WO1993016469A1 - Phase varying device, and optical pickup apparatus using the same for magneto-optical storage - Google Patents

Phase varying device, and optical pickup apparatus using the same for magneto-optical storage Download PDF

Info

Publication number
WO1993016469A1
WO1993016469A1 PCT/JP1993/000158 JP9300158W WO9316469A1 WO 1993016469 A1 WO1993016469 A1 WO 1993016469A1 JP 9300158 W JP9300158 W JP 9300158W WO 9316469 A1 WO9316469 A1 WO 9316469A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
magneto
light
pickup device
divided
Prior art date
Application number
PCT/JP1993/000158
Other languages
English (en)
French (fr)
Inventor
Hideyoshi Horimai
Katsuhiro Seo
Kimihiro Saito
Kiyoshi Toyota
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to JP51041393A priority Critical patent/JP3658763B2/ja
Priority to EP93903326A priority patent/EP0579843B1/en
Priority to DE69327369T priority patent/DE69327369T2/de
Priority to US08/122,411 priority patent/US5577018A/en
Publication of WO1993016469A1 publication Critical patent/WO1993016469A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/13Optical detectors therefor
    • G11B7/131Arrangement of detectors in a multiple array
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads
    • G11B11/10541Heads for reproducing
    • G11B11/10543Heads for reproducing using optical beam of radiation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/123Integrated head arrangements, e.g. with source and detectors mounted on the same substrate
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1356Double or multiple prisms, i.e. having two or more prisms in cooperation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1359Single prisms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates
    • G11B7/1367Stepped phase plates

