WO2010122847A1 - 継目無鋼管の製造方法およびその製造設備 - Google Patents

継目無鋼管の製造方法およびその製造設備 Download PDF

Info

Publication number
WO2010122847A1
WO2010122847A1 PCT/JP2010/053824 JP2010053824W WO2010122847A1 WO 2010122847 A1 WO2010122847 A1 WO 2010122847A1 JP 2010053824 W JP2010053824 W JP 2010053824W WO 2010122847 A1 WO2010122847 A1 WO 2010122847A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow shell
steel pipe
constant diameter
rolling
mill
Prior art date
Application number
PCT/JP2010/053824
Other languages
English (en)
French (fr)
Inventor
祐輔 千代
Original Assignee
住友金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属工業株式会社 filed Critical 住友金属工業株式会社
Priority to CN2010800174107A priority Critical patent/CN102405114A/zh
Priority to EP10766906.1A priority patent/EP2422892A4/en
Priority to BRPI1009482A priority patent/BRPI1009482A2/pt
Publication of WO2010122847A1 publication Critical patent/WO2010122847A1/ja
Priority to US13/247,120 priority patent/US20120017662A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B23/00Tube-rolling not restricted to methods provided for in only one of groups B21B17/00, B21B19/00, B21B21/00, e.g. combined processes planetary tube rolling, auxiliary arrangements, e.g. lubricating, special tube blanks, continuous casting combined with tube rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/20Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • B21B37/76Cooling control on the run-out table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/006Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes

Definitions

  • the present invention relates to a method of manufacturing a seamless steel pipe by the Mannesmann pipe manufacturing method and a seamless steel pipe manufacturing facility suitable for carrying out the manufacturing method.
  • Seamless steel pipes are used for oil well pipes that require high strength and excellent toughness, and can be manufactured by the Mannesmann pipe manufacturing method.
  • This pipe making process consists of the following steps: (1) A billet heated to a predetermined temperature is pierced and rolled by a piercing machine (piercer) and formed into a hollow shell (hollow shell); (2) The hollow shell is stretch-rolled by a stretching mill (eg, mandrel mill); (3) Using a constant diameter rolling mill (eg, sizer, stretch reducer), the stretched hollow shell is constant-rolled to a predetermined outer diameter and thickness; (4) The seamless steel pipe obtained by constant diameter rolling is air-cooled in a cooling bed, or the seamless steel pipe is quenched and tempered.
  • a stretching mill eg, mandrel mill
  • a constant diameter rolling mill eg, sizer, stretch reducer
  • a manufacturing facility that employs the Mannesmann pipe manufacturing method performs constant diameter rolling by heating a stretched hollow shell in a reheating furnace. Moreover, when quenching a steel pipe that has been rolled with a constant diameter, the steel pipe is heated and quenched in a quenching furnace.
  • the heated billet is pierced from the top part side to the bottom part side by the plug, so that heat radiation is significant on the top part side that is drilled first and becomes tubular.
  • the hollow shell after piercing and rolling has a low temperature on the top side and a high temperature on the bottom side.
  • This non-uniform longitudinal temperature distribution does not reheat the material to be rolled, and therefore occurs in the same tendency even in a hollow shell after drawing and rolling, and also in a steel pipe after constant diameter rolling. Thereby, nonuniform temperature distribution appears in the longitudinal direction in the steel pipe after constant diameter rolling.
  • the outer diameter of the steel pipe becomes non-uniform in the longitudinal direction after cooling because the amount of thermal shrinkage accompanying cooling differs in the longitudinal direction. Also, when quenching a steel pipe after constant diameter rolling, if the temperature distribution in the longitudinal direction is non-uniform, the degree of quenching differs in the longitudinal direction, so the mechanical properties of the steel pipe become non-uniform in the longitudinal direction after quenching. .
  • Conventional techniques related to temperature control of a material to be rolled when manufacturing a steel pipe include the following.
  • Patent Document 1 discloses a technique for preventing an excessive decrease in the temperature of a material to be rolled in the process of passing through a continuous rolling mill in a multi-stage continuous rolling mill used in the production of seamless steel pipes.
  • the technique disclosed in this document is to arrange a reheating furnace at the entry side and intermediate part of the continuous rolling mill, and at the entry side and exit side of the intermediate reheating furnace arranged at the intermediate part of the continuous rolling mill, and continuous rolling.
  • a thermometer is arranged on the exit side of the machine, and the temperature of the intermediate reheating furnace is controlled based on the steel pipe temperature measured by each thermometer.
  • Patent Document 2 discloses a technique for preventing a thickness deviation from occurring due to a temperature decrease in the circumferential direction of a steel pipe in a stretch reducer used in the manufacture of an electric resistance steel pipe.
  • the technique disclosed in this document is that a plurality of induction heating coils are arranged in series on the entrance side of the stretch reducer, and a thermometer is arranged on the exit side of the induction heating coil and the exit side of the stretch reducer.
  • the power supply amount to the induction heating coil is adjusted based on the temperature measurement value in the circumferential direction of the steel pipe.
  • Patent Document 3 discloses a technique for suppressing the occurrence of bending when a hot-formed square steel pipe or round steel pipe is cooled.
  • a reheating furnace is disposed in front of the forming means for hot forming the steel pipe into a predetermined shape and a water discharge means is disposed in the subsequent stage of the forming means.
  • the steel pipe is uniformly cooled by discharging water from all directions on the outer periphery by the water discharge means.
  • Patent Documents 1 to 3 above re-heat the steel pipe before the constant diameter rolling to make the temperature uniform, so that the longitudinal temperature distribution is not uniform in the steel pipe after the constant diameter rolling. The situation will not occur.
  • any of the techniques disclosed in Patent Documents 1 to 3 requires a reheating furnace and an induction heating coil in front of the constant diameter rolling mill, which consumes enormous fuel and electric power and saves energy. It cannot be a countermeasure.
  • JP 2004-58128 A Japanese Patent Laid-Open No. 2005-7452 JP 2007-301574 A
  • An object of the present invention is to provide a method and apparatus for producing a seamless steel pipe having the following characteristics: (1) In the steel pipe after constant diameter rolling, the longitudinal temperature distribution does not become uneven; (2) Achieving energy saving.
  • the gist of the present invention is as follows.
  • a seamless billet is formed by piercing and rolling a heated billet into a hollow shell, and then stretching and rolling the hollow shell with a drawing mill without constant reheating and rolling with a constant diameter rolling mill.
  • a method of manufacturing a steel pipe The manufacturing method is (Step 1) measuring the temperature of the hollow shell along the longitudinal direction on the exit side of the drawing mill, (Step 2) Depending on the measured longitudinal temperature distribution of the hollow shell, water is blown to the hollow shell at the entrance of the constant diameter rolling mill to cool the hollow shell, and the longitudinal temperature distribution of the hollow shell is determined.
  • Uniform A method for producing a seamless steel pipe, comprising a series of steps.
  • the manufacturing method (I) may be configured to perform quenching without reheating following the constant diameter rolling.
  • These manufacturing methods are preferably configured to adjust the amount of water sprayed to the hollow shell in each of a plurality of regions obtained by dividing the hollow shell in the longitudinal direction in Step 2 described above.
  • a production facility for seamless steel pipes The manufacturing equipment is A thermometer arranged on the exit side of the drawing mill and measuring the temperature of the hollow shell along the longitudinal direction; According to the longitudinal temperature distribution of the hollow shell, which is arranged on the entrance side of the constant diameter rolling mill and measured by the thermometer, the hollow shell is cooled by spraying water on the hollow shell, and the longitudinal direction of the hollow shell A water cooling device for uniform temperature distribution;
  • a seamless steel pipe manufacturing facility characterized by comprising:
  • the method for producing a seamless steel pipe of the present invention has the following remarkable effects: (1) In the steel pipe after constant diameter rolling, the longitudinal temperature distribution does not become uneven; (2) Achieving energy saving.
  • the excellent effect of the production method of the present invention can be sufficiently exhibited by the seamless steel pipe production facility of the present invention.
  • FIG. 1 is a schematic diagram showing a configuration example of a production facility for seamless steel pipes according to the present invention.
  • FIG. 2 is a view showing a configuration example of a water cooling device in a seamless steel pipe manufacturing facility of the present invention
  • FIG. 2 (a) is a side sectional view along the conveying direction of the hollow shell
  • FIG. Front views are shown respectively.
  • FIG. 3 is a diagram showing the correlation between the amount of water sprayed per 1 m in the longitudinal direction of the hollow shell and the amount of temperature drop.
  • the present inventor presupposes that after rolling a material to be rolled at the time of piercing rolling, reheating is not performed until constant diameter rolling or quenching treatment, and the steel pipe after constant diameter rolling
  • the present invention has been completed based on the above findings (a) and (b). Below, the manufacturing method of the seamless steel pipe of this invention and the preferable aspect of the manufacturing equipment are demonstrated.
  • FIG. 1 is a schematic diagram showing a configuration example of a seamless steel pipe manufacturing equipment of the present invention.
  • the production facility 1 includes a heating device 2, a piercing machine 3 (piercer), a drawing mill 4 (eg, mandrel mill), and a constant diameter rolling mill 5 (eg, sizer, stretch reducer). And a cooling bed 6 as a series of on-line facilities.
  • the manufacturing facility 1 is connected to a thermometer 7 disposed on the exit side of the drawing mill 4, a water cooling device 8 disposed on the entry side of the subsequent constant diameter rolling mill 5, and the thermometer 7 and the water cooling device 8.
  • the control device 9 is provided.
  • the heating device 2 heats a billet as a material to be rolled to a predetermined temperature suitable for piercing and rolling.
  • the piercing machine 3 pierces and rolls the heated billet to form a hollow shell.
  • the drawing mill 4 performs drawing rolling without reheating the hollow shell.
  • the constant diameter rolling mill 5 performs constant diameter rolling without reheating the stretched hollow shell, and finishes the steel pipe with a predetermined outer diameter and wall thickness.
  • the steel pipe subjected to constant diameter rolling is air-cooled in the cooling bed 6.
