WO1991003351A1 - Arc welding current/voltage control method - Google Patents

Arc welding current/voltage control method Download PDF

Info

Publication number
WO1991003351A1
WO1991003351A1 PCT/JP1990/000989 JP9000989W WO9103351A1 WO 1991003351 A1 WO1991003351 A1 WO 1991003351A1 JP 9000989 W JP9000989 W JP 9000989W WO 9103351 A1 WO9103351 A1 WO 9103351A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding current
voltage
arc welding
welding
error
Prior art date
Application number
PCT/JP1990/000989
Other languages
English (en)
French (fr)
Inventor
Tatsuo Karakama
Eiichi Kobayashi
Original Assignee
Fanuc Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Ltd filed Critical Fanuc Ltd
Priority to DE69013492T priority Critical patent/DE69013492T2/de
Priority to EP90911706A priority patent/EP0451279B1/en
Publication of WO1991003351A1 publication Critical patent/WO1991003351A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0956Monitoring or automatic control of welding parameters using sensing means, e.g. optical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
    • B23K9/073Stabilising the arc

Definitions

  • the present invention relates to arc welding, and more particularly to a control method for automatically controlling arc welding current-voltage to perform suitable arc welding.
  • test welding is conventionally performed by driving the welding machine at the temporarily set power output and electrode feeding speed of the welding machine. If the welding current and voltage measured during the trial welding are out of the permissible range, the trial welding is performed again after resetting the power output and the electrode feeding speed.
  • the power output and the electrode feeding speed must be adjusted by trial and error so that the welding current and voltage fall within the allowable range while repeating the trial welding. It takes effort to adjust current and voltage.
  • An object of the present invention is to provide a control method capable of automatically controlling an arc welding current and voltage to perform suitable arc welding.
  • the welding current / voltage control method of the present invention includes a step (a) of detecting the values of arc welding current and voltage, and an error between the detected value of arc welding current and a target value. And the error between the detected value of arc welding voltage and the target value Step (b), a step (c) of calculating the correction amount of the electrode welding speed of the arc welding machine based on the calculation error of the arc welding current, and step (c) of calculating the correction amount of the arc welding current 'voltage.
  • the present invention it is possible to calculate an electrode welding speed and a power supply output correction amount of an arc welding machine according to an error between a detected value of an arc welding current and a voltage and a target value.
  • the welding current-voltage error can be automatically compensated by correcting the electrode feeding speed and the power supply output, thereby automatically adjusting the welding current * voltage. Therefore, test welding for adjusting the arc welding current * voltage is not required, and arc welding can always be performed at a good iM.
  • FIG. 1 is a graph illustrating the welding current-welding voltage characteristics of an arc welding machine
  • Fig. 2 is a graph illustrating the welding current-electrode feeding speed characteristics of an arc welding machine
  • Fig. 3 is a graph.
  • FIG. 4 is a schematic block diagram showing an arc welding robot for implementing an arc welding current / voltage feedback control method according to one embodiment of the present invention. This is a flowchart showing the welding current and voltage feed executed by the welding port bot—back-up control processing.
  • the welding voltage V of a typical arc welding machine is the first welding current region where the welding current I takes a small value. In the region, it decreases linearly and rapidly as the welding current I increases. Also, in the second (normal) welding current region in which the welding current I takes a value larger than the value in the first welding current region, the welding voltage V increases as the welding current I increases. It decreases linearly at a rate of change smaller than that in the flow region.
  • the welding voltage V increases as the power output of the welding machine increases (the symbols U 1 and U 2 (> U 1) in FIG. 1 indicate the value of the power output). That is, the welding voltage V is represented by a function of the welding current I and the power output U as shown in the equation (1).
  • V f (I, U) '--- (1)
  • the welding current I of a typical arc welding machine increases along the quadratic curve as the electrode feeding speed FW increases. Increase. That is, as shown in equation (2), the electrode feed speed F W is represented by a function of the welding current I.
  • the present invention was devised in view of the above characteristics of an arc welding machine, and corrects the electrode feeding speed and power output of the arc welding machine to optimize the arc welding current and voltage. Attempts.
  • the principle of the arc welding current / voltage control method of the present invention will be described. First, the equations (1) and (2) are fully differentiated to obtain dfdf
  • the welding voltage changes linearly with the change in welding current, so the parameter () U in Eq. (5) is approximately constant and the constant ⁇ 1 Can be represented.
  • the two welding current-welding voltage curves respectively corresponding to the two power outputs U l and U 2 shown in FIG. 1 extend in parallel with each other in the second welding current region. Therefore, the welding voltage changes linearly with the power output change,
  • the parameter () I in equation (5) is approximately constant and constant.
  • equation (5) can be approximated by equation (7).
  • a welding robot for performing the method of one embodiment of the present invention performs arc welding including C02 welding, MIG welding, and the like.
  • a control device 10 comprising, for example, a numerical control device for driving and controlling a robot body 20 having a welding torch (not shown) mounted on the end of the arm is provided.
  • the numerical controller 10 includes a processor (CPU) 11, a read-only memory (ROM) 12 storing a control program, a teaching program for controlling the robot operation, and It has a random access memory (RAM) 13 for storing the operation results of the CPU 11.
  • the control device 10 includes a teaching operation panel 14 used for creating a teaching program, a manual operation of a robot, an operation panel 15 used for data input, an axis controller 16, an Interface use 17 and support A servo circuit 18 is provided.
  • the elements 12 to 16 and 17 are connected to the CPU 11 via the bus 19.
  • the servo circuit 18 is connected to the axis controller 16 and each axis servo motor (not shown) of the robot body 20 in a control relationship.
  • the interface 17 is connected to the power source of the welding machine 30, the electrode (wire) feeder, the welding current detector and the welding voltage detector (all not shown). ing.