Definitions

  • the present invention relates to a phase change device such as a phase delay type prism and a compound optical rotation plate, and an optical pickup device used for an optical disk device using the same, and more particularly to reproducing information recorded on a magneto-optical recording medium ( ⁇ ⁇ ).
  • the present invention relates to an optical pickup device suitable for a magneto-optical storage device and a phase difference generating device used for the optical pickup device.
  • An optical pickup device for a magneto-optical storage device for reproducing information recorded on a magneto-optical recording medium, for example, a magneto-optical disk irradiates a linearly polarized laser beam onto a recording surface of the magneto-optical disk to record data.
  • the information recorded as the magnetization direction on the surface is detected by changing the polarization plane rotation by the electro-optic Kerr effect or Faraday effect, which is the interaction between light and magnetization.
  • Such an optical pickup device for a magneto-optical storage device is an optical pickup device that reproduces information from a compact disk (CD), such as a read-only optical disk, a write-once optical disk, and a phase-change optical disk. Based on This is different from the optical pickup device for optical recording / reproducing devices that detects the change in reflected light amount.
  • the optical pickup device refers to an optical pickup device for a magneto-optical storage device.
  • a polarizing beam splitter is known as an optical element that can provide desired characteristics even when it is put in convergent light.However, it is difficult to separate MO signals using a polarizing beam splitter.
  • several methods are known as follows.
  • Conventional optical pickup devices for magneto-optical storage devices include, for example, a semiconductor laser, a collimating lens that collimates light emitted from the semiconductor laser, and a collimating lens that collimates light.
  • An objective lens that condenses the emitted light and irradiates the recording surface of the magneto-optical disk, and a part of the reflected light that is disposed between the semiconductor laser and the objective lens and that is reflected by the recording surface of the magneto-optical disk.
  • a polarization beam splitter (hereinafter, referred to as a first polarization beam splitter) to be separated, and an analyzer that detects a part of the reflected light separated by the first polarization beam splitter,
  • a photoelectric conversion element that detects the level of light transmitted through this analyzer (Hereinafter referred to as a detector), collects the light emitted from the semiconductor laser and irradiates the light onto the recording surface of the magneto-optical disk, and separates a part of the reflected light reflected by this recording surface.
  • the level of a component having a predetermined polarization plane, that is, a predetermined light vibration plane, of a part of the separated reflected light is detected, and information recorded on the magneto-optical disk is detected from the component.
  • a predetermined polarization plane that is, a predetermined light vibration plane
  • information recorded on the magneto-optical disk is detected from the component.
  • each component of the reflected light separated by the first polarization beam splitter that is, a component having the same vibration surface as the emitted light from the laser, is a so-called component.
  • the P-wave component and the S-wave component having a vibration direction orthogonal to the P-wave component are separated by a half-wave plate and a second polarizing beam splitter instead of the analyzer, and the separated quadrature is separated.
  • the level of each of the S-wave component and the P-wave component is detected by two detectors, the level difference between them is detected by a differential amplifier, and the information recorded by the differential method is detected.
  • An optical pick-up device for a magneto-optical storage device using a 1Z2 wavelength plate and a second polarizing beam splitter instead of this analyzer is a laser beam splitting from reflected light by a first polarizing beam splitter. Since the S wave component of the beam is a magneto-optical signal (hereinafter referred to as MO signal), it is desirable to set the reflectance of the first polarized beam splitter to the S wave to 100%.
  • MO signal magneto-optical signal
  • the reflectivity for the wave component is set so that the amount of light incident on the detector and the noise due to the detector shot noise and the birefringence of the disk substrate are balanced. There is a problem that the power ringing efficiency is low. Further, in order to separate the laser beam separated by the first polarization beam splitter into two components by the second polarization beam splitter, it is necessary to establish an optical path thereof. The dimensions are large and it is difficult to reduce the size of the optical pickup device. Further, it is difficult to perform a coating for polarization separation of the polarization beam splitter. For example, a coating technique for reducing the phase difference between the P wave and the S wave is very difficult. The polarizing beam splitter must be placed in parallel light, and a collimating lens is required.
  • an optical pickup device for a magneto-optical storage device that uses a peristron prism instead of the above-described analyzer instead of the half-wave plate and the second polarization beam splitter is also known.
  • the optical pick for this magneto-optical storage device The up device has also encountered the same problem as the optical pickup device for the magneto-optical storage device using the one-two wavelength plate and the second polarizing beam splitter. Disclosure of the invention
  • the optical pickup device for a magneto-optical storage device of the present invention uses a phase changing means such as a half-wave plate, a phase difference generating prism, and a complex optical rotation plate.
  • a laser light source a polarizing beam splitter, an objective lens, and a photodetector arranged along the optical axis.
  • the emitted light is emitted as convergent light onto the recording surface of the magneto-optical recording medium, and a predetermined polarization component of the reflected light from the recording surface of the magneto-optical recording medium is separated by the polarization beam splitter to produce the light.
  • an optical pick-up device that takes out light with a detection element
  • phase change means is provided,
  • an optical pickup device for a magneto-optical storage device characterized in that the light changed by the phase changing means is detected through the polarization beam splitter and the photodetector.
  • the phase changing means includes a vibration surface having a predetermined angle with respect to the optical axis on a plane orthogonal to the optical axis, divided into at least two portions with the optical axis as a boundary. , C t axis C axis relative to those of the optical axis, it has two divided regions to C 2 axis, Shako out from the laser light source passes through one division region, serial of the magneto-optical recording medium It is possible to use a half-wave plate arranged so that the light reflected by the recording surface passes through the other divided area.
  • the light detection element is divided into four parts around the optical axis corresponding to the division of the half-wave plate, and preferably, a part corresponding to the optical axis does not have a detection part. It is divided into four and recorded on the magneto-optical recording medium from the detection signal of the four divided areas. Detects the recorded magneto-optical (MO) recording signal.
  • MO magneto-optical
  • the one- and two-wavelength plates are mounted on a surface of the polarizing beam splitter on the objective lens side.
  • a light detection element having a large light receiving area is provided on a surface of the polarization beam splitter orthogonal to a surface provided with the 12-wavelength plate.
  • a hologram laser unit with a focus error detection function is used as the laser light source.
  • the polarization beam splitter it is preferable to use a polarization beam splitter in which the phase difference between the polarization P-wave component and the polarization S-wave component is almost 0 °.
  • the angle of the vibrating surface in the two divided regions of the 12 wavelength plate is made different, and a light detecting element such as an avalanche photodiode (APD) having a non-divided light receiving surface is used as the light detecting element.
  • a light detecting element such as an avalanche photodiode (APD) having a non-divided light receiving surface is used as the light detecting element.
  • APD avalanche photodiode
  • the optical pickup device for a magneto-optical storage device has a surface having a predetermined inclination angle, a first parallel surface for reflecting light incident from the surface at a first position, and a first parallel surface at the first position.
  • a micro-prism configured to reflect light at a front of said first parallel plane;
  • a photodetector provided in correspondence with the first position and the second position, each having a central portion and three divided regions divided into three on both sides thereof;
  • Using a laser coupler integrally formed on the same semiconductor substrate with a laser light source provided to face the inclined surface the laser light source incident on the inclined surface of the micro prism is reflected on the side where the light from the laser light source is reflected.
  • a first mirror provided, and a second mirror which faces the reflection surface of the first mirror and receives reflected light from the first mirror and emits the light in a direction orthogonal to the first mirror.
  • the C axis for those optical axes is C! Axis and C 2 axes, the light emitted from the second mirror passes through one of the divided areas, and the reflected light reflected by the recording surface of the magneto-optical recording medium It is preferable to provide a 1Z2 wavelength plate disposed so as to pass through the other divided region.
  • the optical pickup device for a magneto-optical storage device includes two differential amplifiers for detecting a differential signal from each of the three divided areas of the two photodetectors, and further differentially outputs signals output from these differential amplifiers. And a third differential amplifier for amplifying.
  • the laser light source includes a plurality of divided regions that are divided into at least two on a plane that is orthogonal to each other and have predetermined phase difference characteristics, and light emitted from the laser light source passes through one of the divided regions, It is possible to use a phase difference generating device having a phase difference generating film arranged so that the light reflected by the recording surface of the recording medium passes through the other divided area.
  • the thickness of the phase difference generating film is adjusted to change the phase difference.
  • the phase changing means has at least two divided areas on a plane orthogonal to the optical axis, and emits light from the laser light source to one area by right-rotating the light by a predetermined angle. Alternatively, it is disposed so that the reflected light reflected by the recording surface of the magneto-optical recording medium is passed through the other area by a predetermined angle in a direction opposite to the above-described rotation. Can be used.
  • the optical rotation angle of the composite optical rotation plate is defined by the material and thickness of the composite optical rotation plate.
  • the composite optical rotation plate is divided by a line parallel to the pit formation direction of the recording surface of the magneto-optical disk.
  • the phase change characteristic is adjusted by setting the optical rotation angles of the divided left optical rotation plate and the right optical rotation plate to predetermined values, or (2) the recording surface of the magneto-optical disk.
  • the phase change characteristic is adjusted by using a split composite optical rotation plate divided by a line orthogonal to the direction in which the light is formed, and setting the optical rotation angles of the divided left optical rotation plate and the right optical rotation plate to predetermined values.
  • the optical rotation angle of the composite optical rotation plate is set to about 10 ° or more, and to 22.5 ° in the latter stage.
  • the 45-degree prism and the 45-degree prism are divided into at least two on a plane that is attached to the reflection surface of the 45-degree prism and that is orthogonal to the optical axis and has predetermined phase difference characteristics with each other.
  • a phase difference generating device having a plurality of divided regions and causing a predetermined phase difference between light incident on one divided region and light emitted from the other region is proposed.
  • At least two divided regions on a plane orthogonal to the optical axis there is provided at least two divided regions on a plane orthogonal to the optical axis, and the light incident on one of the regions is rotated right or left by a predetermined angle.
  • a composite optical rotation plate is provided, which is formed so that light incident on the other region is rotated by a predetermined angle in a direction opposite to the above-mentioned optical rotation and is rotated therethrough.
  • the angle of rotation of the optical rotation plate is defined by the material and thickness of the composite optical rotation plate.
  • FIG. 1 is a plan view of an optical pickup device as a first embodiment of an optical pickup device for a magneto-optical storage device according to the present invention.
  • FIG. 2 shows C in two regions constituting a half-wave plate constituting the optical pickup device of the first embodiment of the present invention.
  • FIG. 3 is a diagram showing a first form of a laser beam vector for describing the operation principle of the optical pickup device according to the first embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a second form of a laser beam vector for explaining the operation principle of the optical pickup device according to the first embodiment of the present invention.
  • FIG. 5 is a diagram showing a third mode of a laser beam vector for explaining the operation principle of the optical pickup device according to the first embodiment of the present invention.
  • FIG. 6 is a diagram schematically showing a light receiving region of a detector constituting the optical pickup device according to the first embodiment of the present invention.
  • FIG. 7 shows an optical pickup device according to a first embodiment of the present invention.
  • FIG. 4 is another configuration diagram of a polarizing beam splitter, a 12-wavelength plate, and a detector.
  • FIG. 8 shows a planar configuration of an optical pickup device as a first modification of the first embodiment of the present invention, using the polarization beam splitter, the half-wave plate and the detector shown in FIG. FIG.
  • FIG. 9 is a laser beam vector for explaining the relationship between the C 1 axis and the C 2 axis in two regions constituting the half-wave plate constituting the optical pickup device according to the first embodiment of the present invention.
  • FIG. 10 is another configuration diagram of the half-wave plate constituting the optical pickup device of the first embodiment of the present invention.
  • FIG. 11 is a plan view of an optical pickup device using the 1Z2 wavelength plate shown in FIG. 10 as a second modification of the first embodiment of the present invention.
  • FIG. 12 is a plan view of an optical pickup device as a modification of the optical pickup device shown in FIG.
  • FIG. 13 is a side view of an optical pickup device as a third modification of the optical pickup device according to the first embodiment of the present invention.
  • FIG. 14 is a configuration diagram of a laser power bubbler included in the optical pickup device shown in FIG.
  • FIG. 15 shows the laser power puller shown in Fig. 13.
  • FIG. 4 is a diagram schematically showing a light receiving region in a detection zone.
  • FIG. 16 is a plan view of an optical pickup device as a fourth modification of the optical pickup device according to the first embodiment of the present invention.
  • FIG. 17 is a plan view of an optical pickup device as a second embodiment of the optical pickup device for a magneto-optical storage device of the present invention.
  • FIGS. 18a to 18c are configuration diagrams of the combined phase delay prism (CPR) shown in FIG.
  • FIG. 19 is a diagram illustrating the path of light passing through the combined phase delay prism (CPR) shown in FIG. 17 and its characteristics.
  • CPR phase delay prism
  • FIGS. 20a to 20d are diagrams showing the characteristics of the light shown in FIG.
  • FIG. 21 is a partial configuration diagram of a second embodiment of the second embodiment of the optical pickup device for a magneto-optical storage device according to the present invention.
  • FIG. 22 is a plan view of an optical pickup device as a third embodiment of the optical pickup device for a magneto-optical storage device of the present invention.
  • FIGS. 23A and 23B are diagrams illustrating a method of manufacturing the optical rotation member shown in FIG.
  • FIGS. 24a and 24b are diagrams illustrating specific optical rotation members.
  • FIGS. 25 and 26 show the magneto-optical storage device of the present invention.
  • FIG. 11 is a diagram illustrating a ray trajectory in a third embodiment of the optical pickup device.
  • FIG. 27 is a diagram showing signal processing in the optical pickup device shown in FIG. 25 and FIG.
  • FIG. 28 is a sectional view showing the configuration of an optical pickup device according to a third embodiment of the optical pickup device for a magneto-optical storage device of the present invention.
  • FIG. 29 is a partially enlarged configuration diagram of the optical pickup device shown in FIG.
  • FIGS. 30 and 31 are a schematic configuration perspective view and a ray trajectory of an optical pickup device according to a fourth embodiment of the optical pickup device for a magneto-optical storage device of the present invention.
  • FIGS. 32a to 32e are characteristic diagrams of the composite optical rotation plate shown in FIGS. 30 and 31.
  • FIG. 32a to 32e are characteristic diagrams of the composite optical rotation plate shown in FIGS. 30 and 31.
  • FIG. 33 is a diagram illustrating the signal components of the composite optical rotation plate shown in FIGS. 32A to 32E.
  • FIGS. 34a and 34b are diagrams illustrating the signal components in the X and y directions of the composite optical rotation plate shown in FIGS. 32a to 32e.
  • FIG. 35 is a diagram illustrating division of the composite optical rotation plate according to the first embodiment of the fourth embodiment of the present invention.
  • FIGS. 36a to 36m are diagrams illustrating the ray trajectory in FIG. 35.
  • FIG. 37 shows a composite of the second embodiment of the fourth embodiment of the present invention. It is a figure which illustrates division
  • FIG. 38 a to FIG. 38 i are diagrams illustrating the ray trajectory in FIG. 37.
  • FIGS. 39a and 39b are graphs showing simulation results of the MO signal and the sum signal of the composite optical rotation plate of the fourth embodiment of the present invention.
  • FIG. 40 is a standardized version of the graph illustrated in FIG. 39b.
  • FIG. 41 a and FIG. 41 b are graphs showing theoretical values and measured values of the composite optical rotation plate according to the fourth embodiment of the present invention.
  • FIG. 42 is a graph showing the MTF of the composite optical rotation plate of the related art and the fourth example of the present invention.
  • An optical pickup device for a magneto-optical storage device according to the present invention
  • FIG. 1 is a plan view of an optical pickup device as a first embodiment of an optical pickup device for a magneto-optical storage device of the present invention used when reproducing information recorded on a magneto-optical recording medium, for example, a magneto-optical disk.
  • FIG. 3 is a diagram illustrating a configuration.
  • This optical pickup device collects a laser light source 11, a collimating lens 12 for collimating the light emitted from the laser light source 11, and a collimating lens 12 for collimating the lens 12.
  • the objective lens 13 irradiates the recording surface 1 a of the magneto-optical disk 1 with light, and is disposed between the laser light source 11 and the objective lens 13, and the recording surface 1 a of the magneto-optical disk 1 is provided.
  • a polarizing beam splitter (PBS) 14 that separates a predetermined polarization component of the reflected light reflected by the optical disc 1 and a polarizing beam splitter 14 that is disposed between the polarizing beam splitter 14 and the magneto-optical disc 1 and has an optical axis 0 - 0, each of the C-axis in the two divided respective areas 1 5 a, 1 5 b at least on the flat surface to the left and right (or top and bottom) perpendicular to, that is, the d-axis and C 2 axis
  • the 12-wavelength plate 15 set at different angles and the specified beam splitter 14
  • a photoelectric conversion element (hereinafter referred to as a detector) 16 as a light detection element for detecting the level of a light component, and a polarization beam splitter 14 and a detector 16 are disposed between the polarization detector and the polarization detector. : ⁇
  • the laser light source 11 is composed of, for example, a semiconductor laser.
  • the collimating lens 12 converts the light emitted from the laser light source 11 into parallel light and enters the polarized beam splitter 14
  • the laser light source 11 Outputs a P wave whose polarization plane (oscillation direction) is parallel to the P axis, for example.
  • the reflectance of the polarized beam splitter 14 is 0% for the P wave and 100% for the S wave.
  • the transmittance of the polarization beam splitter 14 is 100% for the P wave and 0% for the S wave. Therefore, the polarization beam splitter 14 transmits 100% of the outgoing light, which is a P-wave from the laser light source 11, and the P-wave transmitted through the polarization beam splitter 14 becomes a 1Z2 wave plate 15 Is incident on.
  • Wave plate 15 is a plane perpendicular (orthogonal) to the optical axis. At least on the plane 2 divided regions 1 5 a, has a 1 5 b, C axis in each region, that is, a d-axis and C 2 axis and the different angles.
  • the 12-wavelength plate 15 has a boundary between the two divided regions 15a and 15b on a plane orthogonal to the optical axis 0—0 ′.
  • -Through 0 ' parallel to the S-axis, and the C-axis, which is the fast axis of the 1-dual-wavelength plate 15, is at 45 degrees to the P-axis in the first divided region 15a.
  • a first axis having an angle hereinafter, this axis is referred to as d axis
  • d axis a second axis having an angle of 12.5 degrees with respect to the P axis in the second divided region 15b. have) that C 2 axis of this shaft.
  • the light component passing through the first divided area 1 5 a of the P-wave from a polarizing one Musupuri Tsu evening 1 4 (hereinafter, referred to as a laser beam I t) is, for example,
  • a component (hereinafter, referred to as a laser beam I 2 ) of the P wave from the polarization beam splitter 14 that passes through the second divided region 15 b is, as shown in FIG. of the the child passes through the divided region 1 5 b,
  • Le vibration surface the vibration direction is converted so as to be line-symmetrical with the C 2 axis has an angle one 4 5 degrees relative to axis P - Zabimu I 2 1
  • the beam After being converted into an S-wave laser beam I and a laser beam I 21 having a vibration direction of 144 degrees with respect to the P-axis, respectively, the beam is converged by the objective lens 13 and is magneto-optical Irradiates the recording surface 1a of the disc 1.
  • Storage surface 1 a of the magneto-optical disc 1 stores are magnetized in a predetermined orientation based on the information, the laser beam I n, I 2 1 to be reflected on the recording surface 1 a of the magneto-optical disk 1 Therefore, the direction of oscillation is rotated by 10 degrees as shown in FIGS. 3 and 4 due to the interaction between light and magnetization, for example, the “electro-optical force-effect”, and the laser beam I n, with vibration surface for one 21 it is converted into a laser beam I 12, I 22, which is one of 0 degrees, respectively, their optical paths and the forward and backward paths are reversed in the optical axis 0 0, the bordering.
  • laser Zabimu I 12 is a reflected light of the laser beam I u is through the right on the paper with respect to the optical axis 0 0 'in FIG. 1, a reflected light of the laser beam I 2 i
  • Laser beam I 22 passes through the left side on the paper relative to the optical axis 0 0 '.
  • the laser beams I 12 and I 22 reflected by the storage surface 1 a of the magneto-optical disk 1 are collimated by the objective lens 13, and then enter the 1 Z2 wavelength plate 15 again.
  • These laser beams I 1S and I 23 are incident on the polarization beam splitter 14 .
  • the polarization beam splitter 14 has a reflectance of 0% and 100% for the P wave and the S wave, respectively. Ichimu I 1S, only the respective S-wave components of the I 2S is reflected, di via the condenser lens 1 7, silicon down Dorikarurenzu 1 8 It is incident on tech evening 16.
  • a component obtained by projecting the laser beam I 1S on the S-axis (hereinafter, referred to as a light component I 1S ) and a component obtained by projecting the laser beam I 23 on the S-axis Component (hereinafter referred to as light component I2S ) is incident on the detector 16 o
  • the light receiving area of the detail 16 is divided into a plurality of areas, for example, as shown in FIG. 6, is divided into four areas 16a, 16b, 16c, and 16d. These split arrangement the level of the optical component I 1S detected by the region 1 6 b, 1 6 c, is so that arrangement to detect the level of light component I 2S by region 1 6 a, 1 6 d.
  • the level signals detected in the areas 16a, 16b, 16c, and 16d of the detector 16 are level signals A, B, C, and D, respectively, the areas 16a, 1 6d From the level signal (A + D) detected by both, the difference between the level signal (B + C) detected in both of the regions 16b and 16c is obtained.
  • a signal defined by the following equation with a value proportional to zero angular displacement due to the electro-optical Kerr effect can be obtained by the "Push-Pull method".
  • MO signal reproduction signal obtained by reproducing information recorded on the magneto-optical disc 1 (hereinafter, referred to as MO signal), can be obtained by the following formula 1 it can.
  • the first divided region 1 of the half-wave plate 15 out of the light emitted from the laser light source 11 is used. 5
  • the light passed through a is radiated to the recording surface 1a of the magneto-optical disk 1 via the objective lens 13 and the reflected light therefrom is passed through the objective lens 13 to the 1Z2 wavelength plate 1
  • the light passes through the second divided area 15 b of FIG. 5 and is incident on the detector 16 via the condenser lens 17 and the cylindrical lens 18.
  • the light emitted from the laser light source 11 and passing through the second divided area 15 b of the 1 Z2 wavelength plate 15 the light emitted from the laser light source 11 is transmitted through the objective lens 13 to the magneto-optical disc.
  • the recording surface 1 a of the laser 1 is irradiated with the reflected light, and the reflected light passes through the first divided area 15 a of the half-wave plate 15, and is separated by the polarization beam splitter 14.
  • the light is incident on the detector 16 via the cylindrical lens 18.
  • the detector 16 can detect the MO signal defined by Eq.
  • optical pickup device for a magneto-optical storage device as the first embodiment of the present invention and the above-described conventional optical pickup device for a magneto-optical storage device.
  • the reflectance of the polarization beam splitter for the P-wave component had to be set so that the amount of light incident on the detector and the noise were balanced.
  • the reflectance of the polarization beam splitter 14 with respect to the P-wave component can be practically 0%, that is, the so-called coupling efficiency on the outward path can be approximately 100%, and the high power can be obtained. Pringing efficiency can be obtained.
  • the output power as used in compact disk (CD) devices, etc. is low.
  • Any laser diode can be used for the optical pickup device for the magneto-optical storage device of the present invention.
  • the light amount of the P-wave component and the S-wave component of the laser beam that has passed through the 12-wavelength plate 15 twice is approximately 50% of the emitted light. By doing so, it is possible to reduce the influence of birefringence.
  • 1 to 2 wave plate 1 5 have contact to the region 1 5 a and the region 1 5 b as described above, to form at different inclination of the d-axis and C 2 axis together
  • the M0 signal may be affected by the boundary between the region 15a and the region 15b, but as shown in Fig. 6, make sure that the detector 16 does not detect the part corresponding to the boundary. By doing so, there is no impact.
  • the focus error signal FE can be calculated by the following equation 2 using the astigmatism method J.
  • the optical pickup device of this embodiment is a read-only type, It is possible to have a simple configuration substantially similar to an optical pick-up device for a write-once type optical disk or the like. That is, the configuration can be simpler than that of the conventional optical pickup device for a magneto-optical storage device.
  • the configuration of the above-described 12-wavelength plate 15 and detector 16 is not limited to the configuration shown in FIG. 1.
  • the 12-wavelength plate 15 may be disposed in close contact with the corresponding surface of the polarizing beam splitter 14 to detect the MO signal without using the condenser lens 17.
  • FIG. 8 is a plan view of an optical pickup device for a magneto-optical storage device as a first modified example of the configuration of the optical pickup device of the first embodiment shown in FIG.
  • the optical pick-up device shown in Fig. 8 consists of a laser light source 11, a collimator lens 12, a polarizing beam splitter 14, a 1Z two-wave plate 15, a detector 19 with a large light-receiving area, and an objective lens. 1 has 3 0
  • the optical pickup device shown in Fig. 8 Comparing the optical pickup device shown in Fig. 8 with the optical pickup device shown in Fig. 1, the optical pickup device shown in Fig. 8 shows that the polarization beam splitter 14 and the objective lens 13 The interval is getting shorter. Further, the optical pickup device shown in FIG. 8 does not require the condenser lens 17 and the cylindrical lens 18. As a result, the optical pickup device shown in Fig. 8 is better than the optical pickup device shown in Fig. 1. It becomes even smaller.
  • the laser light source 11A is, for example, F
  • a hologram-equipped laser unit with a 0 CUS error detection function is used.
  • the configuration of the 1-dual-wavelength plate 15 is such that the laser beam passes through the 12-wavelength plate 15 twice, assuming that there is no electro-optical force effect, as shown in FIG. beam
  • the 12-wave plate 1 angle ⁇ with respect to the second region 1 5 b C 2 axes P axis of the 5 can be obtained by equation 3 below.
  • the polarization beam splitter that makes the phase difference between the P wave and the S wave almost 0 degree can be easily obtained. I can make it.
  • FIG. 11 shows a second modification of the first embodiment of the present invention in which the polarizing beam splitter 14A thus formed is arranged in the divergent light (or convergent light) of the laser light source 11.
  • FIG. 3 is a plan view of an optical pickup device.
  • the optical pickup device shown in FIG. 11 is composed of a laser light source 11, a 1-two-wavelength plate 15A formed as shown in FIG. 10, and a polarization beam splitter 14A having almost zero phase difference. , An objective lens 13, a condenser lens 17, a cylindrical lens 18 and a detector 16.
  • a comparison of the optical pickup device shown in FIG. 11 with the optical pickup device shown in FIG. 1 shows that the optical pickup device shown in FIG. 11 has a collimating lens in the optical pickup device shown in FIG. 1 2 can be eliminated, and the optical pick-up device can be further miniaturized.
  • the M 0 signal is generated by the electro-optical Kerr effect. SZN can be detected using almost 100% of wave components, and SZN can be considerably improved compared to conventional optical pickup equipment.
  • the beta 2 approximately 0 degrees and, as illustrated in FIG. 1 2
  • a single photoelectric conversion element (detector) whose signal receiving surface is not divided, for example, an avalanche photodiode (APD) 16 ⁇ Etc. may be used.
  • APD avalanche photodiode
  • the laser light source 11 is rotated slightly around the optical axis 0-0 ', that is, the light emitted from the laser light source 11 has a small amount of S-wave components, and this S-wave component is polarized beam split.
  • the laser beam is taken out in the opposite direction (left side in the drawing) to the detector 16 shown in Fig. 11 or the APD 16 A shown in Fig. 12.
  • ⁇ One-way control (FAPC) may be performed. In this case, since the emitted light from the laser light source 11 that passes through the polarized beam splitter 14A is only the P component, there is no effect on the detection of the M0 signal.
