0 5 0ての条件で、 延伸圧 延および仕上げ圧延を施すことにより、 鋼管を製造する工程、
⑥ 前記鋼管に対して、 A , 3変態点以上の温度で再結晶処理を施す工程.
⑦ A , 3変態点以上の温度から、 前記鋼管に焼入れ処理を施す工程、
⑧ 焼入れされた前記鋼管に、 焼戻し処理を施す工程。
また、 本発明の方法を実施するための製造設備は、 上記の工程にした がって、 各装置が連続的に連結されて配置されている。
本発明の継目無鍋管の製造方法および製造設備によれば、 安い製造コ ス トで、 生産性よく、 かつ従来の製品より優れた性能を備えた継目無鋼 管を製造することができるので、 工業的な継目無鋼管の製造に対する本 発明の寄与は、 極めて大きい。 図面の簡単な説明
図 1は、 従来の継目無鋼管の製造工程の 1例を示す図である。
図 2は、 本発明の継目無鋼管の製造工程を示す図である。
図 3は、 本発明の継目無鋼管の製造設備の配置を模式的に示す図であ る。
図 4は、 本発明の実施例に用いた試験用ビレツ 卜の化学組成および変 態点を示す図である。
図 5は、 実施例における試験 1で得られた中空素管について、 最大割 れ発生深さを測定した結果を示す図である。
図 6は、 実施例の試験 2における穿孔圧延、 延伸圧延および仕上げ圧 延条件を示す図である。
図 7は、 実施例の試験 2における再結晶処理条件、 焼入れ条件および 焼戻し条件を示す図である。
図 8は、 実施例の試験 2で得られた試験材について、 材料の強度、 結 晶粒度および耐食性を調査した結果を示す図である。 発明を実施するための最良の形態
本発明者らは、 前述の課題を解決するために、 継目無鋼管の製造工程 の簡素化および各工程における最適な処理条件について、 実験研究を重 ねた。 その結果、 本発明者らが得た新たな知見を基に、 課題をすベて解 決することができる、 次の製造方法および製造設備を完成した。
図 2に、 本発明の製造工程を示す。 本発明の基本的な技術思想は、 次 のとおりである。
① ビレツ トは、 横断面の形状が丸形のビレツ トを連続铸造法によって 製造する。 この方法によって、 鋼塊あるいは角形の連続铸造ビレッ トを 素材とする場合に必要な分塊、 圧延あるいは鍛造工程を省略できる。
② 铸造されたビレツ トは、 穿孔圧延のための加熱の前に、 一旦 A r l変 態点以下の温度まで冷却する。 この冷却によって、 次の加熱の際に、 効 果的に結晶粒の微細化を行わせる。 結晶粒の微細化によって、 過酷な穿 孔圧延に対しても被穿孔材に割れが発生することを防止できる。
③ ビレッ トを A r l変態点以下に冷却した後に、 穿孔圧延可能な温度に 加熱する。 A r l変態点以下のできるだけ高い温度で、 ビレツ 卜の加熱を 開始することにより、 铸造時の保有熱を十分に活用する。 この処理によ つて、 加熱炉での加熱に必要なエネルギーを大幅に節約できる。 また、 鋼塊または角形の連続铸造材を素材とする方法に比べて、 保管場所を大 幅に縮小できる。
④ 穿孔圧延には、 傾斜ロール穿孔圧延法を採用する。 この穿孔圧延の 際には、 適正な歪速度を選択することによって、 被穿孔材に割れが発生 することを防止する。
⑤ 穿孔圧延後の連続延伸圧延および仕上げ圧延は、 両者の圧延機を同 一ライン上に直列に近接させて配置する。 この配置によって、 被圧延材 の温度低下を抑制するとともに、 効果的に加工歪みを蓄積させる。 この 対策によって、 次の工程における再結晶処理で、 結晶粒の著しい微細化 を達成できる。
⑥ 仕上げ圧延後、 焼入れに至るまでの間に、 被処理材である鋼管に再 結晶処理を施す。 すなわち、 この搬送の間の徐冷、 あるいは保温、 加熱 によって再結晶処理を行わせる。 前の工程における被加工材への加工歪 の蓄積と本工程での処理によって、 結晶粒の微細化を効果的に達成でき る。 また、 必要に応じて、 この工程に加熱炉を設けて、 鋼管の温度を調 整できるようにする。 鋼管の温度調整によって、 鋼管の長さ方向および 製造口ッ ト間の焼入れ温度のバラツキを小さくできるばかりでなく、 昇 温または降温してその温度をコントロールし、 炭窒化物等の析出をコン トロールできる。 そのため、 同一材質でもその強度をコン トロールする ことが可能で、 また、 再結晶粒の粗大化の抑制も可能である。
⑦ 結晶粒の粒径および析出物量を適正に調整した鍋管を、 A r 3変態点 以下に冷却することなく、 直ちに A r 3変態点以上の温度から焼入れする c
⑧ 引き続き同じライン上に設けた焼戻し炉によって焼戻しを行う。
⑥から⑧までの一連の処理によって、 従来の製品に比べて、 靭性、 耐 食性等の性能を向上させることができる。
本発明は、 上記の基本的な技術思想を実現したものである。
図 3は、 本発明の方法を実施するための製造設備の配置を示す模式図 である。 先に示した図 2および図 3を参照しながら、 本発明の内容を、 各工程別に詳細に説明する。 工程① ビレツ 卜の製造
横断面が丸形の形状をしたビレツ トは、 溶鋼の注入部の横断面の形状 が丸形の铸型を備えた連続铸造機によって製造する。 铸型の内径は、 製 造する鋼管の外径に応じて定まるビレツ トの外径に合わせて選択する。 この条件で所定の外径と長さを備えたビレツ 卜を連続的に铸造する。 図 3中の符号 1が、 溶鋼注入部の横断面の形状が丸形の铸型を備えた 連続铸造機であり、 錄造するビレツ 卜の外径に応じて铸型を交換できる 構造を持っている。 この連続铸造機によって、 製管段取りに応じた外径 の丸形のビレツ トを連続的に铸造する。 なお、 ビレツ 卜铸造部の後には. ビレツ 卜の中心部の凝固がほぼ完了するか、 または完全に完了した後、 ビレツ トを所定の長さに切断するための、 切断機が備えられている。 ま た、 連続铸造機は、 ビレツ トの铸造組織等の改質を図ることを目的とし て、 ビレッ トに軽度の圧下加工を加えるロールスタンドを備えるもので あってもよい。 この場合には、 ロールスタンドは、 ビレッ トの切断手段 の前または後に設けられる。
工程② ビレッ トの細粒化処理 (冷却)
铸造されたビレツ トを、 A r l変態点以下で室温以上の温度に一旦冷却 する。 その理由は、 後の工程の傾斜ロール穿孔圧延機 (以下、 ピアサー と記す) による穿孔工程で受ける過酷な加工に耐える熱間加工性を与え るためである。 ビレッ トの熱間加工性を高めるためには、 ビレッ トの金 属組織を細粒化する必要がある。 本発明では、 オーステナイ ト相からフ ュライ ト相への変態終了温度である A r l変態点以下の温度にビレツ トを 一旦冷却し、 その後ビレツ 卜の穿孔を行うための加熱によって、 金属組 織を細粒化することにした。 この際の冷却温度は、 次の工程におけるビ レツ 卜の加熱に要するエネルギーをできるだけ少なくするために、 A r l 変態点以下で、 A r l変態点に近い温度の方が好ましい。 ただし、 冷却温 度の下限は、 室温以上でも差し支えない。 ビレッ トを冷却するために、 連続铸造機と後の工程のビレツ 卜加熱炉との間には、 ビレツ 卜の温度が A r l変態点以下まで降下するのに必要な距離を設けるか、 または、 ビレ ッ 卜に対する強制的な冷却手段を設けるのがよい。
