WO1996006127A1 - Feuille en resine de styrene et moulage de cette feuille - Google Patents

Feuille en resine de styrene et moulage de cette feuille Download PDF

Info

Publication number
WO1996006127A1
WO1996006127A1 PCT/JP1995/000646 JP9500646W WO9606127A1 WO 1996006127 A1 WO1996006127 A1 WO 1996006127A1 JP 9500646 W JP9500646 W JP 9500646W WO 9606127 A1 WO9606127 A1 WO 9606127A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
rubber
styrene
sheet
resin
Prior art date
Application number
PCT/JP1995/000646
Other languages
English (en)
French (fr)
Inventor
Kazuhiko Sho
Mitsutoshi Toyama
Original Assignee
Asahi Kasei Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kogyo Kabushiki Kaisha filed Critical Asahi Kasei Kogyo Kabushiki Kaisha
Priority to EP95913416A priority Critical patent/EP0729998B1/en
Priority to KR1019960700840A priority patent/KR100186672B1/ko
Priority to DE69527413T priority patent/DE69527413T2/de
Priority to JP50792796A priority patent/JP3662025B2/ja
Publication of WO1996006127A1 publication Critical patent/WO1996006127A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2353/02Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers of vinyl aromatic monomers and conjugated dienes

Definitions

  • the present invention relates to a rubber-modified styrene-based resin comprising a continuous phase of a styrene-based polymer having a specific composition, and dispersed particles of a type 2 styrene-butadiene block copolymer.
  • the present invention relates to a styrene-based resin sheet formed by using a styrene-based resin composition to which the above terpene-based resin is added and suppressing the heat shrinkage to a certain value or less, and a molded article thereof.
  • the sheet of the present invention is excellent in strength, rigidity, and transparency, and suppresses “return of gloss” during secondary heat molding, and is suitable as a food packaging material, an electrical product packaging material, and the like. . '' Background technology>
  • Vinyl chloride resin is widely used as a transparent packaging material for electrical products, electronic components, office supplies, food, etc. Vinyl chloride resin is excellent in balance of transparency, strength, moldability, scratch resistance, chemical resistance, price, etc. Power ⁇ , Pollution during disposal and incineration because vinyl chloride resin contains a large amount of chlorine In recent years, there has been a strong demand for alternative materials. A—PET resin is being considered as an alternative material, but it has drawbacks such as very poor moldability, difficulty in recycling, and high price. At present, it has not yet reached the market because extruders and molding machines used for vinyl chloride resin cannot be used.
  • Another alternative material is a blend of polystyrene and a polystyrene-butadiene block copolymer.
  • This blend has a poor balance between transparency and strength and is produced by a styrene-butadiene block copolymer.
  • they have disadvantages such as susceptibility to damage, bad smell, poor weather resistance and appearance, and high price, and are used only in some applications.
  • Japanese Patent Application Laid-Open Nos. 4-1491921 and 4-1984284 disclose a styrene-butyl acrylate having a greatly improved balance between transparency and strength.
  • a blend of a polymer Z styrene-butadiene block copolymer has been proposed.
  • the above-mentioned disadvantage caused by the styrene-butadiene block copolymer has not been improved.
  • Japanese Patent Application Laid-Open No. 5-171001 attempts to improve the balance between transparency and strength by using a terpene-based hydrogenated resin.
  • Japanese Patent Application Laid-Open No. 6-1454543 discloses a composition comprising a rubber-modified styrene resin containing a rubber-like elastic body as dispersed particles, a terpene resin, and a block copolymer.
  • a transparent sheet There is a description that a combination of a block copolymer and a terpene-based resin improves the balance of strength, transparency, and “glossy return”.
  • a resin composition uses a block copolymer, it has a drawback caused by the block copolymer as described above.
  • the present inventors have conducted intensive studies in order to solve the problems of the conventional rubber-modified styrene-based resin sheet and the molded product thereof.
  • the terpene-based resin has a specific composition.
  • a rubber-modified styrene resin composition By using a rubber-modified styrene resin composition and suppressing the heat shrinkage of the sheet to a certain value or less, it is excellent in strength, rigidity and transparency, and at the time of secondary heat molding. It has been found that sheets and molded articles with little "glare return" can be obtained.
  • the present invention relates to a styrene-based monomer unit of 45 to 60% by weight, an acrylate-based monomer unit having an alkyl group having 2 to 4 carbon atoms, and / or methacrylic acid.
  • Continuous phase consisting of a copolymer consisting of 5 to 15% by weight of an acid ester monomer unit and 25 to 50% by weight of a methyl methacrylate monomer unit 85 to 92% by weight %
  • a styrene-butadiene block copolymer having a styrene content of 25 to 40% by weight, having an average particle diameter of 0.4 to 0.9 // m.
  • a rubber-modified styrene-based resin composition having a thickness of 0.10 to 2.5 mm and a heat shrinkage of the sheet of 20% or less.
  • the present invention relates to a sheet and a molded product thereof.
  • the amount of the acrylate ester monomer unit having 2 to 4 carbon atoms and / or the amount of the methacrylate ester monomer unit is 5 to 15% by weight, preferably, It is 6 to 13% by weight.
  • the content is less than 5% by weight, a clear transparent resin can be obtained even if the refractive index of the rubber-like elastic body and the continuous phase are matched and the particle size of the rubber-like elastic body is reduced. I can't. If the content is less than 5% by weight, the heat resistance of the resin increases, and as a result, the secondary heat molding temperature of the sheet must be increased, and the moldability is lower than that of the vinyl chloride resin. If it exceeds 15% by weight, the heat resistance of the resin will be low, and the heat resistance of the product will be low, so the practical range will be narrowed.
  • the amounts of the styrene monomer unit and the methyl methacrylate monomer unit are 45 to 60% by weight and 25 to 50% by weight, respectively. Preferably, they are 45-55% by weight and 30-45% by weight, respectively.
  • the acrylate monomer unit having 2 to 4 carbon atoms and / or the methacrylate ester unit are used.
  • the amount of the monomer unit is set in the range of 5 to 15% by weight, and the styrene monomer unit and the methyl methacrylate monomer are adjusted to match the refractive index of the rubber-like elastic material used. Determine the amount of the unit.
  • the proportions of the components constituting the continuous phase are as follows: styrene monomer units, acrylic acid and Z or methacrylate ester monomer units having 2 to 4 carbon atoms, and methyl methyl ester. It is based on the total amount of acrylate monomer units. As long as this ratio is within the scope of the present invention and does not reduce the permeability of the resin, other components may be contained.
  • styrene monomethylstyrene, p-methylstyrene, p-t-butylstyrene and the like may be used as the styrene monomer. It can. These may be used alone or as a mixture. Among them, styrene is preferred in terms of productivity and cost.
  • acrylate monomers and methacrylate monomers having an alkyl group having 2 to 4 carbon atoms industrially easily available ethyl acrylate Butyl acrylate, ethyl methacrylate
  • butyl methacrylate is used. These can be used alone or as a mixture. Of these, butylacrylate and butylmethacrylate are preferred in terms of productivity and cost.
  • the continuous phase comprising the styrene copolymer of the present invention is 85 to 92% by weight based on the rubber-modified styrene resin. If it is less than 85% by weight, the stiffness decreases, and if it exceeds 92% by weight, the strength decreases.
  • the difference between the refractive indices of the continuous phase and the rubber-like elastic body is preferably within 0.01, more preferably within 0.008. If it exceeds 0.01, it is difficult to obtain a resin, sheet, or molded product having a clear and transparent feeling (the degree of polymerization of the continuous phase is from 0.8 to 0 in terms of the reduced viscosity (30 ° C)). If it exceeds 0.8, the flowability of the styrene-based resin will be reduced, and as a result, the orientation will be too high during sheet molding, and When you suppress the orientation one bets and reduce the transparency and strength of the molded body (when sheet molding, not rather be preferred because rather invited a decrease in extreme productivity. reduced viscosity 0. less than 4 In this case, even if the size of the dispersed particles of the rubber-like elastic material is set to the maximum value within the range specified in the present invention, the strength of the sheet greatly decreases, which is not preferable.
  • the rubber-like elastic body of the present invention does not need to be a perfect type 2 in which a type 2 styrene-butadiene block copolymer is used. Although it is not preferable to use a complete styrene copolymer, it is easy to increase the particle size and increase the size of the copolymer contained in the particles, resulting in a decrease in transparency.
  • the styrene polymer block and the butadiene polymer block may be formed of a styrene-butadiene random copolymer.
  • a rubber-like elastic material having a polymorphic structure of type 3 or more such as a block copolymer has too small a rubber particle diameter to obtain a strong resin. .
  • the styrene content in the rubber-like elastic body is 25 to 40% by weight. If it exceeds 40% by weight, the reinforcing effect of the rubber-like elastic body is remarkably reduced. If it is less than 25% by weight, the use of methyl methacrylate to match the refractive index with the continuous phase is required. As the amount used increases, the flowability of the resin decreases. As described above, the transparency decreases. At 25 to 40% by weight, the average particle diameter can be easily controlled, and a sheet having a good balance between transparency and strength can be obtained.
  • the rubber-like elastic material preferably has a molecular weight of 15 to 50 cps as a viscosity of a 5% by weight styrene solution at 25 ° C. If the solution viscosity is less than 15 cps, the strength is significantly reduced. If it exceeds 50 cps, it becomes difficult to reduce the rubber particle diameter. In particular, it becomes difficult to suppress the generation of particles of 1.0 m or more.
  • the average particle size of the rubber-like elastic body referred to in the present invention is measured by a laser scattering measurement method, and its range is 0.4 to 0.9 ⁇ m. More preferably, it is between 0.5 and 0.8 / m. If the value exceeds 0, the transparency of the sheet is reduced, and the phenomenon of “return of luster”, particularly when the sheet is secondarily heated to form a container or the like, is very unfavorable. If it is less than 0.4 m, the strength is greatly reduced, which is not preferable.
  • the particle size distribution of the rubber-like elastic body is not particularly limited.
  • the content of the terpene resin is 3 to 15 parts by weight, and preferably 3 to 12 parts by weight, based on 100 parts by weight of the rubbery modified styrene resin.
  • the content of the terpene resin is preferably 0.25 to 1.0 times that of the rubber-like elastic material. As the amount of the rubber-like elastic body increases, the content closer to 1.0 times is more preferable for suppressing the “glossy return”.
  • the molecular weight of the terpene-based resin is preferably from 400 to 300,000 in terms of weight average molecular weight when using the GPC measurement method. More preferred is 500 to 2000. If it is less than 400, the effect of suppressing the “brightness return” does not appear,
  • the terpene resin of the present invention includes a partially hydrogenated terpene resin. These can be used alone or in combination.
  • the terpene resin can be obtained by subjecting an aromatic vinyl hydrocarbon and a terpene to cation polymerization using a Freedel-Crafts type catalyst such as aluminum chloride or boron trifluoride.
  • aromatic vinyl hydrocarbons styrene and the like are obtained.
  • terpenes d-limone obtained from citrus cortex and ⁇ -pinene obtained from raw pine resin are obtained by isomerization. Dipentene is preferably used.
  • a commercially available YS resin TO—125, TO—115, TO—105, TO—85, etc. is used. be able to.
  • the partially hydrogenated terpene-based resin is obtained by hydrogenating the terpene-based resin.
  • the hydrogenation rate is not particularly limited, but it is necessary to leave at least 10 mo 1% of aromatic rings.
  • the compatibility with the rubber-modified styrene resin decreases, and the terpene resin causes a decrease in transparency.
  • the partially hydrogenated terpene-based resin for example, commercially available Chris Alon M-115, M-105, etc. (manufactured by Yashara Chemical Co., Ltd.) can be used.
  • the rubber-modified polystyrene resin of the present invention is a rubber-reinforced polystyrene (H
  • PS resin can be manufactured by a method frequently used in the manufacture of (PS resin). That is, the rubber-like elastic material is converted into a styrene monomer and Z or Dissolved in raw material solution consisting of lylic acid (methacrylic acid) ester monomer and / or methyl methacrylate and / or polymerization solvent and / or polymerization initiator, and dissolved rubber-like elastic material
  • the raw material solution thus obtained is supplied to a reactor equipped with a stirrer to perform polymerization.
  • the particle size of the dispersed particles of the rubber-like elastic material is generally controlled by using a method of changing the rotation speed of the stirring blade, a method of changing the viscosity of the reaction solution, or a combination of the two. Can be done.
  • a method for maintaining transparency a general method. For example, a method of adding a monomer as needed during the polymerization, a method of continuously adding a monomer, or the like can be used.
  • a rubber-modified styrene-based resin containing a high-concentration rubber-like elastic body may be produced by the above-described method, and mixed with a separately produced styrene-based resin containing no rubber-like elastic body to make a predetermined amount.
  • a polymerization solvent such as ethylbenzene, toluene, or xylene may be used.
  • An organic peroxide commonly used for the polymerization of a styrene polymer may be used, or may be added during the polymerization.
  • polymethyl styrene dimer, and mercaptans which are frequently used in the polymerization of polystyrene.
  • a polymerization method a bulk polymerization method or a solution polymerization method which is commonly used in a method for producing a styrene polymer is used. Either a batch polymerization method or a continuous polymerization method can be used.
  • the polymerization solution exiting the reactor is led to a recovery device.
  • a recovery device a flash tank system, an extruder with a multi-stage vent, and the like, which are frequently used in the production of a styrene polymer, can be used.
  • the operating conditions can be almost the same as those for the styrene polymer.
  • the styrene resin sheet of the present invention is frequently used in food applications, it is preferable that unreacted monomer, polymerization solvent and the like be as small as possible.
  • the remaining amount of the monomer is preferably the total amount of the remaining amounts of styrene, acrylate and Z or methacrylate, and methyl methacrylate, preferably 100 O ppm, more preferably below 500 ppm.
  • the molten resin from which unreacted monomers etc. have been removed will be pelletized.o
  • the terpene resin has the ability to dissolve in a raw material solution in which a rubber-like elastic material is dissolved, or styrene, acrylate and Z or methacrylate, methyl methacrylate alone.
  • a rubber-like elastic material is dissolved
  • styrene, acrylate and Z or methacrylate, methyl methacrylate alone a rubber-like elastic material
  • styrene, acrylate and Z or methacrylate, methyl methacrylate alone Of polymer or solvent, and added to the mixture during polymerization or at the inlet of the recovery system, or to heat and melt and added to the pelletizing process, or rubber-modified styrene resin during sheet molding Can be added by blending and melting.
  • the thickness of the sheet is between 0.10 and 2.5 mm, preferably between 0.1 and 2.5 mm.
  • the heat shrinkage of the sheet must be 20% or less.
  • the heat shrinkage rate in the present invention is a shrinkage rate in the sheet extrusion direction. Heating If the shrinkage exceeds 20%, orientation relaxation occurs during secondary heat molding, and the sheet surface becomes rough. As a result, the "return of gloss" becomes severe, and a molded article having clear transparency is obtained. I can't get it. Further, since the sheet is strongly oriented, the strength of the sheet and the molded product is reduced.
  • the sheet is manufactured by a general method such as extruding from a T-die after melting in an extruder. At this time, in order to control the heat shrinkage ratio to not more than 20%, it is necessary to pay attention to the following points in forming.
  • a temperature of 200 to 250 ° C, more preferably 210 to 250 ° C a sheet with good transparency can be obtained.
  • the sheet coming out of the T-die is subjected to strong tension and the heat shrinkage of the sheet increases.
  • the ratio of the opening degree of the T die and the thickness of the Z sheet is preferably as close to 1 as possible. Preferably, it is between 1.0 and 2.5, more preferably between 1.0 and 2.0. As this value increases, tension is applied to the sheet, and the value of the heat shrinkage increases.
  • the air gap should be as long as possible. By relaxing the stress received inside the T die during this period, the heat shrinkage can be reduced.
  • the temperature of the cooling roll, the touch roll, and the polyethylene roll is 50 to 80 ° C, more preferably 50 to 70 ° C. 5 0. If it is lower than C, the tension received between the T die and the roll and between the rolls is fixed, and it cannot be reduced between the winding machine. The lower the linear pressure between the rolls, the less tension between the rolls is preferable. A preferred linear pressure is 5 to 20 kg / cm.
  • a method of increasing the linear pressure is used to transfer the mirror surface of the roll with a touch roll, cooling roll, or poly-silicon roll. When the resin of the present invention is treated by such a method, the sheet itself becomes highly transparent. Brightness can be obtained in some cases, but the value of the heat shrinkage ratio increases. Therefore, when this sheet is subjected to secondary heat molding, only a molded article with intense “return” and poor transparency can be obtained.
  • the transparent sheet referred to in the present invention refers to a sheet having a haze of 6 or less, preferably 5 or less, more preferably 3 or less.
  • the sheet of the present invention is secondarily heated by a known method such as a vacuum forming method or a compressed air forming method, so that molded articles such as containers and blister packs can be obtained.
  • a known method such as a vacuum forming method or a compressed air forming method