  • FAPC One-way control
  • this optical pickup device has a laser coupler 20 in which a laser light source, a polarized beam splitter, a detector, and the like are provided on the same silicon substrate, and a laser coupler 20 from the laser coupler 20.
  • the objective lens 33 that irradiates the recording surface 1a of the optical disk 1 and the laser optical disk 1 between the laser cutter 20 and the magneto-optical disk 1 are divided into at least two on a plane perpendicular to the optical axis 0-0 '. constituted by the regions 3 4 a, 3 4 b have Keru your these areas C i-axis and C 2 axis and the different angles of 1/2-wavelength plate 3 4 that is.
  • the laser coupler 20 includes a laser light source 22 provided on a silicon substrate 21, and an optical axis 0-between the laser light source 22 and the objective lens 33. It has a polarization plane disposed along 0 ′, and separates a predetermined polarization component of the reflected light from the recording surface 1a of the magneto-optical disk 1 and generates a focus error signal FE.
  • a micro prism 23 and detectors 24 and 25 formed on the silicon substrate 21 and detecting light amounts at the same distance from the focal point.
  • the light receiving areas of the detectors 24 and 25 include three areas 24 a, 24 b and 24 c and three areas 25 a and 25 b, respectively. It is divided into 25c.
  • the optical pickup device shown in FIG. 13 also has the half-wave plate 34 placed on the optical axis 0-0 ′ similarly to the above-described embodiments shown in FIGS. 1, 8, 11, and 12.
  • perpendicular (orthogonal) at least 2 divided on a plane, for example, when two divided regions 3 4 a, 3 axis and C 2 axis and the different angles at 4 b
  • the reflectivity of the surface 23 a of the microprism 23 to the P wave and the S wave is set to 0% and 100%, respectively, and the half wavelength of the light emitted from the laser light source 22 is used.
  • the reflected light passing through the first area 34 a of the plate 34 and reflected by the recording surface 1 a of the magneto-optical disk 1 passes through the second area 34 b of the half-wave plate 34, Of the light emitted from the laser light source 2 2, the reflected light that has passed through the ⁇ 2 area 3 4 b of the 12-wavelength plate 3 4 and reflected by the recording surface 1 a of the magneto-optical disk 1 is a half-wavelength plate.
  • the regions 24 a, 24 b, 24 c of the detectors 24, 25 and the regions 25 a, 25 b, 25 are detected.
  • the MO signal can be obtained by the following equation 4
  • the focus error signal FE is obtained by the “microprism” detector focus error detection.
  • j three Using dynamic amplifier 2 6, 2 7, 2 8, can be obtained by the following equation 5.
  • the optical pickup device has a configuration in which the collimating lens 12 in the optical pickup device of the embodiment shown in FIGS. 1 and 8 is omitted, and the optical pickup device is further downsized.
  • the optical pickup device shown in FIG. 8 is combined with the optical pickup device shown in FIG. 11, FIG. 12, or FIG. Can be configured.
  • the optical pickup device as a fourth modification of the first embodiment of the optical pickup device for a magneto-optical storage device of the present invention illustrated in FIG. 16 is a collimating device in the optical pickup device illustrated in FIG. Evening lens 12 and objective lens 13 have been deleted, and condenser lens 17 and cylindrical lens 18 have been deleted. Therefore, as compared with the optical pickup device shown in FIG. 1, the length in the direction of the optical axis 0-0 'and the length orthogonal to the optical axis 0-0' are greatly shortened. The size of the pump device can be reduced.
  • optical pickup device as the first embodiment of the present invention is not limited to the configuration illustrated in FIG. 16, and the configurations in FIGS. 1, 8, 11, 12, and 13 are appropriately selected. Any configuration can be combined.
  • the polarizing beam splitter 14 is used.
  • the optical axis of the S-wave component separated by the surface 23a of the microprism 23 is set to the direction (diameter or radius) of the magneto-optical disk 1, but the optical axis of this S-wave component is
  • the optical pickup device may be arranged so as to be in the tangential direction of the track No. 1 and the M0 signal may be detected by the “evening 'push' pull method”.
  • the present invention can be applied to various beam spot control methods in an optical pickup device, for example, an optical pickup device using a “three-beam method”.
  • An optical pickup device for a magneto-optical storage device according to the present invention
  • optical pickup device according to the second embodiment will be described with reference to FIGS.
  • FIG. 17 is a plan view of an optical pickup device as a second embodiment of the optical pickup device for a magneto-optical storage device of the present invention.
  • This optical pickup device consists of a laser light source 11, a collimator lens 12, a polarizing beam splitter 14, a combination phase retardation prism (CPR) 39, an objective lens 13, and a condenser lens. 17, a cylindrical lens 18, and a detector 16.
  • the optical pickup device shown in FIG. 17 uses a CPR 39 instead of the 1Z2 wave plate 15 of the optical pickup device shown in FIG.
  • Other components are the same as those shown in FIG. However, the path of the optical axis 0-0 ′ differs depending on the use of CPR39.
  • FIGS 18a to 18c illustrate the three forms of CPR39.
  • the CPR 39 shown in FIG. 18a is obtained by depositing the phase difference generating thin film 41 on the reflecting surface 40a of the 45-degree prism 40, and the phase difference generating thin film 41
  • the first retardation generating thin film 41a and the second retardation generating thin film 41b are substantially the same area, and are symmetrically mounted on both sides of the reflecting surface 40a in the vertical direction with the optical axis 0-0 'as the center.
  • phase difference generating thin films 4 1 a and 4 lb totally reflect the incident light, but the first phase difference generating thin film 41 a reflects the incident light without changing the phase, and the second The phase difference generating thin film 41b reflects incident light with a delay of 180 degrees. Such a phase delay can be performed by adjusting the film thickness of these phase difference generating thin films 41a and 41b.
  • a phase difference of 180 degrees occurs between the light incident on the first phase difference generating thin film 41a and the light incident on the second phase difference generating thin film 41b.
  • the CPR 39 performs the same function as the half-wave plate 15 shown in FIG.
  • Figures 18b and 18c show other configurations of CPR39A and 39B.
  • the CPR 39 A shown in Fig. 18b is composed of the first 'phase difference generating thin film 41 aA and the second phase difference generating thin film b A is applied. These films are formed such that a phase difference of 180 degrees occurs between the first retardation generating thin film 41 aA and the second retardation generating thin film 41 bA.
  • the CPR 39 B shown in Fig. 18c is composed of a first phase difference thin film 41aB and a second phase difference thin film as total reflection films, each of the upper and lower halves of the reflecting surface 40a. 4 1 b B It is a thing. These films are formed such that a phase difference of 180 degrees occurs between the first phase difference generating thin film 41aB and the second phase difference generating thin film 41bB.
  • any of the CPR 39, 39 A, and 39 B illustrated in FIGS. 18 a to 18 c may be used.
  • the case where CPR 39 illustrated in a is used will be exemplified.
  • FIG. 19 is a diagram illustrating the ray trajectory around the CPR 39 in FIG.
  • Equations 1, 2, 4, and 5 hold true in the second embodiment.
  • FIGS. 20a to 20d are graphs showing the characteristics of the lights L1 to L4.
  • the polarization plane of the light L1 is inclined at an angle.
  • the C axis of the 12-wavelength plate 15, that is, , C i-axis and C 2 axis is P direction.
  • the light is irradiated onto the recording surface 1a of the magneto-optical disk 1 via the objective lens 13 and the reflected light is reflected and the optical path is inverted.
  • the phase shifts by the angle + k due to the electro-optical Kerr effect.
  • the return light L 3 is reflected by the first phase difference generating thin film 41 a, so that the phase is shifted 90 degrees.
  • the hemisphere area is
  • the same result as that of the first embodiment is obtained in the second embodiment. Signal can be detected.
  • the optical pickup device of the first embodiment using the 1Z2 wavelength plate 15 shown in FIG. 1 is compared with the optical pickup device of the second embodiment using the CPR39.
  • the half-wave plate 15 is composed of a first half-wave plate 15a and a second 1Z two-wave plate 15b which are divided into two optical axes. Tensions around 0—0 '(as boundaries) It is manufactured together, but in practice it is difficult to manufacture precisely and is not always suitable for mass production.
  • the CPR 39 only requires the 45 ° mirror 40 to be coated with the phase difference generating thin film 41, so it can be easily manufactured and has excellent mass productivity.
  • CP R39 has the advantage that the degree of vectorial interference can be set arbitrarily at the angle ⁇ shown in Figs. 20a to 20d.
  • detection can be performed at twice the angle, so that the detection sensitivity is increased.
  • the optical axis 0-0 ′ is deflected by the CPR 39, and the distance between the laser light source 11 and the objective lens 13 is increased. Can be made smaller. That is, the optical pickup device of the second embodiment has an advantage that the optical system can be reduced in size.
  • CPR 39 can also be manufactured at low cost.
  • the reflected return light is polarized in the same direction, but only the ⁇ signal is obtained in the opposite phase.
  • a phase difference generator that generates a predetermined phase difference between one light incident on the phase difference generating thin film 41a and the other light incident on the second phase difference generating thin film 41b. Can be used for a wide range of applications.
  • This phase difference generating device can arbitrarily change the phase difference depending on the film thickness of the phase difference generating thin film 41 adhered to the reflecting surface 40a of the 45 degree prism 40.
  • phase difference generating thin film 41 As a method of applying the phase difference generating thin film 41, various methods such as sputtering can be used depending on the material of the phase difference generating thin film 41.
  • the modification described as the first embodiment can be applied to the optical pickup device of the second embodiment.
  • FIG. 21 shows a first modification of the second optical pickup device, in which a polarizing beam splitter 14 corresponding to FIG. 7 and a detector 19 having a large light receiving area are integrated.
  • FIG. 21 shows the half-wave plate 15 shown in FIG. 7 as the polarizing beam splitter 1. 4 has not arrived. It goes without saying that the polarization beam splitter 14 shown in FIG. 21 and the detector 19 having a large light receiving area can be applied to the optical pickup device shown in FIG.
  • the condenser lens 17 shown in FIG. In addition, the cylindrical lens 18 becomes unnecessary.
  • the configuration corresponding to FIGS. 11 and 12 that is, the configuration of the laser light source 11 and the polarization beam splitter 14A is shown. It is possible to adopt a configuration in which the collimation lens 12 between them is deleted.
  • the advantages of the second modification are the same as those of the optical pickup device shown in FIGS. 11 and 12. Illustration of this configuration is omitted.
  • a configuration corresponding to FIG. 13 can be employed as a third modification of the optical pickup device according to the second embodiment of the present invention.
  • the advantages of the third modification are the same as the advantages of the optical pick-up device shown in FIG. Illustration of this configuration is also omitted.
  • An optical pickup device for a magneto-optical storage device according to the present invention
  • FIG. 22 is a plan view of an optical pickup device according to a third embodiment.
  • This optical pickup device consists of a laser light source 11, a collimator lens 12, a polarizing beam splitter 14, an optical rotation plate 52, an objective lens 13, a condenser lens 17, and a cylindrical lens. It consists of 18 and 16 detectors.
  • the optical pickup device shown in FIG. 22 is different from the optical pickup device shown in FIG. 1 in that an optical rotation plate 52 is used instead of the 1 Z 2 wavelength plate 15 shown in FIG.
  • the basic configuration and other components are the same as those of the optical pickup device shown in Fig. 1.
  • the optical rotation plate 52 includes a left optical rotation plate 52a and a right optical rotation plate 52b.
  • the left-handed rotating plate 52 a rotates only the polarized light by a predetermined angle counterclockwise when viewed from the observation side, that is, the objective lens 13 side in this example (the same applies hereinafter) without changing the phase difference.
  • the right-handed rotation plate 52b rotates only polarized light by a predetermined angle clockwise when viewed from the observation side without changing the phase difference.
  • the left optical rotation plate 52a and the right optical rotation plate 52b do not impart an optical phase difference (ratio) to the transmitted light, they are rotated with linear polarization. Rotational power changes even when wavelength changes It just works. Therefore, the light incident on the left optical rotation plate 52a and the light incident on the right optical rotation plate 52b have an optical rotation angle difference by the sum of the optical rotation angles of the two.
  • FIGS. 23A and 23B illustrate a method of manufacturing the optical rotation plate 52.
  • an optical member 55 having a thick right-handed rotation angle having a thickness t 0 and an optical member 54 having a left-handed rotation angle having substantially the same thickness have an optical axis 0-.
  • the surface is centered on the plane corresponding to 0 '. Since the thickness of these optical members 54 and 55 is large, this work for imposition can be easily performed.
  • the optical members 54 and 55 for example, a crystal in which quartz is pressed perpendicular to the optical axis is used, and the right crystal has an optical rotation angle of the right crystal 55, and the left crystal has an optical rotation angle of the left. Used as optical member 54.
  • the rotation angle is determined by the thickness t of the optical member.
  • the optical members 54 and 55 having a thickness of t0 are polished from both sides in a state where the optical members 54 and 55 are imposed, thereby manufacturing an optical rotation plate 52 having a desired thickness t.
  • the desired thickness t is, for example, about 3.7 mm for an optical rotation angle of 45 degrees. Polish until the specified thickness t according to the desired rotation angle. This polishing operation can also be facilitated. Therefore, the optical rotation plate 52 on which the left optical rotation plate 52a and the right optical rotation plate 52b are imposed can be easily manufactured, and can be manufactured at low cost and in a short time. Moreover, the angle of rotation can be set arbitrarily by adjusting the thickness. The angle of rotation is almost proportional to its thickness.
  • the composite optical rotation plate 52 When the CRP used in the third embodiment of the present invention, that is, the composite optical rotation plate 52 is compared with the CPR 39 of the second embodiment, when the composite optical rotation plate 52 is used, as is because there is no axis and C 2 axis, such as a 1-wavelength plate 1 5 in a plane, rather it may also be allowed to be incident toward the linearly polarized light in any direction in the plane, shown in FIG. 2 0 a Since there is no need to specify the polarization angle of the incident light, design flexibility is increased.
  • the optical rotation plate 52 formed by combining the two left optical rotation plates 52 a and the right optical rotation plate 52 formed in this way is called a composite optical rotation plate (Combination Rotating Ptate: CRP).
  • CRP Composite Rotating Ptate
  • FIG. 24a is a front view of the CRP used in the third embodiment of the present invention
  • FIG. 24b is a top plan view thereof.
  • the figures in the drawings indicate actual dimensions in mm.
  • the processing accuracy was ⁇ 0.1 mm.
  • the clear aperture shaded to indicate the effective light transmission area is 7 mm x 7 mm.
  • wavelength 780 ⁇ 20 nm
  • transmitted wavefront or less
  • Optical axis sunset No offset between the transmitted light of the left and right rotator plates 52a, 52b, pils (small cracks), cracks in the clear aperture in the overview inspection The one without scratches, scratches, etc. was used. For convenience, those having the following optical rotation angles were used as model names shown in Table 2 below. Table 2
  • FIGS. 25 and 26 are perspective views of the optical pickup device illustrated in FIG. However, the direction of the incident light from the laser light source 11 and the collimating lens 12 to the polarizing beam splitter 14 is incident on the polarizing beam splitter 14, and the light from the polarizing beam splitter 14 is emitted from the detector 16 Orientation is different from Fig. 22.
  • FIG. 25 shows the conversion of the polarization plane of I 1
  • FIG. 26 shows the conversion of the polarization plane of I 2.
  • the directions of the arrows in the circles indicate the directions of the linearly polarized light.
  • the laser beam It which is the S-polarized light from the collimating lens 12, is reflected 100% by the polarizing beam splitter 14 and passes through the left optical rotation plate 52 a.
  • the laser beam I u is obtained by rotating the plane of polarization by +.
  • this laser beam I passes through the objective lens 13, is reflected by the recording surface 1 a of the magneto-optical disk 1, and passes through the objective lens 13 again, the return light is transmitted to the center axis (optical axis) of the objective lens 13.
  • the laser beam I 12 passes through the optical path on the opposite side with respect to (0-0 ′).
  • the polarization plane at this time remains +.
  • the laser beam I i 2 passes through the right-handed rotating plate 52b, a clockwise rotation is given.
  • IL 3 is the laser beam incident on the left optically rotating plate 52a. Is rotated by +2 with respect to. That is, the incident light I t and the emitted light I 13 on the optical rotation plate 52 have a total rotation angle of + 2 ⁇ .
  • the laser beam I is subjected to polarization detection at the polarization beam splitter 14, and only the P-wave component is transmitted, and the laser beam I 1S enters the detector 16.
  • the amplitude of the laser beam I 1 S incident on the detector 16 has a value represented by the following equation 6.
  • the conversion of the polarization plane of the optical path I2 shown in FIG. 26 is also basically the same as described above.
  • the laser beam I 2, which is S-polarized light from the collimating lens 12, is reflected 100% by the polarizing beam splitter 14, and the right-handed rotator plate 5 b on the opposite side of the laser beam It when passing through a serving as a laser beam I 21 polarization plane has been found rotated by Ichihi reversed.
  • I isx sin (+ 2 + 0 k )
  • the MO signal is obtained by differential detection of the signals obtained from PD 1 and PD 2 of the detector 16.
  • FIG. 27 is a diagram illustrating the detection of the MO signal by the area differential method (Double Cross Section Differential Detection Method).
  • the area differential method is a single laser beam, but its cross section has a semi-lunar area and a laser beam whose polarization is controlled independently. This is named because it means that the M0 signal can be detected.
  • both the laser beams I 1S and I 2S have the same S polarization component only.
  • the k component is detected as a difference in light intensity, and when the two signals are differentiated, the in-phase component is removed.
  • the polarization beam splitting is performed. Since the common mode rejection can be performed up to the extinction ratio of 14 in the evening, a high quality desired M0 signal with a high common mode rejection ratio can be obtained.
  • the detection of the M0 signal can be performed by a process similar to taking the push-pull.
  • the M0 signal detection system can be configured with a planar configuration, so that the optical pickup device can be downsized.
  • the MO signal can be detected by the sum of the four divided signals of the MO signal detector 16 and the RF signal, that is, with almost the same configuration as the CD optical system.
  • the light quantity is detected only in the return light path from the recording surface 1a, and the light quantity in the outward path is substantially transmitted by 100%. It is above.
  • the optical rotation angle of the composite optical rotation plate 52 can be arbitrarily set without affecting the power pulling efficiency on the outward path, the amount of light incident on the detector 16 can be controlled.
  • the rotation angle between the left-handed rotation plate 52a and the right-handed rotation plate 52b is deviated from 0 to 45.
  • the return light to the detector 16 can be arbitrarily set from 0 to 100%.
  • the angle of rotation of the convoluted light plate 52 the return light can be set arbitrarily, so that the detector 16 can be given a degree of freedom in the design of the amplifier connected to the output side, thereby improving the SN.
  • the phase difference does not change as in the case of the 12-wavelength plate 15
  • the variation in the oscillation wavelength of the laser light source 11 does not matter.
  • two or more laser light sources 11 can be assembled with the same optical system.
  • the polarization beam splitter 14 is less expensive than the beam splitter for MO, and the composite optical rotation plate 52 is also less expensive than the Wollaston prism.
  • the optical pick-up device of the present invention is configured as illustrated in FIG.
  • FIG. 28 corresponds to FIG. 13 illustrating the configuration of an optical pickup device using the 12-wavelength plate 15 as the first embodiment.
  • the optical pickup device shown in FIG. 28 does not include the 12-wavelength plate 15, and the composite optical rotation plate as shown in FIG. 5 2 and the polarizing beam splitter 14 and the detector 16
  • An integrated optical assembly 60 is provided above the surface 14a of the polarizing beam splitter 14, a laser coupler 20 similar to the one illustrated in FIG. 14 is provided.
  • a silicon mirror 32 is disposed on the optical assembly 60, and an objective lens 13 is disposed above the silicon mirror 32.
  • the advantages of configuring a super-resolution optical system, the effect of canceling the push-pull signal to the MO, and the power-off of the MTF (Modulation on Trnsfer Function) are reduced only by the common-mode noise. New effects were found, such as the effect that can be reduced by half. These details will be described in detail as a fourth embodiment.
  • the above-described composite optical rotation plate 52 is used not only for the optical pickup device for the magneto-optical storage device of the present invention, but also for changing the phase of light in addition to the CPR 39 described in the second embodiment. Therefore, the present invention can be applied to various uses for generating a phase difference between a plurality of lights.
  • An optical pickup device for a magneto-optical storage device according to the present invention
  • the internal polarization state of the composite optical rotation plate 52 is converted and the MO signal is thereby detected.
  • the optical characteristics are expressed by, for example, an MO signal, a phase pit signal, a pre-group signal, and the like.
  • the change of the spatial frequency axis (MTF) is described.
  • FIGS. 30 and 31 are schematic diagrams of the optical system of the optical pickup device of the fourth embodiment.
  • FIG. 30 shows the outward route
  • FIG. 31 shows the return route.
  • This optical pick-up device uses a composite optical rotation plate 62 instead of the composite optical rotation plate 52 of the optical pickup device shown in FIG. 22 of the third embodiment or shown in FIGS.
  • a beam splitter 64 is provided between the evening lens 12 and the polarizing beam splitter 14, and a second detector 66 is provided on the exit side of the beam splitter 64.
  • the laser light source 11, the collimating lens 12, the polarizing beam splitter 14, the objective lens 13, and the magneto-optical disk 1 (recording surface 1a) It is the same as the pick-up device.
  • the beam in the composite optical rotation plate 62 is a semi-moon-shaped split region
  • the beam spot obtained by converging these beams with a lens is different from a normal beam spot.
  • the polarization state of the light beam immediately before entering the objective lens 13 is the half-moon-shaped left-handed rotation plate 6 2 a and right-handed rotation plate of the compound optical rotation plate 62. Since there is a difference in angle + ⁇ and one polarization in each cross section of 62b, the same polarization components interfere with each other in the beam spot.
  • the direction along the dividing line 62 0 of the composite optical rotation plate 62 is defined as the X direction, and the direction orthogonal to the dividing line 62 0 is defined as the y direction.
  • Figures 34a and 34b show the results of a simulation of how the beam spots are made for each component. From this, it is possible to obtain a beam spot of the y component, which has the same polarization direction as that of the beam spot of the in-phase component, that is, the so-called in-phase component, but has the phase inverted. Since the beam spot of the component in the y direction has a 180 ° phase inversion at the center of the beam, the light intensity is always zero.
  • the optical rotation angle ⁇ of the composite optical rotation plate 62 is large.
  • the y component shown in Figs. 34a and 34b increases, and as shown in Figs. 32a to 32e, the composite optical rotation plate 62
  • the beam spot in the split direction of 2 widens the field.
  • bi one Mus pots becomes bi one beam light shape itself of the y component E 7.
  • the energy distribution of this beam spot is important.
  • PSF Point Spread Fucction
  • the MTF and other parameters can be determined.
  • the composite optical rotation plate 6 2 it has a different PSF respectively from the E x formed minutes E 7 components.
  • the MO signal can be obtained by the area differential method.
  • the dividing line 62 of the compound optical rotation plate 62 is arranged in parallel with the pre-group of the recording surface 1a, and An experiment was conducted on the case where the left-handed rotating plate 62a and the right-handed rotating plate 62b were divided, and it was confirmed that the MO signal was output and that there was an effect of removing the push-pull signal. The details will be described with reference to FIGS. 36a to 36m.
  • 3 6 a to view 3 6 g, 3 6 h shows the respective beam state in the position of the backward I 12, I 22, shown in FIG 1.
  • FIG. 36 a Referring to FIG. 30 and FIG. 31, the entire polarization plane of the laser beam reflected by the polarization beam splitter 14 is in the S direction. The amplitude at this time is normalized to 1. The reflectance of the recording surface 1a of the magneto-optical disk 1 is also assumed to be 1.
  • Figure 3 6 b through the composite optical rotation plate 6 2, the laser beam reflected by the recording surface 1 a and I 22, I 12. ,
  • Figure 3 6 c and FIG 3 6 d consider separately the beam E x component and E y component. Then, it is assumed that these beams undergo S-axis diffraction on the recording surface 1a. To facilitate understanding, the pre-group is considered in the spatial frequency domain above ⁇ / ⁇ (numerical aperture) where the push-pull is maximized.
  • Fig. 36e and Fig. 36f The (+/-) first-order diffracted light and zero-order light overlap due to the pre-group. (+ Z—) Let the intensities of the first-order diffracted light be ⁇ and r, and let the intensity of the zero-order light be c. (+/-) The first-order diffracted light is diffracted by a factor of ⁇ and r times, including the plane of polarization, so that in Fig. 36f, the phase overlaps with the 0th-order light and has an opposite phase.
  • Figures 36 g and 36 h Figures 36 e and 36 The solution was shown in amplitude.
  • Figure 3 6 i and 3 6 j shows a state at each position of the outward-bi one beam I 13, I 23, shown in FIG. 3 0.
  • Figure 36i and Figure 36j In the process of returning the light reflected from the recording surface 1a, the light again passes through the composite optical rotation plate 62, and the polarization shown in Figure 36g and Figure 36h together with the beam shown in Figure 36h Since the surface is rotated by the rotation angle ⁇ , the ⁇ ⁇ component and the E y component are mixed again.
  • FIG. 36k and FIG. 36 ⁇ show the states at the respective positions of the beams I 1SA and I 2SA on the outward path shown in FIG.
  • Fig. 36k and Fig. 36_ ⁇ The components shown in Fig. 36i and Fig. 36j are detected by the polarization beam splitter 14, and only the P component is transmitted.
  • Figure 36m Add the P components shown in Figure 36k and Figure 36j ?.
  • both the beams I 1SA and I 2SA are 2 c ⁇ si ⁇ ⁇ ⁇ cos
  • the push-pull signal is 0, and the phase grub diffracted light is independent of the magnifications ⁇ , r, and C, and
  • the S component in FIGS. 36 i and 36 j is reflected by the polarizing beam splitter 14, and this polarized light depends on the magnifications ⁇ , r, and c. And the push-pull component is included because it depends on the angle of rotation. Therefore, a tracking servo can be applied with a signal from the second detector 66.
  • the beams I 1SA and I 2SA have the same plane of polarization, but the phase is 180 . Because there is, it is possible to detect the MO signal from (I 1SA -I 2SA ).
  • the signal from the detector 16 is radially divided.
  • a push-pull signal can be extracted by the push-pull method, and an MO signal can also be extracted by subtracting a signal that depends on the optical rotation plate in the tangential direction.
  • FIGS. 38a to 38i are line trajectories corresponding to FIGS. 36a to 36m for the optical system shown in FIG.
  • the composite optical rotation plate 62 or the composite optical rotation plate 72 depends on the optical rotation angle a and the division direction of the tangential direction or the radial direction to obtain the MO signal and It has the characteristic that the appearance of the pit signal is different.
  • Fig. 39a and Fig. 39 b are respectively
  • FIG. 6 is a characteristic diagram of a differential (push-pull) signal and a sum (R F) signal based on a simulation-based simulation at 45 ° and 45 °.
  • the horizontal axis indicates ⁇ .
  • Fig. 39b shows that when the compound optical rotation plate 72 is divided in the tangential direction as illustrated in Fig. 37, the MTF of the pit row aligned in the tangential direction can be reproduced only at about half the spatial frequency. Is not shown.
  • the absolute value of the composite optical rotator 72 varies depending on the angle of rotation ⁇ of the rotator plate 72.
  • the MO signal can be reproduced by changing the shape of the MTF curve.
  • PBS 45 The maximum amplitude can be obtained because it is detected by.
  • Figure 41a shows the curve of the theoretical value of the MO signal
  • Figure 41b shows the curve of the measured value.
  • the theoretical value and the measured value correspond well.
  • FIG. 42 is a graph in which the values of FIG. 41 a and FIG. 41 b have been normalized to 1.0 to form an MTF curve.
  • Curve CV 11 is the common-mode noise, that is, the RF signal
  • the above described composite optical rotation plate 62 of the fourth embodiment of the present invention can be applied as an optical pickup device in the same manner as in FIGS. 28 and 29 shown as the third embodiment.
  • composite optical rotation plate 62 or the composite optical rotation plate 72 described as the fourth embodiment of the present invention can be used for other optical devices other than the optical pickup device.
  • the present invention is not limited to the above-described embodiment, but may take various other modified forms.
  • the optical pickup device for a magneto-optical storage device of the present invention can be suitably used for an optical recording / reproducing device.
  • the optical pickup device for a magneto-optical storage device of the present invention is configured to be small, the entire magneto-optical storage device incorporating this optical pickup device for a magneto-optical storage device can also be miniaturized.
  • the optical pickup device for a magneto-optical storage device of the present invention can be applied to a small-sized magneto-optical storage device.
  • the ⁇ wavelength plate, the combination phase delay prism, and the composite optical rotation plate exemplified as the elements constituting the optical pickup device for the magneto-optical storage device of the present invention can be applied to the optical pickup device for the magneto-optical storage device.
  • the present invention can be applied to various devices that change the phase of two beams in a predetermined relationship.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Head (AREA)