図 3に示す本工程を構成する装置は、 横送り形式の搬送路 2と、 ビレ ッ ト加熱炉 3で構成された例が示されている。 搬送路 2の長さは、 上記 のように、 铸造後のビレツ 卜の温度が A r l変態点以下に下がるのに必要 な距雜とするのがよい。 工場レイァゥ ト等の制約があり、 前記のような 距雜を設けることができない場合には、 搬送路 2の途中に強制的な冷却 手段を設け、 ビレッ トを冷却する方法で解決する。
工程③ ビレツ 卜の加熱
この工程では、 次の工程の穿孔圧延機であるピアサー 5による穿孔圧 延が可能な温度に、 加熱炉 3でビレツ トを十分に加熱、 均熱する。 最適 な加熱温度は、 材質によって異なり、 穿孔圧延する材料の高温延性、 高 温強度などの特性を考慮して決められる。 加熱温度は、 通常、 1 1 0 0 〜: I 3 0 0ての範囲である。
なお、 ビレッ ト加熱炉 3としては、 ビレッ ト横送り型の炉を用いるの がよい。 また、 加熱炉へのビレツ ト装入充填率を高めることによって、 ビレツ 卜の加熱効率を高めることができるので、 可能な限り ビレツ トの 長さを長くするのがよい。 そのため、 穿孔圧延する際のビレツ 卜長さの 複数倍の長さとする。 この場合には、 ビレッ ト加熱炉 3とピアサ一 5と の間に、 ガス切断機、 ホッ トソ一等の切断機 4 aを設け、 ビレッ トを所 定の長さに切断した後に、 ビレツ トをピアサ一 5に供給する。 また、 切 断の際に、 ビレツ 卜の温度が低下しすぎる場合には、 切断手段の後に、 例えばトンネル型誘導加熱炉等、 短時間でビレッ トを加熱、 昇温できる 補助的な加熱装置 4 bを設けて、 ビレツ 卜の昇温加熱を行うようにして もよい。
工程④ 穿孔圧延
本発明では、 熱間圧延が施されていない铸造状態のビレツ 卜を、 ピア サ一 5で穿孔圧延し、 中空素管を製造する。 穿孔圧延は極めて過酷な加 ェであるため、 穿孔の過程で被穿孔材に疵が発生しやすい。 この対策と して、 本発明の場合では、 ビレツ 卜の金属組織を細粒化することに加え て、 歪速度 2 0 0 秒以下に制限した条件で穿孔することによって疵の 発生を抑えることとしている。 したがって、 本発明では、 穿孔圧延時の 歪速度を 2 0 0ノ秒以下とすることを要件としている。
ここで、 歪速度とは、 次式で定義される速度をいう。
(被加工材の加工前の断面積 被加工材の加工後の断面積) Z加工 に要する時間
時間の単位 : 秒
なお、 熱間加工性の劣る材質については、 できるだけ高い温度で穿孔 するのがよい。 そのために、 ピアサー 5の直前に、 前述のトンネル型の 誘導加熱装置等の補助的な加熱装置 4 bを設けて、 ビレツ 卜の昇温を行 うのが好ましい。
また、 歪速度は、 2 0 0ノ秒以下であればよく、 特にその下限を定め ない。 しかし、 歪速度 0 . 1 /秒未満の場合には、 ピアサー 5のプラグ、 ガイ ドシュ一等の工具寿命が著しく短くなるので、 0 . 1ノ秒以上とす るのが好ましい。
穿孔圧延機としてのピアサー 5は、 傾斜ロール穿孔圧延機であれば、 どのようなタイプのでもよい。 その中でも、 本発明には、 薄肉の穿孔お よび高拡管率の穿孔が可能な交叉型の傾斜ロール穿孔圧延機が、 特に適 している。 その理由は、 1種類の外径の丸形のビレツ 卜力、ら、 径の大き い種々のサイズのホロ一シヱルを穿孔することが可能なため、 必要なビ レツ 卜のサイズの統合集約が容易なためである。
なお、 穿孔圧延工程を終えた際の中空素管の温度は、 材質、 穿孔条件 等によって相違するが、 通常、 1 0 5 0〜 1 2 5 0て程度になる。
工程⑤ 延伸圧延、 仕上げ圧延
中空素管は、 横送り形式の搬送路 6によって、 その終端部に設けられ た連続延伸圧延機 (マンドレルミル) 7の入側テーブルに搬送される。 ここで、 まず、 その管内に、 後端がバ一リテーナ一で拘束されて保持さ れるマンドレルバ一を挿入する。 次に、 連続延伸圧延機 7と仕上げ圧延 機 8によって、 平均歪速度 0 . 0 1ノ秒以上、 加工度 1 0 %以上、 仕上 げ温度 8 0 0〜 1 0 5 0 の条件で、 延伸圧延および仕上げ圧延を行い 所定の寸法の鋼管に仕上げる。
延伸圧延機としては、 複数ロールスタ ンドからなる連続延伸圧延機で あるマン ドレルミル 7が適している。 また、 仕上げ圧延には、 マン ドレ ノレミルと同様に複数ロールス夕ンドからなるサイザ一またはストレッチ レデユーザーを用いる。 これらの加工は、 前の穿孔圧延工程に比べると. 素材の温度が低下しているので、 比較的低い温度での加工となる。 本発 明は、 この比較的低い温度での加工を利用して、 加工熱処理を施すこと を特徴としており、 本工程は、 本発明にとって重要な工程である。 本発 明の場合には、 連続延伸圧延機であるマンドレルミル 7と仕上げ圧延機 であるサイザ一 8 (またはス トレッチレデユーザー) とは、 距離を隔て て配置させずに、 直結型の配置とする。 具体的には、 この 2つの圧延機 は、 連続延伸圧延機で延伸圧延された鋼管の長さ未満の間隔で、 かつ同 一のライン上に直列に配置する。 この配置によって、 連続延伸圧延機で 付与された加工歪みが回復する前に、 直ちに仕上げ圧延機でさらに加工 を加えることができる。 この条件を満たす加工によって、 その後に起こ る鋼管の再結晶粒の微細化を効果的に達成することができる。
すなわち、 同じパススケジュールで製管する場合でも、 連続延伸圧延 機と仕上げ圧延機とが距雜を隔てて独立して配置されている場合には、 再結晶後の結晶粒の粒径が大きく成長する。 本発明が目標としている従 来の製品よりも優れた品質の鋼管を得るためには、 上記のように連続延 伸圧延機と仕上げ圧延機を近接させて、 直列に配置することが不可欠で め
この工程においては、 下記 ( a ) 式で定義される平均歪速度 (V s ) は、 0 . 0 1 Z秒以上としなければならない。 平均歪速度が 0 . 0 1 Z 秒未満の場合には、 各々のパス間で再結晶が起こるため、 歪が蓄積がさ れない。 そのような条件では、 後の工程において、 再結晶による結晶粒 の十分な微細化効果が得られない。 また、 この工程での加工度は、 1 0 %以上とする必要がある。 歪量が加工度 (断面減少率) に換算して 1 0