  • thermometer 7 In this production facility 1, when constant diameter rolling is performed by the constant diameter rolling mill 5, the temperature of the hollow shell that has been stretched and rolled by the stretching mill 4 is measured along the longitudinal direction by the thermometer 7.
  • the control device 9 sequentially receives the measurement temperature signal from the thermometer 7, calculates the temperature distribution in the longitudinal direction of the hollow shell, and sends a drive signal corresponding to the temperature distribution to the water cooling device 8.
  • the water cooling device 8 sprays water with an appropriate amount of water on the hollow shell based on the drive signal from the control device 9 and cools the hollow shell so that the longitudinal temperature distribution of the hollow shell is uniform.
  • the cooled hollow shell is subjected to constant diameter rolling with a constant diameter rolling mill 5.
  • the hollow shell is conveyed in the longitudinal direction by a roller conveyor from the punching machine 3 to the drawing mill 4, and from the drawing mill 4 through the water cooling device 8 to the constant diameter rolling mill 5. Is done.
  • FIG. 2 is a view showing a configuration example of a water cooling device in a seamless steel pipe manufacturing facility of the present invention
  • FIG. 2 (a) is a side sectional view along the conveying direction of the hollow shell
  • FIG. Front views are shown respectively.
  • Fig.2 (a) the conveyance direction of a hollow shell is shown with a thick line arrow.
  • the water cooling device 8 includes an annular pipe 11 that is inserted through the conveyance path of the hollow shell P.
  • a water supply pipe 12 is connected to the annular pipe 11, and a water supply pump 13 is connected to the water supply pipe 12.
  • the water supply pump 13 is driven based on the drive signal from the control device 9 shown in FIG. 1 and can adjust the amount of water to be sent out.
  • a plurality of nozzles 14 are provided at equal intervals in the circumferential direction on the inner periphery of the annular pipe 11. Each nozzle 14 blows out water supplied to the annular pipe 11 through the water supply pipe 12 as the water supply pump 13 is driven toward the hollow pipe P. Thereby, the hollow shell P conveyed in the longitudinal direction is uniformly cooled in the circumferential direction every time it passes through the annular pipe 11.
  • the number of nozzles 14 is not particularly limited, but is preferably about 4 to 24. This is because if the number is less than 4, the uniform cooling in the circumferential direction of the hollow shell P may be insufficient, and if it is more than 24, the degree of the uniform cooling is saturated.
  • Each nozzle 14 is preferably provided with a slight inclination toward the direction opposite to the conveying direction of the hollow shell P (direction on the bottom side). This is to prevent water from entering the hollow shell P that has passed through the annular pipe 11 from its rear end.
  • the manufacturing equipment 1 shown in FIG. 1 can install a plurality of stages of water cooling devices 8 having such a configuration along the transport path of the hollow shell P.
  • the water cooling device 8 may be installed in one stage.
  • a radiation thermometer can be adopted as the thermometer 7.
  • the manufacturing equipment 1 shown in FIG. 1 includes a quenching device without using a quenching furnace in place of the cooling bed 6 or in parallel with the cooling bed 6 in order to quench the steel pipe after constant diameter rolling. be able to.
  • a quenching device a water bath immersion type or a laminar water flow down type can be adopted.
  • a tempering furnace can be arranged in the subsequent stage of the quenching device in order to temper the steel pipe after quenching.
  • the hollow shell after piercing and rolling has a non-uniform temperature distribution in the longitudinal direction due to significant heat dissipation on the top side during piercing and rolling. For this reason, also in the hollow shell after drawing and rolling, the temperature distribution in the longitudinal direction becomes non-uniform with the same tendency.
  • the temperature of the hollow shell is measured along the longitudinal direction by the thermometer 7 on the exit side of the drawing mill 4. Then, according to the measured temperature distribution in the longitudinal direction of the hollow shell, the water cooling device 8 cools the hollow shell by spraying water onto the hollow shell at the entrance side of the constant diameter rolling mill 5, and the length of the hollow shell is reduced. Uniform directional temperature distribution.
  • the controller 9 connected to the thermometer 7 obtains the temperature for each of a plurality of regions obtained by dividing the hollow shell in the longitudinal direction, selects the minimum temperature among the temperatures of each region, every time, the temperature difference from the minimum temperature is obtained. Based on the temperature difference, the amount of water sprayed from the water cooling device 8 to the hollow shell is calculated for each region, and a drive signal corresponding to the amount of water is sent to the water cooling device 8. As a result, the conveyed hollow shell is cooled by spraying an appropriate amount of water from the water cooling device 8 for each region, and the temperature distribution in the longitudinal direction becomes uniform.
  • the amount of water sprayed on the hollow shell can be calculated based on the temperature difference in each region of the hollow shell, for example, from the correlation with the temperature drop of the hollow shell shown in FIG.
  • FIG. 3 is a diagram showing the correlation between the amount of water sprayed per 1 m in the longitudinal direction of the hollow shell and the amount of temperature drop.
  • the figure shows a test using a hollow shell with variously changed outer diameters and wall thicknesses, and water is sprayed on each hollow shell heated to 1100 ° C. with various amounts of water per 1 m in the longitudinal direction. The result of investigating the amount of temperature drop in the area sprayed with is shown.
  • ⁇ T 160 between the water quantity Q [m 3 ] sprayed on the hollow shell and the temperature drop ⁇ T [° C.] regardless of the outer diameter and the thickness of the hollow shell.
  • ⁇ Q the amount Q of water sprayed onto the hollow shell can be calculated by setting the temperature difference in each region of the hollow shell to ⁇ T.
  • the method for producing a seamless steel pipe of the present invention when performing constant diameter rolling, water can be sprayed on the hollow shell to make the temperature distribution in the longitudinal direction uniform. A situation in which the temperature distribution becomes non-uniform does not occur. For this reason, the steel pipe after constant diameter rolling does not differ in the amount of thermal shrinkage accompanying cooling in the longitudinal direction, and after cooling, the outer diameter of the steel pipe becomes uniform over the entire area in the longitudinal direction. Moreover, even when quenching the steel pipe after constant diameter rolling, the mechanical properties of the steel pipe are uniform throughout the longitudinal direction after quenching without the degree of quenching being different in the longitudinal direction.
  • reheating is not performed until constant diameter rolling or quenching treatment. Energy saving can be realized without consumption.
  • the method for producing a seamless steel pipe according to the present invention can sufficiently exert its effect by the production facility for the seamless steel pipe according to the present invention.
  • Example 1 In order to confirm the effect of the present invention, piercing rolling, stretching rolling and constant diameter rolling were performed using the manufacturing equipment shown in FIG. 1, and an actual machine test for manufacturing a seamless steel pipe having the following specifications was performed.
  • Table 1 shows the top region in the range of 1 to 3 m from the tip of the steel pipe, the middle region in the range of 2 m in the longitudinal center of the steel pipe, and the bottom region in the range of 1 to 3 m from the rear end of the steel pipe.
  • the temperature of the steel pipe immediately after the constant diameter rolling became uniform in the longitudinal direction by spraying water on the hollow shell before the constant diameter rolling.
  • the outer diameter of the steel pipe after cooling became uniform in the longitudinal direction.
  • Example 2 Using the production equipment shown in FIG. 1, piercing rolling, stretching rolling, constant diameter rolling, quenching, and tempering treatment were performed, and an actual machine test for producing a seamless steel pipe having the following specifications was conducted. The effect of spraying on the mechanical properties of steel pipes was confirmed.
  • ⁇ Dimensions Outer diameter 406mm, Wall thickness 14mm, Length 12m
  • Material Low carbon steel whose composition is shown in Table 2 below
  • Mechanical properties API standard X65 grade
  • the temperature of the steel pipe immediately before quenching became uniform in the longitudinal direction by spraying water on the hollow shell before constant diameter rolling.
  • both the grain size and the yield strength of the steel pipe after quenching and tempering became uniform in the longitudinal direction.
  • the temperature of the steel pipe immediately before quenching varied about 50 ° C. in the longitudinal direction and became non-uniform.
  • the crystal grain size of the steel pipe after quenching and tempering became fine particles having a particle size number 11 in the top region and coarse particles having a particle size number 5 in the bottom region, and became nonuniform in the longitudinal direction.
  • the reason why the grain size becomes coarse in the bottom region is that the crystal grows and becomes coarse in the bottom region because the temperature until quenching is higher in the bottom region than in the top region. .
  • the yield strength of the steel pipe after quenching and tempering varied about 60 MPa in the longitudinal direction and became non-uniform.
  • the present invention can be effectively used for the production of seamless steel pipes by the Mannesmann pipe manufacturing method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)
  • Metal Rolling (AREA)