Description

明 細 書 位相変化装置とそれを用いた光磁気記憶装置用光ピ
'· ックアツプ装置 技術分野
本発明は、 位相遅延形プリズム、 複合旋光板などの 位相変化装置とそれを用いた光ディスク装置に使用する光 ピックアップ装置に関し、 特に光磁気記録媒体 (Μ Ο ) に 記録された情報を再生するのに好適な光磁気記憶装置用光 ピックァップ装置とこの光ピックアツプ装置などに使用す る位相差発生装置に関する。 背景技術
光磁気記録媒体、 例えば、 光磁気ディスクに記録さ れた情報を再生するための光磁気記憶装置用光ピックアツ プ装置は、 直線偏光のレーザビームを光磁気ディスクの記 録面に照射し、 記録面に磁化方向として記録されている情 報を光と磁化の相互作用である電気光学カー効果あるいは ファラデー効果による偏光面の回転に変えて検出する。
このような光磁気記憶装置用光ピックアツプ装置は 、 再生専用形光ディスク、 追記形光ディスク、 相変化形光 ディスク等、 コンパク トディスク (C D ) から情報を再生 する光ピックアップ装置、 すなわち、 ピッ トの有無に基づ いた反射光量の変化を検出する光記録再生装置用光ピック アップ装置とは異なる。 以下、 光ピックアップ装置とは光 磁気記憶装置用光ピックァップ装置をいう。
C D用の光学系ではレーザ力ッブラに見られるよう に、 小型化が実現されている。 しかしながら、 M O用の光 学系においては、 M 0信号を分離するためのビームスプリ ッ夕の反射膜を収束光中で使用するように設計することが 技術的に難しく、 C D用光学系のようには小型化が実現さ れていない。
一方、 収束光中に入れても所望の特性がだせる光学 素子としては偏光ビ一ムスプリ ッタが知られているが、 偏 光ビームスプリ ッ夕を用いて M O信号を分離することが困 難とされているが、 下記に挙げるいくつかの方法が知られ ている。
従来の光磁気記憶装置用光ピックアップ装置は、 た とえば、 半導体レ一ザと、 この半導体レーザからの出射光 を平行光にするコリ メ一夕レンズと、 このコリ メ一タレン ズで平行光にされた出射光を集光して光磁気ディスクの記 録面に照射する対物レンズと、 半導体レーザと対物レンズ 間に配設され光磁気ディスクの記録面で反射された反射光 の一部を分離する偏光ビ一ムスプリ ッ夕 (以下、 第 1 の偏 光ビームスプリ ツ夕 という) と、 この第 1 の偏光ビ一ムス プリ ッ夕で分離された反射光の一部を検波する検光子と、 この検光子を透過した光のレベルを検出する光電気変換素 子 (以下、 ディテクタという) 等から構成され、 半導体レ 一ザからの出射光を集光して光磁気ディスクの記録面に照 射し、 この記録面で反射された反射光の一部を分離し、 分 離された反射光の一部のうちの所定の偏光面、 すなわち、 所定の光振動面を有する成分のレベルを検出して、 その成 分から光磁気ディスクに記録されていた情報を検出する。 上述の検光子としては、 「シー トアナライザ」 がー 般的に用いられるが、 シー トアナライザは 「消光比」 が低 く、 そのために S Z N ( S i gnal to No ise rat io ) が低い という問題があり、 このタイプの光磁気記憶装置用光ピッ クアツプ装置は現在は殆ど用いられていない。
そこで、 上記検光子の代わりに、 1 2波長板と第 2の偏光ビームスプリ ッタを用る光磁気記憶装置用光ピッ クアツプ装置が提案されている。 この光磁気記憶装置用光 ピックァッブ装置においては、 第 1 の偏光ビ一ムスプリ ッ 夕で分離された反射光の各成分、 すなわち、 レーザからの 出射光と同一の振動面を有する成分である、 いわゆる、 P 波成分とこの P波成分と直交する振動方向を有する S波成 分を、 検光子の代わりの 1 / 2波長板および第 2の偏光ビ 一ムスプリ ッ夕で分離し、 分離された直交する S波成分と P波成分のそれぞれのレベルを 2個のディテク夕でそれぞ れ検出し、 それらのレベル差を差動増幅器で検出し、 差動 法により記録されている情報を検出する。 この検光子の代わりに 1 Z 2波長板と第 2の偏光ビ —ムスプリ ッ夕を用いる光磁気記憶装置用光ピックアツプ 装置は、 第 1 の偏光ビ一ムスプリ ッタで反射光から分離す るレーザビームの S波成分は光磁気信号 (以下、 M O信号 という) であるこ とから、 第 1 の偏光ビ一ムスプリ ツ夕の S波に対する反射率を 1 0 0 %に設定することが望ましい が、 P波成分に対する反射率はディテク夕に入射する光量 とディテクタのショ ッ トノイズやディスク基板の複屈折等 に起因するノイズがバランスするように設定され、 再生専 用形等の光ピックァップ装置に比して力ップリ ング効率が 低いという問題がある。 また、 第 1 の偏光ビームスプリ ッ 夕で分離されたレーザビ一ムを第 2の偏光ビ一ムスプリ ッ 夕によって 2つの成分に分離するために、 その光路を確立 する必要があり, その光路確立の寸法が大きく光ピックァ ップ装置の小型化が困難である。 さらに、 偏光ビ一ムスプ リ ッ夕の偏光分離のためのコ一ティ ングは難しく、 例えば 、 P波と S波に対する位相差を小さくするコーティ ング技 術は非常に難しいので、 一般的に第 1 の偏光ビ一ムスプリ ッタは平行光中に配置する必要があり、 コリ メ一夕レンズ が必ず必要である。
さらに、 上記検光子の代わりに、 1 / 2波長板と第 2の偏光ビ一ムスプリ ッ夕ではなく、 ゥォ一ラス トンプリ ズムを用いる光磁気記憶装置用光ピックァップ装置も知ら れている。 しかしながら、 この光磁気記憶装置用光ピック アップ装置も、 1ノ 2波長板と第 2の偏光ビ一ムスプリ ツ タを用いる光磁気記憶装置用光ピックアツプ装置と同様の 問題に遭遇している。 発明の開示
本発明の目的は、 光磁気ディスク等の光磁気記録媒 体に記録されている情報を再生する光磁気記憶装置用光ピ ックァップ装置の部品点数を少なく して小型化を図ること にある。
また本発明の他の目的は、 カップリ ング効率が高い 光磁気記憶装置用光ピックァップ装置を提供することにあ る 0
さらに本発明の目的は、 このような光磁気記憶装置 用光ピックアップ装置に好適に使用可能な、 位相変化装置 を提供することにある。
また本発明の他の目的は、 光磁気記憶装置用光ピッ クァップ装置に限らず、 種々の用途に好適に適用可能な光 の位相を変化させる位相変化装置を提供することにある。
本発明の光磁気記憶装置用光ピックアツプ装置 には、 1 / 2波長板、 位相差発生プリズム、 複合旋光板な どの位相変化手段を用いる。
したがって、 本発明によれば、 光軸に沿って配 設された、 レーザ光源と、 偏光ビームスブリ ツ夕と、 対物 レンズと、 光検出素子とを有し、 前記レーザ光源からの射 出光を光磁気記録媒体の記録面に収束光として射出させ、 該光磁気記録媒体の記録面からの反射光のうちの所定の偏 光成分を前記偏光ビ—ムスプリ ッタで分離して前記光検出 素子で取り出す光ピックアツプ装置において、
前記偏光ビ一ムスプリ ッ夕と前記対物レンズと の間に、 前記光軸の一方側を通過する光の位相と前記光軸 の他方側を通過する光の位相とを所定の角度だけ変化させ る位相変化手段を設け、
前記位相変化手段で変化された光を前記偏光ビ —ムスプリ ッ夕および前記光検出素子を介して検出する ことを特徵とする光磁気記憶装置用光ピックァ ップ装置が提供される。
前記位相変化手段としては、 前記光軸と直交す る平面上において、 前記光軸を境界として少なく とも 2つ に対向して分割され、 前記光軸に対して所定の角度の振動 面を有し、 それらの前記光軸に対する C軸を C t 軸、 C 2 軸とする 2つの分割領域を有し、 前記レーザ光源からの出 射光が一方の分割領域を通過し、 前記光磁気記録媒体の記 録面で反射された反射光が他方の分割領域を通過すように 配設された 1 / 2波長板を用いることができる。
前記光検出素子が、 前記 1 / 2波長板の分割に 対応して、 前記光軸を中心に 4分割され、 好適には、 前記 光軸に对応する部分には検出部分を有しないように 4分割 され、 4分割領域の検出信号から前記光磁気記録媒体に記 録されている光磁気 (M O ) 記録信号を検出する。
好適には、 前記 1ノ 2波長板が、 前記偏光ビー ムスプリ ッ夕の前記対物レンズ側の面に面着されている。
また好適には、 前記光検出素子として、 前記偏 光ビ一ムスプリ ッタの、 前記 1 2波長板が面着された面 と直交する面に、 受光面積の大きな光検出素子を面着させ る 0
さらに好適には、 前記レーザ光源としてフ ォー カスエラ一検出機能付ホログラムレーザュニッ トを用いる
0
前記偏光ビームスプリ ッ夕として、 偏光 P波成 分と偏光 S波成分の位相差がほぼ 0 ° である偏光ビームス プリ ッ夕を用いことが好適である。
また、 前記 1 2波長板の前記 2つの分割領域 における振動面の角度を異ならせ、 前記光検出素子として 受光面が分割されていないァバランシュフ ォ トダイォー ド ( A P D ) などの光検出素子を用いる。
また、 光磁気記憶装置用光ピックアップ装置は 、 所定の傾斜角度を有する面を有し、 該面から入射した光 を第 1 の位置において反射させる第 1 の平行面と、 該第 1 の位置で反射した光がさらに反射される前記第 1 の平行面 と平行する第 2の平行面とを有し、 第 2の平行面で反射さ れた光がさらに第 1 の平行面の第 2の位置に反射するよう に構成されたマイクロプリズムと ; 前記第 1 の平行面の前 記第 1 の位置および第 2の位置に対応して設けられ、 それ ぞれ、 中央部、 その両側部に 3分割されている 3分割領域 を有する つの光検出素子と ; 前記マイクロプリズムの前 記傾斜面に対向して設けられたレーザ光源とを、 同一の半 導体基板に一体構成したレ一ザカップラを用い、 前記マイ クロプリズムの傾斜面に入射した前記レーザ光源からの光 が反射する側に設けられた第 1 のミ ラ一と、 該第 1 のミ ラ —の反射面に対向し、 該第 1 のミ ラ一からの反射光を受入 れ直交する方向に射出する第 2のミ ラーと、 該第 2のミ ラ 一の射出光を、 前記光軸と直交する平面上において、 前記 光軸を境界として少なく とも 2つに対向して分割され所定 の角度の振動面を有し、 それらの前記光軸に対する C軸を C! 軸および C 2 軸とする 2つの分割領域を有し、 前記第 2のミ ラ一からの出射光が一方の分割領域を通過し、 前記 光磁気記録媒体の記録面で反射された反射光が他方の分割 領域を通過するように配設された 1 Z 2波長板とを設ける ことが好適である。
光磁気記憶装置用光ピックアップ装置は、 前 記 2つの光検出素子のそれぞれの 3分割領域から差動信号 を検出する 2つの差動増幅器と、 これらの差動増幅器の出 力信号をさらに差動増幅する第 3の差動増幅器とをさらに 有する。
また、 前記位相変化手段として、 4 5度プリズ ムと、 該 4 5度プリズムの反射面に被着され、 前記光軸と 直交する平面上において少なく とも 2つに分割され相互に 所定の位相差特性を有する複数の分割領域を有し、 前記レ 一ザ光源からの出射光が一方の分割領域を通過し、 前記光 磁気記録媒体の記録面で反射された反射光が他方の分割領 域を通過すように配設された位相差発生膜とを有する位相 差発生装置を用いることができる。
前記位相差発生膜の膜厚を調整して前記位相差 を変化させる。
前記分割領域が 2つであり、 これらの 2分割領 域が、 前記反射面の対角線を対称に、 反射面の上下に対称 に、 あるいは、 反射面の左右に対称に、 分割されている。 さらに、 前記位相変化手段として、 前記光軸と 直交する平面上において少なく とも 2つに分割された分割 領域を有し, 前記レーザ光源からの出射光を一方の領域を 所定の角度だけ右旋光または左旋光させて通過させ、 上記 光磁気記録媒体の記録面で反射された反射光を他方の領域 を所定の角度だけ上記旋光とは逆の旋回向きで旋光させて 通過させるように配設された複合旋光板を用いることがで きる。
前記複合旋光板の旋光角が該複合旋光板の材質 および厚さで規定される。
前記複合旋光板としては、 ( 1 ) 前記光磁気デ イスクの記録面のピッ トの形成方向に平行な線で分割され た分割複合旋光板を用い、 該分割左旋光板および右旋光板 の旋光角を所定の値に設定して前記位相変化特性を調整す る、 または、 ( 2 ) 前記光磁気ディスクの記録面のピッ ト の形成方向に直交する線で分割された分割複合旋光板を用 い、 該分割左旋光板および右旋光板の旋光角を所定の値に 設定して前記位相変化特性を調整する。
前記複合旋光板の旋光角を約 1 0 ° 以上、 後期 には、 2 2 . 5 ° にする。
本発明によればまた、 4 5度プリズムと、 4 5 度プリズムの反射面に被着され光軸に直交する平面上にお いて少なく とも 2つに分割され相互に所定の位相差特性を 有する複数の分割領域を有し、 一方の分割領域に入射した 光と他方の領域から射出した光との間に所定の位相差を生 じさせる、 位相差発生装置が提洪される。
さらに本発明によれば、 光軸に直交する平面上 において少なく とも 2つに分割された分割領域を有し、 一 方の領域に入射された光を所定の角度だけ右旋光または左 旋光させて通過させ、 他方の領域に入射された光を所定の 角度だけ上記旋光とは逆の旋回向きで旋光させて通過させ るように形成された、 複合旋光板が提烘される。
前記旋光板の旋光角が該複合旋光板の材質およ び厚さで規定される。 図面の簡単な説明
上述した本発明の光磁気記憶装置用光ピックアップ 装置の目的および特徴、 並びに、 他の目的および他の特徴 は添付図面に関連づけ下記の記述により一層明瞭になる。 図 1 は、 本発明の光磁気記憶装置用光ピックアップ 装置の第 1実施例としての光ピックアツプ装置の平面構成 図である。
図 2は、 本発明の第 1実施例の光ピックアップ装置 を構成する 1 / 2波長板を構成する 2つの領域における C
! 軸と C 2 軸を示す平面図である。
図 3は、 本発明の第 1実施例の光ピックアップ装置 の動作原理を説明するためのレーザビームのべク トルの第 1 の形態を示す図である。
図 4は、 本発明の第 1実施例の光ピックアップ装置 の動作原理を説明するためのレーザビームのべク トルの第 2の形態を示す図である。
図 5は、 本発明の第 1実施例の光ピックアップ装置 の動作原理を説明するためのレーザビームのべク トルの第 3の形態を示す図である。
図 6は、 本発明の第 1実施例の光ピックアップ装置 を構成するディテク夕の受光領域を模式的に示す図である
0
図 7は、 本発明の第 1実施例の光ピックアップ装置 を構成する、 偏光ビ一ムスプリ ッ夕、 1 2波長板、 およ び、 ディテクタの他の構成図である。
図 8は、 本発明の第 1実施例の第 1 の変形態様とし ての、 図 7に示した偏光ビームスプリ ツ夕、 1 / 2波長板 およびディテクタを用いた、 光ピックアップ装置の平面構 成図である。
図 9は、 本発明の第 1実施例の光ピックァップ装置 を構成する 1 / 2波長板を構成する 2つの領域における C 1 軸および C 2 軸の関係を説明するためのレーザビームの べク トルを示す図である。
図 1 0は、 本発明の第 1実施例の光ピックアツプ装 置を構成する 1 / 2波長板の他の構成図である。
図 1 1 は、 本発明の第 1 実施例の第 2の変形態様と しての、 図 1 0に示した 1 Z 2波長板を用いた光ピックァ ップ装置の平面構成図である。
図 1 2は、 図 1 1 に示した光ピックァップ装置の変 形態様としての光ピックアツプ装置の平面構成図である。 図 1 3は、 本発明の第 1 実施例の光ピックァップ装 置の第 3変形態様としての光ピックアツプ装置の側面構成 図である。
図 1 4は、 図 1 3に示した光ピックアツプ装置を構 成するレーザ力ッブラの構成図である。
図 1 5は、 図 1 3に示したレーザ力ップラを構成す るディテク夕の受光領域を模式的に示す図である。
図 1 6は、 本発明の第 1実施例の光ピックアップ装 置の第 4変形態様としての光ピックアツプ装置の平面構成 図である。
図 1 7は、 本発明の光磁気記憶装置用光ピックアツ ブ装置の第 2実施例としての光ピックアツプ装置の平面構 成図である。
図 1 8 a〜図 1 8 cは、 図 1 7に示した組合せ位相 遅延プリズム (C P R ) の構成図である。
図 1 9は、 図 1 7に示した組合せ位相遅延プリズム ( C P R ) を通過する光の経路およびその特性を図解する 図である。
図 2 0 a〜図 2 0 dは、 図 1 9に示した光の特性を 示す図である。
図 2 1 は本発明の光磁気記憶装置用光ピックアップ 装置の第 2実施例の第 2形態の部分構成図である。
図 2 2は、 本発明の光磁気記憶装置用光ピックアツ プ装置の第 3実施例としての光ピックアツブ装置の平面構 成図である。
図 2 3 aおよび図 2 3 bは、 図 2 2に示した旋光部 材の製造方法を図解した図である。
図 2 4 aおよび図 2 4 bは、 具体的な旋光部材を図 解した図である。
図 2 5および図 2 6は、 本発明の光磁気記憶装置用 光ピックアツプ装置の第 3実施例における光線軌跡を図解 する図である。
図 2 7は、 図 2 5および図 2 6に示した光ピックァ ップ装置における信号処理を示す図である。
図 2 8は、 本発明の光磁気記憶装置用光ピックアツ プ装置の第 3実施例の光ピックアツプ装置の断面構成図で ある。
図 2 9は、 図 2 8に示した光ピックァップ装置の部 分拡大構成図である。
図 3 0および図 3 1 は本発明の光磁気記憶装置用光 ピックァップ装置の第第 4実施例の光ピックアツプ装置の 概略構成斜視図および光線軌跡図である。
図 3 2 a〜図 3 2 eは、 図 3 0および図 3 1 におけ る複合旋光板の特性図である。
図 3 3は、 図 3 2 a〜図 3 2 eの示した複合旋光板 の信号成分を図解する図である。
図 3 4 aおよび図 3 4 bは、 図 3 2 a〜図 3 2 eの 示した複合旋光板の Xおよび y方向信号成分を図解する図 でめ 0
図 3 5は、 本発明の第 4実施例の第 1 の形態の複合 旋光板の分割を図解する図である。
図 3 6 a〜図 3 6 mは、 図 3 5における光線軌跡を 図解する図である。
図 3 7は、 本発明の第 4実施例の第 2の形態の複合 旋光板の分割を図解する図である。
図 3 8 a〜図 3 8 i は、 図 3 7における光線軌跡を 図解する図である。
図 3 9 aおよび図 3 9 bは、 本発明の第 4実施例の 複合旋光板の MO信号および和信号についてのシミ ュレ一 ショ ン結果を示すグラフである。
図 4 0は、 図 3 9 bに図解したグラフを規格したし たグラフである。
図 4 1 aおよび図 4 1 bは、 本発明の第 4実施例に おける複合旋光板の理論値および実測値を示すグラフであ る 0
図 4 2は、 従来および本発明の第 4実施例の複合旋 光板の MT Fを示すグラフである。
発明を実施するための最良の形態
本発明の光磁気記憶装置用光ピックアツプ装置の第
1実施例としての光ピックアップ装置を図 1〜図 1 6を参 照して述べる。
図 1 は、 光磁気記録媒体、 例えば、 光磁気ディスク に記録された情報を再生するときに使用する本発明の光磁 気記憶装置用光ピックアップ装置の第 1実施例としての光 ピックァップ装置の平面構成を示す図である。
この光ピックァップ装置は、 レーザ光源 1 1 と、 こ のレーザ光源 1 1からの出射光を平行光にするコリ メ一夕 レンズ 1 2 と、 このコリ メ一夕レンズ 1 2からの平行光を 集光して光磁気ディスク 1 の記録面 1 aに照射する対物レ ンズ 1 3 と、 レ一ザ光源 1 1 と対物レンズ 1 3 との間に配 設され、 光磁気ディスク 1 の記録面 1 aで反射された反射 光のうちの所定の偏光成分を分離する偏光ビームスプリ ッ 夕 (P B S ) 1 4 と、 偏光ビームスプリ ツ夕 1 4 と光磁気 ディスク 1 との間に配置され、 光軸 0— 0, に直交する平 面上において少なく とも左右 (または上下) に 2分割され たそれぞれの領域 1 5 a, 1 5 bでのそれぞれの C軸、 つ まり、 d 軸と C 2 軸とが異なる角度に設定された 1 2 波長板 1 5 と、 偏光ビームスプリ ッ夕 1 4で分離された所 定の偏光成分のレベルを検出する光検出素子としての光電 気変換素子 (以下、 ディテクタという) 1 6 と、 偏光ビー ムスプリ ッ夕 1 4 とディ テクタ 1 6 との間に配設され、 偏 騸鷗》:■
- 1 6 -
I 光ビームスプリ ッ夕 1 4で分離された所定の偏光成分、 つ まり、 S波成分または Ρ波成分を集光する集光レンズ 1 Ί と、 この集光レンズ 1 7 とディテクタ 1 6 との間に配置さ れ、 フォーカスエラ一信号 F Eを生成するためのシリ ン ド リカルレンズ 1 8 とで構成されている。
レーザ光源 1 1 は、 例えば、 半導体レーザで構成さ れている。
コリ メ一夕レンズ 1 2はレーザ光源 1 1からの出射 光を平行光にして偏光ビームスプリ ッ夕 1 4に入射させる
0
光磁気ディスク 1 の記録面 1 a と平行な面において 、 図 1 の紙面に平行な軸を P軸とし、 紙面に垂直な軸 (直 交する軸) を S軸とすると、 レーザ光源 1 1からは、 偏光 面 (振動方向) が、 例えば、 P軸と平行な P波が出力され る 0
偏光ビームスプリ ツ夕 1 4は、 理論的には, その反 射率が P波に対して 0 %、 S波に対して 1 0 0 %である。 換言すれば、 偏光ビ一ムスプリ ッ夕 1 4の透過率は、 P波 に対して 1 0 0 %、 S波に対して 0 %である。 したがって 、 偏光ビームスブリ ツ夕 1 4はレーザ光源 1 1からの P波 である出射光を 1 0 0 %透過させ、 偏光ビームスプリ ッ夕 1 4を透過した P波は、 1 Z 2波長板 1 5に入射される。
1 Z 2波長板 1 5は、 光軸に垂直な (直交する) 平 面上において少なく とも 2分割した領域 1 5 a, 1 5 bを 有し、 それぞれの領域での C軸、 つまり、 d 軸と C 2 軸 とが異なる角度となっている。
具体的には、 1 2波長板 1 5は、 図 2に示すよう に、 光軸 0— 0 ' に直交する平面上において 2分割された 領域 1 5 a, 1 5 bの境界が光軸 0 - 0 ' を通り、 S軸に 平行であって、 1ノ 2波長板 1 5の進相軸である C軸が、 第 1 の分割領域 1 5 aにおいて、 P軸に対して 4 5度の角 度を有する第 1 の軸と (以下、 この軸を d 軸という) 、 第 2の分割領域 1 5 bにおいて P軸に対して一 2 2 . 5度 の角度を有する第 2 の軸 (以下、 この軸を C 2 軸という) を有する。
したがって、 図 1 に示すように、 偏光ビ一ムスプリ ッ夕 1 4からの P波のうちの第 1 の分割領域 1 5 aを通過 する光成分 (以下、 レーザビーム I t という) は、 例えば 、 図 3 に示すように、 第 1 の分割領域 1 5 aを通過するこ とにより、 その振動面が d 軸に線対称となるように変換 されて S波であるレーザビ一ム I となる。 一方、 偏光ビ —ムスプリ ッ夕 1 4からの P波のうちの第 2の分割領域 1 5 bを通過する成分 (以下、 レ一ザビーム I 2 という) は 、 図 4 に示すように、 第 2の分割領域 1 5 bを通過するこ とにより、 その振動方向が C 2 軸に線対称となるように変 換されて振動面が P軸に対して一 4 5度の角度を有するレ —ザビーム I 2 1となる。
- 1 8 - 新たな用紙 このようにして、 レーザ光源 1 1からの出射光のう ちの図 1における光軸 0— 0' に対して紙面上で左側のレ 一ザビーム と右側のレーザビーム I 2 は、 1 2波長 板 1 5によって、 S波のレーザビーム I と、 P軸に対し て一 4 5度の振動方向を有するレ一ザビーム I 21とにそれ ぞれ変換された後に、 対物レンズ 1 3により収束されて光 磁気ディスク 1の記録面 1 aに照射される。
光磁気ディスク 1の記憶面 1 aは、 記憶情報に基づ いて所定の向きに磁化されており、 レーザビーム I n, I 21は光磁気ディスク 1の記録面 1 aで反射されることによ り、 光と磁化の相互作用である、 例えば、 「電気光学的力 —効果」 によってその振動方向が、 図 3および図 4に示す ように、 一 0度だけ回転され、 レーザビーム I n, 121に 対して振動面がそれぞれ一 0度となるレーザビーム I 12, I 22に変換されると共に、 それらの光路は光軸 0— 0, を 境にして往路と復路とが反転する。
具体的には、 レーザビーム I uの反射光であるレー ザビーム I 12が、 図 1における光軸 0— 0' に対して紙面 上で右側を通り、 レーザビーム I 2 iの反射光であるレーザ ビーム I 22が光軸 0— 0' に対して紙面上で左側を通る。 光磁気ディスク 1の記憶面 1 aで反射されたレーザ ビーム I 12, I 22は、 対物レンズ 1 3により平行光にされ た後、 再び 1 Z2波長板 1 5に入射される。 1ノ2波長板 1 5は、 上述したように 2つの分割領 域 1 5 a, 1 5 bにおいて異なる角度の 軸と C2 軸と を有していることから、 光軸 0— 0' の右側を通る光磁気 ディスク 1の記録面 1 aで反射されたレ一ザビーム I 12は 第 2の分割領域 1 5 bを通過するこ とにより、 図 3に示す ように、 その振動面が C2 軸に線对称となるように変換さ れ、 電気光学的カー効果がないと仮定した場合に得られる
C! 軸に一致した振動方向を有する成分 (破線で示す) に 対して 度だけ進んだ振動面を有するレ一ザビーム I 13と なる。 一方、 光軸 0— 0' の左側を通る光磁気ディスク 1 の記録面 1 aで反射されたレ一ザビーム I 22は、 第 1の分 割領域 1 5 aを通過することにより、 図 4に示すように、 その振動面が d 軸に線対称となるように変換され、 電気 光学的カー効果がないと仮定した場合に得られる C 1 軸に 直交する振動面を有し、 d 軸に一致した振動面を有する 成分と同じレベルを有する成分 (破線で示す) に対して 度だけ進んだ振動面を有するレ一ザビ一ム I 23となる。
これらのレーザビーム I 1S, I 23は、 偏光ビ一ムス プリ ッ夕 1 4に入射される。
偏光ビ一ムスプリ ッタ 1 4は上述したように、 P波 、 S波に対する反射率がそれぞれ 0 %、 1 0 0 %となって いるから、 偏光ビ一ムスプリ ッ夕 1 4はにおいて、 レーザ ビ一ム I 1S, I 2Sのそれぞれの S波成分のみが反射され、 集光レンズ 1 7、 シリ ン ドリカルレンズ 1 8を介してディ テク夕 1 6に入射される。
具体的には、 図 5に示すように、 レーザビーム I 1S を S軸に投影して得られる成分 (以下、 光成分 I 1Sという ) と、 レーザビーム I 23を S軸に投影して得られる成分 ( 以下, 光成分 I 2Sという) とがディテクタ 1 6に入射され る o
ディテ 夕 1 6は、 その受光領域が複数に分割され 、 例えば、 図 6に示すように、 4つの領域 1 6 a, 1 6 b , 1 6 c, 1 6 dに分割されている。 これらの分割配置は 、 光成分 I 1Sのレベルを領域 1 6 b, 1 6 cにより検出し 、 光成分 I 2Sのレベルを領域 1 6 a, 1 6 dにより検出す るような配置である。