  • the sheet temperature is preferably as low as possible, since a molded article with good transparency can be obtained.
  • the heating method up to a predetermined sheet temperature is preferably higher in temperature and shorter time than in lower temperature and long time. This is because the surface of the molded article is less rough because the orientation of the sheet received during the secondary heating is less relaxed.
  • the rubber-modified styrene-based resin of the present invention may contain additives commonly used in styrene-based resins, for example, antioxidants, lubricants, plasticizers, antistatic agents, and colorants. it can.
  • the styrene-based resin sheet of the present invention contains a lubricant such as an antistatic agent and silicone commonly used to improve the surface properties of the sheet. 5/00646
  • FIG. 1 shows a reactor for polymerizing the styrene resin of the present invention.
  • FIG. 2 is a perspective view of a molded beverage cup.
  • Figs. 3 and 4 are graphs showing the relationship between the particle size of the dispersed particles of the rubber-like elastic material and the level of the "glossy return" and the Dupont impact strength, respectively.
  • Fig. 5 to Fig. 8 are graphs showing the relationship between the level of "return” and the terpene-based resin content, the heat shrinkage, and the content ratio of terpene-based resin / rubber-like elastic material with partial water addition, respectively. It is.
  • Reactor 1 1. Reactor 1, 2. Reactor 2, 3. Reactor 3,
  • the particle size of the dispersed particles of the rubber-like elastic material is measured using a Coulter Co., Ltd. laser scattering particle size measuring device “COULTERRRLSI30”.
  • the amount of the rubber-like elastic body in the styrene resin is measured by an infrared absorption spectrum method generally used for rubber-reinforced polystyrene (HIPS).
  • Styrene monomer (A) that forms a continuous phase acrylate (methacrylic acid) ester monomer (B) with 2 to 4 carbon atoms in the alkyl group, methyl methyl
  • the acrylate monomer (C) is measured by the following method.
  • Pulse width 8.4 ⁇ s
  • data point 16 3 8 4
  • repetition time 7.559 seconds
  • AD converter 16 bits
  • integration count 1, 0
  • Sample concentration 10 wt%
  • solvent 1, 1, 2, 2-tetracro-entrance (d2)
  • sample tube 5 mm
  • measurement temperature 120 ° C
  • the peak force derived from hydrogen of the phenyl group in (A) is 6.2 to 7.4 ppm
  • the peak force derived from hydrogen in (B) is 3.4 to 3.8 ppm
  • the peak force derived from the hydrogen of the methyl group in (B) and (C) is ⁇ 0.2 to 1.1 ppm. Perform the peak separation operation and determine the weight percentage of (A), (B), and (C) from the peak area ratio.
  • the reduced viscosity of the continuous phase of the rubber-modified styrene resin was determined using an FT-NMR measurement sample, a 0.5% by weight toluene solution was prepared, and a polypropylene resin tube was prepared. Measure in a constant temperature bath at 30 ° C using # 100.
  • the styrene content in the rubber-like elastic material is measured by using an IR method commonly used in a rubber composition analysis method. 6
  • the solution viscosity of the rubber-like elastic body was adjusted to 25 ° C using a 5% by weight styrene solution of the rubber-like elastic body and using an Ostwald cannon tube viscosity tube # 350. Measure in a thermostat.
  • the average molecular weight of the terpene resin is measured using a gel permeation chromatograph "HLC-8200" manufactured by Tosoh Corporation. Polystyrene equivalent weight average molecular weight Expressed by
  • the heat shrinkage is measured according to JIS K6872. Measure the heat shrinkage in the sheet extrusion direction.
  • the refractive index of the continuous phase of the rubber-modified styrenic resin and the refractive index of the rubber-like elastic material are measured using an Abbe-type refractive index system at 25%.
  • the MFR of the resin composition is measured according to ISOR1113.
  • the vicat softening point of the resin composition is measured according to ASTMD155. (13) Total light transmittance and haze
  • the total light transmittance and haze of the sheet are measured according to ASTM D103.
  • the DuPont impact strength of the sheet is measured according to JIS 540.
  • the tensile modulus of the sheet is measured according to JIS K68772.
  • the “return” level of the sheet is determined by molding the beverage cup shown in Fig. 2 and comparing it with the sheet before molding to visually determine how white the cup side is. Although this degree cannot be dealt with exactly, the value of (the haze value of the haze value sheet on the side of the beverage power) is roughly as shown on the left.
  • beverage cups The practicality of beverage cups is determined by whether or not they have a level of transparency that can be substituted for rigid polyvinyl chloride molded products that are often used as lids for salad containers and the like.
  • the rubber-modified styrene resin is polymerized using the equipment shown in Fig. 1.
  • the polymerization reactor 1 2 3 is a tubular reactor having a stirrer, The capacities are 6.2 respectively.
  • the raw material solution is supplied to Reactor 1 for polymerization.
  • the polymerization solution is successively guided to reactors 2 and 3, and the polymer solution exiting reactor 3 is guided to a recovery system equipped with a preheater.
  • the preheater has a built-in static mixer and has a capacity of 0.8. After heating to 240 ° C with a preheater, unreacted monomers, polymerization solvent, etc. were removed in a recovery system under a vacuum of 10 mmHg, pelletized, and rubber-modified steel Obtain a ren-based resin.
  • the polymerization temperature of the reactor 1 is 120 ° C.
  • the polymerization temperature of the reactor 2 is 140 ° C.
  • the polymerization temperature of the reactor 3 is 150 ° C.
  • the particle size of the dispersed particles is controlled while adjusting the rotation speed of the stirrers of the reactors 1 and 2.
  • Table 1 shows the physical properties of the obtained rubber-modified styrene resin.
  • the polymerization temperature of reactor 1 is 1 18 ° C
  • the polymerization temperature of reactor 2 is 1 38 ° C
  • the polymerization temperature of reactor 3 is 15 Perform polymerization at 2 ° C.
  • the diameter of the dispersed particles is controlled while adjusting the rotation speed of the stirrer of the reactor 1 and the reactor 2.
  • Table 1 shows the physical property values of the obtained rubber-modified styrene resin.
  • the polymerization is performed at 3 ° C, the polymerization temperature of the reactor 2 is 144 ° C, and the polymerization temperature of the reactor 3 is 158 ° C.
  • the particle diameter of the dispersed particles is controlled while adjusting the rotation speed of the stirrers of the reactors 1 and 2.
  • Table 1 shows the physical properties of the rubber-modified styrene resin.
  • styrene 41.2 parts by weight of styrene, 12.8 parts by weight of butyl acrylate, 25.2 parts by weight of methyl methacrylate, 12 parts by weight of ethylbenzen, 12 parts by weight of asaprene 680 A (styrene Type 2 styrene-butadiene block copolymer of 30% by weight; manufactured by Asahi Kasei Kogyo Co., Ltd.) 8. Put 8 parts by weight into the dissolving tank, and the rubber-like elastic material dissolves After that, 0.03 parts by weight of organic peroxide Perhexa C (manufactured by NOF CORPORATION) is charged and supplied to reactor 1 at a rate of 2 ZH.
  • organic peroxide Perhexa C manufactured by NOF CORPORATION
  • the polymerization is performed at a polymerization temperature of Reactor 1 of 1 16 ° C, a polymerization temperature of Reactor 2 of 135 ° C, and a polymerization temperature of Reactor 3 at 150 ° C.
  • the diameter of the dispersed particles is controlled while adjusting the rotation speed of the stirrer of the reactor 1 and the reactor 2.
  • Table 1 shows the physical properties of the rubber-modified styrene resin. Rubber-modified styrenic resin 1.3>
  • Polymerization is carried out in the same manner as for the rubber-modified styrene-based resin 19 except that a rubber-like elastic body, which is a type 2 styrene-butadiene block copolymer having a styrene content of 35% by weight, is used.
  • Table 1 shows the physical properties of the rubber-modified styrene resin.
  • the minimum number of reactors 1 and 2 at which the stirring speed can be controlled by temperature is carried out in the same manner as for the rubber-modified styrene-based resin 19 except that the polymerization is carried out at a lower temperature.
  • Table 1 shows the physical properties of the rubber-modified styrene resin.
  • Rubber-modified styrenic resin 15>
  • Rubber-modified styrenic resin 16>
  • Rubber-modified styrene-based resin-210 parts by weight, partially hydrogenated terbene-based resin Clialon Ml 15 (manufactured by Yashara Chemical Co., Ltd.) Pelletized with a screw extruder. Using this pellet, a 0.3 mm sheet is formed using a 50 mm 0 single screw extruder having a T die. The temperature of the extruder is 225 ° C and the temperature of the T-die is 230. C, T die opening 0.5 mm, cooling roll, touch roll clearance 0.3 mm, roll linear pressure 5 kg Z cnf, three rolls (see above) The two rolls and the other roll) are all 6 5. Adjust the take-off speed so that the sheet thickness controlled by C is 0.3 mm, and form the sheet. Table 2 shows the physical properties of the obtained sheet.
  • a beverage cup shown in Fig. 2 is vacuum formed. Heat both sides of the sheet under the conditions of a heater set temperature of 240 ° C and a heating time of 25 seconds, and vacuum form. Table 2 shows the transparency of the obtained cup. ⁇ Examples 2 to 4>
  • a sheet and a beverage cup are formed in the same manner as in Example ⁇ except that rubber-modified styrenic resin 1, 3, 4, and 5 are used instead of rubber-modified styrenic resin 12, respectively. .
  • the physical properties of the sheet obtained and the transparency of the cup Table 2 shows the clarity.
  • a sheet and a beverage cup are formed in the same manner as in Example 1 except that the rubber-modified styrene resin 19 is used.
  • Table 2 shows the physical properties of the sheet and the transparency of the sheet.
  • Rubber-modified styrene-based resin—2,100 parts by weight, partially hydrogenated terbene-based resin, Clear Ml 15 (manufactured by Yasuhara Chemical Co., Ltd.) 3, 5, and 15 parts by weight Are mixed and pelletized by a twin-screw extruder, and the same operation as in Example 1 is performed to form a sheet and a beverage cup.
  • Table 2 shows the physical properties and transparency of the obtained sheets.
  • Example 1 was repeated except that terpene resin YS resin TO—125 (manufactured by Yasuhara Chemical Co., Ltd.) was mixed instead of partially hydrogenated terpene resin clearon M115. Proceed in the same way to form sheets and beverage cups. Table 2 shows the physical properties and transparency of the sheets obtained.
  • Example 2 shows the physical properties and the transparency of the cap.
  • Extruder temperature is 220 ° C
  • T die temperature is 22 ° C
  • T die opening is 0.4 mm
  • all three rolls are controlled at 50 ° C. Proceed as in step 1 to form sheets and beverage cups.
  • Table 2 shows the physical properties and transparency of the obtained sheet.
  • Example 21 The procedure of Example 10 was repeated, except that the rubber-modified styrene-based resin-1 was replaced with the rubber-modified styrene-based resin-19, to thereby form a sheet and a beverage cup.
  • Table 2 shows the physical properties of the obtained sheet and the transparency of the cup.
  • a sheet and a beverage cup are formed in the same manner as in Example 11 except that the rubber-modified styrene-based resin 11 is replaced by the rubber-modified styrene-based resin 19.
  • Table 2 shows the physical properties of the obtained sheet and the transparency of the cup.
  • a sheet and a beverage cup are formed in the same manner as in Example 1 except that the temperature of the T-die is controlled at 22 ° C and all three rolls are controlled at 60 ° C.
  • Table 2 shows the physical properties of the sheet and the transparency of the beverage cup.
  • a sheet and a beverage cup are formed in the same manner as in Example 1, except that the rubber-modified styrene-based resins 1-1, 6, ⁇ , 8 and ⁇ 0 are used, respectively.
  • Table 3 shows the physical properties of each sheet and the transparency of the cup.
  • a sheet and beverage cup are formed in the same manner as in Example 1 except that the partially hydrogenated terpene-based resin Clearon Ml 15 (manufactured by Yasuhara Chemical Co., Ltd.) is not used.
  • Table 3 shows the physical properties and transparency of the obtained sheets.
  • Extruder temperature was set at 190 ° C
  • T-die temperature was set at 200 ° C
  • the temperature of all three rolls was controlled at 60 ° C.
  • Table 3 shows the physical properties of the obtained sheet and the transparency of the cup.
  • Example 3 shows the physical properties of the sheet and the transparency of the sheet.
  • the sheet and beverage cup are formed in the same manner as in Example 1 except that the opening of the T-die is 1.5 mm and the temperatures of all three rolls are controlled at 60 ° C.
  • Table 3 shows the physical properties of the obtained sheet and the transparency of the cup.
  • Example 2 The operation is the same as in Example 1 except that the opening degree of the T-die is 1.0 mm and the temperatures of all three rolls are controlled at 60 ° C to form sheets and beverage cups.
  • Table 3 shows the sheet properties and the transparency of the beverage cup.
  • Example 2 Operate in the same manner as in Example 1 except that the opening of the T-die is 1.0 mm and the temperatures of all three rolls are controlled at 57 ° C. Is molded. Table 3 shows the physical properties of the obtained sheet and the transparency of the cup.
  • a sheet and a beverage cup are formed in the same manner as in Comparative Example 13 except that the rubber-modified styrene-based resin-1 is replaced by the rubber-modified styrene-based resin-19.
  • Table 3 shows the physical properties of the obtained sheet and the transparency of the cup.
  • Partially hydrogenated terpene resin Clearon M115 (manufactured by Yasuhara Chemical Co., Ltd.) The same operation as in Comparative Example 13 was carried out except that 20 parts by weight were mixed. Mold the top. Table 3 shows the physical properties of the obtained sheet and the transparency of the cup.
  • Partially hydrogenated terpene-based fatty crystal A1 M1 15 (manufactured by Yashara Chemical Co., Ltd.) Except for mixing 20 parts by weight, operate in the same manner as in Comparative Example 11 to obtain a sheet and a beverage cup. Mold.
  • Table 3 shows the physical properties of the sheet and the transparency of the sheet.
  • the styrene resin sheet of the present invention is excellent in a balance of strength, transparency, and “glare return”.
  • Example 1 except that the opening force of the T-die was 1.5 mm, the clearing force of the cooling roll and evening roll was 0.8 mm, and the sheet thickness was 0.8 mm. Proceed in the same way to form sheets and beverage cups. Table 5 shows the physical properties of the obtained sheet and the transparency of the cup. ⁇ Comparative Example 19>
  • the opening force of the T-die is 1.5 mm
  • the cooling force of the cooling roll and evening roll is 0.8 mm
  • the sheet thickness is 0.8 mm. 6
  • the heat shrinkage ratio is 2
  • a sheet and a beverage cup are formed in the same manner as in Example 1 except that the rubber-modified styrene-based resin 113 is used.
  • Table 6 shows the physical properties of the sheet and the transparency of the sheet.
  • a sheet and a beverage cup are formed in the same manner as in Example 1 except that the rubber-modified styrenic resin—14, 15 or 16 is used.
  • Table 6 shows the physical properties and transparency of the obtained sheets.
  • styrene block copolymer having a styrene content of 25 to 40% by weight makes it easy to control the average particle size and to achieve a balance between transparency and strength.
  • the resulting sheet and compact are obtained. It is difficult to increase the average particle size of block copolymers having a styrene content of more than 40% by weight, and even if the average particle size can be adjusted to 0.48 m, Poor strength.
  • Block copolymers having a styrene content of less than 25% by weight are difficult to reduce the particle size. Even if the average particle size can be adjusted to 83 m, the transparency of the sheet Is poor, and the “return of gloss” during the secondary molding is severe.
  • a type 3 styrene-butadiene block copolymer is used, the average particle diameter cannot be controlled, and the average particle diameter cannot be increased to 0.30 m or more. The result is a sheet with significantly lower strength.
  • a sheet and a beverage cup are formed in the same manner as in Example 1 except that the rubber-modified styrene resin 11 is used.
  • Cup molding of the present invention Under the conditions (heater set temperature: 240 ° C, heating time: 25 seconds), a complete beverage cup cannot be formed.
  • the heater set temperature was increased in steps of 5 ° C, and the temperature at which the mold could be reproduced was found to be 265 ° C.
  • the set temperature of the sheet heater was 240 ° C, the mold could be reproduced in 45 seconds.
  • a sheet and a beverage cup are formed in the same manner as in Example 1, except that the rubber-modified styrene resin 12 is used.
  • the beverage cup shrunk approximately 3/4 times in the height direction.
  • the heat resistance becomes too high.
  • the power required to increase the heating time by 1,8 times and the heater set temperature must be increased by about 30 ° C, resulting in poor secondary moldability.
  • the amount of (B) exceeds 15% by weight, the heat resistance is reduced, the heat resistance of the molded product is inferior, and the range of application is limited. No change was observed when hot water at 90 ° C was poured into the beverage pot of Example 1. In the case of the beverage cup of Example 5, the body part slightly swells, but no shrinkage in the height direction is observed.
  • the styrene resin sheet of the present invention is excellent in transparency, strength, and rigidity, is excellent in moldability at the time of secondary heat molding, and does not cause “glare return”. Therefore, the molded article obtained from the sheet of the present invention is excellent in strength and transparency. Therefore, the sheet and the molded article of the present invention are suitable for food packaging materials, electric packaging materials, and the like. table 1
  • Rubber-modified styrene resin-10 11.5 1.1 1 3 0 50.5 / 9.0 / 40.5 0. ⁇ 85.1 1.540 1.541
  • Rubber-modified styrene resin 11 11.5 0.5.5 9 3 0 50.1 / 4.1 / 45.8 2 7 97.4 1.539 1.541
  • Rubber-modified styrene resin 12 11.5 0.6.03 0 52.0 / 16.2 / 31.8 6.3 78.2 1.540 1.541
  • Rubber modification Styrene resin 1 14 11.5 0.4 8 4 5 50.5 / 9.0 / 40.5 3.9 85.1 1.540 1.541
  • Rubber modified styrene resin-15 11.5 0.2 2 9 3 0 50.5 / 9.0 / 40.5 4.0 84.9 1.540 1.541
  • Rubber modified styrene resin 16 11.5 0.8 3
  • Example 20 2 10 14 92.1 I. 9 18, 400 17, 700 A ⁇ Example 21 2 10 13 92.0 2.I 49, 200 17, 400 A ⁇ Comparative example 19 2 10 26 91.9 2.7 15.900 18, 000 DX ratio example 20 2 10 30 91.7 3.I 35, 200 17, 600 DX
  • Example 22 13 10 15 92.9 1.6, 200, 17, 900 A ⁇ Comparative Example 21 14 10 16 93.1 1.4, 300 18, 600 A ⁇ Comparative Example 22 15 10 16 92.9 1.3, 1,900 18 , 800 A ⁇ Comparative Example 23 16 10 15 91.9 3.7 11, 600 16, 900 DX