Abstract

 加熱したビレットを穿孔機により穿孔圧延して中空素管に成形し、引き続きその中空素管を再加熱することなく延伸圧延機により延伸圧延し定径圧延機により定径圧延して、継目無鋼管を製造するに際し、延伸圧延機の出側で中空素管の温度を長手方向に沿って測定するステップ1と、測定した中空素管の長手方向温度分布に応じて、定径圧延機の入側で中空素管に水を吹き付けて中空素管を冷却し、中空素管の長手方向温度分布を均一にするステップ2と、を含むことにより、定径圧延後の鋼管で長手方向温度分布の不均一が生じることなく、省エネルギー化を実現することができる。

Description

継目無鋼管の製造方法およびその製造設備
 本発明は、マンネスマン製管法による継目無鋼管の製造方法、およびその製造方法を実施するのに適した継目無鋼管の製造設備に関する。
 継目無鋼管は、高強度と優れた靭性が要求される油井管に用いられ、マンネスマン製管法により製造することができる。この製管法は、次のステップからなる:
 (1)穿孔機(ピアサー)により、所定温度に加熱されたビレットを穿孔圧延し、中空素管(ホローシェル)に成形する;
 (2)延伸圧延機(例:マンドレルミル)により、中空素管を延伸圧延する;
 (3)定径圧延機(例:サイザー、ストレッチレデューサー)により、延伸圧延された中空素管を所定の外径と肉厚に定径圧延する;
 (4)定径圧延で得られた継目無鋼管を冷却床で空冷したり、または継目無鋼管に焼入れ、焼戻し処理を施す。
 従来、マンネスマン製管法を採用する製造設備は、延伸圧延された中空素管を再加熱炉で加熱して定径圧延を行う。また、定径圧延された鋼管に焼入れ処理を施す場合は、鋼管を焼入れ炉で加熱し焼入れを行う。
 近年、省エネルギー化と生産効率の向上を図るため、定径圧延時の再加熱炉や焼入れ処理時の焼入れ炉を排除し、穿孔圧延から定径圧延に至るまで、場合によってはさらに焼入れ処理に至るまでを一連のオンラインとした製造設備が採用されることがある。再加熱炉や焼入れ炉を排除した製造設備では、穿孔圧延時に被圧延材の加熱を行った後、定径圧延や焼入れ処理に至るまで再加熱を一切行わない。この製造設備を採用した場合、定径圧延後の鋼管は、長手方向の温度分布が不均一になり、トップ部(先端部)側で温度が低く、ボトム部(後端部)側で温度が高くなる。このような現象は、以下の理由により生じる。
 穿孔圧延の際、加熱されたビレットは、プラグによりトップ部側からボトム部側に穿孔されるため、先に穿孔されて管状になるトップ部側で放熱が著しい。このため、穿孔圧延後の中空素管は、トップ部側の温度が低く、ボトム部側の温度が高くなる。この長手方向温度分布の不均一は、被圧延材に再加熱を行わないことから、延伸圧延後の中空素管でも同様の傾向で生じ、さらに定径圧延後の鋼管でも同様の傾向で生じる。これにより、定径圧延後の鋼管には、長手方向で温度分布の不均一が現れる。
 定径圧延後の鋼管において、長手方向の温度分布が不均一であると、冷却に伴う熱収縮量が長手方向で異なることから、冷却後に鋼管の外径が長手方向で不均一になる。また、定径圧延後に鋼管に焼入れを行う場合、長手方向の温度分布が不均一であると、焼入れ度合いが長手方向で異なることから、焼入れ後に鋼管の機械的特性が長手方向で不均一になる。
 鋼管を製造する際の被圧延材の温度制御に関する従来技術は、下記のものがある。
 特許文献1には、継目無鋼管の製造で用いられる多段式連続圧延機において、連続圧延機を経る過程で被圧延材の温度が過剰に低下するのを防止する技術が開示されている。同文献に開示された技術は、連続圧延機の入側と中間部に再加熱炉を配置するとともに、連続圧延機の中間部に配置した中間再加熱炉の入側と出側、および連続圧延機の出側に温度計を配置し、各温度計で測定した鋼管温度に基づいて、中間再加熱炉の温度制御を行うこととしている。
 特許文献2には、電縫鋼管の製造で用いられるストレッチレデューサーにおいて、鋼管の周方向で温度低下に起因して肉厚偏差が発生するのを防止する技術が開示されている。同文献に開示された技術は、ストレッチレデューサーの入側に複数の誘導加熱コイルを直列的に配置するとともに、誘導加熱コイルの出側およびストレッチレデューサーの出側に温度計を配置し、温度計による鋼管周方向の温度測定値に基づいて、誘導加熱コイルへの電力供給量を調整することとしている。
 特許文献3には、熱間成形された角形鋼管または丸形鋼管を冷却する際に曲がりが発生するのを抑制する技術が開示されている。同文献に開示された技術では、鋼管を所定の形状寸法に熱間成形する成形手段の前段に再加熱炉を配置するとともに、成形手段の後段に放水手段を配置し、成形手段を経た鋼管に放水手段により外周全方向から放水して鋼管を均一に冷却することとしている。
 上記特許文献1~3に開示された技術は、定径圧延前に鋼管を再加熱して温度の均一化を図っていることから、定径圧延後の鋼管で長手方向温度分布が不均一になる事態は生じない。しかし、上記特許文献1~3に開示された技術のいずれも、定径圧延機の前段に再加熱炉や誘導加熱コイルが必須となることから、莫大な燃料や電力を消費し、省エネルギー化への対応策になり得ない。
特開2004-58128号公報 特開2005-7452号公報 特開2007-301574号公報
 本発明の目的は、次の特性を有する継目無鋼管の製造方法およびその製造装置を提供することである:
 (1)定径圧延後の鋼管において、長手方向温度分布の不均一が生じないこと;
 (2)省エネルギー化を実現できること。
 本発明の要旨は、次の通りである。
 (I)加熱したビレットを穿孔機により穿孔圧延して中空素管に成形し、引き続きその中空素管を再加熱することなく延伸圧延機により延伸圧延し定径圧延機により定径圧延する継目無鋼管の製造方法であって、
 当該製造方法は、
 (ステップ1)延伸圧延機の出側で中空素管の温度を長手方向に沿って測定すること、
 (ステップ2)測定した中空素管の長手方向温度分布に応じて、定径圧延機の入側で中空素管に水を吹き付けて中空素管を冷却し、中空素管の長手方向温度分布を均一にすること、
の一連の各ステップを含むことを特徴とする継目無鋼管の製造方法。
 上記(I)の製造方法は、前記定径圧延に引き続いて、再加熱することなく焼入れを行う構成とすることができる。
 これらの製造方法は、前記ステップ2において、中空素管に吹き付ける水量を、中空素管を長手方向に区分した複数の領域ごとに調整する構成とすることが好ましい。