%未満の場合には、 再結晶が容易に進行しないので、 目標とする結晶粒 の微細化効果が得られないためである。
さらに、 仕上げ圧延後の素材の仕上がり温度は、 8 0 0〜 1 0 5 0て の範囲とする。 この温度範囲の場合には、 その後の再結晶による結晶粒 の微細化効果が著しく大きいためである。
したがって、 本工程においては、 平均歪速度 0 . 0 1ノ秒、 加工度 1
0 %以上および仕上げ圧延機での仕上がり温度 s o o i o s o ^と定 めた。
なお、 平均歪速度および加工度の上限は、 特に定める必要がない。 た だし、 平均歪速度については、 1 0 /秒を超えると連続延伸圧延機であ るマン ドレルミルのマンドレルバ一等の工具寿命が著しく低下するので、
1 0 /秒以下とするのが好ましい。 また、 加工度については 9 5 %を超 えると疵の発生が著しくなるので、 9 5 %以下とするのが好ましい。
V ε = ( Μ ε + S ε ) ノ M t ( a )
ただし、 M £ 連続延伸圧延機での加工歪
S t 仕上げ圧延機での加工歪
M t 中空素管先端が連続延伸圧延機に嚙み込んでか ら仕上げ圧延機を出るまでの所要時間 (秒) 本発明に用いる連続延伸圧延機であるマンドレルミルとしては、 内面 規制工具であるマン ドレルバ一の後端を拘束するとともに、 延伸圧延終 了後にマン ドレルバ一を、 ミル入側に孔型ロール列中を通して引き戻し て循環使用できるマン ドレルバー拘束手段 (バーリテーナ一) を有する タイプであればどのようなものでも使用できる。 その中でも、 前記マン ドレルバ一拘束手段が、 中空素管の延伸圧延中に管の圧延移動速度とは 独立した速度で、 マン ドレルバ一の移動速度を制御可能な機能を備える マンドレルミルを用いるのが好ましい。 また、 仕上げ圧延機であるサイ ザ一またはス トレツチレデューサ一としては、 内面規制工具を用いない ものであればどのようなタイプのものでもよい。 その中でも、 連続延伸 圧延機で圧延された管内のマン ドレルバ一から管を引き出して分離する 機能を備えた、 ェクストラクティ ング型のサイザ一またはス トレツチレ デューサ一を用いるのが好ましい。
なお、 前記搬送路 6は、 横送り形式ではなく、 ローラ一コンベア一等 の縦送り形式でもよい。
工程⑥ 再結晶処理
本発明では、 延伸圧延および仕上げ圧延に引き続き、 焼入れ前に A , 3 変態点以上の温度で、 鋼管に対して再結晶処理を施す。 本工程では、 前 の工程における連続延伸圧延と仕上げ圧延で付与された加工歪と本工程 の徐冷、 保熱あるいは加熱する方法のいずれかとの組み合わせによって、 効果的に再結晶を起こさせ、 結晶粒の微細化を図る。 この 2つの工程の 組み合わせは、 本発明に特有の処理であり、 製品の品質の向上に極めて 有効な加工熱処理法である。
再結晶処理は、 仕上げ圧延機であるサイザ一 8の出側に設けられた鋼 管を徐冷をすることができる搬送装置 9、 あるいは搬送路中に設けられ た保温炉または加熱炉あるいは保温と加熱兼用炉 1 0によって実施する c (徐冷法) 仕上げ圧延終了後、 A , 3変態点以上の所定の焼入れ温度 まで鋼管を徐冷する方法である。 本工程では、 焼入れ開始までに再結晶 を完了させて、 結晶粒を微細化する必要があるので、 冷却速度は遅い方 が好ましい。 冷却速度が空冷以上になると粗大な結晶粒あるいは混粒組 織となり、 鋼の靭性が低下する。 したがって、 冷却速度は、 空冷を含ま ない空冷より遅い冷却速度とした。 冷却速度は、 好ましくは 0 . 5て/ 秒以下である。
本工程で鋼管を徐冷するためには、 例えば、 急冷を避けるため、 仕上 げ圧延機の出口から焼入れ装置の入り口までの間の搬送路 9を、 ガラス ウール等の断熱材料を内張り したカバーで覆う方法、 輻射熱を反射する 鏡面を備えた板を内張りしたカバーで覆う方法等を適用すればよい。
(保温法) この方法は、 仕上げ圧延終了後の鋼管を、 その仕上げ温 度に保持する方法である。 その保持時間が 3 0秒未満の場合には、 再結 晶が起こらない。 また、 3 0分を超えて保持しても再結晶に対する効果 は変わらない。 長時間の保持は、 エネルギーコス トが嵩み、 生産能率も 低下させる。 したがって、 保温法の場合の保持時間は、 3 0秒〜 3 0分 と定めた。
(昇温加熱、 均熱法) この方法は、 仕上げ圧延終了後の鋼管を、 8 5 0〜 9 8 0てで、 1 0秒〜 3 0分間保持する方法である。 温度が 8 5 0て未満、 保持時間が 1 0秒未満では再結晶が起こらない。 また、 温度 が 9 8 0てを超える場合および保持時間が 3 0分を超える場合には、 結 晶粒が粗粒化する。 したがって、 上記のように、 鋼管を 8 5 0〜 9 8 0 てで、 1 0秒〜 3 0分間保持することにした。 なお、 ここで、 均熱には、 前の工程における鋼管の仕上がり温度よりも低い上記の温度範囲に設定 された加熱炉内で、 鋼管を均熱する操作も含まれる。
上記の保温、 昇温加熱または均熱は、 それぞれ一般に用いられている タイプの保温炉または加熱炉、 あるいは保温と加熱の兼用炉を利用する ことによって実施することができる。 このような炉を利用する方法は、 焼入れの際の素材の温度を確保することが容易であるので、 好ましい方 法である。 また、 炉を用いる方法は、 鋼管の長さ方向および製造ロッ ト 間の温度の均一化が容易であるので、 製品の品質のバラツキを大幅に小 さくすることができるという利点がある。 この他、 保温する温度あるい は昇温、 加熱する温度を高めに設定し、 延伸圧延、 仕上げ圧延中に析出 した炭化物等を、 再固溶させて焼戻し軟化抵抗を向上させること、 逆に 低めに設定し、 析出物を積極的に析出させて粒界ピンニング作用によつ て結晶粒の粗大化を防止することもできる。
工程⑦ 焼入れ
再結晶処理の後、 搬送路 9により鋼管を焼入れ装置 1 1へ送る。 この 間、 鋼管の温度が A r 3変態点以下に下がらないようにする。 すなわち、 仕上げ圧延機 8と焼入れ装置 1 1は、 搬送路 9等を介して、 イ ンライ ン で結ばれている。 焼入れ装置 1 1では、 A r 3変態点以上の温度の鋼管に 対して、 焼入れ処理を施す。
焼入れは、 鋼管に十分な強度と靭性を与えるために、 A r 3変態点以上 の温度から急冷することが必要である。 また、 肉厚の厚い鋼管であって も、 十分に速い速度での冷却が必要である。 このような場合には、 焼入 れ装置 1 1 として、 鋼管の内外面を同時に冷却することができる構造の 装置を用いるのが好ましい。