  • the appropriate values (target values) of the welding current and voltage that enable suitable arc welding vary depending on the welding conditions including the type of wire (not shown). Therefore, before the operation of the welding robot according to the method of the present embodiment, appropriate values of the welding current and voltage according to each of the various welding conditions are determined experimentally in advance, for example. At this time, the power supply output (power supply output current, output voltage) and wire feed speed that can generate the appropriate welding current • voltage are also determined. In addition, based on the experimental results, the parameters Kl, ⁇ 2 related to the power output and the parameters a, b related to the wire feeding speed were adjusted according to various welding conditions. Determine the value in advance.
  • the operator determines welding conditions including the type of wire used for arc welding, and then determines welding current and various parameter values for voltage control (welding current) determined according to the welding conditions.
  • Voltage target value, provisional target value of power supply output and wire feed speed, set value of first and second power supply output correction parameters K 1, ⁇ 2, and the set values of the first and second wire feed speed correction parameters a and b) and the set values of the tolerances of the welding current and voltage are set on the operation panel 15 Manually input to the controller 10 via the, and start the welding robot.
  • the CPU 11 of the control device 10 stores the manually input parameter value in the RAMI 3 and then starts the control operation according to the teaching program. . That is, the CPU 11 starts controlling the position and posture of the welding torch via the axis controller 16, the servo circuit 18 and each axis servo motor, and also performs the welding command, the power output, and the like.
  • the provisional target value of the wire feed speed is sent to the welding machine 30 via the interface use 17. Further, the CPU 11 starts the welding current / voltage feedback control processing shown in FIG. This control process is periodically executed by the CPU 11.
  • the CPU 11 stores the stored values of the first and second registers for storing the accumulated detection values of the welding current and voltage and the count for the welding current and voltage detection count. Resets each of the counter values to the value "0".
  • the CPU 11 sends the actual welding current and voltage detection values I and V from the detector of the welding machine 30 via the interface 17. (Step 100>), and adds the detected values I and V to the stored values R (I) and R (V) of the first and second registers (Step 100). 1), the count value C of the counter is incremented by "1" (step 102). 1 determines whether or not the count value C is equal to the predetermined value C0 (step 103), and if the count value C does not reach the value CO, the current processing cycle is determined. Is completed.
  • step S103 If it is determined in step S103 in the subsequent processing cycle that the count value C has reached the predetermined value C0, the CPU 11 stores the count value C in the first and second registers, respectively.
  • the actual welding current and the average value T, ⁇ of the welding current and voltage are calculated by dividing the accumulated detection values R (1) and R (V) of the actual welding current and voltage by a predetermined value CO, respectively (Step 10). 4, 105). Then C P U
  • 1 1 is the target value of welding current from the average value T of actual welding current.
  • the welding current error ⁇ is calculated by subtracting 10 (step 106), and the absolute value of the error I ⁇ II is smaller than the set value ⁇ 10, that is, the error ⁇ I is within the allowable range. It is determined whether or not it has entered (step 107). If the welding current error ⁇ I is within the allowable range, the welding current collection amount ⁇ and the correction amount ⁇ Fff of the target value of the feeder speed are set to the value “0”, respectively. Steps 110, 111). On the other hand, if the welding current error ⁇ I is out of the allowable range, the welding current correction amount ⁇ I is calculated by multiplying the error ⁇ 1 by the gain GI of the preset current (step 108). ).
  • step 109 the product of the set value a of the first wire feed speed correction parameter and the average welding current value T and the second wire feed speed T Multiply the sum of the speed correction parameter and the set value b by the correction amount ⁇ I to calculate the correction amount ⁇ of the wire feed speed target value (step 109).
  • step 1 12 the CPU 11 subtracts the welding current target value V0 from the actual welding voltage average value ⁇ to determine the welding voltage. Calculate the error ⁇ .
  • it is determined whether the absolute value I ⁇ VI of the error is smaller than the set value ⁇ V0, that is, whether or not the error ⁇ V is within the allowable range (step 113).
  • the correction amount ⁇ U of the target value of the power supply output is set to the value “0” (step 1 16).
  • the welding voltage correction amount V is calculated by multiplying the error ⁇ V by the gain GV of the preset voltage (step 114). ).
  • the welding current correction amount ⁇ I calculated in the corresponding one of steps 109 and 111 and the first 'power supply output correction parameter The product of the welding power setting value K 1 and the welding voltage correction amount ⁇ V calculated in step 114 is subtracted from the welding voltage correction amount ⁇ V, and the result of the subtraction is set in the second power supply output correction parameter setting value.
  • the CPU 11 calculates the correction value of the target value of the wire feeding speed calculated in the corresponding one of the steps 109 and 111 by using the current target value of the wire feeding speed.
  • a new target value of the feeder speed is calculated by subtracting the value from the value FW, and the updated target feeder speed value is sent to the welding machine 30 (step 117).
  • the correction amount AU of the target value of the power supply output calculated in the corresponding one of Steps 115 and 116 is used as the power supply output value.
  • the new target value u of the power supply output is calculated by subtracting it from the current target value u, and the updated target power supply output value is sent to the welding current 30 (step 118).
  • each of the stored values R (1), R (V) of the first and second registers and the count value C of the counter is reset to a value "0" (step 1). 1 9)
  • the arc welding current / voltage control process in the current process cycle ends.
  • the control process of Fig. 4 is executed periodically, and the target values of the feed speed and power output are updated or maintained so as to compensate for welding current and voltage errors. . Then, the welding machine 30 adjusts the wire feed speed and the power output to target values, and as a result, the welding current and voltage are automatically controlled to the target values.
  • the present invention is not limited to the above embodiments, and various modifications are possible.
  • a table corresponding to the average welding current value T may be read in advance and read from the table.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding Control (AREA)