Description

明細書
ス チ レ ン 系 樹 脂 シ ー 卜 及 び 成 形 体 ぐ技術分野 >
本発明は、 特定の組成を有するスチ レ ン系重合体の連続相と、 二 型のスチ レ ン一ブタ ジエンプロ ッ ク共重合体の分散粒子とからなる ゴム変性スチ レ ン系樹脂に特定量のテルペン系樹脂を添加したスチ レ ン系樹脂組成物を用い、 加熱収縮率を一定値以下に抑えて形成さ れたスチレン系樹脂シ一 卜およびその成形体に係わる。 本発明のシ 一 卜は、 強度、 剛性および透明性に優れ、 かつ、 二次加熱成形時の 「艷戻り」 が抑止されており、 食品包装材、 電気製品包装材等と し て好適である。' ぐ背景技術 >
電気製品、 電子部品、 事務用品、 食品等の透明包装材材料と して 塩化ビニル樹脂が広く 使用されている。 塩化ビニル樹脂は、 透明性 強度、 成形性、 耐傷性、 耐薬品性、 価格等のバラ ンスに優れている 力 <、 塩化ビニル樹脂は塩素を多量に含んでいるため、 廃棄、 焼却時 の公害上の問題があり、 近年、 代替材料が強く 求められている。 代替材料と して、 A— P E T樹脂が検討されているが、 成形性が 非常に悪いこ と、 リ サイ クル使用に難点がある こ と、 価格が高い等 の欠点があり、 さ らに、 塩化ビニル樹脂で使用されていた押出機、 成型機等が使用できないため、 現状ではまだ市場に定着するには至 つていない。
他の代替材料と して、 ポ リ スチ レ ン と スチ レ ン一 ブタ ジエ ンブロ ッ ク共重合体のプレン ド体がある。 このプレ ン ド体は透明性と強度 とのバラ ンスが悪く 、 スチ レ ン一ブタ ジエンプロ ッ ク共重合体に起 因する傷つき易さ、 悪臭、 耐候性や外観に劣る、 価格が高い等の欠 点があり、 一部の用途で使用されているにすぎない。
特開平 4 — 1 4 9 2 1 1 、 特開平 4 — 1 9 8 2 4 4 号公報には、 透明性と強度とのバラ ンスが大き く 改善されたスチ レ ン一プチルァ ク リ レー ト共重合体 Zスチレン一ブタ ジエンプロ ッ ク共重合体のブ レ ン ド体が提案されている。 しかしながら、 スチ レ ン一ブタ ジエ ン ブロ ッ ク共重合体に起因する上記の欠点は改善されていない。
米国特許第 4、 6 8 0、 3 3 7号明細書では、 スチ レ ン、 ァク リ ル酸ブチル、 メ タ ク リ ノレ酸メ チル及びスチ レ ン一 ブタ ジエンブロ ッ ク共重合体からなる混合溶液を重合する方法が記載されている。 し かし、 かかる方法で重合された熱可塑性榭脂は、 樹脂そのものは透 明であり、 高い伸びを示しているが、 アイ ゾッ ト衝擊強度に見られ るように、 ゴム補強の効果は全く 見られない。
この公報以前にゴム状弾性体を分散粒子と し、 連続相がスチ レ ン ァク リ ル酸/メ タ ク リ ル酸エステル共重合体よりなる透明なゴム変 性スチ レ ン系樹脂に関する報告は多数あり、 又、 製品も市場に存在 している。 かかる樹脂は射出成形し、 高い圧力で樹脂を金型に密着 させた時のみ透明な成形品が得られ、 シー ト成形した場合、 シー ト を容器等に成形した場合、 異型押出成形した場合、 あるいは、 低圧 で射出成形した場合には生成品の透明性が低下する。 この現象を以 下に 「艷戻り」 と呼ぶ。 これにより、 鮮明な透明感のある成形品は 得られない。 「艷戻り」 現象が解決されなかった為、 塩化ビニル樹 脂代替と して市場で使用されるには至らなかった。
特開平 5 — 1 7 1 0 0 1 号公報では、 テルペ ン系水素添加樹脂を 用いて透明性と強度とのバラ ンスを改良する試みがなされている。 しかし、 こ こでは二次加熱成形した場合の" 艷戻り " 現象の解決を 曰的と しているの もではな く 、 その解決には至っていない。 特開平 6 — 1 4 5 4 4 3号公報では、 ゴム状弾性体を分散粒子と して含有する ゴム変性スチ レ ン系樹脂とテルペン系樹脂とブロ ッ ク 共重合体との組成物からなる透明シー トの記載がある。 ブロ ッ ク共 重合体とテルペン系樹脂との組合せが強度、 透明性および 「艷戻 り」 のバラ ンスを向上させる記載がある。 しかし、 かかる樹脂組成 物はプロ ッ ク共重合体を用いている為に前述の通りのプロ ッ ク共重 合体に起因する欠点を有している。
本発明者らは、 従来のゴム変性スチ レ ン系樹脂からなるシ一 卜お よびその成形体が有する問題点を解決するため、 鋭意検討した結果. テルペン系樹脂を添加した特定の組成からなるゴム変性スチ レ ン系 樹脂組成物を用いて、 かつ、 シー トの加熱収縮率を一定値以下に抑 えるこ とによ り、 強度、 剛性、 透明性に優れ、 かつ、 二次加熱成形 時の" 艷戻り " の少ないシー トおよび成形体が得られるこ とを見い 出 し こ。
<発明の開示〉
本発明は、 スチ レ ン系単量体単位 4 5 〜 6 0 重量%、 アルキル基 の炭素数が 2 〜 4 のア ク リ ル酸エステル系単量体単位および/また はメ タ ク リ ル酸エステル系単量体単位 5 〜 1 5重量%、 およびメ チ ルメ タ ク リ レー ト単量体単位 2 5 〜 5 0重量%からなる共重合体か らなる連続相 8 5 〜 9 2重量%と、 スチ レ ン含有量が 2 5 〜 4 0重 量%の二型のスチ レ ン一ブタ ジエンブロ ッ ク共重合体からなる、 平 均粒子径が 0 . 4 〜 0 . 9 // mである、 ゴム状弾性体の分散粒子 8 〜 1 5重量%とからなるゴム変性スチ レ ン系樹脂 1 0 0 重量部に対 して、 テルペン系樹脂 3 〜 1 5 重量部を含有するスチ レ ン系樹脂組 成物からなり、 厚みが 0 . 1 0 〜 2 . 5 m m、 かつ、 該シー トの加 熱収縮率が 2 0 %以下であるゴム変性スチ レ ン系樹脂組成物からな る シ一 トおよびその成形体に係わる。
本発明において、 炭素数 2〜 4 のアク リ ル酸エステル系単量体単 位および /またはメ タク リ ル酸エステル系単量体単位の量は 5 〜 1 5重量%、 好ま し く は、 6 〜 1 3重量%である。 5重量%未満の場 合は、 ゴム状弾性体と連続相の屈折率を合わせても、 そ して、 ゴム 状弾性体の粒子径を小さ く しても鮮明な透明感のある樹脂が得られ ない。 5重量%未満の場合は、 樹脂の耐熱性が高く なり、 その結果、 シー トの二次加熱成形温度を高く する必要があり、 塩化ビニル樹脂 よ り成形性が悪く なる。 1 5重量%を越える場合は、 樹脂の耐熱性 が低く なり、 製品の耐熱性が低く なるため、 実用範囲が狭めらる。
スチ レ ン系単量体単位、 メ チルメ タ ク リ レー ト単量体単位の量は. 各々 4 5 〜 6 0重量%、 2 5〜 5 0 重量%である。 好ま し く は、 そ れぞれ 4 5 - 5 5 重量%、 3 0 〜 4 5 重量%である。 上述の通り 目 的とするゴム変性スチ レ ン系樹脂の耐熱性の点から、 炭素数 2 〜 4 のァク リ ル酸エステル系単量体単位および/またはメ タ ク リ ル酸ェ ステル系単量体単位の量を 5 ~ 1 5重量%の範囲で設定し、 用いる ゴム状弾性体の屈折率に合わせるようにスチ レ ン系単量体単位、 メ チルメ タ ク リ レー ト単量体単位の量を決める。
連続相を構成する各成分の割合は、 スチ レ ン系単量体単位、 炭素 数 2 〜 4 のァク リ ル酸および Zまたはメ タ ク リ ル酸エステル系単量 体単位、 およびメ チルメ タ ク リ レー ト単量体単位の合計量を基に し たものである。 この比が、 本発明の範囲にあり、 樹脂の透過性を低 下させない限り、 他の成分を含有してもよい。
本発明に於いて、 スチ レ ン系単量体と して、 スチ レ ン、 ひ 一メ チ ルスチ レ ン、 p — メ チルスチ レ ン、 p — t 一プチルスチ レ ン等を用 いる こ とができる。 これらは、 単独も し く は混合して用いてよい。 なかでも、 生産性およびコス 卜の点からスチレンが好ま しい。 アルキル基の炭素数が 2 〜 4 のアク リ ル酸エステル系単量体およ びメ タ ク リ ル酸エステル系単量体と しては、 工業的に容易に入手可 能なェチルァク リ レー ト、 ブチルァク リ レー ト、 ェチルメ タ ク リ レ
— ト、 ブチルメ タ ク リ レー トが用いられる。 これらは、 単独も し く は混合して用いるこ とができる。 なかでも、 生産性およびコ ス トの 点からプチルァク リ レー ト、 プチルメ タ ク リ レ一 トが好ま しい。
本発明のスチ レ ン共重合体からなる連続相は、 ゴム変性スチ レ ン 系樹脂に対して、 8 5 〜 9 2 重量%である。 8 5 重量%未満では、 剛性が低下し、 9 2 重量%越えると、 強度が低下する。
本発明において、 連続相と ゴム状弾性体の屈折率の差は、 0 . 0 1 以内が好ま し く 、 0 . 0 0 8以内がさ らに好ま しい。 0 . 0 1 を 越えると鲜明な透明感のある樹脂、 シー ト、 成形体が得られにく い ( 連続相の重合度は、 還元粘度 ( 3 0 °C ) の値で 0 . 8 〜 0 . 4 d 1 /gの範囲である こ とが好ま しい。 0 . 8 を越える場合は、 スチ レ ン 系樹脂の流動性が低下し、 その結果、 シー ト成形時に配向がかかり 過ぎて、 シ一 トおよびその成形体の透明性および強度を低下させる ( シー ト成形時の配向を抑えよう とする と、 極端な生産性の低下を招 く ので好ま し く ない。 還元粘度が 0 . 4 未満である と、 ゴム状弾性 体の分散粒子の大きさを本発明で規定する範囲の最大値に設定して も シー 卜の強度低下が大き く なり好ま し く ない。
本発明のゴム状弾性体と しては、 二型のスチ レンーブタ ジェンブ ロ ッ ク共重合体が用いられる力 完全な二型である必要はない。 完 全なスチ レ ンーブタ ジェ ンラ ンダム共重合体では、 粒子径が大き く なり易く 、 かつ、 粒子中に包含する共重合体の大き さが大き く なり 透明性が低下するので好ま し く ないが、 スチ レ ン重合体プロ ッ ク と ブタ ジェン重合体ブロ ッ クの繫ぎ部分はスチ レン一ブタ ジェンラ ン ダム共重合体であってもよい。 スチ レ ン—ブタ ジェ ン一 スチ レ ンブ 口 ッ ク共重合体等の三型あるいはそれ以上の多型構造のゴム状弾性 体では、 比較例 2 2 に示す通り、 ゴム粒子径が小さ く なりすぎて強 度のある樹脂は得られない。
ゴム状弾性体中のスチ レ ン含有量は、 2 5 〜 4 0 重量%である。 4 0重量%を越える と、 ゴム状弾性体の補強効果が著し く 低下する, 2 5 重量%未満の場合は、 連続相との屈折率を合わせる為にメ チル メ タ ク リ レー 卜の使用量が増え、 その結果、 樹脂の流動性が低下し. 前述のよう に透明性の低下を招く 。 2 5 〜 4 0 重量%では、 平均粒 子径の制御が容易であり、 透明性と強度とのバラ ンスのとれたシー 卜が得られる。
ゴム状弾性体の分子量は、 2 5 °Cにおける 5 重量%スチ レ ン溶液 粘度で 1 5 〜 5 0 c p sが好ま しい。 溶液粘度が 1 5 c p s 未満で ある と強度が著し く 低下する。 5 0 c p s を越える と ゴム粒子径を 小さ く するのが難し く なる。 特に、 1 . 0 m以上の粒子生成を抑 制するのが困難になる。
本発明でいう ゴム状弾性体の平均粒子径は、 レーザー散乱測定法 により測定し、 その範囲は 0 . 4 〜 0 . 9 〃 mである。 より好ま し く は、 0 . 5 ~ 0 . 8 / mである。 0 . を越えると シ一 卜の 透明性が低下、 特にシー 卜を二次加熱して容器等を成形した場合の 「艷戻り」 現象が激し く みられ、 好ま し く ない。 0 . 4 〃 m未満で は強度の低下が大き く 好ま し く ない。 ゴム状弾性体の粒子径の分布 は特に限定される ものではない。