工程⑧ 焼戻し
焼入れ処理された鋼管は、 焼入れ装置 1 1の後のライン上に、 近接し て配置された焼戻し炉 1 2に移される。 すなわち、 焼入れ装置と焼戻し 炉 1 2は、 搬送路を介してィンラインで結ばれている。 焼戻し炉で、 鋼 管を所定の温度に加熱、 均熱することにより、 焼戻し処理を施す。
焼戻しは、 最終製品の性能を決定する重要なプロセスであるため、 目 標の性能に応じて最適な焼戻し温度を定め、 その温度で十分に均熱する ことが必要である。 焼戻し温度のバラツキは大きくても ± 1 0 とし、 好ましくは ± 5てとする。 このような処理によって、 耐カ (Y S ) 、 引 張強さ (T S ) のバラツキを、 目標の強度の ± 5 kgi/inin2 の範囲内に抑 えることができる。
焼戻し処理の後、 矯正機 1 3によって曲がり矯正を行うことによって、 製品としての鋼管に仕上げる。 実施例 本発明の製造方法を、 以下に述べる 2つの試験によって確認した。 (試験 1 )
ビレツ トを穿孔圧延する際の歪速度と、 穿孔後の中空素管に発生する 割れとの関係を調査した。 試験用のビレッ トは、 図 4に示す A I S I 1 5 2 4に相当する化学組成 Aおよび A I S I 4 1 3 0に相当する化 学組成 Bの溶鋼を、 内径 9 0 m mの铸型に注入することによって製造し た。 溶鋼の凝固が完了した後、 直ちにビレツ 卜を铸型から取り出した。 各ビレツ 卜は、 いずれも図 4に示した A r l変態点以下の温度である、 鋼 Aは 6 0 0 、 鋼 Bは 5 0 0 まで冷却した。 その後、 加熱炉によって, 1 2 5 0 の温度に 1時間保持した。 次に、 実験用の穿孔圧延機 (ピア サ一) によって穿孔試験を行い、 中空素管を作製した。 得られた中空素 管について、 割れの発生を調査し、 最大割れ深さを測定した。
図 5に、 中空素管の最大割れ発生深さの測定結果を示した。
図 5から明らかなように、 鋼 Aおよび鋼 Bの両者とも、 穿孔圧延の歪 速度が 2 0 0 /秒以下の条件では、 中空素管に割れが発生しなかった。 これに対して、 歪速度が 2 0 0 /秒を超える場合には、 割れが発生した c したがって、 铸造後のビレツ トを A r l変態点以下の温度に一旦冷却し、 さらに穿孔圧延可能な温度に加熱して穿孔圧延する場合には、 穿孔圧延 の際の歪速度を 2 0 0 Z秒以下にしなければならないことを確認した。
(試験 2 )
試験に用いたビレツ 卜の外径および化学組成は、 試験 1に用いたビレ ッ 卜のそれと同じである。 凝固完了後、 直ちにビレツ トを铸型から取り 出し、 A r 3変態点以下の温度まで冷却した。 さらに、 加熱炉で 1 2 5 0 てに、 1時間保持した。 その後、 図 6および図 7に示す条件で、 穿孔圧 延 (ピアサ一加工) 、 延伸圧延 (マン ドレルミル加工) および仕上げ圧 延 (サイザ一加工) をシミュレー トした熱間プレス加工試験を行った。 図 6および図 7に示したように、 試験 N o . 1〜 1 8は本発明例、 試 験 N o. 1 9〜 2 4は、 製造条件の一部が本発明の範囲外である比較例 である。 試験 N 0. 2 5および 2 6は、 図 1に示した従来の工程に従つ て鋼管を製造した場合の従来例である。 従来例については、 ビレッ トの ピアサー加工の際の歪速度が本発明の範囲より少し大きく、 かつ延伸圧 延と仕上げ圧延の加工シミュレーションが連続的には実施されていない c また、 仕上げ圧延から焼入れの間で試験材は、 常温まで冷却されている c 本発明例、 比較例および従来例いずれについても、 鋼 Aおよび鋼 Bの 2 つに試験材を対象に試験した。 なお、 図 7に示した冷却速度は、 図 6の 条件で穿孔圧延および仕上げ圧延を行った後、 仕上げ温度から A r3変態 温度以上の温度まで試験材を徐冷した場合の冷却速度である。 また、 鋼 Aと鑲 Bに同一の熱処理を施した場合、 鋼 Aと鋼 Bで試験材の強度が相 違し、 耐カ、 靭性等の比較ができないので、 試験材の強度がほぼ同じ条 件で比較できるように、 2条件の焼戻し温度を設定した。
加工後の試験材について、 材料の強度、 旧オーステナイ 卜相の結晶粒 径、 靭性 ( V T r s ) および耐食性 ( S c値) を調査した。
また、 耐食性を評価する S c値は、 N A C E (米国腐食協会) 一 TM 0 1 — 7 7— 9 2、 ME T H O D— Bの規定に従って求めた。 旧オース テナイ ト結晶粒度は、 長さ 1 mmの間の平均結晶粒切断切片長さを求め、 測定値は結晶粒度として表示した。
図 8に試験結果を示した。
まず、 従来例の試験 N o. 2 5、 2 6を基準にして、 本発明例との比 較を行う。 焼戻し温度 6 0 0 の鋼 Aについては、 本発明例の試験 N 0. 1〜 6は、 従来例の試験 N 0. 2 5に比べて、 結晶粒の粒径が小さく、 靭性、 耐食性ともに従来例と同等またはそれ以上の性能が得られた。 ま た、 焼戻し温度 7 2 0 の鋼 Bについても、 本発明例の試験 N o. 7〜 1 8と従来例の試験 N o. 2 6を比較すると、 鋼 Aの場合と同様な結果 が得られた。
また、 本発明の範囲外の条件で製造された試験 N o . 1 9〜 2 4の比 較例は、 本発明例に比べて、 結晶粒の粒径が大きく、 靭性および耐食性 が劣っていた。 その原因は、 本発明例に比べて、 加工と再結晶による結 晶粒の微細化効果が小さいためである。
以上の試験結果から明かなように、 本発明の方法によって製造された 継目無鋼管は、 機械的性質、 耐食性などの性能が、 従来法によって製造 された継目無鋼管と同等またはそれ以上で、 極めて優れていることが確 認された。 産業上の利用の可能性
本発明によれば、 簡素化された製造工程および製造設備によって、 ビ レツ 卜から製品まで連続した 1連のラインで、 かつ安定した製造条件で 継目無鋼管を製造することができる。 したがって、 本発明の製造方法お よび本発明の製造設備によって製造された継目無鋼管は、 従来品と同等 またはそれ以上の優れた性能を備えることができる。 また、 製造設備の 建設費およびランニングコス トを低減することができるため、 継目無鋼 管の製造コス トを低くすることができる。 さらに、 優れた生産性で、 大 量に継目無鋼管を製造することができる。 このように、 本発明の継目無 鋼管の製造方法および製造設備は、 工業的な継目無鋼管の製造に極めて 好適である。