Description

明 細 書
ア -ク溶接電流 · 電圧制御方法
技 術 分 野
本発明はアー ク溶接に関し、 特に、 アー ク溶接電流 - 電圧を自動的に制御して好適なアー ク溶接を行える制御 方法に関する。
背 景 技 術
アー ク溶接を好適に行えるよ う にアー ク 溶接電流 · 電 圧を調整するため、 従来は、 仮に設定した溶接機の電源 出力及び電極送給速度で溶接機を駆動して試し溶接を行 い、 試し溶接中に測定した溶接電流 · 電圧が許容範囲外 にあれば電源出力及び電極送給速度を再設定した後に試 し溶接を再度行っている。 この様に、 従来法によれば、 試し溶接を繰り返しつつ、 溶接電流 · 電圧が許容範囲内 に入る よ う に電源出力及び電極送袷速度を試行錯誤によ つて調整しなければならず、 溶接電流 . 電圧の調整に労 力を要する。
発 明 の 開 示
本発明の目的は、 アー ク溶接電流 · 電圧を自動的に制 御して好適なアー ク溶接を行える制御方法を提供する こ とに る。
上述の目的を達成するため、 本発明の溶接電流 . 電圧 制御方法は、 ア ー ク溶接電流 · 電圧の値を検出する工程 ( a ) と、 アー ク溶接電流の検出値と目標値との誤差及 びアー ク溶接電圧の検出値と目標値との誤差を算出する 工程 ( b ) と、 アー ク溶接電流の算出誤差に基づいてァ ーク溶接機の電極送袷速度の補正量を算出する工程 ( c ) と、 アー ク溶接電流 ' 電圧の算出誤差に基づいてアー ク 溶接機の電源出力の捕正量を算出する工程 ( d ) とを備 んる。
上述のよ う に、 本発明によれば、 アーク溶接電流 . 電 圧の検出値と目標値との誤差に応じてアー ク溶接機の電 極送袷速度及び電源出力の補正量を算出するよ う に した ので、 電極送給速度及び電源出力を補正して溶接電流 - 電圧誤差を自動的に補償でき、 これによ り溶接電流 * 電 圧を自動的に調整できる。 従って、 アーク溶接電流 * 電 圧調整用の試し溶接が不要で、 また、 アー ク溶接を常に 好 iMに行える。 - 図 面 の 簡 単 な 説 明
第 1 図はア - ク溶接機の溶接電流 -溶接電圧特性を例 示する グラ フ、 第 2図はアーク溶接機の溶接電流一電極 送給速度特性を例示する グラ フ、 第 3図は本発明の一実 施例によるアー ク溶接電流 · 電圧フ ィ ー ドバッ ク制御方 法を実施するためのァ― ク溶接ロ ボ ッ トを示す概略プロ ッ ク図、 第 4図は第 3 図の溶接口 ボッ ト によ り実行され る溶接電流 · 電圧フ ィ — ドバッ ク制御処理を示すフ ロ ー チ ヤ 一 トである。
発明を実施するための最良の形態
第 1 図に示すよ う に、 典型的なアーク溶接機の溶接電 圧 Vは、 溶接電流 I が小さい値を と る第 1 の溶接電流領 域では溶接電流 I の増大につれて直線的にかつ急激に減 少する。 又、 溶接電流 I が第 1 の溶接電流領域の値よ り も大きい値をと る第 2 の (通常の) 溶接電流領域では、 溶接電圧 Vは、 溶接電流 I の増大につれて第 1 の溶接電 流領域での変化率よ り も小さい変化率で直線的に減少す る。 そ して、 溶接機の電源出力が大きいほ ど溶接電圧 V は大き く なる (第 1 図中、 記号 U 1 , U 2 ( > U 1 ) は 電源出力の値を示す) 。 即ち、 溶接電圧 Vは、 第 ( 1 ) 式に示すよ う に、 溶接電流 I 及び電源出力 Uの関数で表 される。
V = f ( I , U ) ' —— ( 1 ) 第 2 図に示すよ う に、 典型的なアーク溶接機の溶接電 流 I は、 電極送袷速度 F Wの増大につれて二次曲線に沿 つて増大する。 すなわち、 第 ( 2 ) 式に示すよ う に、 電 極送給速度 F Wは溶接電流 I の関数で表される。
F = g ( I ) · · · ( 2 ) そ して、 第 1 図及び第 2 図に例示したアー ク溶接機の 溶接電流 -溶接電圧特性及び溶接電流 -電極送給速度特 性は、 電極の種別 (電極材質, 電極直径な どの電極の物 理的性質) を含む溶接条件に応じて変化する。
本発明は、 アー ク溶接機の上記特性に着目 して創案し たもので、 アー ク溶接機の電極送袷速度及び電源出力を 補正してアー ク溶接電流 · 電圧を適正化する こ とを企図 する。 以下、 本発明のア - ク溶接電流 . 電圧制御方法の 原理を説明する。 先ず、 第 ( 1 ) 式及び第 ( 2 ) 式を全微分 して、 d f d f
d V = ( ) I · d U + ( ) U · d I
d u Θ I
( 3 ) d F W = g ( I ) d I ( ) を得る。
第 ( 3 ) 式及び第 ( 4 ) 式を変形して、
a f d f
Δ U = { Δ V - ( ) U · Δ I } ) I d I Θ u
( 5 )
Δ F W = s ( I ) Δ I ( 6 ) を得る。
第 1 図の第 2 溶接電流領域において、 溶接電圧は溶接 電流変化に伴って直線的に変化するので、 第 ( 5 ) 式中 のパラ メ ータ ( ) U は略一定で、 定数 Κ 1 で表す こ とができ る。 又、 第 1 図に示す 2 つの電源出力 U l, U 2 に夫々対応する 2つの溶接電流一溶接電圧曲線は、 第 2溶接電流領域において互いに平行に延びている。 従 つて、 溶接電圧は電源出力変化に伴つて直線的に変化し、
Θ f一
第 ( 5 ) 式中のパラ メ 一 タ ( ) I は略一定で、 定
Θ U
数 K 2 で表すこ とができ る。 結局、 第 ( 5 ) 式は第 ( 7 ) 式で近似できる。