テルペン系樹脂の含有量は、 ゴム状変性スチレン系樹脂 1 0 0重 量部に対して、 3 〜 1 5 重量部、 好ま し く は、 3 〜 1 2 重量部であ る。 3重量部未満の時は、 シー トを二次加熱して容器等を成形した 場合の 「艷戻り」 が激し く なる。 1 5重量部を越えると、 「艷戻 り」 を抑制する効果は飽和し、 コス トア ッ プを招き、 かつ、 剛性の 低下等を招く 。 テルペン系樹脂の含有量は、 ゴム状弾性体の 0 . 2 5 〜 1 . 0 倍が好ま しい。 ゴム状弾性体の量が増えるほど、 1 . 0 倍に近い含有量が 「艷戻り」 の抑制には好ま しい。
テルペン系樹脂の分子量は G P C測定法を用いた時、 重量平均分 子量で 4 0 0 〜 3 0 0 0 が好ま しい。 よ り好ま しいのは 5 0 0 〜 2 0 0 0 である。 4 0 0未満では 「艷戻り」 抑制効果が発現せず、 3
0 0 0 を越えると 「艷戻り」 抑制効果が著し く 低下する。
本発明のテルペン系樹脂は、 部分水添テルペン系樹脂を含む。 こ れらは、 単独も し く は組み合わせて用いるこ とができる。
テルペン系樹脂は、 芳香族ビニル炭化水素とテルペンを塩化アル ミ 、 三弗化硼素等のフ リ ーデルク ラフ ツ型触媒を用いてカチオン重 合を行う こ とにより得られる。 芳香族ビニル炭化水素と しては、 ス チ レ ン等が、 テルペンと しては、 柑橘系皮質から得られる d — リ モ ネ ン、 生松脂から得られる α — ピネ ンの異性化で得られる ジペンテ ン等が好適に用いられる。 テルペン系樹脂と しては、 例えば、 巿販 の Y S レ ジ ン T O— 1 2 5 、 T O — 1 1 5 、 T O — 1 0 5 、 T O— 8 5 等 (ヤスハラケ ミ カル株式会社製) を用いるこ とができ る。 部 分水添テルペン系樹脂は、 テルペン系樹脂を水素添加する こ とによ り得られる。 水素添加率には特に制限はないが、 少な く と も 1 0 mo 1 %以上の芳香族環を残す必要がある。 芳香族環が少な く なる と ゴ ム変性スチ レ ン系樹脂との相溶性が低下し、 テルべン系榭脂が透明 性を低下させる原因となる。 部分水添テルペン系樹脂と しては、 例 えば、 市販のク リ アロ ン M— 1 1 5 、 M— 1 0 5 等 (ヤスハラケ ミ カル株式会社製) が用いるこ とができる。
本発明のゴム変性スチ レ ン系樹脂は、 ゴム補強ポ リ スチ レ ン ( H
1 P S樹脂) の製造で多用されている方法により製造する こ とがで きる。 即ち、 ゴム状弾性体をスチ レ ン系単量体および Zまたはァク リ ル酸 (メ タ ク リ ル酸) エステル系単量体および またはメ チルメ タ ク リ レー トおよび または重合溶媒および/または重合開始剤か らなる原料溶液に溶解し、 ゴム状弾性体が溶解した原料溶液を撹拌 機付反応機に供給し重合を行う。 ゴム状弾性体の分散粒子の粒子径 の制御は一般的に行われている、 撹拌羽根の回転数を変化させる方 法、 反応液粘度を変化させる方法あるいは両者の組合わせ方法等を 用いる こ とができ る。 透明性を維持する方法と して、 一般的な方法. 例えば重合途中に必要に応じて単量体を添加する方法、 あるいは連 続的に添加する方法等を用いる こ とができる。
ゴム状弾性体は、 目標とする含有量になるよう に原材料の量や重 合率を調整する。 高濃度のゴム状弾性体を含むゴム変性スチ レ ン系 樹脂を上記の方法で製造し、 別に製造したゴム状弾性体を含まない スチ レ ン系樹脂と混合し、 所定量と してもよい。
重合の際は、 ェチルベンゼン、 トルエ ン、 キシ レ ン等の重合溶媒 を用いてもよい。 スチ レ ン系重合体の重合に常用されている有機過 酸化物を用いても、 又、 途中添加 してもよい。 重合度を調整するた めにポ リ スチ レ ンの重合で多用されている ひ — メ チルスチ レ ンダイ マ一、 メ ルカブタ ン類等を使用する こ と もできる。 重合方法は、 ス チ レ ン系重合体の製法で常用されている塊状重合法、 あるいは溶液 重合法が用いられる。 回分式重合法、 連続式重合法いずれの方法も 用いる こ とができる。
反応機を出た重合溶液は回収装置に導かれる。 回収装置はスチ レ ン系重合体の製造で多用されている フ ラ ッ シユ タ ン ク システム、 多 段ベン ト付き押出機等を用いるこ とができる。 操作条件もスチ レ ン 系重合体とほぼ同等の条件を用いる こ とができる。 本発明のスチ レ ン系樹脂シー トは食品用途に多用されるこ とを考慮し、 未反応単量 体、 重合溶媒等は極力少ないほうが好ま しい。 この場合、 未反応単 量体残存量と しては、 スチレン、 アク リ ル酸エステルおよび Zまた はメ タ ク リ ル酸エステル、 およびメ チルメ タ ク リ レー ト残存量の合 計量で、 好ま し く は 1 0 0 O p p m、 さ らに好ま し く は 5 0 0 p p m以下である。 シー ト成形時、 二次加熱成形時等に発生するモール ドデポジ ッ トを極力少な く する為に二量体、 三量体等も極力少な く する こ とが好ま しい。 その為に、 回収系で水、 窒素ガス、 炭酸ガス 等を添加し、 未反応単量体等を除去する等の公知の方法を用いるこ とが好ま しい。 未反応単量体等を除去した溶融樹脂はペ レ ツ ト化す o
テルペン系樹脂は、 ゴム状弾性体を溶解させた原料溶液に溶解さ せる力、、 あるいは、 スチレン、 アク リ ル酸エステルおよび Zまたは メ タ ク リ ル酸エステル、 メ チルメ タ ク リ レー ト単量体または溶媒に 溶解し、 重合途中あるいは回収系の入口に添加する力、、 あるいは、 加熱溶融し、 ペレッ ト化工程に添加する力、、 あるいは、 シー ト成形 時にゴム変性スチ レ ン系樹脂とブレ ン ド し、 溶融する等の方法によ り添加できる。
シー トの厚みは、 0. 1 0 〜 2. 5 mmであり、 好ま し く は 0 .
1 5 〜 2. 0 mmである。 0. 1 0 mm未満のシー トを製造する場 合、 Tダイ方式では、 厚みむら等の調整に困難が伴う。 イ ンフ レ一 シ ヨ ン法で 0 . 1 0 mm未満のシー トを製造する場合はシー トに過 犬の配向がかかり、 透明性が低下、 「艷戻り 」 も激し く なり、 透明 性のよいシー ト、 透明性のよい成形品が得られない。 シー トの厚み が 2 . 5 m mを越える と二次加熱成形時の加熱時間が長く なり、
「艷戻り」 を誘起するこ とになる。 また、 ロール巻取時に白化する ので好ま し く ない。
シー トの加熱収縮率は、 2 0 %以下である こ とが必須である。 本 発明でいう加熱収縮率は、 シー 卜押出方向の収縮率である。 加熱収 縮率が 2 0 %を越えると、 二次加熱成形時に配向緩和が生じ、 シ一 ト表面が荒れ、 その結果と して 「艷戻り」 が激し く なり鮮明な透明 性を有する成形品が得られない。 また、 シー トが強く配向 している ために、 シー トおよび成形品の強度が低下する。
シー トは、 押出機内で溶融した後、 Tダイから押出す等の一般的 な方法により製造し う る。 この時、 加熱収縮率 2 0 %以下に制御す るために次の点に留意して成形する必要がある。
シー ト押出機の温度は高い方が好ま しい。 2 0 0 〜 2 5 0 °C、 よ り好ま し く は 2 1 0 〜 2 5 0 °Cの温度で押出すと透明性の良いシ一 卜が得られる。 低温で押出すと Tダイから出たシー トは強い張力を 受け、 シー トの加熱収縮率の値が大き く なる。
Tダイの開度 Zシー 卜厚みの比は、 1 に近いほど好ま しい。 好ま し く は、 1 . 0 〜 2 . 5 であり、 さ らに好ま し く は、 1 . 0 〜 2 . 0 である。 この値が大き く なると シー ト に張力がかかり、 加熱収縮 率の値が大き く なる。
エアー · ギヤ ップは可能な限り長い方が好ま しい。 Tダイ内部で 受けた応力をこの期間で緩和するこ とによ り、 加熱収縮率を低下さ せるこ とができる。
冷却ロール、 タ ツチロール、 ポリ ツ シ ングロ一ルの温度は 5 0 〜 8 0 °C、 より好ま し く は 5 0 ~ 7 0 °Cである。 5 0 。Cよ り低いと、 Tダイ —ロール間、 ロール一ロール間で受けた張力が固定され、 巻 取機までの間で緩和する こ とができない。 ロール間の線圧は低い程 ロール間で張力を受けないため好ま しい。 5 〜 2 0 kg / cmが好ま し い線圧である。 H I P S樹脂、 A B S樹脂シー トの光沢を高める目 的で、 タ ツチロール、 冷却ロール、 ポ リ ッ シ ングロ一ノレ等でロール の鏡面を転写させるために線圧を上げる方法が用いられている力く、 本発明の樹脂をかかる方法で処理する と、 シー トそのものは高い透 明性が得られる場合もあるが、 加熱収縮率の値が大き く なる。 その ため、 この シー トを二次加熱成形すると、 「齄戻り」 が激し く 透明 性に劣つた成形品しか得られない。
シー トを引き取る時の速度は低いほうが好ま しい。 押出機の吐出 量、 即ち生産性が落ちるので、 極端に低く はできないが透明性と生 産性のバラ ンスを考慮するこ とが肝要である。
引き取るシ一 卜の張力は、 巻取ロ ールの取扱上問題ない レベルま で低く するこ とが好ま しい。
上記のシー ト押出条件を考慮しつつ、 生産性と シー トの品質をバ ラ ンスさせたシー ト成形条件を設定し、 加熱収縮率を 2 0 %以下に する こ とにより、 透明性に優れ、 二次加熱成形時に 「艷戻り」 のな ぃシー 卜および透明性に優れた成形品が得られる。
本発明でいう透明なシー ト とは、 曇価で 6以下、 好ま し く は 5以 下、 より好ま し く は 3以下のシー トを言う。
本発明のシー トを真空成形法や圧空成形法等の公知の方法により 二次加熱し、 容器、 ブリ スタ ーパッ ク等の成形品を得る こ とができ る。 その際、 成形条件等に制約はないが、 シー ト温度は成形が可能 な限り低い温度のほうが透明性の良い成形品が得られるので好ま し い。 透明性のよい成形品を得るためには、 所定のシ一 ト温度までの 加熱方法は、 高温、 短時間加熱の方が低温、 長時間加熱よ り好ま し い。 二次加熱時に、 シ一 卜が受けた配向の緩和が小さいため、 成形 品の表面荒れが少ない為である。
本発明のゴム変性スチ レ ン系樹脂には、 スチ レ ン系樹脂で慣用さ れている添加剤、 例えば、 酸化防止剤、 滑剤、 可塑剤、 帯電防止剤 着色剤等を添加する こ とができる。
本発明のスチ レ ン系樹脂シー 卜には、 通常シ一 卜の表面特性を改 良するために慣用されている帯電防止剤、 シ リ コー ン等の滑剤を表 5/00646
1 2 面に塗布する こ とができる。
<図面の簡単な説明 >
第 1 図は、 本発明のスチ レ ン系樹脂の重合を行う ための反応装置 である。
第 2図は、 成形品の飲料カ ップの斜視図である。
第 3図および第 4図は、 ゴム状弾性体の分散粒子の粒子怪とそれ ぞれ 「艷戻り」 のレベルおよびデュポン式衝撃強度との関係を示し たグラ フである。
第 5図〜第 8図は、 それぞれ、 「艷戻り」 のレベルとテルペン系 樹脂含有量、 加熱収縮率および部分水添加テルペン系樹脂/ゴム状 弾性体の含有量比との関係を示したグラ フである。
図中、 符号は以下の通りである。
1 . . . 反応機 1 、 2. . . 反応機 2、 3. . . 反応機 3、
4. . . 予熱器
<発明を実施するための最良の形態〉
以下、 実施例により、 本発明をより詳細に説明する。 実施例およ び比較例中の各試料の特性の測定は以下の通りである。
( 1 ) ゴム状弾性体の分散粒子の粒子径
ゴム状弾性体の分散粒子の粒子径は、 コールター社のレーザ一散 乱粒径測定装置 " C O U L T E R R L S I 3 0 " を用いて測定す る。
( 2 ) ゴム状弾性体の定量