したがって、 ディテクタ 1 6の領域 1 6 a, 1 6 b , 1 6 c, 1 6 dで検出されるレベル信号を、 それぞれレ ベル信号 A, B, C, Dとすると、 領域 1 6 a, 1 6 d両 者で検出されるレベル信号 (A + D) から領域 1 6 b, 1 6 cの両者で検出されるレベル信号 (B + C) の差を求め ることにより、 すなわち、 「プシュ · プル (Push - Pull) 法」 により、 図 5に示すように、 電気光学的カー効果によ る角度変位 0に比例した値の下記式で定義される信号を得 ることができる。
- ( I SMO! I + I SM02 I ) 一方、 光磁気ディスク 1 の記録面 1 aが上述とは 反対方向に磁化されているときは、 電気光学的力一効果に よる振動面の角度変位 0に比例し、 極性が逆となった値の 下記式で定義される信号を得ることができる。
( I SMO! I + I SM02 I ) その結果として, 光磁気ディスク 1 に記録さ れた情報を再生して得られる再生信号 (以下, MO信号と いう) は、 下記式 1 により得ることができる。
MO信号- (A + D) ― (B + C)
- - - ( 1 ) 上述したように、 本発明の第 1実施例の光ピックァ ップ装置では、 レーザ光源 1 1からの出射光のうち 1 /2 波長板 1 5の第 1 の分割領域 1 5 aを通過させた光を、 対 物レンズ 1 3を介して光磁気ディスク 1 の記録面 1 aに照 射させ、 そこで反射された反射光が対物レンズ 1 3を介し て 1 Z2波長板 1 5の第 2の分割領域 1 5 bを通過させ、 集光レンズ 1 7およびシリ ン ドリカルレンズ 1 8を介して ディテクタ 1 6に入射させる。 また、 レーザ光源 1 1カヽら の出射光のうち 1 Z2波長板 1 5の第 2の分割領域 1 5 b を通過させた光を、 対物レンズ 1 3を介して光磁気デイス ク 1 の記録面 1 aに照射させ、 そこで反射された反射光が 1 / 2波長板 1 5の第 1 の分割領域 1 5 aを通過させ、 偏 光ビームスプリ ッ夕 1 4で分離されてシリ ン ドリカルレン ズ 1 8を介してディテクタ 1 6に入射させる。 その結果, ディテクタ 1 6において、 式 1 で規定される M O信号を検 出することができる。
上述した本発明の第 1実施例としての光磁気記憶装 置用光ピックアップ装置と、 上述した従来の光磁気記憶装 置用光ピックアップ装置とを比較する。 従来の光磁気記憶 装置用光ピックァップ装置で必要であった検光子、 または 、 検光子の代わりとなる 1 Z 2波長板および偏光ビームス プリ ッ夕、 あるいは、 検光子の代わりとなるウォーラス ト ンプリズムが、 本発明の光ピックァップ装置においては不 要となる。 つまり、 本発明の光ピックアップ装置は部品点 数を削減でき、 装置を小型化でき、 低価格にすることがで きる。 また、 従来の光ピックアップ装置では、 上述したよ うに、 偏光ビ一ムスプリ ッタの P波成分に対する反射率を ディテクタに入射する光量とノィズがバランスするように 設定しなければならなかったが、 本発明では、 偏光ビーム スブリ ツ夕 1 4の P波成分に対する反射率を事実上 0 %と することができ、 すなわち、 往路のいわゆるカップリ ング 効率をほぼ 1 0 0 %とすることができ、 高い力ップリ ング 効率を得ることができる。 その結果、 コンパク トディスク ( C D ) 装置等に用いられているような出力パワーが小さ なレ一ザダイォ一 ドでも本発明の光磁気記憶装置用光ピッ クアツプ装置に使用可能となる。
さらに、 図 5に示すように、 本発明の光ピックアツ プ装置において、 1 2波長板 1 5を 2度通過したレーザ ビームの P波成分と S波成分の光量を出射光のほぼ 5 0 % とすることにより、 複屈折の影響を受けにくいようにする ことができる。
なお、 本発明の光ピックアップ装置において、 1 2波長板 1 5を上述のように領域 1 5 a と領域 1 5 bにお いて、 d 軸と C 2 軸との傾きを互いに異ならせて形成す ることにより、 領域 1 5 a と領域 1 5 bの境界によって M 0信号に影響が出ることが考えられるが、 図 6に示すよう に、 ディテクタ 1 6で境界に対応する部分を検出しないよ うにすることにより、 なんら影響がないようにすることが できる。
一方、 フォーカスエラ一信号 F Eは、 「非点収差法 J によって下記式 2により算出できる。
F E = ( A + C ) - ( B + D ) · · · ( 2 ) 式 2から明らかなように、 この実施例の光ピックァ ップ装置では、 M〇信号とフォーカスエラ一信号 F Eを一 つの光学系で検出することができる。 換言すると、 本発明 の光磁気記憶装置用光ピックアップ装置を、 再生専用形、 追記形等の光ディスク用の光ピックァッブ装置とほぼ同様 な簡単な構成とすることができる。 つまり、 従来の光磁気 記憶装置用光ピックアップ装置に比して簡単な構成にする ことができる。
ところで、 上述した 1 2波長板 1 5、 ディテクタ 1 6等の構成は、 図 1 に示す構成に限定されるものではな く、 例えば、 図 7に示すように、 受光面積が大きなディテ クタ 1 9や 1 2波長板 1 5を、 偏光ビームスプリ ツ夕 1 4の対応する面に密着配設して、 集光レンズ 1 7を用いず に M O信号を検出してもよい。
図 8は、 この図 1 に示した第 1実施例の光ピックァ ップ装置の構成の第 1 の変形形態としての光磁気記憶装置 用光ピックアップ装置の平面構成図である。 図 8に示した 光ピックアツプ装置は、 レーザ光源 1 1、 コリ メ一夕レン ズ 1 2、 偏光ビームスプリ ツ夕 1 4、 1 Z 2波長板 1 5、 受光面積が大きなディテクタ 1 9、 対物レンズ 1 3を有す る 0
図 8に示した光ピックアツプ装置と、 図 1 に示した 光ピックアップ装置とを比較すると、 図 8に示した光ピッ クアップ装置においては、 偏光ビームスプリ ッ夕 1 4 と対 物レンズ 1 3 との間が短くなっている。 さらに、 図 8に示 した光ピックァップ装置は、 集光レンズ 1 7 とシリ ン ドリ カルレンズ 1 8 とが不要である。 その結果、 図 8に示した 光ピックァップ装置は図 1 に示した光ピックァッブ装置よ り一層小型になる。 図 8のレーザ一光源 1 1 Aは例えば F
0 C U Sエラー検出機能を備えたホログラム付レーザーュ 二ッ ト等を用いている。
1ノ 2波長板 1 5の構成は、 例えば、 図 9に示すよ うに、 レーザビ一ムを 1 2波長板 1 5を 2度通過させ、 電気光学的力一効果がないと仮定したときのレーザビーム
1 3 (図 3に破線で示す光成分に対応する) と、 レーザビ —ム 1 4 (図 4に破線で示す光成分に対応する) とが対称
( β I = β 2 = β ) であればよい。
具体的には、 例えば、 図 1 0に示すように、 1 2 波長板 1 5の第 1 の領域 1 5 aの d 軸の P軸に対する角 度を 4 5度とすると、 1 2波長板 1 5の第 2の領域 1 5 bの C 2 軸の P軸に対する角度 αは、 下記 3式で得ること ができる。
α = I / 2 ( 9 0 - S ) · · · ( 3 ) 例えば、 = 1 0度とすると、 = 4 0度となる。 ところで、 このように偏光ビ一ムスプリ ツ夕 1 4に 対する振動面の傾きを ± 1 0度前後とすると、 P波と S波 に対する位相差をほぼ 0度とする偏光ビームスプリ ッ夕は 容易に作れる。
図 1 1 は、 このように形成した偏光ビ一ムスプリ ッ夕 1 4 Aをレーザー光源 1 1 の発散光 (あるいは収束光 ) 中に配置した本発明の第 1実施例の第 2変形態様として ま光ピックァップ装置の平面構成図である。
図 1 1 に示した光ピックアップ装置は、 レーザ光 源 1 1、 図 1 0に示すように形成した 1ノ 2波長板 1 5 A 、 位相差をほぼ 0にした偏光ビームスプリ ッ夕 1 4 A、 対 物レンズ 1 3、 集光レンズ 1 7、 シリ ン ドリカルレンズ 1 8およびディテクタ 1 6を有する。
図 1 1 に示した光ピックアップ装置と図 1 に示した 光ピックアップ装置とを比較すると、 図 1 1 に示した光ピ ックアツブ装置においては、 図 1 に示した光ピックァップ 装置におけるコリ メ一夕レンズ 1 2を削除することが可能 となり、 光ピックアツプ装置をさらに小型化することがで きる 0 - 図 1 1 に示した光ピックァップ装置においては、 M 0信号は、 電気光学的カー効果によって生じた S波成分を ほぼ 1 0 0 %使用して検出することができ、 S Z Nを従来 の光ピックアツプ装置に比して相当良くすることができる
0
さらに、 図 9に図解した P軸に対するレーザビーム I 3 , I 4 の振動面の角度 yS i , β 2 を互いに等しくせず 、 例えば、 β 2 をほぼ 0度とし、 図 1 2に図解したように 、 図 1 1 に示したディテクタ 1 6に代えて、 Μ Ο信号を受 光面が分割されていない 1個の光電気変換素子 (ディテク 夕) 、 例えば、 アバランシヱフォ トダイオー ド (A P D ) 1 6 Α等を用いるようにしてもよい。 図 1 2に示すように構成すると、 光ピックアップ装 置を構成するに際して、 1 2波長板 1 5の取り付けには 高い位置決め精度を要求されない。
また、 レーザ光源 1 1 を光軸 0— 0 ' の回りに少し 回転し、 すなわちレ一ザ光源 1 1からの出射光に S波成分 が少量存在する状態にし、 この S波成分を偏光ビームスプ リ ツ夕 1 4により、 図 1 1 に示すディテク夕 1 6 または図 1 2に示す A P D 1 6 Aとは反対方向 (図面、 左側) に取 り出し、 この成分のレベルに基づいてレーザ光源 1 1 のフ ロン ト ' ォ一 トマテイ ク 'ノ、。ヮ一 · コン ト口一ル (F A P C ) を行うようにしてもよい。 この場合、 偏光ビームスプ リ ツ夕 1 4 Aを通過するレーザ光源 1 1からの出射光は P 成分のみであるので、 M 0信号の検出にはなんら影響はな い。
図 1 または図 8に図解した光ピックァップ装置にお けるコリ メ一夕レンズ 1 2を削除した、 図 1 1 または図 1 2に示す光ピックアツプ装置の具体的な構成 g [について説 明する。
この光ピックアップ装置は、 図 1 3に示すように、 レ一ザ光源、 偏光ビ一ムスプリ ッ夕、 ディテクタ等を同一 シリ コン基板上に設けたレーザカップラ 2 0 と、 このレー ザカップラ 2 0からの出射光の光軸 0— 0 ' を移動させる (偏向させる) ための 2枚のシリ コンミラー 3 1, 3 2 と 、 シリ コンミ ラ一 3 2で反射された出射光を集光して光磁 気ディスク 1 の記録面 1 aに照射する対物レンズ 3 3 と、 レーザカツブラ 2 0 と光磁気ディスク 1 との間に配置され 、 光軸 0— 0' と直交する平面上において少なく とも 2つ に分割された領域 3 4 a, 3 4 bを有しこれらの領域にお ける C i 軸と C 2 軸とが異なる角度の 1 / 2波長板 3 4 と で構成される。
レーザカップラ 2 0は、 例えば、 図 1 4に示すよう に、 シリ コン基板 2 1上に設けられたレーザ光源 2 2 と、 このレーザ光源 2 2 と対物レンズ 3 3 との間に光軸 0— 0 ' に沿って配置された偏光面を有し、 光磁気ディスク 1 の 記録面 1 aで反射された反射光のうちの所定の偏光成分を 分離すると共に、 フォーカスエラ一信号 F Eを生成するた めのマイクロプリズム 2 3 と、 シリ コン基板 2 1 に形成さ れ合焦点から等しい距離での光量をそれぞれ検出するディ テク夕 2 4 , 2 5 とで構成される。
ディテクタ 2 4 , 2 5の受光領域は、 例えば、 図 1 5に示すように、 それぞれ、 3つの領域 2 4 a, 2 4 b, 2 4 c と、 3つの領域 2 5 a, 2 5 b, 2 5 cに分割され ている。
図 1 3に示した光ピックアップ装置も、 図 1、 図 8 、 図 1 1 および図 1 2に示した上述の実施例と同様に、 1 / 2波長板 3 4を光軸 0— 0' に垂直な (直交する) 平面 上において少なく とも 2分割、 例えば、 2分割した領域 3 4 a, 3 4 bでの 軸と C2 軸とを異なる角度とすると 共に、 マイクロプリズム 2 3の面 2 3 aの P波、 S波に対 する反射率をそれぞれ 0 %, 1 0 0 %とし、 レ一ザ光源 2 2からの出射光のうちの 1 / 2波長板 3 4の第 1 の領域 3 4 aを通過して光磁気ディスク 1 の記録面 1 aで反射され た反射光が 1 / 2波長板 3 4の第 2の領域 3 4 bを通過し 、 レーザ光源 2 2からの出射光のうちの 1 2波長板 3 4 の簋 2の領域 3 4 bを通過して光磁気ディスク 1 の記録面 1 aで反射された反射光が 1 / 2波長板 3 4の第 1 の領域 3 4 aを通過するようにすることにより、 ディテクタ 2 4 , 2 5の領域 2 4 a, 2 4 b, 2 4 c、 領域 2 5 a , 2 5 b, 2 5 cでそれぞれ検出されるレベル信号を A, B, C , D, E, Fとすると、 MO信号を下記式 4によって得る ことができ、 フォーカスエラ一信号 F Eを、 「マイクロプ リズム ' ディテクタ焦点誤差検出法 j により、 3個の差動 増幅器 2 6, 2 7, 2 8を用いて、 下記式 5によって得る ことができる。
MO信号- (A - C ) + (F— D)
• · · ( 4 )
F E = 〔 (A + C) - B〕 一 〔 (D + F) - E〕
• · · ( 5 ) なお、 上述の実施例と重複する説明は省略する。 図 1 3に示した第 1実施例の第 3変形態様としての 光ピックアツプ装置は、 図 1 および図 8に示した実施例の 光ピックアツブ装置におけるコリ メ一夕レンズ 1 2を削除 した構成となっており、 光ピックァップ装置がより小型化 されている。 本発明の実施に際しては、 図 8に示した光ピックァ ップ装置と、 図 1 1 または図 1 2あるいは図 1 3に示した 光ピックアップ装置とを組み合わせて、 図 1 6に示した光 ピックァップ装置に構成することができる。
図 1 6に図解した本発明の光磁気記憶装置用光ピッ クアツプ装置の第 1実施例の第 4変形態様としての光ピッ クアツプ装置は、 図 1 に図解した光ピックアツブ装置にお するコリ メ一夕レンズ 1 2、 対物レンズ 1 3を削除し、 さ らに、 集光レンズ 1 7 とシリ ン ドリカルレンズ 1 8を削除 している。 したがって、 図 1 の示した光ピックアップ装置 に比較して、 光軸 0— 0 ' 方向の長さ、 光軸 0— 0 ' と直 交する長さが非常に短縮されており、 一層、 光ピックアツ プ装置を小型化することができる。
本発明の第 1実施例としての光ピックァップ装置は 、 図 1 6に図解した構成に限定されず、 図 1、 図 8、 図 1 1、 図 1 2、 および、 図 1 3の構成を適宜選択して組み合 わせた任意の構成にすることができる。
ところで、 1 2波長板 1 5を用いた、 図 1 または 図 1 4に示した実施例では、 偏光ビームスプリ ッ夕 1 4あ るいはマイクロプリズム 2 3の面 2 3 aで分離される S波 成分の光軸を、 光磁気ディスク 1 の直径 (または半径) 方 向としているが、 この S波成分の光軸が光磁気ディスク 1 のトラックの接線方向となるように光ピックアップ装置を 配置し、 「夕ンゼンシャル ' プシュ ' プル法」 により、 M 0信号を検出するようにしてもよい。
また、 本発明を、 光ピックアップ装置におけるビ一 ムスポッ トの各種制御方式、 例えば、 「 3 ビーム法」 を用 いた光ピックアップ装置等に適用することができることは 言うまでもない。
本発明の光磁気記憶装置用光ピックアツプ装置の第
2実施例の光ピックアツプ装置について、 図 1 7〜図 2 1 を参照して述べる。
図 1 7は本発明の光磁気記憶装置用光ピックアップ 装置の第 2実施例としての光ピックアツプ装置の平面構成 図である。
この光ピックアップ装置は、 レーザ光源 1 1、 コリ メータレンズ 1 2 , 偏光ビームスプリ ッ夕 1 4、 組合せ位 相遅延プリズム (C P R : Combination Phase Retardatio n Prism) 3 9、 対物レンズ 1 3、 集光レンズ 1 7、 シリ ン ドリカルレンズ 1 8、 および、 ディテクタ 1 6からなる。 図 1 7に示した光ピックァップ装置は、 図 1 に示し た光ピックアップ装置の 1 Z 2波長板 1 5に代えて、 C P R 3 9を用いたものである。 その他の構成部材は図 1 に示 したものと同様である。 ただし、 C P R 3 9を用いること により、 光軸 0— 0' の経路は異なる。
図 1 8 a〜図 1 8 cに C P R 3 9の 3つの形態を図 解する。
図 1 8 aに示した C P R 3 9は、 4 5度プリズム 4 0の反射面 4 0 aに位相差発生薄膜 4 1 を被着形成させた ものであり、 位相差発生薄膜 4 1 は、 第 1 の位相差発生薄 膜 4 1 a と第 2の位相差発生薄膜 4 1 b とからなる。 第 1 の位相差発生薄膜 4 1 a と第 2の位相差発生薄膜 4 1 bと はほぼ同じ面積を有し、 反射面 4 0 aの中心を光軸 0— 0 ' としてその両側に垂直方向に対称に被着されている。
これらの位相差発生薄膜 4 1 a , 4 l bは入射光を 全反射させるものであるが、 第 1 の位相差発生薄膜 4 1 a は入射光の位相を変化させずに反射させ、 第 2の位相差発 生薄膜 4 1 bは入射光を 1 8 0度遅延して反射させる。 か かる位相遅延は、 これらの位相差発生薄膜 4 1 a, 4 1 b の膜厚を調整することにより行うことができる。
したがって、 第 1 の位相差発生薄膜 4 1 aに入射し た入射光と第 2の位相差発生薄膜 4 1 bに入射した光とは 1 8 0度の位相差が生ずることになる。 この点において、 C P R 3 9は図 1 に示した 1 / 2波長板 1 5 と同様の機能 を発揮する。
図 1 8 bおよび図 1 8 cに他の構成の C P R 3 9 A , 3 9 Bの構成を示す。
図 1 8 bに示した C P R 3 9 Aは、 反射面 4 0 aの 斜めに半分ずつ全発射膜としての第 1'の位相差発生薄膜 4 1 a Aと第 2の位相差発生薄膜 4 1 b Aとを被着させたも のである。 第〗 の位相差発生薄膜 4 1 a Aと第 2の位相差 発生薄膜 4 1 b Aとの間には 1 8 0度の位相差が生ずるよ うにこれらの膜が形成されている。
図 1 8 c に示した C P R 3 9 Bは、 反射面 4 0 aの 面の上下半分ずつ、 全反射膜としての第 1 の位相差発生薄 膜 4 1 a Bと第 2の位相差発生薄膜 4 1 b Bとを被着させ たもである。 第 1 の位相差発生薄膜 4 1 a Bと第 2の位相 差発生薄膜 4 1 b Bとの間には 1 8 0度の位相差が生ずる ようにこれらの膜が形成されている。
図 1 7に示した C P R 3 9 としては、 図 1 8 a〜図 1 8 cに図解したいずれの C P R 3 9、 3 9 A, 3 9 Bを 使用してもよいが、 以下、 図 1 8 aに図解した C P R 3 9 を用いた場合を例示する。
図 1 9は図 1 7における C P R 3 9の周辺の光線軌 跡を図解した図である。
光線軌跡を述べる。 偏光ビームスプリ ッ夕 1 4から の光 L 1力 C P R 3 9の第 2の位相差発生薄膜 4 1 bで 反射され、 対物レンズ 1 3を通過して収束光 L 2 として光 磁気ディスク 1 の記録面 1 a (MO膜反射面) に照射され 、 その反射光 L 3が対物レンズ 1 3を通過して C P R 3 9 の第 1 の位相差発生薄膜 4 1 aに入射して、 そこで反射さ れて光 L 4 として偏光ビ一ムスプリ ッ夕 1 4に射出される
0
上記光 L 1〜L 4の光路は図 1 において示したよう に, その逆の光路をたどるものがあり、 式 1、 式 2、 式 4 および式 5はこの第 2実施例においても成立する。
図 2 0 a〜図 2 0 dは上記光 L 1〜L 4の特性を示 すグラフである。
図 2 0 aに示すように、 光 L 1 の偏光面を角度 だ け傾けておく。 なお、 1 2波長板 1 5の C軸、 すなわち 、 C i 軸および C 2 軸は P方向である。
図 2 O bに示すように、 C P R 3 9に光 L 1が入射 すると、 往路反射され、 第 1 の位相差発生薄膜 4 1 a、 第 2の位相差発生薄膜 4 1 bでそれぞれ、 9 0度だけ位相が 変化する。
図 2 0 cに示すように、 対物レンズ 1 3を介して光 磁気ディスク 1 の記録面 1 aに照射され、 反射されたその 反射光は光路が反転する。 このとき、 電気光学的カー効果 で角度 + kだけ位相がずれる。
図 2 0 dに示すように、 復路光 L 3が第 1 の位相差 発生薄膜 4 1 aで反射されることにより、 9 0度位相がず れる 0
半球面積はそれぞれ、
一 ( r ± 0 k )
と変換されるので, 偏光ビームスプリ ツ夕 1 4で検 波してディテクタ 1 6において差動をとると、 第 2実施例 においても、 上述した第 1実施例と同様の結果が得られ、 M O信号が検出できる。
図 1 に示した 1 Z 2波長板 1 5を用いた第 1実施例 の光ピックアップ装置と、 C P R 3 9を用いた第 2実施例 の光ピックアツプ装置とを比較する。
1 / 2波長板 1 5は図 2に示したように、 2枚に分 割された第 1 の 1 / 2波長板 1 5 a と第 2の 1 Z 2波長板 1 5 b とを光軸 0— 0 ' を中心として (境界として) 張り 合わせて製造されるが、 実際には、 精密に製造することが 難しく、 量産には必ずしも適していない。 C P R 3 9は 4 5度ミラー 4 0に位相差発生薄膜 4 1 を被着させるだけで あるので、 容易に製造できるから、 量産性にすぐれている
0
また、 C P R 3 9を用いた第 2実施例の光ピックァ ップ装置においては、 1 Z 2波長板 1 5を用いた場合に生 ずる可能性のある光軸のたおれによるビームスポッ トの割 れが生じない。
さらに、 C P R 3 9を用いた場合, ベク トル的な干 渉度合いを、 図 2 0 a〜図 2 0 dに示した角度 αで任意に 設定できるという利点を有している。
また、 C P R 3 9を用いた場合、 角度 の 2倍の角 度で検波できるから、 検波感度が高くなる。
C P R 3 9を用いた第 2実施例の光ピックアツプ装 置においては、 光軸 0— 0' が C P R 3 9で偏向されてお り、 レーザ光源 1 1 と対物レンズ 1 3 との間の距離を小さ くできる。 つまり、 第 2実施例の光ピックアップ装置は光 学系を小型にできるという利点がある。
また C P R 3 9は低価格で製造できる。
C P R 3 9を用いた光ピックアツブ装置においては 、 反射戻り光が同じ方向の偏光であるが、 ΜΟ信号のみが 逆相で得られる。
図 1 9を参照して光線軌跡を分析したように、 図 1 8 a〜図 1 8 cに示した C P R 3 9, 3 9 A , 3 9 B、 あ るいは、 これらの同様の考えによる構成の C P Rは、 光ピ ックァップ装置に適用できるだけでなく、 第 1 の位相差発 生薄膜 4 1 aに入射される一方の光と第 2の位相差発生薄 膜 4 1 bに入射される他方の光との間に所定の位相差を発 生させる位相差発生装置として広い用途に使用できる。
この位相差発生装置は、 4 5度プリズム 4 0の反射 面 4 0 aに被着する位相差発生薄膜 4 1 の膜厚によって、 位相差を任意に変化させることができる。
位相差発生薄膜 4 1 の被着方法としては、 位相差発 生薄膜 4 1 の材質に応じて種々の被着方法、 たとえば、 ス パッタリ ングなどの被着方法をとる.ことができる。
なお、 第 2実施例の光ピックアップ装置に対しても 、 第 1実施例として述べた変形態様を適用できる。
図 2 1 は第 2の光ピックァップ装置の第 1 の変形態 様として、 図 7に対応する偏光ビームスプリ ツ夕 1 4 と受 光面積が大きなディテクタ 1 9 とを一体化した構成図であ る。 ただし、 第 2実施例の光ピックアップ装置には 1 / 2 波長板 1 5を使用しないから、 図 2 1 には、 図 7に示した 1 / 2波長板 1 5を偏光ビ一ムスプリ ッタ 1 4はに面着し ていない。 図 2 1 に示した偏光ビームスプリ ッ夕 1 4 と受 光面積が大きなディテク夕 1 9 とを図 1 7に示した光ピッ クアツプ装置に適用できることはいうまでもない。 この第 1 の変形態様においては、 図 1 7に示した集光レンズ 1 7 およびシリ ン ドリカルレンズ 1 8が不要となる。
本発明の第 2実施例の光ピックアツプ装置の第 2の 変形態様としては、 図 1 1 および図 1 2に対応する構成、 つまり、 レーザ光源 1 1 と偏光ビ一ムスプリ ッ夕 1 4 Aと の間のコリ メ一夕レンズ 1 2を削除した構成をとることが できる。 この第 2変形態様の利点は、 図 1 1 および図 1 2 に示した光ピックァップ装置における利点と同様である。 この構成の図解は省略する。
本発明の第 2実施例の光ピックアツプ装置の第 3の 変形態様としては、 図 1 3に対応する構成をとることがで きる。 この第 3変形態様の利点は、 図 1 3示した光ピック ァッブ装置における利点と同様である。 この構成も図解は 省略する。
本発明の光磁気記憶装置用光ピックアツプ装置の第
3実施例としての光ピックアツプ装置を、 図 2 2〜図 2 9 を参照して述べる。
図 2 2は第 3実施例の光ピックアツプ装置の平面構 成図である。
この光ピックアップ装置は、 レ一ザ光源 1 1、 コリ メータレンズ 1 2、 偏光ビームスプリ ツ夕 1 4、 旋光板 5 2、 対物レ ンズ 1 3、 集光レ ンズ 1 7、 シリ ン ドリ カルレ ンズ 1 8、 および、 ディテクタ 1 6からなる。
図 1 に示した光ピックアップ装置と比較すると、 図 2 2に示した光ピックァップ装置は、 図 1 に示した 1 Z 2 波長板 1 5に代えて旋光板 5 2を用いている点が異なるだ けであり, その基本構成と他の構成部材は図 1 に示した光 ピックァップ装置と同様である。
旋光板 5 2は左旋光板 5 2 a と右旋光板 5 2 b とで 構成される。
左旋光板 5 2 aは、 位相差は変化させずに、 偏光の みを、 観測側、 つまりこの例では対物レ ンズ 1 3側から見 て (以下、 同様) 、 左回りに所定の角度だけ回転させる。 右旋光板 5 2 bは、 位相差は変化させずに、 偏光のみを観 測側から見て右回りに所定の角度だけ回転させる。 このよ うに、 左旋光板 5 2 aおよび右旋光板 5 2 bは、 透過光に 光学的位相差 (リ タ一デ一シヨ ン) を与えないため、 直線 偏光のまま回転させる。 波長が変わっても旋光能が変化す るだけである。 したがって、 左旋光板 5 2 aに入射した光 と右旋光板 5 2 bに入射した光とは両者の旋光角度の和だ け旋光角度差が生ずる。
図 2 3 a、 図 2 3 bに旋光板 5 2の製造方法を図解 する。