厶 U = ( Δ ν - Κ 1 Δ Ι ) / Κ 2 · · · ( 7 ) そ して、 第 2 図に示すよ う に溶接電流一電極送給速度曲 線は近似的には 2 次曲線からなる。 従って、 第 ( 6 ) 式 中のパラ メ ータ g ' ( I ) は 1 次式 a l + bで近似でき、 第 ( 6 ) 式は第 ( 8 ) 式で近似でき る。 Δ F W = g ' ( I ) 厶 I = ( a I + b ) A I
( 8 ) 結局、 電源出力及び電極送給速度が Δ U, だけ 変化する と、 アー ク溶接電流 · 電圧が Δ I , Δ νだけ変 化する。 即ち、 パ ラ メ ー タ Δ Ι , Δ νを溶接電流 ' 電圧 の所要変化高と捉え、 第 ( 7 ) 式及び第 ( 8 ) 式を夫々 満たす変化高 Δ U, Δ F Wだけ電源出力及び電極送給速 度を変化させる こ とによ り、 溶接電流 . 電圧を適正値に 調整でき る。
以下、 本発明の一実施例による アーク溶接電流 . 電圧 フ ィ — ドバッ ク制御方法を説明する。
第 3 図を参照する と、 本発明の一実施例の方法を実施 するための溶接ロ ボッ ト は、 C 0 2溶接, M I G溶接等 を含むアー ク溶接を行う もので、 溶接機 3 0 の溶接 ト ー チ (図示略) をアーム先端に装着 したロボ ッ ト本体 2 0 を駆動制御するための、 例えば数値制御装置からなる制 御装置 1 0 を備.えてい る。
数値制御装置 1 0 は、 プ ロ セ ッ サ ( C P U ) 1 1 と、 制御プ ロ グラ ムを格納した読出し専用メ モ リ ( R O M) 1 2 と、 ロボッ ト動作制御用の教示プロ グラ ム及び C P U 1 1 による演算結果を格納するためのラ ンダムァ ク セ ス メ モ リ ( R A M) 1 3 とを備えている。 又、 制御装置 1 0 は、 教示プ ロ グラ ム の作成に用いられる教示操作盤 1 4, ロ ボッ ト の手動運転, デー タ入力に用いられる操 作盤 1 5, 軸制御器 1 6 , イ ンタ ー フ ユ イ ス 1 7及びサ ーボ回路 1 8 を備えている。 上記要素 1 2〜 1 6及び 1 7 はバ ス 1 9 を介して C P U 1 1 に接続されている。 サ —ポ回路 1 8 は、 軸制御器 1 6 およびロボ ッ ト本体 2 0 の各軸サ―ボモータ (図示略) と制御関係に接続されて いる。 又、 イ ン タ — フ ヱ イ ス 1 7 は、 溶接機 3 0 の電源, 電極 ( ワ イ ヤ) 送給装置, 溶接電流検出器及び溶接電圧 検出器 (いずれも図示略) に接铳されている。
上述のよ う に、 好適なアー ク溶接を可能とする溶接電 流 · 電圧の適正値 (目標値) は、 ワ イ ヤ (図示略) の種 別を含む溶接条件によって変化する。 そ こ で、 本実施例 の方法に従う溶接ロボッ ト の運転を行う前に、 各種溶接 条件の夫々 に応じた溶接電流 · 電圧の適正値を例えば予 め実験的に決定しておく。 こ の と き、 適正'値の溶接電流 • 電圧を発生可能とする電源出力 (電源の出力電流, 出 力電圧) 及びワ イ ヤ送給速度を併せて決定しておく。 更 に、 実験結果に基づいて、 電源出力に関連するパラ メ 一 夕 K l, Κ 2及びワ イ ヤ送袷速度に関連するパ ラ メ 一夕 a , b の、 各種溶接条件に応じた適正値を予め決定して おく。
以下、 第 3 図の溶接ロ ボッ トの作動を説明する。
先ず、 オ ペ レータは、 アー ク溶接に用いる ワ イ ヤの種 別を含む溶接条件を決定し、 次いで、 溶接条件に応じて 定まる溶接電流 , 電圧制御用の各種パラ メ ータ値 (溶接 電流 , 電圧の目標値, 電源出力及びワ イ ヤ送給速度の仮 目標値, 第 1, 第 2 の電源出力補正パラ メ ー タ の設定値 K 1 , Κ 2 な らびに第 1, 第 2 の ワ イ ヤ送給速度補正パ ラ メ ー タ の設定値 a, b ) と溶接電流 · 電圧の許容誤差 の設定値とを操作盤 1 5 を介して制御装置 1 0 に手動入 力し、 さ らに、 溶接ロボ ッ トを起動させる。
ロ ボ ッ 卜 の起動時、 制御装置 1 0 の C P U 1 1 は、 手 動入力されたパ ラ メ—夕値を R A M I 3 に格納し、 次い で、 教示プロ グラ ムに従う制御動作を開始する。 すなわ ち、 C P U 1 1 は、 軸制御器 1 6 , サ―ボ回路 1 8及び 各軸サ ー ボモー タ を介する溶接 ト ー チ の位置, 姿勢制御 を開始する と共に、 溶接指令ならびに電源出力及びワ イ ャ送給速度の仮目標値をィ ンタ ー フ ユ イ ス 1 7 を介して 溶接機 3 0 に送出する。 更に、 C P U 1 1 は、 第 4 図の 溶接電流 · 電圧フ ィ ー ドバッ ク制御処理を'開始する。 こ の制御処理は C P U 1 1 によ り周期的に実行される。 制 御処理開始時、 C P U 1 1 は、 溶接電流 · 電圧の累積検 出値記憶用の第 1 , 第 2 の レ ジス タ の記憶値および溶接 電流 ' 電圧検出回数カ ウ ン ト用の カ ウ ンタ の カ ウ ン ト値 の夫々 を値 「 0 」 に リ セ ッ 卜する。