スチ レ ン系樹脂中のゴム状弾性体の量は、 ゴム補強ポ リ スチ レ ン ( H I P S ) で一般的に用いられている赤外吸収スぺク ト ル法で測 定する。 ( 3 ) 連続相の構成成分の特定と定量
連続相を形成するスチレン系単量体 (A ) 、 アルキル基の炭素数 力く 2 〜 4 のァク リ ル酸 (メ タ ク リ ル酸) エステル系単量体 ( B ) 、 メ チルメ タ ク リ レー ト単量体 ( C ) を以下の方法で測定する。
ゴム変性スチ レ ン系樹脂を トルエ ンに溶解後、 遠心分離器で 2 0 , 0 0 0 r p mで 3 0 分間処理した後、 上澄液を分離し、 上澄液に多 量のメ タ ノ ールを加え、 重合体を沈殿させる。 5 0 °C、 1 0 m m H gの減圧下で乾燥した試料を用いて、 日本分光 (株) J N M— G 4 0 0 F T— N M Rを用いて以下の条件で 1Hを測定する。
ノ、。ルス幅 = 8 . 4 〃 s 、 データーポイ ン ト = 1 6 3 8 4 、 繰り返 し時間 = 7 . 5 5 9 秒、 A Dコ ンバーター = 1 6 ビッ ト、 積算回数 = 1 、 0 0 0 、 サ ンプル濃度 = 1 0 w t %、 溶媒 = 1 , 1 , 2 , 2 —テ ト ラ ク ロ 口エタ ンー ( d 2 ) 、 サンプル管 = 5 mm、 測定温度 = 1 2 0 °C
( A ) のフ ヱ ニル基の水素に由来する ピーク力く 6 . 2 ~ 7 . 4 p p m、 ( B ) の水素に由来する ピーク力く 3 . 4 〜 3 . 8 p p m ,
( B ) 、 ( C ) のメ チル基の水素に由来する ピー ク力〈 0 . 2 〜 1 . 1 p p mに現れる。 ピーク分離操作を行ってピー ク面積比よ り ( A) 、 ( B ) 、 ( C ) の重量%を求める。
( 4 ) ゴム変性スチ レ ン系樹脂の連続相の還元粘度
ゴム変性スチ レ ン系樹脂の連続相の還元粘度は、 F T— N M R測 定の試料を用い、 0 . 5 重量% トルエ ン溶液を作成し、 ォス ト ヮル ドキ ャ ノ ンフ ヱ ンスケ粘度管 # 1 0 0 を用いて 3 0 °Cの恒温槽で測 する。
( 5 ) ゴム状弾性体中のスチ レ ン含有量
ゴム状弾性体中のスチレン含有量は、 ゴム組成分析法で常用され ている I R法を用いて測定される。 6
1 4
( 6 ) ゴム状弾性体の溶液粘度
ゴム状弾性体の溶液粘度は、 ゴム状弾性体の 5 重量%スチ レ ン溶 液を作成し、 ォス 卜 ワル ドキ ャ ノ ンフ ヱ ンスケ粘度管 # 3 5 0 を用 いて 2 5 °Cの恒温槽で測定する。
( 7 ) テルペン系樹脂の平均分子量
テルペン系樹脂の平均分子量は、 東ソー株式会社のゲルパー ミ エ イ シ ヨ ン ク ロマ ト グラ フ ィ ー "H L C— 8 0 2 0 " を用いて測定し. ポ リ スチ レ ン換算の重量平均分子量で表す。
( 8 ) スチ レ ン系樹脂中のテルペン系樹脂の定量
スチ レ ン系樹脂 0. 5 gを 2 5 m の T H Fに溶解し、 遠心分離 を行い、 T H F可溶分と不溶分に分離する。 T H F不溶分を再度 2 0 m £ の T H Fに溶解し、 遠心分離を行い、 T H F可溶分と不溶分 に分離する。 T H F可溶分を集め、 蒸発乾固し、 T H F 2 0 m を 加え、 1 時間振と う溶解したものをゲルパ一 ミ エイ シ ヨ ンク ロマ ト グラ フ ィ 一で分析する。 カ ラ ムは S h o d e x K F 8 0 4 (昭和 電工株式会社製) を 4 本使用する。
( 9 ) 加熱収縮率
加熱収縮率は、 J I S K 6 8 7 2 に準 じて測定する。 シー ト押 出方向の加熱収縮率を測定する。
( 1 0 ) 屈折率
ゴム変性スチ レ ン系樹脂の連続相およびゴム状弾性体の屈折率は ア ッベ式屈折率系を用い、 2 5 てで測定する。
( 1 1 ) メ ノレ ト フ 口 一 レー ト (M F R)
樹脂組成物の M F Rは、 I S 0 R 1 1 3 に準じて測定する。
( 1 2 ) ビカ ツ 卜軟化点
樹脂組成物のビカ ッ ト軟化点は、 A S T M D 1 5 2 5 に準じて 測定する。 ( 1 3 ) 全光線透過率および曇価
シ一 トの全光線透過率および曇価は、 A S TM D 1 0 0 3 に準 じて測定する。
( 1 4 ) デュポン式衝撃強度
シー トのデュポン式衝擊強度は、 J I S K 5 4 0 0 に準じて測 定する。
( 1 5 ) 引張弾性率
シー トの引張弾性率は、 J I S K 6 8 7 2 に準じて測定する。
( 1 6 ) 「艷戻り」 レベル
シー トの 「艷戻り」 レベルは、 第 2図に示す飲料カ ップを成形し 成形前のシー トに比較し、 カ ップ側面がどの程度白 く なつたかを肉 眼で判定する。 この度合いは、 正確には対応できないが、 (飲料力 ップ側面の曇価ノシー 卜の曇価) の値で示すと概略左記のよう にな 。
(評価) (曇価の比)
A · ·• · 「艷戻り」 な し · .· . 1 1 .
B · ·• · 極わずか 「艷戻り」 がある · •· · 1 . 5
C · ·• · かなり 「艷戻り 」 がある , •· · 3 5
D · ·• · 「艷戻り」 激しい · •· · 8以上
( 1 7 ) 成形品の透明性
飲料カ ップの実用性はサラダ容器等の蓋と して多用されている硬 質塩化ビニル成形品に代替できる レベルの透明性を有しているか否 かによ り判定する。 く ゴム変性スチ レ ン系樹脂の製造例 >
第 1 図に記載した装置を用い、 ゴム変性スチ レ ン系樹脂の重合を 行う。 重合反応機 1 2 3 は撹拌機を有する管型反応機であり、 容量は夫々 6 . 2 である。 原材料溶液を反応機 1 に供給し、 重合 を行う。 重合溶液は順次反応機 2 、 3 に導かれ、 反応機 3 を出た重 合溶液は予熱器を備えた回収系に導かれる。 予熱器は静的混合機を 内臓しており、 容量は 0 .. 8 である。 予熱器で 2 4 0 °C迄加熱さ れた後、 回収系で 1 0 m m H gの真空下で未反応単量体、 重合溶媒 等を除去した後、 ペ レ ツ ト化し、 ゴム変性スチ レ ン系樹脂を得る。 < ゴム変性スチ レ ン系樹脂— 1 〜 7 >
スチ レ ン 4 0 . 5 重量部、 ブチルア タ リ レー ト 9 . 5 重量部、 メ チルメ タ ク リ レー ト 2 9 . 2 重量部、 ェチルベンゼン 1 2 重量部、 アサプ レ ン 6 8 0 A (スチ レ ン含有量 3 0 %重量の二型のスチ レ ン 一ブタ ジエ ンブロ ッ ク共重合体 ; 旭化成工業株式会社製) 8 . 8 重 量部を溶解タ ン ク に投入し、 ゴム状弾性体が溶解した後、 有機過酸 化物パーへキサ C (日本油脂株式会社製) 0 . 0 3重量部を仕込み 反応機 1 に 2 Z Hの速度で供給する。 反応機 1 の重合温度は 1 2 0 °C、 反応機 2 の重合温度は 1 4 0 °C、 反応機 3 の重合温度は 1 5 5 °Cで重合を行う。 反応機 1 および 2 の撹拌機の回転数を調整しつ つ分散粒子の粒子径を制御する。 得られたゴム変性スチ レ ン系樹脂 の各物性値を表 1 に示す。
く ゴム変性スチ レ ン系樹脂— 8 ~ 1 0 >
スチ レ ン 4 0 . 0 重量部、 ブチルァク リ レー ト 7 . 1 重量部、 メ チルメ タ ク リ レー ト 3 2 . 1 重量部、 ェチルベンゼン 1 2 重量部、 アサプレ ン 6 8 O A (スチ レ ン含有量 3 0 %重量の二型のスチ レ ン 一ブタ ジエ ンブロ ッ ク共重合体 ; 旭化成工業株式会社製) 8 . 8 重 量部を溶解タ ンクに投入し、 ゴム状弾性体が溶解した後、 有機過酸 化物パーへキサ C (日本油脂株式会社製) 0 . 0 3 重量部を仕込み 反応機 1 に 2 £ / Hの速度で供給する。 反応機 1 の重合温度は 1 1 8 °C、 反応機 2 の重合温度は 1 3 8 °C、 反応機 3 の重合温度は 1 5 2 °Cで重合を行う。 反応機 1 、 反応機 2の撹拌機の回転数を調整し つつ分散粒子径を制御する。 得られたゴム変性スチ レ ン系樹脂の物 性値を表 1 に示す。
< ゴム変性スチ レ ン系樹脂— 1 1 >
スチ レ ン 3 9. 6重量部、 ブチルァ ク リ レー ト 3. 2重量部、 メ チルメ タ ク リ レー ト 3 6. 4重量部、 ェチルベンゼン 1 2重量部、 アサプ レ ン 6 8 O A (スチ レ ン含有量 3 0 %重量の二型のスチ レ ン 一ブタ ジエンブロ ッ ク共重合体 ; 旭化成工業株式会社製) 8. 8重 量部を溶解タ ン ク に投入し、 ゴム状弾性体が溶解した後、 有機過酸 化物パーへキサ C (日本油脂株式会社製) 0. 0 3重量部を仕込み. 反応機 〗 に 2 / Hの速度で供給する。 反応機 1 の重合温度は 1 2
3 °C、 反応機 2の重合温度は 1 4 3 °C、 反応機 3の重合温度は 1 5 8 °Cで重合を行う。 反応機 1 および 2の撹拌機の回転数を調整しつ つ分散粒子の粒子径を制御する。 ゴム変性スチ レ ン系樹脂の物性値 を表 1 に示す。
く ゴム変性スチ レ ン系樹脂— 1 2 〉
スチ レン 4 1 . 2重量部、 プチルァ ク リ レー 卜 1 2. 8重量部、 メ チルメ タ ク リ レー ト 2 5. 2重量部、 ェチルベンゼ ン 1 2重量部 アサプレ ン 6 8 0 A (スチ レ ン含有量 3 0 %重量の 2型のスチ レ ン 一ブタ ジエンブロ ッ ク共重合体 ; 旭化成工業株式会社製) 8. 8重 量部を溶解タ ン ク に投入し、 ゴム状弾性体が溶解した後、 有機過酸 化物パーへキサ C (日本油脂株式会社製) 0. 0 3重量部を仕込み 反応機 1 に 2 ZHの速度で供給する。 反応機 1 の重合温度は 1 1 6 °C、 反応機 2の重合温度は 1 3 5 °C、 反応機 3の重合温度は 1 5 0 °Cで重合を行う。 反応機 1 、 反応機 2の撹拌機の回転数を調整し つつ分散粒子径を制御する。 ゴム変性スチ レ ン系樹脂の物性値を表 1 に示す。 く ゴム変性スチ レ ン系樹脂一 1 .3 >
スチ レ ン含有量 3 5重量%の二型のスチ レ ン一ブタ ジエンブロ ッ ク共重合体であるゴム状弾性体を用いる以外、 ゴム変性スチ レ ン系 樹脂一 9 と同様に重合する。 ゴム変性スチ レ ン系樹脂の物性値を表 1 に示す。
< ゴム変性スチ レ ン系樹脂— 1 4 >
スチ レ ン含有量 4 5重量%の二型のスチ レ ン一ブタ ジエンブロ ッ ク共重合体であるゴム状弾性体を用い、 反応機 1 、 2 の撹拌数を温 度制御が可能な最低レベルに下げて重合する以外、 ゴム変性スチ レ ン系樹脂一 9 と同様に重合する。 ゴム変性スチ レ ン系樹脂の物性値 を表 1 に示す。
く ゴム変性スチ レ ン系樹脂— 1 5 >
スチ レ ン含有量 3 0重量%の三型のスチ レ ン一 ブタ ジエ ン一 スチ レンブロ ッ ク共重合体であるゴム状弾性体を用い、 反応機 1 、 2 の 撹拌数を温度制御が可能な最低レベルに下げて重合する以外、 ゴム 変性スチ レ ン系樹脂一 9 と同様に重合する。 ゴム変性スチ レ ン系樹 脂の物性値を表 1 に示す。
く ゴム変性スチ レ ン系樹脂— 1 6 >
スチ レ ン含有量 2 0重量%の二型のスチ レ ン一 ブタ ジエ ンブロ ッ ク共重合体である ゴム状弾性体を用い、 反応機 1 、 2 の撹拌数を最 高レベルに上げて重合する以外、 ゴム変性スチ レ ン系樹脂一 9 と同 様に重合する。 ゴム変性スチ レ ン系樹脂の物性値を表 1 に示す。 く ゴム変性スチ レ ン系樹脂一 1 7 >
スチ レ ン 4 1 . 5重量部、 プチルァク リ レー 卜 9 . 8 重量部、 メ チルメ タ ク リ レー 卜 3 0 . 0重量部、 ェチルベ ンゼ ン 1 2 . 3 重量 部、 アサプレ ン 6 8 0 A (スチ レ ン含有量 3 0 %重量の二型のスチ レ ン一ブタ ジエ ンブロ ッ ク共重合体 ; 旭化成工業株式会社製) 6 . 3重量部を溶解タ ンクに投入す-る以外、 ゴム変性スチレン系樹脂一 1 と同様に重合する。 物性値を表 1 に示す。