図 2 3 aに示すように、 まず、 厚さ t 0の厚い右旋 光角度を有する光学部材 5 5 と、 ほぼ同じ厚さを有する左 旋光角度を有する光学部材 5 4 とを光軸 0— 0' に対応す る中心線の面において面着させる。 これらの光学部材 5 4 , 5 5の厚さは厚いので、 この面着作業は容易にできる。 光学部材 5 4、 5 5 としては、 たとえば、 水晶を光 学軸に垂直に力ッ トした結晶を用い、 右結晶を右旋光角度 を有する光学部材 5 5、 左結晶を左旋光角度を有する光学 部材 5 4 として用いる。
回転角を与える旋回能は物性的に決まっている。 つ まり、 旋光角度の波長依存性は、 下記表一 1 に示した値と なる。 表 1
股長 ( λ ) : n m 旋光角度 (度 Zmm)
6 7 0. 7 9 1 6. 5 4
7 2 8. 1 4 1 3, 9 2
7 9 4. 8 1 1. 5 8 9 1 0 1 4. 1 6. 9 7 6 つまり、 回転角は光学部材の厚さ tで決定される。 図 2 3 bに示すように、 厚さ t 0の光学部材 5 4 と 5 5 とを面着させた状態で両面から研磨して、 希望する厚 さ tの旋光板 5 2を製造する。
希望する厚さ t としては、 たとえば、 4 5度の旋光 角度の場合、 約 3. 7 mmである。 希望する旋光角度に応 じて所定の厚さ tになるまで研磨する。 この研磨作業も容 易にできる。 したがって、 左旋光板 5 2 a と右旋光板 5 2 b とが面着された旋光板 5 2は容易に製造でき、 低価格、 短時間で製造できる。 しかもその厚さを調節するこ とによ り、 旋光角度を任意に設定できる。 旋光角度はその厚さに ほぼ比例する。
本発明の第 3実施例に使用する C R P、 つまり、 複 合旋光板 5 2 と、 第 2実施例の C P R 3 9 とを比較すると 、 複合旋光板 5 2を用いた場合、 旋光板 5 2には面内に 1 2波長板 1 5のような 軸および C 2 軸が存在しない ため、 直線偏光を面内のどの方向に向けて入射させてもよ く、 図 2 0 aに示したようにな入射光の偏光角度 を規定 する必要がないから、 設計の自由度が高まる。
このようにして形成した 2枚の左旋光板 5 2 a と右 旋光板 5 2 とを複合させた旋光板 5 2を複合旋光板 (Co mbination Rotating Ptate: CR P) と呼ぶ。 C R Pの具体例について詳述する。
図 2 4 aは本発明の第 3実施例に使用した C R Pの 正面図であり、 図 2 4 bはその上部平面図である。 図面に おける数字は、 単位を mmとした実際の寸法を示す。 加工 精度は ± 0. 1 mmであった。 有効な光透過面積を示す斜 線で示したクリアアパーチャは 7 mmx 7 mmである。
この例では、 波長 = 7 8 0 ± 2 0 nm、 透過波面 = 以下、 反射防止膜 : 入射角 = 0 ° ± 0. 5 にて A Rコー ト反射率 = 0. 3 %以下 (ソフ トコ― ト可能) 、 光 軸の夕ォレ : 左旋光板 5 2 a と右旋光板 5 2 bの透過光の 間に夕ォレがないもの、 概観検査でクリアアパーチャ内に ピリ (微小なひび) 、 カケ、 キズ、 ョゴレなどがないもの を使用した。 なお、 便宜上、 下記の旋光角を有するものを 、 下記表 2に示す型式名として使用した。 表 2
型式名 旋光角度 右ノ左 (度ノ mm)
C R P 5 5 ± 1. 5 °
C R P 1 0 1 0 ± 1. 5 β
C R P 2 2. 5 2 2 5 β ± 1. 5 β
C R P 3 0 3 0 ± 1. 5 β
C R P 4 5 4 5 ± 1. 5 β 以下、 複合旋光板 5 2を用いた光ピックアップ装置 について述べる。
図 2 5および図 2 6は図 2 2に図解した光ピックァ ップ装置の斜視図である。 ただし、 レ一ザ光源 1 1 および コリ メ一夕レンズ 1 2から偏光ビームスプリ ッタ 1 4はへ の入射光の向き、 偏光ビ一ムスプリ ッ夕 1 4はからディテ クタ 1 6への出射光の向きが、 図 2 2 とは異なる。
1本のレーザビームを 2本の光路 I 1 と I 2 という 光路を通るレーザビームに分けて述べる。 図 2 5は I 1 の 偏光面の変換を示し、 図 2 6は I 2の偏光面の変換を示す 。 図 2 5および図 2 6において、 円の中の矢印の向きは直 線偏光の偏光の向きを示す。
ここでは説明を簡単にするため、 力一回転角度 ^ k は省略して述べる。
図 2 5において、 コリ メ一夕レンズ 1 2からの S偏 光であるレ一ザビーム I t は偏光ビームスプリ ッタ 1 4で 1 0 0 %反射され、 左旋光板 5 2 aを通過する際、 偏光面 が + だけ回転させられたレ一ザビーム I uとなる。 この レーザビーム I が、 対物レンズ 1 3を透過して光磁気デ イスク 1 の記録面 1 aで反射されて再び対物レンズ 1 3を 透過すると、 戻り光は対物レンズ 1 3の中心軸 (光軸 0— 0 ' ) を挟んで反対側の光路を通るレーザビーム I 1 2とな る。 このときの偏光面は + のままである。 このレ一ザビ ーム I i 2が右旋光板 5 2 bを通過すると、 今度は右回りの 回転が与えられる。 このとき、 注目すべきは、 レーザビー ムの進行方向 (向き) が左旋光板 5 2 a と右旋光板 5 2 b とは逆であるため、 右回りの回転はさらに + £¾となり、 右 旋光板 5 2 bを透過したレ一ザビーム I L 3は左旋光板 5 2 aに入射したレーザビーム I ! に対して + 2 だけ回転し ていることになる。 つまり、 旋光板 5 2を入射光 I t と射 出光 I 13とはトータルで + 2 αの回転角度がある。
レーザビーム I ま偏光ビ一ムスプリ ッ夕 1 4にお いて偏光の検波を受け、 P波成分のみ透過させられ、 レー ザビーム I 1Sがディテクタ 1 6に入射する。 ディテクタ 1 6 に入射するレーザビーム I 1 Sの振幅は、 下記式 6で示す 値となる。
Figure imgf000047_0001
図 2 6に示した光路 I 2の偏光面の変換も、 原理的 には、 上記同様となる。 コリ メ一夕レンズ 1 2からの S偏 光であるレーザビーム I 2 は偏光ビームスプリ ッ夕 1 4で 1 0 0 %反射され、 レーザビーム I t とは反対側の右旋光 板 5 2 bを通過する際、 偏光面が逆に一ひだけ回転させら れたレーザビーム I 21となる。 このレーザビーム I 21が、 対物レンズ 1 3を透過して光磁気ディスク 1 の記録面 1 a で反射されて再び対物レンズ 1 3を透過すると、 戻り光は 対物レンズ 1 3の中心軸 (光軸 0— 0' ) を挟んで反対側 の光路を通るレ一ザビーム I 22となる。 このときの偏光面 は一 αのままである。 このレ一ザビーム I 22が左旋光板 5 2 aを通過すると、 今度は左回りの回転が与えられる。 レ —ザビームの進行方向 (向き) が左旋光板 5 2 aと右旋光 板 5 2 bとは逆であるため、 左回りの回転はさらに一 と なり、 左旋光板 5 2 aを透過したレーザビーム I 23は右旋 光板 5 2 bに入射したレーザビ一ム I 2 に対して— 2 aだ け回転しているこ とになる。 つまり、 旋光板 5 2への入射 光 12 と射出光 I 23とはト一タルで— 2 αの回転角度があ る。 レ一ザビ一ム I 23は偏光ビームスプリ ッ夕 1 4におい て偏光の検波を受け、 レ一ザビーム I 2Sがディテクタ 1 6 に入射する。 ディテクタ 1 6に入射するレーザビーム I 1S の振幅は、 下記式 7で示す値となる。
I 23 X s i n (- 2 α) · · · ( 7 ) このように、 図 2 5および図 2 6に示した光ピック アップ装置においては、 あたかも、 ファラデー素子を用い たと同様の効果を得ることができる。 ただし、 この光ピッ クァップ装置においては、 ファラデー素子を用いる場合に 遭遇する光量の損失は理論的にはゼロであり、 ファラデー 素子を用いる場合以上の効果を奏する。
次いで、 光路 I 1および I 2のレ一ザビームに Μ0 信号が乗った場合の信号処理について述べる。 ここでは、 図 2 5および図 2 6に示すように、 記録面 1 aの磁化反転 一 4 D — したピッ 卜の磁化 Ms により、 記録面 1 aにおける反射光 には + 0k の力一回転角が与えられるものとする。 この場 合の偏光面を表 3に示す。 表 3
I 1の系 I 2の系
入射光 I Η : + I 21 a
反射光 I 12 : + ひ + 0 k I 22 + Θ 右旋光板 5 2 b通過後
I 1 s: + 2 α + 0 k
左旋光板 5 2 a通過後 23 - 2 α -l· θ 偏光ビームスプリ ッ夕 1 4透過後
I I S :
I isx s i n (+ 2 + 0k )
I 2 S 1
I 23 X s i n (一 2 α + 0 )
MO信号はディテクタ 1 6の PD 1および PD 2か ら得られた信号の差動検出により求められる。
MO信号 = P D 1 - P D 2 (8) 和 (R F) 信号 = P D 1 + P D 2 ( 9 ) 図 2 7は、 面積差動法 (Double Cross Section Dif ferential Detection Method) による MO信号の検波を図 解した図である。
面積差動法とは、 見かけは 1本のレーザビームであ るが、 その断面はそれぞれ半月状の面積で独立に偏光を制 御したレーザビ一ムを用いて、 光量の面積的な差動から M 0信号を検出できることを意味することから、 このように 命名されている。
M0信号は偏光ビ一ムスプリ ツ夕 1 4の透過光であ るため、 レ一ザビーム I 1S、 I 2Sともに同じ S偏光成分の みである。 つまり、 反射された段階で k 成分が光強度の 差となって検波されており、 両者の信号の差動をとると同 相成分が除去され、 本発明においては、 原理的に偏光ビー ムスプリ ッ夕 1 4の消光比まで同相除去を行うことができ るから、 同相除去比の高い高品質の希望する M0信号を得 ることができる。
M0信号の検出は、 プシュプルをとると類似の処理 で行うことができる。 その結果、 平面的な構成で M0信号 の検出系を構成することができるので、 光ピックアップ装 置を小型にすることができる。
また、 集光レンズ 1 7およびシリ ン ドリカルレンズ 1 8のような非点収差光学系を用い、 4分割されているデ ィテク夕 1 6の信号を、 上記式 8および式 9の演算に基づ いて下記の信号を得ることができる。 表 4
非点収差法で、 フォーカスエラー信号 F E
プシュプル法で、 トラッキングエラー信号
夕ンジヱンシャル ' プシュプル法で、 M O信号 ディテクタ 1 6の 4分割信号の和で、 R F信号 つまり、 C Dの光学系とほとんど同じ構成で、 M O 信号を検出できる。
従来の M O光学系においては、 ビームスプリ ツ夕の 反射膜を光学的位相特性 (リタ一デ一シヨン) を制御して 量産する必要があり、 価格が高いという問題があつたが、 本実施例では、 偏光ビームスプリ ッ夕 1 4を用いているた め、 基本的にリ夕ーデーショ ンが発生しないという点があ る 0
複合旋光板 5 2においては、 記録面 1 aからの戻り 光路のときだけ、 光量を検波しており、 往路の光量は実質 的に 1 0 0 %透過させているから、 力ップリ ング効率が向 上している。
. このように往路の力ップリ ング効率に影響を与えず 、 複合旋光板 5 2の旋光角を任意に設定できるから、 ディ テクタ 1 6への入射光量を制御できる。 たとえば、 左旋光 板 5 2 a と右旋光板 5 2 b との旋光角をそれれそれ、 0〜 4 5。 まで変化させると、 ディテクタ 1 6への戻り光は 0 〜 1 0 0 %まで任意に設定できることになる。 つまり、 複 合旋光板 5 2の旋光角を調整すると、 戻り光を任意に設定 できるから、 ディテクタ 1 6 に出力側に接続される増幅器 の設計の自由度を与えることができ、 S Nが向上する。
上述したように、 1 2波長板 1 5のような位相差 の変化は生じないので、 レーザ光源 1 1 の発振波長のバラ ツキも問題にならない。 その結果、 さらに 2波以上のレー ザ光源 1 1 を同一の光学系で組み上げることも可能になる
0
複合旋光板 5 2においては、 仮に、 左旋光板 5 2 a と右旋光板 5 2 b とで旋光角度が異なっていたとしても、 レ一ザビ一ム1 3もレーザビーム 1 2 Sも往路と復路とで旋光 角度の和は (右旋光角 +左旋光角) に等しくなるから、 複 合旋光板 5 2の素子の仕様を厳密にする必要がない。
偏光ビームスプリ ッタ 1 4は M O用ビ一ムスプリ ッ 夕に比較して安価であり、 複合旋光板 5 2 もウォーラス ト ンプリズムよりも安価である。 このような利点を生かして
、 本発明の光ピックアツプ装置を、 図 2 8に図解したよう に構成する。
図 2 8は、 第 1実施例として 1 2波長板 1 5を用 いた光ピックアップ装置の構成を図解した図 1 3に対応し ている。 しかしながら、 図 2 8に示した光ピックァップ装 置には、 1 2波長板 1 5は設けられておらず、 シリ コン ミラ一 3 1 の装着部分に、 図 2 9に示したように複合旋光 板 5 2 と偏光ビームスプリ ツ夕 1 4 とディテクタ 1 6 とを 一体構成した光学アセンブリ 6 0を設けている。 偏光ビー ムスプリ ッ夕 1 4の面 1 4 aの上方には図 1 4に図解した と同様のレーザカップラ 2 0が設けられている。 光^ァセ ンブリ 6 0にはシリ コンミラー 3 2が配設され、 そ '上部 に対物レンズ 1 3が配設されている。
さらに本発明の第 3実施例を考察すると、 超解像光 学系を構成しているという利点、 MOへのプシュプル信号 を相殺するという効果、 同相ノイズだけ MTF (Modulati on Trnsfer Function)の力ッ トオフを半分にできる効果な ど、 新たな効果が見出した。 これらの詳細は、 第 4実施例 として、 別途詳述する。
なお、 上述した複合旋光板 5 2は、 本発明の光磁気 記憶装置用光ピックアップ装置に使用するだけでなく、 第 2実施例で述べた C P R 3 9 と同様に、 その他、 光の位相 を変化させ、 ひいては、 複数の光の間の位相差を発生する 種々の用途に適用できる。
本発明の光磁気記憶装置用光ピックアツプ装置の第
4実施例を、 図 3 0〜図 4 2を参照して述べる。
第 3実施例においては、 複合旋光板 5 2の内部偏光 状態がいかに変換されていき、 またそれにより、 M O信号 がいかに検波されるかを述べた。 本発明の第 4実施例にお いは、 複合旋光板における旋光角および分割方向を変えた 際に、 光学特性、 たとえば、 M O信号、 位相ピッ ト信号、 プリ グル一プ信号などで表現されている空間周波数軸 (M T F ) の変化を述べる。
図 3 0および図 3 1 は、 第 4実施例の光ピックァッ プ装置の光学系の模式図である。 図 3 0は往路を示し、 図 3 1 は復路を示す。
この光ピックアツプ装置は、 第 3実施例の図 2 2、 または、 図 2 5および図 2 6に示した光ピックアツプ装置 の複合旋光板 5 2に代えて複合旋光板 6 2を用い、 コリ メ —夕レンズ 1 2 と偏光ビームスプリ ッ夕 1 4 との間にビー ムスプリ ッ夕 6 4、 このビームスプリ ッ夕 6 4の射出側に 第 2のディテクタ 6 6を設けている。 レーザ光源 1 1、 コ リ メ一夕レンズ 1 2、 偏光ビ一ムスプリ ッタ 1 4、 対物レ ンズ 1 3、 および、 光磁気ディスク 1 (記録面 1 a ) は、 図 2 2に示した光ピックアツプ装置と同様である。
まず、 複合旋光板 6 2におけるビームスポッ トにつ いて述べる。
複合旋光板 6 2におけるビームは半月状の分割領域 で異なり、 これらのビ一ムをレンズで収束させたビームス ポッ トは、 通常のビームスポッ トとは異なる。
図 3 2 a〜図 3 2 eはそれぞれ、 ビームスポッ トを 、 複合旋光板 6 2の旋光角 α = 5 ° 、 1 0 ° 、 2 2 . 5 ° 、 3 0 ° 、 4 5。 としてシミ ュレーショ ンで求めた結果で ある。 旋光角 が大きくなると分割方向にビームスポッ ト の裾野が広がる。
図 3 0に示した往路の光線軌跡からも判るように、 対物レンズ 1 3に入射する直前のビーム光の偏光状態は、 複合旋光板 6 2の半月状の左旋光板 6 2 aおよび右旋光板 6 2 bのそれぞれの断面に角度 + αおよび一 の偏光の違 いがあるため、 ビームスポッ トではそれぞれ同じ偏光成分 同士が干渉する。
そこで、 図 3 3に図解したように、 複合旋光板 6 2 の分割線 6 2 0に沿った方向を X方向とし、 分割線 6 2 0 と直交するする方向を y方向とし、 それぞれの方向につい て各成分ごとにビ一ムスポッ 卜がいかになるかをシミ ュレ ーシヨ ンした結果を、 図 3 4 aおよび図 3 4 bに示す。 こ れから、 X方向、 いわゆる、 同相成分のビームスポッ 卜と 、 それぞれの偏光方向は同じであるが、 位相が反転してい る y成分のビームスポッ トを求めることができる。 y方向 の成分のビームスポッ トはビームの中心で 1 8 0 ° 位相が 反転するため、 必ず光量はゼロとなる。
以上述べたように、 複合旋光板 6 2の旋光角 αを大 きく とると、 逆相の偏光成分が増加するので、 図 3 4 aお よび図 3 4 bに示す y成分が増加し、 図 3 2 a〜図 3 2 e に示したように、 複合旋光板 6 2の分割方向のビームスポ ッ トが据野が広がる。
- たとえば、 旋光角 = ± 9 0 ° にすると、 ビ一ムス ポッ トは y成分 E 7 のビ一ム光形状そのものとなる。
光磁気ディスク 1 の再生特性を考察する上で、 この ビームスポッ トのエネルギ分布が重要である。 この P S F (Point Spread Fucction)により、 MT F、 その他のパラ メータが決定できる。 複合旋光板 6 2においては、 Ex 成 分と E 7 成分とはそれぞれ異なる P S Fを持っている。
直交する偏光面同士は単なる重ね合わせが適用でき る。 したがって、 複合旋光板 6 2における再生特性は、 E 成分ビ一ムスポッ ト と、 E 7 成分ビ一ムスポッ ト各々の 挙動が判ればよい。
以下、 位相グル一ブ回折光の除去について述べる。 本発明の第 3実施例の図 2 5〜図 2 7を参照して述 ベたように、 MO信号は面積差動法によって求めることが できる。 こ こで、 プシュプルをとるような配置の場合につ いて、 図 3 5に示したように記録面 1 aのプリ グループと 平行に複合旋光板 6 2の分割線 6 2 0を配し、 左右に左旋 光板 6 2 a と右旋光板 6 2 b とを分割させた場合について 実験を行い、 MO信号が出力されプシュプル信号を除去す る効果があることが確かめられた。 その詳細を光線軌跡を図 3 6 a〜図 3 6 mを参照し て述べる。
図 3 6 a〜図 3 6 g、 図 3 6 hは、 図 3 1 に示した 復路の I 12、 I 22の位置におけるそれぞれのビーム状態を 示す。
図 3 6 a : 図 3 0および図 3 1を参照すると、 偏光 ビームスプリ ツ夕 1 4によつて反射されたレーザビームの 偏光面はビーム全面が S方向である。 このときの振幅を 1 に規格化する。 光磁気ディスク 1の記録面 1 aの反射率も 1 とする。
図 3 6 b : 複合旋光板 6 2を通過し、 記録面 1 aで 反射されたレーザビームを I 22, I 12とする。、
図 3 6 cおよび図 3 6 d : ビームを Ex 成分と E y 成分に分けて考察する。 そして、 これらのビームが記録面 1 aにおいて、 S軸回折を受けた場合を想定する。 理解を 容易にするため, プリグループはプシュプルが最大となる λ/ΝΑ (開口数) 以上の空間周波数領域で考える。
図 3 6 eおよび図 3 6 f : プリ グループによる (+ /-) 1次回折光と 0次光の重なりを示す。 (+ Z—) 1 次回折光のそれぞれの強度を^、 r とし、 0次光の強度を c とする。 (+ /—) 1次回折光はそれぞれ、 偏光面も含 めた形で^倍、 r倍に回折されるから、 図 3 6 f において は、 0次光との重なり部分で逆位相となる。
図 3 6 gおよび図 3 6 h :図 3 6 e、 図 3 6 ίに図 解したものを、 振幅で示した。
図 3 6 i および図 3 6 jは、 図 3 0に示した往路の ビ一ム I 13、 I 23のそれぞれの位置における状態を示す。 図 3 6 iおよび図 3 6 j : 記録面 1 aで反射された 光が戻る過程で、 再度複合旋光板 6 2を通ると、 図 3 6 g 、 図 3 6 hに示したビームとともに、 偏光面が旋光角 αだ け回転させられるため、 再度、 Εχ 成分と E y成分とが混 在する。
図 3 6 k及び図 3 6 ^は、 図 3 0に示した往路のビ —ム I 1SA, I 2 S A のそれぞれの位置における状態を示す。
図 3 6 kおよび図 3 6 _β : 図 3 6 i、 図 3 6 j に図 示のものを偏光ビ一ムスプリ ッ夕 1 4で検波して、 P成分 のみ透過させる。
図 3 6 m : 図 3 6 kと図 3 6 j?に示したた P成分を 加算する。
以上から、 ビーム I 1SA , I 2SA はともに、 2 c · s i η α · c o s であり、 プシュプル信号は 0 となり、 位相グル一ブ回折光は、 倍率^、 r、 Cに依存せず、 また
、 旋光角 αに依存しない。
なお、 上述した、 位相グル一ブ回折光は、 図 3 6 i , 図 3 6 jにおける S成分は偏光ビ一ムスプリ ッタ 1 4で 反射され、 この偏光光は倍率^、 r、 cに依存し、 また旋 光角 に依存するため、 プシュプル成分が含まれているか ら、 第 2のディテクタ 6 6からの信号でトラッキングサ一 ボをかけることができる。
また、 ビーム I 1SA , I 2SA は同じ偏光面を持つが 、 位相が 1 8 0。 あるので、 ( I 1SA — I 2SA ) から MO 信号を検出することができる。
一方、 図 3 7に示すように、 夕ンジヱンシャル方向 に複合旋光板 7 2を 2つの左旋光板 7 2 aと右旋光板 Ί 2 bとに分割した場合は、 ディテクタ 1 6からの信号をラジ アルプシュプル法によりプシュプル信号も取り出すことが でき、 さらに、 タンジヱンシャル方向の旋光板に依存する 信号の減算で MO信号も取り出せる。
図 3 8 a〜図 3 8 i は、 図 3 7に示した光学系につ いて、 図 3 6 a〜図 3 6 mに対応する 線軌跡である。
位相ピッ ト回折光の除去 (抑圧) 効果について述べ る D
図 3 6 mに図解したように、 ( I 1SA — I 2SA ) = 0から、 プシュプル信号は出てこない。 また、 ( I 1SA + I 28A ) もプリ グループの情報は含まれていない。 すなわ ち、 トラッククロス信号が出てこない。 換言すれば、 複合 旋光板 7 2を図 3 7に図解したように、 夕ンジヱンシャル 方向に分割した場合は位相ピッ トも再生しないことになる 。 MO信号を得るために面積差動法を用いるのは、 このよ うな同相ノイズを除去するためであるから、 第 4実施例は 、 同相ノイズの低減という効果がある。 以上に述べたように、 第 4実施例においては、 複合 旋光板 6 2または複合旋光板 7 2は、 旋光角 aと、 タンジ ェンシャル方向かラジアル方向かの分割方向とに依存して MO信号およびピッ ト信号の見え方が異なるという特質を 有する。
図 3 9 aおよび図 3 9 bはそれぞれ、 図 3 2 a〜図
3 2 f に示したように、 複合旋光板 6 2の旋光角 = 0 ° 、 5。 、 2 2. 5 ° 、 3 0。 、 4 5 ° における、 シミ ュレ —シヨ ンに基づく、 差動 (プシュプル) 信号の特性、 およ び、 和 (R F) 信号の特性図である。 横軸は ΝΑΖ λを示 す。
図 3 9 bは、 図 3 7に図解したように、 複合旋光 板 7 2をタンジェンシャル方向に分割したときは、 タンジ ヱンシャル方向に並ぶピッ ト列の MTFは、 空間周波数の 半分程度でしか再生されないことを示している。 複合旋光 板 7 2の旋光角 αが大きい程ディテク夕 1 6に戻るビーム の光量が大きくなるため、 絶対値はばらばらであるが、 図
4 0に示したように、 ΝΑ/ λ = 0で規格化すると、 実線 で示した曲線 C V 1 に示したように、 1本に揃う。 なお、 破線の曲線は従来の MT F曲線 C V 2を示す。
なお、 プシュプル信号は、 複合旋光板 7 2をラジア ル方向に分割して記録面 1 aの反射光を再生したとき、 ピ ッ トの周期 (プリ グル一ブの周期) 力、 NAZ λ = 1. 0 のところであるため、 キャ リ アレベル = 0 として除去され ている。
図 3 9 aに示したように、 MO信号も MT F曲線の 形を変えて再生することができる。 さらに、 MO信号の振 幅値も大きく取りだすことが可能となることが分かる。 特 に = 2 2. 5。 とした場合 P B Sでは 4 5。 で検波され るため最大の振幅を得ることができる。
このように、 第 4実施例の光学系は超解像となり、 たとえば、 旋光角 a = 4 5。 では、 空間的微分検出も可能 となる。
また、 本発明の第 4実施例においては、 信号の大き さが大きくなり、 増幅器の S Nが改善されるという効果を 奏する。
図 4 1 aに MO信号の理論値の曲線、 図 4 1 bに実 測値の曲線を示した。 このように理論値と実測値とが良好 に対応している。
図 4 2は、 図 4 1 aおよび図 4 1 bの値を 1. 0で 規格して MTF曲線にしたグラフである。 曲線 CV 1 1 は 同相ノイズ、 つまり、 R F信号、 曲線 C V 1 2は旋光角 = 1 0。 における MTF、 曲線曲線 CV 1 3は第 4実施例 の旋光角 = 2 0。 における MTF、 曲線曲線 CV 1 4 も 第 4実施例の旋光角《 = 3 0。 における MT Fを示す。 特 に、 曲線 C V 1 4 (旋光角 α = 3 0。 ) では超解像光学系 が実現されていることが判る。
上述した本発明の第 4実施例の複合旋光板 6 2また は複合旋光板 7 2を、 第 3実施例として示した図 2 8およ び図 2 9 と同様に光ピックアツプ装置として適用できる。
さらに本発明の第 4実施例として述べた複合旋光板 6 2または複合旋光板 7 2を、 光ピックァップ装置以外の 他の光学装置に使用することができる。
本発明の実施に際しては、 上述した実施例に限定さ れず、 その他種々の変形態様をとることができる。
また、 上述した本発明の種々の実施例を適宜組み合 わせることもできる。 産業上の利用可能性
本発明の光磁気記憶装置用光ピックアツプ装置は光 記録再生装置に好適に使用できる。 特に、 本発明の光磁気 記憶装置用光ピックァップ装置は小型に構成されるから、 この光磁気記憶装置用光ピックアップ装置を組み込んだ光 磁気記憶装置全体も小型にすることができる。 あるいは、 小型の光磁気記憶装置に本発明の光磁気記憶装置用光ピッ クァップ装置を適用できる。
さらに本発明の光磁気記憶装置用光ピックァップ装 置を構成する要素として例示した 1 / 2波長板、 組合せ位 相遅延プリズム、 および、 複合旋光板は、 光磁気記憶装置 用光ピックアツプ装置に適用できるだけでなく、 その他、 2つのビームの位相を所定の関係で変化させる種々の装置 に適用できる。