第 4 図の制御処理の各々 の処理周期において、 C P U 1 1 は、 溶接機 3 0 の検出器からの実際溶接電流 . 電圧 の検出値 I, Vをイ ンタ ー フ ヱ イ ス 1 7 を介して読取り (ス テ ッ プ 1 0 0 〉 、 当該検出値 I , Vを第 1 , 第 2 の レ ジス タ の記憶値 R ( I ) , R ( V ) に加算し ( ス テ ツ プ 1 0 1 ) 、 カ ウ ン タ の カ ウ ン ト値 Cを 「 1 」 だけイ ン ク リ メ ン 卜 する ( ス テ ッ プ 1 0 2 ) 。 次いで、 C P U 1 1 は、 カ ウ ン ト値 Cが所定値 C 0に等しいか否かを判別 し (ス テ ッ プ 1 0 3 ) 、 カ ウ ン ト 値 Cが値 C Oに達して いなければ今回処理周期での処理を終了する。
その後の処理周期でのス テ ッ プ S 1 0 3 においてカ ウ ン ト値 Cが所定値 C 0に達したと判別する と、 C P U 1 1 は第 1, 第 2 の レジス タ に夫々記憶された実際溶接電 流 · 電圧の累積検出値 R ( 1 ) , R ( V) を所定値 C O で夫々除して実際溶接電流 , 電圧の平均値 T, ▽を夫々 算出する (ステ ッ プ 1 0 4 , 1 0 5 ) 。 次いで、 C P U
1 1 は、 実際溶接電流の平均値 Tから溶接電流の目標値
1 0を減じて溶接電流の誤差 ε ΐを算出し (ステ ッ プ 1 0 6 ) 、 誤差の絶対値 I ε I I が設定値 ε 10よ り も小さい か、 すなわち、 誤差 ε Iが許容範囲内に入'つているか否 かを判別する (ス テ ッ プ 1 0 7 ) 。 溶接電流誤差 ε Iが 許容範囲内に入っていれば、 溶接電流の捕正量 Δ Ι 及び ヮィ ャ送給速度の目標値の補正量 Δ Fffを値 「 0 」 に夫 々設定する (ス テ ッ プ 1 1 0, 1 1 1 ) 。 一方、 溶接電 流誤差 ε Iが許容範囲を逸脱していれば、 予め設定した 電流のゲイ ン G Iを誤差 ε 1に乗じて溶接電流補正量△ I を算出する (ス テ ッ プ 1 0 8 ) 。 更に、 上記第 ( 8 ) 式 に示すよ う に、 第 1 のワ イ ヤ送給速度補正パラ メ ー タ の 設定値 a と平均溶接電流値 Tとの積と第 2 の ワ イ ヤ送給 速度補正パラ メ — タの設定値 b との和に補正量 Δ I を乗 じて、 ワ イ ヤ送給速度の目標値の補正量 Δ を算出す る (ス テ ッ プ 1 0 9 ) 。 ス テ ッ プ 1 0 9, 1 1 1 に続く ス テ ッ プ 1 1 2 におい て、 C P U 1 1 は、 実際溶接電圧の平均値▽から溶接電 流の目標値 V 0を減じて溶接電圧の誤差 ε νを算出する。 次いで、 誤差の絶対値 I ε V I が設定値 ε V0よ り も小さ いか、 即ち、 誤差 ε Vが許容範囲内に入っているか否か を判別する ( ス テ ッ プ 1 1 3 ) 。 溶接電流誤差 Vが許 容範囲内に入っていれば、 電源出力の目標値の補正量 Δ Uを値 「 0 」 に設定する ( ス テ ッ プ 1 1 6 ) 。 一方、 溶 接電圧誤差 e Vが許容範囲を逸脱していれば、 予め設定 した電圧のゲイ ン G Vを誤差 ε Vに乗じて溶接電圧補正量 厶 Vを算出し ( ス テ ッ プ 1 1 4 ) 。 更に、 上記第 ( 7 ) 式に示すよ う に、 ステ ッ プ 1 0 9 , 1 1 1 の対応する一 つで算出した溶接電流捕正量 Δ I と第 1 の'電源出力補正 パラ メ ー タ の設定値 K 1 と の積を ス テ ッ プ 1 1 4 で算出 した溶接電圧捕正量 Δ Vから減じ、 さ らに、 減算結果を 第 2 の電源出力補正パラ メ 一 夕 の設定値 Κ 2 で除して、 電源出力の目標値の補正量△ Uを算出する ( ス テ ッ プ 1 1 5 ) 0
次いで、 C P U 1 1 は、 ス テ ッ プ 1 0 9, 1 1 1 の対 応する一つで算出したワ イ ヤ送袷速度の目標値の補正量 をワ イ ヤ送給速度の現在の目標値 F Wから減じてヮ ィ ャ送給速度の新たな目標値を算出し、 更新後の目標ヮ ィ ャ送給速度値を溶接機 3 0 に送出する ( ス テ ッ プ 1 1 7 ) 。 同様に、 ス テ ッ プ 1 1 5, 1 1 6 の対応する一つ で算出 した電源出力の目標値の補正量 A U を電源出力の 現在の目標値 uから減じて電源出力の新たな目標値 uを 算出し、 更新後の目標電源出力値を溶接電流 3 0 に送出 する (ス テ ッ プ 1 1 8 ) 。 更に、 第 1 , 第 2 のレジスタ の記憶値 R ( 1 ) , R ( V ) 及びカ ウ ンタ のカ ウ ン ト値 Cの夫々 を値 「 0 」 に リ セ ッ ト し (ステ ッ プ 1 1 9 ) 、 今回処理周期でのア - ク溶接電流 · 電圧制御処理を終了 する。
アー ク溶接中、 第 4図の制御処理が周期的に実行され、 ヮィ ャ送袷速度及び電源出力の目標値が溶接電流 · 電圧 誤差を補償する よ う に更新も し く は維持される。 そ して、 溶接機 3 0 はワ イ ャ送給速度及び電源出力を目標値に調 整し、 結果と して、 溶接電流 · 電圧が目標値に自動的に 制御される。 - 本発明は上記実施例に限定されず、 種々 の変形が可能 である。
例えば、 上記実施例ではワ イ ヤ送給速度捕正量 Δ FW ( = g * ( I ) · Δ I ) 中の変数 g ' ( I ) の値を算出式 g ' ( l ) = a l + b に従いかつ設定値 a, b及び実際 溶接電流の平均値 Tを用いて算出 したが、 変数 g ' ( I ) の値を、 溶接電流値によ って区分 した所要数の溶接電流 領域の夫々 に対応づけて予めテー ブル化しておき、 平均 溶接電流値 Tに対応する変数値をテー ブルか ら読み出す よ う に して も良い。