く ゴム変性スチ レ ン系樹脂一 1 8 >
スチレン 3 9. 6 重量部、 ブチルァク リ レー ト 9. 3 重量部、 メ チルメ タ ク リ レー ト 2 8 . 5 重量部、 ェチルベンゼン 1 1 . 7 重量 部、 アサプレ ン 6 8 0 A (スチ レ ン含有量 3 0 %重量の二型のスチ レ ン一ブタ ジエンブロ ッ ク共重合体 ; 旭化成工業株式会社製) 1 0. 9 重量部を溶解タ ン ク に投入する以外、 ゴム変性スチ レ ン系樹脂一 1 と同様に重合する。 物性値を表 1 に示す。
<実施例 1 >
ゴム変性スチ レ ン系樹脂— 2 1 0 0重量部、 部分水添テルべン 系樹脂ク リ アロ ン M l 1 5 (ヤスハラ ケ ミ カル株式会社製) 1 0重 量部を混合し、 二軸押出機でペレ ツ ト化する。 このペレ ツ トを用い て、 Tダイを有する 5 O mm 0単軸押出機を用いて 0 . 3 mmのシ 一 トを成形する。 押出機の温度は 2 2 5 °C, Tダイの温度は 2 3 0 。C、 Tダイの開度は 0. 5 m m、 冷却ロール、 タ ツチロールのク リ ァラ ンスは 0. 3 m m、 ロ ールの線圧は 5 kg Z cnf 、 三本のロ ール (上記二本のロールと もう一本のロール) は全て 6 5。Cに制御する シー ト厚みが 0 . 3 mmになるよ う に引取り速度を調整し、 シー ト を成形する。 得られたシー トの物性を表 2 示す。
このシー トを用いて、 第 2 図に示す飲料カ ップを真空成形する。 シー 卜の両面をヒーター設定温度 2 4 0 °C、 加熱時間 2 5 秒の条件 で加熱し、 真空成形する。 得られたカ ッ プの透明性を表 2 に示す。 <実施例 2〜 4 >
ゴム変性スチ レ ン系樹脂一 2 に代えて、 ゴム変性スチ レ ン系樹脂 一 3、 4 、 5 を各々用いる以外、 実施例 〗 と同様に操作し、 シー ト および飲料カ ップを成形する。 得られたシー 卜の物性とカ ッ プの透 明性を表 2 に示す。
<実施例 5 >
ゴム変性スチ レ ン系樹脂一 9 を用いる以外、 実施例 1 と同様に操 作し、 シー トおよび飲料カ ップを成形する。 得られたシー トの物性 および力 ップの透明性を表 2 に示す。
<実施例 6〜 8 >
ゴム変性スチ レ ン系樹脂— 2 1 0 0重量部に、 部分水添テルべ ン系樹脂ク リ アロ ン M l 1 5 (ヤスハラケ ミ カル株式会社製) を各 3、 5、 1 5 重量部を混合し、 二軸押出機でペレ ツ 卜化する以外、 実施例 1 と同様に操作し、 シー トおよび飲料カ ップを成形する。 得 られたシ一 卜の物性および力 ッ プの透明性を表 2 に示す。
<実施例 9 >
部分水添テルペ ン系樹脂ク リ アロ ン M 1 1 5 に代えて、 テルペ ン 系樹脂 Y S レ ジ ン T O— 1 2 5 (ヤスハラ ケ ミ カル株式会社製) を 混合する以外、 実施例 1 と同様に操作し、 シー トおよび飲料カ ップ を成形する。 得られたシー 卜の物性および力 ッ プの透明性を表 2 に 示す。
<実施例 1 0 〉
押出機の温度は 2 4 0 °C、 Tダイの温度は 2 4 0 °Cに制御する以 外、 実施例 1 と同様に操作し、 シー トおよび飲料力 ップを成形する 得られたシー トの物性および力 ップの透明性を表 2 示す。
く実施例 1 1 〉
押出機の温度は 2 2 0 °C , Tダイの温度は 2 2 5 °C , Tダイの開 度は 0 . 4 m m、 三本のロールは全て 5 0 °Cに制御する以外、 実施 例 1 と同様に操作し、 シー トおよび飲料カ ッ プを成形する。 得られ たシ一 トの物性および力 ップの透明性を表 2 示す。
<実施例 1 2 > 064
2 1 ゴム変性スチ レ ン系樹脂— 1 に代えてゴム変性スチ レ ン系樹脂一 9 を用いる以外、 実施例 1 0 と同様に操作し、 シー トおよび飲料力 ップを成形する。 得られたシ一 卜の物性およびカ ップの透明性を表 2 示す。
<実施例 1 3 〉
ゴム変性スチ レ ン系樹脂一 1 に代えてゴム変性スチ レ ン系樹脂一 9 を用いる以外、 実施例 1 1 と同様に操作し、 シー トおよび飲料力 ップを成形する。 得られたシー トの物性およびカ ップの透明性を表 2 示す。
く実施例 1 4 〉
Tダイの温度は 2 2 5 °C、 三本のロールは全て 6 0 °Cに制御する 以外、 実施例 1 と同様に操作し、 シー ト、 飲料カ ップを成形する。 シー ト物性、 飲料カ ップの透明性を表 2 示す。
<比較例 1 〜 5 〉
ゴム変性スチ レ ン系樹脂一 1 、 6 、 Ί 、 8 および 〗 0 をそれぞれ 用いる以外、 実施例 1 と同様に操作し、 シー トおよび飲料カ ッ プを 成形する。 得られた各々のシー 卜の物性およびカ ッ プの透明性を表 3 に示す。
く比較例 6 >
部分水添テルペン系樹脂ク リ アロ ン M l 1 5 (ヤスハラケ ミ カ ル 株式会社製) を用いない以外、 実施例 1 と同様に操作し、 シー トお よび飲料力 ップを成形する。 得られたシ一 卜の物性および力 ッ プの 透明性を表 3 に示す。
<比較例 Ί >
部分水添テルペン系樹脂ク リ ア ロ ン M 1 1 5 (ヤスハラ ケ ミ カ ル 株式会社製) 2 重量部を混合する以外、 実施例 1 と同様に操作し、 シ一 トおよび飲料カ ップを成形する。 得られたシー 卜 の物性および 力 ップの透明性を表 3 に示す。 - <比較例 8 >
完全水添テルペン系榭脂ク リ ア ロ ン P I 1 5 (ヤスハラ ケ ミ カル 株式会社製) 1 0 重量部を混合する以外、 実施例 1 と同様に操作し. シー トおよび飲料カ ップを成形する。 得られたシー トの物性および 力 ッ プの透明性を表 3 に示す。
<比較例 9 >
押出機の温度は 1 9 0 °C、 Tダイの温度は 2 0 0 °C、 および三本 のロールの温度は全て 6 0 °Cに制御する以外、 実施例 1 と同様に操 作し、 シー トおよび飲料カ ップを成形する。 得られたシー トの物性 およびカ ップの透明性を表 3 示す。
<比較例 1 0 〉
三本のロールを全て 2 5 °Cに制御する以外、 実施例 1 と同様に操 作し、 シー トおよび飲料カ ップを成形する。 得られたシー トの物性 および力 ッ プの透明性を表 3 示す。
く比較例 1 1 〉
Tダイの開度は 1 . 5 m m、 三本のロ ールの温度は全て 6 0 °Cに 制御する以外、 実施例 1 と同様に操作し、 シー トおよび飲料カ ップ を成形する。 得られたシー トの物性およびカ ッ プの透明性を表 3 示 す。
<比較例 1 2 〉
Tダイの開度は 1 . 0 m m、 三本のロールの温度は全て 6 0 °Cに 制御する以外、 実施例 1 と同様に操作し、 シー ト、 飲料カ ップを成 形する。 シー ト物性、 飲料カ ップの透明性を表 3 示す。
<比較例 1 3 >
Tダイの開度は 1 . 0 m m、 三本のロールの温度は全て 5 7 °Cに 制御する以外、 実施例 1 と同様に操作し、 シー トおよび飲料カ ッ プ を成形する。 得られたシー トの物性およびカ ップの透明性を表 3 示 す。
<比較例 1 4 >
ゴム変性スチ レ ン系樹脂— 1 に代えてゴム変性スチ レ ン系樹脂一 9 を用いる以外、 比較例 1 3 と同様に操作し、 シー トおよび飲料力 ップを成形する。 得られたシ一 卜の物性およびカ ップの透明性を表 3 示す。
く比較例 1 5 および 1 6 〉
ゴム変性スチ レ ン系樹脂— 2 に代えてゴム変性スチ レ ン系樹脂一 7 を用い、 かつ、 部分水添テルペン系樹脂ク リ アロ ン M 1 1 5 (ャ スハラケ ミ カル株式会社製) を各々 1 5 および 2 0重量部混合する 以外、 実施例 1 と同様に操作し、 シー トおよび飲料カ ップを成形す る。 得られたシー 卜の物性および力 ップの透明性を表 3 に示す。 く比較例 1 7 >
部分水添テルペ ン系樹脂ク リ ア ロ ン M 1 1 5 (ヤスハラ ケ ミ カ ル 株式会社製) 2 0重量部を混合する以外、 比較例 1 3 と同様に操作 し、 シー トおよび飲料カ ップを成形する。 得られたシー トの物性お よびカ ップの透明性を表 3 に示す。
<比較例 1 8 〉
部分水添テルペン系榭脂ク リ アロ ン M 1 1 5 (ヤスハラ ケ ミ カ ル 株式会社製) 2 0重量部を混合する以外、 比較例 1 1 と同様に操作 し、 シー トおよび飲料カ ップを成形する。 得られたシー トの物性お よび力 ップの透明性を表 3 に示す。
実施例 1 〜 5 、 比較例 〜 5 で得られたカ ップの 「艷戻り」 レべ ルおよびシー 卜のデュポン式衝撃強度とゴム状弾性体の分散粒子の 平均粒子径との関係を各々プロ ッ 卜 した結果を第 3 図および第 4 図 に示す。 ゴム状弾性体の平均粒子径が 0 . 4 m未満の時は強度が 著し く 低く 、 0 . 9 mを越える時は二次加熱成形時の 「艷戻り」 が激し く なる。
実施例 1、 6〜 8 、 比較例 3、 6、 7、 1 5 および 1 6 で得られ たカ ップの 「絶戻り」 レベルとテルペン系樹脂の含有量との関係を プロ ッ 卜 した結果を第 5 図に示す。 テルペン系樹脂の添加量が 3重 量部未満になると、 「艷戻り」 が激し く なる。 テルペン系樹脂を 2 0 重量部と多量に加えても 「艷戻り」 の解消にはつながらない。 1 5 重量部を越えると剛性 (引張弾性率) が低下する。
実施例 1、 1 0〜 1 4 、 比較例 9〜 1 4、 1 7、 1 8 で得られた シー トの加熱収縮率とカ ップの 「艷戻り」 レベルとの関係をプロ ッ 卜 した結果を第 6 図に示す。 加熱収縮率が 2 0 %を越える と 「艷戻 り」 が激し く なる。 部分水添テルペン系樹脂を 2 0 重量部と多量に 加えても、 加熱収縮率が 2 0 %を越える と 「艷戻り」 の解消にはつ ながらない。
本発明のスチ レ ン系樹脂シー トは強度一透明性一 「艷戻り 」 バラ ンスに優れている こ とが示される。
く実施例 1 5 および 1 6 〉
ゴム変性スチ レ ン系樹脂一 1 7 1 0 0 重量部に、 部分水添テル ペン系樹脂ク リ ア ロ ン M l 1 5 (ヤスハラ ケ ミ カル株式会社製) を 各々 3 および 5 重量部を用いる以外、 実施例 1 と同様に操作し、 シ 一 トおよび飲料力 ップを成形する。 得られたシー 卜の物性および力 ップの透明性を表 4 に示す。
く実施例 1 7 ~ 1 9 >
ゴム変性スチ レ ン系樹脂一 1 8 1 0 0 重量部に、 部分水添テル ペン系樹脂ク リ アロ ン M l 1 5 (ヤスハラ ケ ミ カル株式会社製) を 各々 5、 7 . 5 および 1 0重量部を用いる以外、 実施例 1 と同様に 操作し、 シー トおよび飲料カ ップを成形する。 得られたシー トの物 性および力 ップの透明性を表 4 に示す。
実施例 1 、 6〜 8、 1 5 ~ 〗 9 、 比較例 7 で得られたカ ップの 「齄戻り」 レベルと部分水添テルペン系樹脂/ゴム状弾性体の含有 量の比との関係をプロ ッ 卜 した結果を第 7 図に示す。 部分水添テル ペン系樹脂部数/ゴム状弾性体部数の比が小さ く なるに連れて艷戻 り しやすく なる。 この比が 0. 2 5 以上であれば、 「艷戻り」 は実 用上問題ないレベルであるこ とが示される。 ゴム状弾性体の含有量 が高い場合は、 この比が 1 に近いほど 「艷戻り」 抑制効果は大きい こ とが示される。
<実施例 2 0 >