 (II)加熱したビレットを穿孔圧延して中空素管に成形する穿孔機と、その中空素管を再加熱することなく延伸圧延する延伸圧延機および定径圧延する定径圧延機と、を備える継目無鋼管の製造設備であって、
 当該製造設備は、
 延伸圧延機の出側に配置され、中空素管の温度を長手方向に沿って測定する温度計と、
 定径圧延機の入側に配置され、前記温度計により測定した中空素管の長手方向温度分布に応じて、中空素管に水を吹き付けて中空素管を冷却し、中空素管の長手方向温度分布を均一にする水冷装置と、
を含むことを特徴とする継目無鋼管の製造設備。
 本発明の継目無鋼管の製造方法は、下記の顕著な効果を有する:
 (1)定径圧延後の鋼管において、長手方向温度分布の不均一が生じないこと;
 (2)省エネルギー化を実現できること。
 本発明の製造方法の優れた効果は、本発明の継目無鋼管の製造設備によって十分に発揮させることができる。
図1は、本発明の継目無鋼管の製造設備の構成例を示す模式図である。 図2は、本発明の継目無鋼管の製造設備における水冷装置の構成例を示す図であり、図2(a)は中空素管の搬送方向に沿った側断面図、図2(b)は正面図をそれぞれ示す。 図3は、中空素管の長手方向1mあたりに吹き付ける水量と温度降下量との相関を示す図である。
 本発明者は、上記目的を達成するため、穿孔圧延時に被圧延材の加熱を行った後、定径圧延や焼入れ処理に至るまで再加熱を行わないことを前提にし、定径圧延後の鋼管で長手方向温度分布の不均一が生じない手法について鋭意検討を重ねた。その結果、下記(a)および(b)の知見を得た。
 (a)定径圧延前の中空素管において長手方向温度分布を均一にすることにより、定径圧延後に鋼管の長手方向温度分布の不均一が生じない。
 (b)定径圧延前の中空素管で長手方向温度分布を均一にするには、中空素管の長手方向温度分布に応じて、中空素管に水を吹き付けて中空素管を冷却することが有効である。
 本発明は、上記(a)および(b)の知見に基づき完成させたものである。以下に、本発明の継目無鋼管の製造方法およびその製造設備の好ましい態様について説明する。
 1.継目無鋼管の製造設備
 図1は、本発明の継目無鋼管の製造設備の構成例を示す模式図である。同図に示すように、製造設備1は、加熱装置2と、穿孔機3(ピアサー)と、延伸圧延機4(例:マンドレルミル)と、定径圧延機5(例:サイザー、ストレッチレデューサー)と、冷却床6と、を一連のオンライン設備として備える。さらに、製造設備1は、延伸圧延機4の出側に配置された温度計7と、続く定径圧延機5の入側に配置された水冷装置8と、温度計7と水冷装置8に接続された制御装置9と、を備える。
 加熱装置2は、被圧延材としてのビレットを穿孔圧延に適した所定温度に加熱する。穿孔機3は、加熱されたビレットを穿孔圧延し、中空素管に成形する。延伸圧延機4は、中空素管を再加熱することなく延伸圧延する。定径圧延機5は、延伸圧延された中空素管を再加熱することなく定径圧延し、所定の外径と肉厚の鋼管に仕上げる。定径圧延された鋼管は、冷却床6で空冷される。
 この製造設備1では、定径圧延機5で定径圧延を行うに際し、温度計7により、延伸圧延機4で延伸圧延された中空素管の温度を長手方向に沿って測定する。制御装置9は、温度計7から測定温度の信号を順次受け取り、中空素管の長手方向の温度分布を算出し、その温度分布に応じた駆動信号を水冷装置8に送出する。水冷装置8は、制御装置9からの駆動信号に基づいて中空素管に適正な水量で水を吹き付け、中空素管の長手方向温度分布が均一となるように冷却する。冷却された中空素管が定径圧延機5で定径圧延される。
 この製造設備1において、中空素管は、穿孔機3から延伸圧延機4に至るまで、および延伸圧延機4から水冷装置8を経て定径圧延機5に至るまで、ローラーコンベアにより長手方向に搬送される。
 図2は、本発明の継目無鋼管の製造設備における水冷装置の構成例を示す図であり、図2(a)は中空素管の搬送方向に沿った側断面図、図2(b)は正面図をそれぞれ示す。図2(a)では、中空素管の搬送方向を太線矢印で示す。
 同図に示すように、水冷装置8は、中空素管Pの搬送経路を中心に挿通させる環状パイプ11を備える。環状パイプ11には給水管12が接続され、この給水管12には給水ポンプ13が接続されている。給水ポンプ13は、前記図1に示す制御装置9からの駆動信号に基づいて駆動し、送り出す水の水量を調整することが可能である。
 環状パイプ11の内周には、複数のノズル14が周方向に等間隔に設けられている。各ノズル14は、給水ポンプ13の駆動に伴い給水管12を通じて環状パイプ11に供給された水を、中空素管Pに向けて吹き出す。これにより、長手方向に搬送される中空素管Pは、環状パイプ11を通過する都度、周方向で均一に冷却される。
 ノズル14の数は、特に限定しないが、4個~24個程度とするのが好ましい。4個より少ないと、中空素管Pにおける周方向での均一冷却が不十分となるおそれがあり、24個より多くても、その均一冷却の度合いが飽和するからである。
 各ノズル14は、中空素管Pの搬送方向と反対方向(ボトム部側の方向)に向けて僅かに傾斜させて設けるのが好ましい。環状パイプ11を通過した中空素管Pの内部に、その後端から水が浸入するのを防止するためである。
 前記図1に示す製造設備1は、このような構成の水冷装置8を中空素管Pの搬送経路に沿って複数段設置することができる。水冷装置8の設置は1段であっても構わない。温度計7としては、放射温度計を採用することができる。
 前記図1に示す製造設備1は、定径圧延後の鋼管に焼入れ処理を施すために、冷却床6に代え、または冷却床6に並列して、焼入れ炉を配置することなく急冷装置を備えることができる。急冷装置としては、水槽浸漬方式のものやラミナー水流流下方式のものを採用することができる。急冷装置の後段には、焼入れ後の鋼管に焼戻し処理を施すために、焼戻し炉を配置することができる。
 2.継目無鋼管の製造方法
 前記図1を参照しながら、本発明の継目無鋼管の製造方法を説明する。本発明の製造方法では、加熱したビレットを穿孔機3により穿孔圧延して中空素管に成形し、引き続きその中空素管を再加熱することなく延伸圧延機4により延伸圧延し定径圧延機5により定径圧延する。
 その際、穿孔圧延後の中空素管は、穿孔圧延時にトップ部側で放熱が著しいことに起因して、長手方向の温度分布が不均一になる。このため、延伸圧延後の中空素管も、長手方向の温度分布が同様の傾向で不均一になる。
 本発明の製造方法では、定径圧延機5で定径圧延を行うに際し、温度計7により、延伸圧延機4の出側で中空素管の温度を長手方向に沿って測定する。そして、測定した中空素管の長手方向温度分布に応じて、水冷装置8により、定径圧延機5の入側で中空素管に水を吹き付けて中空素管を冷却し、中空素管の長手方向温度分布を均一にする。