Claims

請 求 の 範 囲
1. アー ク溶接電流 , 電圧の値を検出する工程 ( a ) と、 アー ク溶接電流の前記検出値と 目標値との誤差及びァ - ク溶接電圧の前記検出値と目標値との誤差を算出す る工程 ( b ) と、 アー ク溶接電流の前記算出誤差に基 づいてアーク溶接機の電極送給速度の補正量を算出す る工程 ( c ) と、 アー ク溶接電流 . 電圧の両前記算出 誤差に基づいてアーク溶接機の電源出力の補正量を算 出する工程 ( d ) とを備えるアー ク溶接電流 . 電圧制 御方法。
2. 前記工程 ( a ) において、 アー ク溶接電流 . 電圧の 値を所定回数にわたって検出する と共にアー ク溶接電 流 · 電圧の夫々 の前記検出値の平均値を算出し、 前記 工程 ( b ) において、 両前記平均値を用いて両前記誤 差を夫々算出する請求の範囲第 1 項記載のァーク溶接 電流 · 電圧制御方法。
3. アー ク溶接電流の前記算出誤差が許容範囲内に入い るか否かを判別し、 前記算出誤差が前記許容範囲を逸 脱している と判別した と きにのみ前記工程 ( c〉 での 前記電極送袷速度補正量の算出を行う請求の範囲第 1 項又は第 2項記載のア - ク溶接電流 · 電圧制御方法。
4. アー ク溶接電圧の前記算出誤差が許容範囲内に入る か否かを判別し、 前記算出誤差が前記許容範囲を逸脱 している と判別したと きにのみ前記工程 ( d ) での前 記電源出力補正量の算出を行う請求の範囲第 1 項又は 第 2 項記載のア -ク溶接電流 · 電圧制御方法。
5 . 前記工程 ( c ) において、 ア ー ク溶接電流及びその 変化高を変数と して含む所定の算出式に前記アー ク溶 接電流検出値及び前記ァ - ク溶接電流誤差を代入して 前記電極送給速度補正量を算出する請求の範囲第 1 項 又は第 2項記載のア - ク溶接電流 · 電圧制御方法。
6 . 前記工程 ( d ) において、 ァ― ク溶接電流 · 電圧の 変化高を変数と して含む所定の算出式に前記アーク溶 接電流 · 電圧誤差を代入して前記電源出力補正量を算 出する請求の範囲第 1 項又は第 2項記載のァ一ク溶接 電流 · 電圧制御方法。
PCT/JP1990/000989 1989-08-29 1990-08-02 Arc welding current/voltage control method WO1991003351A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE69013492T DE69013492T2 (de) 1989-08-29 1990-08-02 Steuerverfahren für strom und spannung bei bogenschweissen.
EP90911706A EP0451279B1 (en) 1989-08-29 1990-08-02 Arc welding current/voltage control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1/220206 1989-08-29
JP1220206A JP2700823B2 (ja) 1989-08-29 1989-08-29 アーク溶接電流・電圧フィードバック制御方法