Tダイの開度が 1 . 0 m mであり、 冷却ロール、 夕 ツチロ ールの ク リ ア ラ ンス力く 0 . 5 mmであり、 シー ト厚み力く 0 · 5 m mである 以外、 実施例 1 と同様に操作し、 シー トおよび飮料カ ップを成形す る。 得られたシー 卜の物性およびカ ップの透明性を表 5 に示す。 ぐ実施例 2 1 >
Tダイの開度力く 1 . 5 m mであり、 冷却ロール、 夕 ツチロールの ク リ アラ ンス力く 0. 8 mmであり、 シー ト厚み力く 0 . 8 m mである 以外、 実施例 1 と同様に操作し、 シー トおよび飲料カ ップを成形す る。 得られたシ一 卜の物性およびカ ップの透明性を表 5 に示す。 <比較例 1 9 〉
Tダイの開度力く 1 . 0 m mであり、 冷却ロール、 タ ツチロ ールの ク リ アラ ンス力く 0. 5 mmであり、 シー ト厚み力く 0 . 5 mmである 以外、 比較例 1 1 と同様に操作し、 シー トおよび飲料カ ッ プを成形 する。 得られたシー 卜の物性およびの透明性を表 5 に示す。
<比較例 2 0 〉
Tダイの開度力く 1 . 5 m mであり、 冷却ロール、 夕 ツ チロ ールの ク リ アラ ンス力《 0 . 8 mmであ り 、 シ一 卜厚み力く 0 . 8 m mである 6
2 6 以外、 比較例 1 1 と同様に操作し、 シー トお.よび飲料カ ップを成形 する。 得られたシ一 卜の物性および力 ップの透明性を表 5 に示す。
シー ト厚みが 0 . 5 m m、 0 . 8 m mの場合も、 加熱収縮率が 2
0 %を越える と 「齙戻り」 が激し く なる。
<実施例 2 2 >
ゴム変性スチ レ ン系樹脂一 1 3 を用いる以外、 実施例 1 と同様に 操作し、 シー トおよび飲料カ ップを成形する。 得られたシー トの物 性および力 ップの透明性を表 6 に示す。
<比較例 2 1 〜 2 3 >
ゴム変性スチ レ ン系樹脂— 1 4 、 1 5 および 1 6 を用いる以外、 実施例 1 と同様に操作し、 シー トおよび飲料カ ップを成形する。 得 られたシ一 卜の物性および力 ップの透明性を表 6 に示す。
スチ レ ン含有量が 2 5〜 4 0 重量%の二型のスチ レ ンーブタ ジェ ンブロ ッ ク共重合体を用いると平均粒子径の制御が容易であり、 透 明性一強度のバラ ンスの取れたシー トおよび成形体が得られる。 ス チ レ ン含有量が 4 0重量%を越えたプロ ッ ク共重合体は平均粒子径 を大き く する こ とが困難であり、 平均粒子怪を 0 . 4 8 mに調整 できても、 強度が劣る。 スチ レ ン含有量が 2 5重量%未満のブロ ッ ク共重合体は粒子径を小さ く するこ とが困難であり、 平均粒子径 0 8 3 mに調整できて も、 シー トの透明性が悪く 、 二次成形時の 「艷戻り」 が激しい。 三型のスチ レ ン—ブタ ジエンブロ ッ ク共重合 体を用いる と平均粒子径の制御が不可能で、 平均粒子径 0 . 3 0 m以上にする こ とができない。 その結果、 強度の著し く 低いシー ト しか得られない。
<比較例 2 4 >
ゴム変性スチレ ン系樹脂— 1 1 を用いる以外、 実施例 1 と同様に 操作し、 シー トおよび飲料カ ップを成形する。 本発明のカ ップ成形 条件下 (シー ト加熱ヒーターの設定温度 2 4 0 °C、 加熱時間 2 5 秒) では完全な飲料カ ップは成形できない。 ヒーター設定温度を 5 °C刻みで上げていき、 型再現できる温度を求めると 2 6 5 °Cであつ た。 シー ト加熱ヒーターの設定温度が 2 4 0 °Cのときは、 4 5秒で 型再現できた。
<比較例 2 5 >
ゴム変性スチ レ ン系樹脂— 1 2 を用いる以外、 実施例 1 と同様に 操作し、 シー トおよび飲料カ ップを成形する。 得られた飲料カ ップ に 9 0 °Cの熱湯を注ぐと、 飲料カ ップは高さ方向に約 3 / 4 倍に縮 んだ。
アルキル基の炭素数が 2〜 4 のァク リ ル酸 Zメ タ ク リ ル酸エステ ル系単量体単位 ( B ) の量が 5重量%未満の場合は、 耐熱性が高く なりすぎて、 シー トから飲料カ ップを成形する場合、 加熱時間で 1 , 8 倍長く する力、、 ヒーター設定温度を約 3 0 °C高く する必要があり 二次成形性に劣る。 ( B ) の量が 1 5 重量%を越える場合は、 耐熱 性が低下し、 成形品の耐熱性が劣り、 用途範囲が限られてく る。 実 施例 1 の飲料力 ッ プに 9 0 °Cの熱湯を注いだ時は何等変化は認めら れなかった。 実施例 5 の飲料カ ップの場合は胴部が若干膨らむが、 高さ方向の縮みは観測されない。 ぐ産業上の利用可能性〉
本発明のスチ レ ン系樹脂シー トは、 透明性、 強度および剛性に優 れ、 かつ、 二次加熱成形時の成形性に優れ、 「艷戻り」 が起こ らな い。 そのため、 本発明のシー トから得られた成形体は強度、 透明性 に優れている。 従って、 本発明のシー トおよび成形体は食品包装材 や電気包装材等に好適である。 表 1
ゴム状弾性体 連続相組成 ビ; ト 屈折率
钦化点
37
B右 τ!島 a 十 ϊ-J iii Λ 7 ·しレ、ノ/合右兽里 (A)/(B)/(C) 1 C TO ゴム状
(wt¾) 径 ( β m) (重量^) (wtX) (°C) 弾性 & ゴム変性スチレン系榭脂ー 1 11.5 0. 3 2 3 0 51.1/12.0/36.9 Ο. 丄 90.1 1.539 1.541 ゴム変性スチレン系樹脂- 2 11.5 0. 5 5 3 0 51.1/12.0/36.9 ϋ U 90.1 1.539 1.541 ゴム変性スチレン系樹脂 - 3 Π.5 0. 6 3 3 0 51.1/12.0/36.9 o. 1 90.0 1.539 1.541 ゴム変性スチレン系樹脂 - 4 11.5 0. 7 8 3 0 51.1/12.0/36.9 ύ, 丄 90.2 1.539 1.541 ゴム変性スチレン系樹脂- 5 11.5 0. 8 8 3 0 51.1/12.0/36.9 q o 90.1 1.539 1.541 ゴム変性スチレン系樹脂 - 6 11.5 0. 9 9 3 0 51.1/12.0/36.9 90.0 1.539 1.541 ゴム変性スチレン系樹脂 - 7 11.5 1. 0 6 3 0 51.1/12.0/36.9 J ο. ο 90.1 1.539 1.541 ゴム変性スチレン系樹脂一 8 11.5 0. 3 4 3 0 50.5/ 9.0/40.5 .0 84.9 1.540 1.541 ゴム変性スチレン系樹脂 9 11.5 0 - 6 1 3 0 50.5/ 9.0/40.5 Q 7
ϋ. 85.0 1.540 1.541 ゴム変性スチレン系樹脂 - 10 11.5 1. 1 1 3 0 50.5/ 9.0/40.5 0. Ό 85.1 1.540 1.541 ゴム変性スチレン系樹脂 11 11.5 0. 5 9 3 0 50.1/ 4.1/45.8 2 7 97.4 1.539 1.541 ゴム変性スチレン系樹脂 12 11.5 0. 6 0 3 0 52.0/16.2/31.8 6.3 78.2 1.540 1.541 ゴム変性スチレン系樹脂 -】3 11.5 0. 5 9 35 50.5/ 9.0/40.5 3.7 85.0 1.540 1.544 ゴム変性スチレン系樹脂一 14 11.5 0. 4 8 4 5 50.5/ 9.0/40.5 3.9 85.1 1.540 1.541 ゴム変性スチレン系樹脂 - 15 11.5 0. 2 9 3 0 50.5/ 9.0/40.5 4.0 84.9 1.540 1.541 ゴム変性スチレン系樹脂 16 11.5 0. 8 3 2 0 50.5/ 9.0/40.5 3.4 85.0 1.540 1.533 ゴム変性スチレン系樹脂 - 17 8.2 0. 6 1 3 0 51.1/12.0/36.9 3.2 90.2 1.539 1.541 ゴム変性スチレン系樹脂 - 18 14.3 0. 6 3 3 0 51.1/12.0/36.9 3.0 90.1 1.539 1.541
=
表 2
シ一 卜の構成成分 シ一 卜の物性 力ップの評価 施
例 樹脂の テルペ ン 加熱収縮 全光線透過率 暴 価 デュポン ϊζΐϋ Ι 引張弾性率 艷戻り 実用性
No の種類 (重量部) 率 し0 ( % ) (%) 強度 (g · cm) (kg/cnf) レべノレ
1 2 1 0 1 6 9 2. 4 1 . 7 9, 700 17, 600 A 〇
2 3 1 0 1 7 9 2. 3 1 . 8 10, 100 17, 400 A 〇
3 4 1 0 1 7 9 2. 2 1 . 8 10, 400 17, 300 A 〇
4 5 1 0 1 6 9 1. 9 2. 0 11, 600 17, 200 B 〇
5 9 1 0 1 6 9 2. 1 1 . 7 9, 800 17, 300 A 〇
6 2 3 1 7 9 2. 2 1 . 8 9, 800 18, 600 B 〇
7 2 5 1 6 9 2. 3 1 . 7 9, 700 18, 200 A 〇
8 2 1 5 1 7 9 2. 4 1 . 6 10. 00 16, 900 A 〇
9 2 1 0 1 6 9 2. 4 1 . 7 9, 800 17, 500 A 〇
10 2 1 0 1 0 9 2. 6 1 . 2 10, 100 17, 400 A 〇
11 2 1 0 1 2 9 2. 5 1 . 4 9, 900 17.300 A 〇
12 9 1 0 1 4 9 1 . 4 1 . 3 9, 800 17, 300 A 〇
13 9 1 0 1 9 9 2 - 6 1 . 5 9, 900 17, 100 A 〇
14 2 1 0 1 8 9 2. 2 1 . 9 9, 400 18, 000 A 〇
表 3
Figure imgf000032_0001
* : 完全水添テルべ ン
表 4
シー 卜の構成成分 シー トの物性 力 ップの評価 八 、レ e
テルペ ン 加熱収縮率 全 t線 雪 1曲 ァュホン ΛΐϋΐΙΙ 引張弾性率 16民り 実用性
(%) 透過率 (%) 強度(g · cm) レベル
% ) ( kg / cnf )
実施 15 ¾ ¾ϊ - 17 3 17 92.6 I . 5 6, 300 21, 300 A 〇 芙 tin 1^1 l cb 17 Θ s 5 16 92.7 I . 5 6, 700 21, 200 A 〇 実施例 17 18 5 16 90.9 2. I 14, 600 15, 300 B 〇 実施例 18 18 7 . 5 16 91.2 I . 9 14, 900 15, 100 A 〇 実施例 19 18 10 15 92.0 I . 6 15.700 14.900 B A 〇
表 5
シ一卜の構成成分 シ一トの物性 力 ップの評価 テルペ ン 加熱収縮率 全光線 曇 価 デュポン ¾ί n 引張弾性率 艷戻り 実用性
(%) 透過率 (%) 強度 (g · cm) (kg/crf) レべノレ
(%)
実施例 20 2 10 14 92.1 I . 9 18, 400 17, 700 A 〇 実施例 21 2 10 13 92.0 2. I 49, 200 17, 400 A 〇 比較例 19 2 10 26 91.9 2. 7 15.900 18, 000 D X 比铰例 20 2 10 30 91.7 3. I 35, 200 17, 600 D X
表 6
シー 卜の構成成分 シー 卜の物性 力 ップの評価 樹 の テルペン 加熱収縮率 全光線 & 価 デュポン式衝撃 引張弾性率 飴戻り 実用性
( % ) 透過率 (%) 強度 (g · cm) レベル
(%) (kg/cnf)
実施例 22 13 10 15 92.9 1 . 6 9, 200 17, 900 A 〇 比較例 21 14 10 16 93.1 1 . 4 5, 300 18, 600 A 〇 比較例 22 15 10 16 92.9 1 . 3 1, 900 18, 800 A 〇 比較例 23 16 10 15 91.9 3. 7 11, 600 16, 900 D X