Claims

請 求 の 範 囲
1 . 順次連続した下記の①〜⑧を含む工程からなることを特徴とする継 目無镅管の製造方法。
① 連続铸造法によって、 横断面の形状が丸形のビレツ トを製造するェ 程、
② 前記ビレツ 卜を A f l変態点以下の温度に冷却する工程、
③ A r l変態点以下の温度に冷却された前記ビレツ 卜を穿孔可能な温度 に加熱する工程、
④ 穿孔可能な温度に加熱されたビレッ トを 2 0 0ノ秒以下の歪速度で 穿孔圧延し、 中空素管を製造する工程、
⑤ 連続延伸圧延機と仕上げ圧延機とが直結して配置された圧延機によ つて、 前記中空素管に対して、 平均歪速度 0 . 0 1ノ秒以上、 加工 度 1 0 %以上、 仕上がり温度 8 0 0〜 1 0 5 0 の条件で、 延伸圧 延および仕上げ圧延を施すことにより、 鋼管を製造する工程、
⑥ 前記鋼管に対して、 変態点以上の温度で再結晶処理を施す工程、
⑦ A , 3変態点以上の温度から、 前記鋼管に焼入れ処理を施す工程、
⑧ 焼入れされた前記鋼管に、 焼戻し処理を施す工程。
2 . 再結晶処理を施す工程⑥が、 工程⑤で製造された鋼管を、 A , 3変態 点以上の温度まで、 空冷を含まない空冷より遅い冷却速度で冷却する処 理であることを特徴とする請求の範囲 1に記載の継目無鋼管の製造方法。
3 . 再結晶処理を施す工程⑥が、 工程⑤で製造された鋼管を、 工程⑤の 仕上がり温度に、 3 0秒〜 3 0分間、 保持する処理であることを特徴と する請求の範囲 1 に記載の継目無鋼管の製造方法。
4 . 再結晶処理を施す工程⑥が、 工程⑤で製造された鋼管を、 温度 8 5 0〜 9 8 0てに、 1 0秒〜 3 0分間、 保持または再加熱保持する処理で あることを特徴とする請求の範囲 1に記載の継目無鋼管の製造方法。
5 . 再結晶処理を施す工程⑥の後、 再結晶処理を施した鋼管を A 変態 点以上の温度まで冷却する処理を含むことを特徴とする請求の範囲 3ま たは 4に記載の継目無鋼管の製造方法。
6 . 下記の a ) 〜 g ) の装置が順次連続して配置され、 かつ下記 ( 1 ) 〜 ( 3 ) の条件を満足することを特徴とする請求の範囲 1または 2に記 載の方法を実施するための継目無鋼管の製造設備。
a ) 横断面の形状が丸形のビレツ トを製造する連続铸造機、
b ) 铸造されたビレツ トを加熱するビレツ ト加熱炉'、
c ) 加熱されたビレツ トを中空素管に穿孔圧延する傾斜ロール穿孔圧延 機、
d ) 中空素管を延伸圧延する連続延伸圧延機、
e ) 延伸圧延された中空素管を、 所定の寸法の鋼管に仕上げる仕上げ圧 延機、
f ) 仕上げ圧延された鋼管をィンライン中で焼入れ処理する焼入れ装置 および、
g ) 焼入れ処理された鋼管をィンライン中で焼戻し処理する焼戻し炉。
( 1 ) 連続铸造機とビレツ ト加熱炉の間には、 ビレツ 卜の温度が A r l変 態点以下で室温以上の温度域にある間に、 ビレツ 卜加熱炉へビレツ トを 装入することができる距離を有すること、 またはビレツ 卜の温度を A r l 変態点以下、 室温以上の温度域に強制的に冷却することができる冷却手 段を備えていること、
( 2 ) 連続延伸圧延機と仕上げ圧延機は、 その間隔が連続延伸圧延機で 延伸圧延された鋼管の長さ未満であり、 かつ同一ライン上に直列に配置 されていること、
( 3 ) 仕上げ圧延機と焼入れ装置の間は、 仕上げ圧延された鋼管を空冷 を含まない空冷より遅い冷却速度で徐冷することができる手段を備えた 搬送路で結ばれていること。
7 . 下記の a ) 〜h ) の装置が順次連続して配置され、 かつ下記 ( 1 ) 〜 ( 3 ) の条件を満足することを特徴とする請求の範囲 3、 4または 5 に記載の方法を実施するための継目無鋼管の製造設備。
a ) 横断面の形状が丸形のビレツ 卜を製造する連続铸造機、
b ) 铸造されたビレツ トを加熱するビレツ ト加熱炉、
c ) 加熱されたビレツ トを中空素管に穿孔圧延する傾斜ロール穿孔圧延 機、
d ) 中空素管を延伸圧延する連続延伸圧延機、
e ) 延伸圧延された中空素管を、 所定の寸法の鋼管に仕上げる仕上げ圧 延機、
f ) 仕上げ圧延された鋼管を、 仕上がり温度に保持する保熱炉、 または 所定の温度に保持または加熱後保持する加熱炉、
g ) 仕上げ圧延された鋼管をィンライン中で焼入れ処理する焼入れ装置 および
) 焼入れ処理された鋼管をィンライン中で焼戻し処理する焼戻し炉。
( 1 ) 連続铸造機とビレツ ト加熱炉の間には、 ビレツ 卜の温度が A r l変 態点以下で室温以上の温度域にある間に、 ビレツ ト加熱炉へビレツ 卜を 装入することができる距離を有すること、 またはビレツ 卜の温度を Α , , 変態点以下、 室温以上の温度域に強制的に冷却することができる冷却手 段を備えていること、
( 2 ) 連続延伸圧延機と仕上げ圧延機は、 その間隔が連続延伸圧延機で 延伸圧延された鋼管の長さ未満であり、 かつ同一ライン上に直列に配置 されていること、
( 3 ) 仕上げ圧延機と焼入れ装置の間は、 仕上げ圧延された鋼管をその 温度に保持する保熱炉または所定の温度に加熱保持する加熱炉を備えた 搬送路で結ばれていること。
8 . 請求の範囲 6または 7に記載の継目無鋼管の製造設備であって、 傾 斜ロール穿孔圧延機とビレツ 卜加熱炉の間は、 穿孔可能な温度に加熱さ れたビレツ トを所定の長さに切断することができるビレツ ト切断手段を 備えた搬送路で結ばれていることを特徴とする製造設備。
9 . 請求の範囲 6、 7または 8のいずれかに記載の継目無鋼管の製造設 備であって、 ビレッ ト切断手段と傾斜ロール穿孔圧延機との間に、 ビレ ッ ト再加熱手段を備えていることを特徴とする製造設備。
PCT/JP1995/002155 1994-10-20 1995-10-20 Procede de production de tubes d'acier sans soudure et materiel de production afferent WO1996012574A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP95934852A EP0787541B1 (en) 1994-10-20 1995-10-20 Method of manufacturing seamless steel pipes and manufacturing equipment therefor
DE69525171T DE69525171T2 (de) 1994-10-20 1995-10-20 Verfahren zum herstellen nahtloser stahlrohre und produktionsanlage dafür
MX9702792A MX9702792A (es) 1994-10-20 1995-10-20 Procedimiento para fabricar tubos de acero sin costura.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6/255217 1994-10-20
JP25521794 1994-10-20

Publications (1)

Publication Number Publication Date
WO1996012574A1 true WO1996012574A1 (fr) 1996-05-02

Family

ID=17275656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/002155 WO1996012574A1 (fr) 1994-10-20 1995-10-20 Procede de production de tubes d'acier sans soudure et materiel de production afferent

Country Status (6)

Country Link
US (1) US5873960A (ja)
EP (1) EP0787541B1 (ja)
CN (1) CN1064276C (ja)
DE (1) DE69525171T2 (ja)
MX (1) MX9702792A (ja)
WO (1) WO1996012574A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997039843A1 (fr) * 1996-04-19 1997-10-30 Sumitomo Metal Industries, Ltd. Procede et installation pour fabriquer des tubes sans soudure
WO2010122847A1 (ja) * 2009-04-20 2010-10-28 住友金属工業株式会社 継目無鋼管の製造方法およびその製造設備
CN102247989A (zh) * 2011-06-15 2011-11-23 太原磬泓机电设备有限公司 一种四辊行星热轧管机的生产工艺
US8361256B2 (en) 2005-07-25 2013-01-29 Sumitomo Metal Industries, Ltd. Method for producing seamless steel pipe
US8601852B2 (en) 2006-03-28 2013-12-10 Nippon Steel & Sumitomo Metal Corporation Method of manufacturing seamless pipe and tube
CN103537490A (zh) * 2013-10-24 2014-01-29 天津工业大学 用于33Mn2V型热轧无缝钢管穿孔组织预测的方法
CN106216950A (zh) * 2016-07-29 2016-12-14 新昌县长城空调部件有限公司 燃气厨具用管路制造工艺
JP2019178422A (ja) * 2013-12-11 2019-10-17 ザ・ボーイング・カンパニーThe Boeing Company 性能強化された金属材料の製造方法
CN113245856A (zh) * 2021-05-06 2021-08-13 张家港保税区恒隆钢管有限公司 一种u型换热管的制造工艺