Publications (1)

Publication Number Publication Date
WO1991003351A1 true WO1991003351A1 (en) 1991-03-21

Family

ID=16747551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1990/000989 WO1991003351A1 (en) 1989-08-29 1990-08-02 Arc welding current/voltage control method

Country Status (5)

Country Link
US (1) US5233158A (ja)
EP (1) EP0451279B1 (ja)
JP (1) JP2700823B2 (ja)
DE (1) DE69013492T2 (ja)
WO (1) WO1991003351A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5442726A (en) * 1994-02-22 1995-08-15 Hubbell Incorporated Optical fiber storage system
CN102873433A (zh) * 2012-07-03 2013-01-16 广东技术师范学院 一种双丝弧焊送丝速度预测设定方法
CN110202240A (zh) * 2018-02-28 2019-09-06 依赛彼公司 焊接装置的电弧电压感测和控制

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2503712B2 (ja) * 1990-03-08 1996-06-05 三菱電機株式会社 エレベ―タ―の速度制御装置
DE69113591T2 (de) * 1990-07-13 1996-03-28 Sodick Co Ltd Verfahren und gerät zur generierung von pulsen.
JPH07303966A (ja) * 1994-05-11 1995-11-21 Fanuc Ltd ロボット制御装置
US5770834A (en) * 1996-08-14 1998-06-23 Abb Flexible Automation, Inc. Robot control system and method for TIG welding
DE19702911C1 (de) * 1997-01-28 1998-07-30 Leipold & Co Gmbh Elektronische Schweißenergiequelle
JP4780570B2 (ja) * 1998-09-04 2011-09-28 独立行政法人物質・材料研究機構 アーク溶接方法
JP2000271888A (ja) 1999-03-25 2000-10-03 Fanuc Ltd ロボット制御装置
US6642481B2 (en) * 2001-05-11 2003-11-04 Illinois Tool Works Inc. Integrated welding control and power supply using phased control power technology
US6642482B2 (en) * 2001-09-19 2003-11-04 Illinois Tool Works Inc. Welding-type system with robot calibration
JP3736411B2 (ja) * 2001-09-28 2006-01-18 松下電器産業株式会社 ア−ク溶接装置
KR20030049325A (ko) * 2001-12-14 2003-06-25 삼성전자주식회사 아크용접장치와 그 제어방법
US7092660B2 (en) 2003-05-26 2006-08-15 Seiko Epson Corporation Image forming apparatus
EP1512481A3 (en) * 2003-09-02 2011-09-28 Illinois Tool Works Inc. Voltage regulated GMA welding using a constant current power source and wire feeder having variable gain
US7091449B2 (en) * 2003-09-02 2006-08-15 Illinois Tool Works Inc. Voltage regulated MIG welding using a constant current power source
CN1978114B (zh) * 2005-11-30 2011-03-16 陈大可 弧焊电源的电弧功率控制方法及装置
JP5101943B2 (ja) * 2007-07-31 2012-12-19 株式会社ダイヘン アーク溶接電源
US9442481B2 (en) * 2008-01-09 2016-09-13 Illinois Tool Works Inc. Automatic weld arc monitoring system
US10350695B2 (en) * 2010-06-14 2019-07-16 Esab Ab Method of automatically setting a welding parameter for MIG/MAG welding and a controller for performing the method
JP5556734B2 (ja) * 2011-04-20 2014-07-23 株式会社安川電機 溶接システムおよび溶接システム用ロボット制御装置
WO2012162619A1 (en) * 2011-05-26 2012-11-29 Thermal Dynamics Corporation System for and method of generating a weld with selection of weld control algorithms according to set voltage magnitude
AU2012258661B2 (en) 2011-05-26 2015-04-16 Thermal Dynamics Corporation Systems for and method of generating a weld during a start of a welding process by restricting output
JP5907614B2 (ja) * 2012-02-24 2016-04-26 株式会社ダイヘン 消耗電極アーク溶接制御方法
US9862050B2 (en) * 2012-04-03 2018-01-09 Lincoln Global, Inc. Auto steering in a weld joint
CN102773588B (zh) * 2012-08-04 2015-01-07 深圳市瑞凌实业股份有限公司 弧压跟踪脉冲埋弧焊控制方法、控制电路及焊机
JP5950747B2 (ja) * 2012-08-07 2016-07-13 株式会社ダイヘン 消耗電極アーク溶接制御方法
FR2994872B1 (fr) * 2012-09-05 2014-09-26 Air Liquide Welding France Dispositif de soudage a l'arc avec selection automatique du regime de transfert de metal
US10086465B2 (en) 2013-03-15 2018-10-02 Lincoln Global, Inc. Tandem hot-wire systems
US10035211B2 (en) 2013-03-15 2018-07-31 Lincoln Global, Inc. Tandem hot-wire systems
US10464168B2 (en) 2014-01-24 2019-11-05 Lincoln Global, Inc. Method and system for additive manufacturing using high energy source and hot-wire
JP6339651B1 (ja) * 2016-12-02 2018-06-06 ファナック株式会社 アーク溶接ロボットシステム
US11027362B2 (en) 2017-12-19 2021-06-08 Lincoln Global, Inc. Systems and methods providing location feedback for additive manufacturing
US11311958B1 (en) * 2019-05-13 2022-04-26 Airgas, Inc. Digital welding and cutting efficiency analysis, process evaluation and response feedback system for process optimization
CN112775522B (zh) * 2020-12-23 2022-09-23 唐山松下产业机器有限公司 高效tig的送丝方法与焊接设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232625B2 (ja) * 1973-03-29 1977-08-23
JPS57199566A (en) * 1981-06-02 1982-12-07 Matsushita Electric Ind Co Ltd Controlling method for arc welding
JPS5823569A (ja) * 1981-07-31 1983-02-12 Mitsubishi Electric Corp 直流ア−ク溶接装置
JPS6240111B2 (ja) * 1976-11-04 1987-08-26 Daihen Corp
JPH0115352B2 (ja) * 1980-12-29 1989-03-16 Sansha Electric Mfg Co Ltd