Claims

請求 の範囲
1. 光軸 (0— 0' ) に沿って配設された、 レーザ 光源 ( 1 1 ) と、 偏光ビームスプリ ッタ ( 1 4 ) と、 対物 レンズ ( 1 3 ) と、 光検出素子 ( 1 6 ) とを有し、
前記レ一ザ光源からの射出光を光磁気記録媒体 ( 1 ) の記録面 ( l a ) に収束光として射出させ、 該光磁 気記録媒体の記録面からの反射光のうちの所定の偏光成分 を前記偏光ビ一ムスプリ ッタで分離して前記光検出素子で 取り出す光ピックァップ装置において、
前記偏光ビームスプリ ツ夕 ( 1 4 ) と前記対物 レンズ ( 1 3 ) との間に、 前記光軸の一方側を通過する光 の位相と前記光軸の他方側を通過する光の位相とを所定の 角度だけ変化させる位相変化手段 ( 1 5、 3 9、 5 2 : 6 2 : 7 2 ) を設け、
前記位相変化手段で変化された光を前記偏光ビ 一ムスプリ ッ夕 ( 1 4、 1 4 A) および前記光検出素子 ( 1 6、 1 6 A : 1 9 ) を介して検出する
ことを特徴とする光磁気記憶装置用光ピックァ ッフ fc。
2. 前記位相変化手段は、
前記光軸 (0— 0' ) と直交する平面上におい て、 前記光軸を境界として少なく とも 2つに対向して分割 され、 前記光軸に対して所定の角度の振動面を有し、 それ らの前記光軸に対する C軸を C 軸、 C2 軸とする 2つの 分割領域 ( 1 5 a, 1 5 b ) を有し、
前記レーザ光源 ( 1 1 ) からの出射光が一方の 分割領域を通過し、 前記光磁気記録媒体 ( 1 ) の記録面 ( 1 a ) で反射された反射光が他方の分割領域を通過すよう に配設された
1 Z 2波長板 ( 1 5 ) である
請求項 1記載の光磁気記憶装置用光ピックアツ プ装置。
3. 前記光検出素子 ( 1 6 ) 力 前記 1 Z 2波長板 ( 1 5 ) の分割に対応して、 前記光軸 (Ο— Ο' ) を中心 に複数に分割されている、 請求項 2記載の光磁気記憶装置 用光ピックァップ装置。
4. 前記光検出素子 ( 1 6 ) は、 前記光軸 (0 - 0 ' ) に対応する部分には検出部分を有しない、 4分割領域 を有する、 請求項 3記載の光磁気記憶装置用光ピックアツ プ装置。
5. 前記光検出素子 ( 1 6 ) の 4分割領域の検出信 号から前記光磁気記録媒体に記録されている光磁気 (M0 ) 記録信号を検出する、 請求項 4記載の光磁気記憶装置用 光ピックアップ装置。
6. 前記光検出素子 ( 1 6 ) と前記偏光ビームスプ リ ツタ ( 1 4 ) との間に、 集光レンズ ( 1 7 ) およびシリ ン ドリカルレンズ ( 1 8 ) などの非点収差光学系を有する 、 請求項 5記載の光磁気記憶装置用光ピックアップ装置。
7. 前記 1 / 2波長板 ( 1 5 ) が、 前記偏光ビーム スプリ ツ夕 ( 1 4 ) の前記対物レンズ ( 1 3 ) 側の面に面 着されている、 請求項 2記載の光磁気記憶装置用光ピック アップ装置。
8. 前記光検出素子 ( 1 6 ) として、 前記偏光ビー ムスプリ ッ夕 ( 1 4 ) の、 前記 1 2波長板 ( 1 5 ) が面 着された面と直交する面に、 受光面積の大きな光検出素子
( 1 9 ) を面着させた、 請求項 3記載の光磁気記憶装置用 光ピックアップ装置。
9. 前記レーザ光源 ( 1 1 ) がフォーカスエラ一検 出機能付ホログラムレーザュニッ トである、 請求項 8記載 の光磁気記憶装置用光ピックアップ装置。
1 0. 前記レーザ光源 ( 1 1 ) と前記偏光ビ一ムスプ リ ツ夕 ( 1 4 ) との間に、 前記レーザ光源からの光を平行 光にするコリ メ一夕レンズ ( 1 2 ) が設けられている、 請 求項 6記載の光磁気記憶装置用光ピックアツプ装置。
1 1. 前記偏光ビームスプリ ッ夕 ( 1 4 ) として、 偏 光 P波成分と偏光 S波成分の位相差がほぼ 0 ° である偏光 ビ一ムスプリ ッ夕 ( 1 4 A) を用いた、 請求項 2記載の光 磁気記憶装置用光ピックァップ装置。
1 2, 前記 1 / 2波長板 ( 1 5 ) の前記 2つの分割領 域 ( 1 5 a, 1 5 ) における振動面の角度を異ならせ、 前記光検出素子 ( 1 6 ) として受光面が分割さ れていない光検出素子 ( 1 6 A) を用いた
請求項 2記載の光磁気記憶装置用光ピックアツ プ装置。
1 3. 前記受光面が分割されていない光検出素子 ( 1 6 A) はァバラ ンシュ · フォ トダイォ一 ドである、 請求項 1 2記載の光磁気記憶装置用光ピックアップ装置。
1 4. 前記光磁気記憶装置用光ピックアップ装置は、 所定の傾斜角度を有する面 ( 2 3 a ) を有し、 該面から入射した光を第 1 の位置において反射させる第 1 の平行面と、 該第 1 の位置で反射した光がさらに反射され る前記第 1 の平行面と平行する第 2の平行面とを有し、 第 2の平行面で反射された光がさらに第 1 の平行面の第 2の 位置に反射するように構成されたマイクロプリズム ( 2 3 ) と ;前記第 1 の平行面の前記第 1 の位置および第 2の位 置に対応して設けられ、 それぞれ、 中央部 ( 2 4 b、 2 5 b ) 、 その両側部 ( 2 4 a : 2 4 c、 2 5 a : 2 5 c ) に 3分割されている 3分割領域を有する 2つの光検出素子 ( 2 4 , 2 5 ) と ; 前記マイクロプリズム ( 2 3 ) の前記傾 斜面に対向して設けられたレーザ光源 ( 2 2 ) とを、 同一 の半導体基板 ( 2 1 ) に一体構成したレ一ザ力ップラ ( 2 0 ) と、
前記マイクロプリズム ( 2 3 ) の傾斜面に入射 した前記レーザ光源 ( 2 2 ) からの光が反射する側に設け られた第 1 のミラ一 ( 3 1 ) と、
該第 1 のミラー ( 3 1 ) の反射面に対向し、 該 第 1 のミラーからの反射光を受入れ直交する方向に射出す る第 2のミ ラー ( 3 2 ) と、
該第 2のミラー ( 3 2 ) の射出光を、 前記光軸 (0 - 0' ) と直交する平面上において、 前記光軸を境界 として少なく とも 2つに対向して分割され所定の角度の振 動面を有し、 それらの前記光軸に対する C軸を C! 軸およ び C2 軸とする 2つの分割領域 ( 3 4 a, 3 4 b) を有し 、 前記第 2のミラ一 ( 3 2 ) からの出射光が一方の分割領 域を通過し、 前記光磁気記録媒体 ( 1 ) の記録面 ( l a) で反射された反射光が他方の分割領域を通過するように配 設された 1 Z 2波長板 ( 3 4 ) と
を有する、 請求項 2記載の光磁気記憶装置用光 ピックァップ装置。
1 5. 前記 2つの光検出素子 ( 2 4, 2 5 ) のそれぞ れの 3分割領域から差動信号を検出する 2つの差動増幅器
( 2 6 , 2 7 ) と、 これらの差動増幅器の出力信号をさら に差動増幅する第 3の差動増幅器 ( 2 8 ) とをさらに有す る、 請求項 1 4記載の光磁気記憶装置用光ピックアップ装 置。
1 6. 前記 1 Z 2波長板 ( 3 4 ) と前記光磁気ディス ク ( 1 ) との間に、 対物レンズ ( 3 3 ) が設けられている 、 請求項 1 5記載の光磁気記憶装置用光ピックアップ装置
1 7. 前記偏光ビ一ムスプリ ッタとして、 偏光 P波成 分と偏光 S波成分の位相差をほぼ 0。 である偏光ビームス プリ ッ夕 ( 1 4 A) を用い、
前記 1 2波長板 ( 1 5 ) を、 該偏光ビームス プリ ッタ ( 1 4 A) の前記対物レンズ ( 1 3 ) 側の面に面 着させ、
前記偏光ビ一ムスプリ ッ夕 ( 1 4 A) の、 前記 1 / 2波長板 ( 1 5 ) が面着された面と直交する面に、 受 光面積が大きな光検出素子 ( 1 9 ) を面着させた、
請求項 2記載の光磁気記憶装置用光ピックアツ プ装置。
1 8. 前記 1 / 2波長板 ( 1 5 ) の 2つの分割領域 ( 1 5 a, 1 5 b ) における前記振動面の角度を異ならせ、 前記光検出素子として受光面が分割されていな い光検出素子 ( 1 6 A) を用いた
請求項 1 7記載の光磁気記憶装置用光ピックァ ップ装置。
1 9. 前記受光面が分割されていない光検出素子 ( 1 6 A) はァバランシュ · フ ォ トダイォ一 ドである、 請求項 1 8記載の光磁気記憶装置用光ピックアップ装置。
2 0. レーザ光源 ( 1 1 ) と、
該レーザ光源からの射出光を集光して光磁気記 録媒体 ( 1 ) の記録面 ( l a ) に照射する対物レ ンズ ( 1 3 ) と、
上記レーザ光源と対物レンズとの間に配置され 、 上記光磁気記録媒体の記録面で反射された反射光のうち の所定の偏光成分を分離する偏光ビームスプリ ッタ ( 1 4 ) と、
該偏光ビ一ムスブリ ッタと上記光磁気記録媒体 との間に配置され、 光軸と直交する平面上において少なく とも 2分割した分割領域 ( 1 5 a, 1 5 b ) での所定の角 度を有する振動面を有し、 これらの前記光軸に対する C軸 を 軸, C2 軸とする 1 2波長板 ( 1 5 ) と、
上記偏光ビームスプリ ッ夕で分離された所定の 偏光成分のレベルを検出する光検出素子 ( 1 6 , 1 6 A) と
を有し、
前記レーザ光源からの出射光のうちの前記 1 / 2波長板の一方の領域を通過して前記光磁気記録媒体の記 録面で反射された反射光が前記 1 Z 2波長板の他方の領域 を通過するようにしたことを特徴とする請求項 2記載の光 磁気記憶装置用光ピックァップ装置。
2 1. 前記 2つの分割領域の振動面の角度は、 それぞ れ 4 5。 と 2 2. 5。 である、 請求項 2記載の光磁気記憶 装置用光ピックアップ装置。
2 2. 前記位相変化手段は、
4 5度プリズム ( 4 0 ) と、 該 4 5度プリズムの反射面 ( 4 0 a ) に被着さ れ、 前記光軸 (0— 0' ) と直交する平面上において少な く とも 2つに分割され相互に所定の位相差特性を有する複 数の分割領域 ( 4 1 a : 4 1 b, 4 1 a A : 4 1 b A, 4 1 a B, 4 1 b B) を有し、 前記レーザ光源 ( 1 1 ) から の出射光が一方の分割領域を通過し、 前記光磁気記録媒体 ( 1 ) の記録面 ( l a ) で反射された反射光が他方の分割 領域を通過すように配設された位相差発生膜 ( 4 1, 4 1 A, 4 1 B) と
を有する位相差発生装置である、 請求項 1記載 の光磁気記憶装置用光ピックァップ装置。
2 3. 前記位相差発生膜 ( 4 1, 4 1 A, 4 1 B) の 膜厚を調整して前記位相差を変化させる、 請求項 2 1記載 の光磁気記憶装置用光ピックアップ装置。
2 4. 前記分割領域が 2つであり、
これらの 2分割領域が、 前記反射面 ( 4 0 a ) の対角線を対称に分割されている
請求項 2 3記載の光磁気記憶装置用光ピックァ ップ装置。
2 5. 前記分割領域が 2つであり、
これらの 2分割領域が、 前記反射面 ( 4 0 a ) の上下に対称に分割されている
請求項 2 3記載の光磁気記憶装置用光ピックァ ップ装 ¾0
2 6. 前記分割領域が 2つであり、
これらの 2分割領域が、 前記反射面 ( 4 0 a ) の左右に対称に分割されている
請求項 2 3記載の光磁気記憶装置用光ピックァ ップ装置。
2 7. 前記光検出素子 ( 1 4 ) が、 前記位相差発生膜 の分割に対応して分割されている、 請求項 2 2記載の光磁 気記憶装置用光ピックアップ装置。
2 8. 前記光検出素子の検出信号から前記光磁気記録 媒体に記録されている光磁気記録信号をを検出する、 請求 項 2 7記載の光磁気記憶装置用光ピックアップ装置。
2 9. 前記光検出素子と前記偏光ビームスプリ ッ夕 ( 1 4 ) との間に、 集光レンズ ( 1 7 ) およびシリ ン ドリカ ルレンズ ( 1 8 ) を有する、 請求項 2 8記載の光磁気記憶 装置用光ピックァップ装置。
3 0. 前記光検出素子として、 前記偏光ビームスプリ ッ夕 ( 1 4 ) の、 前記位相差発生装置が配設されるている 側と直交する面に、 受光面積の大きな光検出素子 ( 1 9 ) を面着させた、 請求項 2 9記載の光磁気記憶装置用光ピッ クアツプ装置。
3 1 . 前記光磁気記憶装置用光ピックアップ装置は、 所定の傾斜角度を有する面 ( 2 3 a ) を有し、 該面から入射した光を第 1 の位置において反射させる第 1 の平行面と、 該第 1 の位置で反射した光がさらに反射され る前記第 1 の平行面と平行する第 2の平行面とを有し、 第 2の平行面で反射された光がさらに第 1 の平行面の第 2の 位置に反射するように構成されたマイクロプリズム ( 2 3 ) と ; 前記第 1 の平行面の前記第 1 の位置および第 2の位 置に対応して設けられ、 それぞれ、 中央部 ( 2 4 b、 2 5 b ) 、 その両側部 ( 2 4 a : 2 4 c、 2 5 a : 2 5 c ) に 3分割されている 3分割領域を有する 2つの光検出素子 ( 2 4, 2 5 ) と ; 前記マイクロプリズム ( 2 3 ) の前記傾 斜面に対向して設けられたレーザ光源 ( 2 2 ) とを、 同一 の半導体基板 ( 2 1 ) に一体構成したレ一ザ力ップラ ( 2 0 ) と、
前記マイクロプリズム ( 2 3 ) の傾斜面に入射 した前記レ一ザ光源 ( 2 2〉 からの光が反射する側に設け られた偏光ビームスプリ ッタ ( 1 4 ) と、
該偏光ビ一ムスプリ ッ夕の射出光側に配設され た前記位相差発生装置 ( 3 9 ) と、
該位相差発生装置の射出光側に配設されたミ ラ - ( 3 2 ) と、
該ミ ラ一 ( 3 2 ) の射出光を、 前記光磁気ディ スク ( 1 ) の記録面 ( 1 a ) に指向させる対物レンズ ( 1 3 ) と
を有する、 請求項 2 2記載の光磁気記憶装置用 光ピックァップ装置。
3 2. レーザ光源 ( 1 1 ) と、 該レーザ光源からの射出光を集光して光磁気記 録媒体 ( 1 ) の記録面 ( l a ) に照射する对物レンズ ( 1 3 ) と、
上記レーザ光源と対物レンズとの間に配置され 、 上記光磁気記録媒体の記録面で反射された反射光のうち の所定の偏光成分を分離する偏光ビームスプリ ッタ ( 1 4 ) と、
該偏光ビームスブリ ッ夕と上記光磁気記録媒体 との間に配置され、 4 5度プリズム ( 4 0 ) と、 該 4 5度 プリズムの反射面 ( 4 0 a ) に被着され、 前記光軸 (0— 0' ) と直交する平面上において少なく とも 2つに分割さ れ相互に所定の位相差特性を有する複数の分割領域 ( 4 1 a : 4 1 , 4 1 a A : 4 1 b A, 4 1 a B, 4 1 b B) を有し、 前記レーザ光源 ( 1 1 ) からの出射光が一方の分 割領域を通過し、 前記光磁気記録媒体 ( 1 ) の記録面 ( 1 a ) で反射された反射光が他方の分割領域を通過すように 配設された位相差発生膜 ( 4 1 , 4 1 A, 4 1 B) とを有 する位相差発生装置と、
光 上記偏光ビームスプリ ッ夕で分離された所定 の偏光成分のレベルを検出する光検出素子 ( 1 6 , 1 6 A ) と
を有し、
前記レーザ光源からの出射光のうちの前記位相 差発生装置の一方の領域を通過して前記光磁気記録媒体の 記録面で反射された反射光が前記位相差発生装置のの他方 の領域を通過するようにしたことを特徴とする請求項 2 2 記載の光磁気記憶装置用光ピックァップ装置。
3 3. 前記位相変化手段は、
前記光軸 (0— 0' ) と直交する平面上におい て少なく とも 2つに分割された分割領域 ( 5 2 a : 5 2 b 、 6 2 a : 6 2 b、 7 2 a : 7 2 b、 ) を有し, 前記レ一 ザ光源 ( 1 1 ) からの出射光を一方の領域を所定の角度だ け右旋光または左旋光させて通過させ、 上記光磁気記録媒 体の記録面で反射された反射光を他方の領域を所定の角度 だけ上記旋光とは逆の旋回向きで旋光させて通過させるよ うに配設された複合旋光板 ( 5 2、 6 2、 7 2 ) である、 請求項 1記載の光磁気記憶装置用光ピックアツプ装置。
3 4. 前記複合旋光板の旋光角が該複合旋光板の材質 および厚さで規定される、 請求項 3 3記載の光磁気記憶装 置用光ピックァップ装置。
3 5. 前記光検出素子が前記複合旋光板の分割に対応 して複数の分割領域を有し、 これら光検出素子の分割領域 て検出した受光面積に対応する信号を差動的に演算して、 前記光磁気記録媒体に記録された光磁気信号を検出する回 路を有する、 請求項 3 3記載の光磁気記憶装置用光ピック ァップ装置。
3 6. 前記偏光ビームスプリ ッ夕 ( 1 4 ) の対向する 面に、 前記複合旋光板 ( 5 2 ) と前記ディテクタ ( 1 6 ) とが一体的に構成されている、 請求項 3 5記載の光磁気記 憶装置用光ピックアップ装置。
3 7. 前記光検出素子 ( 1 6 ) と前記偏光ビームスブ リ ツ夕 ( 1 4 ) との間に、 集光レンズ ( 1 7 ) およびシリ ン ドリカルレンズ ( 1 8 ) などの非点収差光学系を有する 、 請求項 3 3記載の光磁気記憶装置用光ピックアップ装置
0
3 8. 前記レーザ光源 ( 1 1 ) と前記偏光ビームスプ リ ツ夕 ( 1 4 ) との間に、 前記レーザ光源からの光を平行 光にするコリ メ一夕レンズ ( 1 2 ) が設けられている、 請 求項 3 3記載の光磁気記憶装置用光ピックアップ装置。
3 9. 前記光磁気記憶装置用光ピックアツ、プ装置は、 所定の傾斜角度を有する面 ( 2 3 a ) を有し、 該面から入射した光を第 1 の位置において反射させる第 1 の平行面と、 該第 1 の位置で反射した光がさらに反射され る前記第 1 の平行面と平行する第 2の平行面とを有し、 第 2の平行面で反射された光がさらに第 1 の平行面の第 2の 位置に反射するように構成されたマイクロプリズム ( 2 3 ) と ;前記第 1 の平面面の前記第 1 の位置および第 2の位 置に対応して設けられ、 それぞれ、 中央部 ( 2 4 b、 2 5 b ) 、 その両側部 ( 2 4 a : 2 4 c、 2 5 a : 2 5 c ) に 3分割されている 3分割領域を有する 2つの光検出素子 ( 2 4, 2 5 ) と ;前記マイクロプリズム ( 2 3 ) の前記傾 斜面に対向して設けられたレーザ光源 ( 2 2 ) とを、 同一 の半導体基板 ( 2 1 ) に一体構成したレ一ザカップラ ( 2 0 ) と、
前記マイクロプリズム ( 2 3 ) の傾斜面に入射 して前記レ一ザ光源 ( 2 2 ) が反射する側に設けられた偏 光ビ一ムスプリ ッタ ( 1 4 ) を有する前記一体形装置と、 該ー体形装置の前記複合旋光板 ( 5 2 ) 側に、 対向して配設されたミ ラ一 ( 3 2 ) と、
該ミ ラー ( 3 2 ) の射出光を、 前記光磁気ディ スク ( 1 ) の記録面 ( 1 a ) に指向させる対物レンズ ( 1 3 ) と
を有する、 請求項 3 3記載の光磁気記憶装置用 光ピックアツプ装置。
4 0 , レーザ光源 ( 1 1 ) と、
該レ一ザ光源からの射出光を集光して光磁気記 録媒体 ( 1 ) の記録面 ( l a ) に照射する対物レンズ ( 1 3 ) と、
上記レーザ光源と対物レンズとの間に配置され 、 上記光磁気記録媒体の記録面で反射された反射光のうち の所定の偏光成分を分離する偏光ビ一ムスプリ ッタ ( 1 4 ) と、
該偏光ビームスプリ ッタと上記光磁気記録媒体 との間に配置され、 光軸 (ο— ο' ) と直交する平面上に おいて少なく とも 2つに分割された分割領域 ( 5 2 a : 5 2 b、 6 2 a : 6 2 b、 7 2 a : 7 2 b、 ) を有し, 前記 レーザ光源 ( 1 1 ) からの出射光を一方の領域を所定の角 度だけ右旋光または左旋光させて通過させ、 上記光磁気記 録媒体の記録面で反射された反射光を他方の領域を所定の 角度だけ上記旋光とは逆の旋回向きで旋光させて通過させ るように配設された複合旋光板 ( 5 2、 6 2、 7 2 ) と、 上記偏光ビームスプリ ッ夕で分離された所定の 偏光成分のレベルを検出する光検出素子 ( 1 6 , 1 6 A) と
を有し、
前記レーザ光源からの出射光のうちの前記複合 旋光板の一方の領域を通過して前記光磁気記録媒体の記録 面で反射された反射光が前記複合旋光板 5 2の他方の領域 を通過するようにしたことを特徴とする光磁気記憶装置用 光ピックアップ装置。
4 1. 前記複合旋光板 ( 5 2、 6 2、 7 2 ) は、 前記 光磁気ディスク ( 1 ) の記録面 ( 1 a ) のピッ トの形成方 向に平行な線で分割され、
該分割左旋光板 ( 5 2 a、 6 2 a、 7 2 a ) お よび右旋光板 ( 5 2 b、 6 2 b、 7 2 b ) の旋光角を所定 の値に設定し、
前記位相変化特性を調整する
請求項 3 3 または 4 0記載の光磁気記憶装置用 光ピックアップ装置。
4 2. 前記複合旋光板 ( 5 2、 6 2、 7 2 ) は、 前記 光磁気ディスク ( 1 ) の記録面 ( 1 a ) のピッ トの形成方 向に直交する線で分割され、
該分割左旋光板 ( 5 2 a、 6 2 a、 7 2 a ) お よび右旋光板 ( 5 2 b、 6 2 b、 7 2 b ) の旋光角を所定 の値に設定し、
前記位相変化特性を調整する
請求項 3 3 または 4 0記載の光磁気記憶装置用 光ピックァップ装置。
4 3 , 前記複合旋光板の旋光角を約 1 0 ° 以上にした 、 請求項 4 1 または 4 2記載の光磁気記憶装置用光ピック ァップ装置。
4 4. 前記複合旋光板の旋光角を 2 2. 5 ° にした、 請求項 4 3記載の光磁気記憶装置用光ピックァップ装置。
4 5. 4 5度プリズム ( 4 0 ) と、
該 4 5度プリ ズムの反射面 ( 4 0 a ) に被着さ れ光軸 (0— 0' ) に直交する平面上において少なく とも 2つに分割され相互に所定の位相差特性を有する複数の分 割領域 ( 4 1 a : 4 1 b, 4 1 a A : 4 1 A , 4 1 a B , 4 1 b B) を有し、
一方の分割領域に入射した光と他方の領域から 射出した光との間に所定の位相差を生じさせる、 位相差発 生装置。
4 6. 前記位相差は、 前記分割領域を形成する材料の 膜厚を変化させて調整する、 請求項 4 5記載の位相差発生
4 7. 前記分割領域が、 前記反射面 ( 4 0 a ) の対角 を対称に分割されている、 請求項 4 6記載の位相差発生
4 8. 前記分割領域が、 前記反射面 ( 4 0 a ) の上下 に対称に分割されている、 請求項 4 6記載の位相差発生装
4 9. 前記分割領域が、 前記反射面 ( 4 0 a ) の左右 に対称に分割されている、 請求項 4 6記載の位相差発生装
5 0. 光軸 (0— 0' ) に直交する平面上において少 なく とも 2つに分割された領域 ( 5 2 a、 5 2 b ) を有し 一方の領域に入射された光を所定の角度だけ右 旋光または左旋光させて通過させ、 他方の領域に入射され た光を所定の角度だけ上記旋光とは逆の旋回向きで旋光さ せて通過させるように形成された、 複合旋光板。
5 1 . 前記旋光板の旋光角が該複合旋光板の材質およ び厚さで規定される、 請求項 5 0記載の複合旋光板。
5 2、 前記分割領域を構成するそれぞれの部材が、 所 定の厚さを有するとき端面面着され、
希望する旋光角を有する厚さまで研磨されて、 前記複合旋光板が形成される、 請求項 5 1記載の複合旋光 板。
5 3 . 前記複合旋光板 ( 5 2、 6 2、 7 2 ) は、 所定 の向きに分割され、
分割旋光板旋光角を所定の値に設定し、 前記位相変化特性を調整する
請求項 5 0記載の複合旋光板。
PCT/JP1993/000158 1992-02-07 1993-02-08 Phase varying device, and optical pickup apparatus using the same for magneto-optical storage WO1993016469A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP51041393A JP3658763B2 (ja) 1992-02-07 1993-02-08 光磁気記憶装置用光ピックアップ装置
EP93903326A EP0579843B1 (en) 1992-02-07 1993-02-08 Optical pickup apparatus for magneto-optical storage
DE69327369T DE69327369T2 (de) 1992-02-07 1993-02-08 Optisches abtastgerät für eine magneto-optische speicherung
US08/122,411 US5577018A (en) 1992-02-07 1993-02-08 Phase changing apparatus and optical pickup apparatus for magneto-optic storage device using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP5694592 1992-02-07
JP4/56945 1992-02-07
JP4/137769 1992-04-30
JP13776992 1992-04-30