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3853428B2 (ja) * 1995-08-25 2006-12-06 Jfeスチール株式会社 鋼管の絞り圧延方法および設備
US7686897B2 (en) * 2002-07-15 2010-03-30 Sumitomo Metal Industries, Ltd. Martensitic stainless steel seamless pipe and a manufacturing method thereof
DE10315418B3 (de) * 2003-04-04 2004-07-22 Thyssenkrupp Automotive Ag Verfahren zur thermomechanischen Behandlung von Stahl
WO2004092423A1 (es) * 2003-04-16 2004-10-28 Tubos De Acero De Mexico, S.A. Procedimiento de fabricacion de collarin para el tendido de linea de conduccion submarina y producto asi obtenido
BRPI0415653B1 (pt) * 2003-10-20 2017-04-11 Jfe Steel Corp artigos tubulares para petróleo sem costura expansíveis do tipo octg e método de fabricação dos mesmos
AR047467A1 (es) 2004-01-30 2006-01-18 Sumitomo Metal Ind Tubo de acero sin costura para pozos petroliferos y procedimiento para fabricarlo
UA90116C2 (ru) * 2004-10-25 2010-04-12 В & М Дойчленд Гмбх Способ изготовления бесшовной стальной трубы
CN101708511B (zh) * 2007-12-13 2011-09-28 攀钢集团四川长城特殊钢有限责任公司 纯钛无缝管的制造方法
DE102010052084B3 (de) * 2010-11-16 2012-02-16 V&M Deutschland Gmbh Verfahren zur wirtschaftlichen Herstellung von nahtlos warmgewalzten Rohren in Rohrkontiwalzwerken
CN102179681B (zh) * 2011-03-30 2012-10-17 盛泽能源技术有限公司 一种采用连铸坯周期锻轧毛坯的管模制造工艺
CN102962655A (zh) * 2012-11-26 2013-03-13 衡阳华菱钢管有限公司 一种水压冲孔瓶坯成形管模毛坯的方法
JP5907083B2 (ja) * 2013-01-31 2016-04-20 Jfeスチール株式会社 靭性に優れた継目無鋼管の製造方法及び製造設備
CN103464507B (zh) * 2013-07-25 2015-11-11 攀钢集团成都钢钒有限公司 一种生产高精度奥氏体无缝钢管的方法
CN103736734B (zh) * 2013-12-30 2015-09-30 江苏常宝钢管股份有限公司 热轧CPE机组制备高铬合金超级13Cr无缝钢管的工艺
CN113909305B (zh) * 2021-09-22 2024-09-06 江苏天淮钢管有限公司 530毫米大口径无缝钢管热连轧生产方法
CN115502212B (zh) * 2022-08-31 2023-02-28 中国科学院金属研究所 一种航空发动机减震器限位杆用gh2150合金无缝管及轧制方法
CN116000574B (zh) * 2023-01-03 2024-09-27 张家港广大特材股份有限公司 一种薄壁筒型毛坯的制造方法及薄壁筒型毛坯及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763633A (en) * 1980-10-01 1982-04-17 Nippon Kokan Kk <Nkk> In-line hardening method for steel pipe
JPS63281705A (ja) * 1987-05-12 1988-11-18 Kawasaki Steel Corp マンネスマンピアサ穿孔圧延方法
JPH0234752A (ja) * 1988-07-21 1990-02-05 Sumitomo Metal Ind Ltd 純チタンまたはチタン合金製継目無管の製造方法
JPH04107213A (ja) * 1990-08-29 1992-04-08 Nippon Steel Corp 空気焼入れ性シームレス鋼管のインライン軟化処理法
JPH05202417A (ja) * 1992-01-27 1993-08-10 Kobe Steel Ltd 超高強度ばね用鋼線の製造方法
JPH06172858A (ja) * 1992-12-10 1994-06-21 Nippon Steel Corp 耐ssc性の優れた高強度高靭性シームレス鋼管の製造法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563626A (en) * 1979-06-25 1981-01-14 Kawasaki Steel Corp Manufacture of seamless steel pipe excellent in toughness
JPS56166324A (en) * 1980-05-23 1981-12-21 Kawasaki Steel Corp Production of high-strength seamless steel pipe of good weldability for middle temperature region
JPS5891123A (ja) * 1981-11-27 1983-05-31 Kawasaki Steel Corp 溶接部靭性に優れた80kg/mm↑2級構造用継目無鋼管の製造方法
JPS58104120A (ja) * 1981-12-17 1983-06-21 Kawasaki Steel Corp 細粒組織を有する高張力鋼材の製造方法
JPS58117832A (ja) * 1982-01-07 1983-07-13 Nippon Steel Corp 強度と靭性のすぐれた低炭素当量成分系継目無鋼管の製造法
JPS58120720A (ja) * 1982-01-11 1983-07-18 Kawasaki Steel Corp 調質鋼の製造方法
JPS58224116A (ja) * 1982-06-21 1983-12-26 Kawasaki Steel Corp 耐硫化物応力腐食割れ性にすぐれた継目無鋼管の製造方法
JPS5920423A (ja) * 1982-07-27 1984-02-02 Kawasaki Steel Corp 低温靭性の優れた80kgf/mm2級継目無鋼管の製造方法