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3538376A (en) * 1967-03-03 1970-11-03 Air Reduction Arc current stabilization by control of electrode feed speed
JPS5847567A (ja) * 1981-09-16 1983-03-19 Matsushita Electric Ind Co Ltd 溶接用電源装置
US4521672A (en) * 1981-10-27 1985-06-04 Miller Electric Manufacturing Company Electronic welding apparatus
US4441009A (en) * 1982-04-26 1984-04-03 Larry Russell Arc voltage control circuit for welding apparatus
DE3317028C2 (de) * 1983-05-10 1985-12-05 Utp Schweissmaterial Gmbh & Co, 7812 Bad Krozingen Einrichtung zum Metallichtbogenschweißen
JPS61245971A (ja) * 1985-04-22 1986-11-01 Kawasaki Steel Corp 自動ア−ク溶接機の制御方法
JPS63290686A (ja) * 1987-05-21 1988-11-28 Toshiba Corp ア−ク溶接管理装置
US4851639A (en) * 1988-09-29 1989-07-25 Nkk Corporation Apparatus for automatically welding cylindrical vessel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232625B2 (ja) * 1973-03-29 1977-08-23
JPS6240111B2 (ja) * 1976-11-04 1987-08-26 Daihen Corp
JPH0115352B2 (ja) * 1980-12-29 1989-03-16 Sansha Electric Mfg Co Ltd
JPS57199566A (en) * 1981-06-02 1982-12-07 Matsushita Electric Ind Co Ltd Controlling method for arc welding
JPS5823569A (ja) * 1981-07-31 1983-02-12 Mitsubishi Electric Corp 直流ア−ク溶接装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5442726A (en) * 1994-02-22 1995-08-15 Hubbell Incorporated Optical fiber storage system
CN102873433A (zh) * 2012-07-03 2013-01-16 广东技术师范学院 一种双丝弧焊送丝速度预测设定方法
CN110202240A (zh) * 2018-02-28 2019-09-06 依赛彼公司 焊接装置的电弧电压感测和控制

Also Published As

Publication number Publication date
JPH0386376A (ja) 1991-04-11
EP0451279B1 (en) 1994-10-19
DE69013492T2 (de) 1995-02-23
US5233158A (en) 1993-08-03
DE69013492D1 (de) 1994-11-24
EP0451279A1 (en) 1991-10-16
JP2700823B2 (ja) 1998-01-21
EP0451279A4 (en) 1992-09-09

Similar Documents

Publication Publication Date Title
WO1991003351A1 (en) Arc welding current/voltage control method
US8963045B2 (en) Non-linear adaptive control system and method for welding
KR20020083904A (ko) 아크 용접 프로세스의 제어 방법 및 이를 이용하는 용접기
US10058956B2 (en) Metalworking wire feeder system with force control operation
CN109982803B (zh) 具有用于计算焊接次级部件的输出电感的控制器的焊接型系统以及关联的非暂时性机器可读存储设备
JP6517867B2 (ja) 数値制御装置
CN108202177B (zh) 气体保护焊起弧控制方法和装置
JPH0653309B2 (ja) ア−ク溶接の最適制御方法
US5347105A (en) Welding controller
JP3375500B2 (ja) 放電加工方法および放電加工装置
JP3295920B2 (ja) 張力制御方法
WO1988005362A1 (en) Method of starting arc-sensing
JP3311403B2 (ja) アーク溶接自動制御方法及び装置
JPH07104805A (ja) 半導体製造装置の制御装置の制御方法及びその制御装置
JP3115173B2 (ja) 消耗電極式アーク溶接機のワイヤ送給速度制御装置
JPH064194B2 (ja) アーク溶接ロボットによる溶接方法
JPH0818137B2 (ja) プラズマトーチのスタンドオフ制御装置
JP2620887B2 (ja) アーク溶接方法
JPH0985441A (ja) アーク溶接の自動制御装置
JPH11156550A (ja) プラズマ切断装置
JPH09229009A (ja) エア圧過不足検出方法,エア圧調整指示方法及び装置
JPH05318227A (ja) 数値制御ネジ切り装置
JPH0232000Y2 (ja)
JPH0330468B2 (ja)
JPS6138784A (ja) 溶接開先追従方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1990911706

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1990911706

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1990911706

Country of ref document: EP