 具体的には、温度計7に接続された制御装置9により、中空素管を長手方向に区分した複数の領域ごとに温度を求め、各領域の温度のうちの最小温度を選定して、領域ごとに最小温度との温度差を求める。そして、その温度差に基づき、水冷装置8から中空素管に吹き付ける水量を領域ごとに算定し、その水量に対応する駆動信号を水冷装置8に送出する。これにより、搬送される中空素管は、領域ごとに水冷装置8から適正な水量の水が吹き付けられて冷却され、長手方向の温度分布が均一になる。
 ここで、中空素管に吹き付ける水量と温度降下量との間には相関がある。このため、中空素管に吹き付ける水量は、中空素管の各領域における上記温度差に基づき、例えば、下記図3に示す中空素管の温度降下量との相関から算定することができる。
 図3は、中空素管の長手方向1mあたりに吹き付ける水量と温度降下量との相関を示す図である。同図は、外径および肉厚を種々変更した中空素管を用い、1100℃に加熱された各中空素管に長手方向1mあたりの水量を種々変更して水を吹き付ける試験を行い、当該水を吹き付けた領域の温度降下量を調査した結果を示している。
 同図に示すように、中空素管に吹き付ける水量Q[m]と温度降下量ΔT[℃]との間には、中空素管の外径および肉厚の寸法にかかわらず、ΔT=160×Qの相関がある。この関係式から、中空素管の各領域における上記温度差をΔTとして、中空素管に吹き付ける水量Qを算定することができる。
 本発明の継目無鋼管の製造方法によれば、定径圧延を行うに際し、中空素管に水を吹き付けて長手方向温度分布を均一にすることができるため、定径圧延後の鋼管で長手方向温度分布が不均一になる事態は生じない。このため、定径圧延後の鋼管は、冷却に伴う熱収縮量が長手方向で異なることなく、冷却後に鋼管の外径が長手方向の全域にわたって均一になる。また、定径圧延後に鋼管に焼入れを行う場合であっても、焼入れ度合いが長手方向で異なることなく、焼入れ後に鋼管の機械的特性が長手方向の全域にわたって均一になる。
 また、本発明の継目無鋼管の製造方法によれば、穿孔圧延時に被圧延材の加熱を行った後、定径圧延や焼入れ処理に至るまで再加熱を行わないため、莫大な燃料や電力を消費することなく、省エネルギー化を実現することができる。
 本発明の継目無鋼管の製造方法は、本発明の継目無鋼管の製造設備によってその効果を十分に発揮させることができる。
 (実施例1)
 本発明の効果を確認するため、前記図1に示す製造設備を用いて穿孔圧延、延伸圧延および定径圧延を行い、下記仕様の継目無鋼管を製造する実機試験を実施した。
 ・寸法:外径406.4mm、肉厚30.7mm、長さ12m
 ・材質:低炭素鋼(C:0.6wt%)
 定径圧延を行うに際し、延伸圧延後の中空素管の温度を測定し、その長手方向温度分布に応じ、下記表1に示す水量で中空素管に水を吹き付けた。また、比較のために、水の吹き付けを行うことなく試験を実施した。
Figure JPOXMLDOC01-appb-T000001
 定径圧延直後に継目無鋼管の温度を測定し、さらにその鋼管を冷却した後、長手方向の全域にわたって鋼管の外径を測定した。その結果を表1に併せて示す。表1では、鋼管の先端より1~3m範囲のトップ部領域、鋼管の長手中心2m範囲のミドル部領域、および鋼管の後端より1~3m範囲のボトム部領域について示した。
 表1に示す結果から次のことが示される。
 本発明例では、定径圧延前に中空素管に水を吹き付けることにより、定径圧延直後の鋼管の温度が長手方向で均一になった。その結果、冷却後の鋼管は、外径が長手方向で均一になった。
 比較例では、定径圧延前に中空素管に水を吹き付けなかったため、定径圧延直後の鋼管の温度が長手方向で40℃程度ばらついて不均一になった。その結果、冷却後の鋼管は、外径が長手方向で0.4mm程度ばらついて不均一になった。
 (実施例2)
 前記図1に示す製造設備を用いて穿孔圧延、延伸圧延、定径圧延、および焼入れ、焼戻し処理を行い、下記仕様の継目無鋼管を製造する実機試験を実施して、中空素管への水の吹き付けが鋼管の機械的特性に及ぼす影響を確認した。
 ・寸法:外径406mm、肉厚14mm、長さ12m
 ・材質:下記表2に成分組成を示す低炭素鋼
 ・機械的特性:API規格のX65グレード
Figure JPOXMLDOC01-appb-T000002
 定径圧延を行うに際し、延伸圧延後の中空素管の温度を測定し、その長手方向温度分布に応じ、下記表3に示す水量で中空素管に水を吹き付けた。また、比較のために、水の吹き付けを行うことなく試験を実施した。
Figure JPOXMLDOC01-appb-T000003
 定径圧延後の焼入れ直前に継目無鋼管の温度を測定し、さらにその鋼管に焼入れ、焼戻し処理を施した後、長手方向に沿った各領域から試験片を採取して、結晶粒度および降伏強さ(YS)を測定した。結晶粒度を測定する試験方法は、ASTMに準拠し、降伏強さを測定する試験方法は、ASTMに準拠した。その結果を表3に併せて示す。表3でも、上記実施例1と同様に、トップ部領域、ミドル部領域、およびボトム部領域について示した。
 表3に示す結果から次のことが示される。
 本発明例では、定径圧延前に中空素管に水を吹き付けることにより、焼入れ直前の鋼管の温度が長手方向で均一になった。その結果、焼入れ、焼戻し後の鋼管は、結晶粒度および降伏強さがともに長手方向で均一になった。
 比較例では、定径圧延前に中空素管に水を吹き付けなかったため、焼入れ直前の鋼管の温度が長手方向で50℃程度ばらついて不均一になった。その結果、焼入れ、焼戻し後の鋼管の結晶粒度は、トップ部領域では粒度番号11の微粒、ボトム部領域では粒度番号5の粗粒となり、長手方向で不均一になった。結晶粒度がボトム部領域で粗粒となったのは、焼入れまでの温度がトップ部領域よりもボトム部領域で高いことに起因して、ボトム部領域で結晶が成長し粗大化したからである。また、焼入れ、焼戻し後の鋼管の降伏強さは長手方向で60MPa程度ばらついて不均一になった。
 本発明は、マンネスマン製管法による継目無鋼管の製造に有効に利用できる。
  1:製造設備、  2:加熱装置、  3:穿孔機、  4:延伸圧延機、  5:定径圧延機、  6:冷却床、  7:温度計、  8:水冷装置、  9:制御装置、  11:環状パイプ、  12:給水管、  13:給水ポンプ、  14:ノズル、  P:中空素管