JPS59150019A (ja) * 1983-02-14 1984-08-28 Sumitomo Metal Ind Ltd 高靭性継目無鋼管の製造法
JPS6033312A (ja) * 1983-07-29 1985-02-20 Kawasaki Steel Corp 0.6%耐力80Kg/mm↑2以上の高強度油井管の製造方法
JPS6075523A (ja) * 1983-09-30 1985-04-27 Kawasaki Steel Corp 高強度油井管用継目無鋼管の製造方法
JPS61238917A (ja) * 1985-04-15 1986-10-24 Kawasaki Steel Corp 低合金調質型高張力継目無鋼管の製造方法
JPS6254021A (ja) * 1985-05-23 1987-03-09 Kawasaki Steel Corp 耐硫化物応力腐食割れ性に優れる高強度継目無鋼管の製造方法
JPS62151523A (ja) * 1985-12-25 1987-07-06 Kawasaki Steel Corp 低降伏比シ−ムレス調質ラインパイプの製造方法
JPS6311621A (ja) * 1986-06-30 1988-01-19 Kawasaki Steel Corp シ−ムレス鋼管の圧延のオンラインにおける熱処理方法ならびにその装置
JPS63157705A (ja) * 1986-12-19 1988-06-30 Kawasaki Steel Corp 傾斜圧延機による継目無管の製造方法
JPH0250913A (ja) * 1988-08-11 1990-02-20 Nippon Steel Corp 細粒化組織の低合金高張力シームレス鋼管の製造法
IT1238224B (it) * 1989-11-30 1993-07-12 Dalmine S R L C Processo perfezionato di laminazione a caldo di tubi senza saldatura con preventiva riduzione degli sbozzati forati
US5186769A (en) * 1990-08-16 1993-02-16 The Algoma Steel Corporation, Limited Seamless steel tube manufacture
JP3015924B2 (ja) * 1991-06-04 2000-03-06 新日本製鐵株式会社 強靱鋼の製造方法
JP3288457B2 (ja) * 1992-02-28 2002-06-04 株式会社日立製作所 金めっき液及び金めっき方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763633A (en) * 1980-10-01 1982-04-17 Nippon Kokan Kk <Nkk> In-line hardening method for steel pipe
JPS63281705A (ja) * 1987-05-12 1988-11-18 Kawasaki Steel Corp マンネスマンピアサ穿孔圧延方法
JPH0234752A (ja) * 1988-07-21 1990-02-05 Sumitomo Metal Ind Ltd 純チタンまたはチタン合金製継目無管の製造方法
JPH04107213A (ja) * 1990-08-29 1992-04-08 Nippon Steel Corp 空気焼入れ性シームレス鋼管のインライン軟化処理法
JPH05202417A (ja) * 1992-01-27 1993-08-10 Kobe Steel Ltd 超高強度ばね用鋼線の製造方法
JPH06172858A (ja) * 1992-12-10 1994-06-21 Nippon Steel Corp 耐ssc性の優れた高強度高靭性シームレス鋼管の製造法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0787541A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6024808A (en) * 1996-04-19 2000-02-15 Sumitomo Metal Industries, Ltd. Seamless steel pipe manufacturing method and equipment
CN1127383C (zh) * 1996-04-19 2003-11-12 住友金属工业株式会社 无缝钢管的制造方法及制造设备
WO1997039843A1 (fr) * 1996-04-19 1997-10-30 Sumitomo Metal Industries, Ltd. Procede et installation pour fabriquer des tubes sans soudure
US8361256B2 (en) 2005-07-25 2013-01-29 Sumitomo Metal Industries, Ltd. Method for producing seamless steel pipe
US8601852B2 (en) 2006-03-28 2013-12-10 Nippon Steel & Sumitomo Metal Corporation Method of manufacturing seamless pipe and tube
JP2010247218A (ja) * 2009-04-20 2010-11-04 Sumitomo Metal Ind Ltd 継目無鋼管の製造方法およびその製造設備
CN102405114A (zh) * 2009-04-20 2012-04-04 住友金属工业株式会社 无缝钢管的制造方法及其制造设备
WO2010122847A1 (ja) * 2009-04-20 2010-10-28 住友金属工業株式会社 継目無鋼管の製造方法およびその製造設備
CN102247989A (zh) * 2011-06-15 2011-11-23 太原磬泓机电设备有限公司 一种四辊行星热轧管机的生产工艺
CN103537490A (zh) * 2013-10-24 2014-01-29 天津工业大学 用于33Mn2V型热轧无缝钢管穿孔组织预测的方法
JP2019178422A (ja) * 2013-12-11 2019-10-17 ザ・ボーイング・カンパニーThe Boeing Company 性能強化された金属材料の製造方法
US11389859B2 (en) 2013-12-11 2022-07-19 The Boeing Company Method for production of performance enhanced metallic materials
CN106216950A (zh) * 2016-07-29 2016-12-14 新昌县长城空调部件有限公司 燃气厨具用管路制造工艺
CN106216950B (zh) * 2016-07-29 2018-11-16 新昌县长城空调部件股份有限公司 燃气厨具用管路制造工艺
CN113245856A (zh) * 2021-05-06 2021-08-13 张家港保税区恒隆钢管有限公司 一种u型换热管的制造工艺
CN113245856B (zh) * 2021-05-06 2023-03-14 张家港保税区恒隆钢管有限公司 一种u型换热管的制造工艺