Claims

請 求 の 範 囲
1 . スチ レ ン系単量体単位 4 5〜 6 0重量%、 アルキル基の炭素数 が 2〜 4 のァク リル酸エステル系単量体単位および Zまたはメ タ ク リ ル酸エステル系単量体単位 5〜 1 5重量%、 およびメ チルメ タ ク リ レー ト単量体単位 2 5〜 5 0重量%からなる共重合体からなる連 铳相 8 5〜 9 2重量%と、 スチ レ ン含有量が 2 5〜 4 0重量%の二 型のスチレン一ブタ ジエンプロ ッ ク共重合体からなる、 平均粒子径 が 0 . 4 ~ 0 . 9 mであるゴム状弾性体の分散粒子 8〜 1 5重量 %とからなるゴム変性スチレン系樹脂 1 0 0重量部に対して、 テル ペン系樹脂 3〜 1 5重量部を含有するスチ レ ン系樹脂組成物からな り、 厚みが 0 . 1 0〜 2 . 5 mm、 かつ、 加熱収縮率が 2 0 %以下 であるスチレン系樹脂シ一 ト
2. 該テルペン系樹脂の含有量が、 該ゴ厶変性スチ レ ン系樹脂中の ゴム状弾性体の含有量の 0 . 2 5〜 1 . 0 倍である請求項 1 項のス チレン系樹脂シ一ト
3 . 該連続相と該ゴム状弾性体の分散粒子との屈折率の差が 0 . 0 1 以内である請求項 1 項のスチ レ ン系樹脂シー ト
4 . スチ レ ン系単量体単位 4 5 - 6 0重量%、 アルキル基の炭素数 が 2 ~ 4 のァク リ ル酸エステル系単量体単位および Zまたはメ タ ク リ ル酸エステル系単量体単位 5 ~ 1 5重量%、 およびメ チルメ タ ク リ レー ト単量体単位 2 5〜 5 0 重量%からなる共重合体からなる連 続相 8 5〜 9 2重量%と、 スチ レ ン含有量が 2 5〜 4 0 重量%の二 型のスチ レ ンーブタ ジェンプロ ッ ク共重合体からなる、 平均粒子径 が 0 . 4〜 0 . 9 mであるゴム状弾性体の分散粒子 8〜 1 5 重量 %とからなるゴム変性スチ レ ン系樹脂 1 0 0重量部に対して、 テル ペン系樹脂 3〜 1 5重量部を含有するスチ レ ン系樹脂組成物からな り、 厚みが 0. 1 0 〜 2. 5 mm、 かつ、 加熱収縮率が 2 0 %以下 であるシー 卜を成形してなるスチ レ ン系樹脂成形体。
PCT/JP1995/000646 1994-08-19 1995-04-04 Feuille en resine de styrene et moulage de cette feuille WO1996006127A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP95913416A EP0729998B1 (en) 1994-08-19 1995-04-04 Styrenic resin sheet and molding
KR1019960700840A KR100186672B1 (ko) 1994-08-19 1995-04-04 스티렌계 수지 시트 및 성형체
DE69527413T DE69527413T2 (de) 1994-08-19 1995-04-04 Styrolharzfolie und deren herstellung
JP50792796A JP3662025B2 (ja) 1994-08-19 1995-04-04 スチレン系樹脂シート及び成形体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6/216778 1994-08-19
JP21677894 1994-08-19

Publications (1)

Publication Number Publication Date
WO1996006127A1 true WO1996006127A1 (fr) 1996-02-29

Family

ID=16693749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000646 WO1996006127A1 (fr) 1994-08-19 1995-04-04 Feuille en resine de styrene et moulage de cette feuille

Country Status (9)

Country Link
EP (1) EP0729998B1 (ja)
JP (1) JP3662025B2 (ja)
KR (1) KR100186672B1 (ja)
CN (1) CN1066166C (ja)
CA (1) CA2169056A1 (ja)
DE (1) DE69527413T2 (ja)
MY (1) MY112904A (ja)
TW (1) TW302372B (ja)
WO (1) WO1996006127A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348549A (ja) * 2000-06-09 2001-12-18 Nitto Denko Corp 塗膜保護用シート
JP2006022257A (ja) * 2004-07-09 2006-01-26 Denki Kagaku Kogyo Kk ゴム変性共重合樹脂から成形されたシート、包装用成形体

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100561561B1 (ko) * 1999-03-06 2006-03-16 제일모직주식회사 스티렌계 열가소성 수지 조성물
CN101311216B (zh) * 2002-07-31 2014-01-08 四国化工机株式会社 冷压成形用树脂片材及冷压成形加工品
TWI402004B (zh) * 2009-04-06 2013-07-11 Polytronics Technology Corp 導熱絕緣複合基板及其導熱絕緣基板之製備方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069825A (ja) * 1992-03-23 1994-01-18 Mitsui Toatsu Chem Inc ゴム変性スチレン系樹脂組成物、およびその製造方法
JPH0657067A (ja) * 1992-08-07 1994-03-01 Asahi Chem Ind Co Ltd スチレン系樹脂シート
JPH06145443A (ja) * 1992-11-09 1994-05-24 Asahi Chem Ind Co Ltd スチレン系樹脂組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069825A (ja) * 1992-03-23 1994-01-18 Mitsui Toatsu Chem Inc ゴム変性スチレン系樹脂組成物、およびその製造方法
JPH0657067A (ja) * 1992-08-07 1994-03-01 Asahi Chem Ind Co Ltd スチレン系樹脂シート
JPH06145443A (ja) * 1992-11-09 1994-05-24 Asahi Chem Ind Co Ltd スチレン系樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0729998A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348549A (ja) * 2000-06-09 2001-12-18 Nitto Denko Corp 塗膜保護用シート
JP2006022257A (ja) * 2004-07-09 2006-01-26 Denki Kagaku Kogyo Kk ゴム変性共重合樹脂から成形されたシート、包装用成形体

Also Published As

Publication number Publication date
DE69527413T2 (de) 2003-03-06
KR100186672B1 (ko) 1999-05-15
CA2169056A1 (en) 1996-02-20
DE69527413D1 (de) 2002-08-22
MY112904A (en) 2001-10-31
CN1066166C (zh) 2001-05-23
TW302372B (ja) 1997-04-11
JP3662025B2 (ja) 2005-06-22
EP0729998B1 (en) 2002-07-17
EP0729998A1 (en) 1996-09-04
EP0729998A4 (en) 1998-12-30
CN1131428A (zh) 1996-09-18

Similar Documents

Publication Publication Date Title
KR100607006B1 (ko) 스티렌계 중합체 수지 및 그의 조성물
EP3105267B1 (en) Use of methyl methacrylate vinylaromate copolymers
WO1996006127A1 (fr) Feuille en resine de styrene et moulage de cette feuille
JP5036122B2 (ja) 耐熱性スチレン系樹脂延伸シート
JP4925391B2 (ja) 耐熱性スチレン系樹脂組成物
JP3816059B2 (ja) スチレン系重合体の製造方法およびスチレン系重合体樹脂
JP2019189770A (ja) ポリスチレン系樹脂組成物、シート、及び成形品
JP2529050B2 (ja) 新規なゴム変性スチレン系樹脂組成物
JPH09227738A (ja) 芳香族ビニル系樹脂組成物
JP3460335B2 (ja) 低温収縮性フィルム
JP5089839B2 (ja) 新規なゴム変性芳香族ビニル系共重合樹脂混合組成物
JP2004339357A (ja) 透明ゴム変性ポリスチレン系樹脂
JP3591935B2 (ja) スチレンー(メタ)アクリル酸系共重合体およびその組成物
JPH024412B2 (ja)
JP2533977B2 (ja) 低温成形性に優れたゴム変性スチレン系樹脂組成物
JP4484305B2 (ja) 熱収縮性多層フィルム
JP3736873B2 (ja) 透明スチレン系樹脂よりなる食品容器
JPH09278977A (ja) 透明性、流動性に優れたゴム変性スチレン系樹脂組成物及びそれから得られた成形物
JPH09278960A (ja) スチレン系樹脂組成物
JP3635764B2 (ja) 新規なゴム変性スチレン系樹脂組成物、及びその成形方法
JP3434854B2 (ja) 異型押出成形品
WO2021260971A1 (ja) 二軸延伸シートおよびその成形品
JP2006306901A (ja) 耐熱性に優れたスチレン系樹脂組成物
JPH0976340A (ja) 高光沢食品容器蓋
JP2006306902A (ja) 耐熱スチレン系樹脂組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95190681.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 1996 596176

Country of ref document: US

Date of ref document: 19960205

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2169056

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1019960700840

Country of ref document: KR

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1995913416

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1995913416

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2169056

Country of ref document: CA

Kind code of ref document: A

WWG Wipo information: grant in national office

Ref document number: 1995913416

Country of ref document: EP