Claims (4)

  1.  加熱したビレットを穿孔機により穿孔圧延して中空素管に成形し、引き続きその中空素管を再加熱することなく延伸圧延機により延伸圧延し定径圧延機により定径圧延する継目無鋼管の製造方法であって、
     当該製造方法は、
     (ステップ1)延伸圧延機の出側で中空素管の温度を長手方向に沿って測定すること、
     (ステップ2)測定した中空素管の長手方向温度分布に応じて、定径圧延機の入側で中空素管に水を吹き付けて中空素管を冷却し、中空素管の長手方向温度分布を均一にすること、
    の一連の各ステップを含むことを特徴とする継目無鋼管の製造方法。
  2.  前記定径圧延に引き続いて、再加熱することなく焼入れを行うことを特徴とする請求項1に記載の継目無鋼管の製造方法。
  3.  前記ステップ2において、中空素管に吹き付ける水量を、中空素管を長手方向に区分した複数の領域ごとに調整することを特徴とする請求項1または2に記載の継目無鋼管の製造方法。
  4.  加熱したビレットを穿孔圧延して中空素管に成形する穿孔機と、その中空素管を再加熱することなく延伸圧延する延伸圧延機および定径圧延する定径圧延機と、を備える継目無鋼管の製造設備であって、
     当該製造設備は、
     延伸圧延機の出側に配置され、中空素管の温度を長手方向に沿って測定する温度計と、
     定径圧延機の入側に配置され、前記温度計により測定した中空素管の長手方向温度分布に応じて、中空素管に水を吹き付けて中空素管を冷却し、中空素管の長手方向温度分布を均一にする水冷装置と、
    を含むことを特徴とする継目無鋼管の製造設備。
     
PCT/JP2010/053824 2009-04-20 2010-03-09 継目無鋼管の製造方法およびその製造設備 WO2010122847A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2010800174107A CN102405114A (zh) 2009-04-20 2010-03-09 无缝钢管的制造方法及其制造设备
EP10766906.1A EP2422892A4 (en) 2009-04-20 2010-03-09 METHOD FOR PRODUCING A SEAMLESS TUBE AND DEVICE FOR CARRYING OUT THE METHOD
BRPI1009482A BRPI1009482A2 (pt) 2009-04-20 2010-03-09 método para produção de tubo de aço sem costura e instalação para produção com esse fim
US13/247,120 US20120017662A1 (en) 2009-04-20 2011-09-28 Method for producing seamless steel tube and production facility therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-102312 2009-04-20
JP2009102312A JP5262949B2 (ja) 2009-04-20 2009-04-20 継目無鋼管の製造方法およびその製造設備

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/247,120 Continuation US20120017662A1 (en) 2009-04-20 2011-09-28 Method for producing seamless steel tube and production facility therefor

Publications (1)

Publication Number Publication Date
WO2010122847A1 true WO2010122847A1 (ja) 2010-10-28

Family

ID=43010970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053824 WO2010122847A1 (ja) 2009-04-20 2010-03-09 継目無鋼管の製造方法およびその製造設備

Country Status (6)