Publications (1)

Publication Number Publication Date
WO1993016469A1 true WO1993016469A1 (en) 1993-08-19

Family

ID=26397950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000158 WO1993016469A1 (en) 1992-02-07 1993-02-08 Phase varying device, and optical pickup apparatus using the same for magneto-optical storage

Country Status (5)

Country Link
US (3) US5577018A (ja)
EP (1) EP0579843B1 (ja)
JP (1) JP3658763B2 (ja)
DE (1) DE69327369T2 (ja)
WO (1) WO1993016469A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0671734A1 (en) * 1994-03-08 1995-09-13 Sony Corporation Optical device

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69327369T2 (de) * 1992-02-07 2000-06-21 Sony Corp Optisches abtastgerät für eine magneto-optische speicherung
DE69329945T2 (de) * 1992-07-14 2001-06-07 Seiko Epson Corp Polarisierendes element, optisches element und optischer kopf
US5663940A (en) * 1993-11-19 1997-09-02 Sony Corporation Optical pickup apparatus including hologram element
JP2655077B2 (ja) * 1994-05-17 1997-09-17 日本電気株式会社 光ヘッド装置
KR970700356A (ko) * 1994-11-10 1997-01-08 이데이 노부유키 광 픽업 장치 및 광학 디스크 드라이브 장치(Optical pickup apparatus and optical disk drive apparatus)
JP2738337B2 (ja) * 1995-03-31 1998-04-08 日本電気株式会社 光再生媒体の再生方法及び再生装置
JP3549301B2 (ja) * 1995-09-08 2004-08-04 三菱電機株式会社 光ヘッドのトラッキング誤差検出装置
KR100194455B1 (ko) * 1995-12-30 1999-06-15 윤종용 팩시밀리 시스템의 예약 송신방법
US6215758B1 (en) * 1996-10-04 2001-04-10 Sony Corporation Recording medium
JP3110336B2 (ja) * 1996-10-30 2000-11-20 日本電気株式会社 投射型カラー液晶表示装置
JPH10222863A (ja) * 1996-12-06 1998-08-21 Pioneer Electron Corp 光ピックアップ装置
JP4365927B2 (ja) * 1999-03-12 2009-11-18 キヤノン株式会社 干渉計測装置及び格子干渉式エンコーダ
US8837161B2 (en) * 2002-07-16 2014-09-16 Nvidia Corporation Multi-configuration processor-memory substrate device
JP4210791B2 (ja) * 2003-10-23 2009-01-21 パナソニック株式会社 光学ヘッド及び光情報媒体駆動装置
JP4091903B2 (ja) * 2003-11-27 2008-05-28 シャープ株式会社 光学装置
DE102004032953B4 (de) * 2004-07-07 2008-02-07 Leica Microsystems Cms Gmbh Optische Vorrichtung und Rastermikroskop mit einer fokussierenden Optik
EP1812773A1 (en) * 2004-10-26 2007-08-01 Memsflow ApS Method and system for determination of position
JP2006309861A (ja) * 2005-04-27 2006-11-09 Sharp Corp 光集積ユニット及び光ピックアップ装置
JP2009129502A (ja) * 2007-11-22 2009-06-11 Sony Corp 光ピックアップ及び光ディスク装置
JP5173656B2 (ja) * 2008-07-31 2013-04-03 三洋電機株式会社 光ピックアップ装置
JP5173659B2 (ja) * 2008-08-01 2013-04-03 三洋電機株式会社 光ピックアップ装置および光ディスク装置
JP5173953B2 (ja) * 2008-08-01 2013-04-03 三洋電機株式会社 光ピックアップ装置および光ディスク装置
DE102011108181B4 (de) * 2011-07-22 2015-02-26 Bundesrepublik Deutschland, vertreten durch das Bundesministerium für Wirtschaft und Technologie, dieses vertreten durch den Präsidenten der Physikalisch-Technischen Bundesanstalt Verfahren zum ortsaufgelösten Messen einer Magnetisierung einer magnetischen Struktur und magnetooptischer Datenspeicher
CN103809708A (zh) 2012-11-07 2014-05-21 辉达公司 平板电子设备及其辅助散热装置、以及两者的组件

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5788540A (en) * 1980-11-21 1982-06-02 Olympus Optical Co Ltd Method and apparatus for information read-in of optical magnetic recording medium
JPS5979446A (ja) * 1982-10-28 1984-05-08 Sharp Corp 磁気光学ヘッド
JPS5996551A (ja) * 1982-11-25 1984-06-04 Sony Corp 光磁気記録体再生装置
JPS59121637A (ja) * 1982-12-28 1984-07-13 Fujitsu Ltd 磁気光学記録再生装置
JPS59191156A (ja) * 1983-04-13 1984-10-30 Nippon Kogaku Kk <Nikon> 旋光子を設けた磁気光学再生装置
JPS6190346A (ja) * 1984-10-11 1986-05-08 Hitachi Ltd 光磁気再生装置
JPS61160852A (ja) * 1984-12-30 1986-07-21 Olympus Optical Co Ltd 光磁気ピツクアツプ装置
JPS6266452A (ja) * 1985-09-19 1987-03-25 Nec Corp 光磁気ヘツド
JPS63138533A (ja) * 1986-11-28 1988-06-10 Fujitsu Ltd 光磁気デイスク装置の再生方式
JPS63200346A (ja) * 1987-02-13 1988-08-18 Nec Corp 光磁気記録再生ヘツド
JPS63247941A (ja) * 1987-04-01 1988-10-14 Nec Corp 光磁気用光ヘツド装置
JPS63291238A (ja) * 1987-05-21 1988-11-29 Seiko Epson Corp 光メモリ−装置
JPH01315036A (ja) * 1988-03-18 1989-12-20 Sony Corp 光学ピツクアツプ装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4298244A (en) * 1978-02-28 1981-11-03 Ricoh Company, Ltd. Information recording method and apparatus
JPS57147148A (en) * 1981-03-05 1982-09-10 Olympus Optical Co Ltd Information reproducer with magnetooptic system
JPS5963040A (ja) * 1982-09-16 1984-04-10 Canon Inc 光磁気情報読取装置
US4595261A (en) * 1983-10-13 1986-06-17 International Business Machines Corporation Phase retardation element and prism for use in an optical data storage system
US4858218A (en) * 1984-09-12 1989-08-15 Nikon Corporation Optical recording medium and reproducing apparatus
KR950005031B1 (ko) * 1986-02-24 1995-05-17 소니 가부시끼가이샤 초점 검출 장치
US5270996A (en) * 1986-12-25 1993-12-14 Nec Corporation Optical head with diffraction grating producing five diffracted detection light beams
JPS63292432A (ja) * 1987-05-25 1988-11-29 Sony Corp 光学ピックアップ装置
US4823220A (en) * 1987-11-16 1989-04-18 International Business Machines Corporation Detector for magnetooptic recorders
JPH0770065B2 (ja) * 1988-04-20 1995-07-31 シャープ株式会社 光ピックアップ装置
JPH01273238A (ja) * 1988-04-25 1989-11-01 Sony Corp 光学ヘッド装置
EP0374841B1 (en) * 1988-12-20 1994-03-09 Nec Corporation Optical head device for optimally detecting a focussing error
JP2982965B2 (ja) * 1989-09-18 1999-11-29 オリンパス光学工業株式会社 光学式読み取り装置
JPH0460933A (ja) * 1990-06-26 1992-02-26 Matsushita Electric Ind Co Ltd 光ピックアップヘッド装置
JPH0827962B2 (ja) * 1990-06-27 1996-03-21 パイオニア株式会社 光ピックアップ
US5119352A (en) * 1990-08-17 1992-06-02 Hewlett-Packard Company Magneto optic data storage read out apparatus and method
DE69327369T2 (de) * 1992-02-07 2000-06-21 Sony Corp Optisches abtastgerät für eine magneto-optische speicherung

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5788540A (en) * 1980-11-21 1982-06-02 Olympus Optical Co Ltd Method and apparatus for information read-in of optical magnetic recording medium
JPS5979446A (ja) * 1982-10-28 1984-05-08 Sharp Corp 磁気光学ヘッド
JPS5996551A (ja) * 1982-11-25 1984-06-04 Sony Corp 光磁気記録体再生装置
JPS59121637A (ja) * 1982-12-28 1984-07-13 Fujitsu Ltd 磁気光学記録再生装置
JPS59191156A (ja) * 1983-04-13 1984-10-30 Nippon Kogaku Kk <Nikon> 旋光子を設けた磁気光学再生装置
JPS6190346A (ja) * 1984-10-11 1986-05-08 Hitachi Ltd 光磁気再生装置
JPS61160852A (ja) * 1984-12-30 1986-07-21 Olympus Optical Co Ltd 光磁気ピツクアツプ装置
JPS6266452A (ja) * 1985-09-19 1987-03-25 Nec Corp 光磁気ヘツド
JPS63138533A (ja) * 1986-11-28 1988-06-10 Fujitsu Ltd 光磁気デイスク装置の再生方式
JPS63200346A (ja) * 1987-02-13 1988-08-18 Nec Corp 光磁気記録再生ヘツド
JPS63247941A (ja) * 1987-04-01 1988-10-14 Nec Corp 光磁気用光ヘツド装置
JPS63291238A (ja) * 1987-05-21 1988-11-29 Seiko Epson Corp 光メモリ−装置
JPH01315036A (ja) * 1988-03-18 1989-12-20 Sony Corp 光学ピツクアツプ装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0671734A1 (en) * 1994-03-08 1995-09-13 Sony Corporation Optical device
US5568463A (en) * 1994-03-08 1996-10-22 Sony Corporation Semiconductor laser device to detect a divided reflected light beam

Also Published As

Publication number Publication date
US5577018A (en) 1996-11-19
US5742577A (en) 1998-04-21
EP0579843A4 (en) 1996-05-08
DE69327369T2 (de) 2000-06-21
EP0579843B1 (en) 1999-12-22
EP0579843A1 (en) 1994-01-26
DE69327369D1 (de) 2000-01-27
JP3658763B2 (ja) 2005-06-08
US5563869A (en) 1996-10-08

Similar Documents

Publication Publication Date Title
WO1993016469A1 (en) Phase varying device, and optical pickup apparatus using the same for magneto-optical storage
WO1995014299A1 (fr) Appareil de lecture optique
US5570333A (en) Head device for magneto-optical disk
KR100477275B1 (ko) 광학픽업장치및디스크플레이어장치
JP3626003B2 (ja) 光学的情報記憶装置
US6091692A (en) Optical information storage apparatus
JPH0944922A (ja) 情報読取装置
JPH0944923A (ja) 情報読取装置
JP3167171B2 (ja) 光ヘッド
JPS6047653B2 (ja) 光学的信号再生装置
JP3211483B2 (ja) 光ピックアップ装置
JPH0327978B2 (ja)
JPS62264444A (ja) 光学式記録再生装置
JPS62110643A (ja) 光磁気信号検出方法
JP3740777B2 (ja) 受発光素子、光学ピックアップ装置及び光ディスク装置
JPS63157341A (ja) 光磁気記録再生ヘツド
JPH0191344A (ja) 光磁気記録媒体用ピックアップ
JPH01243257A (ja) 光ピックアップ
JPS62243149A (ja) 光磁気記録再生装置
JPS62248144A (ja) 光ピツクアツプ
JPH0792940B2 (ja) 光学ピックアップ装置
JPS63222356A (ja) 光磁気ヘツド装置
JPH0447533A (ja) 光ピックアップ装置
JPH0464024A (ja) 偏光子一体型光検出器並びに半導体レーザモジュール
JPH01155540A (ja) 光磁気記録再生装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 08122411

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1993903326

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1993903326

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1993903326

Country of ref document: EP