Also Published As

Publication number Publication date
EP0787541A1 (en) 1997-08-06
US5873960A (en) 1999-02-23
MX9702792A (es) 1998-02-28
EP0787541B1 (en) 2002-01-23
CN1064276C (zh) 2001-04-11
DE69525171T2 (de) 2002-10-02
CN1161010A (zh) 1997-10-01
DE69525171D1 (de) 2002-03-14
EP0787541A4 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
WO1996012574A1 (fr) Procede de production de tubes d&#39;acier sans soudure et materiel de production afferent
JP3855300B2 (ja) 継目無鋼管の製造方法および製造設備
EP2006396B1 (en) Process for production of seamless pipes
MXPA97002792A (es) Procedimiento para fabricar tubos de acero sin costura
WO1996036742A1 (fr) Procede de production de tubes d&#39;acier sans soudure a haute resistance, non susceptibles de fissuration par les composes soufres
CA2217309C (en) Method of manufacturing hot-worked elongated products, in particular bar or pipe, from high-alloy or hypereutectoid steel
CN114015847A (zh) 采用控轧控冷工艺生产一种直接切削用45钢的方法
CN112342350B (zh) 一种高强韧性厚规格钢板的生产方法
US5186769A (en) Seamless steel tube manufacture
CN111136106A (zh) 一种连铸坯不经过加热炉直接轧制生产细晶钢的方法
JP3458485B2 (ja) 継目無鋼管の製造方法およびその方法を実施するための製造設備列
JPH01247532A (ja) スプリング用継目無鋼管の製造方法
JP2844924B2 (ja) 継目無鋼管の製造方法およびその製造設備
JP2844924B6 (ja) 継目無鋼管の製造方法およびその製造設備
CN113652601A (zh) 一种同圈强度波动差较小且表面氧化铁皮厚度10μm以上的高速线材螺纹钢及其生产方法
CN113695386A (zh) 一种同圈强度波动差不大于20Mpa的HRB400E高速线材螺纹钢及其生产方法
JP3081729B2 (ja) 継目無鋼管の加工熱処理における温度制御方法
US5226978A (en) Steel tube alloy
JPH06240357A (ja) 高靭性・高強度鋼管の製造方法
CN219253673U (zh) 特钢棒材智能化余热在线热处理装置
CN115491592B (zh) 一种20MnCr5齿轮钢及其轧制方法
CN114589203B (zh) 一种适用于低温的09MnNiD无缝钢管的制备方法
CN114888075B (zh) 一种钎具用80Mn14Ti钎芯的轧制方法
RU2320733C1 (ru) Способ производства круглого профильного проката для тел качения подшипников
JP3407704B2 (ja) 高炭素継目無鋼管の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95195732.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP MX US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 08809641

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: PA/a/1997/002792

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1995934852

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1995934852

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995934852

Country of ref document: EP