Country Link
US (1) US20120017662A1 (ja)
EP (1) EP2422892A4 (ja)
JP (1) JP5262949B2 (ja)
CN (1) CN102405114A (ja)
BR (1) BRPI1009482A2 (ja)
WO (1) WO2010122847A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104138905B (zh) * 2014-07-01 2017-06-30 太原科技大学 无缝钢管连续式斜轧新工艺
CN104596176B (zh) * 2015-01-26 2017-04-05 徐再 生产无缝钢管用冷却系统
JP6295387B1 (ja) * 2017-05-19 2018-03-14 山田 榮子 熱延棒鋼の制御冷却方法
CN111417471B (zh) * 2017-11-29 2022-04-01 日本制铁株式会社 无缝钢管的制造方法
BR112020010302B1 (pt) * 2017-11-29 2023-09-26 Nippon Steel Corporation Máquina perfuradora e método para a produção de tubo de metal sem costura usando a mesma
CN108032040A (zh) * 2017-12-07 2018-05-15 浙江世达钢管有限公司 一种无缝薄壁不锈钢水管生产工艺
CN112680585B (zh) * 2019-10-17 2022-01-25 杰森能源技术有限公司 一种校直连续油管热处理变形的方法
CN111159919A (zh) * 2020-01-07 2020-05-15 安徽工业大学 一种衡量加热炉能耗分摊的方法
CN111229845B (zh) * 2020-01-15 2020-12-29 燕山大学 一种大型筒节环形冷却装置
CN113600619A (zh) * 2021-07-23 2021-11-05 中冶赛迪工程技术股份有限公司 一种小口径厚壁钢管轧后冷却方法
CN114589203B (zh) * 2022-01-25 2023-09-05 大冶特殊钢有限公司 一种适用于低温的09MnNiD无缝钢管的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63215310A (ja) * 1987-03-04 1988-09-07 Nkk Corp 継目無鋼管製造設備
WO1996012574A1 (fr) * 1994-10-20 1996-05-02 Sumitomo Metal Industries, Ltd. Procede de production de tubes d'acier sans soudure et materiel de production afferent
JP2004058128A (ja) 2002-07-31 2004-02-26 Jfe Steel Kk 鋼管の圧延温度制御方法および装置
JP2005007452A (ja) 2003-06-20 2005-01-13 Jfe Steel Kk 均熱装置での鋼管温度制御方法
JP2007301574A (ja) 2006-05-09 2007-11-22 Nakajima Steel Pipe Co Ltd 鋼管の製造方法および鋼管の製造設備

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5994515A (ja) * 1982-11-19 1984-05-31 Kawasaki Steel Corp サイザ−における外径制御方法
GB9317928D0 (en) * 1993-08-26 1993-10-13 Davy Mckee Poole Rolling of metal strip
JP4389869B2 (ja) * 2003-03-26 2009-12-24 住友金属工業株式会社 継目無管の製造方法
CN100522405C (zh) * 2004-01-16 2009-08-05 住友金属工业株式会社 无缝管的制造方法
US7937978B2 (en) * 2005-03-31 2011-05-10 Sumitomo Metal Industries, Ltd. Elongation rolling control method
EP1918397B1 (en) * 2005-08-22 2016-07-20 Nippon Steel & Sumitomo Metal Corporation Seamless steel pipe for pipe line and method for producing same
RU2375470C1 (ru) * 2006-03-28 2009-12-10 Сумитомо Метал Индастриз, Лтд. Способ изготовления бесшовной трубы малого и большого диаметра
KR100935515B1 (ko) * 2007-01-30 2010-01-06 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 열간 압연기의 온도 제어 장치
CN101077505A (zh) * 2007-06-27 2007-11-28 杨泽 一种无缝钢管限动连轧短流程的轧制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63215310A (ja) * 1987-03-04 1988-09-07 Nkk Corp 継目無鋼管製造設備
WO1996012574A1 (fr) * 1994-10-20 1996-05-02 Sumitomo Metal Industries, Ltd. Procede de production de tubes d'acier sans soudure et materiel de production afferent
JP2004058128A (ja) 2002-07-31 2004-02-26 Jfe Steel Kk 鋼管の圧延温度制御方法および装置
JP2005007452A (ja) 2003-06-20 2005-01-13 Jfe Steel Kk 均熱装置での鋼管温度制御方法
JP2007301574A (ja) 2006-05-09 2007-11-22 Nakajima Steel Pipe Co Ltd 鋼管の製造方法および鋼管の製造設備

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2422892A4

Also Published As

Publication number Publication date
JP5262949B2 (ja) 2013-08-14
JP2010247218A (ja) 2010-11-04
EP2422892A4 (en) 2014-07-16
BRPI1009482A2 (pt) 2016-03-01
EP2422892A1 (en) 2012-02-29
CN102405114A (zh) 2012-04-04
US20120017662A1 (en) 2012-01-26

Similar Documents

Publication Publication Date Title
JP5262949B2 (ja) 継目無鋼管の製造方法およびその製造設備
TWI432272B (zh) 用於以薄鋼板為基礎由矽鋼製造熱軋條帶的方法與設備
EP0787541B1 (en) Method of manufacturing seamless steel pipes and manufacturing equipment therefor
WO1997039843A1 (fr) Procede et installation pour fabriquer des tubes sans soudure
MXPA97002792A (es) Procedimiento para fabricar tubos de acero sin costura
JP4874369B2 (ja) 中〜高炭素鋼線材の連続加工熱処理ライン
JP5217509B2 (ja) 厚鋼板の製造方法および製造設備
US1931912A (en) Method of forming aluminum
CN114405991A (zh) 减小中高碳钢坯料表面脱碳深度的开坯方法
CN107739794B (zh) 在线淬火装置、钢管调质热处理的生产线和生产工艺
US3979231A (en) Method for producing large diameter steel pipes
US4786338A (en) Method for cooling rolled steels
JP6330741B2 (ja) 継目無鋼管の製造方法
JP5000116B2 (ja) 鋼帯連続処理設備における均熱炉操業方法
US10100384B2 (en) Method for producing a tempered seamlessly hot-fabricated steel pipe
CN207567290U (zh) 在线淬火装置和钢管调质热处理的生产线
KR101490600B1 (ko) 선재 제조방법
JP2003225701A (ja) 継目無鋼管の連続圧延装置
JP6520892B2 (ja) 継目無鋼管の製造方法および継目無鋼管製造設備
RU2497610C2 (ru) Прокатная установка для получения трубчатого продукта и способ получения трубчатого продукта (варианты)
JP2003200206A (ja) 継目無鋼管の製造装置
JP2844924B6 (ja) 継目無鋼管の製造方法およびその製造設備
JP6015270B2 (ja) 高Cr継目無鋼管の製造方法
KR101988284B1 (ko) 소재처리장치
JPH0479721B2 (ja)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080017410.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10766906

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010766906

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1009482

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1009482

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110915